[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016088412A1 - 発光装置および照明器具 - Google Patents

発光装置および照明器具 Download PDF

Info

Publication number
WO2016088412A1
WO2016088412A1 PCT/JP2015/073810 JP2015073810W WO2016088412A1 WO 2016088412 A1 WO2016088412 A1 WO 2016088412A1 JP 2015073810 W JP2015073810 W JP 2015073810W WO 2016088412 A1 WO2016088412 A1 WO 2016088412A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting unit
emitting device
color temperature
Prior art date
Application number
PCT/JP2015/073810
Other languages
English (en)
French (fr)
Inventor
恭裕 川口
智一 名田
松田 誠
宏彰 大沼
修 地主
幡 俊雄
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2016562325A priority Critical patent/JP6395859B2/ja
Priority to CN201580065722.8A priority patent/CN107148682A/zh
Priority to EP15864356.9A priority patent/EP3229280A4/en
Priority to US15/532,920 priority patent/US9974137B2/en
Publication of WO2016088412A1 publication Critical patent/WO2016088412A1/ja
Priority to US15/947,471 priority patent/US10264646B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/005Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate is supporting also the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source

Definitions

  • the present invention relates to a light emitting device and a lighting fixture capable of adjusting a color temperature.
  • ⁇ Halogen lamps are very close to the energy distribution of a complete radiator, so they exhibit excellent color rendering. Furthermore, since the color temperature of the light emitted from the halogen lamp can be changed depending on the magnitude of the power supplied to the halogen lamp, it is used as a visible light source.
  • the halogen lamp emits infrared rays, so it has a very high temperature, requires a reflector for preventing infrared radiation, has a short life compared to LEDs, and consumes a large amount of power. there were. Therefore, development of a white light emitting device using a light emitting diode (LED) that generates less heat and has a longer life is being carried out.
  • LED light emitting diode
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2013-254669 discloses an illumination light source having a plurality of types of light sources that emit light of different colors as a variable illumination system capable of adjusting the light quantity and color temperature of irradiation light in a well-balanced manner. And a controller having a rotatable dial used to adjust the light amount and color temperature of the irradiation light from the illumination light source, wherein the controller includes the illumination light source.
  • a storage unit that stores a light control toning curve that is defined so that the amount of emitted light and color temperature change in correlation with each other, and an adjustment for adjusting the light control toning curve stored in the storage unit And the amount of light emitted from the illumination light source and the color temperature change according to the values determined by the light control toning curve when the dial is rotated.
  • variable color temperature lighting system characterized in that it is adjusted in accordance with the operation of the adjustment button is disclosed.
  • Patent Document 1 has a problem that a plurality of circuits are required to drive each illumination light source, and the structure of the light-emitting device becomes complicated.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a light-emitting device capable of adjusting a color temperature by supplying power from a single power source and a lighting fixture including the light-emitting device. To do.
  • the present invention provides an anode electrode land, a cathode electrode land, and adjacent first light emitting portions provided in parallel and electrically connected to the anode electrode land and the cathode electrode land.
  • This is a light emitting device capable of adjusting the color temperature of light emitted from the entire light emitting unit.
  • the resistance member is an inductor.
  • the light emitting device includes the low pass filter in multiple stages.
  • the entire light emitting unit including the first light emitting unit and the second light emitting unit is formed in a substantially rectangular shape in plan view.
  • the present invention is a lighting fixture comprising: the light emitting device according to any one of [1] to [4] above; and a PWM signal dimmer electrically connected to the light emitting device. is there.
  • a light emitting device capable of adjusting a color temperature by supplying power from a single power source and a lighting fixture including the light emitting device.
  • FIG. 10 is a perspective perspective view of a modification of the light emitting device of FIG. 9. It is a perspective view of the modification of the light-emitting device of FIG. It is a top view which shows typically the light-emitting device which concerns on Embodiment 5 of this invention.
  • FIG. 1 is a plan perspective view schematically showing the light emitting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic circuit diagram of a lighting fixture 80 using the light emitting device of FIG. 4A to 4C are diagrams for explaining D / A conversion of a pulse signal from the PWM signal dimmer.
  • the light emitting device 1 is electrically connected to the anode electrode land 13, the cathode electrode land 14, the anode electrode land 13, and the cathode electrode land 14.
  • the electric resistance of the first light emitting unit 5 is larger than the electric resistance of the second light emitting unit 6.
  • the light emitting device 1 can adjust the color temperature of light emitted from the entire light emitting unit including the first light emitting unit 5 and the second light emitting unit 6.
  • the first light emitting unit 5 includes a first red phosphor 60, a second red phosphor 61, a green phosphor 70, an LED element 8, and a translucent resin 17.
  • a resistor 2 is electrically connected in series between the first light emitting unit 5 and the cathode electrode land 14.
  • the second light emitting unit 6 includes a first red phosphor 60, a second red phosphor 61, a green phosphor 70, an LED element 8, and a translucent resin 17.
  • the electrostatic capacity member 9 is disposed under the resin dam 10.
  • the first light emitting unit 5 and the second light emitting unit 6 emit light by supplying power from a single power source.
  • the light emitted from the first light emitting unit 5 and the light emitted from the second light emitting unit 6 are mixed and emitted to the outside as light from the light emitting device 1.
  • the ratio of the current flowing to the first light emitting unit 5 and the second light emitting unit 6 is changed, the color temperature of the light emitted from the first light emitting unit 5 and the second light emitting unit 6 does not change, but the light flux of each light emitting unit The ratio changes. Therefore, it is possible to change the color temperature of light from the entire light emitting unit, which is a mixed light of the light emitted from the first light emitting unit 5 and the second light emitting unit 6.
  • the light emitting device 1 includes a capacitance member 9 provided in parallel with the first light emitting unit 5 and the second light emitting unit 6, and the first light emitting unit 5 and the second light emitting unit.
  • a low-pass filter 51 including a resistor 3 provided in series with the unit 6 is provided. Therefore, when the light emitting device 1 of FIG. 1 is connected to a PWM (Pulse Width Modulation) signal type dimmer 15 as shown in FIG. 2, the pulse signal from the PWM signal type dimmer 15 is converted into a DC voltage. can do.
  • PWM Pulse Width Modulation
  • the light emitting device 1 can adjust the color temperature of light emitted from the entire light emitting unit including the light emitting unit 5 and the light emitting unit 6 using the PWM signal dimmer 15 which is a conventional dimming circuit for LED elements. is there.
  • a circuit including the capacitance member 9 and the resistor 3 forms a low-pass filter 51.
  • Digital-analog conversion (hereinafter also referred to as D / A conversion) in the case where the electrical signal of the PWM signal dimmer passes through the low-pass filter 51 will be described with reference to FIG.
  • D / A conversion Digital-analog conversion
  • an electrostatic capacitance component may be connected in parallel with the 1st light emission part 5 and the 2nd light emission part 6, it is preferable to use a low-pass filter further in order to reduce a high frequency noise component.
  • dimming is usually performed using a PWM signal dimmer.
  • the PWM signal dimmer emits a pulse wave as shown in FIG. 4A, the duty ratio (tp / T) of the pulse wave (tp indicates the pulse width, and T indicates the period.
  • the lighting time is changed by changing the lighting control to control the dimming of the lighting fixture. Therefore.
  • the PWM signal type dimmer cannot directly apply toning by a change in current value to a circuit including only the first light emitting unit 5 and the second light emitting unit 6.
  • the pulse signal from the PWM signal dimmer 15 is converted into a DC voltage signal as shown in FIG. 4B by a low-pass filter including the capacitance member 9 and the resistor 3. A conversion is possible. Then, as shown in FIG. 4C, the DC voltage can be changed by changing the duty ratio (tp / T) of the pulse wave emitted from the PWM signal dimmer 15. Therefore, in the present embodiment, it is possible to adjust the color temperature of light emitted from the entire light emitting unit including the light emitting unit 5 and the light emitting unit 6 using the PWM signal dimmer 15.
  • a chip capacitor, an electrolytic capacitor, a film capacitor, or the like can be used as the capacitance member 9.
  • a resistor 3 composed of a chip resistor or a printing resistor is used as the resistor member.
  • an inductor can be used instead of the chip resistance or in addition to the chip resistance.
  • the capacitance member 9 and the resistor 3 may be formed under the resin dam or outside the resin dam. According to this, it is possible to reduce the size of the light emitting device 1, and it is possible to reduce absorption of light emitted from the LED element 8 by the electrostatic capacitance member 9 and the resistor 3, and to reduce noise components.
  • the anode electrode land 13 and the cathode electrode land 14 are electrodes for external connection (for example, for power supply), and are made of a material such as Ag—Pt.
  • the anode electrode land 13 and the cathode electrode land 14 are provided so as to be exposed to the outside of the resin dam 10.
  • the anode electrode lands 13 and the cathode electrode lands 14 each connected to conductive traces 25 and electrically, conductive wire 25 and the light emitting element via the first wiring K 1 and second wiring K 2 Electrically connected.
  • the conductive wiring 25 is made of Ag-Pt or the like and is formed by a screen printing method or the like.
  • the resin dam 10 is a resin for damming the first light emitting unit 5 and the second light emitting unit 6 including the translucent resin 17, and is capable of absorbing colored materials (white, milky white, red, yellow, green light absorption) A colored material with a small amount of color). It is preferable that the resin dam 10 is formed so as to cover the conductive wiring 25 in order to reduce absorption of light emitted from the LED element or light converted by the phosphor.
  • the first light-emitting unit 5 and the second light-emitting unit 6 are uniformly in the LED element 8, the translucent resin 17, and the translucent resin.
  • the first red phosphor 60, the second red phosphor 61, and the green phosphor 70 which are dispersed are included.
  • the first light emitting unit 5 and the second light emitting unit 6 are arranged inside the same circle.
  • the circle is divided into five by four axisymmetric parallel lines, the second light emitting section 6 is arranged in one section at the center and two sections on both sides, and the remaining two sections sandwiched between the second light emitting sections 6
  • the 1st light emission part 5 is arrange
  • the first light emitting unit 5 and the second light emitting unit 6 are adjacent to each other at the boundary line, the light emitted from the respective light emitting units of the first light emitting unit 5 and the second light emitting unit 6 is emitted. It becomes easy to mix, and the whole light emission part can emit the light of more uniform color temperature.
  • the 1st light emission part 5 and the 2nd light emission part 6 are arrange
  • the first light emitting unit 5 and the second light emitting unit 6 may not necessarily be in contact with each other as long as they can be matched. In this case, it is preferable that the 1st light emission part 5 and the 2nd light emission part 6 are arrange
  • the shape of the whole light emitting part including the first light emitting part 5 and the second light emitting part 6 is a shape in which the light emitted from the light emitting parts of the first light emitting part 5 and the second light emitting part 6 can be mixed. If it is, it is not limited to a circle like FIG. For example, an arbitrary shape such as a substantially rectangular shape, a substantially elliptical shape, or a polygonal shape can be adopted as the shape of the entire light emitting unit.
  • positioned inside the whole light emission part is not specifically limited, either. For example, it is preferable that the first light-emitting unit 5 and the second light-emitting unit 6 have the same surface area.
  • the first light emitting unit 5 is arranged in the first section obtained by equally dividing the entire light emitting section into two by a line passing through the center, and the second section is arranged in the second section. It can obtain by arrange
  • the surface areas of the first light emitting unit and the second light emitting unit are different.
  • the first light-emitting part can be formed in a circular shape
  • the second light-emitting part can be arranged in a donut shape so as to surround the outer periphery of the first light-emitting part. According to this, the light emitted from the respective light emitting units of the first light emitting unit and the second light emitting unit can be easily mixed, and the entire light emitting unit can emit light with a more uniform color temperature.
  • the light emitting unit part of the primary light (for example, blue light) emitted from the LED element 8 is converted into green light and red light by the green phosphor and the red phosphor. Therefore, the light emitting device according to the present embodiment emits light in which the primary light, green light, and red light are mixed, and preferably emits white light.
  • the mixing ratio in particular of green fluorescent substance and red fluorescent substance is not restrict
  • the light beam emitted from the first light emitting unit 5 and the light beam emitted from the second light emitting unit 6 are used. Can be adjusted.
  • the color temperature of the light emitted from the entire light emitting device in which the light emitted from the first light emitting unit 5 and the light emitted from the second light emitting unit 6 are mixed (hereinafter referred to as 2) is preferably 2700K to 6500K.
  • Tcmax the color temperature of the light emitted from the entire light emitting device in which the light emitted from the first light emitting unit 5 and the light emitted from the second light emitting unit 6 are mixed
  • the luminous flux of the light emitted from the entire light emitting device is set to 100%, and the luminous flux of the light emitted from the entire light emitting device is adjusted to 20% by reducing the magnitude of the current.
  • the color temperature of light emitted from the entire light emitting device is preferably 300 K or less lower than Tcmax from the viewpoint of obtaining a wide range of color temperatures.
  • a resistor 2 is connected to the first light emitting unit 5.
  • the magnitude of the current flowing through the first light emitting unit 5 and the second light emitting unit 6 can be adjusted.
  • the luminous flux of light emitted from the LED element 8 connected to the first light emitting unit 5 or the second light emitting unit 6 is also increased.
  • the light flux of the light emitted from the first light emitting unit 5 and the second light emitting unit 6 also changes.
  • the color temperature of the light also changes. Therefore, the color temperature of the light emitted from the entire light emitting device can be adjusted by changing the magnitude of the resistance.
  • the resistor 2 can be a chip resistor or a printing resistor.
  • a resistor is connected only to the first light emitting unit 5, but a resistor may be connected to the second light emitting unit 6.
  • the resistance connected to each light emitting unit is selected so that the resistance value of the first light emitting unit is larger than the resistance value of the second light emitting unit.
  • the LED element 8 is preferably an LED element that emits light including light of a blue component having a peak emission wavelength in a blue region (region having a wavelength of 430 nm or more and 480 nm or less).
  • a blue region region having a wavelength of 430 nm or more and 480 nm or less.
  • an LED element having a peak emission wavelength of less than 430 nm is used, the contribution ratio of the blue light component to the light from the light emitting device is lowered, resulting in a deterioration in color rendering and thus a decrease in practicality of the light emitting device. May be invited.
  • an LED element having a peak emission wavelength exceeding 480 nm is used, the practicality of the light emitting device may be reduced. In particular, since the quantum efficiency of the InGaN-based LED element is lowered, the practical use of the light emitting device is significantly reduced.
  • the LED element 8 is preferably an InGaN-based LED element.
  • an LED element having a peak emission wavelength in the vicinity of 450 nm can be exemplified.
  • the “InGaN-based LED element” means an LED element whose light emitting layer is an InGaN layer.
  • the LED element 8 has a structure in which light is emitted from the upper surface thereof. Further, the LED element 8, on the surface, through the first wire K 1 or the second wire 20 included in the wiring K 2, for connecting the LED elements adjacent, and the first wiring K It has an electrode pad for connecting the LED element 8 and the conductive wiring 25 via the first or second wiring K 2 .
  • the translucent resin 17 included in the light emitting part is not limited as long as it is a translucent resin, and is preferably an epoxy resin, a silicone resin, a urea resin, or the like.
  • the first red phosphor 60 and the second red phosphor 61 (hereinafter also referred to as “red phosphor”) are excited by the primary light emitted from the LED element 8 and peak in the red region. It emits light having an emission wavelength.
  • the red phosphor does not emit light in the wavelength range of 700 nm or more and does not absorb light in the wavelength range of 550 nm to 600 nm. “The red phosphor does not emit light in the wavelength range of 700 nm or more” means that the emission intensity of the red phosphor in the wavelength range of 700 nm or more at a temperature of 300 K or more is 1 of the emission intensity of the red phosphor in the peak emission wavelength. / 100 times or less.
  • the red phosphor has no light absorption within the wavelength range of 550 nm to 600 nm means that the integral value of the excitation spectrum of the red phosphor within the wavelength range of 550 nm to 600 nm is the red fluorescence at a temperature of 300 K or more. It means that the body is 1/100 times or less of the integral value of the excitation spectrum in the wavelength range of 430 nm or more and 480 nm or less. Note that the measurement wavelength of the excitation spectrum is the peak wavelength of the red phosphor.
  • the “red region” means a region having a wavelength of 580 nm or more and less than 700 nm.
  • the light emission of the red phosphor can hardly be confirmed in the long wavelength region of 700 nm or more. In the long wavelength region of 700 nm or more, human visibility is relatively small. Therefore, when the light emitting device is used for lighting, for example, it is very advantageous to use a red phosphor.
  • the red phosphor does not absorb light in the wavelength range of 550 nm to 600 nm, it is difficult to absorb the secondary light from the green phosphor. Therefore, it is possible to prevent the two-step emission in which the red phosphor absorbs the secondary light from the green phosphor and emits light. Therefore, the luminous efficiency is kept high.
  • the red phosphor is not particularly limited as long as it is used in the wavelength conversion section of the light emitting device.
  • (Sr, Ca) AlSiN 3 : Eu-based phosphor, CaAlSiN 3 : Eu-based phosphor, or the like is used. it can.
  • Green phosphor 70 is excited by the primary light emitted from the LED element 8 and emits light having a peak emission wavelength in the green region.
  • Green phosphor is not particularly limited as long as it is used in the wavelength converting portion of the light emitting device, for example, the general formula (1) :( M1) 3- x Ce x (M2) 5 O 12 (wherein, ( M1) represents at least one of Y, Lu, Gd and La, (M2) represents at least one of Al and Ga, and x representing the composition ratio (concentration) of Ce is 0.005 ⁇ phosphor satisfying x ⁇ 0.20) can be used.
  • Green region means a region having a wavelength of 500 nm or more and 580 nm or less.
  • the half width of the fluorescence spectrum of the green phosphor is preferably wider when one type of green phosphor is used (for example, in general lighting applications), and is preferably 95 nm or more, for example.
  • Phosphor of Ce and activator e.g. Lu 3-x Ce x Al 5 O 12 based green phosphor represented by general formula (1) has a garnet crystal structure. Since this phosphor uses Ce as an activator, a fluorescence spectrum having a wide half-value width (half-value width of 95 nm or more) is obtained. Therefore, the phosphor using Ce as an activator is a green phosphor suitable for obtaining high color rendering properties.
  • the light emitting part may contain additives such as SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 or Y 2 O 3 in addition to the translucent resin, green phosphor and red phosphor. If the light emitting part contains such an additive, the effect of preventing sedimentation of phosphors such as the green phosphor and the red phosphor, or the light from the LED element, the green phosphor and the red phosphor can be efficiently performed. The effect of diffusing can be obtained.
  • FIG. 5 is a plan perspective view schematically showing the light emitting device 21 according to the second embodiment.
  • FIG. 6 is a schematic circuit diagram of a luminaire 81 manufactured by connecting the light emitting device 21 of FIG. 5 to the PWM signal dimmer 15.
  • the light emitting device 21 according to the second embodiment has the same configuration as the light emitting device 1 according to the first embodiment as a basic configuration.
  • the difference from the first embodiment is that an inductor 11 is used as a resistance member.
  • an inductor By using an inductor as the resistance member, power loss in the resistance member can be reduced as compared with the case where a resistance is used as the resistance member.
  • the secondary low-pass filter 52 since the secondary low-pass filter 52 is formed by using the capacitor 9 and the inductor 11, the ripple component of the output signal can be reduced.
  • a coil can be used as the inductor 11.
  • a coil any of a coil having a winding structure, a coil having a laminated structure, and a coil having a film structure can be used.
  • a coil having a winding structure has a structure in which a copper wire is spirally wound around an alumina core.
  • a coil having a winding structure can have a low direct current resistance, has a high Q value as a parameter representing the quality of the inductor, has excellent characteristics with little loss, and can handle a large current.
  • the coil having a laminated structure is a monolithic type in which ceramic materials and coil conductors are laminated and integrated.
  • a coil having a laminated structure can be reduced in size and cost as compared with a winding structure.
  • the film structure coil is a chip inductor that realizes the shape of the coil on a ceramic material with high precision in a laminated structure coil.
  • a coil having a film structure can form a highly accurate coil.
  • FIG. 7 is a plan perspective view schematically showing the light emitting device 31 according to the third embodiment.
  • FIG. 8 is a schematic circuit diagram of a lighting fixture 82 produced by connecting the light emitting device 31 of FIG. 7 to the PWM signal dimmer 15.
  • the light emitting device 31 according to Embodiment 2 has the same configuration as the light emitting device 1 according to Embodiment 1 as a basic configuration.
  • the difference from the first embodiment is that, in addition to the low-pass filter 51 including the resistor 3 and the capacitance member 9, the capacitance member 12 provided in parallel with the first light emitting unit 5 and the second light emitting unit 6.
  • the low-pass filter is formed in two stages, but the number of low-pass filters is not particularly limited, and may be formed in three or more stages.
  • a resistor is used as the resistance member.
  • an inductor can be used instead of or in addition to the resistor.
  • FIG. 9 is a plan perspective view schematically showing the light emitting device according to the fourth embodiment.
  • FIG. 10 is a perspective view of a modification of the light emitting device of FIG.
  • FIG. 11 is a perspective view of a modification of the light emitting device of FIG.
  • FIG. 12 is a schematic cross-sectional view of a lighting fixture using the light-emitting device of FIG.
  • FIG. 13 is a perspective view of a modification of the light emitting device of FIG. 14 is a perspective perspective view of a modification of the light emitting device of FIG.
  • FIG. 15 is a perspective view of a modification of the light emitting device of FIG.
  • the light emitting device 41 according to the fourth embodiment has the same configuration as the light emitting device according to the first embodiment as a basic configuration.
  • the difference from the first embodiment is that the entire light emitting unit formed by the first light emitting unit 5 and the second light emitting unit 6 is rectangular in a plan view when the light emitting device is viewed from above.
  • the shape of the light emitting portion rectangular it is suitable for use in straight tube type lighting or lighting fixtures having a structure as shown in FIG.
  • the first light emitting unit 5 and the second light emitting unit 6 are each rectangular and the short sides thereof are in contact with each other, but the long sides may be in contact with each other.
  • the two light emitting devices 41 in FIG. 9 may be used in a stacked manner. As a result, it is possible to obtain mixed light emission with a wide light distribution nearly in the entire circumferential direction.
  • the light emitting device 41 of FIG. 9 may be fixed to both sides of the opposing main surface of the heat sink with the rectangular parallelepiped heat sink 18 interposed therebetween. Thereby, heat dissipation is securable.
  • the number of light emitting devices 41 fixed to the heat sink 18 is not limited to two, and may be three or more.
  • the light emitting device 41 of FIG. 9 can be used as a light emitting unit of the lighting fixture 50.
  • the luminaire 50 includes a housing 22 including a substantially hemispherical shape and a protrusion formed in a region including the apex of the hemisphere, a reflector 19 that covers the inside of the housing 22, and an opening of the housing 22.
  • a front cover 23 disposed in the housing 22, a PWM signal dimming circuit 15 disposed in the protruding portion of the housing 22, and a G base 24 connected to the PWM signal dimming circuit 15.
  • the luminaire 50 can adjust the color temperature of light emitted from the entire light emitting unit including the light emitting unit 5 and the light emitting unit 6 using a PWM signal dimmer 15 which is a conventional dimming circuit for LED elements.
  • a PWM signal dimmer 15 which is a conventional dimming circuit for LED elements.
  • the light emitting device 41 of FIG. 9 is used as the light emitting portion, but the light emitting device shown in FIGS. 10 and 11 can also be used.
  • the arrangement of the first light emitting unit and the second light emitting unit is not particularly limited as long as the light emitted from the respective light emitting units of the first light emitting unit and the second light emitting unit can be mixed.
  • the light emitting unit is divided into three, the first light emitting unit 5 is arranged in one central section, and the second light emitting units 6 are arranged in two sections on both sides. Can do.
  • the first light emitting unit 5 and the second light emitting unit 6 can be three-dimensionally formed on the substrate 7 at a height exceeding the resin dam. According to this, the light emitted from the LED element, the red phosphor and the green phosphor to the side of the light emitting device is diffusely reflected on the surface of the light emitting unit, distributed in all directions of the light emitting device, and has excellent light distribution.
  • the light emitting device 411 can be obtained.
  • the first light emitting unit 5 and the second light emitting unit 6 can be three-dimensionally formed on the substrate 7. According to this, even if no resin dam or reflector is disposed, the light emitted from the LED element, the red phosphor and the green phosphor to the side of the light emitting device is diffusely reflected on the surface of the light emitting unit, and the entire light emitting device is A light-emitting device 412 that is distributed in the direction and has excellent light distribution can be obtained.
  • FIG. 15 shows a modification of the light emitting device of FIG.
  • the first light emitting unit 5 and the second light emitting unit 6 are three-dimensionally formed on the substrate 7.
  • a cathode electrode land 14 and an anode electrode land 13 are formed opposite to each other with the light emitting portion interposed therebetween.
  • the light-emitting device 413 in FIG. 15 can realize an optimum structure particularly as a light source for an LED bulb.
  • One or a plurality of light emitting devices 413 are preferably used, and a plurality of light emitting devices 413 is particularly preferable.
  • a plurality of light emitting devices 413 can be attached to each other.
  • FIG. 16 is a plan view schematically showing the light emitting device according to the fifth embodiment.
  • the light emitting device 71 according to Embodiment 5 has the same configuration as the light emitting device according to Embodiment 1 as a basic configuration.
  • the embodiment is different from the first embodiment, the first light-emitting portion 5 of the five locations are connected in series on the first wiring K 1, a second light emitting portion 6 of five positions a second wiring K 2 are connected in series, and the first light-emitting unit 5 and the second light-emitting unit 6 are not adjacent to each other, and are disposed at a distance close to the extent that the light emitted from each can be sufficiently mixed. It has been done.
  • the light emitting device 71 includes an anode electrode land 13, a cathode electrode land 14, and a first wiring that connects the anode electrode land 13 and the cathode electrode land 14 disposed on the substrate 7.
  • K 1 , second wiring K 2 and wiring pattern 16 are provided.
  • the first wiring K 1 and resistor 2 is connected in series, a first electric resistance of the wiring K 1 is greater than the electrical resistance of the second wiring K 2.
  • the resistor 2 is a member for adjusting the current flowing through the first light emitting unit 5 and the second light emitting unit 6. The adjustment of the current can also be realized by adjusting the number of light emitting units or mounting LED elements having different voltage values for emitting light.
  • a resistor 3 is connected in series with the first light emitting unit 5 and the second light emitting unit 6.
  • the resistor 3 can be replaced with an inductor 11.
  • a capacitance member 9 is connected in parallel with the first light emitting unit 5 and the second light emitting unit 6 by the wiring pattern 16.
  • the first light-emitting unit 5 and the second light-emitting unit 6 are arranged at a distance close to the extent that the light emitted from each of the first light-emitting unit 5 and the second light-emitting unit 6 can be sufficiently mixed.
  • the shortest distance between the outer edges of the respective light emitting units is preferably 28 mm or less, and more preferably 22 mm or less.
  • the distance between the first light emitting unit 5 and the second light emitting unit 6 is 28 mm or less, the light emitted from each of the first light emitting unit 5 and the second light emitting unit 6 may be sufficiently mixed. it can.
  • FIG. 1 is a plan perspective view schematically showing the light emitting device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic circuit diagram of a lighting fixture 80 using the light emitting device of FIG.
  • the light-emitting device 1 according to Embodiment 1 is connected to a PWM signal dimmer circuit.
  • the light emitting device 1 according to Embodiment 1 includes a capacitance member 9 provided in parallel with the first light emitting unit 5 and the second light emitting unit 6, and the first light emitting unit 5 and the second light emitting unit.
  • a low-pass filter 51 including a resistor 3 provided in series with the unit 6 is provided. Therefore, when the light emitting device 1 is connected to a PWM (Pulse Width Modulation) signal type dimmer 15, the pulse signal from the PWM signal type dimmer 15 can be converted into a DC voltage.
  • PWM Pulse Width Modulation
  • the lighting fixture 80 can adjust the color temperature of the light emitted from the entire light emitting unit including the light emitting unit 5 and the light emitting unit 6 by using the PWM signal dimmer 15 which is a conventional dimming circuit for LED elements. is there.
  • Example 1 In Example 1, a test was performed using a light-emitting device having a structure similar to that in FIGS.
  • the substrate 7 was a ceramic substrate.
  • the resistor 2 is a chip resistor having a resistance value of 60 ⁇ .
  • the resistor 3 is a chip resistor having a resistance value of 10 ⁇ .
  • the capacitance member 9 is a chip capacitor having a capacitance of about 100 ⁇ F when the PWM frequency is 10 kHz.
  • the resistor 3 and the capacitance member 9 are electrically connected via the conductive wiring K 3 to form a low-pass filter 51.
  • the cut-off frequency fc is expressed by 1 / 2 ⁇ CR.
  • the cut-off frequency fc increases with respect to the PWM signal frequency F, the ripple component due to the high-frequency component cannot be removed and the voltage variation increases. Therefore, the PWM signal frequency F is set to satisfy the cut-off frequency fc. To do.
  • PWM signal is D / A conversion by passing through a low-pass filter 51, it is possible to control the first wiring K 1 and the second DC current flowing through the wiring K 2.
  • the first red phosphor 60 (CaAlSiN 3 : Eu), the second red phosphor 61 ((Sr, Ca) AlSiN 3 : Eu), and the green phosphor 70.
  • (Lu 3 Al 5 O 12 : Ce) and the blue light emitting LED element 8 (light emission wavelength: 450 nm) are sealed with a silicone resin.
  • the blue light emitting LED element 8 and the conductive wiring 25 are electrically connected by the first wiring K 1 or the second wiring K 2 , and the conductive wiring 25 is electrically connected to the anode electrode land 13 or the cathode electrode land 14. It is connected to the.
  • the color temperature of light emitted from the first light emitting unit 5 of the light emitting device of Example 1 is set to 2000K, and the color temperature of light emitted from the second light emitting unit 6 is set to 3000K. Then, the sum of the first wiring K 1 and the second forward current flowing through the wiring K 2 (hereinafter, the total forward current also called) investigated the relationship between the color temperature of the size and the light emitted by the light emitting device .
  • the color temperature of light emitted from the entire light emitting device when a total forward current of 350 mA flows was 2900K, and the color temperature of light emitted from the entire light emitting device when a total forward current of 50 mA flowed was 2000K.
  • FIG. 3 shows the relationship between the relative luminous flux (%) of light when the total forward current is changed and the color temperature, where the luminous flux of the light emitted from the entire light emitting device when the total forward current is 350 mA is 100%. It is a graph. FIG. 3 shows that the color temperature decreases as the relative luminous flux decreases.
  • Example 2 In Example 2, a test was performed using a light-emitting device having a structure similar to that in FIGS. 5 and 6 of the second embodiment.
  • the configuration of the light emitting device of Example 2 is basically the same as the configuration of the light emitting device of Example 1.
  • the light emission measure of the second embodiment is different in that an inductor 11 is used instead of the resistor 3 of the first embodiment.
  • the inductor 11 is a coil having an inductance of 10 mH.
  • the capacitance member 9 is a chip capacitor having a capacitance of about 100 ⁇ F when the PWM frequency is 10 kHz.
  • the inductor 11 and the electrostatic capacitance member 9 are electrically connected via the conductive wiring K 3 to form a secondary low-pass filter 52.
  • the cut-off frequency fc is expressed by 1 / 2 ⁇ (CL).
  • the cut-off frequency fc increases with respect to the PWM signal frequency F, the ripple component due to the high-frequency component cannot be removed and the voltage variation increases. Therefore, the PWM signal frequency F is set to satisfy the cut-off frequency fc.
  • PWM signal is D / A conversion by passing through a low-pass filter 52, it is possible to control the first wiring K 1 and the second DC current flowing through the wiring K 2.
  • the color temperature of light emitted from the first light emitting unit 5 of the light emitting device of Example 2 is 2700K, and the color temperature of light emitted from the second light emitting unit 6 is 5000K. Then, the sum of the first wiring K 1 and the second forward current flowing through the wiring K 2 (hereinafter, the total forward current also called) investigated the relationship between the color temperature of the size and the light emitted by the light emitting device .
  • the color temperature of light emitted from the entire light emitting device when a total forward current of 350 mA flows was 4000K, and the color temperature of light emitted from the entire light emitting device when a total forward current of 50 mA flows was 2700K.
  • Example 3 In Example 3, a test was performed using a light-emitting device having a structure similar to that in FIGS.
  • the configuration of the light emitting device of Example 3 is basically the same as the configuration of the light emitting device of Example 1.
  • the light emission measure of the third embodiment is different from the first embodiment in that in addition to the low pass filter 51 of the first embodiment, a low pass filter 54 including the capacitance member 12 and the resistor 4 is included.
  • the resistors 3 and 4 are chip resistors having a resistance value of 10 ⁇ .
  • the capacitance members 9 and 12 are chip capacitors having a capacitance of about 100 ⁇ F when the PWM frequency is 10 kHz.
  • the light emitting device of Example 3 is formed so that the color temperature of light emitted from the first light emitting unit 5 is 2000K and the color temperature of light emitted from the second light emitting unit 6 is 4000K. Then, the sum of the first wiring K 1 and the second forward current flowing through the wiring K 2 (hereinafter, the total forward current also called) investigated the relationship between the color temperature of the size and the light emitted by the light emitting device .
  • the color temperature of light emitted from the entire light emitting device when a total forward current of 350 mA flows was 3000K, and the color temperature of light emitted from the entire light emitting device when a total forward current of 50 mA flows was 2000K.
  • the noise component is reduced by the noise component flowing from the capacitor side.
  • the noise component is suppressed to 1/1000 or less compared to the first embodiment.
  • the values in the embodiment are examples, and the noise component can be further reduced by adjusting the resistance value, capacitance, and inductance.
  • Example 4 In Example 4, a test was performed using a light-emitting device having the same structure as that in FIG.
  • the configuration of the light emitting device of Example 2 is basically the same as the configuration of the light emitting device of Example 1, and each member used is also the same as that of Example 1.
  • the light emitting device of Example 4 in a plan view when the light emitting device is viewed from above, two rectangular first light emitting portions 5 and three rectangular second light emitting portions 6 are formed, and the entire light emitting portion is rectangular. It is a point.
  • the light emitting device of Example 5 is formed so that the color temperature of the light emitted from the first light emitting unit 5 is 2000K, and the color temperature of the light emitted from the second light emitting unit 6 is 3000K. Then, the sum of the first wiring K 1 and the second forward current flowing through the wiring K 2 (hereinafter, the total forward current also called) investigated the relationship between the color temperature of the size and the light emitted by the light emitting device .
  • the color temperature of light emitted from the entire light emitting device when a total forward current of 350 mA flows was 2900K, and the color temperature of light emitted from the entire light emitting device when a total forward current of 50 mA flowed was 2000K.
  • the light emitting portion in three dimensions, light emitted from the light emitting device is distributed in all directions of the light emitting device, and a light emitting device with excellent light distribution can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Devices (AREA)

Abstract

 単一の電源からの電力供給によって色温度を調整可能な発光装置および該発光装置を含む照明器具を提供する。アノード用電極ランドと、カソード用電極ランドと、前記アノード用電極ランドおよび前記カソード用電極ランドに電気的に接続して並列に設けられた、隣接する第1の発光部および第2の発光部と、前記第1の発光部および前記第2の発光部と並列に設けられた静電容量部材、ならびに、前記第1の発光部および前記第2の発光部と直列に設けられた抵抗部材を含むローパスフィルタとを備え、前記第1の発光部の電気抵抗が前記第2の発光部の電気抵抗より大きく、前記第1の発光部および前記第2の発光部を含む発光部全体の発する光の色温度を調整可能である、発光装置である。

Description

発光装置および照明器具
 本発明は色温度を調整可能な発光装置および照明器具に関する。
 ハロゲンランプは完全放射体のエネルギー分布に極めて近似しているため、優れた演色性を示す。さらに、ハロゲンランプへの供給電力の大きさによって、ハロゲンランプの発する光の色温度を変化させることができるため、可視光源として使用されている。しかし、ハロゲンランプは赤外線を放出するため非常に高温になること、赤外線放射防止のための反射板が必要になること、LEDに比べて寿命が短いこと、消費電力が大きいことなどの問題点があった。そこで、発熱が小さく、より長寿命な発光ダイオード(LED)を用いた白色光発光装置の開発が行われている。
 特許文献1(特開2013-254669号公報)には、照射光の光量と色温度とをバランス良く調整ことのできる可変照明システムとして、互いに異なる色の光を発する複数種の光源を有する照明光源と、前記照明光源からの照射光の光量及び色温度を調整するために用いられる回動可能なダイヤルを有するコントローラと、を備えた色温度可変照明システムであって、前記コントローラは、前記照明光源からの照射光の光量と色温度とが相関して変化するように規定した調光調色カーブを記憶する記憶部と、前記記憶部に記憶された調光調色カーブを調整するための調整ボタンと、を有し、前記照明光源からの照射光の光量及び色温度は、前記ダイヤルが回動されたときに、それぞれ前記調光調色カーブで定められた値に従って変化し、かつ前記調整ボタンの操作に応じて調整されることを特徴とする色温度可変照明システムが開示されている。
特開2013-254669号公報
 特許文献1の技術は、各照明光源を駆動させるために複数の回路が必要であり、発光装置の構造が複雑になるという問題があった。
 本発明は、上記課題を解決するためになされたものであって、単一の電源からの電力供給によって色温度を調整可能な発光装置および該発光装置を含む照明器具を提供することを目的とする。
 [1]本発明は、アノード用電極ランドと、カソード用電極ランドと、前記アノード用電極ランドおよび前記カソード用電極ランドに電気的に接続して並列に設けられた、隣接する第1の発光部および第2の発光部と、前記第1の発光部および前記第2の発光部と並列に設けられた静電容量部材、ならびに、前記第1の発光部および前記第2の発光部と直列に設けられた抵抗部材を含むローパスフィルタとを備え、前記第1の発光部の電気抵抗が前記第2の発光部の電気抵抗より大きく、前記第1の発光部および前記第2の発光部を含む発光部全体の発する光の色温度を調整可能である、発光装置である。
 [2]本発明の発光装置において好ましくは、前記抵抗部材はインダクタである。
 [3]本発明の発光装置において好ましくは、前記発光装置は、前記ローパスフィルタを多段階で備える。
 [4]本発明の発光装置において好ましくは、前記第1の発光部および前記第2の発光部を含む発光部全体は、平面視で略矩形に形成される。
 [5]本発明は、上記[1]から[4]のいずれか1項に記載の発光装置と、前記発光装置と電気的に接続されたPWM信号式調光器とを備える、照明器具である。
 本発明によれば、単一の電源からの電力供給によって色温度を調整可能な発光装置および該発光装置を含む照明器具を提供することが可能となる。
本発明の実施の形態1に係る発光装置を模式的に示す平面透視図である。 図1の発光装置を用いた照明器具の概略回路図である。 発光装置の発する光の相対光束と色温度との関係を示すグラフである。 図4(a)~(c)は、PWM信号式調光器からのパルス信号のD/A変換を説明する図である。 本発明の実施の形態2に係る発光装置を模式的に示す平面透視図である。 図5の発光装置を用いた照明器具の概略回路図である。 本発明の実施の形態3に係る発光装置を模式的に示す平面透視図である。 図7の発光装置を用いた照明器具の概略回路図である。 本発明の実施の形態4に係る発光装置を模式的に示す平面透視図である。 図9の発光装置の変形例の斜視図である。 図9の発光装置の変形例の斜視図である。 図9の発光装置を用いた照明器具の概略断面図である。 図9の発光装置の変形例の斜視図である。 図9の発光装置の変形例の斜視透視図である。 図13の発光装置の変形例の斜視図である。 本発明の実施の形態5に係る発光装置を模式的に示す平面図である。
 以下、本発明の一実施の形態に係る発光装置および照明器具について図面を用いて説明する。なお、図面において、同一の参照符号は、同一部分または相当部分を表わすものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表わすものではない。
 [実施の形態1]
 実施の形態1に係る発光装置を図1、図2、図4を用いて説明する。図1は本発明の実施の形態1に係る発光装置を模式的に示す平面透視図である。図2は、図1の発光装置を用いた照明器具80の概略回路図である。図4(a)~(c)は、PWM信号式調光器からのパルス信号のD/A変換を説明する図である。
 図1および図2に示されるように、発光装置1は、アノード用電極ランド13と、カソード用電極ランド14と、前記アノード用電極ランド13および前記カソード用電極ランド14に電気的に接続して、並列に設けられた、隣接する第1の発光部5および第2の発光部6と、前記第1の発光部5および前記第2の発光部6と並列に設けられた静電容量部材9、ならびに、前記第1の発光部5および前記第2の発光部6と直列に設けられた抵抗部材(図1では、抵抗3)を含むローパスフィルタ51とを備える。前記第1の発光部5の電気抵抗は前記第2の発光部6の電気抵抗より大きい。発光装置1は、前記第1の発光部5および前記第2の発光部6を含む発光部全体の発する光の色温度を調整可能である。
 第1の発光部5は、第1の赤色蛍光体60、第2赤色蛍光体61、緑色蛍光体70、LED素子8および透光性樹脂17を含む。第1の発光部5とカソード用電極ランド14との間には、抵抗2が電気的に直列に接続されている。
 第2の発光部6は、第1の赤色蛍光体60、第2赤色蛍光体61、緑色蛍光体70、LED素子8および透光性樹脂17を含む。
 アノード用電極ランド13およびカソード用電極ランド14のそれぞれに接続される導電性配線25と、該導電性配線25に接続される第1の配線Kおよび第2の配線Kの一部と、静電容量部材9とは、樹脂ダム10の下に配置される。
 発光装置1では、単一の電源からの電力供給によって第1の発光部5と第2の発光部6とが発光する。第1の発光部5の発する光と第2の発光部6の発する光とが混合して、発光装置1からの光として外部に発する。
 第1の発光部5と第2の発光部6へ流れる電流比率を変えると、第1の発光部5と第2の発光部6の発する光の色温度は変化しないが、各発光部の光束比率が変わる。したがって、第1の発光部5と第2の発光部6から発する光の混合光である、発光部全体からの光の色温度を変えることができる。
 実施の形態1に係る発光装置1は、第1の発光部5および第2の発光部6と並列に設けられた静電容量部材9、ならびに、第1の発光部5および前記第2の発光部6と直列に設けられた抵抗3を含むローパスフィルタ51を備える。したがって、図1の発光装置1を、図2に示されるように、PWM(Pulse Width Modulation)信号式調光器15に接続すると、PWM信号式調光器15からのパルス信号を直流電圧に変換することができる。よって、発光装置1は、従来のLED素子の調光回路であるPWM信号式調光器15を用いて、発光部5および発光部6を含む発光部全体の発する光の色温度を調整可能である。
 (ローパスフィルタ)
 発光装置1では、静電容量部材9と抵抗3とを含む回路がローパスフィルタ51を形成している。PWM信号式調光器の電気信号がローパスフィルタ51を通過した場合の、デジタル-アナログ変換(以下、D/A変換とも記す)について、図4を用いて説明する。なお、静電容量成分のみを第1の発光部5および第2の発光部6と並列に接続してもよいが、高周波ノイズ成分低減のため、さらにローパスフィルタを使用するのが好ましい。
 LED素子を用いた照明器具では、通常、PWM信号式調光器を用いて調光を行っている。具体的には、PWM信号式調光器は、図4(a)に示されるようなパルス波を発し、該パルス波のデューティ比(tp/T)(tpはパルス幅を示し、Tは周期を示す)を変化させることで点灯時間を変化させて、照明器具の調光を制御している。したがって。PWM信号式調光器は、電流値の変化で調色を第1の発光部5および第2の発光部6のみからなる回路に直接適用することができない。
 本実施の形態では、PWM信号式調光器15からのパルス信号を、静電容量部材9と抵抗3とを含むローパスフィルタによって、図4(b)に示されるような直流電圧信号にD/A変換することができる。そして、図4(c)に示されるように、PWM信号式調光器15の発するパルス波のデューティ比(tp/T)を変化させることで、直流電圧を変化させることができる。したがって、本実施の形態では、PWM信号式調光器15を用いて、発光部5および発光部6を含む発光部全体の発する光の色温度を調整可能である。
 静電容量部材9としては、チップコンデンサ、電解コンデンサ、フィルムコンデンサなどを用いることができる。
 実施の形態1では、抵抗部材として、チップ抵抗または印刷抵抗からなる抵抗3を用いている。抵抗部材としては、チップ抵抗の代わりに、またはチップ抵抗に加えて、インダクタを用いることができる。
 静電容量部材9および抵抗3は樹脂ダムの下または樹脂ダムの外側に形成されていてもよい。これによると、発光装置1の小型化が可能となり、また、LED素子8から発する光が静電容量部材9および抵抗3で吸収されるのを低減できることや、ノイズ成分の低減という効果がある。
 (アノード用電極ランド、カソード用電極ランド、導電性配線、樹脂ダム)
 アノード用電極ランド13およびカソード用電極ランド14は、外部接続用(たとえば電源供給用途)の電極であり、Ag-Ptなどの材料からなる。アノード用電極ランド13およびカソード用電極ランド14は、樹脂ダム10の外部に露出するように設けられている。アノード用電極ランド13およびカソード用電極ランド14は、それぞれ導電性配線25と電気的に接続し、該導電性配線25は第1の配線Kおよび第2の配線Kを介して発光素子と電気的に接続している。
 導電性配線25は、Ag-Ptなどからなり、スクリーン印刷方法などにより形成される。
 樹脂ダム10は、透光性樹脂17を含む第1の発光部5および第2の発光部6を堰き止めるための樹脂であり、有着色材料(白色や乳白色、赤、黄、緑の光吸収の少ない有着色材料でもよい)で構成されることが好ましい。樹脂ダム10は、導電性配線25を覆うように形成されると、LED素子から放射された光または蛍光体で変換された光の吸収低減のため好ましい。
 (第1の発光部、第2の発光部)
 第1の発光部5および第2の発光部6(以下、両者を含めて「発光部」とも記す)は、LED素子8と、透光性樹脂17と、透光性樹脂中に一様に分散された第1の赤色蛍光体60、第2赤色蛍光体61、緑色蛍光体70とを含む。
 図1では、第1の発光部5と第2の発光部6とは、同一の円の内部に配置されている。前記円は線対称の4本の平行線で5分割され、中心の1区分および両サイドの2区分に第2の発光部6が配置され、第2の発光部6に挟まれる残りの2区分に第1の発光部5が配置される。図1では、第1の発光部5と第2の発光部6とは境界線において隣接しているため、第1の発光部5および第2の発光部6のそれぞれの発光部の発する光が混ざりやすくなり、発光部全体がより均一な色温度の光を発することができる。なお、第1の発光部5および第2の発光部6は隣接して配置されることが好ましいが、第1の発光部5と第2の発光部6のそれぞれの発光部の発する光が混ざり合うことができれば、第1の発光部5と第2の発光部6とは必ずしも接触していなくてもよい。この場合は、第1の発光部5と第2の発光部6とは、それぞれの発光部の発する光が十分に混ざり合うことができる程度に近い距離に配置されることが好ましい。
 第1の発光部5と第2の発光部6を含む発光部全体の形状は、第1の発光部5および第2の発光部6のそれぞれの発光部の発する光が混ざり合うことができる形状であれば、図1のような円形に限定されない。たとえば、発光部全体の形状は略矩形、略楕円形、多角形などの任意の形状を採用できる。発光部全体の内部に配置される第1の発光部5および第2の発光部6のそれぞれの形状も特に限定されない。たとえば、第1の発光部5と第2の発光部6のそれぞれの表面積が等しくなるような形状にすることが好ましい。このような形状は、たとえば、発光部全体を中心を通過する線で等分に2分割して得られた第1の区分に第1の発光部5を配置し、第2の区分に第2の発光部6を配置することによって得ることができる。
 また、第1の発光部と第2の発光部のそれぞれの発光部の発する光の色温度を調節可能であれは、第1の発光部と第2の発光部のそれぞれの表面積は異なっていてもよい。たとえば、第1の発光部を円状に形成し、前記第1の発光部の外周を囲むように第2の発光部をドーナツ形状に配置することができる。これによると、第1の発光部と第2の発光部のそれぞれの発光部の発する光が混ざりやすくなり、発光部全体がより均一な色温度の光を発することができる。
 発光部では、LED素子8から放射された一次光(たとえば青色光)の一部が、緑色蛍光体および赤色蛍光体によって、緑色光と赤色光とに変換される。よって、本実施形態に係る発光装置は、上記一次光と緑色光と赤色光とが混合された光を発し、好適には白色系の光を発する。なお、緑色蛍光体と赤色蛍光体との混合比率は特に制限されず、所望の特性になるように混合比率を設定することが好ましい。
 第1の発光部5および第2の発光部6のそれぞれを流れる電流の大きさを変化させることにより、第1の発光部5の発する光の光束と第2の発光部6の発する光の光束を調整することができる。
 発光部を流れる電流を定格電流値とした場合、第1の発光部5が発する光と第2の発光部6が発する光とが混ざり合った発光装置全体の発する光の色温度(以下、Tcmaxともいう)は2700K~6500Kであることが好ましい。電流の大きさを定格電流値より小さくすると、第1の発光部5と第2の発光部6の発する光の光束が小さくなり、発光装置(発光部)全体の発する光の光束が小さくなり、色温度が低下する。発光部を流れる電流を定格電流値とした場合に発光装置全体の発する光の光束を100%とし、電流の大きさを小さくして発光装置全体の発する光の光束を20%に調整した時、発光装置全体の発する光の色温度がTcmaxよりも300K以上小さいことが、幅広い範囲の色温度を得られるという観点から好ましい。
 (抵抗)
 第1の発光部5には抵抗2が接続される。抵抗2の抵抗の大きさを変化させることにより、第1の発光部5および第2の発光部6に流れる電流の大きさを調整することができる。第1の発光部5および第2の発光部6に流れる電流の大きさの変化に伴い、第1の発光部5または第2の発光部6に接続されたLED素子8の発する光の光束も変化し、第1の発光部5および第2の発光部6の発する光の光束も変化する。発光部の発する光の光束が変化すると光の色温度も変化するため、抵抗の大きさを変化させることによって、発光装置全体の発する光の色温度を調整することができる。
 抵抗2はチップ抵抗や印刷抵抗を用いることができる。
 実施の形態1では、第1の発光部5のみに抵抗が接続されているが、第2の発光部6にも抵抗が接続されていてもよい。この場合は、第1の発光部の抵抗値が、第2の発光部の抵抗値よりも大きくなるように、それぞれの発光部に接続する抵抗を選択する。
 (LED素子)
 LED素子8は、青色領域(波長が430nm以上480nm以下の領域)にピーク発光波長が存在する青色成分の光を含む光を放射するLED素子であることが好ましい。ピーク発光波長が430nm未満のLED素子を用いた場合には、発光装置からの光に対する青色光の成分の寄与率が低くなるので、演色性の悪化を招き、よって、発光装置の実用性の低下を招くことがある。ピーク発光波長が480nmを超えるLED素子を用いた場合には、発光装置の実用性の低下を招くことがある。特に、InGaN系のLED素子では量子効率が低下するので、発光装置の実用性の低下は顕著である。
 LED素子8は、InGaN系LED素子であることが好ましい。LED素子8の一例として、ピーク発光波長が450nm近傍のLED素子を挙げることができる。ここで、「InGaN系LED素子」は、発光層がInGaN層であるLED素子を意味する。
 LED素子8は、その上面から光が放射される構造を有する。また、LED素子8は、その表面に、第1の配線Kまたは第2の配線Kに含まれるワイヤ20を介して、隣り合うLED素子同士を接続するため、および、第1の配線Kまたは第2の配線Kを介して、LED素子8と導電性配線25とを接続するための、電極パッドを有する。
 (透光性樹脂)
 発光部に含まれる透光性樹脂17は、透光性を有する樹脂であれば限定されず、たとえばエポキシ樹脂、シリコーン樹脂または尿素樹脂などであることが好ましい。
 (赤色蛍光体)
 第1の赤色蛍光体60および第2の赤色蛍光体61(以下、両者を含めて「赤色蛍光体」とも記す)は、LED素子8から放射された1次光によって励起され、赤色領域にピーク発光波長を有する光を放射する。赤色蛍光体は、700nm以上の波長範囲内において発光せず、且つ、550nm以上600nm以下の波長範囲内において光吸収がない。「赤色蛍光体が700nm以上の波長範囲内において発光せず」とは、300K以上の温度において700nm以上の波長範囲内における赤色蛍光体の発光強度がピーク発光波長における赤色蛍光体の発光強度の1/100倍以下であることを意味する。「赤色蛍光体が550nm以上600nm以下の波長範囲内において光吸収がない」とは、300K以上の温度において、赤色蛍光体が550nm以上600nm以下の波長範囲内における励起スペクトルの積分値が、赤色蛍光体が430nm以上480nm以下の波長範囲内における励起スペクトルの積分値の1/100倍以下であることを意味する。なお、励起スペクトルの測定波長は、赤色蛍光体のピーク波長とする。「赤色領域」とは、本明細書では、波長が580nm以上700nm未満である領域を意味する。
 赤色蛍光体の発光は700nm以上の長波長領域においてはほとんど確認できない。700nm以上の長波長領域では、ヒトの視感度は相対的に小さい。そのため、発光装置をたとえば照明用途などに用いる場合は、赤色蛍光体を用いることは非常に利点となる。
 また、赤色蛍光体は、550nm以上600nm以下の波長範囲内において光吸収がないので、緑色蛍光体からの二次光を吸収し難い。よって、赤色蛍光体が緑色蛍光体からの二次光を吸収して発光するという2段階発光が起こることを防止することができる。したがって、発光効率が高く維持される。
 赤色蛍光体は、発光装置の波長変換部に用いられるものであれば特に限定されないが、たとえば、(Sr,Ca)AlSiN3:Eu系蛍光体、CaAlSiN3:Eu系蛍光体などを用いることができる。
 (緑色蛍光体)
 緑色蛍光体70は、LED素子8から放射された1次光によって励起され、緑色領域にピーク発光波長を有する光を放射する。緑色蛍光体は、発光装置の波長変換部に用いられるものであれば特に限定されないが、たとえば、一般式(1):(M1)3-xCex(M2)512(式中、(M1)はY、Lu、GdおよびLaのうちの少なくとも1つを表わし、(M2)はAlおよびGaのうちの少なくとも1つを表わし、Ceの組成比(濃度)を示すxは0.005≦x≦0.20を満たす)で表わされる蛍光体などを用いることができる。「緑色領域」は波長が500nm以上580nm以下の領域を意味する。
 緑色蛍光体の蛍光スペクトルの半値幅は、緑色蛍光体を1種類用いる場合(たとえば一般照明用途などの場合)には、広い方が好ましく、たとえば95nm以上であることが好ましい。Ceを賦活剤とする蛍光体、たとえば一般式(1)で表されるLu3-xCexAl512系緑色蛍光体は、ガーネット結晶構造を有する。この蛍光体はCeを賦活剤として使用するので、半値幅の広い(半値幅が95nm以上)の蛍光スペクトルが得られる。よって、Ceを賦活剤とする蛍光体は、高い演色性を得るのに好適な緑色蛍光体である。
 (添加剤)
 発光部は、透光性樹脂、緑色蛍光体および赤色蛍光体以外に、たとえばSiO2、TiO2、ZrO2、Al23またはY23などの添加剤を含んでいても良い。発光部がこのような添加剤を含んでいれば、緑色蛍光体および赤色蛍光体などの蛍光体の沈降を防止する効果、または、LED素子、緑色蛍光体および赤色蛍光体からの光を効率良く拡散させる効果などを得ることができる。
 [実施の形態2]
 本発明の実施の形態2に係る発光装置を、図5および図6を用いて説明する。図5は、実施の形態2に係る発光装置21を模式的に示す平面透視図である。図6は、図5の発光装置21をPWM信号式調光器15に接続して作製された照明器具81の概略回路図である。
 実施の形態2に係る発光装置21は、基本的な構成としては実施の形態1に係る発光装置1と同様の構成を備える。実施の形態1と異なる点は、抵抗部材としてインダクタ11を用いている点である。抵抗部材としてインダクタを用いることで、抵抗部材として抵抗を用いた場合よりも、抵抗部材での電力損失を低減できる。実施の形態2では、コンデンサ9およびインダクタ11を用いることで、2次のローパスフィルタ52を形成しているため、出力信号のリップル成分を低減することができる。
 インダクタ11としてはコイルを用いることができる。コイルとしては、巻線構造のコイル、積層構造のコイル、フィルム構造のコイルのいずれも用いることができる。
 巻線構造のコイルは、アルミナのコアに銅線をらせん状に巻いた構造を有する。巻線構造のコイルは、低直流抵抗化が可能であり、インダクタの品質を表すパラメーターであるQ値が高く、損失が少なく優れた特性を有し、大電流対応が可能となる。
 積層構造のコイルは、セラミック材料とコイル導体とを積層して一体化したモノリシックタイプである。積層構造のコイルは、巻線構造に比べて、小型化および低コスト化が可能である。
 フィルム構造のコイルは、積層構造のコイルにおいて、コイルの形状をセラミック材料上へ高精度に実現したチップインダクタである。フィルム構造のコイルは、非常に高精度なコイルを形成できる。
 [実施の形態3]
 本発明の実施の形態3に係る発光装置を、図7および図8を用いて説明する。図7は、実施の形態3に係る発光装置31を模式的に示す平面透視図である。図8は、図7の発光装置31をPWM信号式調光器15に接続して作製された照明器具82の概略回路図である。
 実施の形態2に係る発光装置31は、基本的な構成としては実施の形態1に係る発光装置1と同様の構成を備える。実施の形態1と異なる点は、抵抗3および静電容量部材9を含むローパスフィルタ51に加えて、第1の発光部5および第2の発光部6と並列に設けられた静電容量部材12、ならびに、第1の発光部5および第2の発光部6と直列に設けられた抵抗4を含むローパスフィルタ54を備えることである。すなわち、実施の形態3に係る発光装置31は、ローパスフィルタを多段階で備えている。これにより、発光装置31は、ノイズを低減し、さらに、出力信号のリップル成分を低減することができる。
 図7および図8では、ローパスフィルタが2段階で形成されているが、ローパスフィルタの数は特に制限されず、3段階以上形成されてもよい。また、実施の形態3では、抵抗部材として抵抗を用いているが、抵抗に代えて、または抵抗に加えて、インダクタを用いることができる。
 [実施の形態4]
 実施の形態4に係る発光装置を図9~図15を用いて説明する。図9は、実施の形態4に係る発光装置を模式的に示す平面透視図である。図10は、図9の発光装置の変形例の斜視図である。図11は、図9の発光装置の変形例の斜視図である。図12は、図9の発光装置を用いた照明器具の概略断面図である。図13は、図9の発光装置の変形例の斜視図である。図14は、図9の発光装置の変形例の斜視透視図である。図15は、図13の発光装置の変形例の斜視図である。
 図9に示されるように、実施の形態4に係る発光装置41は、基本的な構成としては実施の形態1に係る発光装置と同様の構成を備える。実施の形態1と異なる点は、第1の発光部5および第2の発光部6で形成される発光部全体が、発光装置を上側から見た平面視において矩形である点である。発光部の形状を矩形にすることにより、直管タイプの照明や図12のような構造の照明器具に用いるのに適している。図9では、第1の発光部5と第2の発光部6はそれぞれ矩形であり、それぞれの短辺同士が接触しているが、長辺同士が接触していてもよい。
 図10に示されるように、図9の発光装置41は、2枚重ねて用いられてもよい。これにより、ほぼ全周囲方向に近い広配光の混色された発光を得ることができる。
 図11に示されるように、図9の発光装置41は、直方体形状のヒートシンク18を挟んでヒートシンクの対向する主面の両側に固定されてもよい。これにより、放熱性を確保できる。なお、ヒートシンク18に固定される発光装置41の数は2枚に限定されず、3枚以上でもよい。
 図12に示されるように、図9の発光装置41は、照明器具50の発光部として用いることができる。照明器具50は、略半球形状と該半球の頂点を含む領域に形成された突出部とを含む筐体22と、前記筐体22の内部を被覆するリフレクタ19と、前記筐体22の開口部に配置された前面カバー23と、前記筐体22の突出部内部に配置されたPWM信号式調光回路15と、前記PWM信号式調光回路15に接続されたG口金24とを備える。照明器具50は、従来のLED素子の調光回路であるPWM信号式調光器15を用いて、発光部5および発光部6を含む発光部全体の発する光の色温度を調整可能である。なお、図12では、発光部として図9の発光装置41を用いているが、図10および図11に示される発光装置も用いることができる。
 第1の発光部と第2の発光部との配置は、第1の発光部および第2の発光部のそれぞれの発光部の発する光が混ざり合うことができれば、特に限定されない。たとえば、図14に示されるように、発光部を3分割して、中央の1つの区分に第1の発光部5を配置し、両側の2つの区分に第2の発光部6を配置することができる。
 図13に示されるように、第1の発光部5および第2の発光部6は、基板7上に、樹脂ダムを超える高さで立体的に形成することができる。これによると、LED素子、赤色蛍光体および緑色蛍光体から発光装置の側方に放射された光は発光部の表面で拡散反射し、発光装置の全方向に分配され、配光性の優れた発光装置411を得ることができる。
 また図14に示されるように、第1の発光部5および第2の発光部6は、基板7上に、立体的に形成することができる。これによると、樹脂ダムやリフレクタを配置しなくても、LED素子、赤色蛍光体および緑色蛍光体から発光装置の側方に放射された光は発光部の表面で拡散反射し、発光装置の全方向に分配され、配光性の優れた発光装置412を得ることができる。
 図13の発光装置の変形例を図15に示す。発光装置413では、基板7上に第1の発光部5と第2の発光部6が立体的に形成されている。発光部を挟んで対向してカソード用電極ランド14とアノード用電極ランド13が形成されている。これにより、細長い発光部(たとえば、幅2mm、長さ40mm)を持ち、低い色温度から高い色温度へ調色が可能な発光装置を得ることができる。
 図15の発光装置413は、特に、LED型電球の光源として最適な構造を実現できる。発光装置413は一つ或いは複数個を用いることが好ましく、複数個を用いるのが特に好ましい。また、発光装置413は複数個を貼り合わせて用いることができる。
 [実施の形態5]
 本発明の実施の形態5に係る発光装置を、図16を用いて説明する。図16は、実施の形態5に係る発光装置を模式的に示す平面図である。
 実施の形態5に係る発光装置71は、基本的な構成としては実施の形態1に係る発光装置と同様の構成を備える。実施の形態1と異なる点は、5箇所の第1の発光部5が第1の配線K上で直列に接続されていること、5箇所の第2の発光部6が第2の配線K上で直列に接続されていること、第1の発光部5と第2の発光部6とは隣接しておらず、それぞれの発する光が十分に混ざり合うことができる程度に近い距離に配置されていることである。
 具体的には、発光装置71は、基板7上に配置されたアノード用電極ランド13と、カソード用電極ランド14と、アノード用電極ランド13とカソード用電極ランド14とを接続する第1の配線K、第2の配線Kおよび配線パターン16とを備える。
 第1の配線Kには抵抗2が直列に接続されており、第1の配線Kの電気抵抗が第2の配線Kの電気抵抗より大きい。抵抗2は、第1の発光部5と第2の発光部6とに流れる電流を調整するための部材である。なお、該電流の調整は、発光部の数を調整したり、発光する電圧値の異なるLED素子を搭載することによっても実現可能である。
 第1の発光部5および第2の発光部6と直列に抵抗3が接続されている。該抵抗3はインダクタ11に代えることができる。配線パターン16によって、第1の発光部5および第2の発光部6と並列に静電容量部材9が接続されている。
 第1の発光部5および第2の発光部6とは、それぞれの発する光が十分に混ざり合うことができる程度に近い距離に配置されているため、発光装置全体の発する光は均一な色温度の光となる。第1の発光部5と第2の発光部6との間の距離は、それぞれの発光部の外縁間の最短距離が28mm以下であることが好ましく、22mm以下であることがさらに好ましい。第1の発光部5と第2の発光部6との間の距離が28mm以下であると、第1の発光部5と第2の発光部6のそれぞれの発する光が十分に混ざり合うことができる。
 [実施の形態6]
 実施の形態6に係る照明器具80を図1および図2を用いて説明する。図1は本発明の実施の形態1に係る発光装置を模式的に示す平面透視図である。図2は、図1の発光装置を用いた照明器具80の概略回路図である。
 図2に示されるように、実施の形態1に係る発光装置1は、PWM信号式調光回路に接続される。実施の形態1に係る発光装置1は、第1の発光部5および第2の発光部6と並列に設けられた静電容量部材9、ならびに、第1の発光部5および前記第2の発光部6と直列に設けられた抵抗3を含むローパスフィルタ51を備える。したがって、発光装置1をPWM(Pulse Width Modulation)信号式調光器15に接続すると、PWM信号式調光器15からのパルス信号を直流電圧に変換することができる。よって、照明器具80は、従来のLED素子の調光回路であるPWM信号式調光器15を用いて、発光部5および発光部6を含む発光部全体の発する光の色温度を調整可能である。
 本発明を実施例によりさらに具体的に説明する。ただし、これらの実施例により本発明が限定されるものではない。
 [実施例1]
 実施例1では、実施の形態1の図1および図2と同様の構成の発光装置を用いて試験を行った。
 基板7にはセラミック基板を用いた。抵抗2は抵抗値が60Ωのチップ抵抗である。抵抗3は抵抗値が10Ωのチップ抵抗である。静電容量部材9は、PWM周波数を10kHzとした場合、静電容量が100μF程度のチップコンデンサである。
 抵抗3と静電容量部材9とは、導電性配線Kを介して電気的に接続され、ローパスフィルタ51を形成している。静電容量部材9の静電容量をC、抵抗3の抵抗値をRとした場合、カットオフ周波数fcは1/2πCRで表される。PWM信号周波数Fに対して、カットオフ周波数fcが大きくなると、高周波成分によるリップル成分を除去できず、電圧ばらつきが大きくなってしまうため、PWM信号周波数F>>カットオフ周波数fcとなるように設定する。実施例1では、PWM信号がローパスフィルタ51を通過することでD/A変換され、第1の配線Kおよび第2の配線Kを流れる直流電流値を制御することができる。
 第1の発光部5および第2の発光部6では、第1赤色蛍光体60(CaAlSiN:Eu)、第2赤色蛍光体61((Sr,Ca)AlSiN:Eu)、緑色蛍光体70(LuAl12:Ce)および青色発光LED素子8(発光波長450nm)がシリコーン樹脂で封止されている。青色発光LED素子8および導電性配線25は第1の配線Kまたは第2の配線Kで電気的に接続され、導電性配線25はアノード用電極ランド13またはカソード用電極ランド14に電気的に接続されている。
 実施例1の発光装置の第1の発光部5の発する光の色温度は2000K、第2の発光部6の発する光の色温度は3000Kとなるように形成している。次に、第1の配線Kおよび第2の配線Kに流れる順方向電流の合計(以下、合計順方向電流ともいう)の大きさと発光装置の発する光の色温度との関係を調べた。
 合計順方向電流350mAが流れた時の発光装置全体の発する光の色温度は2900Kであり、合計順方向電流50mAが流れた時の発光装置全体の発する光の色温度は2000Kであった。
 図3は、合計順方向電流350mAの時の発光装置全体の発する光の光束を100%として、合計順方向電流を変化させた時の光の相対光束(%)と色温度との関係を示すグラフである。図3から、相対光束が減少すると、色温度が低くなることが分かる。
 [実施例2]
 実施例2では、実施の形態2の図5および図6と同様の構成の発光装置を用いて試験を行った。実施例2の発光装置の構成は、実施例1の発光装置の構成と基本的に同様である。実施例2の発光措置は、実施例1の抵抗3に代えて、インダクタ11を用いる点が異なる。インダクタ11はインダクタンスが10mHのコイルである。静電容量部材9は、PWM周波数を10kHzとした場合、静電容量が100μF程度のチップコンデンサである。
 インダクタ11と静電容量部材9とは、導電性配線Kを介して電気的に接続され、2次のローパスフィルタ52を形成している。静電容量部材9の静電容量をC、インダクタ11のインダクタンスをLとした場合、カットオフ周波数fcは1/2π√(CL)で表される。PWM信号周波数Fに対して、カットオフ周波数fcが大きくなると、高周波成分によるリップル成分を除去できず、電圧ばらつきが大きくなってしまうため、PWM信号周波数F>>カットオフ周波数fcとなるように設定する。実施例2では、PWM信号がローパスフィルタ52を通過することでD/A変換され、第1の配線Kおよび第2の配線Kを流れる直流電流値を制御することができる。
 実施例2の発光装置の第1の発光部5の発する光の色温度は2700K、第2の発光部6の発する光の色温度は5000Kとなるように形成している。次に、第1の配線Kおよび第2の配線Kに流れる順方向電流の合計(以下、合計順方向電流ともいう)の大きさと発光装置の発する光の色温度との関係を調べた。
 合計順方向電流350mAが流れた時の発光装置全体の発する光の色温度は4000Kであり、合計順方向電流50mAが流れた時の発光装置全体の発する光の色温度は2700Kであった。
 [実施例3]
 実施例3では、実施の形態3の図7および図8と同様の構成の発光装置を用いて試験を行った。
 実施例3の発光装置の構成は、実施例1の発光装置の構成と基本的に同様である。実施例3の発光措置は、実施例1のローパスフィルタ51に加えて、静電容量部材12および抵抗4を含むローパスフィルタ54を含む点が異なる。抵抗3,4は抵抗値が10Ωのチップ抵抗である。静電容量部材9,12は、PWM周波数を10kHzとした場合、静電容量が100μF程度のチップコンデンサである。
 実施例3の発光装置の第1の発光部5の発する光の色温度は2000K、第2の発光部6の発する光の色温度は4000Kとなるように形成している。次に、第1の配線Kおよび第2の配線Kに流れる順方向電流の合計(以下、合計順方向電流ともいう)の大きさと発光装置の発する光の色温度との関係を調べた。
 合計順方向電流350mAが流れた時の発光装置全体の発する光の色温度は3000Kであり、合計順方向電流50mAが流れた時の発光装置全体の発する光の色温度は2000Kであった。
 ノイズ低減について、コンデンサのインピーダンスが、高周波になるほど低くなるため、ノイズ成分がコンデンサ側から流れることでノイズ成分が低減する。実施例3の場合、実施例1に対してノイズ成分が1/1000以下に抑制される。実施例の値は、一例であり、抵抗値、静電容量、インダクタンスを調整することで、さらにノイズ成分を低減することも可能である。
 上記によって、PWM信号式調光回路15を用いてもスムーズな調光調色発光装置が実現できる。
 [実施例4]
 実施例4では、実施の形態4の図9と同様の構成の発光装置を用いて試験を行った。実施例2の発光装置の構成は、実施例1の発光装置の構成と基本的に同様であり、用いた各部材も実施例1と同様である。実施例4の発光装置は、発光装置を上面から見た平面視において、矩形の第1の発光部5が2箇所および矩形の第2の発光部6が3箇所形成され、発光部全体が矩形である点である。
 実施例5の発光装置の第1の発光部5の発する光の色温度は2000K、第2の発光部6の発する光の色温度は3000Kとなるように形成している。次に、第1の配線Kおよび第2の配線Kに流れる順方向電流の合計(以下、合計順方向電流ともいう)の大きさと発光装置の発する光の色温度との関係を調べた。
 合計順方向電流350mAが流れた時の発光装置全体の発する光の色温度は2900Kであり、合計順方向電流50mAが流れた時の発光装置全体の発する光の色温度は2000Kであった。
 発光部を矩形にすることにより直管タイプの照明や図12のような構造の照明器具に適した発光を得ることができる。
 また、発光部を立体的に形成することで発光装置から放射された光は発光装置の全方向に分配され、配光性の優れた発光装置を実現することができる。
 さらに発光部の形状を矩形した形状を2枚以上貼り合わせる構造を用いることで、ほぼ全周囲方向に近い広配光の混色された発光を得ることができ、特にLED型電球の光源として最適な構造を実現できる。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
1,21,31,41,411,412,413,71 発光装置、2,3,4 抵抗、5 第1の発光部、6 第2の発光部、7 基板、8 LED素子、9,12 静電容量部材、10 樹脂ダム、11 インダクタ、13 アノード用電極ランド、14 カソード用電極ランド、15 PWM信号式調光回路、16 配線パターン、17 透光性樹脂、18 ヒートシンク、19 リフレクタ、20 ワイヤ、22 筐体、23 前面カバー、24 G口金、25,K 導電性配線、51,52,53,54 ローパスフィルタ、60 第1赤色蛍光体、61 第2赤色蛍光体、70 緑色蛍光体、50,80,81,82 照明器具、K 第1の配線、K 第2の配線。

Claims (5)

  1.  アノード用電極ランドと、
     カソード用電極ランドと、
     前記アノード用電極ランドおよび前記カソード用電極ランドに電気的に接続して並列に設けられた、隣接する第1の発光部および第2の発光部と、
     前記第1の発光部および前記第2の発光部と並列に設けられた静電容量部材、ならびに、前記第1の発光部および前記第2の発光部と直列に設けられた抵抗部材を含むローパスフィルタとを備え、
     前記第1の発光部の電気抵抗が前記第2の発光部の電気抵抗より大きく、
     前記第1の発光部および前記第2の発光部を含む発光部全体の発する光の色温度を調整可能である、
     発光装置。
  2.  前記抵抗部材はインダクタである、
     請求項1に記載の発光装置。
  3.  前記発光装置は、前記ローパスフィルタを多段階で備える、
     請求項1または請求項2に記載の発光装置。
  4.  前記第1の発光部および前記第2の発光部を含む発光部全体は、平面視で略矩形に形成される、
     請求項1から請求項3のいずれか1項に記載の発光装置。
  5.  請求項1から請求項4のいずれか1項に記載の発光装置と、
     前記発光装置と電気的に接続されたPWM信号式調光器とを備える、
     照明器具。
PCT/JP2015/073810 2014-12-05 2015-08-25 発光装置および照明器具 WO2016088412A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016562325A JP6395859B2 (ja) 2014-12-05 2015-08-25 発光装置および照明器具
CN201580065722.8A CN107148682A (zh) 2014-12-05 2015-08-25 发光装置以及照明器具
EP15864356.9A EP3229280A4 (en) 2014-12-05 2015-08-25 Light-emitting device and light fixture
US15/532,920 US9974137B2 (en) 2014-12-05 2015-08-25 Lighting device and light emitting device having red and green phosphor arranged therein
US15/947,471 US10264646B2 (en) 2014-12-05 2018-04-06 Lighting device and light emitting device having red and green phosphor arranged therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014247172 2014-12-05
JP2014-247172 2014-12-05

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/532,920 A-371-Of-International US9974137B2 (en) 2014-12-05 2015-08-25 Lighting device and light emitting device having red and green phosphor arranged therein
US15/947,471 Continuation US10264646B2 (en) 2014-12-05 2018-04-06 Lighting device and light emitting device having red and green phosphor arranged therein

Publications (1)

Publication Number Publication Date
WO2016088412A1 true WO2016088412A1 (ja) 2016-06-09

Family

ID=56091370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073810 WO2016088412A1 (ja) 2014-12-05 2015-08-25 発光装置および照明器具

Country Status (5)

Country Link
US (2) US9974137B2 (ja)
EP (1) EP3229280A4 (ja)
JP (1) JP6395859B2 (ja)
CN (1) CN107148682A (ja)
WO (1) WO2016088412A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018182049A (ja) * 2017-04-12 2018-11-15 Zigenライティングソリューション株式会社 発光装置および照明装置
JP2018200817A (ja) * 2017-05-29 2018-12-20 株式会社Maruwa 照明装置
JP2021515418A (ja) * 2018-02-27 2021-06-17 シグニファイ ホールディング ビー ヴィSignify Holding B.V. 制御ユニットを備えるledフィラメントランプ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6611036B2 (ja) * 2015-09-10 2019-11-27 パナソニックIpマネジメント株式会社 発光装置及び照明用光源
JP7470257B2 (ja) * 2021-06-28 2024-04-17 デンカ株式会社 灯具

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100799A (ja) * 2003-09-25 2005-04-14 Osram-Melco Ltd 可変色発光ダイオードモジュール及び可変色発光ダイオード照明器具
JP2006318773A (ja) * 2005-05-13 2006-11-24 Matsushita Electric Works Ltd Led照明システムおよび照明器具
JP2007287617A (ja) * 2006-04-20 2007-11-01 Tamura Seisakusho Co Ltd 発光素子の駆動回路および照明装置
JP2008052994A (ja) * 2006-08-23 2008-03-06 Nec Lighting Ltd 照明装置および制御回路
JP2008218504A (ja) * 2007-02-28 2008-09-18 Toshiba Lighting & Technology Corp 照明装置
JP2010170945A (ja) * 2009-01-26 2010-08-05 Panasonic Corp 電球形照明装置
JP2010197840A (ja) * 2009-02-26 2010-09-09 Hitachi Displays Ltd 液晶表示装置および照明装置
JP2011249771A (ja) * 2010-05-24 2011-12-08 Taida Electronic Ind Co Ltd 光源モジュール
JP2012124356A (ja) * 2010-12-09 2012-06-28 Sharp Corp 発光装置
JP2013531376A (ja) * 2010-06-24 2013-08-01 インテマティックス・コーポレーション Led系発光システムおよび装置
JP2013172471A (ja) * 2012-02-17 2013-09-02 Casio Comput Co Ltd 駆動装置、点滅装置及び投影装置
JP2014157744A (ja) * 2013-02-15 2014-08-28 Panasonic Corp 発光回路、発光モジュール及び照明装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093320A (ja) 1999-09-27 2001-04-06 Citizen Electronics Co Ltd 面状光源ユニット
US7350933B2 (en) * 2005-05-23 2008-04-01 Avago Technologies Ecbu Ip Pte Ltd Phosphor converted light source
JP5286010B2 (ja) * 2008-09-22 2013-09-11 東芝キヤリア株式会社 2気筒回転式圧縮機と冷凍サイクル装置
CN101894832A (zh) * 2009-05-21 2010-11-24 海立尔股份有限公司 用以产生白光的发光二极管结构
DE102009037730A1 (de) 2009-08-17 2011-02-24 Osram Gesellschaft mit beschränkter Haftung Konversions-LED mit hoher Farbwiedergabe
JP5507940B2 (ja) * 2009-09-25 2014-05-28 パナソニック株式会社 照明装置
CN102036435B (zh) * 2009-09-28 2014-04-30 财团法人工业技术研究院 一种光色调制方法及光色可变的发光二极管光源模块
JP2011151268A (ja) * 2010-01-22 2011-08-04 Sharp Corp 発光装置
JP2012060097A (ja) * 2010-06-25 2012-03-22 Mitsubishi Chemicals Corp 白色半導体発光装置
JP2012256572A (ja) * 2011-06-10 2012-12-27 Toshiba Lighting & Technology Corp 照明装置
CN103718650A (zh) * 2011-08-16 2014-04-09 三星电子株式会社 具有可调节的色温的led装置
JP2013118292A (ja) * 2011-12-02 2013-06-13 Citizen Electronics Co Ltd Led発光装置
JP5840540B2 (ja) 2012-03-15 2016-01-06 株式会社東芝 白色照明装置
US9046228B2 (en) * 2012-04-06 2015-06-02 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device for emitting light of multiple color temperatures
JP2013229171A (ja) * 2012-04-25 2013-11-07 Toshiba Lighting & Technology Corp 発光装置及び照明装置
JP2013251144A (ja) * 2012-05-31 2013-12-12 Toshiba Lighting & Technology Corp 発光モジュール及び照明装置
JP2013254669A (ja) 2012-06-07 2013-12-19 Panasonic Corp 色温度可変照明システム及びそれに用いる照明光源用のコントローラ
US20140003044A1 (en) * 2012-09-06 2014-01-02 Xicato, Inc. Integrated led based illumination device
US9155146B2 (en) * 2012-09-07 2015-10-06 Samsung Electronics Co., Ltd. Light source apparatus and light emitting diode package
TWI489904B (zh) * 2012-11-14 2015-06-21 Ind Tech Res Inst 驅動裝置、光發射器與其操作方法
CN103855142B (zh) * 2012-12-04 2017-12-29 东芝照明技术株式会社 发光装置及照明装置
US9326350B2 (en) * 2013-02-07 2016-04-26 Everlight Electronics Co., Ltd. Light-emitting device with multi-color temperature and multi-loop configuration

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100799A (ja) * 2003-09-25 2005-04-14 Osram-Melco Ltd 可変色発光ダイオードモジュール及び可変色発光ダイオード照明器具
JP2006318773A (ja) * 2005-05-13 2006-11-24 Matsushita Electric Works Ltd Led照明システムおよび照明器具
JP2007287617A (ja) * 2006-04-20 2007-11-01 Tamura Seisakusho Co Ltd 発光素子の駆動回路および照明装置
JP2008052994A (ja) * 2006-08-23 2008-03-06 Nec Lighting Ltd 照明装置および制御回路
JP2008218504A (ja) * 2007-02-28 2008-09-18 Toshiba Lighting & Technology Corp 照明装置
JP2010170945A (ja) * 2009-01-26 2010-08-05 Panasonic Corp 電球形照明装置
JP2010197840A (ja) * 2009-02-26 2010-09-09 Hitachi Displays Ltd 液晶表示装置および照明装置
JP2011249771A (ja) * 2010-05-24 2011-12-08 Taida Electronic Ind Co Ltd 光源モジュール
JP2013531376A (ja) * 2010-06-24 2013-08-01 インテマティックス・コーポレーション Led系発光システムおよび装置
JP2012124356A (ja) * 2010-12-09 2012-06-28 Sharp Corp 発光装置
JP2013172471A (ja) * 2012-02-17 2013-09-02 Casio Comput Co Ltd 駆動装置、点滅装置及び投影装置
JP2014157744A (ja) * 2013-02-15 2014-08-28 Panasonic Corp 発光回路、発光モジュール及び照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3229280A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018182049A (ja) * 2017-04-12 2018-11-15 Zigenライティングソリューション株式会社 発光装置および照明装置
JP2018200817A (ja) * 2017-05-29 2018-12-20 株式会社Maruwa 照明装置
JP2021515418A (ja) * 2018-02-27 2021-06-17 シグニファイ ホールディング ビー ヴィSignify Holding B.V. 制御ユニットを備えるledフィラメントランプ
JP7377823B2 (ja) 2018-02-27 2023-11-10 シグニファイ ホールディング ビー ヴィ 制御ユニットを備えるledフィラメントランプ

Also Published As

Publication number Publication date
JPWO2016088412A1 (ja) 2017-09-07
CN107148682A (zh) 2017-09-08
EP3229280A4 (en) 2018-06-06
EP3229280A1 (en) 2017-10-11
US10264646B2 (en) 2019-04-16
US20170354010A1 (en) 2017-12-07
US9974137B2 (en) 2018-05-15
US20180235053A1 (en) 2018-08-16
JP6395859B2 (ja) 2018-09-26

Similar Documents

Publication Publication Date Title
WO2016084437A1 (ja) 発光装置および照明器具
JP5964238B2 (ja) 高criで色温度調整可能な照明デバイス
US10264646B2 (en) Lighting device and light emitting device having red and green phosphor arranged therein
US20120155076A1 (en) Led-based light emitting systems and devices
JP2017059854A (ja) 高演色性白色発光素子
JP6203147B2 (ja) 発光装置
WO2016147484A1 (ja) 発光装置
WO2016158082A1 (ja) 発光装置
JP6320495B2 (ja) 発光装置
US20200053852A1 (en) Light emitting device
KR20150143916A (ko) 고연색성 백색 발광 소자
KR20150143377A (ko) 고연색성 백색 발광 소자
KR20170002352A (ko) 고연색성 백색 발광 소자
JP2022055685A (ja) 多色led光源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864356

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015864356

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016562325

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15532920

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE