[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016079971A1 - 磁気記録媒体 - Google Patents

磁気記録媒体 Download PDF

Info

Publication number
WO2016079971A1
WO2016079971A1 PCT/JP2015/005688 JP2015005688W WO2016079971A1 WO 2016079971 A1 WO2016079971 A1 WO 2016079971A1 JP 2015005688 W JP2015005688 W JP 2015005688W WO 2016079971 A1 WO2016079971 A1 WO 2016079971A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic recording
layer
recording medium
magnetic
medium according
Prior art date
Application number
PCT/JP2015/005688
Other languages
English (en)
French (fr)
Inventor
淳一 立花
遠藤 哲雄
尾崎 知恵
輝 照井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/521,775 priority Critical patent/US10529367B2/en
Priority to JP2016559813A priority patent/JP6531764B2/ja
Priority to CN201580061456.1A priority patent/CN107004429B/zh
Publication of WO2016079971A1 publication Critical patent/WO2016079971A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7369Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/667Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers including a soft magnetic layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/72Protective coatings, e.g. anti-static or antifriction
    • G11B5/725Protective coatings, e.g. anti-static or antifriction containing a lubricant, e.g. organic compounds
    • G11B5/7253Fluorocarbon lubricant
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers

Definitions

  • This technology relates to a magnetic recording medium.
  • the present invention relates to a magnetic recording medium having a soft magnetic backing layer.
  • Patent Document 1 discloses a magnetic recording medium in which at least an amorphous layer, a seed layer, an underlayer, a magnetic layer, and a protective layer are sequentially formed on a nonmagnetic support as a perpendicular magnetic recording medium.
  • Patent Document 2 discloses a perpendicular magnetic recording medium having a soft magnetic underlayer.
  • An object of the present technology is to provide a magnetic recording medium having excellent recording / reproducing characteristics.
  • the present technology Comprising a flexible long substrate, a soft magnetic layer, and a magnetic recording layer;
  • the magnetic recording medium has a squareness ratio of 30% or less in the longitudinal direction of the substrate.
  • a magnetic recording medium having excellent recording / reproducing characteristics can be provided.
  • FIG. 1A is a plan view showing an example of the shape of the magnetic recording medium according to the first embodiment of the present technology.
  • FIG. 1B is a cross-sectional view showing an example of the configuration of the magnetic recording medium according to the first embodiment of the present technology.
  • FIG. 2 is a schematic view showing an example of the configuration of the sputtering apparatus.
  • 3A is an enlarged plan view of a part of the sputtering apparatus shown in FIG. 2 as viewed from the direction of arrow C1.
  • 3B is an enlarged side view of a part of the sputtering apparatus shown in FIG. 2 as viewed from the direction of arrow C2.
  • FIG. 4 is a perspective view showing an example of the configuration of the magnetic field orientation device.
  • FIG. 4 is a perspective view showing an example of the configuration of the magnetic field orientation device.
  • FIG. 5 is a cross-sectional view showing an example of the configuration of a magnetic recording medium according to the second embodiment of the present technology.
  • FIG. 6 is a cross-sectional view showing an example of the configuration of a magnetic recording medium according to the third embodiment of the present technology.
  • FIG. 7A is a diagram showing a hysteresis loop of the magnetic tapes of Examples 3 to 6.
  • FIG. 7B is a diagram showing a hysteresis loop of the magnetic tapes of Comparative Examples 1 to 3.
  • FIG. 7C is a diagram showing a hysteresis loop of the magnetic tapes of Examples 1, 2, 7, and 8 and Comparative Example 4.
  • the squareness ratio in the longitudinal direction of the substrate is less than or less than the squareness ratio in the short direction of the substrate.
  • the squareness ratio is a squareness ratio measured in the state of the magnetic recording medium.
  • the squareness ratio in the longitudinal direction of the substrate is preferably less than the squareness ratio in the short direction of the substrate.
  • the squareness ratio in the longitudinal direction of the substrate is 30% or less, preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less.
  • the squareness ratio in the longitudinal direction of the substrate is equal to or less than the squareness ratio in the short direction of the substrate.
  • the squareness ratio in the longitudinal direction of the substrate is 30% or less, preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less.
  • the squareness ratio in the longitudinal direction of the substrate tends to be equal to or substantially equal to the squareness ratio in the short direction of the substrate.
  • Embodiments of the present technology will be described in the following order.
  • the first reason is the improvement of playback output.
  • the higher the initial magnetic permeability the higher the reproduction output.
  • the initial magnetization permeability is higher in the hard magnetization axis direction than in the easy magnetization axis direction. Therefore, from the viewpoint of improving the reproduction output, it is advantageous that the hard magnetic axis direction is the machine direction (MD).
  • the second reason is the suppression of noise caused by domain wall motion.
  • a domain wall is formed, and if the domain wall moves in the recording / reproducing process, it becomes a noise source. Therefore, suppressing the domain wall movement is one of the important elements of the medium design. Since the domain wall is easy to move in the easy magnetization axis direction and difficult to move in the hard magnetization axis direction, it is advantageous to make the hard magnetization axis direction of the SUL the machine direction (MD).
  • the MH loop of the soft magnetic film is greatly different in the direction of the easy axis of magnetization and the hard axis of magnetization.
  • a clear hysteresis characteristic is exhibited, and the coercive force Hc is large and the squareness ratio is large as compared with the hard magnetization axis direction.
  • the coercive force Hc is small and the squareness ratio is extremely small. From such characteristics, the direction of magnetic anisotropy can be easily determined from the magnetic characteristics in the in-plane direction.
  • the perpendicular magnetic recording medium having SUL there is a recording layer in addition to SUL.
  • VSM vibrating sample magnetometer
  • the magnetic properties of the SUL and the recording layer The sum is measured.
  • the magnetic properties of the recording layer are compared with the values of the magnetic properties of the backing layer of the soft magnetic layer, considering the material, film thickness, and measurement direction used for each. The value of is small, and almost all SUL magnetic properties are reflected in the measured values by VSM.
  • HDD Hard Disk Disk Drive
  • SUL Perpendicular magnetic recording media having SUL
  • the evaluation of the magnetic characteristics is centered on the evaluation of the magnetic characteristics of the recording layer using the polar Kerr effect. Evaluation of the magnetic properties of the total film included is not performed.
  • the hard magnetization axis of the SUL is used in order to improve the reproduction output and suppress the noise caused by the domain wall movement of the SUL.
  • the direction is aligned with the machine direction (MD), and the squareness ratio of the machine direction (MD) is set to a predetermined value or less. That is, the squareness ratio Sq1 in the machine direction (MD) of the perpendicular magnetic recording medium is set to be less than the squareness ratio Sq2 (Sq1 ⁇ Sq2) in the width direction (Transverse : Direction: TD) orthogonal to the perpendicular direction, and the machine direction (MD).
  • the squareness ratio is set to a predetermined value or less.
  • the magnetic recording medium 10 has a long shape.
  • the longitudinal direction of the magnetic recording medium 10 is referred to as a machine direction (MD) D1
  • the short direction is referred to as a width direction (TD) D2.
  • the machine direction D1 means a method of moving the recording / reproducing head relative to the magnetic recording medium 10, that is, a direction in which the magnetic recording medium 10 travels during recording / reproduction.
  • the magnetic recording medium 10 has a hard axis A1 parallel to the machine direction D1 and an easy axis A2 parallel to the width direction D2.
  • the magnetic recording medium 10 is a so-called two-layer perpendicular magnetic recording medium, and as shown in FIG. 1B, a base 11, a base layer 12 provided on the surface of the base 11, and a single layer provided on the surface of the base layer 12. SUL 13 of the layer, the underlayer 14 provided on the surface of the SUL 13, the intermediate layer 15 provided on the surface of the underlayer 14, the magnetic recording layer 16 provided on the surface of the intermediate layer 15, and the magnetic recording layer 16 And a protective layer 17 provided on the surface.
  • the magnetic recording medium 10 may further include a lubricating layer 18 provided on the surface of the protective layer 17.
  • the magnetic recording medium 10 is suitable for use as a data archive storage medium that is expected to be increasingly demanded in the future.
  • This magnetic recording medium 10 can realize, for example, a surface recording density that is 10 times or more that of a current storage-use magnetic tape, that is, a surface recording density of 50 Gb / in 2 .
  • a general linear recording type data cartridge is configured using the magnetic recording medium 10 having such a surface recording density, large capacity recording of 50 TB or more per one data cartridge can be performed.
  • This magnetic recording medium 10 is suitable for use in a recording / reproducing apparatus using a single pole type (SPT) type recording head and a tunnel magnetoresistive (TMR) type reproducing head.
  • SPT single pole type
  • TMR tunnel magnetoresistive
  • the squareness ratio Sq1 in the machine direction (MD) D1 of the magnetic recording medium 10 is less than the squareness ratio Sq2 in the width direction (TD) of the magnetic recording medium 10 (Sq1 ⁇ Sq2). Further, the squareness ratio in the machine direction (MD) D1 of the magnetic recording medium 10 is 30% or less, preferably 20% or less, more preferably 10% or less, and still more preferably 5% or less. Thereby, excellent recording / reproducing characteristics can be obtained.
  • the squareness ratio is a squareness ratio measured in the state of the magnetic recording medium 10, and is specifically measured by applying a magnetic field of 10 kOe or more using VSM.
  • the base 11 serving as a support is, for example, a long film.
  • the thickness of the film is, for example, 3 ⁇ m or more and 8 ⁇ m or less.
  • a flexible polymer resin material used for a general magnetic recording medium can be used. Specific examples of such a polymer material include polyesters, polyolefins, cellulose derivatives, vinyl resins, polyimides, polyamides, and polycarbonates.
  • the underlayer 12 is provided between the base body 11 and the SUL 13.
  • the underlayer 14 is provided between the SUL 13 and the intermediate layer 15.
  • the underlayers 12 and 14 include an alloy containing Ti and Cr, and have an amorphous state.
  • the alloy may further contain O (oxygen). This oxygen is, for example, impurity oxygen contained in a trace amount in the underlayers 12 and 14 when the underlayers 12 and 14 are formed by a film formation method such as a sputtering method.
  • the underlayer 14 has a crystal structure similar to that of the intermediate layer 15 and is not intended for crystal growth.
  • the underlayer 14 is intended to improve the vertical orientation of the intermediate layer 15 by the flatness and the amorphous state of the underlayer 14. It is the purpose.
  • the “alloy” means at least one of a solid solution containing Ti and Cr, a eutectic, and an intermetallic compound. Further, the “amorphous state” means that halo is observed by an electron diffraction method and the crystal structure cannot be specified.
  • the underlayer 12 containing an alloy containing Ti and Cr and having an amorphous state suppresses the influence of O 2 gas and H 2 O adsorbed on the base 11 and relaxes the irregularities on the surface of the base 11 to thereby reduce the base 11. It has the effect
  • the alloy contained in the foundation layers 12 and 14 may further contain an element other than Ti and Cr as an additive element.
  • the additive element include one or more elements selected from the group consisting of Nb, Ni, Mo, Al, W, and the like.
  • the SUL 13 is a single layer SUL, and is provided between the base layer 12 and the base layer 14.
  • the film thickness of SUL13 is preferably 40 nm or more, more preferably 40 nm or more and 140 nm or less.
  • the SUL 13 includes a soft magnetic material in an amorphous state.
  • a Co-based material or an Fe-based material can be used as the soft magnetic material.
  • the Co-based material include CoZrNb, CoZrTa, and CoZrTaNb.
  • the Fe-based material include FeCoB, FeCoZr, and FeCoTa.
  • SUL13 Since SUL13 has an amorphous state, it does not play a role of promoting epitaxial growth of a layer formed on SUL13, but it is required not to disturb the crystal orientation of intermediate layer 15 formed on SUL13. For this purpose, it is necessary that the soft magnetic material has a fine structure that does not form a column. However, when the influence of degas such as moisture from the base 11 is large, the soft magnetic material becomes coarse and the SUL 13 There is a risk of disturbing the crystal orientation of the intermediate layer 15 formed. In order to suppress the influence, it is preferable to provide the base layer 12 on the surface of the substrate 11. In the case where a film made of a polymer material having a large amount of adsorption of gas such as moisture or oxygen is used as the substrate 11, it is particularly preferable to provide the base layer 12 in order to suppress the influence.
  • the SUL 13 has a hard axis A1 in the machine direction (MD) D1 and an easy axis A2 in the width direction (TD) D2. Thereby, excellent recording / reproducing characteristics can be obtained. Having the hard axis A1 and the easy axis A2 in such directions determines the squareness ratio of the magnetic direction (MD) D1 and the width direction (TD) D2 of the magnetic recording medium 10 as described above. This can be confirmed.
  • the intermediate layer 15 is provided between the underlayer 14 and the magnetic recording layer 16.
  • the intermediate layer 15 preferably has the same crystal structure as the magnetic recording layer 16.
  • the intermediate layer 15 includes a material having a hexagonal close packed (hcp) structure similar to the Co-based alloy, and the c-axis of the structure is relative to the film surface. It is preferable that the film is oriented in the vertical direction (that is, the film thickness direction). This is because the orientation of the magnetic recording layer 16 can be improved and the lattice constant matching between the intermediate layer 15 and the magnetic recording layer 16 can be made relatively good.
  • a material containing Ru is preferably used, and specifically, Ru alone or a Ru alloy is preferable.
  • the Ru alloy include Ru alloy oxides such as Ru—SiO 2 , Ru—TiO 2, and Ru—ZrO 2 .
  • the magnetic recording layer 16 is provided between the intermediate layer 15 and the protective layer 17.
  • the magnetic recording layer 16 is a so-called perpendicular magnetic recording layer, and is preferably a granular magnetic layer containing a Co-based alloy from the viewpoint of improving the recording density.
  • the granular magnetic layer is composed of ferromagnetic crystal particles containing a Co-based alloy and nonmagnetic grain boundaries (nonmagnetic material) surrounding the ferromagnetic crystal particles. More specifically, the granular magnetic layer includes a column (columnar crystal) containing a Co-based alloy, and a nonmagnetic grain boundary (for example, an oxide such as SiO 2 ) surrounding the column and magnetically separating each column. ).
  • the magnetic recording layer 16 having a structure in which each column is magnetically separated can be formed.
  • the Co-based alloy has a hexagonal close-packed (hcp) structure, and its c-axis is oriented in a direction perpendicular to the film surface (film thickness direction).
  • hcp hexagonal close-packed
  • the CoCrPt-based alloy is not particularly limited, and the CoCrPt alloy may further contain an additive element.
  • the additive element include one or more elements selected from the group consisting of Ni and Ta.
  • the nonmagnetic grain boundary surrounding the ferromagnetic crystal grain contains a nonmagnetic metal material.
  • the metal includes a semi-metal.
  • the nonmagnetic metal material for example, at least one of a metal oxide and a metal nitride can be used. From the viewpoint of maintaining a more stable granular structure, it is preferable to use a metal oxide.
  • the metal oxide include a metal oxide containing at least one element selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, and Hf.
  • Metal oxides containing the product ie SiO 2
  • the metal nitride examples include metal nitrides containing at least one element selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, Hf, and the like. Specific examples thereof include SiN, TiN, and AlN.
  • the nonmagnetic grain boundary contains a metal oxide among the metal nitride and the metal oxide.
  • the CoCrPt-based alloy contained in the ferromagnetic crystal grains and the Si oxide contained in the nonmagnetic grain boundaries have an average composition represented by the following formula (1). This is because the saturation magnetization amount Ms that suppresses the influence of the demagnetizing field and can secure a sufficient reproduction output can be realized, thereby further improving the recording and reproduction characteristics.
  • (Co x Pt y Cr 100- xy) 100-z - (SiO 2) z ⁇ (1) (However, in the formula (1), x, y, and z are values within the ranges of 69 ⁇ X ⁇ 72, 12 ⁇ y ⁇ 16, and 9 ⁇ Z ⁇ 12, respectively.)
  • the above composition can be obtained as follows. Etching with an ion beam is performed from the protective layer 17 side of the magnetic recording medium 10, and the outermost surface of the etched magnetic recording layer 16 is analyzed by Auger electron spectroscopy. It is a ratio. Specifically, five elements of Co, Pt, Cr, Si, and O are analyzed, and the element amount based on the percentage ratio is identified.
  • the protective layer 17 includes, for example, a carbon material or silicon dioxide (SiO 2 ). From the viewpoint of the film strength of the protective layer 17, the protective layer 17 preferably includes a carbon material. Examples of the carbon material include graphite, diamond-like carbon (DLC), diamond, and the like.
  • the lubricant layer 18 contains at least one lubricant.
  • the lubricating layer 18 may further contain various additives such as a rust preventive as required.
  • the lubricant has at least two carboxyl groups and one ester bond, and contains at least one carboxylic acid compound represented by the following general formula (1).
  • the lubricant may further contain a type of lubricant other than the carboxylic acid compound represented by the following general formula (1).
  • the carboxylic acid compound is preferably represented by the following general formula (2) or (3).
  • General formula (2) (In the formula, Rf is an unsubstituted or substituted, saturated or unsaturated, fluorine-containing hydrocarbon group or hydrocarbon group.)
  • General formula (3) (In the formula, Rf is an unsubstituted or substituted, saturated or unsaturated, fluorine-containing hydrocarbon group or hydrocarbon group.)
  • the lubricant preferably contains one or both of the carboxylic acid compounds represented by the general formulas (2) and (3).
  • the lubricant containing the carboxylic acid compound represented by the general formula (1) When the lubricant containing the carboxylic acid compound represented by the general formula (1) is applied to the magnetic recording layer 16 or the protective layer 17, the cohesive force between the fluorine-containing hydrocarbon group or hydrocarbon group Rf, which is a hydrophobic group, is applied. Lubricating action appears.
  • the Rf group is a fluorinated hydrocarbon group
  • the total carbon number is preferably 6 to 50
  • the total carbon number of the fluorinated hydrocarbon group is preferably 4 to 20.
  • the Rf group may be saturated or unsaturated, linear or branched or cyclic, but is preferably saturated and linear.
  • Rf group is a hydrocarbon group
  • Rf group is preferably a group represented by the following general formula (4).
  • General formula (4) (In the general formula (4), l is an integer selected from the range of 8 to 30, more preferably 12 to 20.)
  • Rf group is a fluorine-containing hydrocarbon group
  • Rf group is a fluorine-containing hydrocarbon group
  • the fluorinated hydrocarbon group may be concentrated at one place as described above, or may be dispersed as in the following general formula (6), and not only —CF 3 and —CF 2 — but also —CHF 2 or -CHF- may be used.
  • the carbon number is limited as described above because the number of carbon atoms constituting the alkyl group or the fluorine-containing alkyl group (l or the sum of m and n) is This is because when the amount is not less than the above lower limit, the length becomes an appropriate length, the cohesive force between the hydrophobic groups is effectively exhibited, a good lubricating action is exhibited, and the friction / wear durability is improved. Moreover, it is because the solubility with respect to the solvent of the lubricant which consists of the said carboxylic acid type compound is kept favorable that the carbon number is below the said upper limit.
  • the Rf group contains a fluorine atom
  • it is effective in reducing the friction coefficient and improving the running performance.
  • a hydrocarbon group is provided between the fluorine-containing hydrocarbon group and the ester bond, and the fluorine-containing hydrocarbon group and the ester bond are separated to ensure the stability of the ester bond and prevent hydrolysis. Good.
  • the Rf group may have a fluoroalkyl ether group or a perfluoropolyether group.
  • the R group may not be present, but in some cases, it may be a hydrocarbon chain having a relatively small number of carbon atoms.
  • the Rf group or R group contains elements such as nitrogen, oxygen, sulfur, phosphorus, and halogen as constituent elements, and in addition to the functional groups described above, a hydroxyl group, a carboxyl group, a carbonyl group, an amino group, and an ester It may further have a bond or the like.
  • the carboxylic acid compound represented by the general formula (1) is preferably at least one of the following compounds. That is, the lubricant preferably contains at least one compound shown below. CF 3 (CF 2 ) 7 (CH 2 ) 10 COOCH (COOH) CH 2 COOH CF 3 (CF 2 ) 3 (CH 2 ) 10 COOCH (COOH) CH 2 COOH C 17 H 35 COOCH (COOH) CH 2 COOH CF 3 (CF 2 ) 7 (CH 2 ) 2 OCOCH 2 CH (C 18 H 37 ) COOCH (COOH) CH 2 COOH CF 3 (CF 2 ) 7 COOCH (COOH) CH 2 COOH CHF 2 (CF 2 ) 7 COOCH (COOH) CH 2 COOH CF 3 (CF 2 ) 7 (CH 2 ) 2 OCOCH 2 CH (COOH) CH 2 COOH CF 3 (CF 2 ) 7 (CH 2 ) 6 OCOCH 2 CH (COOH) CH 2 COOH CF 3 (CF 2 ) 7 (CH 2
  • the carboxylic acid compound represented by the general formula (1) is soluble in a non-fluorinated solvent with a small environmental load, and is a general-purpose solvent such as a hydrocarbon solvent, a ketone solvent, an alcohol solvent, an ester solvent, etc. It has the advantage that operations such as coating, dipping, and spraying can be performed.
  • solvents such as hexane, heptane, octane, decane, dodecane, benzene, toluene, xylene, cyclohexane, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, isopropanol, diethyl ether, tetrahydrofuran, dioxane, and cyclohexanone. it can.
  • the protective layer 17 includes a carbon material
  • the carboxylic acid compound when applied as a lubricant on the protective layer 17, two carboxyl groups that are polar base parts of the lubricant molecules and at least one of the carboxyl groups are applied on the protective layer 17.
  • the ester bond group is adsorbed, and the lubricating layer 18 having particularly good durability can be formed by the cohesive force between the hydrophobic groups.
  • the lubricant is not only held as the lubricating layer 18 on the surface of the magnetic recording medium 10 as described above, but is also included in layers such as the magnetic recording layer 16 and the protective layer 17 constituting the magnetic recording medium 10, It may be held.
  • the sputtering apparatus 20 is a continuous winding type sputtering apparatus used for forming the underlayer 12, SUL 13, underlayer 14, intermediate layer 15, and magnetic recording layer 16.
  • the sputtering apparatus 20 includes a film forming chamber 21, a drum 22 that is a metal can (rotating body), cathodes 23a to 23e, a supply reel 24, a take-up reel 25, and a plurality of guides.
  • the sputtering apparatus 20 is, for example, a DC (direct current) magnetron sputtering system, but the sputtering system is not limited to this system.
  • the film forming chamber 21 is connected to a vacuum pump (not shown) through the exhaust port 26, and the atmosphere in the film forming chamber 21 is set to a predetermined degree of vacuum by the vacuum pump.
  • a drum 22, a supply reel 24 and a take-up reel 25 having a rotatable configuration are arranged inside the film forming chamber 21, a plurality of guide rolls 27 a to 27 c for guiding the conveyance of the substrate 11 between the supply reel 24 and the drum 22 are provided, and the drum 22, the take-up reel 25, A plurality of guide rolls 28a to 28c are provided for guiding the conveyance of the substrate 11 between them.
  • the substrate 11 unwound from the supply reel 24 is wound around the take-up reel 25 via the guide rolls 27a to 27c, the drum 22 and the guide rolls 28a to 28c.
  • the drum 22 has a cylindrical shape, and the elongated rectangular base 11 is transported along the cylindrical surface of the drum 22.
  • the drum 22 is provided with a cooling mechanism (not shown), and is cooled to, for example, about ⁇ 20 ° C. during sputtering.
  • a plurality of cathodes 23 a to 23 e are disposed inside the film forming chamber 21 so as to face the peripheral surface of the drum 22.
  • a target is set on each of the cathodes 23a to 23e.
  • targets for forming the underlayer 12, the SUL13, the underlayer 14, the intermediate layer 15, and the magnetic recording layer 16 are set on the cathodes 23a, 23b, 23c, 23d, and 23e, respectively.
  • a plurality of types of films, that is, the underlayer 12, the SUL 13, the underlayer 14, the intermediate layer 15, and the magnetic recording layer 16 are simultaneously formed by the cathodes 23a to 23e.
  • a magnetic field orientation device 30 is provided in the vicinity of the cathode 23b. 3A and 3B, the magnetic field orientation device 30 is conveyed along the width direction of the drum 22, that is, along the circumferential surface of the drum 22, in a space between the cylindrical surface of the drum 22 and the cathode 23b.
  • the magnetic field lines 30 ⁇ / b> M can be generated in the width direction of the base 11.
  • the cathode 23 b has a target 40 for depositing the SUL 13 on the side facing the cylindrical surface of the drum 22.
  • the magnetic field orientation device 30 is a so-called electromagnet, and includes a yoke core 31 and a coil 32 wound around the yoke core 31, as shown in FIG.
  • the yoke core 31 has a substantially C-shape bent so that both ends thereof are opposed to each other.
  • a magnetic force line 30M is generated between the tip portions of the yoke core 31 facing each other.
  • the underlayer 12, the SUL 13, the underlayer 14, the intermediate layer 15, and the magnetic recording layer 16 are sequentially stacked on the surface of the substrate 11 using the sputtering apparatus 20 shown in FIG. Specifically, lamination is performed as follows. First, the film forming chamber 21 is evacuated until a predetermined pressure is reached. Thereafter, while introducing a process gas such as Ar gas into the film forming chamber 21, the targets set on the cathodes 23a to 23e are sputtered to form the underlayer 12, the SUL13, and the underlayer 14 on the surface of the traveling substrate 11. Then, the intermediate layer 15 and the magnetic recording layer 16 are sequentially formed.
  • a process gas such as Ar gas
  • magnetic field lines 30M are applied by the magnetic field orientation device 30 in the width direction of the drum 22, that is, in the width direction of the substrate 11 conveyed along the peripheral surface of the drum 22. generate.
  • the SUL 13 having the hard axis A1 in the machine direction (MD) D1 and the easy axis A2 in the width direction (TD) D2 is formed.
  • a protective layer 17 is formed on the surface of the magnetic recording layer 16.
  • a method for forming the protective layer 17 for example, a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method can be used.
  • the lubricant layer 18 is formed by coating the surface of the protective layer 17 with a lubricant.
  • the magnetic recording medium 10 shown in FIG. 1 is obtained.
  • the squareness ratio Sq1 in the machine direction (MD) D1 is less than the squareness ratio Sq2 in the width direction (TD) D2 (Sq1 ⁇ Sq2).
  • the hard magnetization axis A1 of the SUL 13 is the machine direction (MD) D1
  • the easy magnetization axis A2 is the width direction (TD) D2.
  • the squareness ratio in the machine direction (MD) D1 is set to 30% or less.
  • the magnetic recording medium 10 including the underlayer 12 has been described.
  • the underlayer 12 may be omitted.
  • both the underlayer 14 and the intermediate layer 15 or one of these layers may be omitted.
  • the base layer 12 may be omitted as described above.
  • the magnetic recording medium 110 according to the second embodiment of the present technology includes a base layer 114 and an intermediate layer 115 having a two-layer structure, and thus the magnetic recording medium 10 according to the first embodiment. Is different. Note that in the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the underlayer 114 includes a first underlayer (upper underlayer) 114a and a second underlayer (lower underlayer) 114b.
  • the first underlayer 114a is provided on the intermediate layer 115 side
  • the second underlayer 114b is provided on the soft magnetic backing layer 13 side.
  • the same material as that of the underlayer 14 in the first embodiment can be used.
  • a material of the first base layer 114a a material having a composition different from that of the second base layer 114b can be used. Specific examples of this material include NiW or Ta. Note that the first base layer 114a can be regarded not as a base layer but as an intermediate layer.
  • the intermediate layer 115 includes a first intermediate layer (upper intermediate layer) 115a and a second intermediate layer (lower intermediate layer) 115b.
  • the first intermediate layer 115a is provided on the magnetic recording layer 16 side
  • the second intermediate layer 115b is provided on the underlayer 114 side.
  • the material of the first intermediate layer 115a and the second intermediate layer 115b for example, the same material as that of the intermediate layer 15 in the first embodiment described above can be used. However, the intended effects are different in the first intermediate layer 115a and the second intermediate layer 115b, and therefore, the sputtering conditions are different. That is, it is important that the first intermediate layer 115a has a film structure that promotes the granular structure of the magnetic recording layer 16 as an upper layer, and the second intermediate layer 115b has a film structure with high crystal orientation. It is important to do.
  • the underlayer 114 includes the underlayer 114 having a two-layer structure
  • the orientation of the intermediate layer 115 and the magnetic recording layer 16 is further improved, and the magnetic characteristics are further improved. It becomes possible to make it.
  • the intermediate layer 115 includes the intermediate layer 115 having a two-layer structure, it is possible to further improve the orientation and the granular structure of the magnetic recording layer 16 and further improve the magnetic characteristics.
  • the configuration in which both the base layer 114 and the intermediate layer 115 have a two-layer structure has been described as an example.
  • the configurations of the base layer and the intermediate layer are not limited to this example.
  • one of the base layer and the intermediate layer may have a two-layer structure, and the other may have a single-layer structure.
  • the magnetic recording medium 10 in which the hard axis A1 of the SUL 13 is set to the machine direction (MD) has been described in order to suppress the domain wall movement.
  • the SUL in addition to the hard axis A1 being the machine direction (MD), the SUL is an antiparallel coupled SUL (hereinafter referred to as “APC-SUL”).
  • APC-SUL antiparallel coupled SUL
  • the magnetic recording medium 210 according to the third embodiment of the present technology is different from the magnetic recording medium 110 according to the second embodiment in that an APC-SUL 213 is provided. Note that in the third embodiment, the same portions as those in the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the APC-SUL 213 has a structure in which two soft magnetic layers 213a and 213c are stacked via a thin intermediate layer 213b, and magnetization is positively coupled antiparallel using exchange coupling via the intermediate layer 213b. is doing.
  • the film thicknesses of the soft magnetic layers 213a and 213c are preferably substantially the same.
  • the total film thickness of the soft magnetic layers 213a and 213c is preferably 40 nm or more, more preferably 40 nm or more and 70 nm or less. When the thickness is 40 nm or more, better recording and reproduction characteristics can be obtained. On the other hand, when the thickness is 70 nm or less, a decrease in productivity due to the film formation time of APC-SUL 213 can be suppressed.
  • the materials of the soft magnetic layers 213a and 213c are preferably the same material, and the same material as that of the SUL 13 in the first embodiment can be used.
  • the film thickness of the intermediate layer 213b is, for example, about 0.8 nm to 1.4 nm, preferably 0.9 nm to 1.3 nm, and more preferably about 1.1 nm. By selecting the film thickness of the intermediate layer 213b within the range of 0.9 nm or more and 1.3 nm or less, the antiparallel exchange coupling between the upper and lower soft magnetic layers 213a and 213c is sufficient, and more favorable recording / reproducing characteristics. Can be obtained.
  • Examples of the material of the intermediate layer 213b include one or more elements selected from the group consisting of V, Cr, Mo, Cu, Ru, Rh, Re, and the like, and those containing Ru are particularly preferable.
  • the squareness ratio Sq1 in the machine direction (MD) D1 of the magnetic recording medium 10 is less than or less than the squareness ratio Sq2 in the width direction (TD) of the magnetic recording medium 10 (Sq1 ⁇ Sq2 or Sq1 ⁇ Sq2). Further, the squareness ratio in the machine direction (MD) and the width direction (TD) of the magnetic recording medium 210 is 30% or less, preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less. It is. Thereby, further excellent recording / reproducing characteristics can be obtained.
  • the residual magnetization in the direction of the magnetization facilitating axis A2 is canceled by the antiparallel exchange coupling between the upper and lower soft magnetic layers 213a and 213c, so that the residual magnetization tends to be close to zero. Therefore, in the APC-SUL 213, the squareness ratio Sq1 in the machine direction (MD) D1 and the squareness ratio Sq2 in the width direction (TD) D2 tend to be equal or nearly equal.
  • the soft magnetic layer 213a as the upper layer and the soft magnetic layer 213c as the lower layer are exchange-coupled antiparallel to each other, and the residual magnetization is In this state, the total magnetization of the upper and lower layers becomes zero. Thereby, it is possible to suppress the occurrence of spike-like noise that occurs when the magnetic domain in the APC-SUL 213 moves. Therefore, the recording / reproducing characteristics can be further improved.
  • both the base layer 114 and the intermediate layer 115 have a two-layer structure
  • the configurations of the base layer and the intermediate layer are not limited to this example.
  • both the base layer and the intermediate layer may have a single-layer structure, or one of the base layer and the intermediate layer may have a two-layer structure, and the other may have a single-layer structure.
  • Example 1 TiCr underlayer deposition process
  • a TiCr underlayer having a thickness of 5 nm was formed on a long polymer film as a nonmagnetic substrate under the following film formation conditions.
  • Sputtering method DC magnetron sputtering method
  • Target Ti 50 Cr 50 target Ultimate vacuum: 5 ⁇ 10 ⁇ 5 Pa
  • Gas type Ar
  • Gas pressure 0.5Pa
  • TiCr underlayer deposition process Next, a TiCr underlayer was formed to 3 nm on the CoZrNb layer under the following film formation conditions.
  • Sputtering method DC magnetron sputtering method
  • Target Ti 50 Cr 50 target Ultimate vacuum: 5 ⁇ 10 ⁇ 5 Pa
  • Gas type Ar
  • Gas pressure 0.5Pa
  • NiW underlayer deposition process Next, a 10 nm NiW underlayer was formed on the TiCr underlayer under the following film formation conditions.
  • Sputtering method DC magnetron sputtering method
  • Target NiW target Ultimate vacuum: 5 ⁇ 10 ⁇ 5 Pa
  • Gas type Ar Gas pressure: 0.5Pa
  • Ru intermediate layer deposition step Next, a second Ru intermediate layer was formed to a thickness of 20 nm on the first Ru intermediate layer under the following film formation conditions.
  • Sputtering method DC magnetron sputtering method
  • Target Ru target Gas type: Ar Gas pressure: 1.5Pa
  • Example 2 A magnetic tape was obtained in the same manner as in Example 1 except that in the SUL film forming step, the magnetic flux density of the magnetic force applied in the width direction (TD) of the long polymer film was changed to 4.5 mT.
  • Examples 3, 4, and 5 A magnetic tape was obtained in the same manner as in Example 1 except that APC-SUL was formed in place of the single-layer SUL. Specifically, APC-SUL was formed as follows.
  • Ru intermediate layer deposition process Next, a Ru intermediate layer was formed to 0.3 nm, 1.0 nm, and 1.5 nm on the CoZrNb layer under the following film formation conditions.
  • Sputtering method DC magnetron sputtering method
  • Target Ru target Gas type: Ar Gas pressure: 0.3Pa
  • Example 6 Instead of the two-layered underlayer composed of the TiCr underlayer and the NiW underlayer, a single-layer underlayer composed of only the TiCr underlayer was formed. Further, instead of the two-layer intermediate layer constituted by the first Ru intermediate layer and the second Ru intermediate layer, an intermediate layer having a single-layer structure including only the second Ru intermediate layer was formed. Except for this, a magnetic tape was obtained in the same manner as in Example 5.
  • Example 7 A magnetic tape was obtained in the same manner as in Example 1 except that the thickness of the CoZrNb layer as SUL was changed to 50 nm and 33 nm.
  • Example 1 A magnetic tape was obtained in the same manner as in Example 1 except that in the SUL film forming step, the input power was 40 mW / mm 2 and the magnetic flux density of the magnetic force parallel to the TD direction of the nonmagnetic substrate was 2 mT.
  • Example 2 A magnetic tape was obtained in the same manner as in Example 1 except that in the SUL film forming step, the input power was 55 mW / mm 2 and the magnetic flux density of the magnetic force parallel to the TD direction of the nonmagnetic substrate was 2 mT.
  • Example 3 A magnetic tape was obtained in the same manner as in Example 1 except that in the SUL film forming step, the magnetic flux density of the magnetic force parallel to the TD direction of the nonmagnetic substrate was set to 2 mT.
  • Example 4 A magnetic tape was obtained in the same manner as in Example 1 except that in the SUL film forming step, the direction of the magnetic force was changed from the width direction (TD) of the long polymer film to the machine direction (MD).
  • Magnetic properties The squareness ratio in the TD direction and MD direction of the magnetic tape was measured by applying a magnetic field of 10 kOe or more using VSM.
  • 7A to 7C show hysteresis loops of the magnetic tapes of Examples 3 to 6, Comparative Examples 1 to 3, Examples 1, 2, 7, 8 and Comparative Example 4.
  • FIG. 1 Magnetic properties
  • the squareness ratio of the magnetic tape is substantially the same as the squareness ratio Sq of a single SUL.
  • the sample size is a circle with a diameter of 6.35 mm.
  • MsV (SUL) which is the product of the saturation magnetization amount Ms of the SUL alone and the sample volume V
  • MrV (SUL) MrV (SUL) in the hard axis direction, respectively. : 2.71 memu
  • Ms (Rec.) And MrV (Rec.) Of the recording layer alone are MsV (Rec.): 0.2 memu and Mr (Rec.): 0.01 memu, respectively.
  • the saturation magnetization amount MsV (Tot.) And the residual magnetization amount MrV (Tot.) Are MsV (Tot.): 2.73 memu and MrV (Tot.), Respectively. 0.28 emu. Therefore, the squareness ratio Sq (Tot.) Is 0.102 (about 10%), and the squareness ratio of the magnetic tape is almost the same as the squareness ratio Sq (SUL) in the case of a single SUL. .
  • the recording / reproducing characteristics were evaluated as follows. First, using a single pole type recording head and a tunnel magnetoresistive (TMR) type reproducing head, recording and reproduction is performed by reciprocally vibrating the head with a piezo stage, and measurement is performed using a so-called drag tester. went. In a high recording density recording area exceeding 100 Gb / in 2 , even a perpendicular magnetic recording medium is mainly a recording problem, and it is difficult to realize sufficient recording / reproducing characteristics, and a single magnetic field capable of generating a steep magnetic field in the vertical direction is obtained. A combination of a single layer type (SPT) head and a two-layer perpendicular recording medium having a SUL is required.
  • SPT single layer type
  • a tunnel magnetoresistive (TMR) type reproducing head having a large magnetoresistive change rate and a high reproducing sensitivity as compared with a giant magnetoresistive head is also considered necessary.
  • TMR tunnel magnetoresistive
  • the read track width of the reproducing head was set to 75 nm.
  • the recording wavelength is set to 300 kFCI (kilo Flux Changes per Inch), and the SNR is determined by the ratio of the peak-to-peak voltage of the reproduced waveform and the voltage obtained from the integration of the nose spectrum in the band of 0 kFCI to 600 kFCI. Calculated and obtained.
  • SNR SNR is less than 16 dB.
  • O SNR is not less than 16 dB and less than 19 dB.
  • A SNB is not less than 19 dB.
  • the SNR after processing is said to be about 16 dB.
  • the linear recording density is 600 kBPI (Bit Per Inch)
  • the track pit is twice the track width of the reproducing head
  • Table 1 shows the configurations of the magnetic recording layer, the intermediate layer, and the underlayer of the magnetic tapes of Examples 1 to 8 and Comparative Examples 1 to 4.
  • Table 2 shows the configurations of the SUL layers of the magnetic tapes of Examples 1 to 8 and Comparative Examples 1 to 4.
  • Table 3 shows the evaluation results of the magnetic characteristics and recording / reproducing characteristics of the magnetic tapes of Examples 1 to 8 and Comparative Examples 1 to 4.
  • the SNR can be 16% or more. If both the machine direction and the squareness ratio in the width direction are 10% or less, the SNR can be 19% or more. In order to make both the squareness ratio in the machine direction and the width direction 10% or less, it is preferable that the SUL is APC-SUL and the intermediate layer and the underlayer have a two-layer structure.
  • the present technology can also employ the following configurations.
  • (1) Comprising a flexible long substrate, a soft magnetic layer, and a magnetic recording layer;
  • the squareness ratio in the longitudinal direction of the substrate is equal to or less than the squareness ratio in the short direction of the substrate, A magnetic recording medium having a squareness ratio in the longitudinal direction of the substrate of 30% or less.
  • (2) The magnetic recording medium according to (1), wherein a squareness ratio in the longitudinal direction and the short direction of the substrate is 10% or less.
  • the magnetic recording medium according to (2), wherein the squareness ratio in the longitudinal direction and the lateral direction of the substrate is 5% or less.
  • (4) The magnetic recording medium according to any one of (1) to (3), wherein a direction of an easy magnetization axis of the soft magnetic layer is a longitudinal direction of the base.
  • the first underlayer is provided on the soft magnetic layer side, includes Ti and Cr, The magnetic recording medium according to (9), wherein the second underlayer is provided on the intermediate layer side and contains Ni and W.
  • the magnetic recording medium according to (12), wherein the first intermediate layer and the second intermediate layer contain Ru.
  • An underlayer provided between the base and the soft magnetic layer; The magnetic recording medium according to any one of (1) to (14), wherein the underlayer has an amorphous state and includes Ti and Cr.

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

 磁気記録媒体は、可撓性を有する長尺の基体と、軟磁性層と、磁気記録層とを備える。基体の長手方向の角型比は、基体の短手方向の角型比以下または未満である。基体の長手方向の角型比が30%以下である。

Description

磁気記録媒体
 本技術は、磁気記録媒体に関する。詳しくは、軟磁性裏打ち層を備える磁気記録媒体に関する。
 近年、IT(情報技術)社会の発展、図書館および公文書館などの電子化、ならびにビジネス文書の長期保管により、データストレージ用テープメディアへの大容量化の要求が高まっている。このような要求に応えるべく、磁気異方性の高いCoCrPt系の金属材料を非磁性支持体の表面に対して垂直方向に結晶配向させた垂直磁気記録媒体が提案されている。
 例えば特許文献1には、垂直磁気記録媒体として、非磁性支持体上に、少なくとも、アモルファス層、シード層、下地層、磁性層および保護層が順次形成された磁気記録媒体が開示されている。また、特許文献2には、軟磁性裏打ち層を備えた垂直磁気記録媒体が開示されている。
特開2005-196885号公報 特開2002-279615号公報
 本技術の目的は、優れた記録再生特性を有する磁気記録媒体を提供することにある。
 上述の課題を解決するために、本技術は、
 可撓性を有する長尺の基体と、軟磁性層と、磁気記録層とを備え、
 基体の長手方向の角型比が30%以下である磁気記録媒体である。
 以上説明したように、本技術によれば、優れた記録再生特性を有する磁気記録媒体を提供できる。
図1Aは、本技術の第1の実施形態に係る磁気記録媒体の形状の一例を示す平面図である。図1Bは、本技術の第1の実施形態に係る磁気記録媒体の構成の一例を示す断面図である。 図2は、スパッタ装置の構成の一例を示す概略図である。 図3Aは、図2に示したスパッタ装置の一部を矢印C1の方向から見た拡大平面図である。図3Bは、図2に示したスパッタ装置の一部を矢印C2の方向から見た拡大側面図である。 図4は、磁場配向装置の構成の一例を示す斜視図である。 図5は、本技術の第2の実施形態に係る磁気記録媒体の構成の一例を示す断面図である。 図6は、本技術の第3の実施形態に係る磁気記録媒体の構成の一例を示す断面図である。 図7Aは、実施例3~6の磁気テープのヒステリシスループを示す図である。図7Bは、比較例1~3の磁気テープのヒステリシスループを示す図である。図7Cは、実施例1、2、7、8および比較例4の磁気テープのヒステリシスループを示す図である。
 本技術において、基体の長手方向の角型比は、基体の短手方向の角型比以下または未満である。ここで、角型比は、磁気記録媒体の状態で測定される角型比である。
 軟磁性層が単層構造である場合、基体の長手方向の角型比は、基体の短手方向の角型比未満であることが好ましい。この場合、基体の長手方向の角型比は、30%以下、好ましくは20%以下、より好ましくは10%以下、更により好ましくは5%以下である。
 軟磁性層が第1の軟磁性層と中間層と第2の軟磁性層とを備える多層構造を有する場合、基体の長手方向の角型比は、基体の短手方向の角型比以下であることが好ましい。この場合、基体の長手方向の角型比は、30%以下、好ましくは20%以下、より好ましくは10%以下、更により好ましくは5%以下である。なお、軟磁性層が上述の多層構造を有する場合、基体の長手方向の角型比は、基体の短手方向の角型比と等しくなる、またはほぼ等しくなる傾向が高い。
 本技術の実施形態について以下の順序で説明する。
1 第1の実施形態
 1.1 概要
 1.2 磁気記録媒体の構成
 1.3 スパッタ装置の構成
 1.4 磁気記録媒体の製造方法
 1.5 効果
 1.6 変形例
2 第2の実施形態
 2.1 磁気記録媒体の構成
 2.2 効果
 2.3 変形例
3 第3の実施形態
 3.1 概要
 3.2 磁気記録媒体の構成
 3.3 効果
 3.4 変形例
[1.1 概要]
(軟磁性裏打ち層の磁気異方性方向)
 軟磁性裏打ち層(Soft magnetic underlayer、以下「SUL」という。)として使用されるCoZrNbやFeTaNなどの材料は、成膜条件により磁気異方性を発現する。垂直磁気記録媒体においてSULとしてこのような材料を用いる場合には、以下に述べる2つの理由から、SULの磁化困難軸方向を記録/再生ヘッドの移動方向、すなわち機械方向(Machine Direction:MD)とすることが望ましい。
 1つ目の理由は、再生出力の向上の点にある。SULを有する垂直磁気記録媒体においては、初期磁化透磁率が高いほど、再生出力が高くなる。また、初期磁化透磁率は、磁化容易化軸方向に比べて磁化困難軸方向の方が高くなる。したがって、再生出力の向上の観点からすると、磁気困難軸方向を機械方向(MD)とすることが有利である。
 2つ目の理由は、磁壁移動に起因するノイズの抑制の点にある。SULでは磁壁が形成され、記録再生の過程において磁壁が移動すると、これがノイズ源となるため、磁壁移動を抑えることが媒体設計の重要な要素の一つとなる。磁壁は、磁化容易化軸方向に動きやすく、磁化困難軸方向には動きにくいことから、SULの磁化困難軸方向を機械方向(MD)とすることが有利である。
(面内方向の角型比)
 軟磁性膜のM-Hループは磁気異方性の磁化容易化軸方向と磁化困難軸方向で大きく異なる。磁化容易化軸方向では明らかなヒステリシス特性を示し、磁化困難軸方向に比べて保磁力Hcが大きく、角型比が大きくなる。一方、磁化困難軸方向においては、印加磁界がゼロに近い領域でも、磁化がゼロに近い値となるため、保磁力Hcは小さく、角型比も極めて小さくなる。このような特徴から、面内方向における磁気特性により、磁気異方性の方向を容易に判定可能である。
 SULを有する垂直磁気記録媒体では、SULの他に、記録層があり、振動試料磁力計(Vibrating Sample Magnetometer:VSM)などで媒体平均の磁気特性を測定した場合、SULと記録層の磁気特性の和が測定される。しかしながら、磁気記録媒体としての実用を想定した領域においては、それぞれに用いられる材料、膜厚、および測定方向を考慮すると、軟磁性層裏打ち層の磁気特性の値に比べて、記録層の磁気特性の値は小さく、VSMによる測定値には、ほとんどSULの磁気特性が反映される。
 なお、現在、SULを有する垂直磁気記録媒体が主流であるHDD(Hard Disk Drive)においては、磁気特性の評価は、極カー効果を用いた記録層の磁気特性の評価が中心であり、SULも含めたトータル膜としての磁気特性評価は実施されていない。
 上述の観点から、第1の実施形態では、単層のSULを有する垂直磁気録媒体において、再生出力を向上し、かつSULの磁壁移動に起因するノイズを抑制するために、SULの磁化困難軸方向を機械方向(MD)に揃え、かつ機械方向(MD)の角型比を所定値以下としている。すなわち、垂直磁気録媒体の機械方向(MD)の角型比Sq1をこれに直交する幅方向(Transverse Direction:TD)の角型比Sq2未満(Sq1<Sq2)とし、かつ機械方向(MD)の角型比を所定値以下としている。
[1.2 磁気記録媒体の構成]
 以下、図1A、図1Bを参照して、本技術の第1の実施形態に係る磁気記録媒体10の構成の一例について説明する。磁気記録媒体10は、図1Aに示すように、長尺状を有する。以下では、磁気記録媒体10の長手方向を機械方向(MD)D1といい、短手方向を幅方向(TD)D2という。ここで、機械方向D1とは、磁気記録媒体10に対する記録/再生ヘッドの相対的な移動方法、すなわち記録再生時に磁気記録媒体10が走行される方向を意味する。磁気記録媒体10は、機械方向D1に平行な磁化困難軸A1と、幅方向D2に平行な磁化容易軸A2とを有する。
 磁気記録媒体10は、いわゆる二層垂直磁気記録媒体であり、図1Bに示すように、基体11と、基体11の表面に設けられた下地層12と、下地層12の表面に設けられた単層のSUL13と、SUL13の表面に設けられた下地層14と、下地層14の表面に設けられた中間層15と、中間層15の表面に設けられた磁気記録層16と、磁気記録層16の表面に設けられた保護層17とを備える。磁気記録媒体10が、保護層17の表面に設けられた潤滑層18をさらに備えるようにしてもよい。
 磁気記録媒体10は、今後ますます需要が高まることが期待されるデータアーカイブ用ストレージメディアとして用いて好適なものである。この磁気記録媒体10は、例えば、現在のストレージ用塗布型磁気テープの10倍以上の面記録密度、すなわち50Gb/in2の面記録密度を実現することが可能である。このような面記録密度を有する磁気記録媒体10を用いて、一般のリニア記録方式のデータカートリッジを構成した場合には、データカートリッジ1巻当たり50TB以上の大容量記録が可能になる。この磁気記録媒体10は、単磁極型(Single Pole Type:SPT)の記録ヘッドとトンネル磁気抵抗効果(Tunnel Magnetoresistive:TMR)型の再生ヘッドを用いる記録再生装置に用いて好適なものである。
 磁気記録媒体10の機械方向(MD)D1の角型比Sq1が、磁気記録媒体10の幅方向(TD)の角型比Sq2未満である(Sq1<Sq2)。また、磁気記録媒体10の機械方向(MD)D1の角型比が、30%以下、好ましくは20%以下、より好ましくは10%以下、更により好ましくは5%以下である。これにより、優れた記録再生特性を得ることができる。ここで、角型比は、磁気記録媒体10の状態で測定された角型比であり、具体的にはVSMを用いて10kOe以上の磁界を印加して測定されたものである。
(基体)
 支持体となる基体11は、例えば、長尺状のフィルムである。フィルムの厚さは、例えば3μm以上8μm以下である。基体11としては、可撓性を有する非磁性基体を用いることが好ましい。非磁性基体の材料としては、例えば、一般的な磁気記録媒体に用いられる可撓性の高分子樹脂材料を用いることができる。このような高分子材料の具体例としては、ポリエステル類、ポリオレフィン類、セルロース誘導体、ビニル系樹脂、ポリイミド類、ポリアミド類またはポリカーボネートなどが挙げられる。
(下地層)
 下地層12は、基体11とSUL13の間に設けられている。下地層14は、SUL13と中間層15の間に設けられている。下地層12、14は、TiおよびCrを含む合金を含み、アモルファス状態を有している。また、この合金には、O(酸素)がさらに含まれていてもよい。この酸素は、例えば、スパッタリング法などの成膜法で下地層12、14を成膜する際に、下地層12、14内に微量に含まれる不純物酸素である。下地層14は、中間層15に類似した結晶構造を有し、結晶成長を目的とするものではなく、当該下地層14の平坦性およびアモルファス状態によって中間層15の垂直配向性を向上することを目的とするものである。ここで、「合金」とは、TiおよびCrを含む固溶体、共晶体、および金属間化合物などの少なくとも一種を意味する。また、「アモルファス状態」とは、電子線回折法により、ハローが観測され、結晶構造を特定できないことを意味する。
 TiおよびCrを含む合金を含み、アモルファス状態を有する下地層12には、基体11に吸着したO2ガスやH2Oの影響を抑制するとともに、基体11の表面の凹凸を緩和して基体11の表面に金属性の平滑面を形成する作用がある。この作用により、中間層15の垂直配向性を向上できる。なお、下地層12、14の状態を結晶状態にすると、結晶成長に伴うカラム形状が明瞭となり、基体11およびSUL13の表面の凹凸が強調され、中間層15の結晶配向が悪化する。
 下地層12、14に含まれる合金が、TiおよびCr以外の元素を添加元素としてさらに含んでいてもよい。この添加元素としては、例えば、Nb、Ni、Mo、AlおよびWなどからなる群より選ばれる1種以上の元素が挙げられる。
(SUL)
 SUL13は、単層のSULであり、下地層12と下地層14の間に設けられている。SUL13の膜厚は、好ましくは40nm以上、より好ましくは40nm以上140nm以下である。SUL13は、アモルファス状態の軟磁性材料を含んでいる。軟磁性材料としては、例えば、Co系材料またはFe系材料などを用いることができる。Co系材料としては、例えば、CoZrNb、CoZrTa、CoZrTaNbなどが挙げられる。Fe系材料としては、例えば、FeCoB、FeCoZr、FeCoTaなどが挙げられる。
 SUL13はアモルファス状態を有するため、SUL13上に形成される層のエピタキシャル成長を促す役割を担わないが、SUL13の上に形成される中間層15の結晶配向を乱さないことが求められる。そのためには、軟磁性材料がカラムを形成しない微細な構造を有していることが必要となるが、基体11からの水分などのデガスの影響が大きい場合、軟磁性材料が粗大化し、SUL13上に形成される中間層15の結晶配向を乱してしまう虞がある。その影響を抑制するためには、基体11の表面に下地層12を設けることが好ましい。基体11として水分や酸素などの気体の吸着の多い高分子材料のフィルムを用いる場合、その影響を抑えるために下地層12を設けることが特に好ましい。
 SUL13は、機械方向(MD)D1に磁化困難軸A1を有し、幅方向(TD)D2に磁化容易軸A2を有する。これにより、優れた記録再生特性を得ることができる。このような方向の磁化困難軸A1および磁化容易軸A2を有していることは、上述したように磁気記録媒体10の機械方向(MD)D1および幅方向(TD)D2の角型比を求めることにより確認することができる。
(中間層)
 中間層15は、下地層14と磁気記録層16の間に設けられている。中間層15は、磁気記録層16と同様の結晶構造を有していることが好ましい。磁気記録層16がCo系合金を含んでいる場合には、中間層15は、Co系合金と同様の六方細密充填(hcp)構造を有する材料を含み、その構造のc軸が膜面に対して垂直方向(すなわち膜厚方向)に配向していることが好ましい。磁気記録層16の配向性を高め、かつ、中間層15と磁気記録層16との格子定数のマッチングを比較的良好にできるからである。六方細密充填(hcp)構造を有する材料としては、Ruを含む材料を用いることが好ましく、具体的にはRu単体またはRu合金が好ましい。Ru合金としては、例えば、Ru-SiO2、Ru-TiO2またはRu-ZrO2などのRu合金酸化物が挙げられる。
(磁気記録層)
 磁気記録層16は、中間層15と保護層17の間に設けられている。磁気記録層16は、いわゆる垂直磁気記録層であり、記録密度を向上する観点から、Co系合金を含むグラニュラ磁性層であることが好ましい。このグラニュラ磁性層は、Co系合金を含む強磁性結晶粒子と、この強磁性結晶粒子を取り巻く非磁性粒界(非磁性体)とから構成されている。より具体的には、このグラニュラ磁性層は、Co系合金を含むカラム(柱状結晶)と、このカラムを取り囲み、それぞれのカラムを磁気的に分離する非磁性粒界(例えばSiO2などの酸化物)とから構成されている。この構造では、それぞれのカラムが磁気的に分離した構造を有する磁気記録層16を構成することができる。
 Co系合金は、六方細密充填(hcp)構造を有し、そのc軸が膜面に対して垂直方向(膜厚方向)に配向している。Co系合金としては、少なくともCo、CrおよびPtを含有するCoCrPt系合金を用いることが好ましい。CoCrPt系合金は、特に限定されるものではなく、CoCrPt合金がさらに添加元素を含んでいてもよい。添加元素としては、例えば、NiおよびTaなどからなる群より選ばれる1種以上の元素が挙げられる。
 強磁性結晶粒子を取り巻く非磁性粒界は、非磁性金属材料を含んでいる。ここで、金属には半金属を含むものとする。非磁性金属材料としては、例えば、金属酸化物および金属窒化物のうちの少なくとも一方を用いることができ、グラニュラ構造をより安定に維持する観点からすると、金属酸化物を用いることが好ましい。金属酸化物としては、Si、Cr、Co、Al、Ti、Ta、Zr、Ce、YおよびHfなどからなる群より選ばれる少なくとも1種以上の元素を含む金属酸化物が挙げられ、少なくともSi酸化物(すなわちSiO2)を含んでいる金属酸化物が好ましい。その具体例としては、SiO2、Cr23、CoO、Al23、TiO2、Ta25、ZrO2またはHfO2などが挙げられる。金属窒化物としては、Si、Cr、Co、Al、Ti、Ta、Zr、Ce、YおよびHfなどからなる群より選ばれる少なくとも1種以上の元素を含む金属窒化物が挙げられる。その具体例としては、SiN、TiNまたはAlNなどが挙げられる。グラニュラ構造をより安定に維持するためには、非磁性粒界が金属窒化物および金属酸化物のうち金属酸化物を含んでいることが好ましい。
 強磁性結晶粒子に含まれるCoCrPt系合金と、非磁性粒界に含まれるSi酸化物とが、以下の式(1)に示す平均組成を有していることが好ましい。反磁界の影響を抑え、かつ、十分な再生出力を確保できる飽和磁化量Msを実現でき、これにより、記録再生特性の更なる向上を実現できるからである。
 (CoxPtyCr100-x-y100-z-(SiO2z ・・・(1)
(但し、式(1)中において、x、y、zはそれぞれ、69≦X≦72、12≦y≦16、9≦Z≦12の範囲内の値である。)
 なお、上記組成は次のようにして求めることができる。磁気記録媒体10の保護層17側からイオンビームによるエッチングを行い、エッチングされた磁気記録層16の最表面についてオージェ電子分光法による解析を実施し、膜厚に対する平均の原子数比率をその元素の比率とする。具体的には、Co、Pt、Cr、SiおよびOの5元素について解析を行い、その百分率比率による元素量を同定する。
(保護層)
 保護層17は、例えば、炭素材料または二酸化ケイ素(SiO2)を含み、保護層17の膜強度の観点からすると、炭素材料を含んでいることが好ましい。炭素材料としては、例えば、グラファイト、ダイヤモンド状炭素(Diamond-Like Carbon:DLC)またはダイヤモンドなどが挙げられる。
(潤滑層)
 潤滑層18は、少なくとも1種の潤滑剤を含んでいる。潤滑層18は、必要に応じて各種添加剤、例えば防錆剤をさらに含んでいてもよい。潤滑剤は、少なくとも2つのカルボキシル基と1つのエステル結合とを有し、下記の一般式(1)で表されるカルボン酸系化合物の少なくとも1種を含んでいる。潤滑剤は、下記の一般式(1)で表されるカルボン酸系化合物以外の種類の潤滑剤をさらに含んでいてもよい。
一般式(1):
Figure JPOXMLDOC01-appb-C000001
(式中、Rfは非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基、Esはエステル結合、Rは、なくてもよいが、非置換若しくは置換の、また、飽和若しくは不飽和の炭化水素基である。)
 上記カルボン酸系化合物は、下記の一般式(2)または(3)で表されるものが好ましい。
一般式(2):
Figure JPOXMLDOC01-appb-C000002
(式中、Rfは、非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基である。)
一般式(3):
Figure JPOXMLDOC01-appb-C000003
(式中、Rfは、非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基である。)
 潤滑剤は、上記の一般式(2)および(3)で表されるカルボン酸系化合物の一方または両方を含んでいることが好ましい。
 一般式(1)で示されるカルボン酸系化合物を含む潤滑剤を磁気記録層16または保護層17などに塗布すると、疎水性基である含フッ素炭化水素基又は炭化水素基Rf間の凝集力により潤滑作用が発現する。Rf基が含フッ素炭化水素基である場合には、総炭素数が6~50であり、且つフッ化炭化水素基の総炭素数が4~20であるのが好ましい。Rf基は、飽和又は不飽和、直鎖又は分岐鎖又は環状であってよいが、とくに飽和で直鎖であるのが好ましい。
 例えば、Rf基が炭化水素基である場合には、下記一般式(4)で表される基であることが望ましい。
一般式(4):
Figure JPOXMLDOC01-appb-C000004
(但し、一般式(4)において、lは、8~30、より望ましくは12~20の範囲から選ばれる整数である。)
 また、Rf基が含フッ素炭化水素基である場合には、下記一般式(5)で表される基であることが望ましい。
一般式(5):
Figure JPOXMLDOC01-appb-C000005
(但し、一般式(5)において、mとnは、それぞれ次の範囲から選ばれる整数で、m=2~20、n=3~18、より望ましくは、m=4~13、n=3~10である。)
 フッ化炭化水素基は、上記のように1箇所に集中していても、また下記一般式(6)のように分散していてもよく、-CF3や-CF2-ばかりでなく-CHF2や-CHF-等であってもよい。
一般式(6):
Figure JPOXMLDOC01-appb-C000006
(但し、一般式(6)において、n1+n2=n、m1+m2=mである。)
 一般式(4)、(5)および(6)において炭素数を上記のように限定したのは、アルキル基または含フッ素アルキル基を構成する炭素数(l、又は、mとnの和)が上記下限以上であると、その長さが適度の長さとなり、疎水性基間の凝集力が有効に発揮され、良好な潤滑作用が発現し、摩擦・摩耗耐久性が向上するからである。また、その炭素数が上記上限以下であると、上記カルボン酸系化合物からなる潤滑剤の、溶媒に対する溶解性が良好に保たれるからである。
 特に、Rf基は、フッ素原子を含有すると、摩擦係数の低減、さらには走行性の改善等に効果がある。但し、含フッ素炭化水素基とエステル結合との間に炭化水素基を設け、含フッ素炭化水素基とエステル結合との間を隔てて、エステル結合の安定性を確保して加水分解を防ぐのがよい。
 また、Rf基がフルオロアルキルエーテル基、又はパーフルオロポリエーテル基を有するものであるのもよい。
 R基は、なくてもよいが、ある場合には、比較的炭素数の少ない炭化水素鎖であるのがよい。
 また、Rf基又はR基は、構成元素として窒素、酸素、硫黄、リン、ハロゲンなどの元素を含み、既述した官能基に加えて、ヒドロキシル基、カルボキシル基、カルボニル基、アミノ基、及びエステル結合等を更に有していてもよい。
 一般式(1)で示されるカルボン酸系化合物は、具体的には以下に示す化合物の少なくとも1種であることが好ましい。すなわち、潤滑剤は、以下に示す化合物を少なくとも1種含んでいることが好ましい。
CF3(CF2)7(CH2)10COOCH(COOH)CH2COOH
CF3(CF2)3(CH2)10COOCH(COOH)CH2COOH
C17H35COOCH(COOH)CH2COOH
CF3(CF2)7(CH2)2OCOCH2CH(C18H37)COOCH(COOH)CH2COOH
CF3(CF2)7COOCH(COOH)CH2COOH
CHF2(CF2)7COOCH(COOH)CH2COOH
CF3(CF2)7(CH2)2OCOCH2CH(COOH)CH2COOH
CF3(CF2)7(CH2)6OCOCH2CH(COOH)CH2COOH
CF3(CF2)7(CH2)11OCOCH2CH(COOH)CH2COOH
CF3(CF2)3(CH2)6OCOCH2CH(COOH)CH2COOH
C18H37OCOCH2CH(COOH)CH2COOH
CF3(CF2)7(CH2)4COOCH(COOH)CH2COOH
CF3(CF2)3(CH2)4COOCH(COOH)CH2COOH
CF3(CF2)3(CH2)7COOCH(COOH)CH2COOH
CF3(CF2)9(CH2)10COOCH(COOH)CH2COOH
CF3(CF2)7(CH2)12COOCH(COOH)CH2COOH
CF3(CF2)5(CH2)10COOCH(COOH)CH2COOH
CF3(CF2)7CH(C9H19)CH2CH=CH(CH2)7COOCH(COOH)CH2COOH
CF3(CF2)7CH(C6H13)(CH2)7COOCH(COOH)CH2COOH
CH3(CH2)3(CH2CH2CH(CH2CH2(CF2)9CF3))2(CH2)7COOCH(COOH)CH2COOH
 一般式(1)で示されるカルボン酸系化合物は、環境への負荷の小さい非フッ素系溶剤に可溶であり、炭化水素系溶剤、ケトン系溶剤、アルコール系溶剤、エステル系溶剤などの汎用溶剤を用いて、塗布、浸漬、噴霧などの操作を行えるという利点を備えている。具体的には、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ベンゼン、トルエン、キシレン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、イソプロパノール、ジエチルエーテル、テトラヒドロフラン、ジオキサン、シクロヘキサノンなどの溶媒を挙げることができる。
 保護層17が炭素材料を含む場合には、潤滑剤として上記カルボン酸系化合物を保護層17上に塗布すると、保護層17上に潤滑剤分子の極性基部である2つのカルボキシル基と少なくとも1つのエステル結合基が吸着され、疎水性基間の凝集力により特に耐久性の良好な潤滑層18を形成することができる。
 なお、潤滑剤は、上述のように磁気記録媒体10の表面に潤滑層18として保持されるのみならず、磁気記録媒体10を構成する磁気記録層16および保護層17などの層に含まれ、保有されていてもよい。
[1.3 スパッタ装置の構成]
 以下、図2、図3A、図3B、図4を参照して、上述の磁気記録媒体10の製造に用いられるスパッタ装置20の構成の一例について説明する。スパッタ装置20は、下地層12、SUL13、下地層14、中間層15および磁気記録層16の成膜に用いられる連続巻取式スパッタ装置である。スパッタ装置20は、図2に示すように、成膜室21と、金属キャン(回転体)であるドラム22と、カソード23a~23eと、供給リール24と、巻き取りリール25と、複数のガイドロール27a~27c、28a~28cと、磁場配向装置30とを備える。スパッタ装置20は、例えばDC(直流)マグネトロンスパッタリング方式の装置であるが、スパッタリング方式はこの方式に限定されるものではない。
 成膜室21は、排気口26を介して図示しない真空ポンプに接続され、この真空ポンプにより成膜室21内の雰囲気が所定の真空度に設定される。成膜室21の内部には、回転可能な構成を有するドラム22、供給リール24および巻き取りリール25が配置されている。成膜室21の内部には、供給リール24とドラム22との間における基体11の搬送をガイドするための複数のガイドロール27a~27cが設けられていると共に、ドラム22と巻き取りリール25との間における基体11の搬送をガイドするための複数のガイドロール28a~28cが設けられている。スパッタ時には、供給リール24から巻き出された基体11が、ガイドロール27a~27c、ドラム22およびガイドロール28a~28cを介して巻き取りリール25に巻き取られる。ドラム22は円柱状の形状を有し、細長い矩形状の基体11はドラム22の円柱面状の周面に沿わせて搬送される。ドラム22には、図示しない冷却機構が設けられており、スパッタ時には、例えば-20℃程度に冷却される。成膜室21の内部には、ドラム22の周面に対向して複数のカソード23a~23eが配置されている。これらのカソード23a~23eにはそれぞれターゲットがセットされている。具体的には、カソード23a、23b、23c、23d、23eにはそれぞれ、下地層12、SUL13、下地層14、中間層15、磁気記録層16を成膜するためのターゲットがセットされている。これらのカソード23a~23eにより複数の種類の膜、すなわち下地層12、SUL13、下地層14、中間層15および磁気記録層16が同時に成膜される。
 カソード23bの近傍には、磁場配向装置30が設けられている。この磁場配向装置30は、図3A、図3Bに示すように、ドラム22の円柱面とカソード23bの間の空間において、ドラム22の幅方向、すなわちドラム22の周面に沿わせて搬送される基体11の幅方向に磁力線30Mを発生可能に構成されている。カソード23bは、ドラム22の円柱面と対向する側に、SUL13を成膜するためのターゲット40を有している。
 磁場配向装置30は、いわゆる電磁石であり、図4に示すように、ヨークコア31と、ヨークコア31に巻きつけられたコイル32とを備える。ヨークコア31は、その両先端が対向するように屈曲された略C字状を有している。このような構成を有する磁場配向装置では、コイル32に電流Iを流すと、ヨークコア31の対向する先端部分の間に磁力線30Mが発生する。
[1.4 磁気記録媒体の製造方法]
 以下、本技術の第1の実施形態に係る磁気記録媒体10の製造方法の一例について説明する。まず、図2に示したスパッタ装置20を用いて、下地層12、SUL13、下地層14、中間層15および磁気記録層16を基体11の表面に順次積層する。具体的には以下のようにして積層する。まず、成膜室21を所定の圧力になるまで真空引きする。その後、成膜室21内にArガスなどのプロセスガスを導入しながら、カソード23a~23eにセットされたターゲットをスパッタして、走行する基体11の表面に、下地層12、SUL13、下地層14、中間層15および磁気記録層16を順次成膜する。
 但し、ドラム22の円柱面とカソード23bの間の空間には、磁場配向装置30によりドラム22の幅方向、すなわちドラム22の周面に沿わせて搬送される基体11の幅方向に磁力線30Mを発生させる。これにより、機械方向(MD)D1に磁化困難軸A1を有し、幅方向(TD)D2に磁化容易軸A2を有するSUL13が成膜される。
 次に、磁気記録層16の表面に保護層17を形成する。保護層17の形成方法としては、例えば化学気相成長(Chemical Vapor Deposition:CVD)法または物理蒸着(physical vapor deposition:PVD)法を用いることができる。次に、必要に応じて、潤滑剤を保護層17の表面にコーティングすることにより、潤滑層18を形成する。以上により、図1に示した磁気記録媒体10が得られる。
[1.5 効果]
 第1の実施形態に係る磁気記録媒体10では、機械方向(MD)D1の角型比Sq1を幅方向(TD)D2の角型比Sq2未満としている(Sq1<Sq2)。このような磁気特性を有する磁気記録媒体10では、SUL13の磁化困難軸A1が機械方向(MD)D1であり、磁化容易軸A2が幅方向(TD)D2である。また、機械方向(MD)D1の角型比を30%以下としている。これにより、高い再生出力を得ることができ、かつSUL13の磁壁移動に起因するノイズを抑制することができる。したがって、優れた記録再生特性を実現できる。
[1.6 変形例]
 上述の第1の実施形態では、下地層12を備える磁気記録媒体10について説明したが、下地層12を省略した構成としてもよい。また、下地層14および中間層15の両方を備える磁気記録媒体10について説明したが、下地層14および中間層15の両方、またはこれらの層うちの一方を省略した構成としてもよい。この構成の場合にも、上述したように下地層12を省略してもよい。
<2 第2の実施形態>
[2.1 磁気記録媒体の構成]
 図5に示すように、本技術の第2の実施形態に係る磁気記録媒体110は、2層構造の下地層114および中間層115を備える点において、第1の実施形態に係る磁気記録媒体10とは異なっている。なお、第2の実施形態において第1の実施形態と同様の箇所には同一の符号を付して説明を省略する。
 下地層114は、第1の下地層(上側下地層)114aと第2の下地層(下側下地層)114bとを備える。第1の下地層114aが中間層115の側に設けられ、第2の下地層114bが軟磁性裏打ち層13の側に設けられる。
 第2の下地層114bの材料としては、第1の実施形態における下地層14と同様のものを用いることができる。第1の下地層114aの材料としては、第2の下地層114bとは異なる組成の材料を用いることができる。この材料の具体例としては、NiWまたはTaなどが挙げられる。なお、第1の下地層114aは、下地層ではなく、中間層と見なすことも可能である。
 中間層115は、第1の中間層(上側中間層)115aと第2の中間層(下側中間層)115bとを備える。第1の中間層115aが磁気記録層16の側に設けられ、第2の中間層115bが下地層114の側に設けられる。
 第1の中間層115a、第2の中間層115bの材料としては、例えば、上述の第1の実施形態における中間層15と同様のものを用いることができる。しかしながら、第1の中間層115a、第2の中間層115bそれぞれにおいて目的とする効果が異なっており、そのため、それぞれのスパッタ条件は異なるものとなる。すなわち、第1の中間層115aについてはその上層となる磁気記録層16のグラニュラ構造を促進する膜構造とすることが重要であり、第2の中間層115bについては結晶配向性の高い膜構造とすることが重要となる。
[2.2 効果]
 第2の実施形態に係る磁気記録媒体110では、下地層114が2層構造の下地層114を有することで、中間層115および磁気記録層16の配向性をさらに改善し、磁気特性をさらに向上させることが可能となる。また、中間層115が2層構造の中間層115を有することで、磁気記録層16の配向性およびグラニュラ構造をさらに改善し、磁気特性をさらに向上させることが可能となる。
[2.3 変形例]
 第2の実施形態では、下地層114および中間層115の両方が2層構造を有する構成を例として説明したが、下地層および中間層の構成はこの例に限定されるものではない。例えば、下地層および中間層のうちの一方が2層構造を有し、他方が単層構造を有する構成としてもよい。
<3 第3の実施形態>
[3.1 概要]
 上述の第1の実施形態では、磁壁移動を抑えるために、SUL13の磁化困難軸A1を機械方向(MD)とした磁気記録媒体10について説明した。第3の実施形態では、磁壁移動を更に抑えるために、磁化困難軸A1を機械方向(MD)とすることに加えて、SULをAntiparallel Coupled SUL(以下「APC-SUL」という。)とした磁気記録媒体について説明する。
[3.2 磁気記録媒体の構成]
 図6に示すように、本技術の第3の実施形態に係る磁気記録媒体210は、APC-SUL213を備える点において、第2の実施形態に係る磁気記録媒体110とは異なっている。なお、第3の実施形態において第2の実施形態と同様の箇所には同一の符号を付して説明を省略する。
 APC-SUL213は、薄い中間層213bを介して2つの軟磁性層213a、213cを積層し、中間層213bを介した交換結合を利用して積極的に磁化を反平行に結合させた構造を有している。軟磁性層213a、213cの膜厚は略同一であることが好ましい。軟磁性層213a、213cのトータルの膜厚は、好ましくは40nm以上、より好ましくは40nm以上70nm以下である。40nm以上であると、より良好な記録再生特性を得ることができる。一方、70nm以下であると、APC-SUL213の成膜時間による生産性の低下を抑制できる。軟磁性層213a、213cの材料は同一の材料であることが好ましく、その材料としては第1の実施形態におけるSUL13と同様の材料を用いることができる。中間層213bの膜厚は、例えば0.8nm以上1.4nm以下、好ましくは0.9nm以上1.3nm以下、より好ましくは1.1nm程度である。中間層213bの膜厚を0.9nm以上1.3nm以下の範囲内に選択することで、上下の軟磁性層213a、213c間の反平行交換結合を十分なものとし、より良好な記録再生特性を得ることができる。中間層213bの材料としては、V、Cr、Mo、Cu、Ru、RhおよびReなどからなる群より選ばれる1種以上の元素が挙げられ、特に、Ruを含んでいるものが好ましい。
 磁気記録媒体10の機械方向(MD)D1の角型比Sq1が、磁気記録媒体10の幅方向(TD)の角型比Sq2以下または未満である(Sq1<Sq2またはSq1≦Sq2)。また、磁気記録媒体210の機械方向(MD)および幅方向(TD)の角型比がいずれも、30%以下、好ましくは20%以下、より好ましくは10%以下、更により好ましくは5%以下である。これにより、更に優れた記録再生特性を得ることができる。
 APC-SUL213では、上下の軟磁性層213a、213c間の反平行交換結合により、磁化容易化軸A2の方向の残留磁化がキャンセルされるため、残留磁化が0に近くなる傾向がある。このため、APC-SUL213では、機械方向(MD)D1の角型比Sq1と幅方向(TD)D2の角型比Sq2とが等しくなる、またはほぼ等しくなる傾向が高い。
[3.3 効果]
 第3の実施形態に係る磁気記録媒体210では、APC-SUL213を用いているので、上層部である軟磁性層213aと下層部である軟磁性層213cとが反平行に交換結合し、残留磁化状態で上下層トータルの磁化量はゼロなる。これにより、APC-SUL213中の磁区が動いた場合に発生する、スパイク状のノイズの発生を抑えることができる。したがって、記録再生特性を更に向上することができる。
[3.4 変形例]
 第2の実施形態では、下地層114および中間層115の両方が2層構造を有する構成を例として説明したが、下地層および中間層の構成はこの例に限定されるものではない。例えば、下地層および中間層の両方が単層構造を有する構成としてもよいし、下地層および中間層のうちの一方が2層構造を有し、他方が単層構造を有する構成としてもよい。
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。
(実施例1)
(TiCr下地層の成膜工程)
 まず、以下の成膜条件にて、非磁性基体としての長尺の高分子フィルム上にTiCr下地層を5nm成膜した。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:Ti50Cr50ターゲット
 到達真空度:5×10-5Pa
 ガス種:Ar
 ガス圧:0.5Pa
(SULの成膜工程)
 次に、以下の成膜条件にて、TiCr下地層上に単層構造のSULとしてCoZrNb層を100nm成膜した。この際、スパッタ装置のアノード-カソード間に、非磁性基体の幅方向(TD)に平行な磁力を作用させた。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:CoZrNbターゲット
 ガス種:Ar
 ガス圧:0.1Pa
 投入電力:96mW/mm2
 磁束密度:3mT
(TiCr下地層の成膜工程)
 次に、以下の成膜条件にて、CoZrNb層上にTiCr下地層を3nm成膜した。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:Ti50Cr50ターゲット
 到達真空度:5×10-5Pa
 ガス種:Ar
 ガス圧:0.5Pa
(NiW下地層の成膜工程)
 次に、以下の成膜条件にて、TiCr下地層上にNiW下地層を10nm成膜した。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:NiWターゲット
 到達真空度:5×10-5Pa
 ガス種:Ar
 ガス圧:0.5Pa
(第1のRu中間層の成膜工程)
 次に、以下の成膜条件にて、NiW下地層上に第1のRu中間層を10nm成膜した。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:Ruターゲット
 ガス種:Ar
 ガス圧:0.5Pa
(第2のRu中間層の成膜工程)
 次に、以下の成膜条件にて、第1のRu中間層上に第2のRu中間層を20nm成膜した。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:Ruターゲット
 ガス種:Ar
 ガス圧:1.5Pa
(磁気記録層の成膜工程)
 次に、以下の成膜条件にて、第2のRu中間層上に(CoCrPt)-(SiO2)磁気記録層を14nm成膜した。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:(Co70Cr15Pt1090-(SiO210ターゲット
 ガス種:Ar
 ガス圧:1.5Pa
(保護層の成膜工程)
 次に、以下の成膜条件にて、(CoCrPt)-(SiO2)磁気記録層上にカーボンからなる保護層を5nm成膜した。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:カーボンターゲット
 ガス種:Ar
 ガス圧:1.0Pa
(トップコート層の成膜工程)
 次に、潤滑剤を保護層上に塗布し、保護層上にトップコート層を成膜した。以上により、目的とする磁気テープが得られた。
(実施例2)
 SULの成膜工程において、長尺の高分子フィルムの幅方向(TD)に作用させる磁力の磁束密度を4.5mTに変更する以外は実施例1と同様にして磁気テープを得た。
(実施例3、4、5)
 単層構造のSULに代えて、APC-SULを成膜する以外は、実施例1と同様にして磁気テープを得た。APC-SULは、具体的には以下のようにして成膜された。
(第1の軟磁性層の成膜工程)
 まず、以下の成膜条件にて、TiCr下地層上に第1の軟磁性層としてCoZrNb層を50nm成膜した。この際、スパッタ装置のアノード-カソード間に、長尺の高分子フィルムの幅方向(TD)に平行な磁力を作用させた。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:CoZrNbターゲット
 ガス種:Ar
 ガス圧:0.1Pa
 磁束密度:4.5mT
(Ru中間層の成膜工程)
 次に、以下の成膜条件にて、CoZrNb層上にRu中間層を0.3nm、1.0nm、1.5nm成膜した。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:Ruターゲット
 ガス種:Ar
 ガス圧:0.3Pa
(第2の軟磁性層)
 次に、以下の成膜条件にて、Ru中間層上に第2の軟磁性層としてCoZrNb層を50nm成膜した。この際、スパッタ装置のアノード-カソード間に、長尺の高分子フィルムの幅方向(TD)に平行な磁力を作用させた。
 スパッタリング方式:DCマグネトロンスパッタリング方式
 ターゲット:CoZrNbターゲット
 ガス種:Ar
 ガス圧:0.1Pa
 磁束密度:4.5mT
(実施例6)
 TiCr下地層とNiW下地層とにより構成された2層構造の下地層に代えて、TiCr下地層のみにより構成された単層構造の下地層を成膜した。また、第1のRu中間層と第2のRu中間層とにより構成された2層構造の中間層に代えて、第2のRu中間層のみからなる単層構造の中間層を成膜した。これ以外のことは、実施例5と同様にして磁気テープを得た。
(実施例7、8)
 SULとしてのCoZrNb層の膜厚を50nm、33nmにする以外は実施例1と同様にして磁気テープを得た。
(比較例1)
 SULの成膜工程において、投入電力を40mW/mm2とし、かつ非磁性基体のTD方向に平行な磁力の磁束密度を2mTとする以外は実施例1と同様にして磁気テープを得た。
(比較例2)
 SULの成膜工程において、投入電力を55mW/mm2とし、かつ非磁性基体のTD方向に平行な磁力の磁束密度を2mTとする以外は実施例1と同様にして磁気テープを得た。
(比較例3)
 SULの成膜工程において、非磁性基体のTD方向に平行な磁力の磁束密度を2mTとする以外は実施例1と同様にして磁気テープを得た。
(比較例4)
 SULの成膜工程において、磁力の方向を長尺の高分子フィルムの幅方向(TD)から機械方向(MD)に変更する以外は実施例1と同様にして磁気テープを得た。
(特性評価)
 上述のようにして得られた実施例1~8、比較例1~4の磁気テープについて、以下の評価を行った。
(磁気特性)
 磁気テープのTD方向およびMD方向の角型比をVSMを用いて、10kOe以上の磁界を印加して測定した。図7A~図7Cに、実施例3~6、比較例1~3、実施例1、2、7、8および比較例4の磁気テープのヒステリシスループを示す。
 SULと記録層とを有する磁気テープでは、磁気テープの角型比はSUL単体の角型比Sqとほぼ同じとなることが、以下のようにして説明される。ここでは、実施例2の磁気テープを例として説明する。試料サイズは、直径6.35mmの円形である。SUL単体の飽和磁化量Msと試料体積Vの積であるMsV(SUL)と残留飽和磁化量Mrと試料体積Vの積であるMrV(SUL)は磁化困難軸方向において、それぞれ、MsV(SUL):2.71memu、MrV(SUL):0.27memuとなる。したがって、その角型比Sq(SUL)=MrV(SUL)/MsV(SUL)=0.1(10%)となる。
 また、記録層単体のMs(Rec.)とMrV(Rec.)は、それぞれ、MsV(Rec.):0.2memu、Mr(Rec.):0.01memuである。SULと記録層が共に存在する状態で測定した場合、飽和磁化量MsV(Tot.)と残留磁化量MrV(Tot.)は、それぞれ、MsV(Tot.):2.73memu、MrV(Tot.)0.28emuである。したがって、その角型比Sq(Tot.)は0.102(約10%)となり、磁気テープの角型比は、SUL単体の場合の角型比Sq(SUL)とほぼ同じとなることがわかる。
(記録再生特性)
 以下のようにして記録再生特性を評価した。まず、Single Pole型の記録ヘッドとトンネル磁気抵抗効果(Tunnel Magnetoresistive:TMR)型の再生ヘッドを用い、ピエゾステージによりこのヘッドを往復振動させることにより記録再生を行う、所謂、ドラッグテスタにて測定を行った。100Gb/in2を超える高記録密度記録領域では、垂直磁気記録媒体であっても主に記録の問題で、十分な記録再生特性を実現することが難しく、垂直方向に急峻な磁界を発生できる単磁極(Single Pole Type:SPT)ヘッドとSULを有する2層垂直記録媒体の組み合わせが必要である。また、巨大磁気抵抗ヘッドに比べて磁気抵抗変化率が大きく再生感度の高いトンネル磁気抵抗効果(Tunnel Magnetoresistive:TMR)型の再生ヘッドも必要と思われる。そのような理由から、ここでは、SPT記録ヘッドとTMR再生ヘッドによる評価を実施した。ここで、再生ヘッドのリードトラック幅は75nmとした。次に、記録波長を300kFCI(kilo Flux Changes per Inch)とし、SNRを、再生波形のピーク・トゥ・ピーク電圧と、ノズスペクトラムを0kFCI~600kFCIの帯域で積分した値から求めた電圧との比により計算して求めた。次に、下記の基準に基づき、求めたSNRを3段階で評価し、その結果を表3に示した。なお、表3中の「×」印、「○」印、「◎」印は、下記の基準に対応している。
 ×:SNRが16dB未満である
 ○:SNRが16dB以上19dB未満である
 ◎:SNBが19dB以上である
 一般に、記録再生システムを成立させるのに最低必要となるSNRは、波形等化やエラー補正を処理した後のSNR(所謂ディジタルSNR)において、16dB程度といわれている。更に、磁気テープと磁気ヘッドの摺動にて発生する出力低下や、磁気テープの変形などの実用上の特性低下を考慮した場合、更にSNRマージンを設定することが望ましい。このマージンを考慮すると、SNRは19dB以上であることが好ましいと考えられる。
 なお、本実施例の磁気テープでは、線記録密度が600kBPI(Bit Per Inch)であり、トラックピットを再生ヘッドのトラック幅の2倍として、トラック密度が169kTPI(Tracks Per Inch)であると考えると、600kBPI×169kTPI=101Gb/in2の面記録密度を実現できることになる。 
 表1に、実施例1~8、比較例1~4の磁気テープの磁気記録層、中間層、下地層の構成を示す。
Figure JPOXMLDOC01-appb-T000001
 表2に、実施例1~8、比較例1~4の磁気テープのSUL層の構成を示す。
Figure JPOXMLDOC01-appb-T000002
 表3に、実施例1~8、比較例1~4の磁気テープの磁気特性および記録再生特性の評価結果を示す。
Figure JPOXMLDOC01-appb-T000003
 上記評価結果から以下のことがわかる。
 機械方向の角型比を30%以下にすると、SNRを16%以上にできる。機械方向および幅方向の角型比の両方を10%以下にすると、SNRを19%以上にできる。機械方向および幅方向の角型比の両方を10%以下とするためには、SULをAPC-SULとし、中間層および下地層を2層構造とすることが好ましい。
 以上、本技術の実施形態およびその変形例、ならびに実施例について具体的に説明したが、本技術は、上述の実施形態およびその変形例、ならびに実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態およびその変形例、ならびに実施例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
 また、上述の実施形態およびその変形例、ならびに実施例の構成、方法、工程、形状、材料および数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、本技術は以下の構成を採用することもできる。
(1)
 可撓性を有する長尺の基体と、軟磁性層と、磁気記録層とを備え、
 上記基体の長手方向の角型比は、上記基体の短手方向の角型比以下または未満であり、
 上記基体の長手方向の角型比が30%以下である磁気記録媒体。
(2)
 上記基体の長手方向および短手方向の角型比がいずれも10%以下である(1)に記載の磁気記録媒体。
(3)
 上記基体の長手方向および短手方向の角型比がいずれも5%以下である(2)に記載の磁気記録媒体。
(4)
 上記軟磁性層の磁化容易軸の方向は、上記基体の長手方向である(1)から(3)のいずれかに記載の磁気記録媒体。
(5)
 上記軟磁性層は、第1の軟磁性層と、中間層と、第2の軟磁性層とを備える(1)から(3)のいずれかに記載の磁気記録媒体。
(6)
 上記第1の軟磁性層および上記第2の軟磁性層の磁化容易軸の方向がいずれも、上記基体の長手方向である(5)に記載の磁気記録媒体。
(7)
 上記軟磁性層と上記磁気記録層の間に設けられた下地層および中間層の少なくとも一方の層をさらに備える(1)から(6)のいずれかに記載の磁気記録媒体。
(8)
 上記下地層は、TiおよびCrを含んでいる(7)に記載の磁気記録媒体。
(9)
 上記下地層は、第1の下地層と第2の下地層とを備える(7)に記載の磁気記録媒体。
(10)
 上記第1の下地層は、上記軟磁性層側に設けられ、TiおよびCrを含み、
 上記第2の下地層は、上記中間層側に設けられ、NiおよびWを含んでいる(9)に記載の磁気記録媒体。
(11)
 上記中間層は、Ruを含んでいる(7)から(10)のいずれかに記載の磁気記録媒体。
(12)
 上記中間層は、第1の中間層と第2の中間層とを備える(7)から(10)のいずれかに記載の磁気記録媒体。
(13)
 上記第1の中間層および上記第2の中間層は、Ruを含んでいる(12)に記載の磁気記録媒体。
(14)
 上記記録層は、Co、PtおよびCrを含む粒子が酸化物で分離されたグラニュラ構造を有する(1)から(13)のいずれかに記載の磁気記録媒体。
(15)
 上記基体および上記軟磁性層の間に設けられた下地層をさらに備え、
 上記下地層は、アモルファス状態を有し、TiおよびCrを含んでいる(1)から(14)のいずれかに記載の磁気記録媒体。
(16)
 上記基体は、フィルムである(1)から(15)のいずれかに記載の磁気記録媒体。
(17)
 下記の一般式(1)で表されるカルボン酸系化合物の少なくとも1種を含む潤滑層をさらに備える(1)から(16)のいずれかに記載の磁気記録媒体。
一般式(1):
Figure JPOXMLDOC01-appb-C000007
(式中、Rfは非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基、Esはエステル結合、Rは、なくてもよいが、非置換若しくは置換の、また、飽和若しくは不飽和の炭化水素基である。)
(18)
 下記の一般式(2)および(3)で表されるカルボン酸系化合物の一方または両方を含む潤滑層をさらに備える(1)から(16)のいずれかに記載の磁気記録媒体。
一般式(2):
Figure JPOXMLDOC01-appb-C000008
(式中、Rfは、非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基である。)
一般式(3):
Figure JPOXMLDOC01-appb-C000009
(式中、Rfは、非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基である。)
(19)
 Rfは、総炭素数が6~50であり、且つフッ化炭化水素基の総炭素数が4~20である、飽和若しくは不飽和の含フッ素炭化水素である(17)または(18)に記載の磁気記録媒体。
 10  磁気記録媒体
 11  基体
 12、14  下地層
 14a  第1の下地層
 14b  第2の下地層
 13 軟磁性裏打ち層
 15  中間層
 15a  第1の中間層
 15b  第2の中間層
 16  磁気記録層
 17  保護層

Claims (19)

  1.  可撓性を有する長尺の基体と、軟磁性層と、磁気記録層とを備え、
     上記基体の長手方向の角型比は、上記基体の短手方向の角型比以下または未満であり、
     上記基体の長手方向の角型比が30%以下である磁気記録媒体。
  2.  上記基体の長手方向および短手方向の角型比がいずれも10%以下である請求項1に記載の磁気記録媒体。
  3.  上記基体の長手方向および短手方向の角型比がいずれも5%以下である請求項2に記載の磁気記録媒体。
  4.  上記軟磁性層の磁化容易軸の方向は、上記基体の長手方向である請求項1に記載の磁気記録媒体。
  5.  上記軟磁性層は、第1の軟磁性層と、中間層と、第2の軟磁性層とを備える請求項1に記載の磁気記録媒体。
  6.  上記第1の軟磁性層および上記第2の軟磁性層の磁化容易軸の方向がいずれも、上記基体の長手方向である請求項5に記載の磁気記録媒体。
  7.  上記軟磁性層と上記磁気記録層の間に設けられた下地層および中間層の少なくとも一方の層をさらに備える請求項1に記載の磁気記録媒体。
  8.  上記下地層は、TiおよびCrを含んでいる請求項7に記載の磁気記録媒体。
  9.  上記下地層は、第1の下地層と第2の下地層とを備える請求項7に記載の磁気記録媒体。
  10.  上記第1の下地層は、上記軟磁性層側に設けられ、TiおよびCrを含み、
     上記第2の下地層は、上記中間層側に設けられ、NiおよびWを含んでいる請求項9に記載の磁気記録媒体。
  11.  上記中間層は、Ruを含んでいる請求項7に記載の磁気記録媒体。
  12.  上記中間層は、第1の中間層と第2の中間層とを備える請求項7に記載の磁気記録媒体。
  13.  上記第1の中間層および上記第2の中間層は、Ruを含んでいる請求項12に記載の磁気記録媒体。
  14.  上記記録層は、Co、PtおよびCrを含む粒子が酸化物で分離されたグラニュラ構造を有する請求項1に記載の磁気記録媒体。
  15.  上記基体および上記軟磁性層の間に設けられた下地層をさらに備え、
     上記下地層は、アモルファス状態を有し、TiおよびCrを含んでいる請求項1に記載の磁気記録媒体。
  16.  上記基体は、フィルムである請求項1に記載の磁気記録媒体。
  17.  下記の一般式(1)で表されるカルボン酸系化合物の少なくとも1種を含む潤滑層をさらに備える請求項1に記載の磁気記録媒体。
    一般式(1):
    Figure JPOXMLDOC01-appb-C000010
    (式中、Rfは非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基、Esはエステル結合、Rは、なくてもよいが、非置換若しくは置換の、また、飽和若しくは不飽和の炭化水素基である。)
  18.  下記の一般式(2)および(3)で表されるカルボン酸系化合物の一方または両方を含む潤滑層をさらに備える請求項1に記載の磁気記録媒体。
    一般式(2):
    Figure JPOXMLDOC01-appb-C000011
    (式中、Rfは、非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基である。)
    一般式(3):
    Figure JPOXMLDOC01-appb-C000012
    (式中、Rfは、非置換若しくは置換の、また、飽和若しくは不飽和の、含フッ素炭化水素基或いは炭化水素基である。)
  19.  Rfは、総炭素数が6~50であり、且つフッ化炭化水素基の総炭素数が4~20である、飽和若しくは不飽和の含フッ素炭化水素である請求項18に記載の磁気記録媒体。
PCT/JP2015/005688 2014-11-18 2015-11-16 磁気記録媒体 WO2016079971A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/521,775 US10529367B2 (en) 2014-11-18 2015-11-16 Magnetic recording medium
JP2016559813A JP6531764B2 (ja) 2014-11-18 2015-11-16 磁気記録媒体
CN201580061456.1A CN107004429B (zh) 2014-11-18 2015-11-16 磁记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014234034 2014-11-18
JP2014-234034 2014-11-18

Publications (1)

Publication Number Publication Date
WO2016079971A1 true WO2016079971A1 (ja) 2016-05-26

Family

ID=56013544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005688 WO2016079971A1 (ja) 2014-11-18 2015-11-16 磁気記録媒体

Country Status (4)

Country Link
US (1) US10529367B2 (ja)
JP (1) JP6531764B2 (ja)
CN (1) CN107004429B (ja)
WO (1) WO2016079971A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171665A1 (ja) * 2018-03-09 2019-09-12 ソニー株式会社 磁気記録テープとその製造方法、磁気記録テープカートリッジ

Families Citing this family (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6316248B2 (ja) 2015-08-21 2018-04-25 富士フイルム株式会社 磁気テープおよびその製造方法
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
JP6552402B2 (ja) 2015-12-16 2019-07-31 富士フイルム株式会社 磁気テープ、磁気テープカートリッジ、磁気記録再生装置および磁気テープの製造方法
US10403319B2 (en) 2015-12-16 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer, tape cartridge, and recording and reproducing device
JP6430927B2 (ja) 2015-12-25 2018-11-28 富士フイルム株式会社 磁気テープおよびその製造方法
JP6465823B2 (ja) 2016-02-03 2019-02-06 富士フイルム株式会社 磁気テープおよびその製造方法
JP6427127B2 (ja) 2016-02-03 2018-11-21 富士フイルム株式会社 磁気テープおよびその製造方法
JP6467366B2 (ja) 2016-02-29 2019-02-13 富士フイルム株式会社 磁気テープ
JP6472764B2 (ja) 2016-02-29 2019-02-20 富士フイルム株式会社 磁気テープ
JP6474748B2 (ja) 2016-02-29 2019-02-27 富士フイルム株式会社 磁気テープ
JP6556096B2 (ja) 2016-06-10 2019-08-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6534637B2 (ja) 2016-06-13 2019-06-26 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6556100B2 (ja) 2016-06-22 2019-08-07 富士フイルム株式会社 磁気テープ
JP6534969B2 (ja) 2016-06-22 2019-06-26 富士フイルム株式会社 磁気テープ
JP6507126B2 (ja) 2016-06-23 2019-04-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6549528B2 (ja) 2016-06-23 2019-07-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6556102B2 (ja) 2016-06-23 2019-08-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6496277B2 (ja) 2016-06-23 2019-04-03 富士フイルム株式会社 磁気テープ
JP6556101B2 (ja) 2016-06-23 2019-08-07 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6498154B2 (ja) 2016-06-23 2019-04-10 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6717684B2 (ja) 2016-06-23 2020-07-01 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6549529B2 (ja) 2016-06-23 2019-07-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6529933B2 (ja) 2016-06-24 2019-06-12 富士フイルム株式会社 磁気テープ
JP6556107B2 (ja) 2016-08-31 2019-08-07 富士フイルム株式会社 磁気テープ
JP6552467B2 (ja) 2016-08-31 2019-07-31 富士フイルム株式会社 磁気テープ
JP6585570B2 (ja) 2016-09-16 2019-10-02 富士フイルム株式会社 磁気記録媒体およびその製造方法
JP6701072B2 (ja) 2016-12-27 2020-05-27 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP2018106778A (ja) 2016-12-27 2018-07-05 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6684203B2 (ja) 2016-12-27 2020-04-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6588002B2 (ja) 2016-12-27 2019-10-09 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6684204B2 (ja) * 2016-12-27 2020-04-22 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6684238B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ
JP6637456B2 (ja) 2017-02-20 2020-01-29 富士フイルム株式会社 磁気テープ
JP6684235B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6684234B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6649297B2 (ja) 2017-02-20 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6602806B2 (ja) 2017-02-20 2019-11-06 富士フイルム株式会社 磁気テープ
JP6684236B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6689222B2 (ja) 2017-02-20 2020-04-28 富士フイルム株式会社 磁気テープ
JP6689223B2 (ja) 2017-02-20 2020-04-28 富士フイルム株式会社 磁気テープ
JP6684237B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6649298B2 (ja) 2017-02-20 2020-02-19 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6684239B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ
JP6685248B2 (ja) 2017-02-20 2020-04-22 富士フイルム株式会社 磁気テープ
JP6602805B2 (ja) 2017-02-20 2019-11-06 富士フイルム株式会社 磁気テープ
JP6626032B2 (ja) 2017-03-29 2019-12-25 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6694844B2 (ja) 2017-03-29 2020-05-20 富士フイルム株式会社 磁気テープ装置、磁気再生方法およびヘッドトラッキングサーボ方法
JP6649313B2 (ja) 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6649314B2 (ja) 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6626031B2 (ja) 2017-03-29 2019-12-25 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6649312B2 (ja) 2017-03-29 2020-02-19 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6615814B2 (ja) 2017-03-29 2019-12-04 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6660336B2 (ja) 2017-03-29 2020-03-11 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6632561B2 (ja) 2017-03-29 2020-01-22 富士フイルム株式会社 磁気テープ装置および磁気再生方法
JP6615815B2 (ja) 2017-03-29 2019-12-04 富士フイルム株式会社 磁気テープ装置およびヘッドトラッキングサーボ方法
JP6632562B2 (ja) 2017-03-29 2020-01-22 富士フイルム株式会社 磁気テープ
JP6723198B2 (ja) 2017-06-23 2020-07-15 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6691512B2 (ja) 2017-06-23 2020-04-28 富士フイルム株式会社 磁気記録媒体
JP6723202B2 (ja) 2017-07-19 2020-07-15 富士フイルム株式会社 磁気テープ
JP6707061B2 (ja) 2017-07-19 2020-06-10 富士フイルム株式会社 磁気記録媒体
JP6723203B2 (ja) 2017-07-19 2020-07-15 富士フイルム株式会社 磁気テープ
US10854230B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854227B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
JP6717787B2 (ja) 2017-07-19 2020-07-08 富士フイルム株式会社 磁気テープおよび磁気テープ装置
US10839849B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
JP6714548B2 (ja) 2017-07-19 2020-06-24 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6678135B2 (ja) 2017-07-19 2020-04-08 富士フイルム株式会社 磁気記録媒体
JP6707060B2 (ja) 2017-07-19 2020-06-10 富士フイルム株式会社 磁気テープ
JP6717786B2 (ja) 2017-07-19 2020-07-08 富士フイルム株式会社 磁気テープおよび磁気テープ装置
JP6717785B2 (ja) 2017-07-19 2020-07-08 富士フイルム株式会社 磁気記録媒体
JP6884874B2 (ja) 2017-09-29 2021-06-09 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
US10978105B2 (en) 2017-09-29 2021-04-13 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
WO2019065200A1 (ja) 2017-09-29 2019-04-04 富士フイルム株式会社 磁気テープおよび磁気記録再生装置
US10854231B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854234B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854233B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10515657B2 (en) 2017-09-29 2019-12-24 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
JP6830931B2 (ja) 2018-07-27 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6784738B2 (ja) 2018-10-22 2020-11-11 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6830945B2 (ja) 2018-12-28 2021-02-17 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7042737B2 (ja) 2018-12-28 2022-03-28 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP7003073B2 (ja) 2019-01-31 2022-01-20 富士フイルム株式会社 磁気テープ、磁気テープカートリッジおよび磁気テープ装置
JP6635215B1 (ja) * 2019-08-16 2020-01-22 ソニー株式会社 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
JP6778804B1 (ja) 2019-09-17 2020-11-04 富士フイルム株式会社 磁気記録媒体および磁気記録再生装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004118977A (ja) * 2002-09-27 2004-04-15 Toshiba Corp 垂直磁気記録媒体及び磁気記録再生装置
JP2005196885A (ja) * 2004-01-08 2005-07-21 Sony Corp 磁気記録媒体
JP2006202373A (ja) * 2005-01-18 2006-08-03 Sony Corp 磁気記録媒体
JP2009223970A (ja) * 2008-03-17 2009-10-01 Hitachi Maxell Ltd 磁気記録媒体及びその製造方法
JP2012252774A (ja) * 2011-05-31 2012-12-20 Hgst Netherlands B V 倒立型Hk構造を有する垂直磁気記録媒体
JP2014081973A (ja) * 2012-10-12 2014-05-08 Toshiba Corp 磁気記録媒体の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625169B2 (ja) * 1988-09-05 1997-07-02 昭和電工株式会社 磁気ディスク媒体の製造方法
JPH06267057A (ja) * 1993-03-17 1994-09-22 Mitsubishi Kasei Corp 磁気記録媒体及びその製造方法
US6794058B2 (en) * 2000-09-12 2004-09-21 Shin-Etsu Chemical Co., Ltd. Flip-chip type semiconductor device
JP2002279615A (ja) 2001-03-19 2002-09-27 Sony Corp 磁気記録媒体
JP2003296913A (ja) * 2002-04-01 2003-10-17 Fuji Electric Co Ltd 磁気記録媒体およびその製造方法
JP2005190517A (ja) * 2003-12-24 2005-07-14 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録媒体及び磁気記憶装置
JP2005251373A (ja) * 2004-02-02 2005-09-15 Fujitsu Ltd 磁気記録媒体、その製造方法、および磁気記憶装置
US20070217067A1 (en) * 2004-03-26 2007-09-20 Kabushiki Kaisha Toshiba And Showa Denko K.K. Perpendicular Magnetic Recording Medium Using Soft Magnetic Layer Which Suppresses Noise Generation, And Perpendicular Magnetic Recording Apparatus Therewith
JP3796255B2 (ja) * 2004-07-12 2006-07-12 Tdk株式会社 磁気記録再生装置
JP2006031789A (ja) * 2004-07-14 2006-02-02 Tdk Corp 磁気記録再生装置
JP2008140460A (ja) * 2006-11-30 2008-06-19 Toshiba Corp 垂直磁気記録媒体及び磁気記録再生装置
KR20100074463A (ko) * 2008-12-24 2010-07-02 삼성전자주식회사 매체 독립 핸드 오버 메시지 전송의 보안 방법
JP6206252B2 (ja) * 2013-03-15 2017-10-04 ソニー株式会社 磁気記録媒体、サーボ信号記録装置及び磁気記録媒体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004118977A (ja) * 2002-09-27 2004-04-15 Toshiba Corp 垂直磁気記録媒体及び磁気記録再生装置
JP2005196885A (ja) * 2004-01-08 2005-07-21 Sony Corp 磁気記録媒体
JP2006202373A (ja) * 2005-01-18 2006-08-03 Sony Corp 磁気記録媒体
JP2009223970A (ja) * 2008-03-17 2009-10-01 Hitachi Maxell Ltd 磁気記録媒体及びその製造方法
JP2012252774A (ja) * 2011-05-31 2012-12-20 Hgst Netherlands B V 倒立型Hk構造を有する垂直磁気記録媒体
JP2014081973A (ja) * 2012-10-12 2014-05-08 Toshiba Corp 磁気記録媒体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171665A1 (ja) * 2018-03-09 2019-09-12 ソニー株式会社 磁気記録テープとその製造方法、磁気記録テープカートリッジ
JPWO2019171665A1 (ja) * 2018-03-09 2021-02-18 ソニー株式会社 磁気記録テープとその製造方法、磁気記録テープカートリッジ
JP7200986B2 (ja) 2018-03-09 2023-01-10 ソニーグループ株式会社 磁気記録テープとその製造方法、磁気記録テープカートリッジ

Also Published As

Publication number Publication date
US20170249966A1 (en) 2017-08-31
CN107004429B (zh) 2019-10-11
US10529367B2 (en) 2020-01-07
JPWO2016079971A1 (ja) 2017-08-24
CN107004429A (zh) 2017-08-01
JP6531764B2 (ja) 2019-06-19

Similar Documents

Publication Publication Date Title
JP6531764B2 (ja) 磁気記録媒体
US11302354B2 (en) Magnetic recording medium having controlled dimensional variation
JP6307879B2 (ja) 磁気記録媒体およびその製造方法
JP6590104B1 (ja) 磁気記録媒体
JP6825573B2 (ja) 磁気記録媒体
JP6610822B1 (ja) 磁気記録媒体
JP6610821B1 (ja) 磁気記録媒体
US10424329B2 (en) Magnetic recording medium
JP6221907B2 (ja) 磁気記録媒体
WO2022158314A1 (ja) 磁気記録媒体、磁気記録再生装置および磁気記録媒体カートリッジ
US12068012B2 (en) Magnetic recording medium
JP6733798B1 (ja) 磁気記録媒体
JP6733794B1 (ja) 磁気記録媒体
JP7074129B2 (ja) 磁気記録媒体
US11437066B2 (en) Magnetic recording tape and magnetic recording tape cartridge
WO2023013144A1 (ja) 磁気記録媒体および磁気記録媒体カートリッジ
JP2012033227A (ja) 磁気記録テープ及びその製造方法
JP2005149609A (ja) 磁気記録媒体及び磁気記録媒体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016559813

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15521775

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860291

Country of ref document: EP

Kind code of ref document: A1