[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016076409A1 - Method for operating regenerative ion exchange device - Google Patents

Method for operating regenerative ion exchange device Download PDF

Info

Publication number
WO2016076409A1
WO2016076409A1 PCT/JP2015/081934 JP2015081934W WO2016076409A1 WO 2016076409 A1 WO2016076409 A1 WO 2016076409A1 JP 2015081934 W JP2015081934 W JP 2015081934W WO 2016076409 A1 WO2016076409 A1 WO 2016076409A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
water
exchange resin
cleaning
ion exchange
Prior art date
Application number
PCT/JP2015/081934
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 宮▲崎▼
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2016076409A1 publication Critical patent/WO2016076409A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange

Definitions

  • the present invention relates to a method for operating a regenerative ion exchange apparatus including an anion exchange resin and a cation exchange resin, and in particular, an ion exchange apparatus in which ion exchange resin cleaning after regeneration of the ion exchange apparatus is performed with raw water. It relates to the driving method.
  • Ion exchange devices are widely used in pure water and ultrapure water production facilities in the electronics industry.
  • Japanese Patent Application Laid-Open No. 2011-72927 and Japanese Patent Application Laid-Open No. 2012-205993 divide the inside of the tower into two upper and lower chambers by a water-shielding partition plate, and one chamber is filled with an anion exchange resin.
  • the other chamber is filled with a cation exchange resin, and the upper chamber and the lower chamber are communicated with each other by a communication means routed outside the tower (Double Bed Polisher, hereinafter abbreviated as DBP). Is described).
  • DBP Double Bed Polisher
  • an acid solution or an alkali solution is separately supplied to each chamber during the regeneration of the ion exchange resin. Therefore, the cation exchange resin and the anion exchange resin are not mixed, and the partition plate that partitions both chambers is water-blocking, and the acid or alkali supplied to one chamber passes through the partition plate and the other The reverse regeneration is prevented without flowing into the chamber.
  • pure water is passed through each chamber instead of the acid solution and the alkali solution, and each path and resin are washed. Regenerated chemicals are accumulated between the inert resins packed in the upper part of the tower, and in order to stir and wash them, washing is performed in a downward flow.
  • pure water having a higher purity than DBP-treated water for example, UF brine water of a subsystem
  • UF brine water of a subsystem has been used as the pure water passed through each chamber in the cleaning process. This is to prevent contamination of the upper ion exchange resin on the treated water side during sampling when the washing is performed in a downward flow.
  • DBP raw water is used as the wash water in the downflow
  • the ion exchange resin on the treated water side is contaminated by ions contained in the raw water, resulting in a decrease in the quality of the reached water and deterioration of the water quality at the beginning of water collection after regeneration. Occur.
  • DBP uses high-purity water as cleaning water, and it is necessary to provide a water tank for storing the high-purity cleaning water.
  • the present invention has been made in view of the above-described conventional situation, and uses a raw water for washing after regeneration of an anion exchange resin and a cation exchange resin, and a regenerative ion exchange apparatus in which the water quality after regeneration is good. It is an object to provide a driving method.
  • the operation method of the regenerative ion exchange apparatus includes a first chamber and a second chamber each containing an ion exchange resin, the cation exchange resin being stored in one of the first chamber and the second chamber, An operation method of a regenerative ion exchange apparatus in which an anion exchange resin is accommodated and the first chamber and the second chamber are communicated with each other by a communicating means, in the order of the first chamber, the communicating means, and the second chamber
  • a regenerative ion exchange apparatus comprising: a water collection step for passing raw water; a regeneration step for regenerating the cation exchange resin and the anion exchange resin; and a washing step for washing the cation exchange resin and the anion exchange resin.
  • raw water is passed through the first chamber and the second chamber in an upward flow
  • washing step raw water is passed through the first chamber in an upward flow
  • the resin in the first chamber is washed, and the washing waste water is discharged from the first chamber.
  • a first cleaning step and after the first cleaning step, raw water is passed through the first chamber in an upward flow to clean the resin in the first chamber, and the waste water in the first chamber is discharged to the communication means.
  • the supply of raw water to the first chamber is continued between the first cleaning step and the second cleaning step, and the cleaning waste water flowing out from the first chamber is guided to the second chamber. It is preferable to shift to the second cleaning step by switching the communication means.
  • the regeneration step it is preferable to pass the regeneration solution in a downward flow in the first chamber and the second chamber.
  • At least a part of the cleaning waste water in the second chamber may be discharged from an extraction pipe provided at the top.
  • raw water is used for washing after regeneration of the anion exchange resin and the cation exchange resin.
  • first cleaning process raw water is circulated upward into the first chamber, and this cleaning wastewater is discharged out of the system. If the regenerative chemical component in the cleaning wastewater from the first cleaning step is reduced, the process proceeds to the second cleaning step, and the cleaning wastewater from the first chamber is circulated upwardly into the second chamber for cleaning. Drain the waste water from the system.
  • the regenerative drug component adhering to the ion exchange resin in the first chamber is removed in the first cleaning step and discharged out of the system, so that the regenerative drug component flows from the first chamber into the upper chamber in the second cleaning step. There is no.
  • the first chamber When the first chamber is filled with a cation exchange resin, cations in the wash water (raw water) are adsorbed on the lower cation exchange resin in the first chamber in the first and second cleaning steps. Since the cation exchange capacity of the entire cation exchange resin is large, the adsorption does not proceed to the upper cation exchange resin in the first chamber. Therefore, the cation concentration in the first chamber effluent after resuming water sampling is sufficiently low. Similarly, when the anion exchange resin is filled in the first chamber, the anion concentration in the first chamber effluent after resuming the sampling is sufficiently low.
  • the first chamber effluent is circulated upward into the second chamber, and the regenerated chemical component adhering to the ion exchange resin in the second chamber is removed.
  • the anion in the first chamber effluent is adsorbed to the lower anion exchange resin in the second chamber. Since the anion exchange capacity of the whole anion exchange resin is large, the adsorption does not proceed to the upper anion exchange resin. Therefore, the anion concentration in the second chamber effluent (treated water) after resuming water sampling is sufficiently low.
  • the cation concentration in the second chamber effluent (treated water) after resuming water sampling is sufficiently low. It will be a thing.
  • the ion exchange resin floats in the first chamber and the second chamber to form a fixed bed made of a floating layer. Therefore, when shifting from the first cleaning step to the second cleaning step, the flow of the raw water to the first chamber is continued without stopping, and the first chamber effluent is caused to flow into the second chamber by the communication means. It is preferable to start the second cleaning step. As described above, when the upward flow of raw water is continued and the process proceeds from the first cleaning step to the second cleaning step, the fixed bed (floating layer) of the ion exchange resin formed in the first chamber in the first cleaning step collapses. Without being performed, the second cleaning step is also maintained.
  • the sampling process is shifted from the second washing process to the sampling process, if the sampling of the raw water is started without stopping, the fixed bed (floating layer) of the ion exchange resin collapses. And maintain the flying state.
  • the ion exchange resin fixed bed formed in the washing process continues as it is to the water sampling process, the adsorption zone is not disturbed, and treated water with good water quality can be collected.
  • the ion exchange resin settles down sequentially from the lower part of the fixed bed.
  • the ion exchange resin is agitated, and a part of the cation exchange resin (or anion exchange resin having a large cation adsorption amount) located relatively lower moves to the upper part of the ion exchange resin bed. Therefore, the treated water chamber may be deteriorated early in the water sampling process after resuming water sampling.
  • the regenerative medicine is distributed downward in the regeneration process.
  • the regenerative drug is flowed downward, the upper part of the ion exchange resin bed is sufficiently regenerated, so at the start of the water sampling process with the upward flow of water, the ion exchange resin has a higher ion exchange capacity as the upper part of the ion exchange resin bed. Will exist.
  • the water sampling step when raw water is circulated upward in the ion exchange resin bed, the quality of the treated water is improved and the amount of water that can be collected increases.
  • FIG. 1a shows a water sampling process of the ion exchange apparatus according to the embodiment
  • FIG. 1b is a schematic cross-sectional view showing a regeneration process
  • 2a and 2b are schematic sectional views showing a cleaning process of the ion exchange apparatus according to the embodiment. It is a schematic sectional drawing which shows the ion exchange apparatus which concerns on another embodiment.
  • 4a and 4b are explanatory diagrams of Experimental Examples 1 to 3.
  • FIG. 6 is a graph showing the results of Experimental Examples 1 to 3. It is a graph which shows the result of an Example and a comparative example.
  • 7a and 7b are explanatory diagrams of comparative examples 1 and 2.
  • FIG. 1a shows a water sampling process of the ion exchange apparatus according to the embodiment
  • FIG. 1b is a schematic cross-sectional view showing a regeneration process
  • 2a and 2b are schematic sectional views showing a cleaning process of the ion exchange apparatus according to the embodiment. It is a schematic sectional drawing which shows the ion
  • the tower 1 of the ion exchange apparatus has an outer shell made up of a cylindrical portion 1a whose vertical direction is the cylinder axis direction, a top end plate portion 1b, and a bottom end plate portion 1c.
  • the end plate portion 1b is convexly curved upward
  • the end plate portion 1c is convexly curved downward.
  • the inside of the tower body 1 is divided into two chambers, an upper chamber 20 and a lower chamber 30, by a water shielding partition plate 2.
  • the partition plate 2 is made of metal or synthetic resin that does not allow water to pass through at all, and is curved downward and convex like the end plate portion 1c.
  • the peripheral edge of the partition plate 2 is watertightly coupled to the inner peripheral surface of the cylindrical portion 1a by welding or the like.
  • the first water collection / distribution member 4 is disposed in the upper part of the upper chamber 20, and the upper water supply / discharge pipe 3 is connected to the first water collection / distribution member 4.
  • a second water collection / distribution member 6 is installed in the lower part of the upper chamber 20, and the first communication pipe 5 is connected to the water collection / distribution member 6.
  • a third water collection / distribution member 9 is installed in the upper part of the lower chamber 30, and the second communication pipe 8 is connected to the water collection / distribution member 9.
  • the communication pipes 5 and 8 are connected by a third communication pipe 11, and a valve 12 is installed in the communication pipe 11.
  • Valves 7 and 10 are provided at the end portions of the communication pipes 5 and 8 as means for supplying and discharging the regenerated liquid.
  • a fourth water collection / distribution member 14 is installed in the lower part of the lower chamber 30, and the lower water supply / discharge pipe 13 is connected to the water collection / distribution member 14.
  • the inside of the upper chamber 20 is filled with an anion exchange resin 21, and a granular inert resin 22 is filled above the anion exchange resin 21.
  • the first water collection / distribution member 4 is embedded in the inert resin 22.
  • the inside of the lower chamber 30 is filled with a cation exchange resin 31, and a granular inert resin 32 is filled above the cation exchange resin 31.
  • the third water collecting and distributing member 9 is embedded in the inert resin 32.
  • the inert resin a polyacrylonitrile resin having a specific gravity smaller than that of the ion exchange resin is used.
  • the particle size of the inert resin is preferably about the same as that of the ion exchange resin.
  • the lower portion of the upper chamber 20 and the lower portion of the lower chamber 30 are filled with particles having a specific gravity greater than that of an ion exchange resin such as glass beads, and the water collecting and distributing members 6 and 14 are placed in the high specific gravity particle packed layer. It may be embedded in In this way, the water that flows out from the water collection and distribution members 6 and 14 is uniformly distributed and supplied into the anion exchange resin 21 and the cation exchange resin 31.
  • the water collecting and distributing members 4, 6, 9, and 14 pass water, but block the passage of the ion exchange resin, and the water collecting plates used in the conventional ion exchange apparatus and radially extended.
  • a strainer provided with many slits in the pipe can be used.
  • the size of the ion exchange resin is about 0.4 mm, it is preferable to use a strainer having a slit width of about 0.2 mm.
  • the water collecting and distributing members 4, 6, 9, and 14 have shapes along the end plate portion 1b, the partition plate 2, and the end plate portion 1c, and have a small dead space along the end plate portion 1b, the partition plate 2, and the end plate portion 1c. It has become.
  • FIG. 1a The flow at the time of production (water sampling) of deionized water using this ion exchange device is shown in FIG. 1a.
  • the valve 12 is opened, the valves 7 and 10 are closed, and raw water (treated water) is supplied from the lower supply / discharge pipe 13.
  • This raw water is a water collection / distribution member 14, a cation exchange resin 31, an inert resin 32, a water collection / distribution member 9, a communication pipe 8, 11, 5, a water collection / distribution member 6, an anion exchange resin 21, an inert resin 22, and a water collection / distribution member 4. Then, it flows in the order of the upper supply / discharge pipe 3 and is taken out as treated water (deionized water).
  • the first cleaning process is performed as shown in FIG. 2a. That is, the valves 7 and 12 are closed, the valve 10 is opened, and raw water is supplied from the lower supply / discharge pipe 13.
  • the raw water flows in the order of the lower supply / discharge pipe 13, the water collection / distribution member 14, the cation exchange resin 31, the inert resin 32, the water collection / distribution member 9, and the third communication pipe 8, and flows out as washing waste water. Washing wastewater is sent to a wastewater treatment facility.
  • cleaning process which rinses the cation exchange resin 31 and the inert resin 32 of the lower chamber 30 is implemented.
  • the liquid flow to the upper chamber 20 is stopped.
  • the first cleaning step is performed until the electrical conductivity or acid concentration of the cleaning wastewater in the lower chamber 30 discharged from the third communication pipe 8 becomes a predetermined value or less.
  • the raw water supplied from the lower supply / discharge pipe 13 includes a water collection / distribution member 14, a cation exchange resin 31, an inert resin 32, a water collection / distribution member 9, communication pipes 8, 11, 5, a water collection / distribution member 6, an anion exchange resin 21, It flows in the order of the inert resin 22, the water collection and distribution member 4, and the upper water supply / discharge pipe 3, and flows out as washing waste water.
  • the second cleaning step of rinsing the cation exchange resin 31 and the inert resin 32 in the lower chamber 30 and the anion exchange resin 21 and the inert resin 22 in the upper chamber 20 is performed.
  • the second cleaning step is performed until the specific resistance value of the cleaning drainage of the upper chamber 20 discharged from the upper supply / discharge pipe 3 becomes a predetermined value or more, for example, 18 M ⁇ ⁇ cm or more.
  • the anion exchange resin 21 and the cation exchange resin 31 are not mixed at all in the regeneration step shown in FIG. 1b. Further, the regeneration alkaline solution does not flow into the lower chamber 30 and the acid solution is not mixed into the upper chamber 20, and reverse regeneration is completely prevented. In addition, the anion exchange resin 21 and the cation exchange resin 31 can be regenerated at the same time, and the regenerating time is remarkably short. In addition, the regenerant is passed in a downward flow, and the fully regenerated ion exchange resin is fixed to the top of each ion exchange resin by filling with the inert resin, and the outlet of the water to be treated at the time of sampling Since this ion exchange resin is located on the side, high-quality treated water can be obtained. Further, the flow of the regenerant in the downward flow does not flow the resin, so that the flow rate can be increased compared with the flow of the regenerant in the upward flow, and the regeneration efficiency is good.
  • the first cleaning step and the second cleaning step cations in the cleaning water (raw water) are adsorbed on the lower cation exchange resin 31 in the lower chamber 30, but the upper cation exchange resin 31 in the lower chamber 30 is not absorbed. Adsorption does not progress. Therefore, the cation concentration in the outflow water of the lower chamber 30 after resuming the sampling is sufficiently low.
  • the lower chamber 30 effluent is circulated upward into the upper chamber 20, and anions in the lower chamber 30 effluent (mainly anions contained in the raw water) are anion exchanged in the lower portion of the upper chamber 20. Although it adsorbs to the resin 21, the adsorption does not proceed to the upper anion exchange resin 21 in the upper chamber 20. Therefore, the anion concentration in the upper chamber 20 effluent (treated water) after resuming water sampling is sufficiently low.
  • the ion exchange resin When starting the flow of raw water in the upward flow in the washing process, the ion exchange resin rises and forms a fixed bed. If the flow of raw water is stopped before the water sampling process, the ion exchange resin flows and settles and the adsorption zone is disturbed, and in the subsequent upstream water sampling process, the quality of the treated water may deteriorate. . According to the present embodiment, the flow of the raw water in the upward flow is continued until the cleaning process returns to the water sampling process. Maintain and prevent degradation of treated water quality.
  • This ion-exchange apparatus is one in which one tower body 1 is partitioned into two upper and lower chambers by one partition plate 2, and the height of the tower body is low and the installation space is also small. Also, the pipes 5, 11, and 8 communicating the upper chamber 20 and the lower chamber 30 can be shortened.
  • the water collecting and distributing members 4, 6, 9, and 14 are provided along the end plate portion 1b, the partition plate 2, and the end plate portion 1c, so that local retention of water is prevented.
  • the upper chamber 20 and the lower chamber 30 are filled with inert resins 22 and 32, and the flow of the anion exchange resin 21 and the cation exchange resin 31 is prevented. Are evenly in contact with the anion exchange resin 21 and the cation exchange resin 31, so that high-quality deionized water can be obtained and sufficient regeneration can be performed.
  • the anion exchange resin is accommodated in the upper chamber 20 and the cation exchange resin is accommodated in the lower chamber 30, but the reverse may be possible.
  • the upper chamber 20 and the lower chamber 30 communicate with each other via the pipes 5, 11, and 8, but the present invention is not limited to this as long as the outside of the tower body 1 is routed.
  • the three valves 7, 10, 12 are used, but the flow path may be switched using two three-way valves.
  • an extraction pipe 42 as a means for extracting washing wastewater may be connected to the top of the tower 1.
  • the extraction pipe 42 is provided with a valve 41.
  • a particle outflow prevention member (not shown) such as a mesh or a strainer is installed at the opening to the upper chamber 20 of the extraction pipe 42.
  • the valve 41 is closed, and the flow of the liquid is the same as in FIGS. 1a, 1b, and 2a.
  • the valve 41 is opened, and a part of the cleaning waste water in the upper chamber 20 is discharged from the extraction pipe 42. Since washing waste water is also discharged from the extraction pipe 42, regeneration liquid discharge (rinsing) at the top of the tower is promoted.
  • raw water may be used as dilution water for the regenerant.
  • the atmosphere in the tower is in a state where HCl of% order, that is, H + ions are present. Since cations (Na, Ca, etc.) contained in the raw water as dilution water are at the mg / L level, cations in the raw water for dilution are hardly adsorbed on the cation exchange resin in the regeneration step.
  • raw water as dilution water, the cost of regeneration treatment can be reduced.
  • the above ion exchange apparatus may be installed in a plurality of towers, for example, two towers in parallel, and water may be collected in one apparatus and the other apparatus may be used as a spare.
  • the other (preliminary) apparatus starts the water sampling process, so that water sampling can be continued.
  • the ion exchange apparatus that has completed the regeneration / washing process waits until the other ion exchange apparatus moves to the regeneration process.
  • the ion exchange device partitions the inside of the tower body 1 into the two chambers of the upper chamber 20 and the lower chamber 30 by the partition plate 2, and accommodates the cation exchange resin in one of the upper chamber 20 and the lower chamber 30.
  • the structure (2 beds and 1 tower) containing the anion exchange resin is used, but the tower containing the cation exchange resin, the tower containing the anion exchange resin, and the communication pipe connecting these two towers ( 2 beds, 2 towers, 2 beds, 3 towers, etc.).
  • Tower diameter 500mm Tower height: 5000 mm Upper chamber volume: 200L Lower chamber volume: 200L
  • a solution obtained by dissolving NaCl in ultrapure water so as to have a concentration of 1 ppm was used for the following water sampling process, regeneration process, washing process and test water sampling.
  • the cleaning process needs to be an upflow instead of a downflow.
  • the fact that the cleaning is performed by upflow means that the ion exchange resin in the tower is once floated. Once the ion-exchange resin is floated and a fixed bed is formed, if it is stopped after that, the ion-exchange resin settles while flowing, so the adsorption zone is disturbed and the water quality is changed even if the up-flow sampling is performed again. A decline is inevitable. Therefore, when washing is performed by upflow, it is necessary to shift to the water sampling step without stopping upflow water flow.
  • Example 1 Raw water (NaCl dissolved in ultrapure water to a NaCl concentration of 2.5 ppm, conductivity 0.55 mS / m) in the same ion exchanger as in Experimental Examples 1 to 3 was the same as in Experimental Examples 1 to 3. The water sampling process was carried out. Next, regeneration was performed in the same manner as in Experimental Examples 1 to 3. Then, according to the procedure of FIG. 2a, 2b, the 1st and 2nd washing
  • Example 1 After the washing drainage of the lower chamber 30 discharged from the third communication pipe 8 becomes pH 4.5, the supply of raw water is continued, the valves 7 and 10 are closed, the valve 12 is opened, and the second washing step Went.
  • Example 1 as shown in FIG. 7b, the outflow water of the upper chamber 20 discharged from the upper supply / discharge pipe 3 is returned to the raw water side and circulated. The change over time in the specific resistance value of the effluent of the upper supply / discharge pipe 3 after the circulation water flow was started was measured. The results are shown in FIG.
  • Example 1 in which the washing treatment after regeneration was performed by passing simulated raw water through the lower chamber in an upward flow, and then continuously flowing upward from the lower chamber to the upper chamber, In Comparative Example 1 in which ultrapure water was passed through each of the lower chambers in a downward flow, the rise in specific resistance value and the water quality of the treated water were comparable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

Provided is a method for operating a regenerative ion exchange device in which raw water is used for cleaning after regeneration of an ion exchange resin, and excellent post-regeneration water quality is obtained. In the ion exchange device, a cation exchange resin 31 is contained in one of a first chamber 30 and a second chamber 20, and an anion exchange resin 21 is contained in the other of the first chamber 30 and the second chamber 20. The first chamber 30 and the second chamber 20 are made to communicate with each other by communication means 5, 8, 11. This method for operating an ion exchange device is provided with: a water collection step for sequentially passing raw water through the first chamber 30, the communication means, and the second chamber 20; a regeneration step for regenerating the cation exchange resin 31 and the anion exchange resin 21; a first cleaning step for passing raw water as an upward flow through the second chamber 20 and cleaning the resin in the second chamber 20 after the regeneration step; and a second cleaning step for passing raw water as an upward flow through the first chamber 30 and cleaning the resin in the first chamber 30 after the first cleaning step, feeding the cleaning waste water from the first chamber 30 though the communication means to the second chamber 20 and passing the cleaning waste water as an upward flow, and cleaning the resin in the second chamber 20.

Description

再生型イオン交換装置の運転方法Operation method of regenerative ion exchanger
 本発明は、アニオン交換樹脂とカチオン交換樹脂とを備えた再生型のイオン交換装置の運転方法に関し、特に、イオン交換装置の再生後のイオン交換樹脂洗浄を原水で行うようにしたイオン交換装置の運転方法に関する。 TECHNICAL FIELD The present invention relates to a method for operating a regenerative ion exchange apparatus including an anion exchange resin and a cation exchange resin, and in particular, an ion exchange apparatus in which ion exchange resin cleaning after regeneration of the ion exchange apparatus is performed with raw water. It relates to the driving method.
 電子産業等における純水や超純水製造設備などにおいて、イオン交換装置が広く用いられている。このイオン交換装置として、特開2011-72927号公報及び特開2012-205993号公報には、塔内を遮水性の仕切板によって上下2室に区画し、一方の室にアニオン交換樹脂を充填し、他方の室にカチオン交換樹脂を充填し、塔外を引き回された連通手段によって上室と下室とが連通された2床1塔型イオン交換装置(Double Bed Polisher、以下DBPと略すことがある。)が記載されている。 Ion exchange devices are widely used in pure water and ultrapure water production facilities in the electronics industry. As this ion exchange device, Japanese Patent Application Laid-Open No. 2011-72927 and Japanese Patent Application Laid-Open No. 2012-205993 divide the inside of the tower into two upper and lower chambers by a water-shielding partition plate, and one chamber is filled with an anion exchange resin. The other chamber is filled with a cation exchange resin, and the upper chamber and the lower chamber are communicated with each other by a communication means routed outside the tower (Double Bed Polisher, hereinafter abbreviated as DBP). Is described).
 このDBPでは、イオン交換樹脂の再生時に、各室に別々に酸溶液又はアルカリ溶液が供給される。従って、カチオン交換樹脂とアニオン交換樹脂とが混合することがなく、しかも、両室を区画する仕切板は遮水性であり、一方の室に供給された酸又はアルカリが仕切板を通過して他方の室に流入することがなく、逆再生が防止される。再生終了後、酸溶液、アルカリ溶液の代わりに、各室に純水を通水し、各経路及び樹脂を洗浄する。塔内上部に充填している不活性樹脂間に再生薬品が溜まっており、これを攪拌洗浄するために、洗浄は下向流で実施される。 In this DBP, an acid solution or an alkali solution is separately supplied to each chamber during the regeneration of the ion exchange resin. Therefore, the cation exchange resin and the anion exchange resin are not mixed, and the partition plate that partitions both chambers is water-blocking, and the acid or alkali supplied to one chamber passes through the partition plate and the other The reverse regeneration is prevented without flowing into the chamber. After completion of the regeneration, pure water is passed through each chamber instead of the acid solution and the alkali solution, and each path and resin are washed. Regenerated chemicals are accumulated between the inert resins packed in the upper part of the tower, and in order to stir and wash them, washing is performed in a downward flow.
 従来、洗浄工程において各室に通水される純水には、DBP処理水よりも高純度の純水、例えばサブシステムのUFブライン水などが用いられていた。これは、洗浄を下向流で実施する際に、採水時は処理水側となる上層のイオン交換樹脂が汚染されることを防止するためである。下向流での洗浄水にDBP原水を用いた場合、原水中に含まれるイオンにより処理水側のイオン交換樹脂が汚染し、到達水質の低下や、再生後の採水開始当初の水質悪化が起こる。このため、DBPでは洗浄水として高純度水を用いるようにしており、この高純度の洗浄水を貯留する水槽を設ける必要があった。 Conventionally, pure water having a higher purity than DBP-treated water, for example, UF brine water of a subsystem, has been used as the pure water passed through each chamber in the cleaning process. This is to prevent contamination of the upper ion exchange resin on the treated water side during sampling when the washing is performed in a downward flow. When DBP raw water is used as the wash water in the downflow, the ion exchange resin on the treated water side is contaminated by ions contained in the raw water, resulting in a decrease in the quality of the reached water and deterioration of the water quality at the beginning of water collection after regeneration. Occur. For this reason, DBP uses high-purity water as cleaning water, and it is necessary to provide a water tank for storing the high-purity cleaning water.
 一方、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とが混合された混合イオン交換樹脂層を有する混床式イオン交換装置では、原水槽の水を用いて再生することが多い。従って、DBPでは、高純度の洗浄水を貯留する水槽が必須であることがコストの増加を招き、DBPの適用拡大にとって不利となっていた。 On the other hand, in a mixed bed type ion exchange apparatus having a mixed ion exchange resin layer in which a strongly acidic cation exchange resin and a strongly basic anion exchange resin are mixed, regeneration is often performed using water in a raw water tank. Therefore, in DBP, the necessity of a water tank for storing high-purity cleaning water has led to an increase in cost, which is disadvantageous for the expansion of DBP application.
特開2011-72927号公報JP 2011-72927 A 特開2012-205993号公報JP 2012-205993 A
 本発明は、上記従来の実状に鑑みてなされたものであり、アニオン交換樹脂及びカチオン交換樹脂の再生後の洗浄に原水を使用するとともに、再生後の水質が良好となる再生型イオン交換装置の運転方法を提供することを課題とする。 The present invention has been made in view of the above-described conventional situation, and uses a raw water for washing after regeneration of an anion exchange resin and a cation exchange resin, and a regenerative ion exchange apparatus in which the water quality after regeneration is good. It is an object to provide a driving method.
 本発明の再生型イオン交換装置の運転方法は、それぞれイオン交換樹脂を収容する第1室及び第2室を有し、第1室及び第2室の一方にカチオン交換樹脂が収容され、他方にアニオン交換樹脂が収容され、該第1室と第2室とが連通手段によって連通されている再生型イオン交換装置の運転方法であって、該第1室、連通手段、及び第2室の順に原水を通水する採水工程と、該カチオン交換樹脂及び該アニオン交換樹脂を再生する再生工程と、該カチオン交換樹脂及び該アニオン交換樹脂を洗浄する洗浄工程と、を有する再生型イオン交換装置の運転方法において、該採水工程では、該第1室及び第2室に原水を上向流で通水し、該洗浄工程は、該第1室に原水を上向流で通水して該第1室内の樹脂を洗浄し、洗浄排水を該第1室から排出する第1洗浄工程と、該第1洗浄工程後に、該第1室に原水を上向流で通水して該第1室内の樹脂を洗浄し、該第1室の洗浄排水を該連通手段により該第2室に供給し、該第2室に該洗浄排水を上向流で通水して該第2室内の樹脂を洗浄する第2洗浄工程と、を備えるものである。 The operation method of the regenerative ion exchange apparatus according to the present invention includes a first chamber and a second chamber each containing an ion exchange resin, the cation exchange resin being stored in one of the first chamber and the second chamber, An operation method of a regenerative ion exchange apparatus in which an anion exchange resin is accommodated and the first chamber and the second chamber are communicated with each other by a communicating means, in the order of the first chamber, the communicating means, and the second chamber A regenerative ion exchange apparatus comprising: a water collection step for passing raw water; a regeneration step for regenerating the cation exchange resin and the anion exchange resin; and a washing step for washing the cation exchange resin and the anion exchange resin. In the operation method, in the water sampling step, raw water is passed through the first chamber and the second chamber in an upward flow, and in the washing step, raw water is passed through the first chamber in an upward flow, The resin in the first chamber is washed, and the washing waste water is discharged from the first chamber. A first cleaning step, and after the first cleaning step, raw water is passed through the first chamber in an upward flow to clean the resin in the first chamber, and the waste water in the first chamber is discharged to the communication means. A second cleaning step of supplying the second chamber to the second chamber and passing the cleaning wastewater through the second chamber in an upward flow to clean the resin in the second chamber.
 本発明では、前記第1洗浄工程と前記第2洗浄工程との間で、前記第1室への原水の供給を継続させ、第1室から流出する洗浄排水を第2室に導くように前記連通手段を切り替えることにより第2洗浄工程に移行することが好ましい。 In the present invention, the supply of raw water to the first chamber is continued between the first cleaning step and the second cleaning step, and the cleaning waste water flowing out from the first chamber is guided to the second chamber. It is preferable to shift to the second cleaning step by switching the communication means.
 本発明では、前記第2洗浄工程後、前記第1室へ原水を連続して通水しながら採水工程に復帰することが好ましい。 In the present invention, after the second cleaning step, it is preferable to return to the water sampling step while continuously passing raw water through the first chamber.
 前記再生工程では、前記第1室及び第2室において再生液を下向流で通水することが好ましい。 In the regeneration step, it is preferable to pass the regeneration solution in a downward flow in the first chamber and the second chamber.
 本発明では、前記第2洗浄工程にて、前記第2室の洗浄排水の少なくとも一部を頂部に設けた抜出管から排出するようにしてもよい。 In the present invention, in the second cleaning step, at least a part of the cleaning waste water in the second chamber may be discharged from an extraction pipe provided at the top.
 本発明によれば、アニオン交換樹脂及びカチオン交換樹脂の再生後の洗浄に原水を使用する。本発明では、洗浄工程の当初(第1洗浄工程)において、第1室に原水を上向流通水し、この洗浄排水を系外に排出する。第1洗浄工程の洗浄排水中の再生薬剤成分が低下してきたならば第2洗浄工程に移行し、第1室からの洗浄排水を第2室に上向流通水して洗浄し、第2室の洗浄排水を系外に排出する。 According to the present invention, raw water is used for washing after regeneration of the anion exchange resin and the cation exchange resin. In the present invention, at the beginning of the cleaning process (first cleaning process), raw water is circulated upward into the first chamber, and this cleaning wastewater is discharged out of the system. If the regenerative chemical component in the cleaning wastewater from the first cleaning step is reduced, the process proceeds to the second cleaning step, and the cleaning wastewater from the first chamber is circulated upwardly into the second chamber for cleaning. Drain the waste water from the system.
 第1室内のイオン交換樹脂に付着した再生薬剤成分は、第1洗浄工程において除去され、系外に排出されるので、第2洗浄工程において第1室内から再生薬剤成分が上室に流入することはない。 The regenerative drug component adhering to the ion exchange resin in the first chamber is removed in the first cleaning step and discharged out of the system, so that the regenerative drug component flows from the first chamber into the upper chamber in the second cleaning step. There is no.
 第1室にカチオン交換樹脂を充填した場合、第1洗浄工程及び第2洗浄工程では、洗浄水(原水)中のカチオンが、第1室内の下部のカチオン交換樹脂に吸着するが、第1室内のカチオン交換樹脂全体のカチオン交換容量が大きいので、第1室内の上部のカチオン交換樹脂にまでは吸着が進行しない。そのため、採水再開後の第1室流出水中のカチオン濃度は十分に低いものとなる。第1室内にアニオン交換樹脂を充填した場合も同様に、採水再開後の第1室流出水中のアニオン濃度は十分に低いものとなる。 When the first chamber is filled with a cation exchange resin, cations in the wash water (raw water) are adsorbed on the lower cation exchange resin in the first chamber in the first and second cleaning steps. Since the cation exchange capacity of the entire cation exchange resin is large, the adsorption does not proceed to the upper cation exchange resin in the first chamber. Therefore, the cation concentration in the first chamber effluent after resuming water sampling is sufficiently low. Similarly, when the anion exchange resin is filled in the first chamber, the anion concentration in the first chamber effluent after resuming the sampling is sufficiently low.
 第2洗浄工程では、第1室流出水が第2室に上向流通水され、第2室内のイオン交換樹脂に付着していた再生薬剤成分が除去される。第1室内にカチオン交換樹脂が充填され、第2室内にアニオン交換樹脂が充填されている場合、第1室流出水中のアニオンが第2室内の下部のアニオン交換樹脂に吸着するが、第2室内のアニオン交換樹脂全体のアニオン交換容量が大きいので、上部のアニオン交換樹脂にまでは吸着が進行しない。そのため、採水再開後の第2室流出水(処理水)中のアニオン濃度は十分に低いものとなる。第1室内にアニオン交換樹脂が充填され、第2室内にカチオン交換樹脂が充填されている場合も同様に、採水再開後の第2室流出水(処理水)中のカチオン濃度は十分に低いものとなる。 In the second washing step, the first chamber effluent is circulated upward into the second chamber, and the regenerated chemical component adhering to the ion exchange resin in the second chamber is removed. When the first chamber is filled with the cation exchange resin and the second chamber is filled with the anion exchange resin, the anion in the first chamber effluent is adsorbed to the lower anion exchange resin in the second chamber. Since the anion exchange capacity of the whole anion exchange resin is large, the adsorption does not proceed to the upper anion exchange resin. Therefore, the anion concentration in the second chamber effluent (treated water) after resuming water sampling is sufficiently low. Similarly, when the first chamber is filled with an anion exchange resin and the second chamber is filled with a cation exchange resin, the cation concentration in the second chamber effluent (treated water) after resuming water sampling is sufficiently low. It will be a thing.
 このように、再生後の洗浄工程で洗浄水として原水を使用した場合でも採水再開直後から処理水の水質が良好となる。 Thus, even when raw water is used as the washing water in the washing step after regeneration, the quality of the treated water is improved immediately after resuming the sampling.
 また、再生後の洗浄に原水を使用するため、高純度の純水等よりなる洗浄水を貯留する水槽を設ける必要がなく、コストを削減することができる。 Also, since raw water is used for cleaning after regeneration, there is no need to provide a water tank for storing cleaning water made of high-purity pure water or the like, and costs can be reduced.
 本発明では、第1及び第2洗浄工程において洗浄水を上向流通水すると、イオン交換樹脂が第1室及び第2室内で浮上して浮上層よりなる固定床を形成する。従って、第1洗浄工程から第2洗浄工程に移行する場合には、第1室への原水の通水を停止せずに継続し、第1室流出水を連通手段によって第2室に流入させて第2洗浄工程を開始するのが好ましい。このように原水の上向流通水を継続したまま第1洗浄工程から第2洗浄工程に移行すると、第1洗浄工程で第1室内に形成されたイオン交換樹脂の固定床(浮上層)が崩落することなく第2洗浄工程でも維持される。 In the present invention, when the cleaning water flows upward in the first and second cleaning steps, the ion exchange resin floats in the first chamber and the second chamber to form a fixed bed made of a floating layer. Therefore, when shifting from the first cleaning step to the second cleaning step, the flow of the raw water to the first chamber is continued without stopping, and the first chamber effluent is caused to flow into the second chamber by the communication means. It is preferable to start the second cleaning step. As described above, when the upward flow of raw water is continued and the process proceeds from the first cleaning step to the second cleaning step, the fixed bed (floating layer) of the ion exchange resin formed in the first chamber in the first cleaning step collapses. Without being performed, the second cleaning step is also maintained.
 さらに、この第2洗浄工程から採水工程に移行するに際しても、原水の上向流通水を停止させずに採水を開始するようにすると、イオン交換樹脂の固定床(浮上層)が崩落せずに、浮上状態を維持する。このように、洗浄工程で形成されたイオン交換樹脂固定床がそのまま採水工程にまで継続すると、吸着帯が乱れず、良好な水質の処理水を採水することができる。 Furthermore, when the sampling process is shifted from the second washing process to the sampling process, if the sampling of the raw water is started without stopping, the fixed bed (floating layer) of the ion exchange resin collapses. And maintain the flying state. Thus, if the ion exchange resin fixed bed formed in the washing process continues as it is to the water sampling process, the adsorption zone is not disturbed, and treated water with good water quality can be collected.
 なお、上向流通水により室内で浮上した固定床が形成された状態において上向流通水を停止すると、固定床の下部からイオン交換樹脂が順次に崩落しながら沈降する。この際に、イオン交換樹脂が攪拌され、比較的下部に位置していたアニオン吸着量の多いカチオン交換樹脂(又はカチオン吸着量の多いアニオン交換樹脂)の一部がイオン交換樹脂床の上部に移動してしまい、採水再開後の採水工程において処理水室が早期に悪化するおそれがある。 In addition, when the upward circulating water is stopped in a state where the fixed bed floating in the room is formed by the upward circulating water, the ion exchange resin settles down sequentially from the lower part of the fixed bed. At this time, the ion exchange resin is agitated, and a part of the cation exchange resin (or anion exchange resin having a large cation adsorption amount) located relatively lower moves to the upper part of the ion exchange resin bed. Therefore, the treated water chamber may be deteriorated early in the water sampling process after resuming water sampling.
 上記のように、原水の上向流通水を第1洗浄工程、第2洗浄工程、及び採水工程で停止することなく継続することにより、この間の固定床の崩落がなく、採水工程の処理水質が長期にわたって良好なものとなる。 As described above, by continuing the upward circulation water of the raw water without stopping in the first washing process, the second washing process, and the water sampling process, there is no collapse of the fixed bed during this period, and the processing of the water sampling process Water quality will be good over a long period of time.
 採水工程及び洗浄工程で上向流通水する場合、再生工程では再生薬剤を下向流通水することが好ましい。再生薬剤を下向流通水すると、イオン交換樹脂床の上部ほど十分に再生されるので、上向流通水による採水工程開始時には、イオン交換樹脂床の上部ほどイオン交換容量の多いイオン交換樹脂が存在することになる。採水工程において、このイオン交換樹脂床に原水が上向流通水されると、処理水の水質が良好になるとともに、採水可能水量が多くなる。 When the upward circulation water is used in the water sampling process and the washing process, it is preferable that the regenerative medicine is distributed downward in the regeneration process. When the regenerative drug is flowed downward, the upper part of the ion exchange resin bed is sufficiently regenerated, so at the start of the water sampling process with the upward flow of water, the ion exchange resin has a higher ion exchange capacity as the upper part of the ion exchange resin bed. Will exist. In the water sampling step, when raw water is circulated upward in the ion exchange resin bed, the quality of the treated water is improved and the amount of water that can be collected increases.
図1aは実施の形態に係るイオン交換装置の採水工程を示し、図1bは再生工程を示す概略的な断面図である。FIG. 1a shows a water sampling process of the ion exchange apparatus according to the embodiment, and FIG. 1b is a schematic cross-sectional view showing a regeneration process. 図2a,2bは実施の形態に係るイオン交換装置の洗浄工程を示す概略的な断面図である。2a and 2b are schematic sectional views showing a cleaning process of the ion exchange apparatus according to the embodiment. 別の実施の形態に係るイオン交換装置を示す概略的な断面図である。It is a schematic sectional drawing which shows the ion exchange apparatus which concerns on another embodiment. 図4a,4bは実験例1~3の説明図である。4a and 4b are explanatory diagrams of Experimental Examples 1 to 3. FIG. 実験例1~3の結果を示すグラフである。6 is a graph showing the results of Experimental Examples 1 to 3. 実施例及び比較例の結果を示すグラフである。It is a graph which shows the result of an Example and a comparative example. 図7a,7bは比較例1,2の説明図である。7a and 7b are explanatory diagrams of comparative examples 1 and 2. FIG.
 以下、図1及び図2を参照し、実施の形態について説明する。 Hereinafter, embodiments will be described with reference to FIGS. 1 and 2.
 イオン交換装置の塔体1は筒軸心方向を鉛直方向とした円筒部1aと、頂部の鏡板部1bと、底部の鏡板部1cとによって外殻が構成されている。鏡板部1bは上に凸に湾曲し、鏡板部1cは下に凸に湾曲している。 The tower 1 of the ion exchange apparatus has an outer shell made up of a cylindrical portion 1a whose vertical direction is the cylinder axis direction, a top end plate portion 1b, and a bottom end plate portion 1c. The end plate portion 1b is convexly curved upward, and the end plate portion 1c is convexly curved downward.
 この塔体1内が遮水性の仕切板2によって上室20と下室30との2室に区画されている。この実施の形態では、仕切板2は、水を全く通過させない金属又は合成樹脂製のものであり、鏡板部1cと同様に下に凸に湾曲している。仕切板2の周縁部は、円筒部1aの内周面に対し溶接等により水密的に結合されている。 The inside of the tower body 1 is divided into two chambers, an upper chamber 20 and a lower chamber 30, by a water shielding partition plate 2. In this embodiment, the partition plate 2 is made of metal or synthetic resin that does not allow water to pass through at all, and is curved downward and convex like the end plate portion 1c. The peripheral edge of the partition plate 2 is watertightly coupled to the inner peripheral surface of the cylindrical portion 1a by welding or the like.
 上室20内の上部に第1の集配水部材4が配置され、この第1の集配水部材4に上部給排配管3が接続されている。上室20内の下部に第2の集配水部材6が設置され、この集配水部材6に第1の連通配管5が接続されている。下室30内の上部に第3の集配水部材9が設置され、この集配水部材9に第2の連通配管8が接続されている。連通配管5,8は、第3の連通配管11によって接続され、この連通配管11に弁12が設置されている。 The first water collection / distribution member 4 is disposed in the upper part of the upper chamber 20, and the upper water supply / discharge pipe 3 is connected to the first water collection / distribution member 4. A second water collection / distribution member 6 is installed in the lower part of the upper chamber 20, and the first communication pipe 5 is connected to the water collection / distribution member 6. A third water collection / distribution member 9 is installed in the upper part of the lower chamber 30, and the second communication pipe 8 is connected to the water collection / distribution member 9. The communication pipes 5 and 8 are connected by a third communication pipe 11, and a valve 12 is installed in the communication pipe 11.
 連通配管5,8の末端部には、再生液の給排手段としての弁7,10が設けられている。下室30の下部には、第4の集配水部材14が設置され、この集配水部材14に下部給排配管13が接続されている。 Valves 7 and 10 are provided at the end portions of the communication pipes 5 and 8 as means for supplying and discharging the regenerated liquid. A fourth water collection / distribution member 14 is installed in the lower part of the lower chamber 30, and the lower water supply / discharge pipe 13 is connected to the water collection / distribution member 14.
 上室20内の大部分にアニオン交換樹脂21が充填され、このアニオン交換樹脂21の上側に粒状の不活性樹脂22が充填されている。第1の集配水部材4はこの不活性樹脂22内に埋設されている。 Most of the inside of the upper chamber 20 is filled with an anion exchange resin 21, and a granular inert resin 22 is filled above the anion exchange resin 21. The first water collection / distribution member 4 is embedded in the inert resin 22.
 下室30内の大部分にカチオン交換樹脂31が充填され、このカチオン交換樹脂31の上側に粒状の不活性樹脂32が充填されている。第3の集配水部材9はこの不活性樹脂32中に埋設されている。不活性樹脂としては、イオン交換樹脂よりも比重の小さいポリアクリロニトリル系樹脂などが用いられる。不活性樹脂の粒径は、イオン交換樹脂と同程度が好ましい。 Most of the inside of the lower chamber 30 is filled with a cation exchange resin 31, and a granular inert resin 32 is filled above the cation exchange resin 31. The third water collecting and distributing member 9 is embedded in the inert resin 32. As the inert resin, a polyacrylonitrile resin having a specific gravity smaller than that of the ion exchange resin is used. The particle size of the inert resin is preferably about the same as that of the ion exchange resin.
 なお、図示は省略するが、上室20の下部及び下室30の下部にそれぞれガラスビーズなどイオン交換樹脂より比重の大きい粒子を充填し、集配水部材6,14をこの高比重粒子充填層内に埋設してもよい。このようにすれば、集配水部材6,14から流出した水がアニオン交換樹脂21及びカチオン交換樹脂31内に均一に分散供給される。 Although not shown, the lower portion of the upper chamber 20 and the lower portion of the lower chamber 30 are filled with particles having a specific gravity greater than that of an ion exchange resin such as glass beads, and the water collecting and distributing members 6 and 14 are placed in the high specific gravity particle packed layer. It may be embedded in In this way, the water that flows out from the water collection and distribution members 6 and 14 is uniformly distributed and supplied into the anion exchange resin 21 and the cation exchange resin 31.
 集配水部材4,6,9,14は、水を通すが、イオン交換樹脂の通過を阻止するものであり、従来のイオン交換装置で使用されている集水板や、放射状に延在させた配管に多数のスリットを設けたストレーナーなどを使用することができる。例えば、イオン交換樹脂の大きさが約0.4mm程度の場合、ストレーナーとしてスリットの幅が約0.2mmのものを使用するのが好ましい。集配水部材4,6,9,14は、鏡板部1b、仕切板2、鏡板部1cに沿う形状を有しており、鏡板部1b、仕切板2、鏡板部1cに沿うデッドスペースが小さいものとなっている。 The water collecting and distributing members 4, 6, 9, and 14 pass water, but block the passage of the ion exchange resin, and the water collecting plates used in the conventional ion exchange apparatus and radially extended. A strainer provided with many slits in the pipe can be used. For example, when the size of the ion exchange resin is about 0.4 mm, it is preferable to use a strainer having a slit width of about 0.2 mm. The water collecting and distributing members 4, 6, 9, and 14 have shapes along the end plate portion 1b, the partition plate 2, and the end plate portion 1c, and have a small dead space along the end plate portion 1b, the partition plate 2, and the end plate portion 1c. It has become.
 [採水工程]
 このイオン交換装置を用いた脱イオン水の生産(採水)時のフローを図1aに示す。この場合、弁12を開、弁7,10を閉とし、下部給排配管13から原水(被処理水)を供給する。この原水は集配水部材14、カチオン交換樹脂31、不活性樹脂32、集配水部材9、連通配管8,11,5、集配水部材6、アニオン交換樹脂21、不活性樹脂22、集配水部材4、上部給排配管3の順に流れ、処理水(脱イオン水)として取り出される。
[Water sampling process]
The flow at the time of production (water sampling) of deionized water using this ion exchange device is shown in FIG. 1a. In this case, the valve 12 is opened, the valves 7 and 10 are closed, and raw water (treated water) is supplied from the lower supply / discharge pipe 13. This raw water is a water collection / distribution member 14, a cation exchange resin 31, an inert resin 32, a water collection / distribution member 9, a communication pipe 8, 11, 5, a water collection / distribution member 6, an anion exchange resin 21, an inert resin 22, and a water collection / distribution member 4. Then, it flows in the order of the upper supply / discharge pipe 3 and is taken out as treated water (deionized water).
 [再生工程]
 カチオン交換樹脂31及びアニオン交換樹脂21の再生時には、図1bのように弁12を閉、弁7,10を開とし、上部給排配管3からNaOHなどのアルカリ溶液を上室20に供給すると共に、第3の連通配管8からHCl、HSOなどの酸溶液を下室30に供給する。アルカリ溶液は、集配水部材4、不活性樹脂22、アニオン交換樹脂21、集配水部材6、連通配管5の順に流れ、再生廃水(アルカリ)として流出し、これによりアニオン交換樹脂21が再生される。酸溶液は、集配水部材9、不活性樹脂32、カチオン交換樹脂31、集配水部材14、下部給排配管13の順に流れ、再生廃水(酸)として流出し、これにより、カチオン交換樹脂31が再生される。
[Regeneration process]
When the cation exchange resin 31 and the anion exchange resin 21 are regenerated, the valve 12 is closed and the valves 7 and 10 are opened as shown in FIG. 1b, and an alkaline solution such as NaOH is supplied from the upper supply / discharge pipe 3 to the upper chamber 20. Then, an acid solution such as HCl and H 2 SO 4 is supplied to the lower chamber 30 from the third communication pipe 8. The alkaline solution flows in the order of the water collection / distribution member 4, the inert resin 22, the anion exchange resin 21, the water collection / distribution member 6, and the communication pipe 5, and flows out as recycled wastewater (alkali), whereby the anion exchange resin 21 is regenerated. . The acid solution flows in the order of the water collection / distribution member 9, the inert resin 32, the cation exchange resin 31, the water collection / distribution member 14, and the lower supply / discharge pipe 13, and flows out as recycled wastewater (acid). Played.
 [第1洗浄工程]
 再生終了後は、図2aの通り、第1洗浄工程を行う。すなわち、弁7、12を閉、弁10を開とし、下部給排配管13から原水を供給する。原水は、下部給排配管13、集配水部材14、カチオン交換樹脂31、不活性樹脂32、集配水部材9、第3の連通配管8の順に流れ、洗浄排水として流出する。洗浄排水は排水処理設備に送られる。このようにして、下室30のカチオン交換樹脂31及び不活性樹脂32をリンスする第1洗浄工程が実施される。この第1洗浄工程では、上室20への通液は停止している。
[First cleaning step]
After the regeneration, the first cleaning process is performed as shown in FIG. 2a. That is, the valves 7 and 12 are closed, the valve 10 is opened, and raw water is supplied from the lower supply / discharge pipe 13. The raw water flows in the order of the lower supply / discharge pipe 13, the water collection / distribution member 14, the cation exchange resin 31, the inert resin 32, the water collection / distribution member 9, and the third communication pipe 8, and flows out as washing waste water. Washing wastewater is sent to a wastewater treatment facility. Thus, the 1st washing | cleaning process which rinses the cation exchange resin 31 and the inert resin 32 of the lower chamber 30 is implemented. In the first cleaning process, the liquid flow to the upper chamber 20 is stopped.
 第1洗浄工程は、第3の連通配管8から排出される下室30の洗浄排水の電気伝導度又は酸濃度が所定値以下となるまで行われる。 The first cleaning step is performed until the electrical conductivity or acid concentration of the cleaning wastewater in the lower chamber 30 discharged from the third communication pipe 8 becomes a predetermined value or less.
 [第2洗浄工程]
 下室30の洗浄排水の酸濃度が所定値以下となると、下部給排配管13からの原水の供給は継続したまま、図2bの通り、弁7,10を閉、弁12を開とし、第2洗浄工程を実施する。下部給排配管13から供給された原水は、集配水部材14、カチオン交換樹脂31、不活性樹脂32、集配水部材9、連通配管8,11,5、集配水部材6、アニオン交換樹脂21、不活性樹脂22、集配水部材4、上部給排配管3の順に流れ、洗浄排水として流出する。このようにして、下室30のカチオン交換樹脂31及び不活性樹脂32と、上室20のアニオン交換樹脂21及び不活性樹脂22をリンスする第2洗浄工程が行われる。
[Second cleaning step]
When the acid concentration of the washing waste water in the lower chamber 30 becomes a predetermined value or less, the supply of raw water from the lower supply / discharge pipe 13 is continued, the valves 7 and 10 are closed and the valve 12 is opened as shown in FIG. Two cleaning steps are performed. The raw water supplied from the lower supply / discharge pipe 13 includes a water collection / distribution member 14, a cation exchange resin 31, an inert resin 32, a water collection / distribution member 9, communication pipes 8, 11, 5, a water collection / distribution member 6, an anion exchange resin 21, It flows in the order of the inert resin 22, the water collection and distribution member 4, and the upper water supply / discharge pipe 3, and flows out as washing waste water. In this way, the second cleaning step of rinsing the cation exchange resin 31 and the inert resin 32 in the lower chamber 30 and the anion exchange resin 21 and the inert resin 22 in the upper chamber 20 is performed.
 第2洗浄工程は、上部給排配管3から排出される上室20の洗浄排水の比抵抗値が所定値以上、例えば18MΩ・cm以上となるまで行われる。 The second cleaning step is performed until the specific resistance value of the cleaning drainage of the upper chamber 20 discharged from the upper supply / discharge pipe 3 becomes a predetermined value or more, for example, 18 MΩ · cm or more.
 上室20の洗浄排水の比抵抗値が所定値以上となると、下部給排配管13からの原水の供給は継続したまま、図1aの通り、採水工程に復帰する。 When the specific resistance value of the washing waste water in the upper chamber 20 becomes a predetermined value or more, the supply of raw water from the lower supply / discharge pipe 13 is continued, and the process returns to the water sampling process as shown in FIG.
 この実施の形態では、図1bに示す再生工程において、アニオン交換樹脂21とカチオン交換樹脂31とが混ざり合うことは全くない。また、再生用のアルカリ溶液が下室30に流入したり、酸溶液が上室20に混入したりすることが全くなく、逆再生が完全に防止される。加えて、アニオン交換樹脂21とカチオン交換樹脂31とを同時に並行して再生することができ、再生時間が著しく短いものとなる。また、再生剤を下向流で通水しており、不活性樹脂の充填により、十分に再生されたイオン交換樹脂が各イオン交換樹脂の上部に固定され、採水時は被処理水の出口側にこのイオン交換樹脂が位置するため、高水質の処理水を得ることができる。また、下向流での再生剤の通水は、樹脂が流動しないので上向流での再生剤の通水と比較して、流速を速くすることができ、再生効率が良い。 In this embodiment, the anion exchange resin 21 and the cation exchange resin 31 are not mixed at all in the regeneration step shown in FIG. 1b. Further, the regeneration alkaline solution does not flow into the lower chamber 30 and the acid solution is not mixed into the upper chamber 20, and reverse regeneration is completely prevented. In addition, the anion exchange resin 21 and the cation exchange resin 31 can be regenerated at the same time, and the regenerating time is remarkably short. In addition, the regenerant is passed in a downward flow, and the fully regenerated ion exchange resin is fixed to the top of each ion exchange resin by filling with the inert resin, and the outlet of the water to be treated at the time of sampling Since this ion exchange resin is located on the side, high-quality treated water can be obtained. Further, the flow of the regenerant in the downward flow does not flow the resin, so that the flow rate can be increased compared with the flow of the regenerant in the upward flow, and the regeneration efficiency is good.
 この実施の形態では、図2a,2bに示す洗浄工程において、洗浄に原水を使用するため、高純度の純水を貯留する再生用水槽を設ける必要がなく、コストを削減することができる。また、第1洗浄工程(図2a)において、原水を用いて下室30の樹脂を十分に洗浄してから、上室20と下室30とを連通して第2洗浄工程に移行するため、酸を含んだ下室30の洗浄排水が上室20に混入して逆再生が生じることはない。 In this embodiment, since raw water is used for cleaning in the cleaning process shown in FIGS. 2a and 2b, it is not necessary to provide a regenerating water tank for storing high-purity pure water, and the cost can be reduced. Further, in the first cleaning step (FIG. 2a), after sufficiently washing the resin in the lower chamber 30 using raw water, the upper chamber 20 and the lower chamber 30 are communicated to move to the second cleaning step. The cleaning waste water of the lower chamber 30 containing acid does not enter the upper chamber 20 and reverse regeneration does not occur.
 第1洗浄工程及び第2洗浄工程では、洗浄水(原水)中のカチオンが下室30内の下部のカチオン交換樹脂31に吸着するが、下室30内の上部のカチオン交換樹脂31にまでは吸着が進行しない。そのため、採水再開後の下室30流出水中のカチオン濃度は十分に低いものとなる。 In the first cleaning step and the second cleaning step, cations in the cleaning water (raw water) are adsorbed on the lower cation exchange resin 31 in the lower chamber 30, but the upper cation exchange resin 31 in the lower chamber 30 is not absorbed. Adsorption does not progress. Therefore, the cation concentration in the outflow water of the lower chamber 30 after resuming the sampling is sufficiently low.
 第2洗浄工程では、下室30流出水が上室20に上向流通水され、下室30流出水中のアニオン(主として、原水に含まれているアニオン)が上室20内の下部のアニオン交換樹脂21に吸着するが、上室20内の上部のアニオン交換樹脂21にまでは吸着は進行しない。そのため、採水再開後の上室20流出水(処理水)中のアニオン濃度は十分に低いものとなる。 In the second cleaning step, the lower chamber 30 effluent is circulated upward into the upper chamber 20, and anions in the lower chamber 30 effluent (mainly anions contained in the raw water) are anion exchanged in the lower portion of the upper chamber 20. Although it adsorbs to the resin 21, the adsorption does not proceed to the upper anion exchange resin 21 in the upper chamber 20. Therefore, the anion concentration in the upper chamber 20 effluent (treated water) after resuming water sampling is sufficiently low.
 洗浄工程において上向流での原水の通水を開始すると、イオン交換樹脂が浮上して固定床を形成する。採水工程前に原水の通水を停止すると、イオン交換樹脂が流動しながら沈降して吸着帯が乱れ、その後の上向流での採水工程では、処理水の水質が低下するおそれがある。本実施形態によれば、洗浄工程から採水工程に復帰するまで、上向流での原水の通水を継続するため、塔内で浮上して固定床を形成したイオン交換樹脂がその状態を維持し、処理水の水質低下を防止できる。 When starting the flow of raw water in the upward flow in the washing process, the ion exchange resin rises and forms a fixed bed. If the flow of raw water is stopped before the water sampling process, the ion exchange resin flows and settles and the adsorption zone is disturbed, and in the subsequent upstream water sampling process, the quality of the treated water may deteriorate. . According to the present embodiment, the flow of the raw water in the upward flow is continued until the cleaning process returns to the water sampling process. Maintain and prevent degradation of treated water quality.
 このイオン交換装置は、1つの塔体1内を1枚の仕切板2によって上下2室に区画したものであり、塔体の高さが低く、設置スペースも小さい。また、上室20と下室30とを連通する配管5,11,8が短くてすむ。 This ion-exchange apparatus is one in which one tower body 1 is partitioned into two upper and lower chambers by one partition plate 2, and the height of the tower body is low and the installation space is also small. Also, the pipes 5, 11, and 8 communicating the upper chamber 20 and the lower chamber 30 can be shortened.
 このイオン交換装置では集配水部材4,6,9,14が鏡板部1b、仕切板2、鏡板部1cに沿って設けられており、水の局部的な滞留が防止される。 In this ion exchange apparatus, the water collecting and distributing members 4, 6, 9, and 14 are provided along the end plate portion 1b, the partition plate 2, and the end plate portion 1c, so that local retention of water is prevented.
 このイオン交換装置では、上室20及び下室30の上部に不活性樹脂22,32を充填しており、アニオン交換樹脂21及びカチオン交換樹脂31の流動が防止され、採水時及び再生時に液が均等にアニオン交換樹脂21及びカチオン交換樹脂31と接触するようになっており、高水質の脱イオン水が得られると共に、十分に再生が行われるようになる。 In this ion exchange apparatus, the upper chamber 20 and the lower chamber 30 are filled with inert resins 22 and 32, and the flow of the anion exchange resin 21 and the cation exchange resin 31 is prevented. Are evenly in contact with the anion exchange resin 21 and the cation exchange resin 31, so that high-quality deionized water can be obtained and sufficient regeneration can be performed.
 上記実施形態では、上室20にアニオン交換樹脂を収容し、下室30にカチオン交換樹脂を収容しているが、逆としてもよい。上記実施形態では、上室20と下室30とが配管5,11,8を介して連通されているが、塔体1の外部を引き回されている限り、これに限定されない。また、この実施の形態では、3個の弁7,10,12を用いているが、2個の三方弁を用いて流路切り替えを行うようにしてもよい。 In the above embodiment, the anion exchange resin is accommodated in the upper chamber 20 and the cation exchange resin is accommodated in the lower chamber 30, but the reverse may be possible. In the above embodiment, the upper chamber 20 and the lower chamber 30 communicate with each other via the pipes 5, 11, and 8, but the present invention is not limited to this as long as the outside of the tower body 1 is routed. In this embodiment, the three valves 7, 10, 12 are used, but the flow path may be switched using two three-way valves.
 本発明では、図3に示すように、塔体1の塔頂部に、洗浄排水の抜出手段としての抜出管42を接続してもよい。抜出管42には弁41が設けられている。抜出管42の上室20への開口部には、メッシュ、ストレーナーなどの粒子流出防止部材(図示略)が設置されている。 In the present invention, as shown in FIG. 3, an extraction pipe 42 as a means for extracting washing wastewater may be connected to the top of the tower 1. The extraction pipe 42 is provided with a valve 41. A particle outflow prevention member (not shown) such as a mesh or a strainer is installed at the opening to the upper chamber 20 of the extraction pipe 42.
 図3のイオン交換装置の採水工程、再生工程及び第1洗浄工程では、弁41は閉とされ、液の流れは図1a,1b及び図2aと同一である。第2洗浄工程では弁41を開とし、上室20の洗浄排水の一部を抜出管42から排出する。抜出管42からも洗浄排水を排出するので、塔頂部での再生液排出(リンス)が促進される。 In the water sampling process, the regeneration process, and the first cleaning process of the ion exchange apparatus of FIG. 3, the valve 41 is closed, and the flow of the liquid is the same as in FIGS. 1a, 1b, and 2a. In the second cleaning step, the valve 41 is opened, and a part of the cleaning waste water in the upper chamber 20 is discharged from the extraction pipe 42. Since washing waste water is also discharged from the extraction pipe 42, regeneration liquid discharge (rinsing) at the top of the tower is promoted.
 本発明では、再生剤の希釈水に原水を用いてもよい。カチオン交換樹脂31を数%濃度のHCl溶液により再生する場合、再生工程では、塔内雰囲気は%オーダーのHCl、つまりはHイオンが存在している状態である。希釈水としての原水に含まれるカチオン(Na、Caなど)はmg/Lレベルであるため、再生工程ではカチオン交換樹脂に希釈用原水中のカチオンは吸着され難い。希釈水に原水を用いることで、再生処理のコストを削減できる。 In the present invention, raw water may be used as dilution water for the regenerant. When the cation exchange resin 31 is regenerated with an HCl solution having a concentration of several percent, in the regeneration step, the atmosphere in the tower is in a state where HCl of% order, that is, H + ions are present. Since cations (Na, Ca, etc.) contained in the raw water as dilution water are at the mg / L level, cations in the raw water for dilution are hardly adsorbed on the cation exchange resin in the regeneration step. By using raw water as dilution water, the cost of regeneration treatment can be reduced.
 本発明では、上記のイオン交換装置を複数塔たとえば2塔並列に設置し、一方の装置で採水を行い、他方の装置を予備としてもよい。一方の装置が再生・洗浄工程へ移行するに伴い、他方(予備)の装置が採水工程を開始することで、採水を継続することができる。再生・洗浄工程が終了したイオン交換装置は、他方のイオン交換装置が再生工程に移行するまで待機する。 In the present invention, the above ion exchange apparatus may be installed in a plurality of towers, for example, two towers in parallel, and water may be collected in one apparatus and the other apparatus may be used as a spare. As one apparatus moves to the regeneration / washing process, the other (preliminary) apparatus starts the water sampling process, so that water sampling can be continued. The ion exchange apparatus that has completed the regeneration / washing process waits until the other ion exchange apparatus moves to the regeneration process.
 上記実施形態では、イオン交換装置は、塔体1内を仕切板2によって上室20と下室30との2室に区画し、上室20及び下室30の一方にカチオン交換樹脂を収容し、他方にアニオン交換樹脂を収容する構成(2床1塔)としたが、カチオン交換樹脂を収容する塔、アニオン交換樹脂を収容する塔、及びこれら2つの塔を連通する連通配管を有する構成(2床2塔、2床3塔等)としてもよい。 In the above embodiment, the ion exchange device partitions the inside of the tower body 1 into the two chambers of the upper chamber 20 and the lower chamber 30 by the partition plate 2, and accommodates the cation exchange resin in one of the upper chamber 20 and the lower chamber 30. In the other, the structure (2 beds and 1 tower) containing the anion exchange resin is used, but the tower containing the cation exchange resin, the tower containing the anion exchange resin, and the communication pipe connecting these two towers ( 2 beds, 2 towers, 2 beds, 3 towers, etc.).
 以下に、実験例、実施例及び比較例を挙げて本発明をより具体的に説明する。なお、本発明はこれらに何ら制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to experimental examples, examples, and comparative examples. The present invention is not limited to these.
<実験例1>
 図1に示すイオン交換装置を用いた。諸元は次の通りである。
<Experimental example 1>
The ion exchange apparatus shown in FIG. 1 was used. The specifications are as follows.
  塔体直径: 500mm
  塔体の高さ:5000mm
  上室容積: 200L
  下室容積: 200L
  アニオン交換樹脂:(栗田工業株式会社EX-AG)
  カチオン交換樹脂:(栗田工業株式会社EX-CG)
  アニオン交換樹脂の充填量:100L
  カチオン交換樹脂の充填量:100L
  不活性樹脂(ランクセス株式会社IN-42)22の充填量:80L
  不活性樹脂(ランクセス株式会社IN-42)32の充填量:80L
Tower diameter: 500mm
Tower height: 5000 mm
Upper chamber volume: 200L
Lower chamber volume: 200L
Anion exchange resin: (Kurita Industry Co., Ltd. EX-AG)
Cation exchange resin: (Kurita Industry Co., Ltd. EX-CG)
Filling amount of anion exchange resin: 100L
Filling amount of cation exchange resin: 100L
Filling amount of inert resin (LANXESS IN-42) 22: 80L
Filling quantity of inert resin (LANXESS IN-42) 32: 80L
 原水として、NaClを超純水に濃度1ppmとなるように溶解したものを用い、次の採水工程、再生工程、洗浄工程及び試験採水を行った。 As the raw water, a solution obtained by dissolving NaCl in ultrapure water so as to have a concentration of 1 ppm was used for the following water sampling process, regeneration process, washing process and test water sampling.
[採水工程]
 このイオン交換装置に図1aの通り、上記原水をSV=50h-1にて120h通水した。
[Water sampling process]
As shown in FIG. 1a, the raw water was passed through the ion exchange apparatus at SV = 50h −1 for 120 hours.
[再生工程]
 次いで、再生剤として下記の酸溶液及びアルカリ溶液を用い、図1bの通り通水して、アニオン交換樹脂及びカチオン交換樹脂を同時に再生した。
[Regeneration process]
Next, the following acid solution and alkali solution were used as a regenerant, and water was passed as shown in FIG. 1b to regenerate the anion exchange resin and the cation exchange resin simultaneously.
 再生条件
 HCl  :4% SV=5h-1、30分
 NaOH :4% SV=5h-1、30分
Regeneration conditions HCl: 4% SV = 5 h −1 , 30 minutes NaOH: 4% SV = 5 h −1 , 30 minutes
[洗浄工程]
 次いで、図4aの通り、弁12を閉、弁7、10を開とし、上記原水を、アニオン交換樹脂及びカチオン交換樹脂のそれぞれにSV=100h-1にて5min間、下向流で通水して洗浄した。
[Washing process]
Next, as shown in FIG. 4a, the valve 12 is closed, the valves 7 and 10 are opened, and the raw water is passed through the anion exchange resin and the cation exchange resin for 5 minutes at SV = 100 h −1 for 5 minutes. And washed.
[試験採水]
 この洗浄後、図4bのように、弁7、10を閉、弁12を開とし、下部給排配管13から超純水を供給し、上部給排配管3から取り出される流出水の比抵抗値の経時変化を測定した。結果を図5に示す。
[Test sampling]
After this cleaning, as shown in FIG. 4 b, the valves 7 and 10 are closed, the valve 12 is opened, the ultrapure water is supplied from the lower supply / discharge pipe 13, and the specific resistance value of the outflow water taken out from the upper supply / discharge pipe 3 Was measured over time. The results are shown in FIG.
<実験例2>
 実験例1において、洗浄工程で使用される原水のNaCl濃度を1.5ppmとしたこと以外は実験例1と同一条件にて採水、再生及び洗浄を行い、上部給排配管3の流出水の比抵抗値の経時変化を測定した。結果を図5に示す。
<Experimental example 2>
In Experimental Example 1, water was collected, regenerated and cleaned under the same conditions as in Experimental Example 1 except that the NaCl concentration of the raw water used in the cleaning process was 1.5 ppm. The change over time in the specific resistance value was measured. The results are shown in FIG.
<実験例3>
 実験例1において、洗浄工程で使用される原水のNaCl濃度を2ppmとしたこと以外は実験例1と同一条件にて採水、再生及び洗浄を行い、上部給排配管3の流出水の比抵抗値の経時変化を測定した。結果を図5に示す。
<Experimental example 3>
In Experimental Example 1, sampling, regeneration, and cleaning were performed under the same conditions as in Experimental Example 1 except that the NaCl concentration of the raw water used in the cleaning process was 2 ppm, and the specific resistance of the effluent of the upper supply / discharge pipe 3 The change in value over time was measured. The results are shown in FIG.
 図5の通り、洗浄用原水のNaCl濃度が1ppmの実験例1では、上部給排配管3の流出水の比抵抗値が速やかに18MΩ・cm以上となった。これに対し、洗浄用原水のNaCl濃度が1.5ppm及び2ppmの実験例2,3では、比抵抗値の立ち上がりが遅延し、比抵抗値は18MΩ・cm以上に達しなかった。イオン交換装置の原水のイオン負荷として、1.5ppm以上のNaCl濃度となることは十分考えられ、再生処理後の洗浄処理において、原水を下向流で通水することは好ましくないことが確認された。 As shown in FIG. 5, in Experimental Example 1 where the NaCl concentration of the cleaning raw water was 1 ppm, the specific resistance value of the effluent of the upper supply / discharge pipe 3 quickly became 18 MΩ · cm or more. In contrast, in Experimental Examples 2 and 3 in which the NaCl concentration of the cleaning raw water was 1.5 ppm and 2 ppm, the rise of the specific resistance value was delayed, and the specific resistance value did not reach 18 MΩ · cm or more. As the ion load of the raw water of the ion exchanger, it is considered that the NaCl concentration is 1.5 ppm or more, and it has been confirmed that it is not preferable to pass the raw water in a downward flow in the cleaning process after the regeneration process. It was.
 この実験例1~3より、洗浄工程はダウンフローとせず、アップフローとする必要があることが認められた。但し、アップフローで洗浄を実施するということは、一度塔内のイオン交換樹脂を浮上させることになる。一度イオン交換樹脂を浮上させて固定床を形成させた場合、その後停止などを行うと、イオン交換樹脂が流動しながら沈降するため吸着帯が乱れ、再度アップフローによる採水に移行しても水質低下は避けられない。従って、アップフローで洗浄を行ったときには、アップフロー通水を停止することなく、採水工程に移行する必要がある。 From these experimental examples 1 to 3, it was confirmed that the cleaning process needs to be an upflow instead of a downflow. However, the fact that the cleaning is performed by upflow means that the ion exchange resin in the tower is once floated. Once the ion-exchange resin is floated and a fixed bed is formed, if it is stopped after that, the ion-exchange resin settles while flowing, so the adsorption zone is disturbed and the water quality is changed even if the up-flow sampling is performed again. A decline is inevitable. Therefore, when washing is performed by upflow, it is necessary to shift to the water sampling step without stopping upflow water flow.
 また、実験例1~3では、カチオン交換樹脂、アニオン交換樹脂ともに、洗浄工程前の押出し工程までは、塔内に再生薬品が抜け切れていないため、洗浄初期から洗浄水をカチオン交換樹脂→アニオン交換樹脂に直列に通水して洗浄することは不適切であった。 In Experimental Examples 1 to 3, since both the cation exchange resin and the anion exchange resin have not been completely regenerated in the tower until the extrusion process before the washing process, the washing water is supplied from the initial washing stage to the cation exchange resin → anion. It was inappropriate to wash the replacement resin in series.
<実施例1>
 実験例1~3と同一のイオン交換装置に原水(NaClを超純水にNaCl濃度2.5ppmとなるように溶解したもの。導電率0.55mS/m)を実験例1~3と同様にして通水して採水工程を行った。
 次いで、実験例1~3と同様にして再生を行った。
 その後、図2a,2bの手順に従い、該原水により第1及び第2洗浄工程を行った。第1及び第2洗浄工程の通水SVは100h-1とした。
<Example 1>
Raw water (NaCl dissolved in ultrapure water to a NaCl concentration of 2.5 ppm, conductivity 0.55 mS / m) in the same ion exchanger as in Experimental Examples 1 to 3 was the same as in Experimental Examples 1 to 3. The water sampling process was carried out.
Next, regeneration was performed in the same manner as in Experimental Examples 1 to 3.
Then, according to the procedure of FIG. 2a, 2b, the 1st and 2nd washing | cleaning process was performed with this raw | natural water. The water flow SV in the first and second cleaning steps was set to 100 h- 1 .
 第3の連通配管8から排出される下室30の洗浄排水がpH4.5となった後、原水の供給は継続したまま、弁7,10を閉、弁12を開とし、第2洗浄工程を行った。なお、この実施例1では、図7bのように、上部給排配管3から排出される上室20流出水を原水側へ戻し、循環させるようにした。この循環通水を開始後の上部給排配管3流出水の比抵抗値の経時変化を測定した。結果を図6に示す。 After the washing drainage of the lower chamber 30 discharged from the third communication pipe 8 becomes pH 4.5, the supply of raw water is continued, the valves 7 and 10 are closed, the valve 12 is opened, and the second washing step Went. In Example 1, as shown in FIG. 7b, the outflow water of the upper chamber 20 discharged from the upper supply / discharge pipe 3 is returned to the raw water side and circulated. The change over time in the specific resistance value of the effluent of the upper supply / discharge pipe 3 after the circulation water flow was started was measured. The results are shown in FIG.
<比較例1>
 実施例1と同一条件にて採水及び再生を行った後、図7aのように弁12を閉とし、比抵抗18MΩ・cm以上の超純水を、アニオン交換樹脂及びカチオン交換樹脂のそれぞれに通水流量10m/hにて5分、下向流で通水して洗浄処理を行った。次いで、図7bのように、弁7,10を閉、弁12を開とし、原水を下部給排配管13から上向流で通水し、上部給排配管3から排出される上室20の処理水を模擬原水側へ戻し、循環させるようにした。この循環通水を開始後、上部給排配管3から排出される処理水の比抵抗値の経時変化を測定した。結果を図6に示す。
<Comparative Example 1>
After water collection and regeneration under the same conditions as in Example 1, the valve 12 was closed as shown in FIG. 7a, and ultrapure water having a specific resistance of 18 MΩ · cm or more was applied to each of the anion exchange resin and the cation exchange resin. Washing was performed by passing water in a downward flow for 5 minutes at a water flow rate of 10 m 3 / h. Next, as shown in FIG. 7 b, the valves 7 and 10 are closed, the valve 12 is opened, raw water is passed upward from the lower supply / discharge pipe 13, and the upper chamber 20 discharged from the upper supply / discharge pipe 3 is discharged. The treated water was returned to the simulated raw water side and circulated. After this circulation water flow was started, the change with time of the specific resistance value of the treated water discharged from the upper supply / discharge pipe 3 was measured. The results are shown in FIG.
<比較例2>
 比較例1において、図7aの洗浄処理に超純水の代りに原水(NaCl濃度2.5ppm)を用いたこと以外は比較例1と同一条件にて各処理を行った。循環通水の開始後、上部給排配管3から排出される処理水の比抵抗値の経時変化を測定した。結果を図6に示す。
<Comparative example 2>
In the comparative example 1, each process was performed on the same conditions as the comparative example 1 except having used raw water (NaCl density | concentration 2.5 ppm) instead of the ultrapure water for the washing | cleaning process of FIG. After the circulation water flow was started, the change with time of the specific resistance value of the treated water discharged from the upper supply / discharge pipe 3 was measured. The results are shown in FIG.
 図6の通り、再生後の洗浄処理を、原水を下向流で通水して行った比較例2の場合、比抵抗値の立ち上がりが遅延し、比抵抗値は18MΩ・cmに達しなかった。再生後の洗浄処理を、模擬原水を上向流で下室に通水し、続いて下室から上室へ上向流で連続して通水して行った実施例1と、上室及び下室のそれぞれに超純水を下向流で通水して行った比較例1とでは、比抵抗値の立ち上がりや処理水の水質が同程度の良好なものとなる。 As shown in FIG. 6, in the case of Comparative Example 2 in which the cleaning treatment after regeneration was performed by passing the raw water in a downward flow, the rise of the specific resistance value was delayed, and the specific resistance value did not reach 18 MΩ · cm. . Example 1 in which the washing treatment after regeneration was performed by passing simulated raw water through the lower chamber in an upward flow, and then continuously flowing upward from the lower chamber to the upper chamber, In Comparative Example 1 in which ultrapure water was passed through each of the lower chambers in a downward flow, the rise in specific resistance value and the water quality of the treated water were comparable.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年11月13日付で出願された日本特許出願2014-230827に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2014-230827 filed on Nov. 13, 2014, which is incorporated by reference in its entirety.
 1 塔体
 1b,1c 鏡板
 2 仕切板
 3 上部給排配管
 4,6,9,14 集配水部材
 5,8,11 連通配管
 13 下部給排配管
 20 上室
 30 下室
DESCRIPTION OF SYMBOLS 1 Tower body 1b, 1c End plate 2 Partition plate 3 Upper supply / discharge piping 4, 6, 9, 14 Water collection / distribution member 5, 8, 11 Communication piping 13 Lower supply / discharge piping 20 Upper chamber 30 Lower chamber

Claims (5)

  1.  それぞれイオン交換樹脂を収容する第1室及び第2室を有し、第1室及び第2室の一方にカチオン交換樹脂が収容され、他方にアニオン交換樹脂が収容され、該第1室と第2室とが連通手段によって連通されている再生型イオン交換装置の運転方法であって、
     該第1室、連通手段、及び第2室の順に原水を通水する採水工程と、
     該カチオン交換樹脂及び該アニオン交換樹脂を再生する再生工程と、
     該カチオン交換樹脂及び該アニオン交換樹脂を洗浄する洗浄工程と、
     を有する再生型イオン交換装置の運転方法において、
     該採水工程では、該第1室及び第2室に原水を上向流で通水し、
     該洗浄工程は、
     該第1室に原水を上向流で通水して該第1室内の樹脂を洗浄し、洗浄排水を該第1室から排出する第1洗浄工程と、
     該第1洗浄工程後に、該第1室に原水を上向流で通水して該第1室内の樹脂を洗浄し、該第1室の洗浄排水を該連通手段により該第2室に供給し、該第2室に該洗浄排水を上向流で通水して該第2室内の樹脂を洗浄する第2洗浄工程と、
     を備えることを特徴とする再生型イオン交換装置の運転方法。
    Each has a first chamber and a second chamber for containing an ion exchange resin, the cation exchange resin is contained in one of the first chamber and the second chamber, and the anion exchange resin is contained in the other. A method of operating a regenerative ion exchange apparatus in which the two chambers are communicated by a communication means,
    A water sampling step of passing raw water in the order of the first chamber, the communication means, and the second chamber;
    A regeneration step of regenerating the cation exchange resin and the anion exchange resin;
    A washing step of washing the cation exchange resin and the anion exchange resin;
    In the operation method of the regenerative ion exchange apparatus having
    In the water sampling step, raw water is passed through the first chamber and the second chamber in an upward flow,
    The washing step includes
    A first cleaning step of passing raw water through the first chamber in an upward flow to clean the resin in the first chamber and discharging cleaning wastewater from the first chamber;
    After the first cleaning step, raw water is passed through the first chamber in an upward flow to clean the resin in the first chamber, and the cleaning waste water in the first chamber is supplied to the second chamber by the communication means. And a second cleaning step of cleaning the resin in the second chamber by passing the cleaning wastewater upward through the second chamber;
    A method for operating a regenerative ion exchange apparatus, comprising:
  2.  請求項1において、前記第1洗浄工程と前記第2洗浄工程との間で、前記第1室への原水の供給を継続させ、第1室から流出する洗浄排水を第2室に導くように前記連通手段を切り替えることにより第2洗浄工程に移行することを特徴とする再生型イオン交換装置の運転方法。 In Claim 1, between the said 1st washing | cleaning process and the said 2nd washing | cleaning process, supply of the raw | natural water to the said 1st chamber is continued, and the washing waste_water | drain which flows out from a 1st chamber is guide | induced to a 2nd chamber. A method of operating a regenerative ion exchange apparatus, wherein the second cleaning step is performed by switching the communication means.
  3.  請求項1又は2において、前記第2洗浄工程後、前記第1室へ原水を連続して通水しながら採水工程に復帰することを特徴とする再生型イオン交換装置の運転方法。 3. The operation method of a regenerative ion exchange apparatus according to claim 1, wherein after the second cleaning step, the raw water is continuously returned to the water sampling step while passing through the first chamber.
  4.  請求項1ないし3のいずれか1項において、前記再生工程では、前記第1室及び第2室において再生液を下向流で通水することを特徴とする再生型イオン交換装置の運転方法。 4. The method of operating a regenerative ion exchange apparatus according to any one of claims 1 to 3, wherein in the regeneration step, the regeneration liquid is passed in a downward flow in the first chamber and the second chamber.
  5.  請求項1ないし4のいずれか1項において、前記第2洗浄工程では、前記第2室の洗浄排水の少なくとも一部を頂部に設けた抜出管から排出することを特徴とする再生型イオン交換装置の運転方法。 5. The regenerative ion exchange according to claim 1, wherein in the second cleaning step, at least a part of the cleaning waste water in the second chamber is discharged from an extraction pipe provided at the top. How to operate the device.
PCT/JP2015/081934 2014-11-13 2015-11-13 Method for operating regenerative ion exchange device WO2016076409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014230827A JP6015737B2 (en) 2014-11-13 2014-11-13 Operation method of regenerative ion exchanger
JP2014-230827 2014-11-13

Publications (1)

Publication Number Publication Date
WO2016076409A1 true WO2016076409A1 (en) 2016-05-19

Family

ID=55954484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081934 WO2016076409A1 (en) 2014-11-13 2015-11-13 Method for operating regenerative ion exchange device

Country Status (2)

Country Link
JP (1) JP6015737B2 (en)
WO (1) WO2016076409A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2823553C1 (en) * 2023-11-15 2024-07-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" Ion exchange unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998834B2 (en) * 2018-05-25 2022-01-18 オルガノ株式会社 Cleaning test equipment for ion exchange resin
US10532351B1 (en) * 2018-08-29 2020-01-14 Thomas O. Miller Method for restoring kinetic properties of resin

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033982A (en) * 1973-07-30 1975-04-02
JPS5177583A (en) * 1974-12-28 1976-07-05 Kurita Water Ind Ltd
JPS60172391A (en) * 1984-02-20 1985-09-05 Kurita Water Ind Ltd Manufacturing apparatus of demineralized water
JPH07256119A (en) * 1994-03-24 1995-10-09 Shinko Pantec Co Ltd Method for regenerating mixed-bed ion-exchange tower
JP2000254524A (en) * 1999-03-05 2000-09-19 Kurita Water Ind Ltd Method for regenerating ion exchange resin
JP2007245020A (en) * 2006-03-16 2007-09-27 Japan Organo Co Ltd Ion-exchange tower
JP2011072927A (en) * 2009-09-30 2011-04-14 Kurita Water Ind Ltd Ion-exchange device, and column therefor
JP2012205993A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Ion exchange apparatus and column body thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033982A (en) * 1973-07-30 1975-04-02
JPS5177583A (en) * 1974-12-28 1976-07-05 Kurita Water Ind Ltd
JPS60172391A (en) * 1984-02-20 1985-09-05 Kurita Water Ind Ltd Manufacturing apparatus of demineralized water
JPH07256119A (en) * 1994-03-24 1995-10-09 Shinko Pantec Co Ltd Method for regenerating mixed-bed ion-exchange tower
JP2000254524A (en) * 1999-03-05 2000-09-19 Kurita Water Ind Ltd Method for regenerating ion exchange resin
JP2007245020A (en) * 2006-03-16 2007-09-27 Japan Organo Co Ltd Ion-exchange tower
JP2011072927A (en) * 2009-09-30 2011-04-14 Kurita Water Ind Ltd Ion-exchange device, and column therefor
JP2012205993A (en) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd Ion exchange apparatus and column body thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2823553C1 (en) * 2023-11-15 2024-07-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" Ion exchange unit

Also Published As

Publication number Publication date
JP2016093779A (en) 2016-05-26
JP6015737B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP5720364B2 (en) Ion exchanger
JP5672687B2 (en) Ion exchanger
KR101277126B1 (en) Method for operating ion exchange equipment and ion exchange equipment
TWI483778B (en) Ion exchange device
JP6873972B2 (en) Regeneration of mixed floor resin
JP4869881B2 (en) Ion exchange apparatus and ion exchange method
JP5849419B2 (en) Pure water production equipment
JPH0286849A (en) Ion exchange method and apparatus for especially regenerating aqueous solution after softening/demineralization
US5955510A (en) Process for the regeneration of ion exchange resins in a fixed double-bed type apparatus
JP6015737B2 (en) Operation method of regenerative ion exchanger
JP5862029B2 (en) Ion exchanger
AU640472B2 (en) Ion exchange apparatus
TWI756249B (en) Regenerative ion exchange device and method of operating the same
JP4883680B2 (en) Ion exchange tower
JP2009278882A (en) Device for decoloring sugar solution
JP5609181B2 (en) Ion exchanger
JP6337933B2 (en) Water quality management system and operation method of water quality management system
CN214495813U (en) Soft water system
JP5672333B2 (en) Operation method of regenerative ion exchanger
RU2206520C1 (en) Method of cleaning water to remove dissolved and undissolved impurities
US20020166817A1 (en) Ion exchange media regeneration method for fluid treatment
WO2024014104A1 (en) Device for removing hard components, and system for producing pure water
JP2654053B2 (en) Condensate desalination equipment
TWI648224B (en) Operation method of regenerative ion exchange device
JP3963032B2 (en) Ion exchange device and polishing filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859723

Country of ref document: EP

Kind code of ref document: A1