[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016084796A1 - 空調機 - Google Patents

空調機 Download PDF

Info

Publication number
WO2016084796A1
WO2016084796A1 PCT/JP2015/082925 JP2015082925W WO2016084796A1 WO 2016084796 A1 WO2016084796 A1 WO 2016084796A1 JP 2015082925 W JP2015082925 W JP 2015082925W WO 2016084796 A1 WO2016084796 A1 WO 2016084796A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
temperature
compressor
air conditioner
source side
Prior art date
Application number
PCT/JP2015/082925
Other languages
English (en)
French (fr)
Inventor
智彦 堤
木澤 敏浩
康史 鵜飼
中井 明紀
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015143845A external-priority patent/JP6032330B2/ja
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to BR112017009983-7A priority Critical patent/BR112017009983B1/pt
Publication of WO2016084796A1 publication Critical patent/WO2016084796A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles

Definitions

  • the present invention relates to an air conditioner, and more particularly to an air conditioner having a heating capacity smaller than a cooling capacity.
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-96088.
  • the temperature drops to about 5 ° C. for a short period of time, and there is a time when some kind of heating is required.
  • the user is heating the room using a heater and other equipment for that period, but there is no denying inconvenience.
  • a full-scale heat pump machine in the cooling-only area is over-spec, resulting in an increase in the purchase price of users and hindering market distribution.
  • An object of the present invention is to provide an inexpensive air conditioner that can perform weak heating suitable for an area that requires heating only for a short period of time.
  • a compressor, a heat source side heat exchanger, an expansion mechanism, and a use side heat exchanger are connected in order to form a refrigerant circuit, and the use side heat exchanger serves as a condenser.
  • the control unit performs frost suppression control.
  • frost suppression control it is determined that the evaporation temperature of the refrigerant when the heat source side heat exchanger is functioning as an evaporator is below the first threshold, or the heat source side heat exchanger functions as an evaporator. This is control for drooping or stopping the compressor when it is determined that the refrigerant outlet temperature of the refrigerant is below the second threshold.
  • this air conditioner it is possible to suppress frost formation by dropping or stopping the compressor at the timing when frost formation is likely to occur from the evaporation temperature of the refrigerant or the evaporator outlet temperature. As a result, a low-cost air conditioner can be provided.
  • the air conditioner according to the second aspect of the present invention is the air conditioner according to the first aspect, and further includes a heat source side temperature sensor.
  • the heat source side temperature sensor is attached to the heat source side heat exchanger and detects the temperature of a predetermined region of the heat source side heat exchanger.
  • the control unit estimates the evaporation temperature of the refrigerant from the detection value of the heat source side temperature sensor.
  • the cause of frost formation may be a decrease in the evaporation temperature of the refrigerant.
  • the decrease in the evaporation temperature occurs when the compressor frequency is high and the outside air is low.
  • the evaporation pressure can be appropriately adjusted by estimating the evaporation temperature of the refrigerant from the detection value of the heat source side temperature sensor attached to the heat source side heat exchanger functioning as an evaporator during heating operation. .
  • the air conditioner according to the third aspect of the present invention is the air conditioner according to the first aspect, and further includes an outlet pipe temperature sensor.
  • the outlet pipe temperature sensor is attached to the refrigerant outlet pipe of the heat source side heat exchanger that functions as an evaporator during heating operation, and detects the temperature of the refrigerant outlet pipe.
  • the control unit estimates the evaporator outlet temperature of the refrigerant from the detection value of the outlet pipe temperature sensor.
  • the air conditioner according to a fourth aspect of the present invention is the air conditioner according to any one of the first aspect to the third aspect, and further includes an indoor fan that blows air to the use side heat exchanger.
  • the control unit lowers the rotational speed of the indoor fan before the compressor is suspended or stopped.
  • An air conditioner according to a fifth aspect of the present invention is the air conditioner according to the fourth aspect, wherein the control unit determines that the evaporation temperature has fallen below the third threshold or the evaporator outlet temperature reaches the fourth threshold. Decrease the number of rotations of the indoor fan step by step until it is determined that it has fallen below.
  • the variation range of the evaporation temperature with respect to the rotational speed change range of the indoor fan is smaller than that with respect to the change range of the operating frequency of the compressor. Therefore, by reducing the rotational speed of the indoor fan stepwise, the evaporation temperature Can be controlled finely. For this reason, the fall of the heating capability by frost suppression control can be suppressed, and heating operation time can be extended, maintaining indoor temperature.
  • An air conditioner according to a sixth aspect of the present invention is the air conditioner according to the fourth aspect or the fifth aspect, and when the air volume automatic mode in which the air volume setting is automatically performed is selected, the control unit is an indoor fan. Reduce the number of revolutions.
  • the automatic air volume mode is suitable for frost suppression control involving control for reducing the rotational speed of the indoor fan. ing.
  • An air conditioner according to a seventh aspect of the present invention is the air conditioner according to any one of the first aspect to the sixth aspect, wherein the control unit detects the heat source side heat exchanger from the evaporation temperature or the evaporator outlet temperature. If it is determined whether or not frost formation has occurred, and it is determined that the heat source side heat exchanger is frosted, the heat source side heat exchanger is defrosted only with outside air without using the discharge gas temperature of the compressor. Do.
  • the heat source side heat exchanger can be defrosted only with outside air without using the discharge gas temperature of the compressor. Therefore, compared with the type of air conditioner that performs hot gas defrost, And cost reduction.
  • An air conditioner according to an eighth aspect of the present invention is the air conditioner according to any one of the first aspect to the sixth aspect, and further includes an outside air temperature sensor.
  • the outside air temperature sensor detects the ambient temperature of the place where the heat source side heat exchanger is installed.
  • the control unit stops the compressor when the detected value of the outside air temperature sensor falls below the fifth threshold value.
  • the frost formation can be suppressed by drooping or stopping the compressor at the timing at which frost formation is likely to occur from the evaporation temperature of the refrigerant or the evaporator outlet temperature. .
  • a low-cost air conditioner can be provided.
  • the evaporation pressure is estimated by estimating the evaporation temperature of the refrigerant from the detection value of the heat source side temperature sensor attached to the heat source side heat exchanger that functions as an evaporator during heating operation. Can be adjusted appropriately.
  • the evaporator outlet temperature of the refrigerant is estimated from the detected value of the outlet pipe temperature sensor, and the evaporation temperature of the refrigerant is estimated from the estimated value, thereby appropriately adjusting the evaporation pressure. Can be adjusted.
  • the change width of the evaporation temperature with respect to the rotation speed change width of the indoor fan is smaller than that with respect to the change width of the operating frequency of the compressor.
  • the change in the evaporation temperature with respect to the change in the rotation speed of the indoor fan is smaller than the change in the change in the operating frequency of the compressor.
  • the air conditioner according to the sixth aspect of the present invention there is room for lowering the air volume, that is, room for lowering the rotation speed of the indoor fan in the automatic air volume mode, so the air volume automatic mode performs control for reducing the rotation speed of the indoor fan. Suitable for accompanying frost control.
  • the heat source side heat exchanger can be defrosted only with outside air without using the discharge gas temperature of the compressor. In contrast, it is possible to reduce the size and cost of parts.
  • the block diagram of the air conditioner which concerns on 1st Embodiment of this invention The perspective view of an indoor unit.
  • the control block diagram of an air conditioner The flowchart of frost suppression control.
  • the flowchart of the frost suppression control of the air conditioning machine which concerns on 2nd Embodiment of this invention.
  • FIG. 1 is a configuration diagram of an air conditioner 1 according to the first embodiment of the present invention.
  • an air conditioner 1 is a refrigeration apparatus capable of cooling operation and heating operation, and includes an indoor unit 2, an outdoor unit 3, and a liquid refrigerant communication pipe 7 for connecting the outdoor unit 3 and the indoor unit 2.
  • a gas refrigerant communication pipe 9. R32 which is a single refrigerant is enclosed in the refrigeration circuit of the air conditioner 1.
  • FIG. 2 is a perspective view of the indoor unit 2. 1 and 2, the indoor unit 2 includes an indoor heat exchanger 11 and an indoor fan 35.
  • the indoor unit 2 is accompanied by a remote control unit (hereinafter referred to as a remote controller 52).
  • the remote controller 52 controls the air conditioner 1 by communicating with a control unit built in the indoor unit 2 and the outdoor unit 3 in accordance with a user operation.
  • the indoor heat exchanger 11 is a cross-fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins.
  • the indoor heat exchanger 11 functions as a refrigerant evaporator during cooling operation to cool indoor air, and functions as a refrigerant condenser during heating operation to heat indoor air.
  • the indoor heat exchanger 11 is not limited to a cross fin type fin-and-tube heat exchanger, but may be another type of heat exchanger.
  • the indoor fan 35 is a cross flow fan.
  • the indoor fan 35 includes a fan 35a and an indoor fan motor unit 35b for rotating the fan 35a.
  • the fan 35a is made of a resin material such as AS resin, is formed in a long and thin cylindrical shape, and is arranged so that the long axis is horizontal.
  • the indoor fan 35 By the operation of the indoor fan 35, the indoor unit 2 sucks indoor air into the interior from the front side, and after exchanging heat with the refrigerant in the indoor heat exchanger 11, it is supplied to the room as supply air. Moreover, the indoor fan 35 can change the air volume of the air supplied to the indoor heat exchanger 11 within a predetermined air volume range.
  • the outdoor unit 3 mainly includes a compressor 13, a four-way switching valve 15, an outdoor heat exchanger 17, an expansion valve 19, and an accumulator 21. Furthermore, the outdoor unit 3 also has an outdoor fan 55.
  • the compressor 13 is a variable capacity compressor, and the rotation speed is controlled by an inverter.
  • the number of the compressors 13 is only one.
  • the present invention is not limited to this, and two or more compressors may be connected in parallel according to the number of indoor units 2 connected.
  • the four-way switching valve 15 is a valve that switches the direction of refrigerant flow.
  • the four-way switching valve 15 connects the discharge side of the compressor 13 and the gas side of the outdoor heat exchanger 17 and at the same time, the suction side of the compressor 13 (specifically, the accumulator 21) and the gas refrigerant communication pipe.
  • 9 side cooling operation state: refer to the solid line of the four-way switching valve 15 in FIG. 1).
  • the outdoor heat exchanger 17 functions as a refrigerant condenser
  • the indoor heat exchanger 11 functions as a refrigerant evaporator.
  • the four-way switching valve 15 connects the discharge side of the compressor 13 and the gas refrigerant communication pipe 9 side and connects the suction side of the compressor 13 and the gas side of the outdoor heat exchanger 17 (heating). Operation state: (Refer to the broken line of the four-way switching valve 15 in FIG. 1).
  • the indoor heat exchanger 11 functions as a refrigerant condenser
  • the outdoor heat exchanger 17 functions as a refrigerant evaporator.
  • Outdoor heat exchanger 17 is a cross-fin type fin-and-tube heat exchanger.
  • the outdoor heat exchanger 17 functions as a refrigerant condenser during the cooling operation, and functions as a refrigerant evaporator during the heating operation.
  • the outdoor heat exchanger 17 has a gas side connected to the four-way switching valve 15 and a liquid side connected to the expansion valve 19.
  • Expansion valve 19 The expansion valve 19 adjusts the pressure and flow rate of the refrigerant flowing in the refrigerant circuit.
  • the expansion valve 19 is disposed downstream of the outdoor heat exchanger 17 in the refrigerant flow direction in the refrigerant circuit during the cooling operation.
  • Outdoor fan 55 blows the sucked outdoor air to the outdoor heat exchanger 17 to exchange heat with the refrigerant.
  • the outdoor fan 55 can vary the amount of air that is blown to the outdoor heat exchanger 17.
  • the outdoor fan 55 is a propeller fan or the like, and is driven by a motor including a DC fan motor or the like.
  • FIG. 3 is a control block diagram of the air conditioner 1.
  • the control unit 50 operates the operating frequency of the compressor 13, the switching operation of the four-way switching valve 15, the opening of the expansion valve 19, the rotation of the indoor fan motor unit 35b, and The rotation of the wind direction adjusting blade drive motor 62 is controlled.
  • the control unit 50 includes an indoor control unit 50 a built in the indoor unit 2 and an outdoor control unit 50 b built in the outdoor unit 3. Infrared signals are transmitted and received between the indoor controller 50a and the remote controller 52. Signals are transmitted and received between the indoor control unit 50a and the outdoor control unit 50b via wires.
  • the remote controller 52 is provided with an operation switch 22, an operation changeover switch 24, a temperature setting switch 26, and a wind direction adjustment switch 61.
  • the operation switch 22 alternately switches between operation and stop of the air conditioner 1 every time it is operated.
  • the operation changeover switch 24 switches the operation in the order of automatic ⁇ cooling ⁇ dehumidification ⁇ heating each time it is operated.
  • the temperature setting switch 26 increases the set temperature each time it is pressed upward, and decreases the set temperature every time it is pressed down.
  • control unit 50 controls the wind direction adjustment blade drive motor 62 to move the wind direction adjustment blade 63 (see FIG. 2) up and down and to fix an arbitrary position. Switch alternately.
  • the air conditioner 1 is provided with an outdoor heat exchanger temperature sensor 42 composed of a thermistor, an indoor temperature sensor 44, an outlet pipe temperature sensor 46, and an outdoor air temperature sensor 48.
  • the outdoor heat exchanger temperature sensor 42 is attached to the outdoor heat exchanger 17 and detects the temperature of the refrigerant flowing through a predetermined region of the outdoor heat exchanger 17.
  • the indoor temperature sensor 44 is attached to the suction port of the indoor unit 2 and detects the indoor air temperature.
  • the outlet pipe temperature sensor 46 is attached to the refrigerant outlet pipe of the outdoor heat exchanger 17 that functions as an evaporator during heating operation, and detects the temperature of the refrigerant outlet pipe.
  • the outside air temperature sensor 48 detects the ambient temperature of the outdoor unit 3.
  • the control part 50 carries out operation control of the air conditioner 1 based on the measured value of these temperature sensors.
  • the four-way switching valve 15 can switch the refrigerant circulation cycle to either the circulation cycle during the cooling operation or the circulation cycle during the heating operation.
  • the high-pressure refrigerant discharged from the compressor 13 is condensed by exchanging heat with outdoor air in the outdoor heat exchanger 17.
  • the refrigerant exiting the outdoor heat exchanger 17 is decompressed when passing through the expansion valve 19, and then evaporates by exchanging heat with indoor air in the indoor heat exchanger 11. At that time, the air is cooled by the indoor heat exchanger 11, and the cooled air is blown into the room from the outlet through the indoor fan 35.
  • the refrigerant leaving the indoor heat exchanger 11 is sucked into the compressor 13 and compressed.
  • the four-way switching valve 15 is set to the second state (dotted line in FIG. 1).
  • the control unit 50 operates the compressor 13 in this state, a vapor compression refrigeration cycle is performed in which the outdoor heat exchanger 17 serves as an evaporator and the indoor heat exchanger 11 serves as a condenser.
  • the high-pressure refrigerant discharged from the compressor 13 is condensed by exchanging heat with indoor air in the indoor heat exchanger 11. At that time, the air is heated by the indoor heat exchanger 11, and the heated air is blown out from the outlet through the indoor fan 35 into the room.
  • the condensed refrigerant is decompressed when passing through the expansion valve 19, and then evaporates by exchanging heat with outdoor air in the outdoor heat exchanger 17.
  • the refrigerant that has exited the outdoor heat exchanger 17 is sucked into the compressor 13 and compressed.
  • FIG. 4 is a flowchart of frost suppression control.
  • the control unit 50 determines whether there is a heating operation command. For example, when the user turns on the operation switch 22 of the remote controller 52, an operation start signal is sent from the remote controller 52 to the control unit 50, and the control unit 50 that has received the operation start signal determines that there is a heating operation command. When it is determined that there is a heating operation command, control unit 50 proceeds to step S2, and when it is determined that there is no heating operation command, the control continues.
  • control unit 50 detects the outside air temperature To via the outside air temperature sensor 48 in step S2, and proceeds to step S3.
  • step S3 the control unit 50 determines whether or not the outside air temperature To that is a detection value of the outside air temperature sensor 48 is lower than a predetermined outside air temperature Tos (for example, 5 ° C.). When it determines with To ⁇ Tos, it jumps to step S10, does not start the compressor 13, and complete
  • a predetermined outside air temperature Tos for example, 5 ° C.
  • step S ⁇ b> 5 the control unit 50 detects the temperature of a predetermined region of the outdoor heat exchanger 17 via the outdoor heat exchanger temperature sensor 42.
  • step S6 the controller 50 estimates the refrigerant evaporation temperature Te from the detected value of the outdoor heat exchanger temperature sensor 42, and proceeds to step S7.
  • control unit 50 determines whether or not the evaporation temperature Te is lower than a threshold value Ts1 (for example, 4 ° C.) in step S7. When it is determined that Te ⁇ Te1, the process proceeds to step S8, where Te ⁇ Te1. If it is determined that it is not, the process returns to step S5.
  • a threshold value Ts1 for example, 4 ° C.
  • the controller 50 executes the drooping control of the compressor 13 in step S8. If the evaporating temperature Te of the refrigerant in the outdoor heat exchanger 17 is lower than the threshold value Ts1, if the operating frequency of the compressor 13 is maintained as it is, the outdoor heat exchanger 17 is frosted. It is necessary to increase the evaporation pressure. Therefore, the drooping control of the compressor 13 is performed.
  • step S9 the control unit 50 determines whether or not the evaporation temperature Te is lower than a threshold value Ts2 (for example, 2 ° C.), or whether the outside air temperature To is lower than a predetermined outside air temperature Tos (for example, 5 ° C.).
  • a threshold value Ts2 for example, 2 ° C.
  • a predetermined outside air temperature Tos for example, 5 ° C.
  • the outdoor heat exchanger 17 immediately forms frost, and the controller 50 does not start the heating operation. Further, even when the heating operation is started when the outside air temperature To is equal to or higher than Tos, the control unit 50 controls the drooping of the compressor 13 when the evaporation temperature Te becomes less than a threshold value Ts1 (for example, 4 ° C.). Suppression of frost on the heat exchanger 17 is suppressed.
  • a predetermined outside air temperature Tos for example, 5 ° C.
  • the control unit 50 stops the compressor 13 The frost formation on the heat exchanger 17 is prevented.
  • the frost formation can be suppressed by hanging down or stopping the compressor 13 by estimating the timing at which frost formation is likely to occur from the evaporation temperature Te (or the evaporator outlet temperature) of the refrigerant.
  • the evaporation pressure is appropriately adjusted by estimating the evaporation temperature Te from the detection value of the outdoor heat exchanger temperature sensor 42 attached to the outdoor heat exchanger 17 that functions as an evaporator during heating operation. Can do.
  • the compressor 13 is drooped based on the evaporation temperature Te, so that the decrease in the evaporation temperature Te can be suppressed, but the heating capacity is also decreased, and the indoor temperature is decreased. There is also a possibility of inviting.
  • the evaporation temperature Te is finely controlled, and the heating operation is performed while maintaining the indoor temperature. We decided to extend the time. The operation will be described below with reference to the flowchart.
  • FIG. 5 is a flowchart of the frost suppression control.
  • the control unit 50 determines whether or not there is a heating operation command in step S11. For example, when the user turns on the operation switch 22 of the remote controller 52, an operation start signal is sent from the remote controller 52 to the control unit 50, and the control unit 50 that has received the operation start signal determines that there is a heating operation command. When it is determined that there is a heating operation command, the control unit 50 proceeds to step S12. When it is determined that there is no heating operation command, the control unit 50 continues the determination.
  • the controller 50 detects the outside air temperature To via the outside air temperature sensor 48 in step S12, and proceeds to step S13.
  • step S13 the control unit 50 determines whether or not the outside air temperature To that is a detection value of the outside air temperature sensor 48 is lower than a predetermined outside air temperature Tos (for example, 5 ° C.). When it determines with To ⁇ Tos, it jumps to step S22, does not start the compressor 13, and complete
  • a predetermined outside air temperature Tos for example, 5 ° C.
  • control unit 50 activates the compressor 13 in step S14 and proceeds to step S15.
  • control unit 50 detects the temperature of a predetermined region of the outdoor heat exchanger 17 via the outdoor heat exchanger temperature sensor 42.
  • step S16 the controller 50 estimates the refrigerant evaporation temperature Te from the detected value of the outdoor heat exchanger temperature sensor 42, and proceeds to step S17.
  • step S17 the control unit 50 determines whether or not the evaporation temperature Te is lower than a threshold value Ts1 (corresponding to the first threshold value in claim 1; for example, 4 ° C.), and determines that Te ⁇ Te1. If so, the process proceeds to step S18. If it is determined that Te ⁇ Te1, the process returns to step S15.
  • a threshold value Ts1 corresponding to the first threshold value in claim 1; for example, 4 ° C.
  • the controller 50 reduces the rotational speed of the indoor fan 35 in step S18.
  • the controller 50 determines that Te ⁇ Te1 in Step S17. Therefore, the controller 50 determines that the outdoor heat exchanger 17 is easily frosted, and before the compressor 13 is suspended, The number of revolutions of 35 is reduced, and the evaporation temperature Te is increased.
  • the change width of the evaporation temperature Te with respect to the rotation speed change width of the indoor fan 35 is smaller than the change width of the operating frequency of the compressor 13, the rotation speed of the indoor fan 35 is reduced in the frost suppression control.
  • the heating operation time can be extended while maintaining the room temperature by suppressing the reduction width of the heating capacity as compared with the case of lowering the operation frequency of the compressor 13. Therefore, the rotational speed of the indoor fan 35 is reduced before the compressor 13 is suspended.
  • control unit 50 returns to step S18 to return to the indoor fan until it determines in step S19 that the evaporation temperature Te has fallen below the threshold value TsFDL (corresponding to the third threshold value of claim 5; for example, 3 ° C.).
  • TsFDL the third threshold value of claim 5; for example, 3 ° C.
  • the number of rotations of 35 is reduced stepwise, for example, the number of rotations of ⁇ R is reduced per step. This is because the increase range of the evaporation temperature Te can be finely controlled by lowering it stepwise.
  • control unit 50 executes the drooping control of the compressor 13 in step S20.
  • the control unit 50 executes the drooping control of the compressor 13 in step S20.
  • the drooping control of the compressor 13 is performed.
  • step S21 the controller 50 determines whether or not the evaporation temperature Te is lower than a threshold value Ts2 (for example, 2 ° C.), or the outside air temperature To is equivalent to a predetermined outside air temperature Tos (corresponding to the fifth threshold value of claim 8: It is determined whether or not Te ⁇ Ts2 or To ⁇ Tos is established, the process proceeds to step S22 and the compressor 13 is stopped.
  • a threshold value Ts2 for example, 2 ° C.
  • the outdoor heat exchanger 17 immediately forms frost, and the controller 50 does not start the heating operation.
  • control unit 50 starts the heating operation when the outside air temperature To is equal to or higher than Tos.
  • the evaporation temperature Te becomes lower than the threshold value Ts1 (for example, 4 ° C.)
  • the controller 50 reduces the rotation speed of the indoor fan 35 to evaporate. Increase the temperature Te.
  • the compressor 13 is controlled to be drooped to suppress frost formation on the outdoor heat exchanger 17.
  • the control unit 50 stops the compressor 13 The frost formation on the heat exchanger 17 is prevented.
  • the air volume automatic mode in the air volume automatic mode, there is room for lowering the air volume, that is, room for reducing the rotation speed of the indoor fan 35. Therefore, the air volume automatic mode is suitable for frost suppression control involving control for reducing the rotation speed of the indoor fan 35. .
  • the refrigerant evaporating temperature Te is estimated based on the detection value of the outdoor heat exchanger temperature sensor 42, but the present invention is not limited to this.
  • the outlet pipe temperature sensor 46 is attached to the refrigerant outlet pipe of the outdoor heat exchanger 17 that functions as an evaporator during heating operation, and detects the temperature of the refrigerant outlet pipe.
  • the refrigerant evaporator outlet temperature can be estimated from the detected value, and the refrigerant evaporation temperature Te can be estimated from the estimated value.
  • the control unit 50 determines that the evaporator outlet temperature of the refrigerant estimated from the detection value of the outlet pipe temperature sensor 46 is lower than a predetermined value (corresponding to the second threshold value of claim 1), the control unit 50 performs compression in the first embodiment.
  • the machine 13 is suspended, and the rotational speed of the indoor fan 35 is decreased in the second embodiment.
  • the control unit 50 determines that the evaporator outlet temperature of the refrigerant estimated from the detection value of the outlet pipe temperature sensor 46 is lower than a value lower than the predetermined value (corresponding to the fourth threshold value of claim 5). In the second embodiment, the compressor 13 is suspended.
  • the control unit 50 may perform a defrosting operation when determining that the outdoor heat exchanger 17 has been frosted despite the execution of the frost suppression control.
  • the outdoor heat exchanger 17 is defrosted only with outside air without using the discharge gas temperature of the compressor 13. As a result, it is possible to reduce the size and cost of parts in comparison with an air conditioner that performs hot gas defrosting.
  • Air conditioner 11 Indoor heat exchanger (heat source side heat exchanger) 13 Compressor 15 Four-way selector valve 17 Outdoor heat exchanger (use side heat exchanger) 19 Expansion valve (expansion mechanism) 35 Indoor fan 42 Outdoor heat exchanger temperature sensor (heat source side temperature sensor) 46 Outlet pipe temperature sensor 48 Outside air temperature sensor 50 Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 本発明の課題は、短期間だけ暖房を必要とする地域に適した弱めの暖房を行うことができる安価な空調機を提供することにある。空調機(1)では、制御部(50)は、外気温度(To)が所定外気温度(Tos)未満のときは、室外熱交換器(17)が直ぐに着霜するので、暖房運転を開始しない。また、制御部(50)は、外気温度(To)が所定外気温度(Tos)以上のときに暖房運転を開始しても、蒸発温度(Te)が閾値(Ts1)未満になったら圧縮機(13)を垂下制御して、室外熱交換器(17)への着霜を抑制する。さらに、制御部(50)は、上記垂下制御中に蒸発温度(Te)が閾値(Ts2)を下回るか、或いは外気温度(To)が所定外気温度(Tos)を下回ったときは、圧縮機(13)を停止して室外熱交換器(17)への着霜を防止する。

Description

空調機
 本発明は、空調機に関し、特に、暖房能力が冷房能力よりも小さい空調機に関する。
 ASEAN、中南米などで使用されるルームエアコンは、ほとんどが冷房専用である(例えば、特許文献1:特開2008-96088号公報参照)。しかし、そのような地域でも例えば高地においては、短期間ではあるものの気温が5℃程度まで低下し、何らかの暖房を必要とする時期がある。
 ユーザーは、その期間だけヒータなどの機器を用いて室内暖房をしているが、不便さは否めない。その一方、冷房専用地域において本格的なヒートポンプ機はオーバースペックであり、ユーザーの購入価格上昇を伴い市場流通を阻害する結果となっていた。
 本発明の課題は、短期間だけ暖房を必要とする地域に適した弱めの暖房を行うことができる安価な空調機を提供することにある。
 本発明の第1観点に係る空調機は、圧縮機、熱源側熱交換器、膨張機構、及び利用側熱交換器を順に接続して冷媒回路を構成し、利用側熱交換器が凝縮器として機能するときの暖房能力を、利用側熱交換器が蒸発器として機能するときの冷房能力以下にした空調機であって、圧縮機の運転周波数を制御する制御部を備えている。
 制御部は、霜付き抑制制御を行う。霜付き抑制制御とは、熱源側熱交換器が蒸発器として機能しているときの冷媒の蒸発温度が第1閾値を下回ったと判断したとき、又は熱源側熱交換器が蒸発器として機能しているときの冷媒の蒸発器出口温度が第2閾値を下回ったと判断したとき、圧縮機を垂下又は停止させる制御である。
 暖房能力が小さくて済むにもかかわらず除霜運転が必要となると、結果的に通常暖房能力並みの部品と制御が必要となり、コスト増の要因となる。
 しかし、この空調機では、冷媒の蒸発温度又は蒸発器出口温度から霜付きが発生しそうなタイミングを見計らって、圧縮機を垂下又は停止させることによって霜付きを抑制することができる。その結果、低コストの空調機を提供することができる。
 本発明の第2観点に係る空調機は、第1観点に係る空調機であって、熱源側温度センサをさらに備えている。熱源側温度センサは、熱源側熱交換器に取り付けられ、熱源側熱交換器の所定領域の温度を検出する。制御部は、熱源側温度センサの検出値から冷媒の蒸発温度を推定する。
 通常、着霜する要因としては、冷媒の蒸発温度の低下が考えられる。そして、蒸発温度の低下は、圧縮機周波数が高いとき、外気が低いときに発生する。基本的に着霜させないためには、蒸発温度を監視しながら圧縮機の垂下制御を行い、蒸発圧力を調節する必要がある。
 この空調機では、暖房運転時に蒸発器として機能する熱源側熱交換器に取り付けられた熱源側温度センサの検出値から冷媒の蒸発温度を推定することによって、蒸発圧力を適切に調節することができる。
 本発明の第3観点に係る空調機は、第1観点に係る空調機であって、出口管温度センサをさらに備えている。出口管温度センサは、暖房運転時に蒸発器として機能する熱源側熱交換器の冷媒出口配管に取り付けられ、冷媒出口配管の温度を検出する。制御部は、出口管温度センサの検出値から冷媒の蒸発器出口温度を推定する。
 蒸発器に着霜させないためには、蒸発温度を監視しながら圧縮機の垂下制御を行い、蒸発圧力を調節する必要がある。
 この空調機では、出口管温度センサの検出値から冷媒の蒸発器出口温度を推定し、さらにその推定値から冷媒の蒸発温度を推定することによって、蒸発圧力を適切に調節することができる。
 本発明の第4観点に係る空調機は、第1観点から第3観点のいずれか1つに係る空調機であって、利用側熱交換器に送風する室内ファンをさらに備えている。制御部は、霜付き抑制制御において、圧縮機を垂下又は停止させる前に室内ファンの回転数を低下させる。
 この空調機では、室内ファンの回転数変化幅に対する蒸発温度の変化幅は、圧縮機の運転周波数の変化幅に対する場合よりも小さいので、霜付き抑制制御においては、室内ファンの回転数を低下させることによって、暖房能力の低下幅を圧縮機の運転周波数を下げる場合よりも抑えて、室内温度を維持しつつ、暖房運転時間を延ばすことができる。
 本発明の第5観点に係る空調機は、第4観点に係る空調機であって、制御部が、蒸発温度が第3閾値を下回ったと判断するまで、又は蒸発器出口温度が第4閾値を下回ったと判断するまで、室内ファンの回転数を段階的に低下させる。
 この空調機では、室内ファンの回転数変化幅に対する蒸発温度の変化幅は、圧縮機の運転周波数の変化幅に対する場合よりも小さいので、室内ファンの回転数を段階的に低下させることによって蒸発温度の上昇幅を細かく制御することができる。このため、霜付き抑制制御による暖房能力の低下を抑制し、室内温度を維持しつつ、暖房運転時間を延ばすことができる。
 本発明の第6観点に係る空調機は、第4観点又は第5観点に係る空調機であって、風量設定が自動で行われる風量自動モードが選択されているときに、制御部が室内ファンの回転数を低下させる。
 この空調機では、風量自動モードならば、風量を下げる余地、即ち室内ファンの回転数の低下余地があるので、風量自動モードは室内ファンの回転数を低下させる制御を伴う霜付き抑制制御に適している。
 本発明の第7観点に係る空調機は、第1観点から第6観点のいずれか1つに係る空調機であって、制御部が、蒸発温度又は蒸発器出口温度から熱源側熱交換器が着霜しているか否かを判定し、熱源側熱交換器が着霜していると判定したときは、圧縮機の吐出ガス温度を利用せず外気のみで熱源側熱交換器の除霜を行う。
 この空調機では、圧縮機の吐出ガス温度を利用せず外気のみで熱源側熱交換器の除霜を行うことができるので、ホットガスデフロストを行うタイプの空調機との対比において、部品の小型化、低コスト化を図ることができる。
 本発明の第8観点に係る空調機は、第1観点から第6観点のいずれか1つに係る空調機であって、外気温度センサをさらに備えている。外気温度センサは、熱源側熱交換器が据え付けられている場所の雰囲気温度を検出する。制御部は、外気温度センサの検出値が第5閾値を下回ったときは、圧縮機を停止する。
 この空調機では、圧縮機の運転に外気温度による制限を課することによって、蒸発器への着霜を抑制することができる。
 本発明の第1観点に係る空調機では、冷媒の蒸発温度又は蒸発器出口温度から霜付きが発生しそうなタイミングを見計らって、圧縮機を垂下又は停止させることによって霜付きを抑制することができる。その結果、低コストの空調機を提供することができる。
 本発明の第2観点に係る空調機では、暖房運転時に蒸発器として機能する熱源側熱交換器に取り付けられた熱源側温度センサの検出値から冷媒の蒸発温度を推定することによって、蒸発圧力を適切に調節することができる。
 本発明の第3観点に係る空調機では、出口管温度センサの検出値から冷媒の蒸発器出口温度を推定し、さらにその推定値から冷媒の蒸発温度を推定することによって、蒸発圧力を適切に調節することができる。
 本発明の第4観点に係る空調機では、室内ファンの回転数変化幅に対する蒸発温度の変化幅は、圧縮機の運転周波数の変化幅に対する場合よりも小さいので、霜付き抑制制御においては、室内ファンの回転数を低下させることによって、暖房能力の低下幅を圧縮機の運転周波数を下げる場合よりも抑えて、室内温度を維持しつつ、暖房運転時間を延ばすことができる。
 本発明の第5観点に係る空調機では、室内ファンの回転数変化幅に対する蒸発温度の変化幅は、圧縮機の運転周波数の変化幅に対する場合よりも小さいので、室内ファンの回転数を段階的に低下させることによって蒸発温度の上昇幅を細かく制御することができる。このため、霜付き抑制制御による暖房能力の低下を抑制し、室内温度を維持しつつ、暖房運転時間を延ばすことができる。
 本発明の第6観点に係る空調機では、風量自動モードならば、風量を下げる余地、即ち室内ファンの回転数の低下余地があるので、風量自動モードは室内ファンの回転数を低下させる制御を伴う霜付き抑制制御に適している。
 本発明の第7観点に係る空調機では、圧縮機の吐出ガス温度を利用せず外気のみで熱源側熱交換器の除霜を行うことができるので、ホットガスデフロストを行うタイプの空調機との対比において、部品の小型化、低コスト化を図ることができる。
 本発明の第8観点に係る空調機では、圧縮機の運転に外気温度による制限を課することによって、蒸発器への着霜を抑制することができる。
本発明の第1実施形態に係る空調機の構成図。 室内機の斜視図。 空調機の制御ブロック図。 霜付き抑制制御のフローチャート。 本発明の第2実施形態に係る空調機の霜付き抑制制御のフローチャート。
 以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。
 <第1実施形態>
 (1)空調機1の構成
 図1は、本発明の第1実施形態に係る空調機1の構成図である。図1において、空調機1は、冷房運転および暖房運転が可能な冷凍装置であり、室内機2と、室外機3と、室外機3と室内機2とを接続するための液冷媒連絡配管7、及びガス冷媒連絡配管9とを備えている。空調機1の冷凍回路には、単一冷媒であるR32が封入されている。
 (1-1)室内機2
 図2は、室内機2の斜視図である。図1及び図2において、室内機2は、室内熱交換器11と、室内ファン35とを有している。また、室内機2には、リモートコントロールユニット(以下、リモコン52という。)が付帯されている。リモコン52は、ユーザーの操作に応じて、室内機2及び室外機3に内蔵されている制御部と交信して空調機1を制御する。
 (1-1-1)室内熱交換器11
 室内熱交換器11は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器である。室内熱交換器11は、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内空気を加熱する。
 なお、室内熱交換器11は、クロスフィン式のフィン・アンド・チューブ型熱交換器に限定されるものではなく、他の型式の熱交換器であっても良い。
 (1-1-2)室内ファン35
 室内ファン35は、クロスフローファンである。室内ファン35は、ファン35aと、ファン35aを回転させるための室内ファンモータユニット35bとを有している。ファン35aは、AS樹脂などの樹脂材料で、長細い円筒形状に形成されており、長軸が水平になるように配置される。
 室内ファン35の稼動によって、室内機2は前面側から内部に室内空気を吸入し、室内熱交換器11において冷媒と熱交換させた後に、供給空気として室内に供給する。また、室内ファン35は、室内熱交換器11に供給する空気の風量を所定風量範囲において変更することができる。
 (1-2)室外機3
 図1において、室外機3は、主に、圧縮機13、四路切換弁15、室外熱交換器17、膨張弁19、及びアキュムレータ21を有している。さらに、室外機3は室外ファン55も有している。
 (1-2-1)圧縮機13
 圧縮機13は容量可変式圧縮機であり、インバータにより回転数が制御される。本実施形態において、圧縮機13は1台のみであるが、これに限定されず、室内機2の接続台数等に応じて、2台以上の圧縮機が並列に接続されていても良い。
 (1-2-2)四路切換弁15
 四路切換弁15は、冷媒の流れの方向を切り換える弁である。冷房運転時、四路切換弁15は圧縮機13の吐出側と室外熱交換器17のガス側とを接続するとともに圧縮機13の吸入側(具体的には、アキュムレータ21)とガス冷媒連絡配管9側とを接続する(冷房運転状態:図1の四路切換弁15の実線を参照)。その結果、室外熱交換器17は冷媒の凝縮器として、室内熱交換器11は冷媒の蒸発器として機能する。
 暖房運転時、四路切換弁15は、圧縮機13の吐出側とガス冷媒連絡配管9側とを接続するとともに圧縮機13の吸入側と室外熱交換器17のガス側とを接続する(暖房運転状態:図1の四路切換弁15の破線を参照)。その結果、室内熱交換器11は冷媒の凝縮器として、室外熱交換器17は冷媒の蒸発器として機能する。
 (1-2-3)室外熱交換器17
 室外熱交換器17は、クロスフィン式のフィン・アンド・チューブ型熱交換器である。室外熱交換器17は、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する。室外熱交換器17は、そのガス側が四路切換弁15に接続され、その液側が膨張弁19に接続されている。
 (1-2-4)膨張弁19
 膨張弁19は、冷媒回路内を流れる冷媒の圧力や流量等の調節を行う。膨張弁19は、冷房運転時の冷媒回路における冷媒の流れ方向において室外熱交換器17の下流側に配置されている。
 (1-2-5)室外ファン55
 室外ファン55は、吸入した室外空気を室外熱交換器17に送風して冷媒と熱交換させる。室外ファン55は、室外熱交換器17に送風する際の風量を可変することができる。室外ファン55は、プロペラファン等であり、DCファンモータ等からなるモータによって駆動される。
 (1-3)制御部50
 図3は、空調機1の制御ブロック図である。図3において、制御部50はリモコン52からの指令信号に基づいて、圧縮機13の運転周波数、四路切換弁15の切換動作、膨張弁19の開度、室内ファンモータユニット35bの回転、及び風向調整羽根駆動モータ62の回転を制御する。
 図1に示すように、制御部50は、室内機2内に内蔵されている室内制御部50aと室外機3内に内蔵されている室外制御部50bとを有している。室内制御部50aとリモコン52との間では赤外線信号の送受信が行われる。室内制御部50aと室外制御部50bとの間では信号の送受信がワイヤを介して行われる。
 リモコン52には、運転スイッチ22、運転切換スイッチ24、温度設定スイッチ26、及び風向調整スイッチ61が設けられている。
 運転スイッチ22は、操作される毎に空調機1の運転と停止とを交互に切り換える。運転切換スイッチ24は、操作される毎に運転を自動→冷房→除湿→暖房の順に切り換える。温度設定スイッチ26は、上押操作される毎に設定温度が上昇し、下押操作される毎に設定温度が降下する。
 また。風向調整スイッチ61が操作される毎に、制御部50(室内制御部50a)が風向調整羽根駆動モータ62を制御し、風向調整羽根63(図2参照)の上下遥動と任意位置固定とを交互に切り換える。
 (1-4)各種センサ
 空調機1には、サーミスタから成る室外熱交換器温度センサ42、室内温度センサ44、出口管温度センサ46、及び外気温度センサ48が設けられている。室外熱交換器温度センサ42は、室外熱交換器17に取付けられ、室外熱交換器17の所定領域を流れる冷媒の温度を検知する。室内温度センサ44は、室内機2の吸込口に取り付けられ、室内空気温度を検知する。出口管温度センサ46は、暖房運転時に蒸発器として機能する室外熱交換器17の冷媒出口配管に取り付けられ、冷媒出口配管の温度を検出する。外気温度センサ48は、室外機3の周囲温度を検知する。そして、これらの温度センサの測定値に基づき、制御部50が空調機1を運転制御する。
 (2)空調機1の動作
 空調機1では、四路切換弁15によって、冷媒の循環サイクルを冷房運転時の循環サイクルおよび暖房運転時の循環サイクルのいずれか一方に切り換えることが可能である。
 (2-1)冷房運転
 冷房運転では、四路切換弁15が第1状態(図1の実線)に設定される。そして、この状態で制御部50が圧縮機13を稼動させると、室外熱交換器17が凝縮器となり、室内熱交換器11が蒸発器となる蒸気圧縮冷凍サイクルが行われる。
 圧縮機13から吐出された高圧の冷媒は、室外熱交換器17で室外の空気と熱交換して凝縮する。室外熱交換器17を出た冷媒は、膨張弁19を通過する際に減圧され、その後に室内熱交換器11で室内の空気と熱交換して蒸発する。その際、空気は室内熱交換器11によって冷却され、その冷却された空気が室内ファン35を介して吹出口から室内へ吹き出される。室内熱交換器11を出た冷媒は、圧縮機13へ吸入されて圧縮される。
 (2-2)暖房運転
 暖房運転では、四路切換弁15が第2状態(図1の点線)に設定される。そして、この状態で制御部50が圧縮機13を稼動させると、室外熱交換器17が蒸発器となり、室内熱交換器11が凝縮器となる蒸気圧縮冷凍サイクルが行われる。
 圧縮機13から吐出された高圧の冷媒は、室内熱交換器11で室内の空気と熱交換して凝縮する。その際、空気は室内熱交換器11で加温され、その加温された空気は室内ファン35を介して吹出口から室内へ吹き出される。凝縮した冷媒は、膨張弁19を通過する際に減圧された後、室外熱交換器17で室外の空気と熱交換して蒸発する。室外熱交換器17を出た冷媒は、圧縮機13へ吸入されて圧縮される。
 (3)霜付き抑制制御
 通常、暖房運転時には所定運転時間毎に除霜運転が行われるが、本実施形態に係る空調機1では、霜付き抑制制御を実行することによって、除霜運転を回避している。以下、フローチャートを参照しながら、その動作を説明する。
 図4は、霜付き抑制制御のフローチャートである。図4において、ステップS1で制御部50は暖房運転指令が有るか否かを判定する。例えば、ユーザーがリモコン52の運転スイッチ22をオンしたとき、リモコン52から運転開始信号が制御部50に送られ、運転開始信号を受信した制御部50は暖房運転指令が有ったと判定する。制御部50は、暖房運転指令が有ると判定したときステップS2へ進み、暖房運転指令がないと判定したときは引き続き判定を継続する。
 次に制御部50は、ステップS2において外気温度センサ48を介して外気温度Toを検出し、ステップS3へ進む。
 次に制御部50は、ステップS3において外気温度センサ48の検出値である外気温度Toが所定外気温度Tos(例えば、5℃)を下回っているか否かを判定する。To<Tosであると判定したときは、ステップS10へ飛び、圧縮機13を起動せず、霜付き抑制制御を終了する。他方、制御部50がTo<Tosではないと判定したときは、ステップS4へ進む。
 次に制御部50は、ステップS4において圧縮機13を起動して、ステップS5へ進む。ステップS5において、制御部50は室外熱交換器温度センサ42を介して室外熱交換器17の所定領域の温度を検出する。
 次に制御部50は、ステップS6において室外熱交換器温度センサ42の検出値から冷媒の蒸発温度Teを推定し、ステップS7へ進む。
 次に制御部50は、ステップS7において蒸発温度Teが閾値Ts1(例えば、4℃)を下回っているか否かを判定し、Te<Te1であると判定したときはステップS8へ進み、Te<Te1ではないと判定したときはステップS5へ戻る。
 次に制御部50は、ステップS8において圧縮機13の垂下制御を実行する。室外熱交換器17の冷媒の蒸発温度Teが閾値Ts1を下回ったことによって、圧縮機13の運転周波数を現状のまま維持すると室外熱交換器17に着霜するので、それを回避するためには蒸発圧力を高める必要がある。それゆえ、圧縮機13の垂下制御が行われる。
 なお、圧縮機13の垂下制御中も、室外熱交換器温度センサ42の検出値から蒸発温度Teを推定する動作、及び外気温度センサ48を介して外気温度Toを検出する動作は継続している。
 次に制御部50は、ステップS9において蒸発温度Teが閾値Ts2(例えば、2℃)を下回ったか否か、或いは外気温度Toが所定外気温度Tos(例えば、5℃)を下回ったか否かを判定し、Te<Ts2又はTo<Tosのいずれかが成立したと判定したときはステップS10へ進んで圧縮機13を停止する。
 他方、制御部50がTe<Ts2及びTo<Tosのいずれも成立していないと判定したときはステップS5へ戻る。
 以上にように、制御部50は、外気温度Toが所定外気温度Tos(例えば、5℃)未満のときは、室外熱交換器17が直ぐに着霜するので、暖房運転を開始しない。また、制御部50は、外気温度ToがTos以上のときに暖房運転を開始しても、蒸発温度Teが閾値Ts1(例えば、4℃)未満になったら圧縮機13を垂下制御して、室外熱交換器17への着霜を抑制する。さらに、制御部50は、上記垂下制御中に蒸発温度Teが閾値Ts2(例えば2℃)を下回るか、或いは外気温度Toが所定外気温度Tosを下回ったときは、圧縮機13を停止して室外熱交換器17への着霜を防止する。
 (4)特徴
 (4-1)
 空調機1では、冷媒の蒸発温度Te(又は蒸発器出口温度)から霜付きが発生しそうなタイミングを見計らって、圧縮機13を垂下又は停止させることによって霜付きを抑制することができる。
 (4-2)
 空調機1では、暖房運転時に蒸発器として機能する室外熱交換器17に取り付けられた室外熱交換器温度センサ42の検出値から蒸発温度Teを推定することによって、蒸発圧力を適切に調節することができる。
 (4-3)
 空調機1では、圧縮機13の運転に外気温度Toによる制限を課することによって、蒸発器として機能する室外熱交換器17への着霜を抑制することができる。
 <第2実施形態>
 第1実施形態における霜付き抑制制御は、蒸発温度Teに基づいて圧縮機13を垂下制御するので、蒸発温度Teの低下を抑制することはできるが、暖房能力も低下し、室内温度の低下を招く可能性もある。
 そこで、第2実施形態における霜付き抑制制御では、圧縮機13の垂下制御に先立ち、室内ファン35の回転数を低下させることによって、細かく蒸発温度Teを制御し、室内温度を維持しつつ暖房運転時間を延ばすこととした。以下、フローチャートを参照しながら、その動作を説明する。
 (1)霜付き抑制制御
 図5は、霜付き抑制制御のフローチャートである。図5において、ステップS11で制御部50は暖房運転指令が有るか否かを判定する。例えば、ユーザーがリモコン52の運転スイッチ22をオンしたとき、リモコン52から運転開始信号が制御部50に送られ、運転開始信号を受信した制御部50は暖房運転指令が有ったと判定する。制御部50は、暖房運転指令が有ると判定したときステップS12へ進み、暖房運転指令がないと判定したときは引き続き判定を継続する。
 次に制御部50は、ステップS12において外気温度センサ48を介して外気温度Toを検出し、ステップS13へ進む。
 次に制御部50は、ステップS13において外気温度センサ48の検出値である外気温度Toが所定外気温度Tos(例えば、5℃)を下回っているか否かを判定する。To<Tosであると判定したときは、ステップS22へ飛び、圧縮機13を起動せず、霜付き抑制制御を終了する。他方、制御部50がTo<Tosではないと判定したときは、ステップS14へ進む。
 次に制御部50は、ステップS14において圧縮機13を起動して、ステップS15へ進む。ステップS15において、制御部50は室外熱交換器温度センサ42を介して室外熱交換器17の所定領域の温度を検出する。
 次に制御部50は、ステップS16において室外熱交換器温度センサ42の検出値から冷媒の蒸発温度Teを推定し、ステップS17へ進む。
 次に制御部50は、ステップS17において蒸発温度Teが閾値Ts1(請求項1の第1閾値に相当:例えば、4℃)を下回っているか否かを判定し、Te<Te1であると判定したときはステップS18へ進み、Te<Te1ではないと判定したときはステップS15へ戻る。
 次に制御部50は、ステップS18において室内ファン35の回転数を低下させる。制御部50は、先のステップS17でTe<Te1であると判定されたことから、室外熱交換器17に霜が付きやすくなっていると判断し、圧縮機13を垂下させる前に、室内ファン35の回転数を低下させて、蒸発温度Teを上昇させる。
 室内ファン35の回転数変化幅に対する蒸発温度Teの変化幅は、圧縮機13の運転周波数の変化幅に対する場合よりも小さいので、霜付き抑制制御においては、室内ファン35の回転数を低下させることによって、暖房能力の低下幅を圧縮機13の運転周波数を下げる場合よりも抑えて、室内温度を維持しつつ、暖房運転時間を延ばすことができる。それゆえ、圧縮機13を垂下させる前に、室内ファン35の回転数を低下させている。
 また、制御部50は、このステップS19において、蒸発温度Teが閾値TsFDL(請求項5の第3閾値に相当:例えば、3℃)を下回ったと判断するまでは、ステップS18に戻って、室内ファン35の回転数を段階的に、例えば、一段階当たり△Rの回転数を低下させている。なぜなら、段階的に低下させることによって蒸発温度Teの上昇幅を細かく制御することができるからである。
 次に制御部50は、ステップS20において圧縮機13の垂下制御を実行する。室外熱交換器17の冷媒の蒸発温度Teが閾値TsFDLを下回ったことによって、圧縮機13の運転周波数を現状のまま維持すると室外熱交換器17に着霜するので、それを回避するためには蒸発圧力を高める必要がある。それゆえ、圧縮機13の垂下制御が行われる。
 なお、圧縮機13の垂下制御中も、室外熱交換器温度センサ42の検出値から蒸発温度Teを推定する動作、及び外気温度センサ48を介して外気温度Toを検出する動作は継続している。
 次に制御部50は、ステップS21において蒸発温度Teが閾値Ts2(例えば、2℃)を下回ったか否か、或いは外気温度Toが所定外気温度Tos(請求項8の第5閾値に相当:例えば、5℃)を下回ったか否かを判定し、Te<Ts2又はTo<Tosのいずれかが成立したと判定したときはステップS22へ進んで圧縮機13を停止する。
 他方、制御部50がTe<Ts2及びTo<Tosのいずれも成立していないと判定したときはステップS15へ戻る。
 以上にように、制御部50は、外気温度Toが所定外気温度Tos(例えば、5℃)未満のときは、室外熱交換器17が直ぐに着霜するので、暖房運転を開始しない。
 また、制御部50は、外気温度ToがTos以上のときに暖房運転を開始して、蒸発温度Teが閾値Ts1(例えば、4℃)未満になったら室内ファン35の回転数を低下させて蒸発温度Teを上昇させる。
 そして、蒸発温度Teが閾値TsFDL(例えば、3℃)未満になったら圧縮機13を垂下制御して、室外熱交換器17への着霜を抑制する。
 さらに、制御部50は、上記垂下制御中に蒸発温度Teが閾値Ts2(例えば2℃)を下回るか、或いは外気温度Toが所定外気温度Tosを下回ったときは、圧縮機13を停止して室外熱交換器17への着霜を防止する。
 (2)第2実施形態の特徴
 (2-1)
 空調機1では、室内ファン35の回転数変化幅に対する蒸発温度Teの変化幅は、圧縮機13の運転周波数の変化幅に対する場合よりも小さいので、霜付き抑制制御においては、室内ファン35の回転数を低下させることによって、暖房能力の低下幅を圧縮機13の運転周波数を下げる場合よりも抑えて、室内温度を維持しつつ、暖房運転時間を延ばすことができる。
 (2-2)
 その際、室内ファン35の回転数を段階的に低下させることによって蒸発温度Teの上昇幅を細かく制御することができる。
 (2-3)
 特に、風量自動モードでは、風量を下げる余地、即ち室内ファン35の回転数の低下余地があるので、風量自動モードは室内ファン35の回転数を低下させる制御を伴う霜付き抑制制御に適している。
 (2-4)
 空調機1では、圧縮機13の運転に外気温度Toによる制限を課することによって、蒸発器として機能する室外熱交換器17への着霜を抑制することができる。
 <第1実施形態及び第2実施形態に共通の変形例>
 (1)
 第1実施形態及び第2実施形態では、室外熱交換器温度センサ42の検出値に基づいて冷媒の蒸発温度Teを推定しているが、それに限定されるものではない。
 例えば、出口管温度センサ46は、暖房運転時に蒸発器として機能する室外熱交換器17の冷媒出口配管に取り付けられて冷媒出口配管の温度を検出するので、制御部50は出口管温度センサ46の検出値から冷媒の蒸発器出口温度を推定することができ、さらにその推定値から冷媒の蒸発温度Teを推定することもできる。
 例えば、制御部50は出口管温度センサ46の検出値から推定した冷媒の蒸発器出口温度が所定値(請求項1の第2閾値に相当)を下回ったと判断したとき、第1実施形態では圧縮機13を垂下させ、第2実施形態では室内ファン35の回転数を低下させることとなる。
 また、制御部50は出口管温度センサ46の検出値から推定した冷媒の蒸発器出口温度が上記所定値よりも低い値(請求項5の第4閾値に相当)を下回ったと判断したとき、第2実施形態では圧縮機13を垂下させることとなる。
 (2)
 制御部50は、上記霜付き抑制制御の実行にもかかわらず室外熱交換器17に着霜したと判断した場合、除霜運転を行ってもよい。
 この変形例に係る空調機1では、圧縮機13の吐出ガス温度を利用せず外気のみで室外熱交換器17の除霜を行う。その結果、ホットガスデフロストを行うタイプの空調機との対比において、部品の小型化、低コスト化を図ることができる。
1 空調機
11 室内熱交換器(熱源側熱交換器)
13 圧縮機
15 四路切換弁
17 室外熱交換器(利用側熱交換器)
19 膨張弁(膨張機構)
35 室内ファン
42 室外熱交換器温度センサ(熱源側温度センサ)
46 出口管温度センサ
48 外気温度センサ
50 制御部
特開2008-96088号公報

Claims (8)

  1.  圧縮機(13)、熱源側熱交換器(17)、膨張機構(19)、及び利用側熱交換器(11)を順に接続して冷媒回路を構成し、前記利用側熱交換器(11)が凝縮器として機能するときの暖房能力を、前記利用側熱交換器(11)が蒸発器として機能するときの冷房能力以下にした空調機であって、
     前記圧縮機(13)の運転周波数を制御する制御部(50)を備え、
     前記制御部(50)は、前記熱源側熱交換器(17)が蒸発器として機能しているときの冷媒の蒸発温度が第1閾値を下回ったと判断したとき、又は前記熱源側熱交換器(17)が蒸発器として機能しているときの冷媒の蒸発器出口温度が第2閾値を下回ったと判断したとき、前記圧縮機(13)を垂下又は停止させる霜付き抑制制御を行う、
    空調機(1)。
  2.  前記熱源側熱交換器(17)に取り付けられ、前記熱源側熱交換器(17)の所定領域の温度を検出する熱源側温度センサ(42)をさらに備え、
     前記制御部(50)は、前記熱源側温度センサ(42)の検出値から前記蒸発温度を推定する、
    請求項1に記載の空調機(1)。
  3.  暖房運転時に蒸発器として機能する前記熱源側熱交換器(17)の冷媒出口配管に取り付けられ、前記冷媒出口配管の温度を検出する出口管温度センサ(46)をさらに備え、
     前記制御部(50)は、前記出口管温度センサ(46)の検出値から前記蒸発器出口温度を推定する、
    請求項1に記載の空調機(1)。
  4.  前記利用側熱交換器(11)に送風する室内ファン(35)をさらに備え、
     前記制御部(50)は、前記霜付き抑制制御において、前記圧縮機(13)を垂下又は停止させる前に前記室内ファン(35)の回転数を低下させる、
    請求項1から請求項3のいずれか1項に記載の空調機(1)。
  5.  前記制御部(50)は、前記蒸発温度が第3閾値を下回ったと判断するまで、又は前記蒸発器出口温度が第4閾値を下回ったと判断するまで、前記前記室内ファン(35)の回転数を段階的に低下させる、
    請求項4に記載の空調機(1)。
  6.  前記制御部(50)は、風量設定が自動で行われる風量自動モードが選択されているときに、前記室内ファン(35)の回転数を低下させる、
    請求項4又は請求項5に記載の空調機(1)。
  7.  前記制御部(50)は、前記蒸発温度又は前記蒸発器出口温度から前記熱源側熱交換器(17)が着霜しているか否かを判定し、前記熱源側熱交換器(17)が着霜していると判定したときは、前記圧縮機(13)の吐出ガス温度を利用せず外気のみで前記熱源側熱交換器(17)の除霜を行う、
    請求項1から請求項6のいずれか1項に記載の空調機(1)。
  8.  前記熱源側熱交換器(17)が据え付けられている場所の雰囲気温度を検出する外気温度センサ(48)をさらに備え、
     前記制御部(50)は、前記外気温度センサ(48)の検出値が第5閾値を下回ったときは、前記圧縮機(13)を停止する、
    請求項1から請求項6のいずれか1項に記載の空調機(1)。
PCT/JP2015/082925 2014-11-28 2015-11-24 空調機 WO2016084796A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112017009983-7A BR112017009983B1 (pt) 2014-11-28 2015-11-24 Condicionador de ar

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014242564 2014-11-28
JP2014-242564 2014-11-28
JP2015143845A JP6032330B2 (ja) 2014-11-28 2015-07-21 空調機
JP2015-143845 2015-07-21

Publications (1)

Publication Number Publication Date
WO2016084796A1 true WO2016084796A1 (ja) 2016-06-02

Family

ID=56074356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082925 WO2016084796A1 (ja) 2014-11-28 2015-11-24 空調機

Country Status (2)

Country Link
MY (1) MY164335A (ja)
WO (1) WO2016084796A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855236A (zh) * 2019-02-01 2019-06-07 青岛海尔空调器有限总公司 定频空调器的除霜控制方法与计算机存储介质
JP7547926B2 (ja) 2020-10-26 2024-09-10 株式会社富士通ゼネラル 空気調和機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154851A (en) * 1978-05-26 1979-12-06 Saginomiya Seisakusho Inc Defrost control method of heating or freezing and cooling apparatus and defrost controller
JPS61250453A (ja) * 1985-04-26 1986-11-07 松下電器産業株式会社 ヒ−トポンプ装置
JPH03262771A (ja) * 1990-03-12 1991-11-22 Hitachi Ltd 車両用ヒートポンプ式空気調和装置
JPH0498059A (ja) * 1990-08-10 1992-03-30 Daikin Ind Ltd 冷凍装置の蒸発器の凍結検知装置
JP2012237482A (ja) * 2011-05-11 2012-12-06 Panasonic Corp 空気調和機
JP2013234825A (ja) * 2012-05-11 2013-11-21 Mitsubishi Electric Corp 空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154851A (en) * 1978-05-26 1979-12-06 Saginomiya Seisakusho Inc Defrost control method of heating or freezing and cooling apparatus and defrost controller
JPS61250453A (ja) * 1985-04-26 1986-11-07 松下電器産業株式会社 ヒ−トポンプ装置
JPH03262771A (ja) * 1990-03-12 1991-11-22 Hitachi Ltd 車両用ヒートポンプ式空気調和装置
JPH0498059A (ja) * 1990-08-10 1992-03-30 Daikin Ind Ltd 冷凍装置の蒸発器の凍結検知装置
JP2012237482A (ja) * 2011-05-11 2012-12-06 Panasonic Corp 空気調和機
JP2013234825A (ja) * 2012-05-11 2013-11-21 Mitsubishi Electric Corp 空気調和機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855236A (zh) * 2019-02-01 2019-06-07 青岛海尔空调器有限总公司 定频空调器的除霜控制方法与计算机存储介质
JP7547926B2 (ja) 2020-10-26 2024-09-10 株式会社富士通ゼネラル 空気調和機

Also Published As

Publication number Publication date
MY164335A (en) 2017-12-15

Similar Documents

Publication Publication Date Title
JP6032330B2 (ja) 空調機
JP6642379B2 (ja) 空調機
JP5709993B2 (ja) 冷凍空気調和装置
JP5549773B1 (ja) 空気調和装置
EP3086048B1 (en) Air-conditioning device
WO2010137344A1 (ja) 空気調和装置
JP6071648B2 (ja) 空気調和装置
US10371407B2 (en) Air conditioning apparatus
WO2018173120A1 (ja) 除湿機
JP2017044447A (ja) 空調機
WO2017179192A1 (ja) 空気調和機
EP3475576B1 (en) Capacity control for chillers having screw compressors
JP6135638B2 (ja) 空気調和機
JP5999171B2 (ja) 空気調和装置
WO2016084796A1 (ja) 空調機
JP6297176B2 (ja) 室内機及びこれを用いた空気調和装置
KR20120050325A (ko) 에어컨 이슬 생성 방지 방법
US10443901B2 (en) Indoor unit of air conditioner
JP6551437B2 (ja) 空調機
JP2016102637A (ja) 空調機
JP2011052848A (ja) 天井埋込形空気調和機
TWM529821U (zh) 空調機
CN112443946A (zh) 空调器及其除湿控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017009983

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 15862734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017009983

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170512