WO2016076173A1 - Fuse element, fuse device, protective element, short-circuit element, and switching element - Google Patents
Fuse element, fuse device, protective element, short-circuit element, and switching element Download PDFInfo
- Publication number
- WO2016076173A1 WO2016076173A1 PCT/JP2015/081030 JP2015081030W WO2016076173A1 WO 2016076173 A1 WO2016076173 A1 WO 2016076173A1 JP 2015081030 W JP2015081030 W JP 2015081030W WO 2016076173 A1 WO2016076173 A1 WO 2016076173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- melting point
- metal layer
- point metal
- low melting
- electrodes
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/05—Component parts thereof
- H01H85/055—Fusible members
- H01H85/08—Fusible members characterised by the shape or form of the fusible member
- H01H85/11—Fusible members characterised by the shape or form of the fusible member with applied local area of a metal which, on melting, forms a eutectic with the main material of the fusible member, i.e. M-effect devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/05—Component parts thereof
- H01H85/055—Fusible members
- H01H85/12—Two or more separate fusible members in parallel
Definitions
- the present invention relates to a fuse element that is mounted on a current path and cuts off due to self-heating when a current exceeding the rating flows, or heat generated by a heating element, and particularly a fuse element excellent in quick disconnection, And a fuse element, a protection element, a short-circuit element, and a switching element using the same.
- a fuse element that melts by self-heating when a current exceeding the rating flows and interrupts the current path has been used.
- the fuse element for example, a holder-fixed fuse in which solder is enclosed in a glass tube, a chip fuse in which an Ag electrode is printed on the surface of a ceramic substrate, or a screw fixing in which a part of a copper electrode is thinned and incorporated in a plastic case or Plug-in fuses are often used.
- a high melting point solder containing Pb having a melting point of 300 ° C. or higher is preferable for the fuse element in terms of fusing characteristics so as not to melt by the heat of reflow.
- Pb-containing solder is only limitedly recognized, and it is considered that the demand for Pb-free solder will increase in the future.
- the fuse element can be surface-mounted by reflow and has excellent mountability to the fuse element, it can handle a large current by raising its rating, and the current path is quickly interrupted when overcurrent exceeds the rating. It is required to have fast fusing properties.
- an object of the present invention is to provide a fuse element that can be surface-mounted and can achieve both improvement in rating and quick fusing, and a fuse element, a protection element, a short-circuit element, and a switching element using the fuse element. To do.
- the fuse element according to the present invention is formed by laminating three or more metal layers having different melting points.
- the fuse element according to the present invention has a fuse element in which three or more metal layers having different melting points are laminated, and the fuse element is blown when an overcurrent exceeding the rating flows.
- the protection element according to the present invention includes an insulating substrate, a heating element formed on or in the insulating substrate, first and second electrodes provided on the insulating substrate, A heating element extraction electrode electrically connected to the heating element; and a soluble conductor connected across the second electrode from the first electrode through the heating element extraction electrode.
- the molten conductor is composed of a fuse element in which three or more metal layers having different melting points are laminated, and is melted by energization heat generation of the heating element to cut off between the first and second electrodes.
- the short-circuit element includes an insulating substrate, a heating element formed on or in the insulating substrate, and first and second electrodes provided adjacent to the insulating substrate.
- a third electrode that is provided on the insulating substrate and is electrically connected to the heating element, and a soluble conductor that is connected across the first and third electrodes.
- the molten conductor is composed of a fuse element in which three or more metal layers having different melting points are laminated, melted by energization heat generation of the heating element, short-circuits the first and second electrodes, and the first The third electrode is cut off.
- the switching element according to the present invention includes an insulating substrate, first and second heating elements formed on the insulating substrate or in the insulating substrate, and a first element provided adjacent to the insulating substrate.
- First and second electrodes, a third electrode provided on the insulating substrate and electrically connected to the first heating element, and a first electrode connected across the first and third electrodes A soluble conductor, a fourth electrode provided on the insulating substrate and electrically connected to the second heating element, and a fifth electrode provided adjacent to the fourth electrode on the insulating substrate.
- a second soluble conductor connected across the fifth electrode from the second electrode through the fourth electrode, and the first and second soluble conductors Consists of a fuse element in which three or more metal layers having different melting points are laminated, and is heated by the heat generated by the second heating element.
- the second fusible conductor is melted to cut off the second and fifth electrodes, and the first fusible conductor is melted by energization heat generation of the first heating element, thereby the first and second electrodes. Are short-circuited between the electrodes.
- the fuse element does not blow out as a fuse element even when the mounting temperature such as reflow exceeds the melting temperature of the low melting point metal layer by laminating the high melting point metal layer. . Therefore, according to the present invention, the fuse element can be efficiently mounted by reflow.
- the fuse element according to the present invention is melted by self-heating or heat generation of the heating element. At this time, in the fuse element, the melted low melting point metal layer erodes the high melting point metal layer, so that the high melting point metal layer is melted at a temperature lower than its melting point. Therefore, according to the present invention, the fuse element can be blown in a short time using the erosion action of the high melting point metal layer by the low melting point metal layer.
- the fuse element according to the present invention is formed by laminating a low-melting metal layer with a low-melting point on a low-melting metal layer, the conductor resistance can be greatly reduced, and a conventional chip fuse of the same size Compared to the above, the current rating can be greatly improved. In addition, it can be made thinner than conventional chip fuses having the same current rating, and is excellent in quick fusing.
- the fuse element according to the present invention maintains a resistance against a high temperature environment such as a reflow temperature and a low resistance characteristic as compared with a fuse element made of a laminated soluble conductor made of two kinds of metals having different melting points, and has a fast melting property. Excellent cutting ability.
- FIG. 1 is a cross-sectional view showing a fuse element according to the present invention.
- FIG. 2 is a cross-sectional view showing a fuse element in which a first low melting point metal layer is laminated as the outermost layer.
- FIG. 3 is a cross-sectional view showing another fuse element according to the present invention formed by repeating a predetermined laminated pattern.
- FIG. 4 is a cross-sectional view showing another fuse element according to the present invention in which a predetermined lamination pattern is repeated and a first low melting point metal layer is laminated as the outermost layer.
- FIG. 5 is a cross-sectional view showing another fuse element according to the present invention.
- FIG. 6 is a cross-sectional view showing another fuse element in which a second low melting point metal layer is laminated as the outermost layer.
- FIG. 7 is a cross-sectional view showing another fuse element according to the present invention formed by repeating a predetermined laminated pattern.
- FIG. 8 is a cross-sectional view showing another fuse element according to the present invention in which a predetermined lamination pattern is repeated and a second low melting point metal layer is laminated as the outermost layer.
- FIG. 9 is a cross-sectional view showing a fuse element to which the present invention is applied.
- FIG. 10 is a plan view in which the cover member of the fuse element to which the present invention is applied is omitted.
- FIG. 11 is a cross-sectional view showing a fuse element in which a flux applied to the fuse element is impregnated with a sheet.
- FIG. 12 is a cross-sectional view showing a fuse element in which a flux in which a fibrous material is mixed is applied to the fuse element.
- FIG. 13 is a circuit diagram of the fuse element, where (A) shows before the fuse element is blown and (B) shows after the fuse element is blown.
- FIG. 14 is a cross-sectional view showing a state where the fuse element of the fuse element to which the present invention is applied is melted.
- 15A and 15B are diagrams showing a protective element to which the present invention is applied, in which FIG. 15A is a plan view showing the cover member omitted, and FIG.
- FIG. 15B is a cross-sectional view.
- FIG. 16 is a cross-sectional view showing a protective element obtained by impregnating a sheet with a flux applied to a fuse element.
- FIG. 17 is a cross-sectional view illustrating a protection element in which a flux in which a fibrous material is mixed is applied to a fuse element.
- FIG. 18 is a circuit diagram of a protection element to which the present invention is applied.
- 19A and 19B are diagrams showing the protection element in a state where the fuse element is melted, where FIG. 19A is a plan view with the cover member omitted, and FIG. 19B is a circuit diagram.
- 20A and 20B are diagrams showing a short-circuit element to which the present invention is applied, in which FIG.
- FIG. 20A is a plan view showing the cover member omitted
- FIG. 20B is a cross-sectional view.
- FIG. 21 is a cross-sectional view showing a short-circuit element in which a flux applied to a fuse element is impregnated with a sheet.
- FIG. 22 is a cross-sectional view showing a short-circuit element in which a flux in which a fibrous material is mixed is applied to a fuse element.
- FIG. 23 is a circuit diagram of the short-circuit element, where (A) shows a state where the switch is turned off, and (B) shows a state where the switch is short-circuited.
- FIG. 21 is a cross-sectional view showing a short-circuit element in which a flux applied to a fuse element is impregnated with a sheet.
- FIG. 22 is a cross-sectional view showing a short-circuit element in which a flux in which a fibrous material is mixed is applied to a fuse element.
- FIG. 24 is a cross-sectional view of the short-circuit element showing a state where the insulated first and second electrodes are short-circuited by the molten conductor.
- FIG. 25A is a plan view showing the short-circuit element with the cover member omitted.
- FIG. 25B is a cross-sectional view of the short-circuit element.
- FIG. 25C is a cross-sectional view in which a flux sheet is mounted on each of the two fuse elements of the short-circuit element.
- FIG. 25D is a cross-sectional view in which a sheet is impregnated with a flux applied to two fuse elements of the short-circuit element.
- FIG. 25E is a cross-sectional view in which a flux mixed with a fibrous material is applied to each of two fuse elements of a short-circuit element.
- FIG. 25F is a cross-sectional view in which a flux mixed with a fibrous material is applied across two fuse elements of a short-circuit element.
- FIG. 26A is a plan view showing a switching element to which the present invention is applied with a cover member omitted.
- FIG. 26B is a cross-sectional view of a switching element to which the present invention is applied.
- FIG. 27 is a cross-sectional view of a switching element in which a flux applied to a fuse element is impregnated with a sheet.
- FIG. 28 is a cross-sectional view of a switching element in which a flux in which a fibrous material is mixed is applied to a fuse element.
- FIG. 29 is a circuit diagram of the switching element before the fusing of the fuse element.
- FIG. 30 is a plan view showing a state where the second fuse element is previously melted in the switching element, omitting the cover member.
- the second, fourth, and fifth electrodes of the switching element were cut off by melting the fusible conductor that was connected, and the insulated first and second electrodes were short-circuited by the molten conductor. It is a top view which abbreviate
- FIG. 31A the second, fourth, and fifth electrodes of the switching element were cut off by melting the fusible conductor that was connected, and the insulated first and second electrodes were short-circuited by the molten conductor.
- FIG. 32 is a circuit diagram of the switching element after the fuse element is melted.
- the fuse element 1 to which the present invention is applied is used as a fusible conductor for a fuse element, a protective element, a short-circuit element, and a switching element, which will be described later. Alternatively, it is melted by the heat generated by the heating element.
- the fuse element 1 is formed by laminating three or more metal layers having different melting points. For example, as shown in FIG. 1, a high melting point metal layer 2 and a first melting point having a lower melting point than the high melting point metal layer 2 are used.
- the first low melting point metal layer 3 and the second low melting point metal layer 4 having a melting point lower than that of the first low melting point metal layer 3 are formed, for example, in a substantially rectangular plate shape.
- the refractory metal layer 2 is preferably made of, for example, Ag, Cu, or an alloy mainly composed of Ag or Cu, and has a high melting point that does not melt even when the fuse element 1 is mounted on an insulating substrate by a reflow furnace. Have.
- first low-melting-point metal layer 3 for example, a material generally called “Pb-free solder” made of Sn or an alloy containing Sn as a main component is preferably used.
- the melting point of the first low melting point metal layer 3 is not necessarily higher than the temperature of the reflow furnace, and may be melted at about 200 ° C.
- the second low melting point metal layer 4 for example, Bi, In or Bi or an alloy containing In is preferably used.
- the melting point of the second low melting point metal layer 4 is lower than that of the first low melting point metal layer 3, and starts melting at, for example, 120 ° C to 140 ° C.
- the fuse element 1 is formed by laminating three or more metal layers having different melting points, so that the fuse element, the protective element, the short-circuit element, and the switching element are excellent in mountability on an insulating substrate. It is possible to improve the mountability of each element using 1 on an external circuit board. Moreover, the fuse element 1 can implement
- the fuse element 1 when the fuse element 1 includes the refractory metal layer 2, the fuse element 1 is exposed to a high heat environment above the melting point of the first and second low melting metal layers 3 and 4 for a short time by an external heat source such as a reflow furnace.
- an external heat source such as a reflow furnace.
- fusing and deformation can be prevented, and deterioration of the fusing characteristics associated with initial interruption, initial short circuit, or fluctuation in rating can be prevented. Therefore, the fuse element 1 can efficiently realize mounting of each element such as a fuse element on an insulating substrate and mounting of each element such as a fuse element on an external circuit board by reflow mounting, thereby improving the mountability. Can be made.
- the fuse element 1 is formed by laminating the low-resistance refractory metal layer 2, the conductor resistance can be greatly reduced as compared with the fusible conductor using the conventional lead-based refractory solder.
- the current rating can be greatly improved as compared with a conventional chip fuse of the same size.
- it can be made thinner than conventional chip fuses having the same current rating, and is excellent in quick fusing.
- the fuse element 1 includes a first low melting point metal layer 3 having a melting point lower than that of the refractory metal layer 2 and a second low melting point metal layer 4 having a melting point lower than that of the first low melting point metal layer 3. Therefore, melting can be started from the melting point of the second low-melting-point metal layer 4 by self-heating due to overcurrent or heat generation by the heating element, and the fast fusing characteristics can be improved.
- the second low melting point metal layer 4 is made of Sn—Bi alloy or In—Sn alloy
- the fuse element 1 starts to melt from a low temperature of about 140 ° C. or about 120 ° C.
- the melted first and second low melting point metal layers 3 and 4 erode the refractory metal layer 2 (solder erosion), so that the refractory metal layer 2 is melted at a temperature lower than the melting point. Therefore, the fuse element 1 can improve the fast fusing property by utilizing the erosion action of the high melting point metal layer 2 by the first and second low melting point metal layers 3 and 4.
- the refractory metal layer 2 is preferably laminated between the first low melting point metal layer 3 and the second low melting point metal layer 4. .
- the fuse element 1 has a high melting point from a lower temperature of the second low melting point metal layer 4 by sandwiching the high melting point metal layer 2 between two kinds of first and second low melting point metal layers 3 and 4 having different melting points. Erosion of one surface of the metal layer 2 is started, and then the refractory metal layer 2 is eroded from both surfaces at the temperature of the first low melting metal layer 3.
- the fuse element 1 can improve the fast fusing characteristics while being resistant to a high temperature environment such as a reflow temperature. That is, in a fuse element in which a low melting point metal layer made of a general Pb-free solder having a melting point of around 220 ° C. and a high melting point metal layer such as Ag is laminated, resistance to a high temperature environment such as a reflow temperature is to be provided. Then, it is necessary to increase the thickness of the refractory metal layer, so that the fusing time is extended.
- the low melting point metal layer is formed of a relatively inexpensive Sn / Bi alloy in order to shorten the fusing time of the fuse element, the resistance value becomes high and the rating cannot be improved.
- the fuse element 1 is preferably made of a first low melting point metal layer 3 in which an alloy containing Sn or Sn as a main component is preferably used and an alloy containing Bi, In, Bi or In.
- the high melting point metal layer 2 is laminated between the second low melting point metal layer 4 having a lower melting point than the low melting point metal layer 3.
- the fuse element 1 has the first and / or second low melting point metal layers 3 and 4 having a high thickness.
- the melting point metal layer 2 can be melted quickly by eroding from both sides.
- the fuse element 1 includes Bi, In, or an alloy containing Bi or In while maintaining low resistance by including the first low melting point metal layer 3 in which Sn or an alloy containing Sn as a main component is suitably used. Is suitably used, and the second low melting point metal layer 4 having a melting point lower than that of the first low melting point metal layer 3 is provided, so that melting can be started from a low temperature and the quick fusing property can be improved.
- the refractory metal layer 2 is laminated between the first low melting point metal layer 3 and the second low melting point metal layer 4 having a melting point lower than that of the first low melting point metal layer 3.
- the melting point of the first low melting point metal layer 3 is increased. Decrease, the melting rate is accelerated, and the fast fusing property can be further improved.
- the fuse element 1 is preferably laminated with four or more layers of the high melting point metal layer 2, the first low melting point metal layer 3, and the second low melting point metal layer 4. At this time, as shown in FIG. 1, the fuse element 1 is arranged in the order of the first low melting point metal layer 3, the high melting point metal layer 2, the second low melting point metal layer 4, and the high melting point metal layer 2 from the lower layer. Four layers may be laminated.
- the fuse element 1 shown in FIG. 1 can be melted quickly by laminating one high melting point metal layer 2 between the first and second low melting point metal layers 3 and 4.
- the fuse element 1 may be used as a connection material for connecting the lowermost first low melting point metal layer 3 on the electrodes of the fuse element, the protective element, the short-circuit element, and the switching element described later. That is, the fuse element 1 may be connected to the electrode of each element by the first low melting point metal layer 3.
- the fuse element 1 has the inner layer provided between the pair of high melting point metal layers 2 as the second low melting point metal layer 4 and the outer layer as the high melting point metal layer 2, so that each element such as a fuse element can be formed.
- Resistance to surge (pulse resistance) in which an abnormally high voltage is instantaneously applied to the incorporated electric system can be improved.
- the fuse element 1 should not be blown until, for example, a current of 100 A flows for several milliseconds.
- the fuse element 1 is provided with a refractory metal layer 2 such as Ag plating having a low resistance value as an outer layer. It is easy to flow the current applied by the surge, and it is possible to prevent fusing due to self-heating. Therefore, the fuse element 1 can greatly improve the resistance to a surge as compared with a fuse made of a conventional solder alloy.
- the fuse element 1 can be manufactured by forming the high melting point metal 2 on the surfaces of the first and second low melting point metal layers 3 and 4 by using a plating technique.
- the fuse element 1 can be efficiently manufactured by, for example, performing Ag plating on the surface of a long solder foil, and can be easily used by cutting according to the size at the time of use.
- the fuse element 1 may be manufactured by bonding the low melting point metal foils constituting the first and second low melting point metal layers 3 and 4 and the high melting point metal foils constituting the high melting point metal layer 2 together. Good.
- the fuse element 1 includes, for example, a solder foil constituting the second low-melting point metal layer 4 that is rolled between two rolled Cu foils or Ag foils. It can be manufactured by laminating and pressing the solder foil constituting the first low melting point metal layer 3. In this case, as the low melting point metal foil, it is preferable to select a softer material than the high melting point metal foil. Thereby, the dispersion
- the film thickness of the low melting point metal foil is reduced by pressing, it is preferable to make it thick beforehand.
- the low-melting-point metal foil protrudes from the end face of the fuse element by pressing, it is preferable to trim off and adjust the shape.
- the fuse element 1 is formed by laminating the first and second low melting point metal layers 3 and 4 and the refractory metal layer 2 by using a thin film forming technique such as vapor deposition or another known lamination technique. A fuse element 1 can be formed.
- an antioxidant film (not shown) may be formed on the surface of the outermost refractory metal layer 2.
- the fuse element 1 further prevents the oxidation of Cu even when, for example, Cu plating or Cu foil is formed as the refractory metal layer 2 by coating the outermost refractory metal layer 2 with an antioxidant film. be able to. Therefore, the fuse element 1 can prevent a situation where the fusing time is prolonged due to oxidation of Cu, and can be blown in a short time.
- the fuse element 1 can be made of an inexpensive but easily oxidized metal such as Cu as the refractory metal layer 2 and can be formed without using an expensive material such as Ag.
- the high melting point metal antioxidant film can be made of the same material as the first and second low melting point metal layers 3 and 4, for example, Pb-free solder containing Sn as a main component.
- the antioxidant film can be formed by performing tin plating on the surface of the refractory metal layer 2.
- the antioxidant film can be formed by Au plating or preflux.
- the fuse element to which the present invention is applied includes the first low melting point metal layer 3, the high melting point metal layer 2, the second low melting point metal layer 4, and the high melting point metal layer 2.
- the first low melting point metal layer 3 may be laminated as the outermost layer.
- the inner layer provided between the pair of high melting point metal layers 2 is the second low melting point metal layer 4
- the outer layer is the high melting point metal layer 2
- the outermost layer is the first low melting point metal layer 2.
- a metal layer 3 is formed, and a pair of refractory metal layers 2 are laminated between the first and second low melting point metal layers 3 and 4.
- the fuse element to which the present invention is applied is a laminate of a first low melting point metal layer 3, a high melting point metal layer 2, a second low melting point metal layer 4, and a high melting point metal layer 2. You may form by repeating a pattern.
- the fuse element 20 shown in FIG. 3 can reduce the resistance by increasing the thickness of the fuse element and suppress deformation at the time of reflow while maintaining the fast fusing property by repeating the laminated pattern.
- the fuse element 20 repeats the laminated pattern to maintain a fast fusing property, secure a desired thickness, improve the rating by lowering resistance, and improve resistance to high temperature environments. can do.
- the fuse element 20 is formed by stacking eight layers by repeating the stacking pattern. However, the fuse element to which the present invention is applied may be stacked by eight or more layers by repeating the stacking pattern.
- the fuse element to which the present invention is applied is a laminate of a first low melting point metal layer 3, a high melting point metal layer 2, a second low melting point metal layer 4, and a high melting point metal layer 2. While repeating the pattern, the first low melting point metal layer 3 may be laminated as the outermost layer.
- the fuse element 30 shown in FIG. 4 is obtained by laminating eight layers by repeating the laminating pattern, and then laminating the first low melting point metal layer 3 as the outermost layer.
- the second low melting point metal layers 3 and 4 are laminated.
- the fuse element to which the present invention is applied includes a second low melting point metal layer 4, a high melting point metal layer 2, a first low melting point metal layer 3, and a high melting point metal layer from the lower layer.
- Four layers may be laminated in the order of 2.
- the fuse element 40 shown in FIG. 5 can be quickly blown by laminating one high melting point metal layer 2 between the first and second low melting point metal layers 3 and 4. can do.
- the fuse element 40 may be used as a connection material for connecting the lowermost second low melting point metal layer 4 on the electrodes of the fuse element, the protection element, the short-circuit element, and the switching element described later. That is, the fuse element 40 may be connected to the electrode of each element by the second low melting point metal layer 4.
- the fuse element to which the present invention is applied includes a second low melting point metal layer 4, a high melting point metal layer 2, a first low melting point metal layer 3, and a high melting point metal layer 2.
- the second low melting point metal layer 4 may be laminated as the outermost layer.
- the fuse element 50 shown in FIG. 6 has an inner layer provided between the pair of high melting point metal layers 2 as the first low melting point metal layer 3, the outer layer as the high melting point metal layer 2, and the outermost layer as the second low melting point metal layer 2.
- a metal layer 4 is formed, and a pair of high melting point metal layers 2 are laminated between the first and second low melting point metal layers 3 and 4.
- the fuse element to which the present invention is applied is a laminate of a second low melting point metal layer 4, a high melting point metal layer 2, a first low melting point metal layer 3, and a high melting point metal layer 2.
- the fuse element 60 shown in FIG. 7 is formed by repeating the laminated pattern, thereby maintaining the fast fusing property as well as the above-described fuse elements 20 and 30, while reducing the resistance by increasing the thickness of the fuse element and increasing the rigidity. It is possible to suppress deformation during reflow.
- the fuse element 60 is formed by stacking eight layers by repeating the stack pattern, but the fuse element to which the present invention is applied may be stacked by eight layers or more by repeating the stack pattern.
- the fuse element to which the present invention is applied is a laminate of a second low melting point metal layer 4, a high melting point metal layer 2, a first low melting point metal layer 3, and a high melting point metal layer 2. While repeating the pattern, the second low melting point metal layer 4 may be laminated as the outermost layer.
- the fuse element 70 shown in FIG. 8 is obtained by laminating eight layers by repeating the lamination pattern, and then laminating the second low melting point metal layer 4 as the outermost layer.
- the second low melting point metal layers 3 and 4 are laminated.
- the fuse elements 1, 10, 20, 30, 40, 50, 60, and 70 are preferably Bi, In, or an alloy containing Bi or In as a metal constituting the second low melting point metal layer.
- In has a lower resistivity than Sn, it is a rare metal and an expensive material. Therefore, if comprehensive judgment is made including manufacturing costs, availability of materials, etc., In is shown in FIGS.
- the fuse elements 40, 50, 60, and 70 shown in FIGS. 5 to 8 are preferable to the fuse elements 1, 10, 20, and 30.
- the volume of the first low melting point metal layer 3 is preferably larger than the volume of the refractory metal layer 2.
- the fuse elements 1, 10, 20, 30, 40, 50, 60, 70 can be effectively shortened by erosion of the refractory metal layer 2 by increasing the volume of the first refractory metal layer 3. Fusing can be performed.
- the volume of the second low melting point metal layer 4 is preferably larger than the volume of the refractory metal layer 2.
- fuse elements, protective elements, short-circuit elements, and switching elements using the above-described fuse elements 1, 10, 20, 30, 40, 50, 60, 70 will be described.
- each element using the fuse element 1 will be described.
- the fuse elements 10, 20, 30, 40, 50, 60, 70 may be used.
- a fuse element 80 to which the present invention is applied includes an insulating substrate 81, a first electrode 82 and a second electrode 83 provided on the insulating substrate 81, and a first electrode and a second electrode.
- the fuse element 1 is mounted between the first electrode 82 and the second electrode 83.
- the fuse element 1 is mounted between the first electrode 82 and the second electrode 83.
- the insulating substrate 81 is formed in a square shape by an insulating member such as alumina, glass ceramics, mullite, zirconia, for example.
- the insulating substrate 81 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
- First and second electrodes 82 and 83 are formed on opposite ends of the insulating substrate 81.
- the first and second electrodes 82 and 83 are each formed by a conductive pattern such as Ag or Cu wiring, and Sn plating, Ni / Au plating, Ni / Pd plating, Ni / Pd are appropriately applied to the surface as anti-oxidation measures.
- a protective layer 86 such as / Au plating is provided.
- the first and second electrodes 82 and 83 are continued from the front surface 81a of the insulating substrate 81 to the first and second external connection electrodes 82a and 83a formed on the back surface 81b through castellation. .
- the fuse element 80 is mounted on the current path of the circuit board via the first and second external connection electrodes 82a and 83a formed on the back surface 81b.
- the fuse element 1 is connected to the first and second electrodes 82 and 83 via a connecting material 88 such as solder.
- the fuse element 1 since the fuse element 1 includes the refractory metal layer 2 and has improved resistance to a high temperature environment, the fuse element 1 is excellent in mountability and has the first and second electrodes 82 and 83 via the connection material 88. After being mounted in between, it can be easily connected by reflow soldering or the like.
- the fuse element 1 is connected to the first and second electrodes 82 and 83 using the first low melting point metal layer 3 or the second low melting point metal layer 4 provided in the lowermost layer as a connection material. May be.
- the mounting state of the fuse element 1 will be described. As shown in FIG. 9, the fuse element 80 is mounted with the fuse element 1 spaced from the surface 81 a of the insulating substrate 81.
- the molten metal of the fuse element adheres on the insulating substrate between the first and second electrodes. Leaks.
- a fuse element in which a fuse element is formed by printing an Ag paste on a ceramic substrate the ceramic and silver are sintered and bite in and remain between the first and second electrodes. Therefore, a leakage current flows between the first and second electrodes due to the molten residue of the fuse element, and the current path cannot be completely interrupted.
- the fuse element 80 the fuse element 1 is formed separately from the insulating substrate 81 and mounted away from the surface 81 a of the insulating substrate 81. Accordingly, the fuse element 80 is drawn onto the first and second electrodes 82 and 83 without the molten metal biting into the insulating substrate 81 even when the fuse element 1 is melted, and the first and second electrodes 82 are surely inserted. , 83 can be insulated.
- the fuse element 80 includes a fuse element 1 for preventing oxidation of the refractory metal layer 2 or the first and second low melting point metal layers 3 and 4, removing oxide at the time of fusing, and improving solder fluidity.
- a flux may be coated on the front surface or the back surface.
- a flux sheet 87 may be disposed on the entire outermost layer on the fuse element 1. The flux sheet 87 is obtained by impregnating and holding a fluid or semi-fluid flux in a sheet-like support. For example, a non-woven fabric or a mesh-like cloth is impregnated with the flux.
- the flux sheet 87 preferably has an area larger than the surface area of the fuse element 1.
- the flux sheet 87 By disposing the flux sheet 87, the flux can be held over the entire surface of the fuse element 1 even in the heat treatment process when the fuse element 1 is mounted or when the fuse element 80 is mounted. While improving the wettability of the first and second low melting point metal layers 3 and 4 (for example, solder), the oxide while the first and second low melting point metals are dissolved is removed, and the high melting point metal (for example, the fast fusing property can be improved by using the erosion action on Ag).
- the first and second low melting point metal layers 3 and 4 for example, solder
- an anti-oxidation film such as Pb-free solder mainly composed of Sn is formed on the surface of the outermost refractory metal layer 2 by disposing the flux sheet 87.
- the oxidation of the anti-oxidation film is also performed.
- the material can be removed, the refractory metal layer 2 can be effectively prevented from being oxidized, and the fast fusing property can be maintained and improved.
- the fuse element 80 is replaced with the flux sheet 87, as shown in FIG. 11, after the flux 85a is applied to the outermost layer of the fuse element 1, a non-woven fabric or a mesh-like fabric is disposed on the flux 85a, A flux may be impregnated.
- the fuse element 80 may apply a flux 85 b in which a fibrous material is mixed to the entire outermost layer of the fuse element 1 instead of the flux sheet. Viscosity of the flux 85b is increased by mixing the fibrous material, and it is difficult for the flux 85b to flow even in a high-temperature environment. Thus, the oxide 85 can be removed and the wettability can be improved over the entire surface of the fuse element 1.
- the fibrous material to be mixed with the flux 85b for example, fibers having insulating properties and heat resistance, such as nonwoven fabric fibers and glass fibers, are preferably used.
- the fuse element 1 can be connected to the first and second electrodes 82 and 83 by reflow soldering as described above. In addition, the fuse element 1 can be connected to the first and second electrodes by ultrasonic welding. You may connect on the 2nd electrode 82,83.
- a cover member 89 that protects the inside and prevents the molten fuse element 1 from scattering is attached to the surface 81a of the insulating substrate 81 on which the fuse element 1 is provided.
- the cover member 89 can be formed of an insulating member such as various engineering plastics and ceramics, and is connected via an insulating adhesive 84.
- the fuse element 80 since the fuse element 1 is covered by the cover member 89, the molten metal is captured by the cover member 89 and can be prevented from being scattered to the surroundings even when the self-heating is interrupted due to the occurrence of arc discharge due to overcurrent. .
- the cover member 89 has a protrusion 89b extending from the top surface 89a toward the insulating substrate 81 at least to the side surface of the flux sheet 87. Since the side surface of the flux sheet 87 is subject to movement restriction by the projection 89b, the cover member 89 can prevent the positional deviation of the flux sheet 87.
- the protrusion 89b has a size that holds a predetermined clearance rather than the size of the flux sheet 87, and is provided corresponding to the position where the flux sheet 87 should be held.
- the protrusion part 89b is good also as a wall surface which wraps around the side surface of the flux sheet 87, and may protrude partially.
- the cover member 89 is configured to have a predetermined interval between the flux sheet 87 and the top surface 89a. This is because when the fuse element 1 is melted, a clearance is required for the melted fuse element 1 to push up the flux sheet 87.
- the cover member 89 has a height of the internal space of the cover member 89 (height to the top surface 89a) that is the height of the melted fuse element 1 on the surface 81a of the insulating substrate 81 and the thickness of the flux sheet 87. It is comprised so that it may become larger than the sum of.
- Such a fuse element 80 has a circuit configuration shown in FIG.
- the fuse element 80 is incorporated in the current path of the external circuit by being mounted on the external circuit via the first and second external connection electrodes 82a and 83a.
- the fuse element 80 is not melted by self-heating while a predetermined rated current flows through the fuse element 1.
- the fuse element 80 cuts off the current path of the external circuit by cutting off the first and second electrodes 82 and 83 by fusing the fuse element 1 by self-heating when an overcurrent exceeding the rating is energized. (FIG. 13B).
- the fuse element 1 includes the first low melting point metal layer 3 having a melting point lower than that of the refractory metal layer 2 and the second low melting point having a melting point lower than that of the first low melting point metal layer 3. Since the metal layer 4 is laminated, melting starts from the melting point of the second low melting point metal layer 4 due to self-heating due to overcurrent, and the refractory metal layer 2 starts to erode. Therefore, the fuse element 1 is melted at a temperature lower than its melting point by utilizing the erosion action of the refractory metal layer 2 by the first and second refractory metal layers 3 and 4. And can be melted quickly.
- the molten metal of the fuse element 1 is divided into left and right by the physical pulling action of the first and second electrodes 82 and 83, so that it can be performed quickly and reliably.
- the current path between the first and second electrodes 82 and 83 can be cut off.
- a protection element 90 to which the present invention is applied includes an insulating substrate 91, a heating element 93 laminated on the insulating substrate 91 and covered with an insulating member 92, and an insulating substrate.
- the first electrode 94 and the second electrode 95 formed at both ends of the 91, and a heating element extraction electrode laminated on the insulating member 91 so as to overlap the heating element 93 and electrically connected to the heating element 93 96 and a fuse element 1 having both ends connected to the first and second electrodes 94 and 95 and the center connected to the heating element extraction electrode 96, respectively.
- the protective element 90 is provided with a cover member 97 for protecting the inside on the insulating substrate 91.
- the insulating substrate 91 is formed in a rectangular shape by an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like, similarly to the insulating substrate 81.
- the insulating substrate 91 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
- First and second electrodes 94 and 95 are formed on opposite ends of the insulating substrate 91.
- the first and second electrodes 94 and 95 are each formed of a conductive pattern such as Ag or Cu wiring.
- the first and second electrodes 94 and 95 are continued from the front surface 91a of the insulating substrate 91 to the first and second external connection electrodes 94a and 95a formed on the back surface 91b through castellation.
- the protection element 90 is formed on the circuit board by connecting the first and second external connection electrodes 94a and 95a formed on the back surface 91b to connection electrodes provided on the circuit board on which the protection element 90 is mounted. It is incorporated into a part of the formed current path.
- the heating element 93 is a conductive member that generates heat when energized, and is made of, for example, nichrome, W, Mo, Ru, or a material containing these.
- the heating element 93 is a paste obtained by mixing powders of these alloys, compositions, or compounds with a resin binder or the like, and forming a pattern on the insulating substrate 91 using a screen printing technique, followed by firing. Etc. can be formed.
- the heating element 93 is covered with the insulating member 92, and the heating element extraction electrode 96 is formed so as to face the heating element 93 through the insulating member 92.
- the heating element lead electrode 96 is connected to the fuse element 1, whereby the heating element 93 is superimposed on the fuse element 1 via the insulating member 92 and the heating element lead electrode 96.
- the insulating member 92 is provided to protect and insulate the heating element 93 and to efficiently transmit the heat of the heating element 93 to the fuse element 1, and is made of, for example, a glass layer.
- the heating element 93 may be formed inside the insulating member 92 stacked on the insulating substrate 91. Further, the heating element 93 may be formed on the back surface 91b opposite to the surface 91a of the insulating substrate 91 on which the first and second electrodes 94 and 95 are formed, or the heating element 93 may be formed on the surface 91a of the insulating substrate 91. It may be formed adjacent to the first and second electrodes 94 and 95. Further, the heating element 93 may be formed inside the insulating substrate 91.
- the heating element 93 has one end connected to the heating element extraction electrode 96 and the other end connected to the heating element electrode 99.
- the heating element extraction electrode 96 is formed on the surface 91 a of the insulating substrate 91 and is laminated on the insulating member 92 so as to face the heating element 93 and is connected to the heating element 93, and the fuse element 1. And an upper layer portion 96b connected to each other.
- the heating element 93 is electrically connected to the fuse element 1 via the heating element extraction electrode 96.
- the heating element extraction electrode 96 is disposed opposite to the heating element 93 via the insulating member 92, so that the fuse element 1 can be melted and the molten conductor can be easily aggregated.
- the heating element electrode 99 is formed on the front surface 91a of the insulating substrate 91, and is continuous with the heating element feeding electrode 99a formed on the back surface 91b of the insulating substrate 91 through castellation.
- the protection element 90 is connected to the fuse element 1 across the second electrode 95 from the first electrode 94 via the heating element extraction electrode 96.
- the fuse element 1 is connected to the first and second electrodes 94 and 95 and the heating element extraction electrode 96 through a connection material 100 such as solder.
- the fuse element 1 since the fuse element 1 includes the refractory metal layer 2 and has improved resistance to a high temperature environment, the fuse element 1 is excellent in mountability, and the first and second electrodes 94 and 95 are connected via the connection material 100. And after mounting on the heating element lead-out electrode 96, it can be easily connected by reflow soldering or the like.
- the fuse element 1 uses the first low melting point metal layer 3 or the second low melting point metal layer 4 provided as the lowermost layer as a connection material, and the first and second electrodes 94 and 95 and the heating element. It may be connected to the extraction electrode 96.
- the protective element 90 includes a fuse element 1 for preventing oxidation of the high melting point metal layer 2 or the first and second low melting point metal layers 3, 4, removing oxide during fusing and improving solder fluidity.
- a flux may be coated on the front surface or the back surface.
- a flux sheet 101 may be disposed on the entire outermost layer on the fuse element 1. Similar to the flux sheet 87, the flux sheet 101 is obtained by impregnating and holding a fluid or semi-fluid flux in a sheet-like support. For example, a nonwoven fabric or a mesh-like cloth is impregnated with the flux. Is.
- the flux sheet 101 preferably has an area larger than the surface area of the fuse element 1. Thereby, even when the fuse element 1 is completely covered with the flux sheet 101 and the volume expands due to melting, it is possible to reliably realize rapid fusing by removing oxides by flux and improving wettability.
- the flux sheet 101 By disposing the flux sheet 101, the flux can be held over the entire surface of the fuse element 1 even in the heat treatment process when the fuse element 1 is mounted or when the protection element 90 is mounted. While improving the wettability of the first and second low melting point metal layers 3 and 4 (for example, solder), the oxide while the first and second low melting point metals are dissolved is removed, and the high melting point metal (for example, the fast fusing property can be improved by using the erosion action on Ag).
- the first and second low melting point metal layers 3 and 4 for example, solder
- an anti-oxidation film such as Pb-free solder containing Sn as a main component is formed on the surface of the outermost refractory metal layer 2 by arranging the flux sheet 101, the oxidation of the anti-oxidation film The material can be removed, the refractory metal layer 2 can be effectively prevented from being oxidized, and the fast fusing property can be maintained and improved.
- the protective element 90 instead of the flux sheet 101, the protective element 90, as shown in FIG. 16, after the flux 104a is applied to the outermost layer of the fuse element 1, a non-woven fabric or a mesh-like fabric is disposed on the flux 104a, The flux 104a may be impregnated.
- the protection element 90 may apply a flux 104 b in which a fibrous material is mixed to the entire outermost layer of the fuse element 1 instead of the flux sheet. Viscosity of the flux 104b is increased by mixing the fibrous material, and it is difficult for the flux 104b to flow even in a high-temperature environment. Thus, the oxide 104 can be removed from the entire surface of the fuse element 1 and the wettability can be improved.
- a fiber having insulating properties and heat resistance such as a nonwoven fabric fiber and a glass fiber is preferably used.
- the first and second electrodes 94 and 95, the heating element extraction electrode 96, and the heating element electrode 99 are formed of a conductive pattern such as Ag or Cu, and the surface thereof is appropriately Sn-plated, Ni / Au plated, Ni A protective layer 98 such as / Pd plating or Ni / Pd / Au plating is formed.
- the surface is prevented from being oxidized, and the first and second electrodes 94 are formed by the connection material 100 such as the first and second low melting point metal layers 3 and 4 of the fuse element 1 and the solder for connecting the fuse element 1.
- 95 and the heating element extraction electrode 96 can be suppressed.
- first and second electrodes 94 and 95 are formed with an outflow prevention portion 102 made of an insulating material such as glass for preventing the molten conductor of the fuse element 1 and the connection material 100 of the fuse element 1 from flowing out. ing.
- the protective element 90 has a cover member 97 attached to the surface 91a of the insulating substrate 91 provided with the fuse element 1 for protecting the inside and preventing the molten fuse element 1 from scattering.
- the cover member 97 can be formed of an insulating member such as various engineering plastics and ceramics. Since the fuse element 1 is covered with the cover member 97, the protection element 90 can prevent the molten metal from being captured by the cover member 97 and scattered to the surroundings.
- the cover member 97 has a protrusion 97b extending from the top surface 97a toward the insulating substrate 81 at least to the side surface of the flux sheet 101. Since the side surface of the flux sheet 101 is subject to movement restriction by the protrusion 97b, the cover member 97 can prevent the positional deviation of the flux sheet 101.
- the protrusion 97b has a size that holds a predetermined clearance rather than the size of the flux sheet 101, and is provided corresponding to the position where the flux sheet 101 should be held.
- the protrusion part 97b is good also as a wall surface which wraps around the side surface of the flux sheet 101, and may protrude partially.
- the cover member 97 is configured to have a predetermined interval between the flux sheet 101 and the top surface 97a. This is because when the fuse element 1 is melted, a clearance is required for the melted fuse element 1 to push up the flux sheet 101.
- the cover member 97 has a height of the internal space of the cover member 97 (a height up to the top surface 97a) that is the height of the fuse element 1 melted on the surface 91a of the insulating substrate 91 and the thickness of the flux sheet 101. It is comprised so that it may become larger than the sum of.
- a heating path to the heating element 93 that reaches the heating element power supply electrode 99a, the heating element electrode 99, the heating element 93, the heating element extraction electrode 96, and the fuse element 1 is formed.
- the protection element 90 is connected to an external circuit in which the heating element electrode 99 energizes the heating element 93 via the heating element power supply electrode 99a, and the energization across the heating element electrode 99 and the fuse element 1 is controlled by the external circuit. .
- the protection element 90 constitutes a part of the energization path to the heating element 93 when the fuse element 1 is connected to the heating element extraction electrode 96. Therefore, when the fuse element 1 is melted and the connection with the external circuit is interrupted, the protection element 90 can also stop the heat generation because the energization path to the heating element 93 is also interrupted.
- the protection element 90 to which the present invention is applied has a circuit configuration as shown in FIG. That is, the protective element 90 is energized via the connecting point between the fuse element 1 and the fuse element 1 connected in series across the first and second external connection electrodes 94a and 95a via the heating element lead electrode 96.
- the circuit configuration includes a heating element 93 that melts the fuse element 1 by generating heat.
- the first and second electrodes 94 and 95 and the heating element electrode 99 are connected to the first and second external connection electrodes 94a and 95a and the heating element feeding electrode 99a, respectively, to the external circuit board.
- the fuse element 1 is connected in series on the current path of the external circuit via the first and second electrodes 94 and 95, and the heating element 93 is connected to the external circuit via the heating element electrode 99. It is connected to the provided current control element.
- the protection element 90 having such a circuit configuration, when the current path of the external circuit needs to be interrupted, the heating element 93 is energized by the current control element provided in the external circuit. As a result, the protection element 90 melts the fuse element 1 incorporated on the current path of the external circuit due to the heat generated by the heating element 93, and as shown in FIG. The fuse element 1 is blown by being attracted to the heating element lead electrode 96 and the first and second electrodes 94 and 95 having high wettability. As a result, the fuse element 1 can reliably melt the space between the first electrode 94 and the heating element extraction electrode 96 and the second electrode 95 (FIG. 19B), and interrupt the current path of the external circuit. it can. Further, when the fuse element 1 is melted, power supply to the heating element 93 is also stopped.
- the fuse element 1 includes the first low melting point metal layer 3 having a melting point lower than that of the refractory metal layer 2 and the second low melting point having a melting point lower than that of the first low melting point metal layer 3. Since the metal layer 4 is laminated, the melting starts from the melting point of the second low melting point metal layer 4 and the high melting point metal layer 2 starts to erode. Therefore, in the fuse element 1, the refractory metal layer 2 is melted at a temperature lower than the melting temperature by utilizing the erosion action of the refractory metal layer 2 by the first and second low melting metal layers 3 and 4. , Can be blown quickly.
- FIG. 20A shows a plan view of the short-circuit element 110
- FIG. 20B shows a cross-sectional view of the short-circuit element 110.
- the short-circuit element 110 includes an insulating substrate 111, a heating element 112 provided on the insulating substrate 111, a first electrode 113 and a second electrode 114 provided adjacent to each other on the insulating substrate 111, and a first electrode A current path is configured by being provided adjacent to the electrode 113 and extending between the third electrode 115 electrically connected to the heating element 112 and the first and third electrodes 113 and 115.
- the fuse element 1 which blows the current path between the first and third electrodes 113 and 115 by heating from the heating element 112 and short-circuits the first and second electrodes 113 and 114 via the molten conductor, Is provided.
- a cover member 116 that protects the inside is attached on the insulating substrate 111.
- the insulating substrate 111 is formed in a rectangular shape by an insulating member such as alumina, glass ceramics, mullite, zirconia.
- the insulating substrate 111 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
- the heating element 112 is covered with an insulating member 118 on the insulating substrate 111. On the insulating member 118, first to third electrodes 113 to 115 are formed.
- the insulating member 118 is provided to efficiently transmit the heat of the heating element 112 to the first to third electrodes 113 to 115, and is made of, for example, a glass layer.
- the heating element 112 can make the molten conductor easily aggregate by heating the first to third electrodes 113 to 115.
- the first to third electrodes 113 to 115 are formed of a conductive pattern such as Ag or Cu wiring.
- the first electrode 113 is formed adjacent to the second electrode 114 on one side and insulated.
- a third electrode 115 is formed on the other side of the first electrode 113.
- the first electrode 113 and the third electrode 115 are brought into conduction when the fuse element 1 is connected to form a current path of the short-circuit element 110.
- the first electrode 113 is connected to a first external connection electrode 113 a provided on the back surface 111 b of the insulating substrate 111 through a castellation that faces the side surface of the insulating substrate 111.
- the second electrode 114 is connected to a second external connection electrode 114 a provided on the back surface 111 b of the insulating substrate 111 through a castellation that faces the side surface of the insulating substrate 111.
- the third electrode 115 is connected to the heating element 112 via the heating element extraction electrode 120 provided on the insulating substrate 111 or the insulating member 118.
- the heating element 112 is connected to the heating element power supply electrode 121 a provided on the back surface 111 b of the insulating substrate 111 through a heating element electrode 121 and a castellation that faces the side edge of the insulating substrate 111.
- the fuse element 1 is connected to the first and third electrodes 113 and 115 via a connecting material 117 such as solder. As described above, since the fuse element 1 includes the refractory metal layer 2 and has improved resistance to a high temperature environment, the fuse element 1 has excellent mountability, and the first and third electrodes 113 and 115 are connected via the connection material 117. After being mounted in between, it can be easily connected by reflow soldering or the like.
- the fuse element 1 is connected to the first and third electrodes 113 and 115 using the first low-melting-point metal layer 3 or the second low-melting-point metal layer 4 provided as the lowermost layer as a connection material. May be.
- the short-circuit element 110 includes a fuse element 1 for preventing oxidation of the refractory metal layer 2 or the first and second low-melting metal layers 3, 4, removing oxide during fusing, and improving solder fluidity.
- a flux may be coated on the front surface or the back surface.
- a flux sheet 122 may be disposed on the entire outermost layer on the fuse element 1. Similar to the flux sheet 87 described above, the flux sheet 122 is obtained by impregnating and holding a fluid or semi-fluid flux in a sheet-like support. For example, a non-woven fabric or a mesh-like cloth is impregnated with the flux. It is a thing.
- the flux sheet 122 preferably has an area larger than the surface area of the fuse element 1. Thereby, even when the fuse element 1 is completely covered with the flux sheet 122 and the volume expands due to melting, it is possible to surely realize oxide removal by flux and quick fusing by improving wettability.
- the flux sheet 122 By disposing the flux sheet 122, the flux can be held over the entire surface of the fuse element 1 even in the heat treatment process when the fuse element 1 is mounted or when the short-circuit element 110 is mounted. While improving the wettability of the first and second low melting point metal layers 3 and 4 (for example, solder), the oxide while the first and second low melting point metals are dissolved is removed, and the high melting point metal (for example, the fast fusing property can be improved by using the erosion action on Ag).
- the first and second low melting point metal layers 3 and 4 for example, solder
- an anti-oxidation film such as Pb-free solder containing Sn as a main component is formed on the surface of the outermost refractory metal layer 2 by arranging the flux sheet 122, the oxidation of the anti-oxidation film The material can be removed, oxidation of the refractory metal layer 2 can be effectively prevented, and fast fusing property can be maintained and improved.
- the short-circuit element 110 instead of the flux sheet 122, the short-circuit element 110, as shown in FIG. 21, after applying the flux 119a to the outermost layer of the fuse element 1, arrange a non-woven fabric or mesh-like fabric on the flux 119a, A flux 119a may be impregnated.
- the short-circuit element 110 may apply a flux 119 b in which a fibrous material is mixed to the entire outermost layer of the fuse element 1 instead of the flux sheet. Viscosity of the flux 119b is increased by mixing the fibrous material, and it is difficult for the flux 119b to flow even in a high temperature environment. Thus, the oxide can be removed and the wettability can be improved over the entire surface of the fuse element 1.
- a fiber having insulating properties and heat resistance such as a nonwoven fabric fiber and a glass fiber is preferably used.
- the first electrode 113 preferably has a larger area than the third electrode 115.
- the short-circuit element 110 can agglomerate more molten conductors on the first and second electrodes 113 and 114 and reliably short-circuit the first and second electrodes 113 and 114. Yes (see FIG. 24).
- the first to third electrodes 113, 114, 115 can be formed using a general electrode material such as Cu or Ag, but at least on the surfaces of the first and second electrodes 113, 114. It is preferable that a coating 129 such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is formed by a known plating process. Thereby, the oxidation of the first and second electrodes 113 and 114 can be prevented, and the molten conductor can be reliably held. Further, when the short-circuit element 110 is reflow-mounted, the first electrode is obtained by melting the solder connecting the fuse element 1 or the first or second low melting point metal layer 3 or 4 forming the outer layer of the fuse element 1. It is possible to prevent 113 from being melted (soldered).
- first to third electrodes 113 to 115 are formed with an outflow prevention portion 126 made of an insulating material such as glass for preventing the molten conductor of the fuse element 1 and the connection material 117 of the fuse element 1 from flowing out. ing.
- the short-circuit element 110 has a cover member 116 attached to the surface 111a of the insulating substrate 111 on which the fuse element 1 is provided to protect the inside and prevent the molten fuse element 1 from scattering.
- the cover member 116 can be formed of an insulating member such as various engineering plastics and ceramics. Since the fuse element 1 is covered with the cover member 116 in the short-circuit element 110, the molten metal is captured by the cover member 116 and can be prevented from being scattered to the surroundings.
- the cover member 116 has a projection 116b extending from the top surface 116a toward the insulating substrate 111 at least to the side surface of the flux sheet 122. Since the side surface of the flux sheet 122 is restricted by the protrusion 116b, the cover member 116 can prevent the position of the flux sheet 122 from being displaced.
- the protrusion 116b has a size that holds a predetermined clearance rather than the size of the flux sheet 122, and is provided corresponding to the position where the flux sheet 122 should be held.
- the protrusion part 116b is good also as a wall surface which wraps around the side surface of the flux sheet 122, and may protrude partially.
- the cover member 116 is configured to have a predetermined interval between the flux sheet 122 and the top surface 116a. This is because when the fuse element 1 is melted, a clearance is required for the melted fuse element 1 to push up the flux sheet 122.
- the cover member 116 has a height of the internal space of the cover member 116 (height to the top surface 116 a) that is the height of the melted fuse element 1 on the surface 111 a of the insulating substrate 111 and the thickness of the flux sheet 122. It is comprised so that it may become larger than the sum of.
- the short circuit element 110 as described above has a circuit configuration as shown in FIGS. That is, in the short-circuit element 110, when the first electrode 113 and the second electrode 114 are normally insulated (FIG. 23A), when the fuse element 1 is melted by the heat generated by the heating element 112, the molten conductor is A switch 123 that is short-circuited is formed (FIG. 23B).
- the first external connection electrode 113a and the second external connection electrode 114a constitute both terminals of the switch 123.
- the fuse element 1 is connected to the heating element 112 via the third electrode 115 and the heating element extraction electrode 120.
- the short-circuit element 110 is incorporated into an electronic device or the like, so that the both terminals 113a and 114a of the switch 123 are connected to the current path of the electronic device, and the switch 123 is short-circuited when the current path is conducted.
- the current path of the electronic component is formed.
- the short-circuit element 110 when the electronic component provided on the current path of the electronic component and both terminals 113a and 114a of the switch 123 are connected in parallel and an abnormality occurs in the electronic component connected in parallel, the short-circuit element 110 generates a heating element. Electric power is supplied between the power supply electrode 121a and the first external connection electrode 113a, and heat is generated when the heating element 112 is energized. When the fuse element 1 is melted by this heat, the molten conductor aggregates on the first and second electrodes 113 and 114 as shown in FIG.
- the agglomerated molten conductors are coupled to each other on the first and second electrodes 113 and 114, thereby the first and second electrodes 113. 114 are short-circuited.
- the short-circuit element 110 is short-circuited between both terminals of the switch 123 (FIG. 23B), and forms a bypass current path that bypasses the electronic component in which an abnormality has occurred.
- the fuse element 1 since the fuse element 1 is melted, the first and third electrodes 113 and 115 are fused, so that the power supply to the heating element 112 is also stopped.
- the fuse element 1 includes the first low melting point metal layer 3 having a melting point lower than that of the refractory metal layer 2 and the second low melting point having a melting point lower than that of the first low melting point metal layer 3. Since the metal layer 4 is laminated, the melting starts from the melting point of the second low melting point metal layer 4 and the high melting point metal layer 2 starts to erode. Therefore, in the fuse element 1, the refractory metal layer 2 is melted at a temperature lower than the melting temperature by utilizing the erosion action of the refractory metal layer 2 by the first and second low melting metal layers 3 and 4. , Can be blown quickly.
- the short-circuit element 110 does not necessarily need to cover the heating element 112 with the insulating member 118, and the heating element 112 may be installed inside the insulating substrate 111.
- the heating element 112 can be heated in the same manner as when the insulating member 118 such as a glass layer is interposed.
- the short-circuit element 110 includes the heating element 112 of the insulating substrate 111.
- the first to third electrodes 113 to 115 may be provided on the surface opposite to the formation surface.
- the heating element 112 can be formed by a simpler process than that in the insulating substrate 111. In this case, it is preferable to form an insulating member 118 on the heating element 112 in terms of protecting the resistor and ensuring insulation during mounting.
- the heating element 112 is installed on the formation surface of the first to third electrodes 113 to 115 of the insulating substrate 111 and is also provided along with the first to third electrodes 113 to 115. Good.
- the heating element 112 can be formed by a simpler process than in the insulating substrate 111. Also in this case, it is preferable that the insulating member 118 is formed on the heating element 112.
- the short-circuit element according to the present invention is mounted over the fourth electrode 124 adjacent to the second electrode 114 and between the second and fourth electrodes 114 and 124.
- the second fuse element 125 may be formed.
- the second fuse element 125 has the same configuration as the fuse element 1.
- the short circuit element 110 may be mounted with the flux sheet 122 over the fuse element 1 and the second fuse element 125. As shown in FIG. 25 (C), It may be mounted on each of the fuse element 1 and the second fuse element 125.
- the short-circuit element 110 is formed by applying a non-woven fabric or a mesh-like cloth to the fuse element 1 and the first cloth after the flux 119a is applied to each of the fuse element 1 and the second fuse element 125.
- Two fuse elements 125 may be mounted, or as shown in FIG. 25E, a nonwoven fabric or a mesh-shaped cloth may be mounted on each of the fuse element 1 and the second fuse element 125.
- the short-circuit element 110 may apply a flux 119b in which the fibrous material is mixed and the viscosity is increased to each of the fuse element 1 and the second fuse element 125. .
- the short-circuit element 110 when the fuse element 1 and the second fuse element 125 are melted, the molten conductor wets and spreads between the first and second electrodes 113 and 114, and the first and second electrodes 113, 114 is short-circuited.
- the short-circuit element 110 shown in FIG. 25 is the same as that described above except that the fourth electrode 124 and the second fuse element 125 are provided. To do.
- the first and second electrodes 113 and 114 have a larger area than the third and fourth electrodes 115 and 124.
- the short-circuit element 110 can agglomerate more molten conductors on the first and second electrodes 113 and 114 and reliably short-circuit the first and second electrodes 113 and 114. it can.
- FIG. 26A shows a plan view of the switching element 130
- FIG. 26B shows a cross-sectional view of the switching element 130.
- the switching element 130 includes an insulating substrate 131, a first heating element 132 and a second heating element 133 provided on the insulating substrate 131, a first electrode 134 provided adjacent to the insulating substrate 131, and Provided adjacent to the second electrode 135 and the first electrode 134, provided adjacent to the third electrode 136 electrically connected to the first heating element 132, and the second electrode 135 And a fourth electrode 137 electrically connected to the second heating element 133, a fifth electrode 138 provided adjacent to the fourth electrode 137, and the first and third electrodes 134.
- the switching element 130 has a cover member 139 that protects the inside on the insulating substrate 131.
- the insulating substrate 131 is formed in a rectangular shape by an insulating member such as alumina, glass ceramics, mullite, zirconia.
- the insulating substrate 131 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
- the first and second heating elements 132 and 133 are conductive members that generate heat when energized, like the heating element 93 described above, and can be formed in the same manner as the heating element 93.
- the first and second fuse elements 1A and 1B have the same configuration as the fuse element 1 described above.
- first and second heating elements 132 and 133 are covered with the insulating member 140 on the insulating substrate 131.
- First and third electrodes 134 and 136 are formed on the insulating member 140 covering the first heating element 132, and the second and second electrodes are formed on the insulating member 140 covering the second heating element 133.
- 4, fifth electrodes 135, 137, 138 are formed.
- the first electrode 134 is formed adjacent to the second electrode 135 on one side and is insulated.
- a third electrode 136 is formed on the other side of the first electrode 134.
- the first electrode 134 and the third electrode 135 are brought into conduction when the first fuse element 1A is connected to form a current path of the switching element 130.
- the first electrode 134 is connected to a first external connection electrode 134 a provided on the back surface 131 b of the insulating substrate 131 through a castellation that faces the side surface of the insulating substrate 131.
- the third electrode 136 is connected to the first heating element 132 via the first heating element extraction electrode 141 provided on the insulating substrate 131 or the insulating member 140.
- the first heating element 132 is connected to the first heating element feeding electrode 142a provided on the back surface 131b of the insulating substrate 131 through the first heating element electrode 142 and a castellation facing the side edge of the insulating substrate 131. Connected with.
- a fourth electrode 137 is formed on the other side of the second electrode 135 opposite to the one side adjacent to the first electrode 134.
- a fifth electrode 138 is formed on the other side of the fourth electrode 137 opposite to the one side adjacent to the second electrode 135.
- the second electrode 135, the fourth electrode 137, and the fifth electrode 138 are connected to the second fuse element 1B.
- the second electrode 135 is connected to a second external connection electrode 135 a provided on the back surface 131 b of the insulating substrate 131 through a castellation that faces the side surface of the insulating substrate 131.
- the fourth electrode 137 is connected to the second heating element 133 through the second heating element extraction electrode 143 provided on the insulating substrate 131 or the insulating member 140.
- the second heating element 133 is connected to the second heating element feeding electrode 144a provided on the back surface 131b of the insulating substrate 131 through the second heating element electrode 144 and a castellation facing the side edge of the insulating substrate 131. Connected with.
- the fifth electrode 138 is connected to a fifth external connection electrode 138 a provided on the back surface of the insulating substrate 131 through a castellation facing the side surface of the insulating substrate 131.
- the switching element 130 is connected to the first fuse element 1A from the first electrode 134 to the third electrode 136, and from the second electrode 135 to the fifth electrode 138 through the fourth electrode 137.
- the second fuse element 1B is connected.
- the first and second fuse elements 1A and 1B are excellent in mountability due to the refractory metal layer 2 and thus improved in mountability, and can be connected to solder or the like. After being mounted on the first to fifth electrodes 134 to 138 via the material 145, they can be easily connected by reflow soldering or the like.
- the fuse elements 1A and 1B are formed on the first to fifth electrodes 134 to 138 using the first low melting point metal layer 3 or the second low melting point metal layer 4 provided as the lowermost layer as a connecting material. You may connect to.
- the switching element 130 includes a fuse element 1 for preventing oxidation of the refractory metal layer 2 or the first and second low melting point metal layers 3, 4, removing oxide during fusing, and improving solder fluidity.
- a flux may be coated on the front surface or the back surface.
- a flux sheet 146 may be disposed on the entire outermost layer on the fuse elements 1A and 1B. Similar to the flux sheet 87, the flux sheet 146 is obtained by impregnating and holding a fluid or semi-fluid flux in a sheet-like support. For example, a nonwoven fabric or a mesh-like cloth is impregnated with the flux. Is.
- the flux sheet 146 preferably has an area larger than the surface area of the fuse elements 1A and 1B. Thereby, even when the fuse elements 1A and 1B are completely covered with the flux sheet 146 and the volume is expanded by melting, it is possible to surely realize the quick fusing by removing the oxide by the flux and improving the wettability. it can.
- the flux sheet 146 By disposing the flux sheet 146, the flux can be held over the entire surface of the fuse elements 1A and 1B in the heat treatment process when the fuse element 1 is mounted or when the switching element 130 is mounted.
- the first and second low melting point metal layers 3 and 4 (for example, solder) are improved in wettability, and oxides are removed while the first and second low melting point metals are dissolved, thereby obtaining a high melting point.
- the fast fusing property can be improved by using an erosion action on a metal (for example, Ag).
- an anti-oxidation film such as Pb-free solder containing Sn as a main component is formed on the surface of the outermost refractory metal layer 2 by arranging the flux sheet 146, the oxidation of the anti-oxidation film The material can be removed, the refractory metal layer 2 can be effectively prevented from being oxidized, and the fast fusing property can be maintained and improved.
- the switching element 130 instead of the flux sheet 146, the switching element 130, as shown in FIG. 27, after applying the flux 148a to the outermost layer of the fuse element 1, arrange a non-woven fabric or mesh-like fabric on the flux 148a, A flux 148a may be impregnated.
- the switching element 130 may apply a flux 148b in which a fibrous material is mixed to the entire outermost layer of the fuse elements 1A and 1B, instead of the flux sheet. Viscosity of the flux 148b is increased by mixing the fibrous material, and it is difficult for the flux 148b to flow even in a high-temperature environment, so that the oxide can be removed and the wettability can be improved over the entire surface of the fuse element 1.
- a fibrous material mixed with the flux 148b for example, a fiber having insulating properties and heat resistance, such as a nonwoven fabric fiber and a glass fiber, is preferably used.
- the switching element 130 may mount the flux sheet 146 over the fuse element 1A and the fuse element 1B, or may be mounted on each of the fuse element 1A and the fuse element 1B.
- the switching element 130 may be mounted with a nonwoven fabric or a mesh-shaped fabric over the fuse element 1A and the fuse element 1B after the flux 148a is applied to each of the fuse element 1A and the fuse element 1B.
- a mesh-shaped cloth may be mounted on each of the fuse element 1A and the fuse element 1B.
- the switching element 130 may apply a flux 148b in which the fibrous material is mixed and the viscosity is increased to each of the fuse element 1A and the fuse element 1B.
- the first to fifth electrodes 134, 135, 136, 137, and 138 can be formed using a general electrode material such as Cu or Ag, but at least the first and second electrodes 134, A coating 149 such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is preferably formed on the surface of 135 by a known plating process. Thereby, the oxidation of the first and second electrodes 134 and 135 can be prevented, and the molten conductor can be reliably held. Further, when the switching element 130 is reflow-mounted, the solder for connecting the first and second fuse elements 1A and 1B or the low melting point metal forming the outer layer of the first and second fuse elements 1A and 1B is melted. This can prevent the first and second electrodes 134 and 135 from being eroded (soldered).
- first to fifth electrodes 134 to 138 include an outflow prevention portion made of an insulating material such as glass for preventing the molten conductor of the fuse elements 1A and 1B and the connection material 145 of the fuse elements 1A and 1B from flowing out. 147 is formed.
- the switching element 130 has a cover member 139 for protecting the inside and preventing the molten fuse elements 1A and 1B from scattering on the surface 131a of the insulating substrate 131 provided with the fuse elements 1A and 1B.
- the cover member 139 can be formed of an insulating member such as various engineering plastics and ceramics.
- the fuse elements 1 ⁇ / b> A and 1 ⁇ / b> B are covered with the cover member 139, so that the molten metal is captured by the cover member 139 and can be prevented from being scattered to the surroundings.
- the cover member 139 has a protrusion 139b extending from the top surface 139a toward the insulating substrate 131 at least to the side surface of the flux sheet 146.
- the cover member 139 can prevent displacement of the flux sheet 146 because the side surface of the flux sheet 146 is restricted by the protrusions 139b.
- the protrusion 139b has a size that holds a predetermined clearance rather than the size of the flux sheet 146, and is provided corresponding to the position where the flux sheet 146 should be held.
- the protrusion part 139b is good also as a wall surface which wraps around the side surface of the flux sheet
- the cover member 139 is configured to have a predetermined interval between the flux sheet 146 and the top surface 139a. This is because when the fuse elements 1A and 1B are melted, a clearance is required for the melted fuse elements 1A and 1B to push up the flux sheet 146.
- the cover member 139 has a height of the internal space of the cover member 139 (a height up to the top surface 139a), the height of the melted fuse elements 1A and 1B on the surface 131a of the insulating substrate 131, and the flux sheet 146. It is comprised so that it may become larger than the sum of thickness.
- the switching element 130 as described above has a circuit configuration as shown in FIG. That is, in the switching element 130, the first electrode 134 and the second electrode 135 are insulated in the normal state, and the first and second fuse elements 1A, 1A, When 1B is melted, the switch 150 is configured to be short-circuited through the molten conductor.
- the first external connection electrode 134a and the second external connection electrode 135a constitute both terminals of the switch 150.
- the first fuse element 1A is connected to the first heating element 132 via the third electrode 136 and the first heating element lead electrode 141.
- the second fuse element 1B is connected to the second heating element 133 through the fourth electrode 137 and the second heating element extraction electrode 143, and further, the second heating element 1B is connected to the second heating element electrode 144 through the second heating element electrode 144.
- the body power supply electrode 144a is connected. That is, the second electrode 135, the fourth electrode 137, and the fifth electrode 138 to which the second fuse element 1B and the second fuse element 1B are connected are the second fuse element 130 before the switching element 130 is operated.
- the second electrode 135 and the fifth electrode 138 are brought into conduction through the element 1B, and the second fuse element 1B is blown so that the second electrode 135 and the fifth electrode 138 are connected. It functions as a protective element for blocking.
- the switching element 130 When the switching element 130 is energized to the second heating element 133 from the second heating element feeding electrode 144a, the second fuse element 1B is generated by the heat generation of the second heating element 133 as shown in FIG. Melts and aggregates on the second, fourth, and fifth electrodes 135, 137, and 138, respectively. As a result, the current path extending between the second electrode 135 and the fifth electrode 138 connected via the second fuse element 1B is interrupted. Further, when the switching element 130 is energized to the first heating element 132 from the first heating element power supply electrode 142a, the first fuse element 1A is melted by the heat generated by the first heating element 132, and the first, Aggregates on the third electrodes 134 and 136, respectively.
- the switching element 130 is a molten conductor of the first and second fuse elements 1A and 1B aggregated into the first electrode 134 and the second electrode 135. Are coupled to short-circuit the insulated first electrode 134 and second electrode 135. That is, the switching element 130 can short-circuit the switch 150 to switch the current path between the second and fifth electrodes 135 and 138 to the current path between the first and second electrodes 134 and 135 (FIG. 32). ).
- the fuse elements 1A and 1B have the first low melting point metal layer 3 having a melting point lower than that of the refractory metal layer 2 and the second melting point lower than that of the first low melting point metal layer 3. Since the low melting point metal layer 4 is laminated, the melting of the second low melting point metal layer 4 is started from the melting point of the second low melting point metal layer 4 by the heat generation of the first and second heating elements 132 and 133, and the high melting point metal layer 2 is eroded. Begin to. Therefore, the fuse elements 1A and 1B use the erosion action of the refractory metal layer 2 by the first and second low melting point metal layers 3 and 4, so that the refractory metal layer 2 is at a temperature lower than the melting temperature. It is melted and can be blown quickly.
- the energization of the first heating element 132 is stopped because the first fuse element 1A is melted and the first and third electrodes 134 and 136 are cut off, and the second heating element 133 is turned off. Since the second fuse element 1B is melted, the current between the second and fourth electrodes 135 and 137 and the fourth and fifth electrodes 137 and 138 are interrupted.
- the switching element 130 it is preferable that the second fuse element 1B is melted prior to the first fuse element 1A. Since the first heating element 132 and the second heating element 133 generate heat separately, the switching element 130 causes the second heating element 133 to generate heat first as the energization timing, and then the first heating element 132 and the second heating element 133 generate heat. By causing the heat generating element 132 to generate heat, the second fuse element 1B is melted prior to the first fuse element 1A as shown in FIG. 30, and the first and first fuses are securely connected as shown in FIG.
- the first and second electrodes 134 and 135 can be short-circuited by aggregating and bonding the molten conductors of the first and second fuse elements 1A and 1B on the two electrodes 134 and 135.
- the switching element 130 forms the second fuse element 1B narrower than the first fuse element 1A, thereby fusing the second fuse element 1B before the first fuse element 1A. You may do it.
- the fusing time can be shortened, so that the second fuse element 1B can be melted prior to the first fuse element 1A.
- the area of the first electrode 134 is preferably larger than that of the third electrode 136, and the area of the second electrode 135 is preferably larger than those of the fourth and fifth electrodes 137 and 138. . Since the holding amount of the molten conductor increases in proportion to the electrode area, the areas of the first and second electrodes 134 and 135 are formed wider than the third, fourth, and fifth electrodes 136, 137, and 138. As a result, more molten conductors can be agglomerated on the first and second electrodes 134 and 135, and the first and second electrodes 134 and 135 can be reliably short-circuited.
- the switching element 130 does not necessarily need to cover the first and second heating elements 132 and 133 with the insulating member 140, and the first and second heating elements 132 and 133 are installed inside the insulating substrate 131. May be.
- the first and second heating elements 132 and 133 can be heated in the same manner as when the insulating member 140 such as a glass layer is interposed. .
- the first and second heating elements 132 and 133 are installed on the back surface of the insulating substrate 131 opposite to the formation surface of the first to fifth electrodes 134, 135, 136, 137, and 138. Also good.
- the first and second heating elements 132 and 133 can be formed by a simpler process than forming in the insulating substrate 131.
- the insulating member 140 is formed on the first and second heating elements 132 and 133 in terms of protecting the resistor and ensuring insulation during mounting.
- the switching element 130 includes first and second heating elements 132 and 133 installed on the formation surface of the first to fifth electrodes 134, 135, 136, 137, and 138 of the insulating substrate 131, and The first to fifth electrodes 134 to 138 may be provided together.
- the first and second heating elements 132 and 133 can be formed by a simpler process than that in the insulating substrate 131. Also in this case, it is desirable that the insulating member 140 is formed on the first and second heating elements 132 and 133.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Fuses (AREA)
- Thermistors And Varistors (AREA)
Abstract
Provided are: a fuse element capable of being surface-mounted and whereby both rating and fusion speed can be improved; and a fuse device, protective element, short-circuit element, and switching element that use same. The fuse element has laminated therein at least three metal layers each having different melting points.
Description
本発明は、電流経路上に実装され、定格を超える電流が流れた時の自己発熱、あるいは発熱体の発熱により溶断し当該電流経路を遮断するヒューズエレメントに関し、特に速断性に優れたヒューズエレメント、及びこれを用いたヒューズ素子、保護素子、短絡素子、切替素子に関する。
本出願は、日本国において2014年11月11日に出願された日本特許出願番号特願2014-229360を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present invention relates to a fuse element that is mounted on a current path and cuts off due to self-heating when a current exceeding the rating flows, or heat generated by a heating element, and particularly a fuse element excellent in quick disconnection, And a fuse element, a protection element, a short-circuit element, and a switching element using the same.
This application claims priority on the basis of Japanese Patent Application No. 2014-229360 filed on November 11, 2014 in Japan, and this application is incorporated herein by reference. Incorporated.
本出願は、日本国において2014年11月11日に出願された日本特許出願番号特願2014-229360を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present invention relates to a fuse element that is mounted on a current path and cuts off due to self-heating when a current exceeding the rating flows, or heat generated by a heating element, and particularly a fuse element excellent in quick disconnection, And a fuse element, a protection element, a short-circuit element, and a switching element using the same.
This application claims priority on the basis of Japanese Patent Application No. 2014-229360 filed on November 11, 2014 in Japan, and this application is incorporated herein by reference. Incorporated.
従来、定格を超える電流が流れた時に自己発熱により溶断し、当該電流経路を遮断するヒューズエレメントが用いられている。ヒューズエレメントとしては、例えば、ハンダをガラス管に封入したホルダー固定型ヒューズや、セラミック基板表面にAg電極を印刷したチップヒューズ、銅電極の一部を細らせてプラスチックケースに組み込んだねじ止め又は差し込み型ヒューズ等が多く用いられている。
Conventionally, a fuse element that melts by self-heating when a current exceeding the rating flows and interrupts the current path has been used. As the fuse element, for example, a holder-fixed fuse in which solder is enclosed in a glass tube, a chip fuse in which an Ag electrode is printed on the surface of a ceramic substrate, or a screw fixing in which a part of a copper electrode is thinned and incorporated in a plastic case or Plug-in fuses are often used.
しかし、上記既存のヒューズエレメントにおいては、リフローによる表面実装ができない、電流定格が低く、また大型化によって定格を上げると速断性に劣る、といった問題点が指摘されている。
However, it has been pointed out that the above-mentioned existing fuse elements cannot be surface-mounted by reflow, have a low current rating, and if the rating is increased by increasing the size, the quick disconnection property is inferior.
また、リフロー実装用の速断ヒューズ素子を想定した場合、リフローの熱によって溶融しないように、一般的には、ヒューズエレメントには融点が300℃以上のPb入り高融点ハンダが溶断特性上好ましい。しかしながら、RoHS指令等においては、Pb含有ハンダの使用は、限定的に認められているに過ぎず、今後Pbフリー化の要求は、強まるものと考えられる。
In addition, when assuming a fast-acting fuse element for reflow mounting, generally, a high melting point solder containing Pb having a melting point of 300 ° C. or higher is preferable for the fuse element in terms of fusing characteristics so as not to melt by the heat of reflow. However, in the RoHS directive and the like, the use of Pb-containing solder is only limitedly recognized, and it is considered that the demand for Pb-free solder will increase in the future.
すなわち、ヒューズエレメントとしては、リフローによる表面実装が可能でヒューズ素子への実装性に優れること、定格を上げて大電流に対応可能であること、定格を超える過電流時には速やかに電流経路を遮断する速溶断性を備えることが求められる。
In other words, the fuse element can be surface-mounted by reflow and has excellent mountability to the fuse element, it can handle a large current by raising its rating, and the current path is quickly interrupted when overcurrent exceeds the rating. It is required to have fast fusing properties.
そこで、本発明は、表面実装が可能であり、定格の向上と速溶断性とを両立できるヒューズエレメント、及びこれを用いたヒューズ素子、保護素子、短絡素子、切替素子を提供することを目的とする。
Accordingly, an object of the present invention is to provide a fuse element that can be surface-mounted and can achieve both improvement in rating and quick fusing, and a fuse element, a protection element, a short-circuit element, and a switching element using the fuse element. To do.
上述した課題を解決するために、本発明に係るヒューズエレメントは、互いに融点の異なる3層以上の金属層が積層されたものである。
In order to solve the above-described problem, the fuse element according to the present invention is formed by laminating three or more metal layers having different melting points.
また、本発明に係るヒューズ素子は、互いに融点の異なる3層以上の金属層が積層されたヒューズエレメントを有し、定格を超える過電流が流れることにより上記ヒューズエレメントが溶断するものである。
Also, the fuse element according to the present invention has a fuse element in which three or more metal layers having different melting points are laminated, and the fuse element is blown when an overcurrent exceeding the rating flows.
また、本発明に係る保護素子は、絶縁基板と、上記絶縁基板上又は上記絶縁基板の内部に形成された発熱体と、上記絶縁基板上に設けられた第1、第2の電極と、上記発熱体と電気的に接続された発熱体引出電極と、上記第1の電極から上記発熱体引出電極を介して上記第2の電極に跨って接続された可溶導体とを有し、上記可溶導体は、互いに融点の異なる3層以上の金属層が積層されたヒューズエレメントからなり、上記発熱体の通電発熱により溶融し、上記第1、第2の電極間を遮断するものである。
The protection element according to the present invention includes an insulating substrate, a heating element formed on or in the insulating substrate, first and second electrodes provided on the insulating substrate, A heating element extraction electrode electrically connected to the heating element; and a soluble conductor connected across the second electrode from the first electrode through the heating element extraction electrode. The molten conductor is composed of a fuse element in which three or more metal layers having different melting points are laminated, and is melted by energization heat generation of the heating element to cut off between the first and second electrodes.
また、本発明に係る短絡素子は、絶縁基板と、上記絶縁基板上又は上記絶縁基板の内部に形成された発熱体と、上記絶縁基板上に隣接して設けられた第1、第2の電極と、上記絶縁基板上に設けられ上記発熱体と電気的に接続された第3の電極と、上記第1、第3の電極間に跨って接続される可溶導体とを有し、上記可溶導体は、互いに融点の異なる3層以上の金属層が積層されたヒューズエレメントからなり、上記発熱体の通電発熱により溶融し、上記第1、第2の電極間を短絡させるとともに、上記第1、第3の電極間を遮断するものである。
The short-circuit element according to the present invention includes an insulating substrate, a heating element formed on or in the insulating substrate, and first and second electrodes provided adjacent to the insulating substrate. A third electrode that is provided on the insulating substrate and is electrically connected to the heating element, and a soluble conductor that is connected across the first and third electrodes. The molten conductor is composed of a fuse element in which three or more metal layers having different melting points are laminated, melted by energization heat generation of the heating element, short-circuits the first and second electrodes, and the first The third electrode is cut off.
また、本発明に係る切替素子は、絶縁基板と、上記絶縁基板上又は上記絶縁基板の内部に形成された第1、第2の発熱体と、上記絶縁基板上に隣接して設けられた第1、第2の電極と、上記絶縁基板上に設けられ上記第1の発熱体と電気的に接続する第3の電極と、上記第1、第3の電極間に跨って接続される第1の可溶導体と、上記絶縁基板上に設けられ上記第2の発熱体と電気的に接続する第4の電極と、上記絶縁基板上に上記第4の電極と隣接して設けられた第5の電極と、上記第2の電極から上記第4の電極を介して上記第5の電極に跨って接続された第2の可溶導体とを有し、上記第1、第2の可溶導体は、互いに融点の異なる3層以上の金属層が積層されたヒューズエレメントからなり、上記第2の発熱体の通電発熱により上記第2の可溶導体を溶融させて上記第2、第5の電極間を遮断し、上記第1の発熱体の通電発熱により上記第1の可溶導体を溶融させて上記第1、第2の電極間を短絡するものである。
The switching element according to the present invention includes an insulating substrate, first and second heating elements formed on the insulating substrate or in the insulating substrate, and a first element provided adjacent to the insulating substrate. First and second electrodes, a third electrode provided on the insulating substrate and electrically connected to the first heating element, and a first electrode connected across the first and third electrodes A soluble conductor, a fourth electrode provided on the insulating substrate and electrically connected to the second heating element, and a fifth electrode provided adjacent to the fourth electrode on the insulating substrate. And a second soluble conductor connected across the fifth electrode from the second electrode through the fourth electrode, and the first and second soluble conductors Consists of a fuse element in which three or more metal layers having different melting points are laminated, and is heated by the heat generated by the second heating element. The second fusible conductor is melted to cut off the second and fifth electrodes, and the first fusible conductor is melted by energization heat generation of the first heating element, thereby the first and second electrodes. Are short-circuited between the electrodes.
本発明によれば、ヒューズエレメントは、高融点金属層を積層することによって、リフロー等の実装温度が低融点金属層の溶融温度を超えた場合であっても、ヒューズエレメントとして溶断するに至らない。したがって、本発明によればヒューズエレメントをリフローによって効率よく実装することができる。
According to the present invention, the fuse element does not blow out as a fuse element even when the mounting temperature such as reflow exceeds the melting temperature of the low melting point metal layer by laminating the high melting point metal layer. . Therefore, according to the present invention, the fuse element can be efficiently mounted by reflow.
また、本発明にかかるヒューズエレメントは、自己発熱又は発熱体の発熱によって溶融する。このとき、ヒューズエレメントは、溶融した低融点金属層が高融点金属層を浸食することにより、高融点金属層が自身の融点よりも低い温度で溶解する。したがって、本発明によれば、ヒューズエレメントを低融点金属層による高融点金属層の浸食作用を利用して短時間で溶断することができる。
Also, the fuse element according to the present invention is melted by self-heating or heat generation of the heating element. At this time, in the fuse element, the melted low melting point metal layer erodes the high melting point metal layer, so that the high melting point metal layer is melted at a temperature lower than its melting point. Therefore, according to the present invention, the fuse element can be blown in a short time using the erosion action of the high melting point metal layer by the low melting point metal layer.
また、本発明にかかるヒューズエレメントは、低融点金属層に低抵抗の高融点金属層が積層されて構成されているため、導体抵抗を大幅に低減することができ、同一サイズの従来のチップヒューズ等に比して、電流定格を大幅に向上させることができる。また、同じ電流定格をもつ従来のチップヒューズよりも薄型化を図ることができ、速溶断性に優れる。
In addition, since the fuse element according to the present invention is formed by laminating a low-melting metal layer with a low-melting point on a low-melting metal layer, the conductor resistance can be greatly reduced, and a conventional chip fuse of the same size Compared to the above, the current rating can be greatly improved. In addition, it can be made thinner than conventional chip fuses having the same current rating, and is excellent in quick fusing.
よって、本発明にかかるヒューズエレメントは、互いに融点の異なる2種類の金属による積層可溶導体からなるヒューズエレメントに比して、リフロー温度等の高温環境に対する耐性と低抵抗特性を維持しつつ、速溶断性に優れる。
Therefore, the fuse element according to the present invention maintains a resistance against a high temperature environment such as a reflow temperature and a low resistance characteristic as compared with a fuse element made of a laminated soluble conductor made of two kinds of metals having different melting points, and has a fast melting property. Excellent cutting ability.
以下、本発明が適用されたヒューズエレメント、ヒューズ素子、保護素子、短絡素子及び切替素子について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
Hereinafter, a fuse element, a fuse element, a protection element, a short-circuit element, and a switching element to which the present invention is applied will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention. Further, the drawings are schematic, and the ratio of each dimension may be different from the actual one. Specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
[ヒューズエレメント]
先ず、本発明が適用されたヒューズエレメントについて説明する。本発明が適用されたヒューズエレメント1は、後述するヒューズ素子、保護素子、短絡素子及び切替素子の可溶導体として用いられ、定格を超える電流が通電することによって自己発熱(ジュール熱)により溶断し、あるいは発熱体の発熱により溶断されるものである。ヒューズエレメント1は、互いに融点の異なる3層以上の金属層が積層されたものであり、例えば、図1に示すように、高融点金属層2と、高融点金属層2よりも融点の低い第1の低融点金属層3と、第1の低融点金属層3よりも融点の低い第2の低融点金属層4とを有し、例えば略矩形板状に形成されている。 [Fuse element]
First, a fuse element to which the present invention is applied will be described. Thefuse element 1 to which the present invention is applied is used as a fusible conductor for a fuse element, a protective element, a short-circuit element, and a switching element, which will be described later. Alternatively, it is melted by the heat generated by the heating element. The fuse element 1 is formed by laminating three or more metal layers having different melting points. For example, as shown in FIG. 1, a high melting point metal layer 2 and a first melting point having a lower melting point than the high melting point metal layer 2 are used. The first low melting point metal layer 3 and the second low melting point metal layer 4 having a melting point lower than that of the first low melting point metal layer 3 are formed, for example, in a substantially rectangular plate shape.
先ず、本発明が適用されたヒューズエレメントについて説明する。本発明が適用されたヒューズエレメント1は、後述するヒューズ素子、保護素子、短絡素子及び切替素子の可溶導体として用いられ、定格を超える電流が通電することによって自己発熱(ジュール熱)により溶断し、あるいは発熱体の発熱により溶断されるものである。ヒューズエレメント1は、互いに融点の異なる3層以上の金属層が積層されたものであり、例えば、図1に示すように、高融点金属層2と、高融点金属層2よりも融点の低い第1の低融点金属層3と、第1の低融点金属層3よりも融点の低い第2の低融点金属層4とを有し、例えば略矩形板状に形成されている。 [Fuse element]
First, a fuse element to which the present invention is applied will be described. The
高融点金属層2は、例えば、Ag、Cu又はAg若しくはCuを主成分とする合金が好適に用いられ、ヒューズエレメント1をリフロー炉によって絶縁基板上に実装を行う場合においても溶融しない高い融点を有する。
The refractory metal layer 2 is preferably made of, for example, Ag, Cu, or an alloy mainly composed of Ag or Cu, and has a high melting point that does not melt even when the fuse element 1 is mounted on an insulating substrate by a reflow furnace. Have.
第1の低融点金属層3は、例えばSn又はSnを主成分とする合金で「Pbフリーハンダ」と一般的に呼ばれる材料が好適に用いられる。第1の低融点金属層3の融点は、必ずしもリフロー炉の温度よりも高い必要はなく、200℃程度で溶融してもよい。
For the first low-melting-point metal layer 3, for example, a material generally called “Pb-free solder” made of Sn or an alloy containing Sn as a main component is preferably used. The melting point of the first low melting point metal layer 3 is not necessarily higher than the temperature of the reflow furnace, and may be melted at about 200 ° C.
第2の低融点金属層4は、例えばBi、In又はBi若しくはInを含む合金が好適に用いられる。第2の低融点金属層4の融点は、第1の低融点金属層3よりもさらに低く、例えば120℃~140℃で溶融を開始する。
For the second low melting point metal layer 4, for example, Bi, In or Bi or an alloy containing In is preferably used. The melting point of the second low melting point metal layer 4 is lower than that of the first low melting point metal layer 3, and starts melting at, for example, 120 ° C to 140 ° C.
ヒューズエレメント1は、互いに融点の異なる3層以上の金属層が積層されて形成されることにより、ヒューズ素子、保護素子、短絡素子及び切替素子の絶縁基板への実装性に優れ、また、ヒューズエレメント1が用いられた各素子の外部回路基板への実装性を向上させることができる。また、ヒューズエレメント1は、各素子において、定格の向上と速溶断性とを実現できる。
The fuse element 1 is formed by laminating three or more metal layers having different melting points, so that the fuse element, the protective element, the short-circuit element, and the switching element are excellent in mountability on an insulating substrate. It is possible to improve the mountability of each element using 1 on an external circuit board. Moreover, the fuse element 1 can implement | achieve the improvement of a rating and quick fusing property in each element.
すなわち、ヒューズエレメント1は、高融点金属層2を備えることにより、リフロー炉等の外部熱源によって第1、第2の低融点金属層3,4の融点以上の高熱環境に短時間曝された場合にも、溶断や変形が防止され、初期遮断や初期短絡又は定格の変動に伴う溶断特性の低下を防止することができる。したがって、ヒューズエレメント1は、ヒューズ素子等の各素子の絶縁基板への実装や、ヒューズ素子等の各素子の外部回路基板への実装をリフロー実装により効率よく実現することができ、実装性を向上させることができる。
That is, when the fuse element 1 includes the refractory metal layer 2, the fuse element 1 is exposed to a high heat environment above the melting point of the first and second low melting metal layers 3 and 4 for a short time by an external heat source such as a reflow furnace. In addition, fusing and deformation can be prevented, and deterioration of the fusing characteristics associated with initial interruption, initial short circuit, or fluctuation in rating can be prevented. Therefore, the fuse element 1 can efficiently realize mounting of each element such as a fuse element on an insulating substrate and mounting of each element such as a fuse element on an external circuit board by reflow mounting, thereby improving the mountability. Can be made.
また、ヒューズエレメント1は、低抵抗の高融点金属層2が積層されて構成されているため、従来の鉛系高融点ハンダを用いた可溶導体に比べ、導体抵抗を大幅に低減することができ、同一サイズの従来のチップヒューズ等に比して、電流定格を大幅に向上させることができる。また、同じ電流定格をもつ従来のチップヒューズよりも薄型化を図ることができ、速溶断性に優れる。
Further, since the fuse element 1 is formed by laminating the low-resistance refractory metal layer 2, the conductor resistance can be greatly reduced as compared with the fusible conductor using the conventional lead-based refractory solder. The current rating can be greatly improved as compared with a conventional chip fuse of the same size. In addition, it can be made thinner than conventional chip fuses having the same current rating, and is excellent in quick fusing.
さらに、ヒューズエレメント1は、高融点金属層2よりも融点の低い第1の低融点金属層3及び第1の低融点金属層3よりも融点の低い第2の低融点金属層4が積層されているため、過電流による自己発熱や発熱体の発熱により、第2の低融点金属層4の融点から溶融を開始し、速溶断特性を向上させることができる。例えば、第2の低融点金属層4をSn‐Bi系合金やIn‐Sn系合金などで構成した場合、ヒューズエレメント1は、140℃や120℃前後という低温度から溶融を開始する。そして、溶融した第1、第2の低融点金属層3,4が高融点金属層2を浸食(ハンダ食われ)することにより、高融点金属層2が融点よりも低い温度で溶融する。したがって、ヒューズエレメント1は、第1、第2の低融点金属層3,4による高融点金属層2の浸食作用を利用して速溶断性を向上することができる。
Further, the fuse element 1 includes a first low melting point metal layer 3 having a melting point lower than that of the refractory metal layer 2 and a second low melting point metal layer 4 having a melting point lower than that of the first low melting point metal layer 3. Therefore, melting can be started from the melting point of the second low-melting-point metal layer 4 by self-heating due to overcurrent or heat generation by the heating element, and the fast fusing characteristics can be improved. For example, when the second low melting point metal layer 4 is made of Sn—Bi alloy or In—Sn alloy, the fuse element 1 starts to melt from a low temperature of about 140 ° C. or about 120 ° C. The melted first and second low melting point metal layers 3 and 4 erode the refractory metal layer 2 (solder erosion), so that the refractory metal layer 2 is melted at a temperature lower than the melting point. Therefore, the fuse element 1 can improve the fast fusing property by utilizing the erosion action of the high melting point metal layer 2 by the first and second low melting point metal layers 3 and 4.
[ヒューズエレメントの積層構造]
ここで、ヒューズエレメント1は、図1に示すように、高融点金属層2は、第1の低融点金属層3と第2の低融点金属層4との間に積層されていることが好ましい。ヒューズエレメント1は、高融点金属層2を融点の異なる2種類の第1、第2の低融点金属層3,4で挟むことにより、第2の低融点金属層4のより低い温度から高融点金属層2の一方の面の浸食を開始し、次いで、第1の低融点金属層3の温度で両面から高融点金属層2を浸食する。 [Laminated structure of fuse elements]
Here, in thefuse element 1, as shown in FIG. 1, the refractory metal layer 2 is preferably laminated between the first low melting point metal layer 3 and the second low melting point metal layer 4. . The fuse element 1 has a high melting point from a lower temperature of the second low melting point metal layer 4 by sandwiching the high melting point metal layer 2 between two kinds of first and second low melting point metal layers 3 and 4 having different melting points. Erosion of one surface of the metal layer 2 is started, and then the refractory metal layer 2 is eroded from both surfaces at the temperature of the first low melting metal layer 3.
ここで、ヒューズエレメント1は、図1に示すように、高融点金属層2は、第1の低融点金属層3と第2の低融点金属層4との間に積層されていることが好ましい。ヒューズエレメント1は、高融点金属層2を融点の異なる2種類の第1、第2の低融点金属層3,4で挟むことにより、第2の低融点金属層4のより低い温度から高融点金属層2の一方の面の浸食を開始し、次いで、第1の低融点金属層3の温度で両面から高融点金属層2を浸食する。 [Laminated structure of fuse elements]
Here, in the
これにより、ヒューズエレメント1は、リフロー温度等の高温環境に対する耐性を備えつつ、速溶断特性を向上させることができる。すなわち、融点が220℃前後の一般的なPbフリーハンダからなる低融点金属層とAg等の高融点金属層とを積層させたヒューズエレメントにおいては、リフロー温度等の高温環境に対する耐性を備えようとすると、高融点金属層の厚さを厚くする必要があり、そのため溶断時間が延びてしまう。
Thereby, the fuse element 1 can improve the fast fusing characteristics while being resistant to a high temperature environment such as a reflow temperature. That is, in a fuse element in which a low melting point metal layer made of a general Pb-free solder having a melting point of around 220 ° C. and a high melting point metal layer such as Ag is laminated, resistance to a high temperature environment such as a reflow temperature is to be provided. Then, it is necessary to increase the thickness of the refractory metal layer, so that the fusing time is extended.
また、ヒューズエレメントの溶断時間を短縮するために、低融点金属層を比較的安価なSn/Bi系の合金で形成すると、抵抗値が高くなってしまい、定格を向上させることができない。
Also, if the low melting point metal layer is formed of a relatively inexpensive Sn / Bi alloy in order to shorten the fusing time of the fuse element, the resistance value becomes high and the rating cannot be improved.
この点、ヒューズエレメント1は、Sn又はSnを主成分とする合金が好適に用いられる第1の低融点金属層3と、Bi、In又はBi若しくはInを含む合金が好適に用いられ第1の低融点金属層3よりも融点の低い第2の低融点金属層4との間に高融点金属層2を積層する。これにより、ヒューズエレメント1は、高融点金属層2がリフロー温度等の高温環境に対する耐性を備える厚さを有していても、第1及び/又は第2の低融点金属層3,4が高融点金属層2を両面から浸食することで速やかに溶断することができる。
In this regard, the fuse element 1 is preferably made of a first low melting point metal layer 3 in which an alloy containing Sn or Sn as a main component is preferably used and an alloy containing Bi, In, Bi or In. The high melting point metal layer 2 is laminated between the second low melting point metal layer 4 having a lower melting point than the low melting point metal layer 3. Thereby, even if the refractory metal layer 2 has a thickness having resistance to a high temperature environment such as a reflow temperature, the fuse element 1 has the first and / or second low melting point metal layers 3 and 4 having a high thickness. The melting point metal layer 2 can be melted quickly by eroding from both sides.
また、ヒューズエレメント1は、Sn又はSnを主成分とする合金が好適に用いられる第1の低融点金属層3を備えることにより低抵抗を維持しつつ、Bi、In又はBi若しくはInを含む合金が好適に用いられ第1の低融点金属層3よりも融点の低い第2の低融点金属層4とを備えることにより、低温から溶融を開始させ速溶断性を向上させることができる。
In addition, the fuse element 1 includes Bi, In, or an alloy containing Bi or In while maintaining low resistance by including the first low melting point metal layer 3 in which Sn or an alloy containing Sn as a main component is suitably used. Is suitably used, and the second low melting point metal layer 4 having a melting point lower than that of the first low melting point metal layer 3 is provided, so that melting can be started from a low temperature and the quick fusing property can be improved.
さらに、ヒューズエレメント1は、第1の低融点金属層3と、第1の低融点金属層3よりも融点の低い第2の低融点金属層4との間に高融点金属層2を積層することにより、溶融過程において高融点金属層2の一部が溶解し第1の低融点金属層3と第2の低融点金属層4とが混じると、第1の低融点金属層3の融点が下がり、溶融速度が加速し、速溶断性をさらに向上させることができる。
Further, in the fuse element 1, the refractory metal layer 2 is laminated between the first low melting point metal layer 3 and the second low melting point metal layer 4 having a melting point lower than that of the first low melting point metal layer 3. Thus, when a part of the refractory metal layer 2 is dissolved in the melting process and the first low melting point metal layer 3 and the second low melting point metal layer 4 are mixed, the melting point of the first low melting point metal layer 3 is increased. Decrease, the melting rate is accelerated, and the fast fusing property can be further improved.
また、ヒューズエレメント1は、高融点金属層2、第1の低融点金属層3及び第2の低融点金属層4によって、4層以上積層されていることが好ましい。このとき、ヒューズエレメント1は、図1に示すように、下層から、第1の低融点金属層3、高融点金属層2、第2の低融点金属層4、高融点金属層2の順序で4層積層してもよい。図1に示すヒューズエレメント1は、一方の高融点金属層2が第1、第2の低融点金属層3,4の間に積層されることで、速やかに溶断することができる。
The fuse element 1 is preferably laminated with four or more layers of the high melting point metal layer 2, the first low melting point metal layer 3, and the second low melting point metal layer 4. At this time, as shown in FIG. 1, the fuse element 1 is arranged in the order of the first low melting point metal layer 3, the high melting point metal layer 2, the second low melting point metal layer 4, and the high melting point metal layer 2 from the lower layer. Four layers may be laminated. The fuse element 1 shown in FIG. 1 can be melted quickly by laminating one high melting point metal layer 2 between the first and second low melting point metal layers 3 and 4.
また、ヒューズエレメント1は、最下層の第1の低融点金属層3を、後述するヒューズ素子、保護素子、短絡素子、切替素子の各素子の電極上に接続する接続材料として用いてもよい。すなわち、ヒューズエレメント1は、第1の低融点金属層3によって各素子の電極に接続されるようにしてもよい。
Further, the fuse element 1 may be used as a connection material for connecting the lowermost first low melting point metal layer 3 on the electrodes of the fuse element, the protective element, the short-circuit element, and the switching element described later. That is, the fuse element 1 may be connected to the electrode of each element by the first low melting point metal layer 3.
また、ヒューズエレメント1は、一対の高融点金属層2の間に設けられる内層を第2の低融点金属層4とし、外層を高融点金属層2とすることにより、ヒューズ素子等の各素子が組み込まれた電気系統に異常に高い電圧が瞬間的に印加されるサージへの耐性(耐パルス性)を向上することができる。すなわち、ヒューズエレメント1は、例えば100Aの電流が数msec流れたような場合にまで溶断してはならない。この点、極短時間に流れる大電流は導体の表層を流れることから(表皮効果)、ヒューズエレメント1は、外層として抵抗値の低いAgメッキ等の高融点金属層2が設けられているため、サージによって印加された電流を流しやすく、自己発熱による溶断を防止することができる。したがって、ヒューズエレメント1は、従来のハンダ合金からなるヒューズに比して、大幅にサージに対する耐性を向上させることができる。
Further, the fuse element 1 has the inner layer provided between the pair of high melting point metal layers 2 as the second low melting point metal layer 4 and the outer layer as the high melting point metal layer 2, so that each element such as a fuse element can be formed. Resistance to surge (pulse resistance) in which an abnormally high voltage is instantaneously applied to the incorporated electric system can be improved. In other words, the fuse element 1 should not be blown until, for example, a current of 100 A flows for several milliseconds. In this respect, since a large current flowing in a very short time flows in the surface layer of the conductor (skin effect), the fuse element 1 is provided with a refractory metal layer 2 such as Ag plating having a low resistance value as an outer layer. It is easy to flow the current applied by the surge, and it is possible to prevent fusing due to self-heating. Therefore, the fuse element 1 can greatly improve the resistance to a surge as compared with a fuse made of a conventional solder alloy.
[製造方法]
ヒューズエレメント1は、第1、第2の低融点金属層3,4の表面に高融点金属2をメッキ技術を用いて成膜することにより製造できる。ヒューズエレメント1は、例えば、長尺状のハンダ箔の表面にAgメッキを施すことにより効率よく製造でき、使用時には、サイズに応じて切断することで、容易に用いることができる。 [Production method]
Thefuse element 1 can be manufactured by forming the high melting point metal 2 on the surfaces of the first and second low melting point metal layers 3 and 4 by using a plating technique. The fuse element 1 can be efficiently manufactured by, for example, performing Ag plating on the surface of a long solder foil, and can be easily used by cutting according to the size at the time of use.
ヒューズエレメント1は、第1、第2の低融点金属層3,4の表面に高融点金属2をメッキ技術を用いて成膜することにより製造できる。ヒューズエレメント1は、例えば、長尺状のハンダ箔の表面にAgメッキを施すことにより効率よく製造でき、使用時には、サイズに応じて切断することで、容易に用いることができる。 [Production method]
The
また、ヒューズエレメント1は、第1、第2の低融点金属層3,4を構成する低融点金属箔と高融点金属層2を構成する高融点金属箔とを貼りあわせることにより製造してもよい。ヒューズエレメント1は、例えば、圧延した2枚のCu箔、或いはAg箔の間に、同じく圧延した第2の低融点金属層4を構成するハンダ箔を挟み、さらに一方の高融点金属層2に第1の低融点金属層3を構成するハンダ箔を積層してプレスすることにより製造できる。この場合、低融点金属箔は、高融点金属箔よりも柔らかい材料を選択することが好ましい。これにより、厚みのばらつきを吸収して低融点金属箔と高融点金属箔とを隙間なく密着させることができる。また、低融点金属箔はプレスによって膜厚が薄くなるため、予め厚めにしておくとよい。プレスにより低融点金属箔がヒューズエレメント端面よりはみ出した場合は、切り落として形を整えることが好ましい。
The fuse element 1 may be manufactured by bonding the low melting point metal foils constituting the first and second low melting point metal layers 3 and 4 and the high melting point metal foils constituting the high melting point metal layer 2 together. Good. The fuse element 1 includes, for example, a solder foil constituting the second low-melting point metal layer 4 that is rolled between two rolled Cu foils or Ag foils. It can be manufactured by laminating and pressing the solder foil constituting the first low melting point metal layer 3. In this case, as the low melting point metal foil, it is preferable to select a softer material than the high melting point metal foil. Thereby, the dispersion | variation in thickness can be absorbed and a low melting metal foil and a high melting metal foil can be stuck without gap. Moreover, since the film thickness of the low melting point metal foil is reduced by pressing, it is preferable to make it thick beforehand. When the low-melting-point metal foil protrudes from the end face of the fuse element by pressing, it is preferable to trim off and adjust the shape.
その他、ヒューズエレメント1は、蒸着等の薄膜形成技術や、他の周知の積層技術を用いることによっても、第1、第2の低融点金属層3,4と高融点金属層2とが積層されたヒューズエレメント1を形成することができる。
In addition, the fuse element 1 is formed by laminating the first and second low melting point metal layers 3 and 4 and the refractory metal layer 2 by using a thin film forming technique such as vapor deposition or another known lamination technique. A fuse element 1 can be formed.
なお、ヒューズエレメント1は、一方の高融点金属層2を最外層としたときに、さらに当該最外層の高融点金属層2の表面に図示しない酸化防止膜を形成してもよい。ヒューズエレメント1は、最外層の高融点金属層2がさらに酸化防止膜によって被覆されることにより、例えば高融点金属層2としてCuメッキやCu箔を形成した場合にも、Cuの酸化を防止することができる。したがって、ヒューズエレメント1は、Cuの酸化によって溶断時間が長くなる事態を防止することができ、短時間で溶断することができる。
In the fuse element 1, when one refractory metal layer 2 is the outermost layer, an antioxidant film (not shown) may be formed on the surface of the outermost refractory metal layer 2. The fuse element 1 further prevents the oxidation of Cu even when, for example, Cu plating or Cu foil is formed as the refractory metal layer 2 by coating the outermost refractory metal layer 2 with an antioxidant film. be able to. Therefore, the fuse element 1 can prevent a situation where the fusing time is prolonged due to oxidation of Cu, and can be blown in a short time.
また、ヒューズエレメント1は、高融点金属層2としてCu等の安価だが酸化しやすい金属を用いることができ、Ag等の高価な材料を用いることなく形成することができる。
In addition, the fuse element 1 can be made of an inexpensive but easily oxidized metal such as Cu as the refractory metal layer 2 and can be formed without using an expensive material such as Ag.
高融点金属の酸化防止膜は、第1、第2の低融点金属層3,4と同じ材料を用いることができ、例えばSnを主成分とするPbフリーハンダを用いることができる。また、酸化防止膜は、高融点金属層2の表面に錫メッキを施すことにより形成することができる。その他、酸化防止膜は、Auメッキやプリフラックスによって形成することもできる。
The high melting point metal antioxidant film can be made of the same material as the first and second low melting point metal layers 3 and 4, for example, Pb-free solder containing Sn as a main component. The antioxidant film can be formed by performing tin plating on the surface of the refractory metal layer 2. In addition, the antioxidant film can be formed by Au plating or preflux.
また、本発明が適用されたヒューズエレメントは、図2に示すように、第1の低融点金属層3、高融点金属層2、第2の低融点金属層4、高融点金属層2の順序で積層するとともに、最外層として第1の低融点金属層3を積層させてもよい。図2に示すヒューズエレメント10は、一対の高融点金属層2の間に設けられる内層を第2の低融点金属層4とし、外層を高融点金属層2とし、最外層を第1の低融点金属層3としたものであり、一対の高融点金属層2がいずれも第1、第2の低融点金属層3,4の間に積層される。
Further, as shown in FIG. 2, the fuse element to which the present invention is applied includes the first low melting point metal layer 3, the high melting point metal layer 2, the second low melting point metal layer 4, and the high melting point metal layer 2. And the first low melting point metal layer 3 may be laminated as the outermost layer. In the fuse element 10 shown in FIG. 2, the inner layer provided between the pair of high melting point metal layers 2 is the second low melting point metal layer 4, the outer layer is the high melting point metal layer 2, and the outermost layer is the first low melting point metal layer 2. A metal layer 3 is formed, and a pair of refractory metal layers 2 are laminated between the first and second low melting point metal layers 3 and 4.
また、本発明が適用されたヒューズエレメントは、図3に示すように、第1の低融点金属層3、高融点金属層2、第2の低融点金属層4、高融点金属層2の積層パターンを繰り返すことにより形成してもよい。図3に示すヒューズエレメント20は、当該積層パターンを繰り返すことにより、速溶断性を維持しつつ、ヒューズエレメントの厚み増加による低抵抗化と、リフロー時の変形抑制を図ることができる。
Further, as shown in FIG. 3, the fuse element to which the present invention is applied is a laminate of a first low melting point metal layer 3, a high melting point metal layer 2, a second low melting point metal layer 4, and a high melting point metal layer 2. You may form by repeating a pattern. The fuse element 20 shown in FIG. 3 can reduce the resistance by increasing the thickness of the fuse element and suppress deformation at the time of reflow while maintaining the fast fusing property by repeating the laminated pattern.
すなわち、ヒューズエレメントは、低抵抗化し定格電流を上げるためには、高融点金属層を厚くするか、低融点金属を厚くすることが必要となる。高融点金属層を厚くすると、低抵抗化に加え、リフロー時の変形や溶断を防止でき、リフロー温度等の高温環境に対する耐性を向上させることができるが、一方で速溶断性を損なう。また、低融点金属層を厚くすると溶食が速まり、高温環境に対する耐性を損なってしまう。そこで、ヒューズエレメント20は、当該積層パターンを繰り返すことで、速溶断性を維持しつつ、所望の厚さを確保して低抵抗化による定格の向上を図り、かつ高温環境に対する耐性の向上を実現することができる。なお、ヒューズエレメント20は、当該積層パターンを繰り返すことにより8層積層したものであるが、本発明が適用されたヒューズエレメントは、当該積層パターンを繰り返すことにより8層以上に積層させてもよい。
That is, in order to reduce the resistance of the fuse element and increase the rated current, it is necessary to increase the thickness of the high melting point metal layer or the thickness of the low melting point metal. When the refractory metal layer is thickened, in addition to lowering resistance, deformation and fusing during reflow can be prevented and resistance to high temperature environments such as reflow temperature can be improved, but on the other hand, fast fusing properties are impaired. Further, when the low melting point metal layer is thickened, the corrosion is accelerated and the resistance to a high temperature environment is impaired. Therefore, the fuse element 20 repeats the laminated pattern to maintain a fast fusing property, secure a desired thickness, improve the rating by lowering resistance, and improve resistance to high temperature environments. can do. The fuse element 20 is formed by stacking eight layers by repeating the stacking pattern. However, the fuse element to which the present invention is applied may be stacked by eight or more layers by repeating the stacking pattern.
また、本発明が適用されたヒューズエレメントは、図4に示すように、第1の低融点金属層3、高融点金属層2、第2の低融点金属層4、高融点金属層2の積層パターンを繰り返すとともに、最外層として第1の低融点金属層3を積層させてもよい。図4に示すヒューズエレメント30は、当該積層パターンを繰り返すことにより8層積層した後、最外層として第1の低融点金属層3を積層したものであり、すべての高融点金属層2が第1、第2の低融点金属層3,4の間に積層される。
Further, as shown in FIG. 4, the fuse element to which the present invention is applied is a laminate of a first low melting point metal layer 3, a high melting point metal layer 2, a second low melting point metal layer 4, and a high melting point metal layer 2. While repeating the pattern, the first low melting point metal layer 3 may be laminated as the outermost layer. The fuse element 30 shown in FIG. 4 is obtained by laminating eight layers by repeating the laminating pattern, and then laminating the first low melting point metal layer 3 as the outermost layer. The second low melting point metal layers 3 and 4 are laminated.
また、本発明が適用されたヒューズエレメントは、図5に示すように、下層から、第2の低融点金属層4、高融点金属層2、第1の低融点金属層3、高融点金属層2の順序で4層積層してもよい。図5に示すヒューズエレメント40も、上述したヒューズエレメント1と同様に一方の高融点金属層2が第1、第2の低融点金属層3,4の間に積層されることで、速やかに溶断することができる。
Further, as shown in FIG. 5, the fuse element to which the present invention is applied includes a second low melting point metal layer 4, a high melting point metal layer 2, a first low melting point metal layer 3, and a high melting point metal layer from the lower layer. Four layers may be laminated in the order of 2. As with the fuse element 1 described above, the fuse element 40 shown in FIG. 5 can be quickly blown by laminating one high melting point metal layer 2 between the first and second low melting point metal layers 3 and 4. can do.
また、ヒューズエレメント40は、最下層の第2の低融点金属層4を、後述するヒューズ素子、保護素子、短絡素子、切替素子の各素子の電極上に接続する接続材料として用いてもよい。すなわち、ヒューズエレメント40は、第2の低融点金属層4によって各素子の電極に接続されるようにしてもよい。
Further, the fuse element 40 may be used as a connection material for connecting the lowermost second low melting point metal layer 4 on the electrodes of the fuse element, the protection element, the short-circuit element, and the switching element described later. That is, the fuse element 40 may be connected to the electrode of each element by the second low melting point metal layer 4.
また、本発明が適用されたヒューズエレメントは、図6に示すように、第2の低融点金属層4、高融点金属層2、第1の低融点金属層3、高融点金属層2の順序で積層するとともに、最外層として第2の低融点金属層4を積層させてもよい。図6に示すヒューズエレメント50は、一対の高融点金属層2の間に設けられる内層を第1の低融点金属層3とし、外層を高融点金属層2とし、最外層を第2の低融点金属層4としたものであり、一対の高融点金属層2がいずれも第1、第2の低融点金属層3,4の間に積層される。
Further, as shown in FIG. 6, the fuse element to which the present invention is applied includes a second low melting point metal layer 4, a high melting point metal layer 2, a first low melting point metal layer 3, and a high melting point metal layer 2. And the second low melting point metal layer 4 may be laminated as the outermost layer. The fuse element 50 shown in FIG. 6 has an inner layer provided between the pair of high melting point metal layers 2 as the first low melting point metal layer 3, the outer layer as the high melting point metal layer 2, and the outermost layer as the second low melting point metal layer 2. A metal layer 4 is formed, and a pair of high melting point metal layers 2 are laminated between the first and second low melting point metal layers 3 and 4.
また、本発明が適用されたヒューズエレメントは、図7に示すように、第2の低融点金属層4、高融点金属層2、第1の低融点金属層3、高融点金属層2の積層パターンを繰り返すことにより形成してもよい。図7に示すヒューズエレメント60は、当該積層パターンを繰り返すことにより、上述したヒューズエレメント20,30と同様に、速溶断性を維持しつつ、ヒューズエレメントの厚み増加による低抵抗化と、剛性増加によるリフロー時の変形抑制を図ることができる。なお、ヒューズエレメント60は、当該積層パターンを繰り返すことにより8層積層したものであるが、本発明が適用されたヒューズエレメントは、当該積層パターンを繰り返すことにより8層以上に積層させてもよい。
Further, as shown in FIG. 7, the fuse element to which the present invention is applied is a laminate of a second low melting point metal layer 4, a high melting point metal layer 2, a first low melting point metal layer 3, and a high melting point metal layer 2. You may form by repeating a pattern. The fuse element 60 shown in FIG. 7 is formed by repeating the laminated pattern, thereby maintaining the fast fusing property as well as the above-described fuse elements 20 and 30, while reducing the resistance by increasing the thickness of the fuse element and increasing the rigidity. It is possible to suppress deformation during reflow. Note that the fuse element 60 is formed by stacking eight layers by repeating the stack pattern, but the fuse element to which the present invention is applied may be stacked by eight layers or more by repeating the stack pattern.
また、本発明が適用されたヒューズエレメントは、図8に示すように、第2の低融点金属層4、高融点金属層2、第1の低融点金属層3、高融点金属層2の積層パターンを繰り返すとともに、最外層として第2の低融点金属層4を積層させてもよい。図8に示すヒューズエレメント70は、当該積層パターンを繰り返すことにより8層積層した後、最外層として第2の低融点金属層4を積層したものであり、すべての高融点金属層2が第1、第2の低融点金属層3,4の間に積層される。
Further, as shown in FIG. 8, the fuse element to which the present invention is applied is a laminate of a second low melting point metal layer 4, a high melting point metal layer 2, a first low melting point metal layer 3, and a high melting point metal layer 2. While repeating the pattern, the second low melting point metal layer 4 may be laminated as the outermost layer. The fuse element 70 shown in FIG. 8 is obtained by laminating eight layers by repeating the lamination pattern, and then laminating the second low melting point metal layer 4 as the outermost layer. The second low melting point metal layers 3 and 4 are laminated.
なお、上述したように、ヒューズエレメント1,10,20,30,40,50,60,70は、第2の低融点金属層を構成する金属としてBi、In又はBi若しくはInを含む合金が好適に用いられるが、InはSnより抵抗率が低い反面、レアメタルであり高価な材料であることから、製造コスト、材料の入手の容易性等を含め総合的に判断すると、図1~4に示すヒューズエレメント1,10,20,30よりも、図5~8に示すヒューズエレメント40,50,60,70の構成が好ましいといえる。
As described above, the fuse elements 1, 10, 20, 30, 40, 50, 60, and 70 are preferably Bi, In, or an alloy containing Bi or In as a metal constituting the second low melting point metal layer. Although In has a lower resistivity than Sn, it is a rare metal and an expensive material. Therefore, if comprehensive judgment is made including manufacturing costs, availability of materials, etc., In is shown in FIGS. The fuse elements 40, 50, 60, and 70 shown in FIGS. 5 to 8 are preferable to the fuse elements 1, 10, 20, and 30. FIG.
また、上述したヒューズエレメント1,10,20,30,40,50,60,70は、第1の低融点金属層3の体積を高融点金属層2の体積よりも大きくすることが好ましい。ヒューズエレメント1,10,20,30,40,50,60,70は、第1の低融点金属層3の体積を多くすることにより、効果的に高融点金属層2の浸食による短時間での溶断を行うことができる。同様に、ヒューズエレメント1,10,20,30,40,50,60,70は、第2の低融点金属層4の体積を高融点金属層2の体積よりも大きくすることが好ましい。
Further, in the above-described fuse elements 1, 10, 20, 30, 40, 50, 60, 70, the volume of the first low melting point metal layer 3 is preferably larger than the volume of the refractory metal layer 2. The fuse elements 1, 10, 20, 30, 40, 50, 60, 70 can be effectively shortened by erosion of the refractory metal layer 2 by increasing the volume of the first refractory metal layer 3. Fusing can be performed. Similarly, in the fuse elements 1, 10, 20, 30, 40, 50, 60, 70, the volume of the second low melting point metal layer 4 is preferably larger than the volume of the refractory metal layer 2.
次いで、上述したヒューズエレメント1,10,20,30,40,50,60,70を用いたヒューズ素子、保護素子、短絡素子、切替素子について説明する。なお、以下の説明では、ヒューズエレメント1を用いた各素子について説明するが、ヒューズエレメント10,20,30,40,50,60,70を用いてもよいのは勿論である。
Next, fuse elements, protective elements, short-circuit elements, and switching elements using the above-described fuse elements 1, 10, 20, 30, 40, 50, 60, 70 will be described. In the following description, each element using the fuse element 1 will be described. Of course, the fuse elements 10, 20, 30, 40, 50, 60, 70 may be used.
[ヒューズ素子]
本発明が適用されたヒューズ素子80は、図9に示すように、絶縁基板81と、絶縁基板81に設けられた第1の電極82及び第2の電極83と、第1及び第2の電極82,83間にわたって実装され、定格を超える電流が通電することによって自己発熱により溶断し、第1の電極82と第2の電極83との間の電流経路を遮断するヒューズエレメント1とを備える。 [Fuse element]
As shown in FIG. 9, afuse element 80 to which the present invention is applied includes an insulating substrate 81, a first electrode 82 and a second electrode 83 provided on the insulating substrate 81, and a first electrode and a second electrode. The fuse element 1 is mounted between the first electrode 82 and the second electrode 83. The fuse element 1 is mounted between the first electrode 82 and the second electrode 83.
本発明が適用されたヒューズ素子80は、図9に示すように、絶縁基板81と、絶縁基板81に設けられた第1の電極82及び第2の電極83と、第1及び第2の電極82,83間にわたって実装され、定格を超える電流が通電することによって自己発熱により溶断し、第1の電極82と第2の電極83との間の電流経路を遮断するヒューズエレメント1とを備える。 [Fuse element]
As shown in FIG. 9, a
絶縁基板81は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって方形状に形成される。その他、絶縁基板81は、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよい。
The insulating substrate 81 is formed in a square shape by an insulating member such as alumina, glass ceramics, mullite, zirconia, for example. In addition, the insulating substrate 81 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
絶縁基板81の相対向する両端部には、第1、第2の電極82,83が形成されている。第1、第2の電極82,83は、それぞれ、AgやCu配線等の導電パターンによって形成され、表面に適宜、酸化防止対策としてSnメッキ、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の保護層86が設けられている。また、第1、第2の電極82,83は、絶縁基板81の表面81aより、キャスタレーションを介して裏面81bに形成された第1、第2の外部接続電極82a,83aと連続されている。ヒューズ素子80は、裏面81bに形成された第1、第2の外部接続電極82a,83aを介して、回路基板の電流経路上に実装される。
First and second electrodes 82 and 83 are formed on opposite ends of the insulating substrate 81. The first and second electrodes 82 and 83 are each formed by a conductive pattern such as Ag or Cu wiring, and Sn plating, Ni / Au plating, Ni / Pd plating, Ni / Pd are appropriately applied to the surface as anti-oxidation measures. A protective layer 86 such as / Au plating is provided. The first and second electrodes 82 and 83 are continued from the front surface 81a of the insulating substrate 81 to the first and second external connection electrodes 82a and 83a formed on the back surface 81b through castellation. . The fuse element 80 is mounted on the current path of the circuit board via the first and second external connection electrodes 82a and 83a formed on the back surface 81b.
第1及び第2の電極82,83は、ハンダ等の接続材料88を介してヒューズエレメント1が接続されている。
The fuse element 1 is connected to the first and second electrodes 82 and 83 via a connecting material 88 such as solder.
上述したように、ヒューズエレメント1は、高融点金属層2を備えることにより高温環境に対する耐性が向上されているため実装性に優れ、接続材料88を介して第1及び第2の電極82,83間に搭載された後、リフローはんだ付け等により容易に接続することができる。なお、ヒューズエレメント1は、最下層に設けられた第1の低融点金属層3又は第2の低融点金属層4を接続材料として用いて、第1、第2の電極82,83に接続してもよい。
As described above, since the fuse element 1 includes the refractory metal layer 2 and has improved resistance to a high temperature environment, the fuse element 1 is excellent in mountability and has the first and second electrodes 82 and 83 via the connection material 88. After being mounted in between, it can be easily connected by reflow soldering or the like. The fuse element 1 is connected to the first and second electrodes 82 and 83 using the first low melting point metal layer 3 or the second low melting point metal layer 4 provided in the lowermost layer as a connection material. May be.
[実装状態]
次いで、ヒューズエレメント1の実装状態について説明する。ヒューズ素子80は、図9に示すように、ヒューズエレメント1が、絶縁基板81の表面81aから離間して実装されている。 [Mounting status]
Next, the mounting state of thefuse element 1 will be described. As shown in FIG. 9, the fuse element 80 is mounted with the fuse element 1 spaced from the surface 81 a of the insulating substrate 81.
次いで、ヒューズエレメント1の実装状態について説明する。ヒューズ素子80は、図9に示すように、ヒューズエレメント1が、絶縁基板81の表面81aから離間して実装されている。 [Mounting status]
Next, the mounting state of the
一方、ヒューズエレメントを絶縁基板の表面へ印刷により形成するなど、ヒューズエレメントが絶縁基板の表面と接するヒューズ素子においては、第1、第2の電極間においてヒューズエレメントの溶融金属が絶縁基板上に付着しリークが発生する。例えばAgペーストをセラミック基板へ印刷することによりヒューズエレメントを形成したヒューズ素子においては、セラミックと銀が焼結されて食い込んでしまい、第1、第2の電極間に残留してしまう。そのため、当該ヒューズエレメントの溶融残渣によって第1、第2の電極間にリーク電流が流れ、電流経路を完全には遮断することができない。
On the other hand, in the fuse element in which the fuse element is in contact with the surface of the insulating substrate, such as by forming the fuse element on the surface of the insulating substrate, the molten metal of the fuse element adheres on the insulating substrate between the first and second electrodes. Leaks. For example, in a fuse element in which a fuse element is formed by printing an Ag paste on a ceramic substrate, the ceramic and silver are sintered and bite in and remain between the first and second electrodes. Therefore, a leakage current flows between the first and second electrodes due to the molten residue of the fuse element, and the current path cannot be completely interrupted.
この点、ヒューズ素子80においては、絶縁基板81とは別に単体でヒューズエレメント1を形成し、かつ絶縁基板81の表面81aから離間して実装させている。したがって、ヒューズ素子80は、ヒューズエレメント1の溶融時にも溶融金属が絶縁基板81へ食い込むこともなく第1、第2の電極82,83上に引き込まれ、確実に第1、第2の電極82,83間を絶縁することができる。
In this respect, in the fuse element 80, the fuse element 1 is formed separately from the insulating substrate 81 and mounted away from the surface 81 a of the insulating substrate 81. Accordingly, the fuse element 80 is drawn onto the first and second electrodes 82 and 83 without the molten metal biting into the insulating substrate 81 even when the fuse element 1 is melted, and the first and second electrodes 82 are surely inserted. , 83 can be insulated.
[フラックスシート]
また、ヒューズ素子80は、高融点金属層2又は第1、第2の低融点金属層3,4の酸化防止と、溶断時の酸化物除去及びハンダの流動性向上のために、ヒューズエレメント1の表面や裏面にフラックスをコーティングしてもよい。また、図9に示すように、ヒューズエレメント1上の最外層の全面にフラックスシート87を配置してもよい。フラックスシート87は、流動体又は半流動体のフラックスをシート状の支持体に含浸、保持させたものであり、例えば不織布やメッシュ状の生地にフラックスを含浸させたものである。 [Flux sheet]
In addition, thefuse element 80 includes a fuse element 1 for preventing oxidation of the refractory metal layer 2 or the first and second low melting point metal layers 3 and 4, removing oxide at the time of fusing, and improving solder fluidity. A flux may be coated on the front surface or the back surface. Further, as shown in FIG. 9, a flux sheet 87 may be disposed on the entire outermost layer on the fuse element 1. The flux sheet 87 is obtained by impregnating and holding a fluid or semi-fluid flux in a sheet-like support. For example, a non-woven fabric or a mesh-like cloth is impregnated with the flux.
また、ヒューズ素子80は、高融点金属層2又は第1、第2の低融点金属層3,4の酸化防止と、溶断時の酸化物除去及びハンダの流動性向上のために、ヒューズエレメント1の表面や裏面にフラックスをコーティングしてもよい。また、図9に示すように、ヒューズエレメント1上の最外層の全面にフラックスシート87を配置してもよい。フラックスシート87は、流動体又は半流動体のフラックスをシート状の支持体に含浸、保持させたものであり、例えば不織布やメッシュ状の生地にフラックスを含浸させたものである。 [Flux sheet]
In addition, the
図10に示すように、フラックスシート87は、ヒューズエレメント1の表面積よりも広い面積を有することが好ましい。これにより、ヒューズエレメント1は、フラックスシート87によって完全に被覆され、溶融により体積が膨張した場合にも、確実にフラックスによる酸化物除去、及び濡れ性の向上による速溶断を実現することができる。
As shown in FIG. 10, the flux sheet 87 preferably has an area larger than the surface area of the fuse element 1. Thereby, even when the fuse element 1 is completely covered with the flux sheet 87 and the volume expands due to melting, the oxide element can be reliably removed by the flux and the quick fusing by improving the wettability can be realized.
フラックスシート87を配置することにより、ヒューズエレメント1の実装時やヒューズ素子80の実装時における熱処理工程においてもフラックスをヒューズエレメント1の全面にわたって保持することができ、ヒューズ素子80の実使用時において、第1、第2の低融点金属層3,4(例えばハンダ)の濡れ性を高めるとともに、第1、第2の低融点金属が溶解している間の酸化物を除去し、高融点金属(例えばAg)への浸食作用を用いて速溶断性を向上させることができる。
By disposing the flux sheet 87, the flux can be held over the entire surface of the fuse element 1 even in the heat treatment process when the fuse element 1 is mounted or when the fuse element 80 is mounted. While improving the wettability of the first and second low melting point metal layers 3 and 4 (for example, solder), the oxide while the first and second low melting point metals are dissolved is removed, and the high melting point metal ( For example, the fast fusing property can be improved by using the erosion action on Ag).
また、フラックスシート87を配置することにより、最外層の高融点金属層2の表面に、Snを主成分とするPbフリーハンダ等の酸化防止膜を形成した場合にも、当該酸化防止膜の酸化物を除去することができ、高融点金属層2の酸化を効果的に防止し、速溶断性を維持、向上することができる。
Further, even when an anti-oxidation film such as Pb-free solder mainly composed of Sn is formed on the surface of the outermost refractory metal layer 2 by disposing the flux sheet 87, the oxidation of the anti-oxidation film is also performed. The material can be removed, the refractory metal layer 2 can be effectively prevented from being oxidized, and the fast fusing property can be maintained and improved.
なお、ヒューズ素子80は、フラックスシート87に替えて、図11に示すように、ヒューズエレメント1の最外層にフラックス85aを塗布した後、フラックス85aの上に不織布やメッシュ状の生地を配置し、フラックスを含浸させてもよい。また、ヒューズ素子80は、図12に示すように、フラックスシートに替えて、ヒューズエレメント1の最外層の全面に、繊維状物が混合されたフラックス85bを塗布してもよい。フラックス85bは繊維状物が混合されることにより粘性が高められ、高温環境下においても流動しにくく、ヒューズエレメント1の全面にわたって溶断時の酸化物除去及び濡れ性の向上を図ることができる。なお、フラックス85bに混合させる繊維状物としては、例えば不織布繊維、ガラス繊維等、絶縁性、耐熱性を備えた繊維が好適に用いられる。
The fuse element 80 is replaced with the flux sheet 87, as shown in FIG. 11, after the flux 85a is applied to the outermost layer of the fuse element 1, a non-woven fabric or a mesh-like fabric is disposed on the flux 85a, A flux may be impregnated. In addition, as shown in FIG. 12, the fuse element 80 may apply a flux 85 b in which a fibrous material is mixed to the entire outermost layer of the fuse element 1 instead of the flux sheet. Viscosity of the flux 85b is increased by mixing the fibrous material, and it is difficult for the flux 85b to flow even in a high-temperature environment. Thus, the oxide 85 can be removed and the wettability can be improved over the entire surface of the fuse element 1. In addition, as the fibrous material to be mixed with the flux 85b, for example, fibers having insulating properties and heat resistance, such as nonwoven fabric fibers and glass fibers, are preferably used.
なおヒューズエレメント1は、上述したように第1、第2の電極82,83上にリフローハンダ付けによって接続することができるが、その他にも、ヒューズエレメント1は、超音波溶接によって第1、第2の電極82,83上に接続してもよい。
The fuse element 1 can be connected to the first and second electrodes 82 and 83 by reflow soldering as described above. In addition, the fuse element 1 can be connected to the first and second electrodes by ultrasonic welding. You may connect on the 2nd electrode 82,83.
[カバー部材]
また、ヒューズ素子80は、ヒューズエレメント1が設けられた絶縁基板81の表面81a上に、内部を保護するとともに溶融したヒューズエレメント1の飛散を防止するカバー部材89が取り付けられている。カバー部材89は、各種エンジニアリングプラスチック、セラミックス等の絶縁性を有する部材により形成することができ、絶縁性の接着剤84を介して接続されている。ヒューズ素子80は、ヒューズエレメント1がカバー部材89によって覆われるため、過電流によるアーク放電の発生を伴う自己発熱遮断時においても、溶融金属がカバー部材89によって捕捉され、周囲への飛散を防止できる。 [Cover member]
In thefuse element 80, a cover member 89 that protects the inside and prevents the molten fuse element 1 from scattering is attached to the surface 81a of the insulating substrate 81 on which the fuse element 1 is provided. The cover member 89 can be formed of an insulating member such as various engineering plastics and ceramics, and is connected via an insulating adhesive 84. In the fuse element 80, since the fuse element 1 is covered by the cover member 89, the molten metal is captured by the cover member 89 and can be prevented from being scattered to the surroundings even when the self-heating is interrupted due to the occurrence of arc discharge due to overcurrent. .
また、ヒューズ素子80は、ヒューズエレメント1が設けられた絶縁基板81の表面81a上に、内部を保護するとともに溶融したヒューズエレメント1の飛散を防止するカバー部材89が取り付けられている。カバー部材89は、各種エンジニアリングプラスチック、セラミックス等の絶縁性を有する部材により形成することができ、絶縁性の接着剤84を介して接続されている。ヒューズ素子80は、ヒューズエレメント1がカバー部材89によって覆われるため、過電流によるアーク放電の発生を伴う自己発熱遮断時においても、溶融金属がカバー部材89によって捕捉され、周囲への飛散を防止できる。 [Cover member]
In the
また、カバー部材89は、天面89aから絶縁基板81に向かって、少なくともフラックスシート87の側面まで延在する突起部89bを有している。カバー部材89は、突起部89bにより、フラックスシート87の側面が移動規制を受けるため、フラックスシート87の位置ずれを防ぐことが可能となる。すなわち、突起部89bは、フラックスシート87の大きさよりも所定のクリアランスを保持した大きさで、フラックスシート87を保持すべき位置に対応して設けられる。なお、突起部89bは、フラックスシート87の側面を周回して覆う壁面としてもよいし、部分的に突起するものであってもよい。
The cover member 89 has a protrusion 89b extending from the top surface 89a toward the insulating substrate 81 at least to the side surface of the flux sheet 87. Since the side surface of the flux sheet 87 is subject to movement restriction by the projection 89b, the cover member 89 can prevent the positional deviation of the flux sheet 87. In other words, the protrusion 89b has a size that holds a predetermined clearance rather than the size of the flux sheet 87, and is provided corresponding to the position where the flux sheet 87 should be held. In addition, the protrusion part 89b is good also as a wall surface which wraps around the side surface of the flux sheet 87, and may protrude partially.
また、カバー部材89は、フラックスシート87と天面89aの間に所定の間隔をあけた構成とされている。これは、ヒューズエレメント1が溶融した際に、溶融したヒューズエレメント1がフラックスシート87を押し上げるためのクリアランスが必要だからである。
Further, the cover member 89 is configured to have a predetermined interval between the flux sheet 87 and the top surface 89a. This is because when the fuse element 1 is melted, a clearance is required for the melted fuse element 1 to push up the flux sheet 87.
従って、カバー部材89は、カバー部材89の内部空間の高さ(天面89aまでの高さ)は、絶縁基板81の表面81a上の溶融したヒューズエレメント1の高さと、フラックスシート87の厚さの和よりも大きくなるように構成されている。
Therefore, the cover member 89 has a height of the internal space of the cover member 89 (height to the top surface 89a) that is the height of the melted fuse element 1 on the surface 81a of the insulating substrate 81 and the thickness of the flux sheet 87. It is comprised so that it may become larger than the sum of.
[回路構成]
このようなヒューズ素子80は、図13(A)に示す回路構成を有する。ヒューズ素子80は、第1、第2の外部接続電極82a,83aを介して外部回路に実装されることにより、当該外部回路の電流経路上に組み込まれる。ヒューズ素子80は、ヒューズエレメント1に所定の定格電流が流れている間は、自己発熱によっても溶断することがない。そして、ヒューズ素子80は、定格を超える過電流が通電するとヒューズエレメント1が自己発熱によって溶断し、第1、第2の電極82,83間を遮断することにより、当該外部回路の電流経路を遮断する(図13(B))。 [Circuit configuration]
Such afuse element 80 has a circuit configuration shown in FIG. The fuse element 80 is incorporated in the current path of the external circuit by being mounted on the external circuit via the first and second external connection electrodes 82a and 83a. The fuse element 80 is not melted by self-heating while a predetermined rated current flows through the fuse element 1. The fuse element 80 cuts off the current path of the external circuit by cutting off the first and second electrodes 82 and 83 by fusing the fuse element 1 by self-heating when an overcurrent exceeding the rating is energized. (FIG. 13B).
このようなヒューズ素子80は、図13(A)に示す回路構成を有する。ヒューズ素子80は、第1、第2の外部接続電極82a,83aを介して外部回路に実装されることにより、当該外部回路の電流経路上に組み込まれる。ヒューズ素子80は、ヒューズエレメント1に所定の定格電流が流れている間は、自己発熱によっても溶断することがない。そして、ヒューズ素子80は、定格を超える過電流が通電するとヒューズエレメント1が自己発熱によって溶断し、第1、第2の電極82,83間を遮断することにより、当該外部回路の電流経路を遮断する(図13(B))。 [Circuit configuration]
Such a
このとき、ヒューズエレメント1は、上述したように、高融点金属層2よりも融点の低い第1の低融点金属層3及び第1の低融点金属層3よりも融点の低い第2の低融点金属層4が積層されているため、過電流による自己発熱により、第2の低融点金属層4の融点から溶融を開始し、高融点金属層2を浸食し始める。したがって、ヒューズエレメント1は、第1、第2の低融点金属層3,4による高融点金属層2の浸食作用を利用することにより、高融点金属層2が自身の融点よりも低い温度で溶融され、速やかに溶断することができる。
At this time, as described above, the fuse element 1 includes the first low melting point metal layer 3 having a melting point lower than that of the refractory metal layer 2 and the second low melting point having a melting point lower than that of the first low melting point metal layer 3. Since the metal layer 4 is laminated, melting starts from the melting point of the second low melting point metal layer 4 due to self-heating due to overcurrent, and the refractory metal layer 2 starts to erode. Therefore, the fuse element 1 is melted at a temperature lower than its melting point by utilizing the erosion action of the refractory metal layer 2 by the first and second refractory metal layers 3 and 4. And can be melted quickly.
加えて、図14に示すように、ヒューズエレメント1の溶融金属は、第1及び第2の電極82,83の物理的な引き込み作用により左右に分断されることから、速やかに、かつ確実に、第1及び第2の電極82,83間の電流経路を遮断することができる。
In addition, as shown in FIG. 14, the molten metal of the fuse element 1 is divided into left and right by the physical pulling action of the first and second electrodes 82 and 83, so that it can be performed quickly and reliably. The current path between the first and second electrodes 82 and 83 can be cut off.
[保護素子]
次いで、ヒューズエレメント1を用いた保護素子について説明する。本発明が適用された保護素子90は、図15(A)(B)に示すように、絶縁基板91と、絶縁基板91に積層され、絶縁部材92に覆われた発熱体93と、絶縁基板91の両端に形成された第1の電極94及び第2の電極95と、絶縁部材91上に発熱体93と重畳するように積層され、発熱体93に電気的に接続された発熱体引出電極96と、両端が第1、第2の電極94,95にそれぞれ接続され、中央部が発熱体引出電極96に接続されたヒューズエレメント1とを備える。そして、保護素子90は、絶縁基板91上に内部を保護するカバー部材97が取り付けられている。 [Protective element]
Next, a protection element using thefuse element 1 will be described. As shown in FIGS. 15A and 15B, a protection element 90 to which the present invention is applied includes an insulating substrate 91, a heating element 93 laminated on the insulating substrate 91 and covered with an insulating member 92, and an insulating substrate. The first electrode 94 and the second electrode 95 formed at both ends of the 91, and a heating element extraction electrode laminated on the insulating member 91 so as to overlap the heating element 93 and electrically connected to the heating element 93 96 and a fuse element 1 having both ends connected to the first and second electrodes 94 and 95 and the center connected to the heating element extraction electrode 96, respectively. The protective element 90 is provided with a cover member 97 for protecting the inside on the insulating substrate 91.
次いで、ヒューズエレメント1を用いた保護素子について説明する。本発明が適用された保護素子90は、図15(A)(B)に示すように、絶縁基板91と、絶縁基板91に積層され、絶縁部材92に覆われた発熱体93と、絶縁基板91の両端に形成された第1の電極94及び第2の電極95と、絶縁部材91上に発熱体93と重畳するように積層され、発熱体93に電気的に接続された発熱体引出電極96と、両端が第1、第2の電極94,95にそれぞれ接続され、中央部が発熱体引出電極96に接続されたヒューズエレメント1とを備える。そして、保護素子90は、絶縁基板91上に内部を保護するカバー部材97が取り付けられている。 [Protective element]
Next, a protection element using the
絶縁基板91は、上記絶縁基板81と同様に、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって方形状に形成される。その他、絶縁基板91は、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよい。
The insulating substrate 91 is formed in a rectangular shape by an insulating member such as alumina, glass ceramics, mullite, zirconia, and the like, similarly to the insulating substrate 81. In addition, the insulating substrate 91 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
絶縁基板91の相対向する両端部には、第1、第2の電極94,95が形成されている。第1、第2の電極94,95は、それぞれ、AgやCu配線等の導電パターンによって形成されている。また、第1、第2の電極94,95は、絶縁基板91の表面91aより、キャスタレーションを介して裏面91bに形成された第1、第2の外部接続電極94a,95aと連続されている。保護素子90は、裏面91bに形成された第1、第2の外部接続電極94a,95aが保護素子90が実装される回路基板に設けられた接続電極に接続されることにより、回路基板上に形成された電流経路の一部に組み込まれる。
First and second electrodes 94 and 95 are formed on opposite ends of the insulating substrate 91. The first and second electrodes 94 and 95 are each formed of a conductive pattern such as Ag or Cu wiring. The first and second electrodes 94 and 95 are continued from the front surface 91a of the insulating substrate 91 to the first and second external connection electrodes 94a and 95a formed on the back surface 91b through castellation. . The protection element 90 is formed on the circuit board by connecting the first and second external connection electrodes 94a and 95a formed on the back surface 91b to connection electrodes provided on the circuit board on which the protection element 90 is mounted. It is incorporated into a part of the formed current path.
発熱体93は、通電すると発熱する導電性を有する部材であって、たとえばニクロム、W、Mo、Ru等又はこれらを含む材料からなる。発熱体93は、これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合してペースト状にしたものを、絶縁基板91上にスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成することができる。
The heating element 93 is a conductive member that generates heat when energized, and is made of, for example, nichrome, W, Mo, Ru, or a material containing these. The heating element 93 is a paste obtained by mixing powders of these alloys, compositions, or compounds with a resin binder or the like, and forming a pattern on the insulating substrate 91 using a screen printing technique, followed by firing. Etc. can be formed.
また、保護素子90は、発熱体93が絶縁部材92によって被覆され、絶縁部材92を介して発熱体93と対向するように発熱体引出電極96が形成される。発熱体引出電極96はヒューズエレメント1が接続され、これにより発熱体93は、絶縁部材92及び発熱体引出電極96を介してヒューズエレメント1と重畳される。絶縁部材92は、発熱体93の保護及び絶縁を図るとともに、発熱体93の熱を効率よくヒューズエレメント1へ伝えるために設けられ、例えばガラス層からなる。
Further, in the protection element 90, the heating element 93 is covered with the insulating member 92, and the heating element extraction electrode 96 is formed so as to face the heating element 93 through the insulating member 92. The heating element lead electrode 96 is connected to the fuse element 1, whereby the heating element 93 is superimposed on the fuse element 1 via the insulating member 92 and the heating element lead electrode 96. The insulating member 92 is provided to protect and insulate the heating element 93 and to efficiently transmit the heat of the heating element 93 to the fuse element 1, and is made of, for example, a glass layer.
なお、発熱体93は、絶縁基板91に積層された絶縁部材92の内部に形成してもよい。また、発熱体93は、第1、第2の電極94,95が形成された絶縁基板91の表面91aと反対側の裏面91bに形成してもよく、あるいは、絶縁基板91の表面91aに第1、第2の電極94,95と隣接して形成してもよい。また、発熱体93は、絶縁基板91の内部に形成してもよい。
The heating element 93 may be formed inside the insulating member 92 stacked on the insulating substrate 91. Further, the heating element 93 may be formed on the back surface 91b opposite to the surface 91a of the insulating substrate 91 on which the first and second electrodes 94 and 95 are formed, or the heating element 93 may be formed on the surface 91a of the insulating substrate 91. It may be formed adjacent to the first and second electrodes 94 and 95. Further, the heating element 93 may be formed inside the insulating substrate 91.
また、発熱体93は、一端が発熱体引出電極96と接続され、他端が発熱体電極99と接続されている。発熱体引出電極96は、絶縁基板91の表面91a上に形成されるとともに発熱体93と接続された下層部96aと、発熱体93と対向して絶縁部材92上に積層されるとともにヒューズエレメント1と接続される上層部96bとを有する。これにより、発熱体93は、発熱体引出電極96を介してヒューズエレメント1と電気的に接続されている。なお、発熱体引出電極96は、絶縁部材92を介して発熱体93に対向配置されることにより、ヒューズエレメント1を溶融させるとともに、溶融導体を凝集しやすくすることができる。
The heating element 93 has one end connected to the heating element extraction electrode 96 and the other end connected to the heating element electrode 99. The heating element extraction electrode 96 is formed on the surface 91 a of the insulating substrate 91 and is laminated on the insulating member 92 so as to face the heating element 93 and is connected to the heating element 93, and the fuse element 1. And an upper layer portion 96b connected to each other. As a result, the heating element 93 is electrically connected to the fuse element 1 via the heating element extraction electrode 96. The heating element extraction electrode 96 is disposed opposite to the heating element 93 via the insulating member 92, so that the fuse element 1 can be melted and the molten conductor can be easily aggregated.
また、発熱体電極99は、絶縁基板91の表面91a上に形成され、キャスタレーションを介して絶縁基板91の裏面91bに形成された発熱体給電電極99aと連続されている。
Further, the heating element electrode 99 is formed on the front surface 91a of the insulating substrate 91, and is continuous with the heating element feeding electrode 99a formed on the back surface 91b of the insulating substrate 91 through castellation.
保護素子90は、第1の電極94から発熱体引出電極96を介して第2の電極95に跨ってヒューズエレメント1が接続されている。ヒューズエレメント1は、ハンダ等の接続材料100を介して第1、第2の電極94,95及び発熱体引出電極96上に接続される。
The protection element 90 is connected to the fuse element 1 across the second electrode 95 from the first electrode 94 via the heating element extraction electrode 96. The fuse element 1 is connected to the first and second electrodes 94 and 95 and the heating element extraction electrode 96 through a connection material 100 such as solder.
上述したように、ヒューズエレメント1は、高融点金属層2を備えることにより高温環境に対する耐性が向上されているため実装性に優れ、接続材料100を介して第1、第2の電極94,95及び発熱体引出電極96上に搭載された後、リフローはんだ付け等により容易に接続することができる。なお、ヒューズエレメント1は、最下層に設けられた第1の低融点金属層3又は第2の低融点金属層4を接続材料として用いて、第1、第2の電極94,95及び発熱体引出電極96に接続してもよい。
As described above, since the fuse element 1 includes the refractory metal layer 2 and has improved resistance to a high temperature environment, the fuse element 1 is excellent in mountability, and the first and second electrodes 94 and 95 are connected via the connection material 100. And after mounting on the heating element lead-out electrode 96, it can be easily connected by reflow soldering or the like. The fuse element 1 uses the first low melting point metal layer 3 or the second low melting point metal layer 4 provided as the lowermost layer as a connection material, and the first and second electrodes 94 and 95 and the heating element. It may be connected to the extraction electrode 96.
[フラックスシート]
また、保護素子90は、高融点金属層2又は第1、第2の低融点金属層3,4の酸化防止と、溶断時の酸化物除去及びハンダの流動性向上のために、ヒューズエレメント1の表面や裏面にフラックスをコーティングしてもよい。また、図15に示すように、ヒューズエレメント1上の最外層の全面にフラックスシート101を配置してもよい。フラックスシート101は、上記フラックスシート87と同様に、流動体又は半流動体のフラックスをシート状の支持体に含浸、保持させたものであり、例えば不織布やメッシュ状の生地にフラックスを含浸させたものである。 [Flux sheet]
Further, theprotective element 90 includes a fuse element 1 for preventing oxidation of the high melting point metal layer 2 or the first and second low melting point metal layers 3, 4, removing oxide during fusing and improving solder fluidity. A flux may be coated on the front surface or the back surface. Further, as shown in FIG. 15, a flux sheet 101 may be disposed on the entire outermost layer on the fuse element 1. Similar to the flux sheet 87, the flux sheet 101 is obtained by impregnating and holding a fluid or semi-fluid flux in a sheet-like support. For example, a nonwoven fabric or a mesh-like cloth is impregnated with the flux. Is.
また、保護素子90は、高融点金属層2又は第1、第2の低融点金属層3,4の酸化防止と、溶断時の酸化物除去及びハンダの流動性向上のために、ヒューズエレメント1の表面や裏面にフラックスをコーティングしてもよい。また、図15に示すように、ヒューズエレメント1上の最外層の全面にフラックスシート101を配置してもよい。フラックスシート101は、上記フラックスシート87と同様に、流動体又は半流動体のフラックスをシート状の支持体に含浸、保持させたものであり、例えば不織布やメッシュ状の生地にフラックスを含浸させたものである。 [Flux sheet]
Further, the
フラックスシート101は、ヒューズエレメント1の表面積よりも広い面積を有することが好ましい。これにより、ヒューズエレメント1は、フラックスシート101によって完全に被覆され、溶融により体積が膨張した場合にも、確実にフラックスによる酸化物除去、及び濡れ性の向上による速溶断を実現することができる。
The flux sheet 101 preferably has an area larger than the surface area of the fuse element 1. Thereby, even when the fuse element 1 is completely covered with the flux sheet 101 and the volume expands due to melting, it is possible to reliably realize rapid fusing by removing oxides by flux and improving wettability.
フラックスシート101を配置することにより、ヒューズエレメント1の実装時や保護素子90の実装時における熱処理工程においてもフラックスをヒューズエレメント1の全面にわたって保持することができ、保護素子90の実使用時において、第1、第2の低融点金属層3,4(例えばハンダ)の濡れ性を高めるとともに、第1、第2の低融点金属が溶解している間の酸化物を除去し、高融点金属(例えばAg)への浸食作用を用いて速溶断性を向上させることができる。
By disposing the flux sheet 101, the flux can be held over the entire surface of the fuse element 1 even in the heat treatment process when the fuse element 1 is mounted or when the protection element 90 is mounted. While improving the wettability of the first and second low melting point metal layers 3 and 4 (for example, solder), the oxide while the first and second low melting point metals are dissolved is removed, and the high melting point metal ( For example, the fast fusing property can be improved by using the erosion action on Ag).
また、フラックスシート101を配置することにより、最外層の高融点金属層2の表面に、Snを主成分とするPbフリーハンダ等の酸化防止膜を形成した場合にも、当該酸化防止膜の酸化物を除去することができ、高融点金属層2の酸化を効果的に防止し、速溶断性を維持、向上することができる。
Further, even when an anti-oxidation film such as Pb-free solder containing Sn as a main component is formed on the surface of the outermost refractory metal layer 2 by arranging the flux sheet 101, the oxidation of the anti-oxidation film The material can be removed, the refractory metal layer 2 can be effectively prevented from being oxidized, and the fast fusing property can be maintained and improved.
なお、保護素子90は、フラックスシート101に替えて、図16に示すように、ヒューズエレメント1の最外層にフラックス104aを塗布した後、フラックス104aの上に不織布やメッシュ状の生地を配置し、フラックス104aを含浸させてもよい。また、保護素子90は、図17に示すように、フラックスシートに替えて、ヒューズエレメント1の最外層の全面に、繊維状物が混合されたフラックス104bを塗布してもよい。フラックス104bは繊維状物が混合されることにより粘性が高められ、高温環境下においても流動しにくく、ヒューズエレメント1の全面にわたって溶断時の酸化物除去及び濡れ性の向上を図ることができる。なお、フラックス104bに混合させる繊維状物としては、例えば不織布繊維、ガラス繊維等、絶縁性、耐熱性を備えた繊維が好適に用いられる。
In addition, instead of the flux sheet 101, the protective element 90, as shown in FIG. 16, after the flux 104a is applied to the outermost layer of the fuse element 1, a non-woven fabric or a mesh-like fabric is disposed on the flux 104a, The flux 104a may be impregnated. In addition, as shown in FIG. 17, the protection element 90 may apply a flux 104 b in which a fibrous material is mixed to the entire outermost layer of the fuse element 1 instead of the flux sheet. Viscosity of the flux 104b is increased by mixing the fibrous material, and it is difficult for the flux 104b to flow even in a high-temperature environment. Thus, the oxide 104 can be removed from the entire surface of the fuse element 1 and the wettability can be improved. In addition, as the fibrous material to be mixed with the flux 104b, for example, a fiber having insulating properties and heat resistance such as a nonwoven fabric fiber and a glass fiber is preferably used.
なお、第1、第2の電極94,95、発熱体引出電極96及び発熱体電極99は、例えばAgやCu等の導電パターンによって形成され、適宜、表面にSnメッキ、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の保護層98が形成されている。これにより、表面の酸化を防止するとともに、ヒューズエレメント1の第1、第2の低融点金属層3,4やヒューズエレメント1の接続用ハンダ等の接続材料100による第1、第2の電極94,95及び発熱体引出電極96の浸食を抑制することができる。
The first and second electrodes 94 and 95, the heating element extraction electrode 96, and the heating element electrode 99 are formed of a conductive pattern such as Ag or Cu, and the surface thereof is appropriately Sn-plated, Ni / Au plated, Ni A protective layer 98 such as / Pd plating or Ni / Pd / Au plating is formed. Thus, the surface is prevented from being oxidized, and the first and second electrodes 94 are formed by the connection material 100 such as the first and second low melting point metal layers 3 and 4 of the fuse element 1 and the solder for connecting the fuse element 1. , 95 and the heating element extraction electrode 96 can be suppressed.
また、第1、第2の電極94,95には、上述したヒューズエレメント1の溶融導体やヒューズエレメント1の接続材料100の流出を防止するガラス等の絶縁材料からなる流出防止部102が形成されている。
Further, the first and second electrodes 94 and 95 are formed with an outflow prevention portion 102 made of an insulating material such as glass for preventing the molten conductor of the fuse element 1 and the connection material 100 of the fuse element 1 from flowing out. ing.
[カバー部材]
また、保護素子90は、ヒューズエレメント1が設けられた絶縁基板91の表面91a上に、内部を保護するとともに溶融したヒューズエレメント1の飛散を防止するカバー部材97が取り付けられている。カバー部材97は、各種エンジニアリングプラスチック、セラミックス等の絶縁性を有する部材により形成することができる。保護素子90は、ヒューズエレメント1がカバー部材97によって覆われるため、溶融金属がカバー部材97によって捕捉され、周囲への飛散を防止できる。 [Cover member]
Theprotective element 90 has a cover member 97 attached to the surface 91a of the insulating substrate 91 provided with the fuse element 1 for protecting the inside and preventing the molten fuse element 1 from scattering. The cover member 97 can be formed of an insulating member such as various engineering plastics and ceramics. Since the fuse element 1 is covered with the cover member 97, the protection element 90 can prevent the molten metal from being captured by the cover member 97 and scattered to the surroundings.
また、保護素子90は、ヒューズエレメント1が設けられた絶縁基板91の表面91a上に、内部を保護するとともに溶融したヒューズエレメント1の飛散を防止するカバー部材97が取り付けられている。カバー部材97は、各種エンジニアリングプラスチック、セラミックス等の絶縁性を有する部材により形成することができる。保護素子90は、ヒューズエレメント1がカバー部材97によって覆われるため、溶融金属がカバー部材97によって捕捉され、周囲への飛散を防止できる。 [Cover member]
The
また、カバー部材97は、天面97aから絶縁基板81に向かって、少なくともフラックスシート101の側面まで延在する突起部97bを有している。カバー部材97は、突起部97bにより、フラックスシート101の側面が移動規制を受けるため、フラックスシート101の位置ずれを防ぐことが可能となる。すなわち、突起部97bは、フラックスシート101の大きさよりも所定のクリアランスを保持した大きさで、フラックスシート101を保持すべき位置に対応して設けられる。なお、突起部97bは、フラックスシート101の側面を周回して覆う壁面としてもよいし、部分的に突起するものであってもよい。
Further, the cover member 97 has a protrusion 97b extending from the top surface 97a toward the insulating substrate 81 at least to the side surface of the flux sheet 101. Since the side surface of the flux sheet 101 is subject to movement restriction by the protrusion 97b, the cover member 97 can prevent the positional deviation of the flux sheet 101. In other words, the protrusion 97b has a size that holds a predetermined clearance rather than the size of the flux sheet 101, and is provided corresponding to the position where the flux sheet 101 should be held. In addition, the protrusion part 97b is good also as a wall surface which wraps around the side surface of the flux sheet 101, and may protrude partially.
また、カバー部材97は、フラックスシート101と天面97aの間に所定の間隔をあけた構成とされている。これは、ヒューズエレメント1が溶融した際に、溶融したヒューズエレメント1がフラックスシート101を押し上げるためのクリアランスが必要だからである。
Further, the cover member 97 is configured to have a predetermined interval between the flux sheet 101 and the top surface 97a. This is because when the fuse element 1 is melted, a clearance is required for the melted fuse element 1 to push up the flux sheet 101.
従って、カバー部材97は、カバー部材97の内部空間の高さ(天面97aまでの高さ)は、絶縁基板91の表面91a上の溶融したヒューズエレメント1の高さと、フラックスシート101の厚さの和よりも大きくなるように構成されている。
Therefore, the cover member 97 has a height of the internal space of the cover member 97 (a height up to the top surface 97a) that is the height of the fuse element 1 melted on the surface 91a of the insulating substrate 91 and the thickness of the flux sheet 101. It is comprised so that it may become larger than the sum of.
このような保護素子90は、発熱体給電電極99a、発熱体電極99、発熱体93、発熱体引出電極96及びヒューズエレメント1に至る発熱体93への通電経路が形成される。また、保護素子90は、発熱体電極99が発熱体給電電極99aを介して発熱体93に通電させる外部回路と接続され、当該外部回路によって発熱体電極99とヒューズエレメント1にわたる通電が制御される。
In such a protective element 90, a heating path to the heating element 93 that reaches the heating element power supply electrode 99a, the heating element electrode 99, the heating element 93, the heating element extraction electrode 96, and the fuse element 1 is formed. The protection element 90 is connected to an external circuit in which the heating element electrode 99 energizes the heating element 93 via the heating element power supply electrode 99a, and the energization across the heating element electrode 99 and the fuse element 1 is controlled by the external circuit. .
また、保護素子90は、ヒューズエレメント1が発熱体引出電極96と接続されることにより、発熱体93への通電経路の一部を構成する。したがって、保護素子90は、ヒューズエレメント1が溶融し、外部回路との接続が遮断されると、発熱体93への通電経路も遮断されるため、発熱を停止させることができる。
Further, the protection element 90 constitutes a part of the energization path to the heating element 93 when the fuse element 1 is connected to the heating element extraction electrode 96. Therefore, when the fuse element 1 is melted and the connection with the external circuit is interrupted, the protection element 90 can also stop the heat generation because the energization path to the heating element 93 is also interrupted.
[回路図]
本発明が適用された保護素子90は、図18に示すような回路構成を有する。すなわち、保護素子90は、発熱体引出電極96を介して第1、第2の外部接続電極94a,95a間にわたって直列接続されたヒューズエレメント1と、ヒューズエレメント1の接続点を介して通電して発熱させることによってヒューズエレメント1を溶融する発熱体93とからなる回路構成である。そして、保護素子90は、第1、第2の電極94,95及び発熱体電極99が、それぞれ第1、第2の外部接続電極94a,95a及び発熱体給電電極99aが外部回路基板に接続される。これにより、保護素子90は、ヒューズエレメント1が第1、第2の電極94,95を介して外部回路の電流経路上に直列接続され、発熱体93が発熱体電極99を介して外部回路に設けられた電流制御素子と接続される。 [circuit diagram]
Theprotection element 90 to which the present invention is applied has a circuit configuration as shown in FIG. That is, the protective element 90 is energized via the connecting point between the fuse element 1 and the fuse element 1 connected in series across the first and second external connection electrodes 94a and 95a via the heating element lead electrode 96. The circuit configuration includes a heating element 93 that melts the fuse element 1 by generating heat. In the protective element 90, the first and second electrodes 94 and 95 and the heating element electrode 99 are connected to the first and second external connection electrodes 94a and 95a and the heating element feeding electrode 99a, respectively, to the external circuit board. The As a result, in the protection element 90, the fuse element 1 is connected in series on the current path of the external circuit via the first and second electrodes 94 and 95, and the heating element 93 is connected to the external circuit via the heating element electrode 99. It is connected to the provided current control element.
本発明が適用された保護素子90は、図18に示すような回路構成を有する。すなわち、保護素子90は、発熱体引出電極96を介して第1、第2の外部接続電極94a,95a間にわたって直列接続されたヒューズエレメント1と、ヒューズエレメント1の接続点を介して通電して発熱させることによってヒューズエレメント1を溶融する発熱体93とからなる回路構成である。そして、保護素子90は、第1、第2の電極94,95及び発熱体電極99が、それぞれ第1、第2の外部接続電極94a,95a及び発熱体給電電極99aが外部回路基板に接続される。これにより、保護素子90は、ヒューズエレメント1が第1、第2の電極94,95を介して外部回路の電流経路上に直列接続され、発熱体93が発熱体電極99を介して外部回路に設けられた電流制御素子と接続される。 [circuit diagram]
The
[溶断工程]
このような回路構成からなる保護素子90は、外部回路の電流経路を遮断する必要が生じた場合に、外部回路に設けられた電流制御素子によって発熱体93が通電される。これにより、保護素子90は、発熱体93の発熱により、外部回路の電流経路上に組み込まれたヒューズエレメント1が溶融され、図19(A)に示すように、ヒューズエレメント1の溶融導体が、濡れ性の高い発熱体引出電極96及び第1、第2の電極94,95に引き寄せられることによりヒューズエレメント1が溶断される。これにより、ヒューズエレメント1は、確実に第1の電極94~発熱体引出電極96~第2の電極95の間を溶断させ(図19(B))、外部回路の電流経路を遮断することができる。また、ヒューズエレメント1が溶断することにより、発熱体93への給電も停止される。 [Fusing process]
In theprotection element 90 having such a circuit configuration, when the current path of the external circuit needs to be interrupted, the heating element 93 is energized by the current control element provided in the external circuit. As a result, the protection element 90 melts the fuse element 1 incorporated on the current path of the external circuit due to the heat generated by the heating element 93, and as shown in FIG. The fuse element 1 is blown by being attracted to the heating element lead electrode 96 and the first and second electrodes 94 and 95 having high wettability. As a result, the fuse element 1 can reliably melt the space between the first electrode 94 and the heating element extraction electrode 96 and the second electrode 95 (FIG. 19B), and interrupt the current path of the external circuit. it can. Further, when the fuse element 1 is melted, power supply to the heating element 93 is also stopped.
このような回路構成からなる保護素子90は、外部回路の電流経路を遮断する必要が生じた場合に、外部回路に設けられた電流制御素子によって発熱体93が通電される。これにより、保護素子90は、発熱体93の発熱により、外部回路の電流経路上に組み込まれたヒューズエレメント1が溶融され、図19(A)に示すように、ヒューズエレメント1の溶融導体が、濡れ性の高い発熱体引出電極96及び第1、第2の電極94,95に引き寄せられることによりヒューズエレメント1が溶断される。これにより、ヒューズエレメント1は、確実に第1の電極94~発熱体引出電極96~第2の電極95の間を溶断させ(図19(B))、外部回路の電流経路を遮断することができる。また、ヒューズエレメント1が溶断することにより、発熱体93への給電も停止される。 [Fusing process]
In the
このとき、ヒューズエレメント1は、上述したように、高融点金属層2よりも融点の低い第1の低融点金属層3及び第1の低融点金属層3よりも融点の低い第2の低融点金属層4が積層されているため、第2の低融点金属層4の融点から溶融を開始し、高融点金属層2を浸食し始める。したがって、ヒューズエレメント1は、第1、第2の低融点金属層3,4による高融点金属層2の浸食作用を利用することにより、高融点金属層2が溶融温度よりも低い温度で溶融され、速やかに溶断することができる。
At this time, as described above, the fuse element 1 includes the first low melting point metal layer 3 having a melting point lower than that of the refractory metal layer 2 and the second low melting point having a melting point lower than that of the first low melting point metal layer 3. Since the metal layer 4 is laminated, the melting starts from the melting point of the second low melting point metal layer 4 and the high melting point metal layer 2 starts to erode. Therefore, in the fuse element 1, the refractory metal layer 2 is melted at a temperature lower than the melting temperature by utilizing the erosion action of the refractory metal layer 2 by the first and second low melting metal layers 3 and 4. , Can be blown quickly.
[短絡素子]
次いで、ヒューズエレメント1を用いた短絡素子について説明する。図20(A)に、短絡素子110の平面図を示し、図20(B)に、短絡素子110の断面図を示す。短絡素子110は、絶縁基板111と、絶縁基板111に設けられた発熱体112と、絶縁基板111に、互いに隣接して設けられた第1の電極113及び第2の電極114と、第1の電極113と隣接して設けられるとともに、発熱体112に電気的に接続された第3の電極115と、第1、第3の電極113,115間に亘って設けられることにより電流経路を構成し、発熱体112からの加熱により、第1、第3の電極113,115間の電流経路を溶断するとともに、溶融導体を介して第1、第2の電極113,114を短絡させるヒューズエレメント1とを備える。そして、短絡素子110は、絶縁基板111上に内部を保護するカバー部材116が取り付けられている。 [Short-circuit element]
Next, a short circuit element using thefuse element 1 will be described. FIG. 20A shows a plan view of the short-circuit element 110, and FIG. 20B shows a cross-sectional view of the short-circuit element 110. The short-circuit element 110 includes an insulating substrate 111, a heating element 112 provided on the insulating substrate 111, a first electrode 113 and a second electrode 114 provided adjacent to each other on the insulating substrate 111, and a first electrode A current path is configured by being provided adjacent to the electrode 113 and extending between the third electrode 115 electrically connected to the heating element 112 and the first and third electrodes 113 and 115. The fuse element 1 which blows the current path between the first and third electrodes 113 and 115 by heating from the heating element 112 and short-circuits the first and second electrodes 113 and 114 via the molten conductor, Is provided. In the short-circuit element 110, a cover member 116 that protects the inside is attached on the insulating substrate 111.
次いで、ヒューズエレメント1を用いた短絡素子について説明する。図20(A)に、短絡素子110の平面図を示し、図20(B)に、短絡素子110の断面図を示す。短絡素子110は、絶縁基板111と、絶縁基板111に設けられた発熱体112と、絶縁基板111に、互いに隣接して設けられた第1の電極113及び第2の電極114と、第1の電極113と隣接して設けられるとともに、発熱体112に電気的に接続された第3の電極115と、第1、第3の電極113,115間に亘って設けられることにより電流経路を構成し、発熱体112からの加熱により、第1、第3の電極113,115間の電流経路を溶断するとともに、溶融導体を介して第1、第2の電極113,114を短絡させるヒューズエレメント1とを備える。そして、短絡素子110は、絶縁基板111上に内部を保護するカバー部材116が取り付けられている。 [Short-circuit element]
Next, a short circuit element using the
絶縁基板111は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって方形状に形成される。その他、絶縁基板111は、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよい。
The insulating substrate 111 is formed in a rectangular shape by an insulating member such as alumina, glass ceramics, mullite, zirconia. In addition, the insulating substrate 111 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
発熱体112は、絶縁基板111上において絶縁部材118に被覆されている。また、絶縁部材118上には、第1~第3の電極113~115が形成されている。絶縁部材118は、発熱体112の熱を効率よく第1~第3の電極113~115へ伝えるために設けられ、例えばガラス層からなる。発熱体112は、第1~第3の電極113~115を加熱することにより、溶融導体を凝集しやすくさせることができる。
The heating element 112 is covered with an insulating member 118 on the insulating substrate 111. On the insulating member 118, first to third electrodes 113 to 115 are formed. The insulating member 118 is provided to efficiently transmit the heat of the heating element 112 to the first to third electrodes 113 to 115, and is made of, for example, a glass layer. The heating element 112 can make the molten conductor easily aggregate by heating the first to third electrodes 113 to 115.
第1~第3の電極113~115は、AgやCu配線等の導電パターンによって形成されている。第1の電極113は、一方側において第2の電極114と隣接して形成されるとともに、絶縁されている。第1の電極113の他方側には第3の電極115が形成されている。第1の電極113と第3の電極115とは、ヒューズエレメント1が接続されることにより導通され、短絡素子110の電流経路を構成する。また、第1の電極113は、絶縁基板111の側面に臨むキャスタレーションを介して絶縁基板111の裏面111bに設けられた第1の外部接続電極113aと接続されている。また、第2の電極114は、絶縁基板111の側面に臨むキャスタレーションを介して絶縁基板111の裏面111bに設けられた第2の外部接続電極114aと接続されている。
The first to third electrodes 113 to 115 are formed of a conductive pattern such as Ag or Cu wiring. The first electrode 113 is formed adjacent to the second electrode 114 on one side and insulated. A third electrode 115 is formed on the other side of the first electrode 113. The first electrode 113 and the third electrode 115 are brought into conduction when the fuse element 1 is connected to form a current path of the short-circuit element 110. The first electrode 113 is connected to a first external connection electrode 113 a provided on the back surface 111 b of the insulating substrate 111 through a castellation that faces the side surface of the insulating substrate 111. The second electrode 114 is connected to a second external connection electrode 114 a provided on the back surface 111 b of the insulating substrate 111 through a castellation that faces the side surface of the insulating substrate 111.
また、第3の電極115は、絶縁基板111あるいは絶縁部材118に設けられた発熱体引出電極120を介して発熱体112と接続されている。また、発熱体112は、発熱体電極121及び絶縁基板111の側縁に臨むキャスタレーションを介して、絶縁基板111の裏面111bに設けられた発熱体給電電極121aと接続されている。
In addition, the third electrode 115 is connected to the heating element 112 via the heating element extraction electrode 120 provided on the insulating substrate 111 or the insulating member 118. The heating element 112 is connected to the heating element power supply electrode 121 a provided on the back surface 111 b of the insulating substrate 111 through a heating element electrode 121 and a castellation that faces the side edge of the insulating substrate 111.
第1及び第3の電極113,115は、ハンダ等の接続材料117を介してヒューズエレメント1が接続されている。上述したように、ヒューズエレメント1は、高融点金属層2を備えることにより高温環境に対する耐性が向上されているため実装性に優れ、接続材料117を介して第1及び第3の電極113,115間に搭載された後、リフローはんだ付け等により容易に接続することができる。なお、ヒューズエレメント1は、最下層に設けられた第1の低融点金属層3又は第2の低融点金属層4を接続材料として用いて、第1、第3の電極113,115に接続してもよい。
The fuse element 1 is connected to the first and third electrodes 113 and 115 via a connecting material 117 such as solder. As described above, since the fuse element 1 includes the refractory metal layer 2 and has improved resistance to a high temperature environment, the fuse element 1 has excellent mountability, and the first and third electrodes 113 and 115 are connected via the connection material 117. After being mounted in between, it can be easily connected by reflow soldering or the like. The fuse element 1 is connected to the first and third electrodes 113 and 115 using the first low-melting-point metal layer 3 or the second low-melting-point metal layer 4 provided as the lowermost layer as a connection material. May be.
[フラックスシート]
また、短絡素子110は、高融点金属層2又は第1、第2の低融点金属層3,4の酸化防止と、溶断時の酸化物除去及びハンダの流動性向上のために、ヒューズエレメント1の表面や裏面にフラックスをコーティングしてもよい。また、図20に示すように、ヒューズエレメント1上の最外層の全面にフラックスシート122を配置してもよい。フラックスシート122は、上述したフラックスシート87と同様に、流動体又は半流動体のフラックスをシート状の支持体に含浸、保持させたものであり、例えば不織布やメッシュ状の生地にフラックスを含浸させたものである。 [Flux sheet]
The short-circuit element 110 includes a fuse element 1 for preventing oxidation of the refractory metal layer 2 or the first and second low-melting metal layers 3, 4, removing oxide during fusing, and improving solder fluidity. A flux may be coated on the front surface or the back surface. Further, as shown in FIG. 20, a flux sheet 122 may be disposed on the entire outermost layer on the fuse element 1. Similar to the flux sheet 87 described above, the flux sheet 122 is obtained by impregnating and holding a fluid or semi-fluid flux in a sheet-like support. For example, a non-woven fabric or a mesh-like cloth is impregnated with the flux. It is a thing.
また、短絡素子110は、高融点金属層2又は第1、第2の低融点金属層3,4の酸化防止と、溶断時の酸化物除去及びハンダの流動性向上のために、ヒューズエレメント1の表面や裏面にフラックスをコーティングしてもよい。また、図20に示すように、ヒューズエレメント1上の最外層の全面にフラックスシート122を配置してもよい。フラックスシート122は、上述したフラックスシート87と同様に、流動体又は半流動体のフラックスをシート状の支持体に含浸、保持させたものであり、例えば不織布やメッシュ状の生地にフラックスを含浸させたものである。 [Flux sheet]
The short-
フラックスシート122は、ヒューズエレメント1の表面積よりも広い面積を有することが好ましい。これにより、ヒューズエレメント1は、フラックスシート122によって完全に被覆され、溶融により体積が膨張した場合にも、確実にフラックスによる酸化物除去、及び濡れ性の向上による速溶断を実現することができる。
The flux sheet 122 preferably has an area larger than the surface area of the fuse element 1. Thereby, even when the fuse element 1 is completely covered with the flux sheet 122 and the volume expands due to melting, it is possible to surely realize oxide removal by flux and quick fusing by improving wettability.
フラックスシート122を配置することにより、ヒューズエレメント1の実装時や短絡素子110の実装時における熱処理工程においてもフラックスをヒューズエレメント1の全面にわたって保持することができ、短絡素子110の実使用時において、第1、第2の低融点金属層3,4(例えばハンダ)の濡れ性を高めるとともに、第1、第2の低融点金属が溶解している間の酸化物を除去し、高融点金属(例えばAg)への浸食作用を用いて速溶断性を向上させることができる。
By disposing the flux sheet 122, the flux can be held over the entire surface of the fuse element 1 even in the heat treatment process when the fuse element 1 is mounted or when the short-circuit element 110 is mounted. While improving the wettability of the first and second low melting point metal layers 3 and 4 (for example, solder), the oxide while the first and second low melting point metals are dissolved is removed, and the high melting point metal ( For example, the fast fusing property can be improved by using the erosion action on Ag).
また、フラックスシート122を配置することにより、最外層の高融点金属層2の表面に、Snを主成分とするPbフリーハンダ等の酸化防止膜を形成した場合にも、当該酸化防止膜の酸化物を除去することができ、高融点金属層2の酸化を効果的に防止し、速溶断性を維持、向上することができる。
Further, even when an anti-oxidation film such as Pb-free solder containing Sn as a main component is formed on the surface of the outermost refractory metal layer 2 by arranging the flux sheet 122, the oxidation of the anti-oxidation film The material can be removed, oxidation of the refractory metal layer 2 can be effectively prevented, and fast fusing property can be maintained and improved.
なお、短絡素子110は、フラックスシート122に替えて、図21に示すように、ヒューズエレメント1の最外層にフラックス119aを塗布した後、フラックス119aの上に不織布やメッシュ状の生地を配置し、フラックス119aを含浸させてもよい。また、短絡素子110は、図22に示すように、フラックスシートに替えて、ヒューズエレメント1の最外層の全面に、繊維状物が混合されたフラックス119bを塗布してもよい。フラックス119bは繊維状物が混合されることにより粘性が高められ、高温環境下においても流動しにくく、ヒューズエレメント1の全面にわたって溶断時の酸化物除去及び濡れ性の向上を図ることができる。なお、フラックス119bに混合させる繊維状物としては、例えば不織布繊維、ガラス繊維等、絶縁性、耐熱性を備えた繊維が好適に用いられる。
In addition, instead of the flux sheet 122, the short-circuit element 110, as shown in FIG. 21, after applying the flux 119a to the outermost layer of the fuse element 1, arrange a non-woven fabric or mesh-like fabric on the flux 119a, A flux 119a may be impregnated. In addition, as shown in FIG. 22, the short-circuit element 110 may apply a flux 119 b in which a fibrous material is mixed to the entire outermost layer of the fuse element 1 instead of the flux sheet. Viscosity of the flux 119b is increased by mixing the fibrous material, and it is difficult for the flux 119b to flow even in a high temperature environment. Thus, the oxide can be removed and the wettability can be improved over the entire surface of the fuse element 1. In addition, as the fibrous material to be mixed with the flux 119b, for example, a fiber having insulating properties and heat resistance such as a nonwoven fabric fiber and a glass fiber is preferably used.
なお、短絡素子110は、第1の電極113が、第3の電極115よりも広い面積を有することが好ましい。これにより、短絡素子110は、より多くの溶融導体を第1、第2の電極113,114上に凝集させることができ、第1、第2の電極113,114間を確実に短絡させることができる(図24参照)。
In the short-circuit element 110, the first electrode 113 preferably has a larger area than the third electrode 115. As a result, the short-circuit element 110 can agglomerate more molten conductors on the first and second electrodes 113 and 114 and reliably short-circuit the first and second electrodes 113 and 114. Yes (see FIG. 24).
また、第1~第3の電極113,114,115は、CuやAg等の一般的な電極材料を用いて形成することができるが、少なくとも第1、第2の電極113,114の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜129が、公知のメッキ処理により形成されていることが好ましい。これにより、第1、第2の電極113,114の酸化を防止し、溶融導体を確実に保持させることができる。また、短絡素子110をリフロー実装する場合に、ヒューズエレメント1を接続するハンダあるいはヒューズエレメント1の外層を形成する第1又は第2の低融点金属層3,4が溶融することにより第1の電極113を溶食(ハンダ食われ)することを防ぐことができる。
The first to third electrodes 113, 114, 115 can be formed using a general electrode material such as Cu or Ag, but at least on the surfaces of the first and second electrodes 113, 114. It is preferable that a coating 129 such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is formed by a known plating process. Thereby, the oxidation of the first and second electrodes 113 and 114 can be prevented, and the molten conductor can be reliably held. Further, when the short-circuit element 110 is reflow-mounted, the first electrode is obtained by melting the solder connecting the fuse element 1 or the first or second low melting point metal layer 3 or 4 forming the outer layer of the fuse element 1. It is possible to prevent 113 from being melted (soldered).
また、第1~第3の電極113~115には、上述したヒューズエレメント1の溶融導体やヒューズエレメント1の接続材料117の流出を防止するガラス等の絶縁材料からなる流出防止部126が形成されている。
Further, the first to third electrodes 113 to 115 are formed with an outflow prevention portion 126 made of an insulating material such as glass for preventing the molten conductor of the fuse element 1 and the connection material 117 of the fuse element 1 from flowing out. ing.
[カバー部材]
また、短絡素子110は、ヒューズエレメント1が設けられた絶縁基板111の表面111a上に、内部を保護するとともに溶融したヒューズエレメント1の飛散を防止するカバー部材116が取り付けられている。カバー部材116は、各種エンジニアリングプラスチック、セラミックス等の絶縁性を有する部材により形成することができる。短絡素子110は、ヒューズエレメント1がカバー部材116によって覆われるため、溶融金属がカバー部材116によって捕捉され、周囲への飛散を防止できる。 [Cover member]
In addition, the short-circuit element 110 has a cover member 116 attached to the surface 111a of the insulating substrate 111 on which the fuse element 1 is provided to protect the inside and prevent the molten fuse element 1 from scattering. The cover member 116 can be formed of an insulating member such as various engineering plastics and ceramics. Since the fuse element 1 is covered with the cover member 116 in the short-circuit element 110, the molten metal is captured by the cover member 116 and can be prevented from being scattered to the surroundings.
また、短絡素子110は、ヒューズエレメント1が設けられた絶縁基板111の表面111a上に、内部を保護するとともに溶融したヒューズエレメント1の飛散を防止するカバー部材116が取り付けられている。カバー部材116は、各種エンジニアリングプラスチック、セラミックス等の絶縁性を有する部材により形成することができる。短絡素子110は、ヒューズエレメント1がカバー部材116によって覆われるため、溶融金属がカバー部材116によって捕捉され、周囲への飛散を防止できる。 [Cover member]
In addition, the short-
また、カバー部材116は、天面116aから絶縁基板111に向かって、少なくともフラックスシート122の側面まで延在する突起部116bを有している。カバー部材116は、突起部116bにより、フラックスシート122の側面が移動規制を受けるため、フラックスシート122の位置ずれを防ぐことが可能となる。すなわち、突起部116bは、フラックスシート122の大きさよりも所定のクリアランスを保持した大きさで、フラックスシート122を保持すべき位置に対応して設けられる。なお、突起部116bは、フラックスシート122の側面を周回して覆う壁面としてもよいし、部分的に突起するものであってもよい。
Further, the cover member 116 has a projection 116b extending from the top surface 116a toward the insulating substrate 111 at least to the side surface of the flux sheet 122. Since the side surface of the flux sheet 122 is restricted by the protrusion 116b, the cover member 116 can prevent the position of the flux sheet 122 from being displaced. In other words, the protrusion 116b has a size that holds a predetermined clearance rather than the size of the flux sheet 122, and is provided corresponding to the position where the flux sheet 122 should be held. In addition, the protrusion part 116b is good also as a wall surface which wraps around the side surface of the flux sheet 122, and may protrude partially.
また、カバー部材116は、フラックスシート122と天面116aの間に所定の間隔をあけた構成とされている。これは、ヒューズエレメント1が溶融した際に、溶融したヒューズエレメント1がフラックスシート122を押し上げるためのクリアランスが必要だからである。
Further, the cover member 116 is configured to have a predetermined interval between the flux sheet 122 and the top surface 116a. This is because when the fuse element 1 is melted, a clearance is required for the melted fuse element 1 to push up the flux sheet 122.
従って、カバー部材116は、カバー部材116の内部空間の高さ(天面116aまでの高さ)は、絶縁基板111の表面111a上の溶融したヒューズエレメント1の高さと、フラックスシート122の厚さの和よりも大きくなるように構成されている。
Therefore, the cover member 116 has a height of the internal space of the cover member 116 (height to the top surface 116 a) that is the height of the melted fuse element 1 on the surface 111 a of the insulating substrate 111 and the thickness of the flux sheet 122. It is comprised so that it may become larger than the sum of.
[短絡素子回路]
以上のような短絡素子110は、図23(A)(B)に示すような回路構成を有する。すなわち、短絡素子110は、第1の電極113と第2の電極114とが、正常時には絶縁され(図23(A))、発熱体112の発熱によりヒューズエレメント1が溶融すると、当該溶融導体を介して短絡するスイッチ123を構成する(図23(B))。そして、第1の外部接続電極113aと第2の外部接続電極114aは、スイッチ123の両端子を構成する。また、ヒューズエレメント1は、第3の電極115及び発熱体引出電極120を介して発熱体112と接続されている。 [Short-circuit element circuit]
Theshort circuit element 110 as described above has a circuit configuration as shown in FIGS. That is, in the short-circuit element 110, when the first electrode 113 and the second electrode 114 are normally insulated (FIG. 23A), when the fuse element 1 is melted by the heat generated by the heating element 112, the molten conductor is A switch 123 that is short-circuited is formed (FIG. 23B). The first external connection electrode 113a and the second external connection electrode 114a constitute both terminals of the switch 123. The fuse element 1 is connected to the heating element 112 via the third electrode 115 and the heating element extraction electrode 120.
以上のような短絡素子110は、図23(A)(B)に示すような回路構成を有する。すなわち、短絡素子110は、第1の電極113と第2の電極114とが、正常時には絶縁され(図23(A))、発熱体112の発熱によりヒューズエレメント1が溶融すると、当該溶融導体を介して短絡するスイッチ123を構成する(図23(B))。そして、第1の外部接続電極113aと第2の外部接続電極114aは、スイッチ123の両端子を構成する。また、ヒューズエレメント1は、第3の電極115及び発熱体引出電極120を介して発熱体112と接続されている。 [Short-circuit element circuit]
The
そして、短絡素子110は、電子機器等に組み込まれることにより、スイッチ123の両端子113a、114aが、当該電子機器の電流経路と接続され、当該電流経路を導通させる場合に、スイッチ123を短絡させ、当該電子部品の電流経路を形成する。
The short-circuit element 110 is incorporated into an electronic device or the like, so that the both terminals 113a and 114a of the switch 123 are connected to the current path of the electronic device, and the switch 123 is short-circuited when the current path is conducted. The current path of the electronic component is formed.
例えば、短絡素子110は、電子部品の電流経路上に設けられた電子部品とスイッチ123の両端子113a,114aとが並列に接続され、並列接続されている電子部品に異常が生じると、発熱体給電電極121aと第1の外部接続電極113a間に電力が供給され、発熱体112が通電することにより発熱する。この熱によりヒューズエレメント1が溶融すると、溶融導体は、図24に示すように、第1、第2の電極113,114上に凝集する。第1、第2の電極113,114は隣接して形成されているため、第1、第2の電極113,114上に凝集した溶融導体が結合し、これにより第1、第2の電極113,114が短絡する。すなわち、短絡素子110は、スイッチ123の両端子間が短絡され(図23(B))、異常を起こした電子部品をバイパスするバイパス電流経路を形成する。なお、ヒューズエレメント1が溶断することにより第1、第3の電極113,115間が溶断されるため、発熱体112への給電も停止される。
For example, when the electronic component provided on the current path of the electronic component and both terminals 113a and 114a of the switch 123 are connected in parallel and an abnormality occurs in the electronic component connected in parallel, the short-circuit element 110 generates a heating element. Electric power is supplied between the power supply electrode 121a and the first external connection electrode 113a, and heat is generated when the heating element 112 is energized. When the fuse element 1 is melted by this heat, the molten conductor aggregates on the first and second electrodes 113 and 114 as shown in FIG. Since the first and second electrodes 113 and 114 are formed adjacent to each other, the agglomerated molten conductors are coupled to each other on the first and second electrodes 113 and 114, thereby the first and second electrodes 113. 114 are short-circuited. In other words, the short-circuit element 110 is short-circuited between both terminals of the switch 123 (FIG. 23B), and forms a bypass current path that bypasses the electronic component in which an abnormality has occurred. In addition, since the fuse element 1 is melted, the first and third electrodes 113 and 115 are fused, so that the power supply to the heating element 112 is also stopped.
このとき、ヒューズエレメント1は、上述したように、高融点金属層2よりも融点の低い第1の低融点金属層3及び第1の低融点金属層3よりも融点の低い第2の低融点金属層4が積層されているため、第2の低融点金属層4の融点から溶融を開始し、高融点金属層2を浸食し始める。したがって、ヒューズエレメント1は、第1、第2の低融点金属層3,4による高融点金属層2の浸食作用を利用することにより、高融点金属層2が溶融温度よりも低い温度で溶融され、速やかに溶断することができる。
At this time, as described above, the fuse element 1 includes the first low melting point metal layer 3 having a melting point lower than that of the refractory metal layer 2 and the second low melting point having a melting point lower than that of the first low melting point metal layer 3. Since the metal layer 4 is laminated, the melting starts from the melting point of the second low melting point metal layer 4 and the high melting point metal layer 2 starts to erode. Therefore, in the fuse element 1, the refractory metal layer 2 is melted at a temperature lower than the melting temperature by utilizing the erosion action of the refractory metal layer 2 by the first and second low melting metal layers 3 and 4. , Can be blown quickly.
[短絡素子の変形例]
なお、短絡素子110は、必ずしも、発熱体112を絶縁部材118によって被覆する必要はなく、発熱体112が絶縁基板111の内部に設置されてもよい。絶縁基板111の材料として熱伝導性に優れたものを用いることにより、発熱体112をガラス層等の絶縁部材118を介した場合と同等に加熱することができる。 [Modification of short circuit element]
The short-circuit element 110 does not necessarily need to cover the heating element 112 with the insulating member 118, and the heating element 112 may be installed inside the insulating substrate 111. By using a material having excellent thermal conductivity as the material of the insulating substrate 111, the heating element 112 can be heated in the same manner as when the insulating member 118 such as a glass layer is interposed.
なお、短絡素子110は、必ずしも、発熱体112を絶縁部材118によって被覆する必要はなく、発熱体112が絶縁基板111の内部に設置されてもよい。絶縁基板111の材料として熱伝導性に優れたものを用いることにより、発熱体112をガラス層等の絶縁部材118を介した場合と同等に加熱することができる。 [Modification of short circuit element]
The short-
また、短絡素子110は、上述したように発熱体112を絶縁基板111上の第1~第3の電極113~115の形成面側に形成する他にも、発熱体112が絶縁基板111の第1~第3の電極113~115の形成面と反対の面に設置されてもよい。発熱体112を絶縁基板111の裏面111bに形成することにより、絶縁基板111内に形成するよりも簡易な工程で形成することができる。なお、この場合、発熱体112上には、絶縁部材118が形成されると抵抗体の保護や実装時の絶縁性確保と言う意味で好ましい。
In addition to forming the heating element 112 on the formation surface side of the first to third electrodes 113 to 115 on the insulating substrate 111 as described above, the short-circuit element 110 includes the heating element 112 of the insulating substrate 111. The first to third electrodes 113 to 115 may be provided on the surface opposite to the formation surface. By forming the heating element 112 on the back surface 111 b of the insulating substrate 111, the heating element 112 can be formed by a simpler process than that in the insulating substrate 111. In this case, it is preferable to form an insulating member 118 on the heating element 112 in terms of protecting the resistor and ensuring insulation during mounting.
さらに、短絡素子110は、発熱体112が絶縁基板111の第1~第3の電極113~115の形成面上に設置されるとともに、第1~第3の電極113~115に併設されてもよい。発熱体112を絶縁基板111の表面に形成することにより、絶縁基板111内に形成するよりも簡易な工程で形成することができる。なお、この場合も、発熱体112上には、絶縁部材118が形成される事が好ましい。
Further, in the short-circuit element 110, the heating element 112 is installed on the formation surface of the first to third electrodes 113 to 115 of the insulating substrate 111 and is also provided along with the first to third electrodes 113 to 115. Good. By forming the heating element 112 on the surface of the insulating substrate 111, the heating element 112 can be formed by a simpler process than in the insulating substrate 111. Also in this case, it is preferable that the insulating member 118 is formed on the heating element 112.
[第4の電極、第2のヒューズエレメント]
また、本発明に係る短絡素子は、図25(A)(B)に示すように、第2の電極114と隣接する第4の電極124及び第2、第4の電極114,124間にわたって搭載される第2のヒューズエレメント125を形成してもよい。第2のヒューズエレメント125は、ヒューズエレメント1と同じ構成を有する。 [Fourth electrode, second fuse element]
Further, as shown in FIGS. 25A and 25B, the short-circuit element according to the present invention is mounted over thefourth electrode 124 adjacent to the second electrode 114 and between the second and fourth electrodes 114 and 124. The second fuse element 125 may be formed. The second fuse element 125 has the same configuration as the fuse element 1.
また、本発明に係る短絡素子は、図25(A)(B)に示すように、第2の電極114と隣接する第4の電極124及び第2、第4の電極114,124間にわたって搭載される第2のヒューズエレメント125を形成してもよい。第2のヒューズエレメント125は、ヒューズエレメント1と同じ構成を有する。 [Fourth electrode, second fuse element]
Further, as shown in FIGS. 25A and 25B, the short-circuit element according to the present invention is mounted over the
また、短絡素子110は、図25(B)に示すように、フラックスシート122を、ヒューズエレメント1及び第2のヒューズエレメント125上にわたって搭載してもよく、図25(C)に示すように、ヒューズエレメント1と第2のヒューズエレメント125のそれぞれに搭載してもよい。あるいは、短絡素子110は、図25(D)に示すように、ヒューズエレメント1と第2のヒューズエレメント125のそれぞれにフラックス119aが塗布された後、不織布やメッシュ状の生地をヒューズエレメント1及び第2のヒューズエレメント125上にわたって搭載してもよく、あるいは図25(E)に示すように、不織布やメッシュ状の生地をヒューズエレメント1と第2のヒューズエレメント125のそれぞれに搭載してもよい。さらに、短絡素子110は、図25(F)に示すように、ヒューズエレメント1及び第2のヒューズエレメント125のそれぞれに、繊維状物が混合され粘性が高められたフラックス119bを塗布してもよい。
In addition, as shown in FIG. 25 (B), the short circuit element 110 may be mounted with the flux sheet 122 over the fuse element 1 and the second fuse element 125. As shown in FIG. 25 (C), It may be mounted on each of the fuse element 1 and the second fuse element 125. Alternatively, as shown in FIG. 25D, the short-circuit element 110 is formed by applying a non-woven fabric or a mesh-like cloth to the fuse element 1 and the first cloth after the flux 119a is applied to each of the fuse element 1 and the second fuse element 125. Two fuse elements 125 may be mounted, or as shown in FIG. 25E, a nonwoven fabric or a mesh-shaped cloth may be mounted on each of the fuse element 1 and the second fuse element 125. Furthermore, as shown in FIG. 25F, the short-circuit element 110 may apply a flux 119b in which the fibrous material is mixed and the viscosity is increased to each of the fuse element 1 and the second fuse element 125. .
この短絡素子110では、ヒューズエレメント1及び第2のヒューズエレメント125が溶融することにより、当該溶融導体が第1、第2の電極113,114間に濡れ拡がり、第1、第2の電極113,114を短絡させる。図25に示す短絡素子110は、第4の電極124及び第2のヒューズエレメント125が設けられている他は、上述した構成と同じであるため、同一の符号を付して詳細な説明は省略する。
In the short-circuit element 110, when the fuse element 1 and the second fuse element 125 are melted, the molten conductor wets and spreads between the first and second electrodes 113 and 114, and the first and second electrodes 113, 114 is short-circuited. The short-circuit element 110 shown in FIG. 25 is the same as that described above except that the fourth electrode 124 and the second fuse element 125 are provided. To do.
図25に示す短絡素子110においても、第1、第2の電極113,114は、第3、第4の電極115,124よりも広い面積を有することが好ましい。これにより、短絡素子110は、より多くの溶融導体を第1、第2の電極113,114上に凝集させることができ、第1、第2の電極113,114間を確実に短絡させることができる。
Also in the short-circuit element 110 shown in FIG. 25, it is preferable that the first and second electrodes 113 and 114 have a larger area than the third and fourth electrodes 115 and 124. As a result, the short-circuit element 110 can agglomerate more molten conductors on the first and second electrodes 113 and 114 and reliably short-circuit the first and second electrodes 113 and 114. it can.
[切替素子]
次いで、ヒューズエレメント1を用いた切替素子について説明する。図26(A)に切替素子130の平面図、及び図26(B)に切替素子130の断面図を示す。切替素子130は、絶縁基板131と、絶縁基板131に設けられた第1の発熱体132及び第2の発熱体133と、絶縁基板131に、互いに隣接して設けられた第1の電極134及び第2の電極135と、第1の電極134と隣接して設けられるとともに、第1の発熱体132に電気的に接続された第3の電極136と、第2の電極135と隣接して設けられるとともに、第2の発熱体133に電気的に接続された第4の電極137と、第4の電極137に隣接して設けられた第5の電極138と、第1、第3の電極134,136間に亘って設けられることにより電流経路を構成し、第1の発熱体132からの加熱により、第1、第3の電極134,136間の電流経路を溶断する第1のヒューズエレメント1Aと、第2の電極135から第4の電極137を経て第5の電極138に亘って設けられ、第2の発熱体133からの加熱により、第2、第4、第5の電極135,137,138間の電流経路を溶断する第2のヒューズエレメント1Bとを備える。そして、切替素子130は、絶縁基板131上に内部を保護するカバー部材139が取り付けられている。 [Switching element]
Next, a switching element using thefuse element 1 will be described. FIG. 26A shows a plan view of the switching element 130 and FIG. 26B shows a cross-sectional view of the switching element 130. The switching element 130 includes an insulating substrate 131, a first heating element 132 and a second heating element 133 provided on the insulating substrate 131, a first electrode 134 provided adjacent to the insulating substrate 131, and Provided adjacent to the second electrode 135 and the first electrode 134, provided adjacent to the third electrode 136 electrically connected to the first heating element 132, and the second electrode 135 And a fourth electrode 137 electrically connected to the second heating element 133, a fifth electrode 138 provided adjacent to the fourth electrode 137, and the first and third electrodes 134. , 136 to form a current path, and the first fuse element 1A that melts the current path between the first and third electrodes 134, 136 by heating from the first heating element 132. And the second electrode 135 Through the fourth electrode 137 and the fifth electrode 138, and a current path between the second, fourth, and fifth electrodes 135, 137, and 138 is formed by heating from the second heating element 133. And a second fuse element 1B to be melted. The switching element 130 has a cover member 139 that protects the inside on the insulating substrate 131.
次いで、ヒューズエレメント1を用いた切替素子について説明する。図26(A)に切替素子130の平面図、及び図26(B)に切替素子130の断面図を示す。切替素子130は、絶縁基板131と、絶縁基板131に設けられた第1の発熱体132及び第2の発熱体133と、絶縁基板131に、互いに隣接して設けられた第1の電極134及び第2の電極135と、第1の電極134と隣接して設けられるとともに、第1の発熱体132に電気的に接続された第3の電極136と、第2の電極135と隣接して設けられるとともに、第2の発熱体133に電気的に接続された第4の電極137と、第4の電極137に隣接して設けられた第5の電極138と、第1、第3の電極134,136間に亘って設けられることにより電流経路を構成し、第1の発熱体132からの加熱により、第1、第3の電極134,136間の電流経路を溶断する第1のヒューズエレメント1Aと、第2の電極135から第4の電極137を経て第5の電極138に亘って設けられ、第2の発熱体133からの加熱により、第2、第4、第5の電極135,137,138間の電流経路を溶断する第2のヒューズエレメント1Bとを備える。そして、切替素子130は、絶縁基板131上に内部を保護するカバー部材139が取り付けられている。 [Switching element]
Next, a switching element using the
絶縁基板131は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって方形状に形成される。その他、絶縁基板131は、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよい。
The insulating substrate 131 is formed in a rectangular shape by an insulating member such as alumina, glass ceramics, mullite, zirconia. In addition, the insulating substrate 131 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol board.
第1、第2の発熱体132,133は、上述した発熱体93と同様に、通電すると発熱する導電性を有する部材であって、発熱体93と同様に形成することができる。また、第1、第2のヒューズエレメント1A,1Bは、上述したヒューズエレメント1と同じ構成を有する。
The first and second heating elements 132 and 133 are conductive members that generate heat when energized, like the heating element 93 described above, and can be formed in the same manner as the heating element 93. The first and second fuse elements 1A and 1B have the same configuration as the fuse element 1 described above.
また、第1、第2の発熱体132,133は、絶縁基板131上において絶縁部材140に被覆されている。第1の発熱体132を被覆する絶縁部材140上には、第1、第3の電極134,136が形成され、第2の発熱体133を被覆する絶縁部材140上には、第2、第4、第5の電極135,137,138が形成されている。第1の電極134は、一方側において第2の電極135と隣接して形成されるとともに、絶縁されている。第1の電極134の他方側には第3の電極136が形成されている。第1の電極134と第3の電極135とは、第1のヒューズエレメント1Aが接続されることにより導通され、切替素子130の電流経路を構成する。また、第1の電極134は、絶縁基板131の側面に臨むキャスタレーションを介して絶縁基板131の裏面131bに設けられた第1の外部接続電極134aに接続されている。
Further, the first and second heating elements 132 and 133 are covered with the insulating member 140 on the insulating substrate 131. First and third electrodes 134 and 136 are formed on the insulating member 140 covering the first heating element 132, and the second and second electrodes are formed on the insulating member 140 covering the second heating element 133. 4, fifth electrodes 135, 137, 138 are formed. The first electrode 134 is formed adjacent to the second electrode 135 on one side and is insulated. A third electrode 136 is formed on the other side of the first electrode 134. The first electrode 134 and the third electrode 135 are brought into conduction when the first fuse element 1A is connected to form a current path of the switching element 130. The first electrode 134 is connected to a first external connection electrode 134 a provided on the back surface 131 b of the insulating substrate 131 through a castellation that faces the side surface of the insulating substrate 131.
また、第3の電極136は、絶縁基板131あるいは絶縁部材140に設けられた第1の発熱体引出電極141を介して第1の発熱体132と接続されている。また、第1の発熱体132は、第1の発熱体電極142及び絶縁基板131の側縁に臨むキャスタレーションを介して、絶縁基板131の裏面131bに設けられた第1の発熱体給電電極142aと接続されている。
The third electrode 136 is connected to the first heating element 132 via the first heating element extraction electrode 141 provided on the insulating substrate 131 or the insulating member 140. In addition, the first heating element 132 is connected to the first heating element feeding electrode 142a provided on the back surface 131b of the insulating substrate 131 through the first heating element electrode 142 and a castellation facing the side edge of the insulating substrate 131. Connected with.
第2の電極135の第1の電極134と隣接する一方側と反対の他方側には、第4の電極137が形成されている。また、第4の電極137の第2の電極135と隣接する一方側と反対の他方側には、第5の電極138が形成されている。第2の電極135、第4の電極137及び第5の電極138は、第2のヒューズエレメント1Bと接続されている。また、第2の電極135は、絶縁基板131の側面に臨むキャスタレーションを介して絶縁基板131の裏面131bに設けられた第2の外部接続電極135aと接続されている。
A fourth electrode 137 is formed on the other side of the second electrode 135 opposite to the one side adjacent to the first electrode 134. A fifth electrode 138 is formed on the other side of the fourth electrode 137 opposite to the one side adjacent to the second electrode 135. The second electrode 135, the fourth electrode 137, and the fifth electrode 138 are connected to the second fuse element 1B. The second electrode 135 is connected to a second external connection electrode 135 a provided on the back surface 131 b of the insulating substrate 131 through a castellation that faces the side surface of the insulating substrate 131.
また、第4の電極137は、絶縁基板131あるいは絶縁部材140に設けられた第2の発熱体引出電極143を介して第2の発熱体133と接続されている。また、第2の発熱体133は、第2の発熱体電極144及び絶縁基板131の側縁に臨むキャスタレーションを介して、絶縁基板131の裏面131bに設けられた第2の発熱体給電電極144aと接続されている。
The fourth electrode 137 is connected to the second heating element 133 through the second heating element extraction electrode 143 provided on the insulating substrate 131 or the insulating member 140. In addition, the second heating element 133 is connected to the second heating element feeding electrode 144a provided on the back surface 131b of the insulating substrate 131 through the second heating element electrode 144 and a castellation facing the side edge of the insulating substrate 131. Connected with.
さらに、第5の電極138は、絶縁基板131の側面に臨むキャスタレーションを介して絶縁基板131の裏面に設けられた第5の外部接続電極138aと接続されている。
Furthermore, the fifth electrode 138 is connected to a fifth external connection electrode 138 a provided on the back surface of the insulating substrate 131 through a castellation facing the side surface of the insulating substrate 131.
切替素子130は、第1の電極134から第3の電極136に跨って第1のヒューズエレメント1Aが接続され、第2の電極135から第4の電極137を介して第5の電極138に跨って第2のヒューズエレメント1Bが接続されている。第1、第2のヒューズエレメント1A,1Bは、上述したヒューズエレメント1と同様に、高融点金属層2を備えることにより高温環境に対する耐性が向上されているため実装性に優れ、ハンダ等の接続材料145を介して第1~第5の電極134~138上に搭載された後、リフローはんだ付け等により容易に接続することができる。なお、ヒューズエレメント1A,1Bは、最下層に設けられた第1の低融点金属層3又は第2の低融点金属層4を接続材料として用いて、第1~第5の電極134~138上に接続してもよい。
The switching element 130 is connected to the first fuse element 1A from the first electrode 134 to the third electrode 136, and from the second electrode 135 to the fifth electrode 138 through the fourth electrode 137. The second fuse element 1B is connected. Like the fuse element 1 described above, the first and second fuse elements 1A and 1B are excellent in mountability due to the refractory metal layer 2 and thus improved in mountability, and can be connected to solder or the like. After being mounted on the first to fifth electrodes 134 to 138 via the material 145, they can be easily connected by reflow soldering or the like. The fuse elements 1A and 1B are formed on the first to fifth electrodes 134 to 138 using the first low melting point metal layer 3 or the second low melting point metal layer 4 provided as the lowermost layer as a connecting material. You may connect to.
[フラックスシート]
また、切替素子130は、高融点金属層2又は第1、第2の低融点金属層3,4の酸化防止と、溶断時の酸化物除去及びハンダの流動性向上のために、ヒューズエレメント1の表面や裏面にフラックスをコーティングしてもよい。また、図26に示すように、ヒューズエレメント1A,1B上の最外層の全面にフラックスシート146を配置してもよい。フラックスシート146は、上記フラックスシート87と同様に、流動体又は半流動体のフラックスをシート状の支持体に含浸、保持させたものであり、例えば不織布やメッシュ状の生地にフラックスを含浸させたものである。 [Flux sheet]
The switchingelement 130 includes a fuse element 1 for preventing oxidation of the refractory metal layer 2 or the first and second low melting point metal layers 3, 4, removing oxide during fusing, and improving solder fluidity. A flux may be coated on the front surface or the back surface. Further, as shown in FIG. 26, a flux sheet 146 may be disposed on the entire outermost layer on the fuse elements 1A and 1B. Similar to the flux sheet 87, the flux sheet 146 is obtained by impregnating and holding a fluid or semi-fluid flux in a sheet-like support. For example, a nonwoven fabric or a mesh-like cloth is impregnated with the flux. Is.
また、切替素子130は、高融点金属層2又は第1、第2の低融点金属層3,4の酸化防止と、溶断時の酸化物除去及びハンダの流動性向上のために、ヒューズエレメント1の表面や裏面にフラックスをコーティングしてもよい。また、図26に示すように、ヒューズエレメント1A,1B上の最外層の全面にフラックスシート146を配置してもよい。フラックスシート146は、上記フラックスシート87と同様に、流動体又は半流動体のフラックスをシート状の支持体に含浸、保持させたものであり、例えば不織布やメッシュ状の生地にフラックスを含浸させたものである。 [Flux sheet]
The switching
フラックスシート146は、ヒューズエレメント1A,1Bの表面積よりも広い面積を有することが好ましい。これにより、ヒューズエレメント1A,1Bは、フラックスシート146によって完全に被覆され、溶融により体積が膨張した場合にも、確実にフラックスによる酸化物除去、及び濡れ性の向上による速溶断を実現することができる。
The flux sheet 146 preferably has an area larger than the surface area of the fuse elements 1A and 1B. Thereby, even when the fuse elements 1A and 1B are completely covered with the flux sheet 146 and the volume is expanded by melting, it is possible to surely realize the quick fusing by removing the oxide by the flux and improving the wettability. it can.
フラックスシート146を配置することにより、ヒューズエレメント1の実装時や切替素子130の実装時における熱処理工程においてもフラックスをヒューズエレメント1A,1Bの全面にわたって保持することができ、切替素子130の実使用時において、第1、第2の低融点金属層3,4(例えばハンダ)の濡れ性を高めるとともに、第1、第2の低融点金属が溶解している間の酸化物を除去し、高融点金属(例えばAg)への浸食作用を用いて速溶断性を向上させることができる。
By disposing the flux sheet 146, the flux can be held over the entire surface of the fuse elements 1A and 1B in the heat treatment process when the fuse element 1 is mounted or when the switching element 130 is mounted. The first and second low melting point metal layers 3 and 4 (for example, solder) are improved in wettability, and oxides are removed while the first and second low melting point metals are dissolved, thereby obtaining a high melting point. The fast fusing property can be improved by using an erosion action on a metal (for example, Ag).
また、フラックスシート146を配置することにより、最外層の高融点金属層2の表面に、Snを主成分とするPbフリーハンダ等の酸化防止膜を形成した場合にも、当該酸化防止膜の酸化物を除去することができ、高融点金属層2の酸化を効果的に防止し、速溶断性を維持、向上することができる。
Further, even when an anti-oxidation film such as Pb-free solder containing Sn as a main component is formed on the surface of the outermost refractory metal layer 2 by arranging the flux sheet 146, the oxidation of the anti-oxidation film The material can be removed, the refractory metal layer 2 can be effectively prevented from being oxidized, and the fast fusing property can be maintained and improved.
なお、切替素子130は、フラックスシート146に替えて、図27に示すように、ヒューズエレメント1の最外層にフラックス148aを塗布した後、フラックス148aの上に不織布やメッシュ状の生地を配置し、フラックス148aを含浸させてもよい。また、切替素子130は、図28に示すように、フラックスシートに替えて、ヒューズエレメント1A,1Bの最外層の全面に、繊維状物が混合されたフラックス148bを塗布してもよい。フラックス148bは繊維状物が混合されることにより粘性が高められ、高温環境下においても流動しにくく、ヒューズエレメント1の全面にわたって溶断時の酸化物除去及び濡れ性の向上を図ることができる。なお、フラックス148bに混合させる繊維状物としては、例えば不織布繊維、ガラス繊維等、絶縁性、耐熱性を備えた繊維が好適に用いられる。
In addition, instead of the flux sheet 146, the switching element 130, as shown in FIG. 27, after applying the flux 148a to the outermost layer of the fuse element 1, arrange a non-woven fabric or mesh-like fabric on the flux 148a, A flux 148a may be impregnated. In addition, as shown in FIG. 28, the switching element 130 may apply a flux 148b in which a fibrous material is mixed to the entire outermost layer of the fuse elements 1A and 1B, instead of the flux sheet. Viscosity of the flux 148b is increased by mixing the fibrous material, and it is difficult for the flux 148b to flow even in a high-temperature environment, so that the oxide can be removed and the wettability can be improved over the entire surface of the fuse element 1. In addition, as a fibrous material mixed with the flux 148b, for example, a fiber having insulating properties and heat resistance, such as a nonwoven fabric fiber and a glass fiber, is preferably used.
このとき、切替素子130は、フラックスシート146を、ヒューズエレメント1A及びヒューズエレメント1B上にわたって搭載してもよく、ヒューズエレメント1Aとヒューズエレメント1Bのそれぞれに搭載してもよい。あるいは、切替素子130は、ヒューズエレメント1Aとヒューズエレメント1Bのそれぞれにフラックス148aが塗布された後、不織布やメッシュ状の生地をヒューズエレメント1A及びヒューズエレメント1B上にわたって搭載してもよく、あるいは不織布やメッシュ状の生地をヒューズエレメント1Aとヒューズエレメント1Bのそれぞれに搭載してもよい。さらに、切替素子130は、ヒューズエレメント1A及びヒューズエレメント1Bのそれぞれに、繊維状物が混合され粘性が高められたフラックス148bを塗布してもよい。
At this time, the switching element 130 may mount the flux sheet 146 over the fuse element 1A and the fuse element 1B, or may be mounted on each of the fuse element 1A and the fuse element 1B. Alternatively, the switching element 130 may be mounted with a nonwoven fabric or a mesh-shaped fabric over the fuse element 1A and the fuse element 1B after the flux 148a is applied to each of the fuse element 1A and the fuse element 1B. A mesh-shaped cloth may be mounted on each of the fuse element 1A and the fuse element 1B. Furthermore, the switching element 130 may apply a flux 148b in which the fibrous material is mixed and the viscosity is increased to each of the fuse element 1A and the fuse element 1B.
なお、第1~第5の電極134,135,136,137,138は、CuやAg等の一般的な電極材料を用いて形成することができるが、少なくとも第1、第2の電極134,135の表面上には、Ni/Auメッキ、Ni/Pdメッキ、Ni/Pd/Auメッキ等の被膜149が、公知のメッキ処理により形成されていることが好ましい。これにより、第1、第2の電極134,135の酸化を防止し、溶融導体を確実に保持させることができる。また、切替素子130をリフロー実装する場合に、第1、第2のヒューズエレメント1A,1Bを接続するハンダあるいは第1、第2のヒューズエレメント1A,1Bの外層を形成する低融点金属が溶融することにより第1、第2の電極134,135を溶食(ハンダ食われ)することを防ぐことができる。
Note that the first to fifth electrodes 134, 135, 136, 137, and 138 can be formed using a general electrode material such as Cu or Ag, but at least the first and second electrodes 134, A coating 149 such as Ni / Au plating, Ni / Pd plating, or Ni / Pd / Au plating is preferably formed on the surface of 135 by a known plating process. Thereby, the oxidation of the first and second electrodes 134 and 135 can be prevented, and the molten conductor can be reliably held. Further, when the switching element 130 is reflow-mounted, the solder for connecting the first and second fuse elements 1A and 1B or the low melting point metal forming the outer layer of the first and second fuse elements 1A and 1B is melted. This can prevent the first and second electrodes 134 and 135 from being eroded (soldered).
また、第1~第5の電極134~138には、上述したヒューズエレメント1A,1Bの溶融導体やヒューズエレメント1A,1Bの接続材料145の流出を防止するガラス等の絶縁材料からなる流出防止部147が形成されている。
In addition, the first to fifth electrodes 134 to 138 include an outflow prevention portion made of an insulating material such as glass for preventing the molten conductor of the fuse elements 1A and 1B and the connection material 145 of the fuse elements 1A and 1B from flowing out. 147 is formed.
[カバー部材]
また、切替素子130は、ヒューズエレメント1A,1Bが設けられた絶縁基板131の表面131a上に、内部を保護するとともに溶融したヒューズエレメント1A,1Bの飛散を防止するカバー部材139が取り付けられている。カバー部材139は、各種エンジニアリングプラスチック、セラミックス等の絶縁性を有する部材により形成することができる。切替素子130は、ヒューズエレメント1A,1Bがカバー部材139によって覆われるため、溶融金属がカバー部材139によって捕捉され、周囲への飛散を防止できる。 [Cover member]
The switchingelement 130 has a cover member 139 for protecting the inside and preventing the molten fuse elements 1A and 1B from scattering on the surface 131a of the insulating substrate 131 provided with the fuse elements 1A and 1B. . The cover member 139 can be formed of an insulating member such as various engineering plastics and ceramics. In the switching element 130, the fuse elements 1 </ b> A and 1 </ b> B are covered with the cover member 139, so that the molten metal is captured by the cover member 139 and can be prevented from being scattered to the surroundings.
また、切替素子130は、ヒューズエレメント1A,1Bが設けられた絶縁基板131の表面131a上に、内部を保護するとともに溶融したヒューズエレメント1A,1Bの飛散を防止するカバー部材139が取り付けられている。カバー部材139は、各種エンジニアリングプラスチック、セラミックス等の絶縁性を有する部材により形成することができる。切替素子130は、ヒューズエレメント1A,1Bがカバー部材139によって覆われるため、溶融金属がカバー部材139によって捕捉され、周囲への飛散を防止できる。 [Cover member]
The switching
また、カバー部材139は、天面139aから絶縁基板131に向かって、少なくともフラックスシート146の側面まで延在する突起部139bを有している。カバー部材139は、突起部139bにより、フラックスシート146の側面が移動規制を受けるため、フラックスシート146の位置ずれを防ぐことが可能となる。すなわち、突起部139bは、フラックスシート146の大きさよりも所定のクリアランスを保持した大きさで、フラックスシート146を保持すべき位置に対応して設けられる。なお、突起部139bは、フラックスシート146の側面を周回して覆う壁面としてもよいし、部分的に突起するものであってもよい。
Further, the cover member 139 has a protrusion 139b extending from the top surface 139a toward the insulating substrate 131 at least to the side surface of the flux sheet 146. The cover member 139 can prevent displacement of the flux sheet 146 because the side surface of the flux sheet 146 is restricted by the protrusions 139b. In other words, the protrusion 139b has a size that holds a predetermined clearance rather than the size of the flux sheet 146, and is provided corresponding to the position where the flux sheet 146 should be held. In addition, the protrusion part 139b is good also as a wall surface which wraps around the side surface of the flux sheet | seat 146, and may protrude partially.
また、カバー部材139は、フラックスシート146と天面139aの間に所定の間隔をあけた構成とされている。これは、ヒューズエレメント1A,1Bが溶融した際に、溶融したヒューズエレメント1A,1Bがフラックスシート146を押し上げるためのクリアランスが必要だからである。
Further, the cover member 139 is configured to have a predetermined interval between the flux sheet 146 and the top surface 139a. This is because when the fuse elements 1A and 1B are melted, a clearance is required for the melted fuse elements 1A and 1B to push up the flux sheet 146.
従って、カバー部材139は、カバー部材139の内部空間の高さ(天面139aまでの高さ)は、絶縁基板131の表面131a上の溶融したヒューズエレメント1A,1Bの高さと、フラックスシート146の厚さの和よりも大きくなるように構成されている。
Therefore, the cover member 139 has a height of the internal space of the cover member 139 (a height up to the top surface 139a), the height of the melted fuse elements 1A and 1B on the surface 131a of the insulating substrate 131, and the flux sheet 146. It is comprised so that it may become larger than the sum of thickness.
[切替素子回路]
以上のような切替素子130は、図29に示すような回路構成を有する。すなわち、切替素子130は、第1の電極134と第2の電極135とが、正常時には絶縁され、第1、第2の発熱体132,133の発熱により第1、第2のヒューズエレメント1A,1Bが溶融すると、当該溶融導体を介して短絡するスイッチ150を構成する。そして、第1の外部接続電極134aと第2の外部接続電極135aは、スイッチ150の両端子を構成する。 [Switching element circuit]
The switchingelement 130 as described above has a circuit configuration as shown in FIG. That is, in the switching element 130, the first electrode 134 and the second electrode 135 are insulated in the normal state, and the first and second fuse elements 1A, 1A, When 1B is melted, the switch 150 is configured to be short-circuited through the molten conductor. The first external connection electrode 134a and the second external connection electrode 135a constitute both terminals of the switch 150.
以上のような切替素子130は、図29に示すような回路構成を有する。すなわち、切替素子130は、第1の電極134と第2の電極135とが、正常時には絶縁され、第1、第2の発熱体132,133の発熱により第1、第2のヒューズエレメント1A,1Bが溶融すると、当該溶融導体を介して短絡するスイッチ150を構成する。そして、第1の外部接続電極134aと第2の外部接続電極135aは、スイッチ150の両端子を構成する。 [Switching element circuit]
The switching
また、第1のヒューズエレメント1Aは、第3の電極136及び第1の発熱体引出電極141を介して第1の発熱体132と接続されている。第2のヒューズエレメント1Bは、第4の電極137及び第2の発熱体引出電極143を介して第2の発熱体133と接続され、さらに第2の発熱体電極144を介して第2の発熱体給電電極144aと接続されている。すなわち、第2のヒューズエレメント1B及び第2のヒューズエレメント1Bが接続される第2の電極135、第4の電極137及び第5の電極138は、切替素子130の作動前においては第2のヒューズエレメント1Bを介して第2の電極135と第5の電極138との間を導通させ、第2のヒューズエレメント1Bが溶断されることにより第2の電極135と第5の電極138との間を遮断する保護素子として機能する。
The first fuse element 1A is connected to the first heating element 132 via the third electrode 136 and the first heating element lead electrode 141. The second fuse element 1B is connected to the second heating element 133 through the fourth electrode 137 and the second heating element extraction electrode 143, and further, the second heating element 1B is connected to the second heating element electrode 144 through the second heating element electrode 144. The body power supply electrode 144a is connected. That is, the second electrode 135, the fourth electrode 137, and the fifth electrode 138 to which the second fuse element 1B and the second fuse element 1B are connected are the second fuse element 130 before the switching element 130 is operated. The second electrode 135 and the fifth electrode 138 are brought into conduction through the element 1B, and the second fuse element 1B is blown so that the second electrode 135 and the fifth electrode 138 are connected. It functions as a protective element for blocking.
そして、切替素子130は、第2の発熱体給電電極144aより第2の発熱体133に通電されると、図30に示すように、第2の発熱体133の発熱により第2のヒューズエレメント1Bが溶融し、第2、第4、第5の電極135,137,138にそれぞれ凝集する。これにより第2のヒューズエレメント1Bを介して接続されていた第2の電極135と第5の電極138とに亘る電流経路が遮断される。また、切替素子130は、第1の発熱体給電電極142aより第1の発熱体132に通電されると、第1の発熱体132の発熱により第1のヒューズエレメント1Aが溶融し、第1、第3の電極134,136にそれぞれ凝集する。これにより、切替素子130は、図31(A)(B)に示すように、第1の電極134と第2の電極135とに凝集した第1、第2のヒューズエレメント1A,1Bの溶融導体が結合することにより、絶縁されていた第1の電極134と第2の電極135とを短絡させる。すなわち切替素子130は、スイッチ150を短絡させ、第2、第5の電極135,138間にわたる電流経路を、第1、第2の電極134,135間にわたる電流経路に切り替えることができる(図32)。
When the switching element 130 is energized to the second heating element 133 from the second heating element feeding electrode 144a, the second fuse element 1B is generated by the heat generation of the second heating element 133 as shown in FIG. Melts and aggregates on the second, fourth, and fifth electrodes 135, 137, and 138, respectively. As a result, the current path extending between the second electrode 135 and the fifth electrode 138 connected via the second fuse element 1B is interrupted. Further, when the switching element 130 is energized to the first heating element 132 from the first heating element power supply electrode 142a, the first fuse element 1A is melted by the heat generated by the first heating element 132, and the first, Aggregates on the third electrodes 134 and 136, respectively. As a result, the switching element 130, as shown in FIGS. 31A and 31B, is a molten conductor of the first and second fuse elements 1A and 1B aggregated into the first electrode 134 and the second electrode 135. Are coupled to short-circuit the insulated first electrode 134 and second electrode 135. That is, the switching element 130 can short-circuit the switch 150 to switch the current path between the second and fifth electrodes 135 and 138 to the current path between the first and second electrodes 134 and 135 (FIG. 32). ).
このとき、ヒューズエレメント1A,1Bは、上述したように、高融点金属層2よりも融点の低い第1の低融点金属層3及び第1の低融点金属層3よりも融点の低い第2の低融点金属層4が積層されているため、第1、第2の発熱体132,133の発熱により、第2の低融点金属層4の融点から溶融を開始し、高融点金属層2を浸食し始める。したがって、ヒューズエレメント1A,1Bは、第1、第2の低融点金属層3,4による高融点金属層2の浸食作用を利用することにより、高融点金属層2が溶融温度よりも低い温度で溶融され、速やかに溶断することができる。
At this time, as described above, the fuse elements 1A and 1B have the first low melting point metal layer 3 having a melting point lower than that of the refractory metal layer 2 and the second melting point lower than that of the first low melting point metal layer 3. Since the low melting point metal layer 4 is laminated, the melting of the second low melting point metal layer 4 is started from the melting point of the second low melting point metal layer 4 by the heat generation of the first and second heating elements 132 and 133, and the high melting point metal layer 2 is eroded. Begin to. Therefore, the fuse elements 1A and 1B use the erosion action of the refractory metal layer 2 by the first and second low melting point metal layers 3 and 4, so that the refractory metal layer 2 is at a temperature lower than the melting temperature. It is melted and can be blown quickly.
なお、第1の発熱体132への通電は、第1のヒューズエレメント1Aが溶断することにより第1、第3の電極134,136間が遮断されるため、停止され、第2の発熱体133への通電は、第2のヒューズエレメント1Bが溶断することにより、第2、第4の電極135,137間及び第4、第5の電極137,138間が遮断されるため、停止される。
The energization of the first heating element 132 is stopped because the first fuse element 1A is melted and the first and third electrodes 134 and 136 are cut off, and the second heating element 133 is turned off. Since the second fuse element 1B is melted, the current between the second and fourth electrodes 135 and 137 and the fourth and fifth electrodes 137 and 138 are interrupted.
[第2の可溶導体の先溶融]
ここで、切替素子130は、第2のヒューズエレメント1Bが第1のヒューズエレメント1Aよりも先行して溶融することが好ましい。切替素子130は、第1の発熱体132と第2の発熱体133とが、別々に発熱されることから、通電のタイミングとして第2の発熱体133を先に発熱させ、その後に第1の発熱体132を発熱させることで、図30に示すように、第2のヒューズエレメント1Bを第1のヒューズエレメント1Aよりも先行して溶融させ、図31に示すように、確実に第1、第2の電極134,135上に、第1、第2のヒューズエレメント1A,1Bの溶融導体を凝集、結合させ、第1、第2の電極134,135を短絡させることができる。 [First melting of second soluble conductor]
Here, in theswitching element 130, it is preferable that the second fuse element 1B is melted prior to the first fuse element 1A. Since the first heating element 132 and the second heating element 133 generate heat separately, the switching element 130 causes the second heating element 133 to generate heat first as the energization timing, and then the first heating element 132 and the second heating element 133 generate heat. By causing the heat generating element 132 to generate heat, the second fuse element 1B is melted prior to the first fuse element 1A as shown in FIG. 30, and the first and first fuses are securely connected as shown in FIG. The first and second electrodes 134 and 135 can be short-circuited by aggregating and bonding the molten conductors of the first and second fuse elements 1A and 1B on the two electrodes 134 and 135.
ここで、切替素子130は、第2のヒューズエレメント1Bが第1のヒューズエレメント1Aよりも先行して溶融することが好ましい。切替素子130は、第1の発熱体132と第2の発熱体133とが、別々に発熱されることから、通電のタイミングとして第2の発熱体133を先に発熱させ、その後に第1の発熱体132を発熱させることで、図30に示すように、第2のヒューズエレメント1Bを第1のヒューズエレメント1Aよりも先行して溶融させ、図31に示すように、確実に第1、第2の電極134,135上に、第1、第2のヒューズエレメント1A,1Bの溶融導体を凝集、結合させ、第1、第2の電極134,135を短絡させることができる。 [First melting of second soluble conductor]
Here, in the
また、切替素子130は、第2のヒューズエレメント1Bを、第1のヒューズエレメント1Aよりも幅狭に形成することにより、第2のヒューズエレメント1Bを第1のヒューズエレメント1Aよりも先に溶断するようにしてもよい。第2のヒューズエレメント1Bを幅狭に形成することにより、溶断時間を短くすることができるため、第2のヒューズエレメント1Bが第1のヒューズエレメント1Aよりも先行して溶融させることができる。
Further, the switching element 130 forms the second fuse element 1B narrower than the first fuse element 1A, thereby fusing the second fuse element 1B before the first fuse element 1A. You may do it. By forming the second fuse element 1B narrowly, the fusing time can be shortened, so that the second fuse element 1B can be melted prior to the first fuse element 1A.
[電極面積]
また、切替素子130は、第1の電極134の面積を第3の電極136よりも広くし、第2の電極135の面積を第4、第5の電極137,138よりも広くすることが好ましい。溶融導体の保持量は、電極面積に比例して多くなるため、第1、第2の電極134,135の面積を第3、第4、第5の電極136,137,138よりも広く形成することにより、より多くの溶融導体を第1、第2の電極134,135上に凝集させることができ、第1、第2の電極134,135間を確実に短絡させることができる。 [Electrode area]
In theswitching element 130, the area of the first electrode 134 is preferably larger than that of the third electrode 136, and the area of the second electrode 135 is preferably larger than those of the fourth and fifth electrodes 137 and 138. . Since the holding amount of the molten conductor increases in proportion to the electrode area, the areas of the first and second electrodes 134 and 135 are formed wider than the third, fourth, and fifth electrodes 136, 137, and 138. As a result, more molten conductors can be agglomerated on the first and second electrodes 134 and 135, and the first and second electrodes 134 and 135 can be reliably short-circuited.
また、切替素子130は、第1の電極134の面積を第3の電極136よりも広くし、第2の電極135の面積を第4、第5の電極137,138よりも広くすることが好ましい。溶融導体の保持量は、電極面積に比例して多くなるため、第1、第2の電極134,135の面積を第3、第4、第5の電極136,137,138よりも広く形成することにより、より多くの溶融導体を第1、第2の電極134,135上に凝集させることができ、第1、第2の電極134,135間を確実に短絡させることができる。 [Electrode area]
In the
[切替素子の変形例]
なお、切替素子130は、必ずしも、第1、第2の発熱体132,133を絶縁部材140によって被覆する必要はなく、第1、第2の発熱体132,133が絶縁基板131の内部に設置されてもよい。絶縁基板131の材料として熱伝導性に優れたものを用いることにより、第1、第2の発熱体132,133は、ガラス層等の絶縁部材140を介した場合と同等に加熱することができる。 [Modification of switching element]
The switchingelement 130 does not necessarily need to cover the first and second heating elements 132 and 133 with the insulating member 140, and the first and second heating elements 132 and 133 are installed inside the insulating substrate 131. May be. By using a material having excellent thermal conductivity as the material of the insulating substrate 131, the first and second heating elements 132 and 133 can be heated in the same manner as when the insulating member 140 such as a glass layer is interposed. .
なお、切替素子130は、必ずしも、第1、第2の発熱体132,133を絶縁部材140によって被覆する必要はなく、第1、第2の発熱体132,133が絶縁基板131の内部に設置されてもよい。絶縁基板131の材料として熱伝導性に優れたものを用いることにより、第1、第2の発熱体132,133は、ガラス層等の絶縁部材140を介した場合と同等に加熱することができる。 [Modification of switching element]
The switching
また、切替素子130は、第1、第2の発熱体132,133が絶縁基板131の第1~第5の電極134,135,136,137,138の形成面と反対の裏面に設置されてもよい。第1、第2の発熱体132,133を絶縁基板131の裏面131bに形成することにより、絶縁基板131内に形成するよりも簡易な工程で形成することができる。なお、この場合、第1、第2の発熱体132,133上には、絶縁部材140が形成されると抵抗体の保護や実装時の絶縁性確保と言う意味で好ましい。
In the switching element 130, the first and second heating elements 132 and 133 are installed on the back surface of the insulating substrate 131 opposite to the formation surface of the first to fifth electrodes 134, 135, 136, 137, and 138. Also good. By forming the first and second heating elements 132 and 133 on the back surface 131 b of the insulating substrate 131, the first and second heating elements 132 and 133 can be formed by a simpler process than forming in the insulating substrate 131. In this case, it is preferable that the insulating member 140 is formed on the first and second heating elements 132 and 133 in terms of protecting the resistor and ensuring insulation during mounting.
さらに、切替素子130は、第1、第2の発熱体132,133が絶縁基板131の第1~第5の電極134,135,136,137,138の形成面上に設置されるとともに、第1~第5の電極134~138に併設されてもよい。第1、第2の発熱体132,133を絶縁基板131の表面131aに形成することにより、絶縁基板131内に形成するよりも簡易な工程で形成することができる。なお、この場合も、第1、第2の発熱体132,133上には、絶縁部材140が形成される事が望ましい。
Further, the switching element 130 includes first and second heating elements 132 and 133 installed on the formation surface of the first to fifth electrodes 134, 135, 136, 137, and 138 of the insulating substrate 131, and The first to fifth electrodes 134 to 138 may be provided together. By forming the first and second heating elements 132 and 133 on the surface 131 a of the insulating substrate 131, the first and second heating elements 132 and 133 can be formed by a simpler process than that in the insulating substrate 131. Also in this case, it is desirable that the insulating member 140 is formed on the first and second heating elements 132 and 133.
1,10,20,30,40,50,60,70 ヒューズエレメント、2 高融点金属層、3 第1の低融点金属層、4 第2の低融点金属層、80 ヒューズ素子、81 絶縁基板、82 第1の電極、82a 第1の外部接続電極、83 第2の電極、83a 第2の外部接続電極、84 接着剤、85 フラックス、86 保護層、87 フラックスシート、88 接続材料、89 カバー部材、90 保護素子、91 絶縁基板、92 絶縁部材、93 発熱体、94 第1の電極、94a 第1の外部接続電極、95 第2の電極、95a 第2の外部接続電極、96 発熱体引出電極、97 カバー部材、98 保護層、99 発熱体電極、99a 発熱体給電電極、100 接続材料、101 フラックスシート、102 流出防止部、104 フラックス、110 短絡素子、111 絶縁基板、112 発熱体、113 第1の電極、113a 第1の外部接続電極、114 第2の電極、114a 第2の外部接続電極、115 第3の電極、116 カバー部材、117 接続材料、118 絶縁部材、119 フラックス、120 発熱体引出電極、121 発熱体電極、121a 発熱体給電電極、122 フラックスシート、123 スイッチ、124 第4の電極、125 第2のヒューズエレメント、126 流出防止部、130 切替素子、131 絶縁基板、132 第1の発熱体、133 第2の発熱体、134 第1の電極、134a 第1の外部接続電極、135 第2の電極、135a 第2の外部接続電極、136 第3の電極、137 第4の電極、138 第5の電極、139 カバー部材、140 絶縁部材、141 第1の発熱体引出電極、142 第1の発熱体電極、142a 第1の発熱体給電電極、143 第2の発熱体引出電極、144 第2の発熱体電極、144a 第2の発熱体給電電極、145 接続材料、146 フラックスシート、147 流出防止部、150 スイッチ
1, 10, 20, 30, 40, 50, 60, 70 fuse element, 2 high melting point metal layer, 3rd first low melting point metal layer, 4 second low melting point metal layer, 80 fuse element, 81 insulating substrate, 82 1st electrode, 82a 1st external connection electrode, 83 2nd electrode, 83a 2nd external connection electrode, 84 adhesive, 85 flux, 86 protective layer, 87 flux sheet, 88 connection material, 89 cover member , 90 protection element, 91 insulating substrate, 92 insulating member, 93 heating element, 94 first electrode, 94a first external connection electrode, 95 second electrode, 95a second external connection electrode, 96 heating element extraction electrode , 97 cover member, 98 protective layer, 99 heating element electrode, 99a heating element feeding electrode, 100 connecting material, 101 flux sheet, 102 Outflow prevention part, 104 flux, 110 short circuit element, 111 insulating substrate, 112 heating element, 113 first electrode, 113a first external connection electrode, 114 second electrode, 114a second external connection electrode, 115 third Electrode, 116 cover member, 117 connecting material, 118 insulating member, 119 flux, 120 heating element extraction electrode, 121 heating element electrode, 121a heating element feed electrode, 122 flux sheet, 123 switch, 124 fourth electrode, 125th 2 fuse element, 126 outflow prevention part, 130 switching element, 131 insulating substrate, 132 first heating element, 133 second heating element, 134 first electrode, 134a first external connection electrode, 135 second Electrode, 135a second external connection electrode, 136 third electrode 137 4th electrode, 138 5th electrode, 139 cover member, 140 insulating member, 141 1st heating element extraction electrode, 142 1st heating element electrode, 142a 1st heating element feeding electrode, 143 2nd Heating element extraction electrode, 144, second heating element electrode, 144a, second heating element feed electrode, 145 connection material, 146 flux sheet, 147 outflow prevention part, 150 switch
Claims (30)
- 互いに融点の異なる3層以上の金属層が積層されたヒューズエレメント。 A fuse element in which three or more metal layers with different melting points are laminated.
- 高融点金属層と、
上記高融点金属層よりも融点の低い第1の低融点金属層と、
上記第1の低融点金属層よりも融点の低い第2の低融点金属層とを有し、
上記高融点金属層は、上記第1の低融点金属層と上記第2の低融点金属層との間に積層されている請求項1記載のヒューズエレメント。 A refractory metal layer,
A first low melting point metal layer having a melting point lower than that of the high melting point metal layer;
A second low melting point metal layer having a melting point lower than that of the first low melting point metal layer,
The fuse element according to claim 1, wherein the refractory metal layer is laminated between the first low melting point metal layer and the second low melting point metal layer. - 上記高融点金属層、上記第1の低融点金属層及び上記第2の低融点金属層によって、4層以上積層されている請求項2記載のヒューズエレメント。 The fuse element according to claim 2, wherein four or more layers are laminated by the high melting point metal layer, the first low melting point metal layer, and the second low melting point metal layer.
- 上記第1の低融点金属層、上記高融点金属層、上記第2の低融点金属層、上記高融点金属層の順序で4層以上積層されている請求項2に記載のヒューズエレメント。 The fuse element according to claim 2, wherein four or more layers are laminated in the order of the first low melting point metal layer, the high melting point metal layer, the second low melting point metal layer, and the high melting point metal layer.
- 上記第2の低融点金属層、上記高融点金属層、上記第1の低融点金属層、上記高融点金属層の順序で4層以上積層されている請求項2に記載のヒューズエレメント。 The fuse element according to claim 2, wherein four or more layers are laminated in the order of the second low melting point metal layer, the high melting point metal layer, the first low melting point metal layer, and the high melting point metal layer.
- 内層が上記第1の低融点金属層であり、上記内層に積層される外層が上記高融点金属層であり、上記外層に積層される最外層が上記第2の低融点金属層である請求項2記載のヒューズエレメント。 The inner layer is the first low melting point metal layer, the outer layer stacked on the inner layer is the high melting point metal layer, and the outermost layer stacked on the outer layer is the second low melting point metal layer. 2. The fuse element according to 2.
- 内層が上記第2の低融点金属層であり、上記内層に積層される外層が上記高融点金属層であり、上記外層に積層される最外層が上記第1の低融点金属層である請求項2記載のヒューズエレメント。 The inner layer is the second low melting point metal layer, the outer layer laminated on the inner layer is the high melting point metal layer, and the outermost layer laminated on the outer layer is the first low melting point metal layer. 2. The fuse element according to 2.
- 上記高融点金属層の体積よりも上記第1の低融点金属層の体積の方が多い請求項2~7のいずれか1項に記載のヒューズエレメント。 The fuse element according to any one of claims 2 to 7, wherein the volume of the first low melting point metal layer is larger than the volume of the high melting point metal layer.
- 上記高融点金属層の体積よりも上記第2の低融点金属層の体積の方が多い請求項2~7のいずれか1項に記載のヒューズエレメント。 The fuse element according to any one of claims 2 to 7, wherein the volume of the second low melting point metal layer is larger than the volume of the high melting point metal layer.
- 上記高融点金属層はAg、Cu又はAg若しくはCuを主成分とする合金であり、上記第1の低融点金属層はSn又はSnを主成分とする合金であり、上記第2の低融点金属層はBi、In又はBi若しくはInを含む合金である請求項2~7のいずれか1項に記載のヒューズエレメント。 The high melting point metal layer is Ag, Cu, or an alloy containing Ag or Cu as a main component, the first low melting point metal layer is Sn or an alloy containing Sn as a main component, and the second low melting point metal is used. The fuse element according to any one of claims 2 to 7, wherein the layer is Bi, In, or an alloy containing Bi or In.
- 互いに融点の異なる3層以上の金属層が積層されたヒューズエレメントを有し、
定格を超える過電流が流れることにより上記ヒューズエレメントが溶断するヒューズ素子。 It has a fuse element in which three or more metal layers having different melting points are laminated,
A fuse element in which the fuse element blows when an overcurrent exceeding the rating flows. - 絶縁基板と、
上記絶縁基板上に形成された第1、第2の電極と、
少なくとも、高融点金属層と、上記高融点金属層よりも融点の低い第1の低融点金属層とが積層され、上記第1、第2の電極間に跨って接続されるヒューズエレメントとを有し、
上記ヒューズエレメントは、上記第1の低融点金属層よりも融点の低い第2の低融点金属層によって上記第1、第2の電極に接続されているヒューズ素子。 An insulating substrate;
First and second electrodes formed on the insulating substrate;
At least a refractory metal layer and a first low-melting-point metal layer having a melting point lower than that of the refractory metal layer are laminated, and a fuse element connected between the first and second electrodes is provided. And
The fuse element is connected to the first and second electrodes by a second low melting point metal layer having a melting point lower than that of the first low melting point metal layer. - 上記ヒューズエレメントは、上記高融点金属層が、上記第1の低融点金属層と上記第2の低融点金属層との間に積層され、少なくとも一方の最外層が上記第2の低融点金属層である請求項12記載のヒューズ素子。 In the fuse element, the high melting point metal layer is laminated between the first low melting point metal layer and the second low melting point metal layer, and at least one outermost layer is the second low melting point metal layer. The fuse element according to claim 12.
- 絶縁基板と、
上記絶縁基板上に形成された第1、第2の電極と、
少なくとも、高融点金属層と、上記高融点金属層よりも融点の低い第2の低融点金属層とが積層され、上記第1、第2の電極間に跨って接続されるヒューズエレメントとを有し、
上記ヒューズエレメントは、上記高融点金属層よりも融点が低く、かつ上記第2の低融点金属層よりも融点の高い第1の低融点金属層によって上記第1、第2の電極に接続されているヒューズ素子。 An insulating substrate;
First and second electrodes formed on the insulating substrate;
At least a refractory metal layer and a second low-melting-point metal layer having a lower melting point than the refractory metal layer are laminated, and a fuse element connected between the first and second electrodes is provided. And
The fuse element is connected to the first and second electrodes by a first low melting point metal layer having a melting point lower than that of the high melting point metal layer and higher than that of the second low melting point metal layer. Fuse element. - 上記ヒューズエレメントは、上記高融点金属層が、上記第1の低融点金属層と上記第2の低融点金属層との間に積層され、少なくとも一方の最外層が上記第1の低融点金属層である請求項14記載のヒューズ素子。 In the fuse element, the high melting point metal layer is laminated between the first low melting point metal layer and the second low melting point metal layer, and at least one outermost layer is the first low melting point metal layer. The fuse element according to claim 14.
- 絶縁基板と、
上記絶縁基板上又は上記絶縁基板の内部に形成された発熱体と、
上記絶縁基板上に設けられた第1、第2の電極と、
上記発熱体と電気的に接続された発熱体引出電極と、
上記第1の電極から上記発熱体引出電極を介して上記第2の電極に跨って接続された可溶導体とを有し、
上記可溶導体は、互いに融点の異なる3層以上の金属層が積層されたヒューズエレメントからなり、上記発熱体の通電発熱により溶融し、上記第1、第2の電極間を遮断する保護素子。 An insulating substrate;
A heating element formed on or inside the insulating substrate;
First and second electrodes provided on the insulating substrate;
A heating element extraction electrode electrically connected to the heating element;
A fusible conductor connected across the second electrode from the first electrode through the heating element extraction electrode;
The fusible conductor comprises a fuse element in which three or more metal layers having different melting points are laminated, and is melted by energization heat generation of the heating element to cut off between the first and second electrodes. - 絶縁基板と、
上記絶縁基板上又は上記絶縁基板の内部に形成された発熱体と、
上記絶縁基板上に設けられた第1、第2の電極と、
上記発熱体と電気的に接続された発熱体引出電極と、
上記第1の電極から上記発熱体引出電極を介して上記第2の電極に跨って接続された可溶導体とを有し、
上記可溶導体は、少なくとも、高融点金属層と、上記高融点金属層よりも融点の低い第1の低融点金属層とが積層されたヒューズエレメントからなり、
上記ヒューズエレメントは、上記第1の低融点金属層よりも融点の低い第2の低融点金属層によって上記第1、第2の電極及び上記発熱体引出電極に接続され、上記発熱体の通電発熱により溶融し、上記第1、第2の電極間を遮断する保護素子。 An insulating substrate;
A heating element formed on or inside the insulating substrate;
First and second electrodes provided on the insulating substrate;
A heating element extraction electrode electrically connected to the heating element;
A fusible conductor connected across the second electrode from the first electrode through the heating element extraction electrode;
The fusible conductor comprises at least a high melting point metal layer and a fuse element in which a first low melting point metal layer having a lower melting point than the high melting point metal layer is laminated,
The fuse element is connected to the first and second electrodes and the heating element lead-out electrode by a second low melting point metal layer having a melting point lower than that of the first low melting point metal layer. A protective element which melts by the above and interrupts between the first and second electrodes. - 上記ヒューズエレメントは、上記高融点金属層が、上記第1の低融点金属層と上記第2の低融点金属層との間に積層され、少なくとも一方の最外層が上記第2の低融点金属層である請求項17記載の保護素子。 In the fuse element, the high melting point metal layer is laminated between the first low melting point metal layer and the second low melting point metal layer, and at least one outermost layer is the second low melting point metal layer. The protective element according to claim 17.
- 絶縁基板と、
上記絶縁基板上又は上記絶縁基板の内部に形成された発熱体と、
上記絶縁基板上に設けられた第1、第2の電極と、
上記発熱体と電気的に接続された発熱体引出電極と、
上記第1の電極から上記発熱体引出電極を介して上記第2の電極に跨って接続された可溶導体とを有し、
上記可溶導体は、少なくとも、高融点金属層と、上記高融点金属層よりも融点の低い第2の低融点金属層とが積層されたヒューズエレメントからなり、
上記ヒューズエレメントは、上記高融点金属層よりも融点が低く、かつ上記第2の低融点金属層よりも融点の高い第1の低融点金属層によって上記第1、第2の電極及び上記発熱体引出電極に接続され、上記発熱体の通電発熱により溶融し、上記第1、第2の電極間を遮断する保護素子。 An insulating substrate;
A heating element formed on or inside the insulating substrate;
First and second electrodes provided on the insulating substrate;
A heating element extraction electrode electrically connected to the heating element;
A fusible conductor connected across the second electrode from the first electrode through the heating element extraction electrode;
The fusible conductor comprises at least a fuse element in which a high melting point metal layer and a second low melting point metal layer having a lower melting point than the high melting point metal layer are laminated,
In the fuse element, the first and second electrodes and the heating element are formed by a first low melting point metal layer having a melting point lower than that of the high melting point metal layer and higher than that of the second low melting point metal layer. A protective element connected to the extraction electrode and melted by energization heat generation of the heating element to cut off between the first and second electrodes. - 上記ヒューズエレメントは、上記高融点金属層が、上記第1の低融点金属層と上記第2の低融点金属層との間に積層され、少なくとも一方の最外層が上記第1の低融点金属層である請求項19記載の保護素子。 In the fuse element, the high melting point metal layer is laminated between the first low melting point metal layer and the second low melting point metal layer, and at least one outermost layer is the first low melting point metal layer. The protection element according to claim 19.
- 絶縁基板と、
上記絶縁基板上又は上記絶縁基板の内部に形成された発熱体と、
上記絶縁基板上に隣接して設けられた第1、第2の電極と、
上記絶縁基板上に設けられ上記発熱体と電気的に接続された第3の電極と、
上記第1、第3の電極間に跨って接続される可溶導体とを有し、
上記可溶導体は、互いに融点の異なる3層以上の金属層が積層されたヒューズエレメントからなり、上記発熱体の通電発熱により溶融し、上記第1、第2の電極間を短絡させるとともに、上記第1、第3の電極間を遮断する短絡素子。 An insulating substrate;
A heating element formed on or inside the insulating substrate;
First and second electrodes provided adjacent to each other on the insulating substrate;
A third electrode provided on the insulating substrate and electrically connected to the heating element;
A fusible conductor connected across the first and third electrodes,
The fusible conductor is composed of a fuse element in which three or more metal layers having different melting points are laminated, melted by energization heat generation of the heating element, and short-circuits between the first and second electrodes. A short-circuit element that blocks between the first and third electrodes. - 絶縁基板と、
上記絶縁基板上又は上記絶縁基板の内部に形成された発熱体と、
上記絶縁基板上に隣接して設けられた第1、第2の電極と、
上記絶縁基板上に設けられ上記発熱体と電気的に接続された第3の電極と、
上記第1、第3の電極間に跨って接続される可溶導体とを有し、
上記可溶導体は、少なくとも、高融点金属層と、上記高融点金属層よりも融点の低い第1の低融点金属層とが積層されたヒューズエレメントからなり、
上記ヒューズエレメントは、上記第1の低融点金属層よりも融点の低い第2の低融点金属層によって上記第1、第3の電極に接続され、上記発熱体の通電発熱により溶融し、上記第1、第2の電極間を短絡させるとともに、上記第1、第3の電極間を遮断する短絡素子。 An insulating substrate;
A heating element formed on or inside the insulating substrate;
First and second electrodes provided adjacent to each other on the insulating substrate;
A third electrode provided on the insulating substrate and electrically connected to the heating element;
A fusible conductor connected across the first and third electrodes,
The fusible conductor comprises at least a high melting point metal layer and a fuse element in which a first low melting point metal layer having a lower melting point than the high melting point metal layer is laminated,
The fuse element is connected to the first and third electrodes by a second low-melting-point metal layer having a melting point lower than that of the first low-melting-point metal layer, and is melted by energization heat generation of the heating element. 1. A short-circuit element for short-circuiting between the first and second electrodes and blocking between the first and third electrodes. - 上記ヒューズエレメントは、上記高融点金属層が、上記第1の低融点金属層と上記第2の低融点金属層との間に積層され、少なくとも一方の最外層が上記第2の低融点金属層である請求項22記載の短絡素子。 In the fuse element, the high melting point metal layer is laminated between the first low melting point metal layer and the second low melting point metal layer, and at least one outermost layer is the second low melting point metal layer. The short-circuit element according to claim 22.
- 絶縁基板と、
上記絶縁基板上又は上記絶縁基板の内部に形成された発熱体と、
上記絶縁基板上に隣接して設けられた第1、第2の電極と、
上記絶縁基板上に設けられ上記発熱体と電気的に接続された第3の電極と、
上記第1、第3の電極間に跨って接続される可溶導体とを有し、
上記可溶導体は、少なくとも、高融点金属層と、上記高融点金属層よりも融点の低い第2の低融点金属層とが積層されたヒューズエレメントからなり、
上記ヒューズエレメントは、上記高融点金属層よりも融点が低く、かつ上記第2の低融点金属層よりも融点の高い第1の低融点金属層によって上記第1、第3の電極に接続され、上記発熱体の通電発熱により溶融し、上記第1、第2の電極間を短絡させるとともに、上記第1、第3の電極間を遮断する短絡素子。 An insulating substrate;
A heating element formed on or inside the insulating substrate;
First and second electrodes provided adjacent to each other on the insulating substrate;
A third electrode provided on the insulating substrate and electrically connected to the heating element;
A fusible conductor connected across the first and third electrodes,
The fusible conductor comprises at least a fuse element in which a high melting point metal layer and a second low melting point metal layer having a lower melting point than the high melting point metal layer are laminated,
The fuse element is connected to the first and third electrodes by a first low melting point metal layer having a melting point lower than that of the high melting point metal layer and higher than that of the second low melting point metal layer, A short-circuit element that melts due to energization heat generation of the heating element, short-circuits the first and second electrodes, and interrupts the first and third electrodes. - 上記ヒューズエレメントは、上記高融点金属層が、上記第1の低融点金属層と上記第2の低融点金属層との間に積層され、少なくとも一方の最外層が上記第1の低融点金属層である請求項24記載の短絡素子。 In the fuse element, the high melting point metal layer is laminated between the first low melting point metal layer and the second low melting point metal layer, and at least one outermost layer is the first low melting point metal layer. The short-circuit element according to claim 24.
- 絶縁基板と、
上記絶縁基板上又は上記絶縁基板の内部に形成された第1、第2の発熱体と、
上記絶縁基板上に隣接して設けられた第1、第2の電極と、
上記絶縁基板上に設けられ上記第1の発熱体と電気的に接続する第3の電極と、
上記第1、第3の電極間に跨って接続される第1の可溶導体と、
上記絶縁基板上に設けられ上記第2の発熱体と電気的に接続する第4の電極と、
上記絶縁基板上に上記第4の電極と隣接して設けられた第5の電極と、
上記第2の電極から上記第4の電極を介して上記第5の電極に跨って接続された第2の可溶導体とを有し、
上記第1、第2の可溶導体は、互いに融点の異なる3層以上の金属層が積層されたヒューズエレメントからなり、
上記第2の発熱体の通電発熱により上記第2の可溶導体を溶融させて上記第2、第5の電極間を遮断し、
上記第1の発熱体の通電発熱により上記第1の可溶導体を溶融させて上記第1、第2の電極間を短絡する切替素子。 An insulating substrate;
First and second heating elements formed on or in the insulating substrate;
First and second electrodes provided adjacent to each other on the insulating substrate;
A third electrode provided on the insulating substrate and electrically connected to the first heating element;
A first fusible conductor connected across the first and third electrodes;
A fourth electrode provided on the insulating substrate and electrically connected to the second heating element;
A fifth electrode provided adjacent to the fourth electrode on the insulating substrate;
A second soluble conductor connected from the second electrode through the fourth electrode to the fifth electrode,
The first and second fusible conductors are composed of fuse elements in which three or more metal layers having different melting points are laminated,
The second fusible conductor is melted by energization heat generation of the second heating element to cut off between the second and fifth electrodes,
A switching element that melts the first soluble conductor by energization heat generation of the first heating element to short-circuit the first and second electrodes. - 絶縁基板と、
上記絶縁基板上又は上記絶縁基板の内部に形成された第1、第2の発熱体と、
上記絶縁基板上に隣接して設けられた第1、第2の電極と、
上記絶縁基板上に設けられ上記第1の発熱体と電気的に接続する第3の電極と、
上記第1、第3の電極間に跨って接続される第1の可溶導体と、
上記絶縁基板上に設けられ上記第2の発熱体と電気的に接続する第4の電極と、
上記絶縁基板上に上記第4の電極と隣接して設けられた第5の電極と、
上記第2の電極から上記第4の電極を介して上記第5の電極に跨って接続された第2の可溶導体とを有し、
上記第1、第2の可溶導体は、少なくとも、高融点金属層と、上記高融点金属層よりも融点の低い第1の低融点金属層とが積層されたヒューズエレメントからなり、
上記第1の可溶導体は、上記第1の低融点金属層よりも融点の低い第2の低融点金属層によって上記第1、第3の電極に接続され、
上記第2の可溶導体は、上記第1の低融点金属層よりも融点の低い第2の低融点金属層によって上記第2、第4、第5の電極に接続され、
上記第2の発熱体の通電発熱により上記第2の可溶導体を溶融させて上記第2、第5の電極間を遮断し、
上記第1の発熱体の通電発熱により上記第1の可溶導体を溶融させて上記第1、第2の電極間を短絡する切替素子。 An insulating substrate;
First and second heating elements formed on or in the insulating substrate;
First and second electrodes provided adjacent to each other on the insulating substrate;
A third electrode provided on the insulating substrate and electrically connected to the first heating element;
A first fusible conductor connected across the first and third electrodes;
A fourth electrode provided on the insulating substrate and electrically connected to the second heating element;
A fifth electrode provided adjacent to the fourth electrode on the insulating substrate;
A second soluble conductor connected from the second electrode through the fourth electrode to the fifth electrode,
The first and second fusible conductors comprise at least a fuse element in which a high melting point metal layer and a first low melting point metal layer having a melting point lower than that of the high melting point metal layer are laminated,
The first soluble conductor is connected to the first and third electrodes by a second low melting point metal layer having a melting point lower than that of the first low melting point metal layer,
The second soluble conductor is connected to the second, fourth, and fifth electrodes by a second low melting point metal layer having a melting point lower than that of the first low melting point metal layer,
The second fusible conductor is melted by energization heat generation of the second heating element to cut off between the second and fifth electrodes,
A switching element that melts the first soluble conductor by energization heat generation of the first heating element to short-circuit the first and second electrodes. - 上記第1、第2の可溶導体は、上記高融点金属層が、上記第1の低融点金属層と上記第2の低融点金属層との間に積層され、少なくとも一方の最外層が上記第2の低融点金属層である請求項27記載の切替素子。 In the first and second soluble conductors, the high melting point metal layer is laminated between the first low melting point metal layer and the second low melting point metal layer, and at least one outermost layer is the above 28. The switching element according to claim 27, wherein the switching element is a second low melting point metal layer.
- 絶縁基板と、
上記絶縁基板上又は上記絶縁基板の内部に形成された第1、第2の発熱体と、
上記絶縁基板上に隣接して設けられた第1、第2の電極と、
上記絶縁基板上に設けられ上記第1の発熱体と電気的に接続する第3の電極と、
上記第1、第3の電極間に跨って接続される第1の可溶導体と、
上記絶縁基板上に設けられ上記第2の発熱体と電気的に接続する第4の電極と、
上記絶縁基板上に上記第4の電極と隣接して設けられた第5の電極と、
上記第2の電極から上記第4の電極を介して上記第5の電極に跨って接続された第2の可溶導体とを有し、
上記第1、第2の可溶導体は、少なくとも、高融点金属層と、上記高融点金属層よりも融点の低い第2の低融点金属層とが積層されたヒューズエレメントからなり、
上記第1の可溶導体は、上記高融点金属層よりも融点が低く、かつ上記第2の低融点金属層よりも融点の高い第1の低融点金属層によって上記第1、第3の電極に接続され、
上記第2の可溶導体は、上記高融点金属層よりも融点が低く、かつ上記第2の低融点金属層よりも融点の高い第1の低融点金属層によって上記第2、第4、第5の電極に接続され、
上記第2の発熱体の通電発熱により上記第2の可溶導体を溶融させて上記第2、第5の電極間を遮断し、
上記第1の発熱体の通電発熱により上記第1の可溶導体を溶融させて上記第1、第2の電極間を短絡する切替素子。 An insulating substrate;
First and second heating elements formed on or in the insulating substrate;
First and second electrodes provided adjacent to each other on the insulating substrate;
A third electrode provided on the insulating substrate and electrically connected to the first heating element;
A first fusible conductor connected across the first and third electrodes;
A fourth electrode provided on the insulating substrate and electrically connected to the second heating element;
A fifth electrode provided adjacent to the fourth electrode on the insulating substrate;
A second soluble conductor connected from the second electrode through the fourth electrode to the fifth electrode,
The first and second fusible conductors comprise at least a fuse element in which a high melting point metal layer and a second low melting point metal layer having a melting point lower than that of the high melting point metal layer are laminated,
The first fusible conductor has a melting point lower than that of the refractory metal layer and is higher than that of the second low melting point metal layer by the first low melting point metal layer. Connected to
The second soluble conductor has a melting point lower than that of the refractory metal layer and is higher than that of the second low melting point metal layer by the first low melting point metal layer. Connected to the electrode of 5,
The second fusible conductor is melted by energization heat generation of the second heating element to cut off between the second and fifth electrodes,
A switching element that melts the first soluble conductor by energization heat generation of the first heating element to short-circuit the first and second electrodes. - 上記第1、第2の可溶導体は、上記高融点金属層が、上記第1の低融点金属層と上記第2の低融点金属層との間に積層され、少なくとも一方の最外層が上記第1の低融点金属層である請求項29記載の切替素子。 In the first and second soluble conductors, the high melting point metal layer is laminated between the first low melting point metal layer and the second low melting point metal layer, and at least one outermost layer is the above 30. The switching element according to claim 29, wherein the switching element is the first low melting point metal layer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177011371A KR101950619B1 (en) | 2014-11-11 | 2015-11-04 | Fuse element, fuse device, protective element, short-circuit element, and switching element |
CN201580059056.7A CN107735849B (en) | 2014-11-11 | 2015-11-04 | Fuse unit, fuse element, protection element, short-circuit element, and switching element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014229360A JP6436729B2 (en) | 2014-11-11 | 2014-11-11 | Fuse element, fuse element, protection element, short-circuit element, switching element |
JP2014-229360 | 2014-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016076173A1 true WO2016076173A1 (en) | 2016-05-19 |
Family
ID=55954263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/081030 WO2016076173A1 (en) | 2014-11-11 | 2015-11-04 | Fuse element, fuse device, protective element, short-circuit element, and switching element |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6436729B2 (en) |
KR (1) | KR101950619B1 (en) |
CN (1) | CN107735849B (en) |
TW (1) | TWI697022B (en) |
WO (1) | WO2016076173A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6811590B2 (en) * | 2016-11-10 | 2021-01-13 | デクセリアルズ株式会社 | Protective element |
WO2018100984A1 (en) * | 2016-11-29 | 2018-06-07 | デクセリアルズ株式会社 | Protection element |
JP7433783B2 (en) * | 2019-06-19 | 2024-02-20 | デクセリアルズ株式会社 | Fuse elements, fuse elements and protection elements |
JP7433796B2 (en) * | 2019-07-24 | 2024-02-20 | デクセリアルズ株式会社 | protection element |
JP2024049240A (en) * | 2022-09-28 | 2024-04-09 | デクセリアルズ株式会社 | Protection element and manufacturing method for protection element |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5539168A (en) * | 1978-09-13 | 1980-03-18 | Mitsubishi Electric Corp | Fuse and method of fabricating same |
JPH03205731A (en) * | 1990-01-01 | 1991-09-09 | Uchihashi Estec Co Ltd | Manufacture of temperature fuse element |
WO2013146889A1 (en) * | 2012-03-29 | 2013-10-03 | デクセリアルズ株式会社 | Protection element |
JP2014179309A (en) * | 2013-02-12 | 2014-09-25 | Dexerials Corp | Short-circuit element and circuit using the same |
WO2014157585A1 (en) * | 2013-03-28 | 2014-10-02 | デクセリアルズ株式会社 | Fuse element and fuse device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4320374A (en) * | 1979-03-21 | 1982-03-16 | Kearney-National (Canada) Limited | Electric fuses employing composite aluminum and cadmium fuse elements |
JP4632358B2 (en) * | 2005-06-08 | 2011-02-16 | 三菱マテリアル株式会社 | Chip type fuse |
JP5072796B2 (en) * | 2008-05-23 | 2012-11-14 | ソニーケミカル&インフォメーションデバイス株式会社 | Protection element and secondary battery device |
JP5130233B2 (en) * | 2009-01-21 | 2013-01-30 | デクセリアルズ株式会社 | Protective element |
JP5130232B2 (en) * | 2009-01-21 | 2013-01-30 | デクセリアルズ株式会社 | Protective element |
JP5306139B2 (en) | 2009-10-08 | 2013-10-02 | 北陸電気工業株式会社 | Chip fuse |
JP6249600B2 (en) * | 2012-03-29 | 2017-12-20 | デクセリアルズ株式会社 | Protective element |
JP6081096B2 (en) * | 2012-08-01 | 2017-02-15 | デクセリアルズ株式会社 | Protective element and battery pack |
WO2014123139A1 (en) * | 2013-02-05 | 2014-08-14 | デクセリアルズ株式会社 | Short-circuit element and circuit using same |
-
2014
- 2014-11-11 JP JP2014229360A patent/JP6436729B2/en active Active
-
2015
- 2015-11-04 KR KR1020177011371A patent/KR101950619B1/en active IP Right Grant
- 2015-11-04 CN CN201580059056.7A patent/CN107735849B/en active Active
- 2015-11-04 TW TW104136254A patent/TWI697022B/en active
- 2015-11-04 WO PCT/JP2015/081030 patent/WO2016076173A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5539168A (en) * | 1978-09-13 | 1980-03-18 | Mitsubishi Electric Corp | Fuse and method of fabricating same |
JPH03205731A (en) * | 1990-01-01 | 1991-09-09 | Uchihashi Estec Co Ltd | Manufacture of temperature fuse element |
WO2013146889A1 (en) * | 2012-03-29 | 2013-10-03 | デクセリアルズ株式会社 | Protection element |
JP2014179309A (en) * | 2013-02-12 | 2014-09-25 | Dexerials Corp | Short-circuit element and circuit using the same |
WO2014157585A1 (en) * | 2013-03-28 | 2014-10-02 | デクセリアルズ株式会社 | Fuse element and fuse device |
Also Published As
Publication number | Publication date |
---|---|
JP2016095899A (en) | 2016-05-26 |
TWI697022B (en) | 2020-06-21 |
CN107735849B (en) | 2020-05-05 |
KR101950619B1 (en) | 2019-02-20 |
TW201630022A (en) | 2016-08-16 |
JP6436729B2 (en) | 2018-12-12 |
CN107735849A (en) | 2018-02-23 |
KR20170059004A (en) | 2017-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6420053B2 (en) | Fuse element and fuse element | |
KR102523229B1 (en) | Protection element and mounted body | |
JP6483987B2 (en) | Fuse element, fuse element, and heating element built-in fuse element | |
JP6249600B2 (en) | Protective element | |
WO2016076173A1 (en) | Fuse element, fuse device, protective element, short-circuit element, and switching element | |
TWI714595B (en) | Fuse unit, fuse element, protection element, short circuit element, switching element | |
JP2008311161A (en) | Protective element | |
JP6576618B2 (en) | Protective element | |
WO2013146889A1 (en) | Protection element | |
KR102135832B1 (en) | Fuse element, fuse element, protection element | |
KR102442404B1 (en) | fuse element | |
JP6577118B2 (en) | Fuse element, fuse element, protection element, short-circuit element, switching element | |
JP2010165685A (en) | Protection element, and battery pack | |
JP2017022009A (en) | Protection element and fuse element | |
WO2016076172A1 (en) | Flax sheet, flax, fuse element, fuse device, protective element, short-circuit element, and switching element | |
JP2014044955A (en) | Protection element, and battery pack | |
JP2018018835A (en) | Protection element and fuse element | |
JP2016170892A (en) | Fuse element and fuse device | |
JP6429591B2 (en) | Protective element | |
JP2012059719A (en) | Protection element, and battery pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15858876 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 20177011371 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15858876 Country of ref document: EP Kind code of ref document: A1 |