[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016076397A1 - スパイラル型膜エレメント用透過側流路材、及びその製造方法 - Google Patents

スパイラル型膜エレメント用透過側流路材、及びその製造方法 Download PDF

Info

Publication number
WO2016076397A1
WO2016076397A1 PCT/JP2015/081869 JP2015081869W WO2016076397A1 WO 2016076397 A1 WO2016076397 A1 WO 2016076397A1 JP 2015081869 W JP2015081869 W JP 2015081869W WO 2016076397 A1 WO2016076397 A1 WO 2016076397A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
side channel
permeation
resin sheet
channel material
Prior art date
Application number
PCT/JP2015/081869
Other languages
English (en)
French (fr)
Inventor
康弘 宇田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020177006169A priority Critical patent/KR102437204B1/ko
Priority to CN201580056408.3A priority patent/CN107073399B/zh
Priority to US15/519,603 priority patent/US10874993B2/en
Publication of WO2016076397A1 publication Critical patent/WO2016076397A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/101Spiral winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/103Details relating to membrane envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/122Separate manufacturing of ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/48Polyesters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/143Specific spacers on the feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/146Specific spacers on the permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Definitions

  • the present invention relates to a permeation-side channel material used for a spiral membrane element (hereinafter sometimes abbreviated as “membrane element”) for separating and concentrating a specific substance or the like from various liquids, a method for producing the same, and
  • membrane element used for separating and concentrating a specific substance or the like from various liquids, a method for producing the same, and
  • the present invention relates to a membrane element using the permeation side channel material.
  • a spiral membrane element including the center tube 5 and a sealing portion 21 that prevents mixing of the supply side passage and the permeation side passage is used (see Patent Document 1).
  • the membrane element 1 When the membrane element 1 is used, the supply liquid 7 is supplied from one end face side of the membrane element 1, and the supplied supply liquid 7 is along the supply-side flow path member 6 in the axial direction A 1 of the central tube 5. And is discharged as a concentrate 9 from the other end face side of the membrane element 1.
  • the permeated liquid 8 that has permeated the composite semipermeable membrane 2 in the process in which the supply liquid 7 flows along the supply-side flow path material 6 opens the opening 5a along the permeation-side flow path material 3 as shown by the broken line arrows in the figure. From the inside of the central tube 5 and discharged from the end of the central tube 5.
  • a knitted fabric obtained by tricot knitting a thermoplastic synthetic fiber such as polyester is used to impregnate with epoxy, or a high melting point polyester is used as a core material.
  • a tricot knitted fabric knitted with filaments using a low melting point polyester as a sheath material is heat-treated to fuse the low melting point resin to make it rigid (Patent Documents 1 and 2).
  • an object of the present invention is to improve productivity and to provide a cheap and high-quality permeation-side channel material for spiral membrane elements, a manufacturing method thereof, and a membrane element using the permeation-side channel material. Is to provide.
  • the manufacturing method of the permeation side channel material for spiral membrane element of the present invention is a ridge forming step of forming a plurality of ridges in a direction along the longitudinal direction while conveying a long resin sheet. And an opening forming step of forming a plurality of openings in a plurality of rows in a direction along the longitudinal direction while conveying a long resin sheet.
  • the manufacturing method of the permeation-side channel material of the present invention since a long resin sheet is used as a raw material, a spinning process and a knitting process are not required compared to the case of using a knitted fabric, thereby reducing costs and productivity. Can be improved. Moreover, since the ridge forming step and the opening forming step are included, the same function as that obtained by making the tricot knitted fabric impregnated with epoxy can be stably imparted. In the ridge forming step, a plurality of rows of ridge portions are formed in the direction along the longitudinal direction, and therefore can be continuously performed with a simple device.
  • the opening forming step a plurality of rows of openings are formed in the direction along the longitudinal direction, so that it can be continuously performed with a simple apparatus. Furthermore, since the surface roughness of the flow path of the permeate-side flow path material is smaller than before, the pressure loss can be suppressed low. As a result, productivity can be improved, and a low-cost and high-quality method for manufacturing a permeation-side channel material for spiral membrane elements can be provided.
  • the protruding line forming step forms protruding lines on both sides of the resin sheet.
  • the protruding line forming step forms protruding lines on both sides of the resin sheet.
  • the protrusions formed on both sides of the resin sheet have different heights on both sides. According to this configuration, the permeated water mainly flows through the groove formed by the higher convex portion of the obtained permeate-side channel material, and the overall pressure loss can be reduced.
  • the method further includes a step of making the cross section of the ridge portion closer to a rectangle after the ridge formation step.
  • a step of making the cross section of the ridge portion closer to a rectangle it is possible to obtain an effect that the pressure resistance is enhanced and the film surface is hardly damaged.
  • the permeation side channel material for spiral membrane element of the present invention is a resin sheet having a plurality of ridges formed in parallel and a plurality of openings formed between the ridges. It is characterized by becoming.
  • the permeation-side flow path material for spiral membrane element of the present invention is composed of a resin sheet having a plurality of ridges formed in parallel and a plurality of openings formed between the ridges. Therefore, it is possible to manufacture with a simple manufacturing process using an inexpensive raw material, and to obtain a permeation-side flow path material with stable quality. As a result, productivity can be improved, and an inexpensive and high-quality permeation-side channel material for spiral membrane elements can be provided.
  • the ridges are formed on both sides of the resin sheet. Moreover, it is preferable that the convex stripe part formed in the both sides of the said resin sheet differs in height in both sides. Furthermore, it is preferable that a cross section of the ridge is rectangular.
  • the spiral membrane element of the present invention includes a laminated body including a composite semipermeable membrane, a supply-side channel material and a transmission-side channel material, a perforated central tube around which the laminate is wound, a supply-side flow
  • the permeation side flow path material is the permeation side flow path material according to any one of the above.
  • FIG. 3 is a partially cutaway perspective view showing an example of a spiral membrane element of the present invention.
  • the permeation side channel material of the present invention is used for a spiral membrane element.
  • the overall configuration of the spiral membrane element will be described in detail later, but any conventionally known configuration can be adopted for the configuration other than the permeate-side channel material.
  • the permeation-side flow path material of the present invention has a plurality of ridges 31 formed in parallel in a plurality of rows, and a plurality of openings 32 each formed between the ridges 31. It consists of a resin sheet. That is, the opening 32 is formed in the thin portion 33 of the resin sheet.
  • the ridges 31 are formed on both sides of the resin sheet, and the formed upper ridges 31a and lower ridges 31b are different in height on both sides. .
  • the material of the resin sheet is not particularly limited as long as it is thermoplastic, but polyester resins such as polyethylene terephthalate resin and polybutylene terephthalate resin, polyolefin resins such as polypropylene resin and polyethylene resin, and polyamide resins such as nylon resin are suitable. Can be used.
  • the ridge portion 31 and the thin portion 33 are integrally formed of the same material.
  • the total thickness of the permeate-side channel material 3 is determined by the total height of the ridges 31 and the thickness of the thin-walled portion 33, but wound around the membrane element while ensuring sufficient strength and permeate-side channels. From the viewpoint of securing the film area at the time, it is preferably 0.1 to 1 mm, more preferably 0.2 to 0.4 mm.
  • the thickness of the thin portion 33 is preferably 0.01 to 0.1 mm, more preferably 0.02 to 0.05 mm, from the viewpoint of obtaining sufficient strength while ensuring the permeation side flow path.
  • the ratio of the height when the ridge portions 31 are formed on both sides of the resin sheet is such that the height of the higher ridge portion 31a is lower from the viewpoint of reducing the overall pressure loss of the permeate side flow path.
  • the height of the ridge portion 31b is preferably 1.5 to 10 times, more preferably 2 to 5 times.
  • a groove is formed between the ridges 31, but the width of the groove (width at the upper surface) is sufficient to secure a permeate-side flow path while suppressing deterioration in performance due to film deformation. 0.08 to 0.6 mm is preferable, and 0.1 to 0.45 mm is more preferable.
  • the width on the upper surface of the protrusion 31 is preferably 0.1 to 0.6 mm, and more preferably 0.15 to 0.4 mm.
  • a cross-sectional shape of the ridge portion 31 a trapezoid or the like is preferable in addition to a rectangle such as a square or a rectangle, and a case where the cross-sectional shape is a rectangle is particularly preferable.
  • the cross-sectional shape such as a rectangle includes those whose corners are chamfered.
  • the shape of the opening 32 formed in the thin-walled portion 33 can be an ellipse, a long hole, or a rectangular hole in addition to a circle, but is preferably a circle or a substantially circle from the viewpoint of workability and strength.
  • the diameter of the opening 32 formed in the thin portion 33 or the length in the width direction is substantially the same as the groove width, but the length in the direction along the groove can be adjusted according to the shape of the opening 32. is there.
  • the length in the width direction can be 1.1 to 5 times.
  • the opening ratio of the opening 32 in the thin portion 33 is preferably 25 to 75% from the viewpoint of strength and easy distribution of the adhesive resin during assembly.
  • the formation positions of the openings 32 formed between the ridges 31 are preferably regular from the viewpoint of workability, and more preferably formed at an equal pitch. Moreover, the formation position of the opening 32 in each row may be the same or different.
  • the solid shape of the opening 32 may be the same cross-sectional shape, but may be enlarged or reduced in one direction.
  • the permeation side channel material for spiral membrane element of the present invention can be suitably manufactured by the manufacturing method of the present invention described below.
  • the manufacturing method of the present invention includes a ridge forming step of forming a plurality of ridges 31 in a direction along the longitudinal direction while conveying a long resin sheet 30. And an opening forming step of forming a plurality of rows of openings 32 one by one in the direction along the longitudinal direction while conveying a long resin sheet.
  • a ridge forming step of forming a plurality of ridges 31 in a direction along the longitudinal direction while conveying a long resin sheet 30.
  • an opening forming step of forming a plurality of rows of openings 32 one by one in the direction along the longitudinal direction while conveying a long resin sheet.
  • ridge forming step As shown in FIG. 2A, a plurality of rows of ridge portions 31 are formed.
  • a method of pressing to form a predetermined shape can be employed.
  • a ridge forming step is performed by embossing using an embossing roll 35 provided with a plurality of grooves in the circumferential direction and a smooth heating roll 36, and continuously passing between the two. Can be implemented.
  • the heating and pressing conditions at that time are appropriately set according to the material and processing speed of the resin sheet 30.
  • embossing roll it is also possible to carry out by sequentially performing compression molding using a press device provided with a plurality of grooves parallel to a flat mold.
  • the shape of the ridge portion 31 to be formed is preferably a shape in which the lower side widens like a trapezoid or a triangle from the viewpoint of workability. Moreover, it is preferable from the viewpoint of workability to form the height higher than the final height of the ridges 31.
  • the ridges 31 are formed on one surface of the resin sheet 30 and the ridges 31 are also formed on the other surface in a later step. It is also possible to perform. In that case, what is necessary is just to perform embossing, heating a roll using the embossing roll which opposes. However, as in the present embodiment, by performing the process in two steps, the effect of facilitating the processing can be obtained when deburring is necessary after the drilling.
  • a plurality of rows of openings 32 are formed one by one.
  • a method using a laser irradiation device 37 is used as shown in FIG. It is done. It is also possible to perform punching by a press or the like, and drilling by combining an embossing roll with a sharp pattern and an elastic roll.
  • the thin protrusion 33 is further thinned by calendaring or the like, thereby forming the lower protrusion 31b.
  • an embossing roll 35 provided with a plurality of grooves in the circumferential direction and a heating roll 38 provided with a plurality of grooves for receiving the upper ridges 31a are used, and the gap between them is continuous.
  • the lower ridge portion 31b can be formed by embossing.
  • the protruding strips 31a and 31b on both sides are slightly flattened and the thickness is adjusted to a predetermined thickness.
  • two embossing rolls 35 provided with a plurality of grooves in the circumferential direction are used, and the protrusions on both sides are embossed by continuously passing between the two while heating them.
  • the portions 31a and 31b can be slightly flattened.
  • the manufactured product is wound on a roll.
  • the permeation-side channel material having a predetermined shape may be continuously manufactured by cutting a long product without winding it on a roll.
  • the spiral membrane element of the present invention includes a laminated body including the composite semipermeable membrane 2, the supply-side flow path material 6 and the permeation-side flow path material 3, and a hole around which the laminated body is wound.
  • the center tube 5 and a sealing portion 21 that prevents mixing of the supply-side flow path and the permeation-side flow path are provided, and the permeation-side flow path material 3 of the present invention is used.
  • the sealing part 21 for preventing mixing of the supply side flow path and the permeation side flow path is obtained by, for example, superimposing the composite semipermeable membrane 2 on both surfaces of the permeation side flow path material 3 and bonding the three sides.
  • the sealing part 21 is formed on the sealing part 21 on the outer peripheral side edge, the upstream side edge, and the downstream side edge.
  • the envelope film 4 is attached to the central tube 5 at its opening, and is wound spirally around the outer peripheral surface of the central tube 5 together with the net-like (net-like) supply-side flow path member 6 so that the wound body R becomes It is formed.
  • An upstream end member 10 such as a seal carrier is provided on the upstream side of the wound body R, and a downstream end member 20 such as a telescope prevention member is provided on the downstream side as necessary.
  • the supply liquid 7 is supplied from one end face side of the membrane element 1.
  • the supplied supply liquid 7 flows along the supply-side flow path material 6 in a direction parallel to the axial direction A1 of the central tube 5 and is discharged as a concentrated liquid 9 from the other end face side of the membrane element 1.
  • the permeated liquid 8 that has permeated through the composite semipermeable membrane 2 in the process of the supply liquid 7 flowing along the supply-side flow path material 6 is opened along the permeation-side flow path material 3 as shown by the broken line arrows in the figure. It flows into the center tube 5 from 5a and is discharged from the end of the center tube 5.
  • the supply-side flow path member 6 generally has a role of ensuring a gap for uniformly supplying fluid to the membrane surface.
  • a supply-side flow path member 6 for example, a net, a knitted fabric, a concavo-convex processed sheet or the like can be used, and a material having a maximum thickness of about 0.1 to 3 mm can be used as necessary.
  • the pressure loss is low, and further, a material that causes an appropriate turbulent flow effect is preferable.
  • the flow path material is installed on both surfaces of the separation membrane, different flow path materials are generally used as the supply side flow path material 6 on the supply liquid side and the permeate side flow path material 3 on the permeate side. It is.
  • the supply-side channel material 6 uses a coarse and thick net-like channel material, while the permeate-side channel material 3 uses a fine woven or knitted channel material.
  • the supply side channel material 6 is provided on the inner surface side of the bi-folded composite semipermeable membrane.
  • a network structure in which linear objects are generally arranged in a lattice shape can be preferably used.
  • the material to be constructed is not particularly limited, but polyethylene or polypropylene is used. These resins may contain bactericides and antibacterial agents.
  • the thickness of the supply side channel material 6 is generally 0.2 to 2.0 mm, preferably 0.5 to 1.0 mm. If the thickness is too thick, the amount of permeation decreases with the amount of the film that can be accommodated in the element. Conversely, if the thickness is too thin, contaminants adhere and are likely to be clogged, so that permeation performance is likely to deteriorate.
  • the center tube 12 only needs to have an opening 12a around the tube, and any conventional tube can be used.
  • any conventional tube can be used.
  • the permeated water that has passed through the composite semipermeable membrane 2 enters the central tube 12 through the hole in the wall surface to form a permeated water flow path.
  • the length of the central tube 12 is generally longer than the length in the axial direction of the element, but the central tube 12 having a connection structure such as being divided into a plurality of elements may be used.
  • tube 12 A thermosetting resin or a thermoplastic resin is used.
  • the spiral membrane element of the present invention may be trimmed at both ends of the wound body R after resin sealing in order to adjust the length in the axial direction A1. Further, a perforated end member for preventing deformation (such as a telescope), a sealing material, a reinforcing material, an exterior material, and the like can be provided as necessary.
  • the composite semipermeable membrane preferably has a separation functional layer on the surface of the porous support, and the porous support is preferably a nonwoven fabric formed with a polymer porous layer.
  • Such composite semipermeable membranes are called RO (reverse osmosis) membranes, NF (nanofiltration) membranes, and FO (forward osmosis) membranes depending on their filtration performance and treatment method, and they are used for ultrapure water production and seawater desalination. It can be used for desalination of brine, reuse of waste water, etc.
  • the separation function layer examples include polyamide, cellulose, polyether, and silicon separation function layers, and those having a polyamide separation function layer are preferable.
  • the polyamide-based separation functional layer is generally a homogeneous membrane having no visible pores and has a desired ion separation ability.
  • the separation functional layer is not particularly limited as long as it is a polyamide-based thin film that is difficult to peel off from the polymer porous layer.
  • a polyfunctional amine component and a polyfunctional acid halide component are formed on the porous support membrane.
  • a polyamide-based separation functional layer obtained by interfacial polymerization is well known.
  • Such a polyamide-based separation functional layer is known to have a pleated microstructure, and the thickness of this layer is not particularly limited, but is about 0.05 to 2 ⁇ m, preferably 0.1 to 1 ⁇ m. It is known that if this layer is too thin, film surface defects are likely to occur, and if it is too thick, the transmission performance deteriorates.
  • the method for forming the polyamide-based separation functional layer on the surface of the polymer porous layer is not particularly limited, and any known method can be used. Examples of the method include an interfacial polymerization method, a phase separation method, and a thin film coating method. In the present invention, the interfacial polymerization method is particularly preferably used. In the interfacial polymerization method, for example, the polymer porous layer is coated with a polyfunctional amine component-containing amine aqueous solution, and then an organic solution containing a polyfunctional acid halide component is brought into contact with the amine aqueous solution-coated surface to cause interfacial polymerization. This is a method for forming a skin layer.
  • the nonwoven fabric layer is not particularly limited as long as it imparts an appropriate mechanical strength while maintaining the separation performance and permeation performance of the composite semipermeable membrane, and a commercially available nonwoven fabric can be used.
  • a material made of polyolefin, polyester, cellulose or the like is used, and a material in which a plurality of materials are mixed can also be used.
  • polyester in terms of moldability and cost.
  • a long fiber nonwoven fabric or a short fiber nonwoven fabric can be used as appropriate, but a long fiber nonwoven fabric can be preferably used from the viewpoint of fine fuzz that causes pinhole defects and uniformity of the film surface.
  • the air permeability of the nonwoven fabric layer at this time is not limited to this, but it can be about 0.5 to 10 cm 3 / cm 2 ⁇ s, and 1 to 5 cm 3 / s. Those having a size of about cm 2 ⁇ s are preferably used.
  • the polymer porous layer is not particularly limited as long as it can form the polyamide-based separation functional layer, but is usually a microporous layer having a pore diameter of about 0.01 to 0.4 ⁇ m.
  • the material for forming the microporous layer may include various materials such as polysulfone, polyarylethersulfone exemplified by polyethersulfone, polyimide, and polyvinylidene fluoride.
  • the polymer porous layer can be produced by a method generally called a wet method or a dry wet method.
  • a solution preparation step in which polysulfone, a solvent and various additives are dissolved
  • a coating step in which the nonwoven fabric is coated with the solution
  • a drying step in which the solvent in the solution is evaporated to cause microphase separation, a water bath, etc.
  • the polymer porous layer on the nonwoven fabric can be formed through an immobilization step of immobilization by dipping in a coagulation bath.
  • the thickness of the polymer porous layer can be set by adjusting the solution concentration and the coating amount after calculating the ratio of impregnation into the nonwoven fabric layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 生産性の向上が可能であり、安価で高品質なスパイラル型膜エレメント用透過側流路材、及びその製造方法、並びに前記透過側流路材を用いた膜エレメントを提供する。 複数列で平行に形成された凸条部31と、その凸条部31の間に各々複数形成された開口32と、を有する樹脂シートからなるスパイラル型膜エレメント用透過側流路材、及びその製造方法、並びに前記透過側流路材を用いた膜エレメント。

Description

スパイラル型膜エレメント用透過側流路材、及びその製造方法
 本発明は、各種液体から特定物質等を分離・濃縮するためのスパイラル型膜エレメント(以下、「膜エレメント」と略称する場合がある)に用いられる透過側流路材、及びその製造方法、並びに前記透過側流路材を用いた膜エレメントに関する。
 近年、水資源を安定的に確保することが難しい乾燥・半乾燥地域の沿岸部大都市においては海水を脱塩して淡水化することが試みられている。さらに中国やシンガポールなど水資源の乏しい地域では工業排水や家庭排水を浄化し再利用する試みがなされている。さらに最近では、油田プラント等から出る油分まじりの濁質度の高い排水から油分や塩分を除去することで、このような水を再利用するといった取り組みも試みられている。このような水処理にはコストや効率等の面で複合半透膜を用いた膜法が有効であることが分かっている。
 このような水処理方法では、図5に示すように、複合半透膜2、供給側流路材6及び透過側流路材3を含む積層体と、その積層体を巻回した有孔の中心管5と、供給側流路と透過側流路との混合を防止する封止部21とを備えるスパイラル型膜エレメントが使用されることが多い(特許文献1参照)。膜エレメント1を使用する際は、供給液7は膜エレメント1の一方の端面側から供給され、供給された供給液7は、供給側流路材6に沿って中心管5の軸芯方向A1に平行な方向に流れ、膜エレメント1の他方の端面側から濃縮液9として排出される。また、供給液7が供給側流路材6に沿って流れる過程で複合半透膜2を透過した透過液8は、図中破線矢印に示すように透過側流路材3に沿って開口5aから中心管5の内部に流れ込み、この中心管5の端部から排出される。
 従来、スパイラル型膜エレメントの透過側流路材としては、ポリエステルなどの熱可塑性合成繊維のフィラメントをトリコット編みした編物を用いて、エポキシ含浸して剛直化させたり、あるいは芯材として高融点ポリエステルを、鞘材として低融点ポリエステルを用いたフィラメントで編んだトリコット編地を熱処理することにより低融点樹脂を融着させて剛直化させるなどして製造していた(特許文献1~2)。
特開昭62-57609号公報 特公平3-66008号公報
 しかしながら、上記のようにトリコット編地を用いて透過側流路材を製造するには、フィラメントの紡糸工程、トリコット編み工程、熱処理工程など、多くの製造工程を要するために生産性を上げにくく、コスト低減も困難であった。また、繊維を構成材料とするため、透過側流路材の表面粗さが大きくなり、これが透過側流路の圧力損失にも影響すると考えられる。
 そこで、本発明の目的は、生産性の向上が可能であり、安価で高品質なスパイラル型膜エレメント用透過側流路材、及びその製造方法、並びに前記透過側流路材を用いた膜エレメントを提供することにある。
 本発明の上記目的は、以下の如き本発明によって達成することができる。
 即ち、本発明のスパイラル型膜エレメント用透過側流路材の製造方法は、長尺の樹脂シートを搬送しつつ、その長手方向に沿う方向に複数列の凸条部を形成する凸条形成工程と、長尺の樹脂シートを搬送しつつ、その長手方向に沿う方向に複数列の開口を複数づつ形成する開口形成工程と、を含むことを特徴とする。
 本発明の透過側流路材の製造方法によると、長尺の樹脂シートを原料とするため、編物を用いる場合と比較して、紡糸工程や編み工程が不要となるため、コスト低減や生産性の向上が可能となる。また、凸条形成工程と開口形成工程とを含むため、トリコット編物にエポキシ含浸して剛直化したものと同様の機能を安定して付与することができる。そして、凸条形成工程では長手方向に沿う方向に複数列の凸条部を形成するため、簡易な装置で連続的に実施することができる。また、開口形成工程でも、その長手方向に沿う方向に複数列の開口を複数づつ形成するため、簡易な装置で連続的に実施することができる。さらに、従来よりも透過側流路材の流路の表面粗さが小さくなるため、圧力損失を低く抑えることができる。その結果、生産性の向上が可能であり、安価で高品質なスパイラル型膜エレメント用透過側流路材の製造方法を提供することができる。
 上記において、前記凸条形成工程が、前記樹脂シートの両側に凸条部を形成するものであることが好ましい。このように樹脂シートの両側に凸条部を形成することにより、分離膜の表面に接触する樹脂シートの面積が小さくなるため、より広い膜面を有効に活用することができる。また、両側に溝が形成されるため、膜エレメントの製造の際(特に膜リーフの組立ての際)に、接着樹脂がよく行き渡るようにすることができ、膜リーフからのリークを防止することができる。
 また、前記樹脂シートの両側に形成された凸条部が、両側において高さが異なっていることが好ましい。この構成によると、得られる透過側流路材の高い方の凸条部により形成される溝を主に透過水が流れるようになり、全体の圧力損失を下げることができる。
 また、前記凸条形成工程の後に、前記凸条部の断面をより矩形に近づける矩形化工程を更に有することが好ましい。このように、矩形に近い形状の凸条部を形成することにより、耐圧性が高まると共に、膜面のダメージが受け難くなるという効果が得られる。
 一方、本発明のスパイラル型膜エレメント用透過側流路材は、複数列で平行に形成された凸条部と、その凸条部の間に各々複数形成された開口と、を有する樹脂シートからなることを特徴とする。本発明のスパイラル型膜エレメント用透過側流路材によると、複数列で平行に形成された凸条部と、その凸条部の間に各々複数形成された開口と、を有する樹脂シートからなるため、安価な原料を用いて、簡易な製造工程で製造でき、安定した品質の透過側流路材が得られる。その結果、生産性の向上が可能であり、安価で高品質なスパイラル型膜エレメント用透過側流路材を提供することができる。
 上記と同様の理由から、前記凸条部が、前記樹脂シートの両側に形成されたものであることが好ましい。また、前記樹脂シートの両側に形成された凸条部が、両側において高さが異なっていることが好ましい。更に、前記凸条部の断面が矩形であることが好ましい。
 他方、本発明のスパイラル型膜エレメントは、複合半透膜、供給側流路材及び透過側流路材を含む積層体と、その積層体を巻回した有孔の中心管と、供給側流路と透過側流路との混合を防止する封止部とを備えるスパイラル型膜エレメントにおいて、前記透過側流路材は、上記のいずれかに記載の透過側流路材であることを特徴とする。本発明のスパイラル型膜エレメントによると、生産性の向上が可能であり、安価で高品質な透過側流路材を用いるため、全体としてのコスト低減や生産性の向上を図ることができる。
本発明のスパイラル型膜エレメント用透過側流路材の一例を示す斜視図。 本発明のスパイラル型膜エレメント用透過側流路材の製造方法の一例を示す工程図。 本発明の製造方法に用いられる装置の一例を示す概略構成図。 本発明のスパイラル型膜エレメント用透過側流路材の他の例を示す斜視図。 本発明のスパイラル型膜エレメントの一例を示す一部切欠いた斜視図。
 (透過側流路材)
 本発明の透過側流路材は、スパイラル型膜エレメントに用いられるものである。スパイラル型膜エレメントの全体構成については、後に詳述するが、透過側流路材以外の構成については、従来公知のものが何れも採用できる。
 本発明の透過側流路材は、図1に示すように、複数列で平行に形成された凸条部31と、その凸条部31の間に各々複数形成された開口32と、を有する樹脂シートからなる。つまり、開口32は樹脂シートの薄肉部33に形成されている。本実施形態では、凸条部31は、樹脂シートの両側に形成され、形成された上側の凸条部31aと下側の凸条部31bとが、両側において高さが異なっている例を示す。
 樹脂シートの材料としては熱可塑性であれば特に制限はないが、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂などのポリエステル樹脂、ポリプロピレン樹脂、ポリエチレン樹脂などのポリオレフィン系樹脂、ナイロン樹脂などのポリアミド樹脂などを好適に用いることができる。本発明では、凸条部31と薄肉部33とが同一材料で一体に成形されている。
 透過側流路材3の全厚みは、凸条部31の総高さと薄肉部33の厚みとにより決定されるが、十分な強度と透過側流路を確保しつつ、膜エレメントに巻回した際の膜面積を確保する観点から、0.1~1mmであるのが好ましく、0.2~0.4mmがより好ましい。薄肉部33の厚みは、透過側流路を確保しつつ、十分な強度を得る観点から、0.01~0.1mmが好ましく、0.02~0.05mmがより好ましい。
 凸条部31が、樹脂シートの両側に形成される場合の高さの比率は、透過側流路の全体の圧力損失を下げる観点より、高い方の凸条部31aの高さが、低い方の凸条部31bの高さの1.5~10倍が好ましく、2~5倍がより好ましい。
 凸条部31の間には溝が形成されるが、その溝の幅(上面部における幅)は、透過側流路を十分確保しつつ、膜の変形による性能の低下を抑制する観点から、0.08~0.6mmが好ましく、0.1~0.45mmがより好ましい。
 凸条部31の上面における幅は、膜面の保護の観点から、0.1~0.6mmが好ましく、0.15~0.4mmがより好ましい。凸条部31の断面形状としては、正方形、長方形等の矩形の他、台形などが好ましく、特に断面形状が矩形である場合が好ましい。なお、本発明において、矩形等の断面形状には、角部が面取りされたものも含まれる。
 薄肉部33に形成される開口32の形状は、円形以外にも、楕円や長穴、矩形穴でも可能であるが、加工性と強度の観点から、円形又は略円形が好ましい。
 薄肉部33に形成される開口32の直径又は幅方向の長さは、溝幅と略同じであるが、開口32の形状に応じて、溝に沿う方向の長さを調整することが可能である。例えば、長穴等の場合、幅方向の長さの1.1~5倍にすることも可能である。また、薄肉部33における開口32の開口率としては、強度と組み立て時に接着樹脂を行き渡らせ易くする観点から25~75%が好ましい。
 凸条部31の間に形成される開口32の形成位置は、規則的であることが加工性の観点から好ましく、等ピッチで形成されていることがより好ましい。また、各列における開口32の形成位置は、同じでも異なっていてもよい。
 開口32の立体形状は、同一の横断面形状でもよいが、一方の方向に拡大または縮小していてもよい。
 本発明のスパイラル型膜エレメント用透過側流路材は、以下で説明する本発明の製造方法により好適に製造することができる。
 (透過側流路材の製造方法)
 本発明の製造方法は、図2~図3に示すように、長尺の樹脂シート30を搬送しつつ、その長手方向に沿う方向に複数列の凸条部31を形成する凸条形成工程と、長尺の樹脂シートを搬送しつつ、その長手方向に沿う方向に複数列の開口32を複数づつ形成する開口形成工程と、を含むものである。本実施形態では、凸条形成工程の後に開口形成工程を行なう例を示すが、両者の順番は逆であってもよい。
 凸条形成工程では、図2(A)に示すように、複数列の凸条部31を形成するが、その方法としては、熱可塑性の樹脂シート30をロールから繰り出して搬送しつつ、加熱加圧して所定の形状に成形する方法が採用できる。例えば、図3に示すように、周方向に複数の溝を設けたエンボスロール35と、平滑な加熱ロール36とを使用し、両者の間を連続的に通過させるエンボス加工により、凸条形成工程を実施することができる。その際の加熱加圧の条件は、樹脂シート30の材質や加工速度に応じて、適宜設定される。また、エンボスロールを用いる代わりに、平面な型に平行な複数の溝を設けたプレス装置を用いて、逐次、圧縮成形加工を行なうことで実施することも可能である。
 形成される凸条部31の形状は、加工性の観点より、台形、三角形等のように下側が広がる形状が好ましい。また、その高さは最終的な凸条部31の高さより、高く形成することが、加工性の観点より、好ましい。
 本実施形態では、最初に樹脂シート30の一方の面に凸条部31を形成し、後の工程で他方の面にも凸条部31を形成するが、一回の凸条形成工程でこれを行なうことも可能である。その場合、対向するエンボスロールを用いてロールを加熱しながらエンボス加工を行なえばよい。但し、本実施形態のように、2回に分けて行なうことで、穴あけ加工後にバリ取りが必要な場合、加工が容易となるという効果が得られる。
 開口形成工程では、図2(B)に示すように、複数列の開口32が複数づつ形成されるが、その方法としては、図3に示すように、レーザ照射装置37を用いた方法が挙げられる。また、プレス等による打ち抜き加工、鋭利な柄のエンボスロールと弾性ロールを組み合わせによる穴あけ加工を行なうことも可能である。
 次いで、本実施形態では、図2(C)に示すように、カレンダー加工等により、薄肉部33を更に薄手化することで、下側の凸条部31bを形成する。例えば、図3に示すように、周方向に複数の溝を設けたエンボスロール35と、上側の凸条部31aを受け入れる複数の溝を設けた加熱ロール38とを使用し、両者の間を連続的に通過させるエンボス加工により、下側の凸条部31bを形成することができる。
 更に、本実施形態では、図2(D)に示すように、両側の凸条部31a、31bを、やや扁平化させるとともに、所定の厚さになるよう厚さの調整を行う。例えば、図3に示すように、周方向に複数の溝を設けた2つのエンボスロール35を使用し、これを加熱しながら、両者の間を連続的に通過させるエンボス加工により、両側の凸条部31a、31bをやや扁平化させることができる。また、平滑な加熱ロール同士の間を通過させることで、凸条部31a、31bの扁平化と厚さ調整を行なうことが可能である。
 その後、図3に示すように、製造後の製品をロールに巻き取るようにすることが、生産性の面で好ましい。また、ロールに巻き取らずに、長尺品の裁断を行なって、所定の形状を有する透過側流路材を連続的に製造してもよい。更に、樹脂シートの製造工程に、本発明の製造工程を連続させることで、一貫製造ラインとすることも可能である。
 (スパイラル型膜エレメント)
 本発明のスパイラル型膜エレメントは、図5に示すように、複合半透膜2、供給側流路材6及び透過側流路材3を含む積層体と、その積層体を巻回した有孔の中心管5と、供給側流路と透過側流路との混合を防止する封止部21とを備えており、本発明の透過側流路材3を用いることが特徴である。本実施形態では、複合半透膜2、供給側流路材6及び透過側流路材3を含む複数の分離膜ユニットが、中心管5の回りに巻きつけられている巻回体Rの例を示す。
 供給側流路と透過側流路との混合を防止するための封止部21は、例えば、透過側流路材3の両面に複合半透膜2を重ね合わせて3辺を接着することにより封筒状膜4(袋状膜)を形成する場合、外周側端辺の封止部21と上流側端辺及び下流側端辺とに封止部21が形成される。また、上流側端辺及び下流側端辺の内周側端部と中心管5との間にも封止部21を設けるのが好ましい。
 封筒状膜4は、その開口部を中心管5に取り付け、ネット状(網状)の供給側流路材6とともに中心管5の外周面にスパイラル状に巻回することにより、巻回体Rが形成される。この巻回体Rの上流側には、例えば、シールキャリア等の上流側端部材10が設けられ、下流側には、必要に応じてテレスコープ防止材等の下流側端部材20が設けられる。
 上記膜エレメント1を使用する際は、供給液7は膜エレメント1の一方の端面側から供給される。供給された供給液7は、供給側流路材6に沿って中心管5の軸芯方向A1に平行な方向に流れ、膜エレメント1の他方の端面側から濃縮液9として排出される。また、供給液7が供給側流路材6に沿って流れる過程で複合半透膜2を透過した透過液8は、図中破線矢印に示すように透過側流路材3に沿って開孔5aから中心管5の内部に流れ込み、この中心管5の端部から排出される。
 供給側流路材6は一般に、膜面に流体を満遍なく供給するための間隙を確保する役割を有する。このような供給側流路材6は、例えばネット、編み物、凹凸加工シートなどを用いることができ、最大厚さが0.1~3mm程度のものを適宜必要に応じて用いることができる。このような供給側流路材6では、圧力損失が低い方が好ましく、さらに適度な乱流効果を生じさせるものが好ましい。また、流路材は分離膜の両面に設置するが、供給液側には供給側流路材6、透過液側には透過側流路材3として、異なる流路材を用いることが一般的である。供給側流路材6では目が粗く厚いネット状の流路材を用いる一方で、透過側流路材3では目の細かい織物や編物の流路材を用いる。
 前記供給側流路材6は、海水淡水化や排水処理等の用途において、RO膜やNF膜を用いる場合に、前記の二つ折りにした複合半透膜の内面側に設けられる。供給側流路材6の構造は、一般に線状物を格子状に配列した網目構造のものを好ましく利用することができる。
 構成する材料としては特に限定されるものではないが、ポリエチレンやポリプロピレンなどが用いられる。これらの樹脂は殺菌剤や抗菌剤を含有していてもよい。この供給側流路材6の厚さは、一般に0.2~2.0mmであり、0.5~1.0mmが好ましい。厚さが厚すぎるとエレメントに収容できる膜の量とともに透過量が減ってしまい、逆に薄すぎると汚染物質が付着し、詰まりやすくなるため、透過性能の劣化が生じやすくなる。
 特に本発明では、0.6~0.9mmの供給側流路材6と組みわせることで、汚染物質が堆積しにくくなるとともに、バイオファウリングも生じにくくなるため、連続使用時にもFluxの低下を抑制することができる。
 中心管12は、管の周囲に開孔12aを有するものであれば良く、従来のものが何れも使用できる。一般に海水淡水化や排水処理等で用いる場合には、複合半透膜2を経た透過水が壁面の孔から中心管12中に侵入し、透過水流路を形成する。中心管12の長さはエレメントの軸方向長さより長いものが一般的だが、複数に分割するなど連結構造の中心管12を用いてもよい。中心管12を構成する材料としては特に限定されるものではないが、熱硬化性樹脂または熱可塑性樹脂が用いられる。
 本発明のスパイラル型膜エレメントは、樹脂封止後の巻回体Rを、軸芯方向A1の長さを調整するために、両端部のトリミング等を行ってもよい。更に変形(テレスコープ等)を防止するための有孔の端部材や、シール材、補強材、外装材などを必要に応じて設けることができる。
 複合半透膜としては、多孔性支持体の表面に分離機能層を有するが好ましく、多孔性支持体としては、不織布にポリマー多孔質層を形成したものが好ましい。このような複合半透膜はその濾過性能や処理方法に応じてRO(逆浸透)膜、NF(ナノ濾過)膜、FO(正浸透)膜と呼ばれ、超純水製造や、海水淡水化、かん水の脱塩処理、排水の再利用処理などに用いることができる。
 分離機能層としては、ポリアミド系、セルロース系、ポリエーテル系、シリコン系、などの分離機能層が挙げられるが、ポリアミド系の分離機能層を有するものが好ましい。ポリアミド系の分離機能層としては、一般に、視認できる孔のない均質膜であって、所望のイオン分離能を有する。この分離機能層としては前記ポリマー多孔質層から剥離しにくいポリアミド系薄膜であれば特に限定されるものではないが、例えば、多官能アミン成分と多官能酸ハライド成分とを多孔性支持膜上で界面重合させてなるポリアミド系分離機能層がよく知られている。
 このようなポリアミド系分離機能層はひだ状の微細構造を有することが知られており、この層の厚さは特に限定されるものではないが、0.05~2μm程度であって、好ましくは0.1~1μmである。この層が薄すぎると膜面欠陥が生じやすくなり、厚すぎると透過性能が悪化することが知られている。
 前記ポリアミド系分離機能層をポリマー多孔質層の表面に形成する方法は特に制限されずにあらゆる公知の方法を用いることができる。例えば、界面重合法、相分離法、薄膜塗布法などの方法が挙げられるが、本発明では特に界面重合法が好ましく用いられる。界面重合法は例えば、前記ポリマー多孔質層上を多官能アミン成分含有アミン水溶液で被覆した後、このアミン水溶液被覆面に多官能酸ハライド成分を含有する有機溶液を接触させることで界面重合が生じ、スキン層を形成する方法である。
 不織布層としては、前記複合半透膜の分離性能および透過性能を保持しつつ、適度な機械強度を付与するものであれば特に限定されるものではなく、市販の不織布を用いることができる。この材料としては例えば、ポリオレフィン、ポリエステル、セルロースなどからなるものが用いられ、複数の素材を混合したものも使用することができる。特に成形性およびコストの点ではポリエステルを用いることが好ましい。また適宜、長繊維不織布や短繊維不織布を用いることができるが、ピンホール欠陥の原因となる微細な毛羽立ちや膜面の均一性の点から、長繊維不織布を好ましく用いることができる。また、このときの前記不織布層単体の通気度としては、これに限定されるものではないが、0.5~10cm/cm・s程度のものを用いることができ、1~5cm/cm・s程度のものが好ましく用いられる。
 前記ポリマー多孔質層としては、前記ポリアミド系分離機能層を形成しうるものであれば特に限定されないが、通常、0.01~0.4μm程度の孔径を有する微多孔層である。前記微多孔層の形成材料は、例えば、ポリスルホン、ポリエーテルスルホンに例示されるポリアリールエーテルスルホン、ポリイミド、ポリフッ化ビニリデンなど種々のものをあげることができる。特に化学的、機械的、熱的に安定である点からポリスルホン、ポリアリールエーテルスルホンを用いたポリマー多孔質層を形成することが好ましい。
 前記ポリマー多孔質層のポリマーがポリスルホンである場合の製造方法について例示する。ポリマー多孔質層は一般に湿式法または乾湿式法と呼ばれる方法により製造できる。まず、ポリスルホンと溶媒及び各種添加剤を溶解した溶液準備工程と、前記溶液で不織布上を被覆する被覆工程と、この溶液中の溶媒を蒸発させてミクロ相分離を生じさせる乾燥工程と、水浴等の凝固浴に浸漬することで固定化する固定化工程を経て、不織布上のポリマー多孔質層を形成することができる。前記ポリマー多孔質層の厚さは、不織布層に含浸される割合も計算の上、前記溶液濃度及び被覆量を調整することで設定することができる。
 (他の実施形態)
 (1)前述の実施形態では、断面形状が矩形の凸条部31を設ける例を示したが、図4(A)に示すように、断面形状が台形の凸条31部を設けることも可能である。その場合、より簡易な工程で本発明の透過側流路材を製造することが可能である。また、同じ強度でありながら、分離膜との接触面積を低減することができる。
 (2)前述の実施形態では、長手方向に途切れずに連続する凸条部31を設ける例を示したが、図4(B)又は図4(C)に示すように、長手方向に横断溝34が設けられた凸条部31を設けることも可能である。このような横断溝34は、エンボスロールに対して横断溝34に対応する凸部を設けることが形成することが可能である。このように横断溝34を設ける場合、凸条部31同士の間の溝を流れる透過液の流速を均一化することができ、トータルの圧力損失をより低減できるようになる。また、巻回体の巻き付け時、透過側流路材の曲げ剛性が小さくなるため、巻き上げの作業が容易になる。特に、図4(C)に示す例では、横断溝34の形成ピッチ(すなわち溝の間隔)がより狭いため、巻回時により均一な曲率半径で透過側流路材を曲げることができる。
2    複合半透膜
3    透過側流路材
5    中心管
6    供給側流路材
21   封止部
31   凸条部
31a  凸条部(上側)
31b  凸条部(下側)
32   開口

Claims (9)

  1.  長尺の樹脂シートを搬送しつつ、その長手方向に沿う方向に複数列の凸条部を形成する凸条形成工程と、
     長尺の樹脂シートを搬送しつつ、その長手方向に沿う方向に複数列の開口を複数づつ形成する開口形成工程と、
    を含むスパイラル型膜エレメント用透過側流路材の製造方法。
  2.  前記凸条形成工程が、前記樹脂シートの両側に凸条部を形成するものである請求項1記載の製造方法。
  3.  前記樹脂シートの両側に形成された凸条部が、両側において高さが異なっている請求項2記載の製造方法。
  4.  前記凸条形成工程の後に、前記凸条部の断面をより矩形に近づける矩形化工程を更に有する請求項1~3いずれかに記載の製造方法。
  5.  複数列で平行に形成された凸条部と、
     その凸条部の間に各々複数形成された開口と、
    を有する樹脂シートからなるスパイラル型膜エレメント用透過側流路材。
  6.  前記凸条部が、前記樹脂シートの両側に形成されたものである請求項5記載の透過側流路材。
  7.  前記樹脂シートの両側に形成された凸条部が、両側において高さが異なっている請求項6記載の透過側流路材。
  8.  前記凸条部の断面が矩形である請求項5~7いずれかに記載の透過側流路材。
  9.  複合半透膜、供給側流路材及び透過側流路材を含む積層体と、その積層体を巻回した有孔の中心管と、供給側流路と透過側流路との混合を防止する封止部とを備えるスパイラル型膜エレメントにおいて、
     前記透過側流路材は、請求項5~8のいずれかに記載の透過側流路材であることを特徴とするスパイラル型膜エレメント。
     
PCT/JP2015/081869 2014-11-13 2015-11-12 スパイラル型膜エレメント用透過側流路材、及びその製造方法 WO2016076397A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177006169A KR102437204B1 (ko) 2014-11-13 2015-11-12 스파이럴형 막 엘리먼트용 투과측 유로재, 및 그 제조 방법
CN201580056408.3A CN107073399B (zh) 2014-11-13 2015-11-12 螺旋型膜元件用透过侧流路部件及其制造方法
US15/519,603 US10874993B2 (en) 2014-11-13 2015-11-12 Permeation side flow path material for spiral membrane element and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-230586 2014-11-13
JP2014230586A JP6637232B2 (ja) 2014-11-13 2014-11-13 スパイラル型膜エレメント用透過側流路材、及びその製造方法

Publications (1)

Publication Number Publication Date
WO2016076397A1 true WO2016076397A1 (ja) 2016-05-19

Family

ID=55954474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081869 WO2016076397A1 (ja) 2014-11-13 2015-11-12 スパイラル型膜エレメント用透過側流路材、及びその製造方法

Country Status (5)

Country Link
US (1) US10874993B2 (ja)
JP (1) JP6637232B2 (ja)
KR (1) KR102437204B1 (ja)
CN (1) CN107073399B (ja)
WO (1) WO2016076397A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6308331B2 (ja) * 2016-04-27 2018-04-11 東レ株式会社 分離膜エレメント
JP2019529099A (ja) * 2016-09-20 2019-10-17 アクア メンブレインズ エルエルシー 透過流パターン

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2305214A2 (fr) * 1974-10-09 1976-10-22 Rhone Poulenc Ind Appareil a membrane semi-permeable
JPS5279598A (en) * 1975-10-08 1977-07-04 Baxter Travenol Lab Embossed membrane support
JPS61111501U (ja) * 1984-12-26 1986-07-15
JPS63151304A (ja) * 1986-12-15 1988-06-23 Kurita Water Ind Ltd スパイラル型モジユ−ル
JPH10230145A (ja) * 1997-02-21 1998-09-02 Nitto Denko Corp スパイラル型膜エレメント
JP2000051671A (ja) * 1998-08-06 2000-02-22 Nitto Denko Corp スパイラル型分離膜エレメント
JP2000237554A (ja) * 1999-02-18 2000-09-05 Nitto Denko Corp スパイラル型膜エレメント
JP2006247453A (ja) * 2005-03-08 2006-09-21 Toray Ind Inc 液体分離素子、およびそれを用いた逆浸透装置、逆浸透膜処理方法
JP2014064973A (ja) * 2012-09-25 2014-04-17 Toray Ind Inc 分離膜および分離膜エレメント
JP2014193460A (ja) * 2013-02-28 2014-10-09 Toray Ind Inc 分離膜および分離膜エレメント

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476022A (en) * 1983-03-11 1984-10-09 Doll David W Spirally wrapped reverse osmosis membrane cell
JPS59195934U (ja) * 1983-06-10 1984-12-26 昭和電線電纜株式会社 閉鎖母線
JPS6019001A (ja) * 1983-07-14 1985-01-31 Toray Ind Inc 液体分離装置用流路材及びその製造方法
JPS6038003A (ja) * 1983-08-10 1985-02-27 Toray Ind Inc 液体分離装置
JPS61111501A (ja) 1984-11-05 1986-05-29 松下電器産業株式会社 電圧非直線抵抗器
JPH0771623B2 (ja) * 1985-09-09 1995-08-02 株式会社日立製作所 スパイラル型膜エレメント
JPH0366008A (ja) 1989-08-04 1991-03-20 Sharp Corp 磁気ヘッド
JPH09141060A (ja) * 1995-11-21 1997-06-03 Toray Ind Inc 液体分離素子、装置、及び処理方法
JPH10193299A (ja) * 1996-12-27 1998-07-28 Ricoh Co Ltd 微細孔形成用型製造方法及び微細孔形成装置
DE69927674D1 (de) * 1999-06-08 2006-02-23 Nitto Denko Corp Membranmodul zur Trennung von Flüssigkeiten und Verfahren zu seiner Herstellung
US20080290031A1 (en) * 2004-10-15 2008-11-27 Pall Corporation Spacer for Filter Modules
SE530221C2 (sv) * 2005-02-28 2008-04-01 Alfa Laval Corp Ab Spirallindad membranmodul med distanselement för permeat
US20060219635A1 (en) * 2005-03-30 2006-10-05 Special Membrane Technologies, Inc. High-density filtration module
CN102068908B (zh) 2006-03-31 2013-03-27 东丽株式会社 液体分离元件、分离膜组件及其应用
CN102821837B (zh) * 2010-03-24 2015-07-15 陶氏环球技术有限责任公司 螺旋卷过滤组件
TW201235079A (en) * 2010-12-28 2012-09-01 Toray Industries Separation membrane element
JP2014044912A (ja) * 2012-08-28 2014-03-13 Sumitomo Chemical Co Ltd 樹脂シートの製造方法
JP5828328B2 (ja) * 2013-02-20 2015-12-02 栗田工業株式会社 逆浸透膜装置の運転方法、及び逆浸透膜装置
JP5791767B2 (ja) * 2014-07-08 2015-10-07 株式会社日立製作所 逆浸透処理装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2305214A2 (fr) * 1974-10-09 1976-10-22 Rhone Poulenc Ind Appareil a membrane semi-permeable
JPS5279598A (en) * 1975-10-08 1977-07-04 Baxter Travenol Lab Embossed membrane support
JPS61111501U (ja) * 1984-12-26 1986-07-15
JPS63151304A (ja) * 1986-12-15 1988-06-23 Kurita Water Ind Ltd スパイラル型モジユ−ル
JPH10230145A (ja) * 1997-02-21 1998-09-02 Nitto Denko Corp スパイラル型膜エレメント
JP2000051671A (ja) * 1998-08-06 2000-02-22 Nitto Denko Corp スパイラル型分離膜エレメント
JP2000237554A (ja) * 1999-02-18 2000-09-05 Nitto Denko Corp スパイラル型膜エレメント
JP2006247453A (ja) * 2005-03-08 2006-09-21 Toray Ind Inc 液体分離素子、およびそれを用いた逆浸透装置、逆浸透膜処理方法
JP2014064973A (ja) * 2012-09-25 2014-04-17 Toray Ind Inc 分離膜および分離膜エレメント
JP2014193460A (ja) * 2013-02-28 2014-10-09 Toray Ind Inc 分離膜および分離膜エレメント

Also Published As

Publication number Publication date
CN107073399B (zh) 2021-03-23
KR20170084010A (ko) 2017-07-19
JP6637232B2 (ja) 2020-01-29
US10874993B2 (en) 2020-12-29
US20170239626A1 (en) 2017-08-24
KR102437204B1 (ko) 2022-08-26
JP2016093776A (ja) 2016-05-26
CN107073399A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
CN105705222B (zh) 复合半透膜
CN109715275B (zh) 分离膜元件及其运转方法
CN106687201B (zh) 螺旋型膜元件
WO2018052122A1 (ja) スパイラル型膜エレメント
JP2018015735A (ja) 分離膜エレメント
WO2016076397A1 (ja) スパイラル型膜エレメント用透過側流路材、及びその製造方法
KR102035951B1 (ko) 스파이럴형 막 엘리먼트
JP6245407B1 (ja) 分離膜エレメント
CN109496163B (zh) 分离膜元件
KR20220023961A (ko) 분리막 엘리먼트 및 그 사용 방법, 그리고 수 처리 장치
JP2019025419A (ja) 分離膜エレメント及びベッセル
JP2015142899A (ja) 分離膜エレメント
JP2015085322A (ja) 分離膜エレメント
CN115461134A (zh) 螺旋型膜元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177006169

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15519603

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15859796

Country of ref document: EP

Kind code of ref document: A1