[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016075753A1 - Adhesive tape having foamed resin base material, and method for producing same - Google Patents

Adhesive tape having foamed resin base material, and method for producing same Download PDF

Info

Publication number
WO2016075753A1
WO2016075753A1 PCT/JP2014/079819 JP2014079819W WO2016075753A1 WO 2016075753 A1 WO2016075753 A1 WO 2016075753A1 JP 2014079819 W JP2014079819 W JP 2014079819W WO 2016075753 A1 WO2016075753 A1 WO 2016075753A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive tape
pressure
sensitive adhesive
base material
foamed resin
Prior art date
Application number
PCT/JP2014/079819
Other languages
French (fr)
Japanese (ja)
Inventor
鳴 雷
戸高 勝則
靖史 土屋
理 丹羽
Original Assignee
株式会社寺岡製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社寺岡製作所 filed Critical 株式会社寺岡製作所
Priority to CN201480083292.8A priority Critical patent/CN107109148B/en
Priority to JP2016558472A priority patent/JP6326147B2/en
Priority to KR1020177003098A priority patent/KR102350651B1/en
Priority to PCT/JP2014/079819 priority patent/WO2016075753A1/en
Priority to TW104135089A priority patent/TWI706019B/en
Publication of WO2016075753A1 publication Critical patent/WO2016075753A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/26Porous or cellular plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • C09J2475/006Presence of polyurethane in the substrate

Definitions

  • the present invention is a pressure-sensitive adhesive tape having a foamed resin base material, which has sufficient properties even when thin and thin, and has particularly excellent waterproof properties, anti-static properties, impact resistance, heat resistance, repair properties and flexibility.
  • the present invention relates to a pressure-sensitive adhesive tape and a method for producing the same.
  • Patent Documents 1 and 2 disclose waterproof adhesive tapes.
  • a flexible foam is used as the base material of the adhesive tape, and since it is thin and has good followability, it is suitable for use in portable electronic devices.
  • Patent Document 3 discloses a double-sided pressure-sensitive adhesive tape using a laminate of a foam layer and a reinforcing layer (plastic film) as a base material. This adhesive tape is said to be excellent in removability.
  • the display has become larger, the entire product has been slimmed down, and the design has been improved.
  • the adhesive tape thin, but there is an increasing demand for a narrow tape width.
  • the width of the adhesive tape used for bonding the protective panel and the housing has been considerably reduced.
  • the foamed resin base material which has the waterproof property which was excellent even if it was thin and thin is needed for the adhesive tape.
  • portable electronic devices with larger screens and slimming often do not have a space for grounding. Therefore, when a user who is charged with static electricity touches the portable electronic device, the static electricity passes through the adhesive tape. Built-in parts may be damaged and not work properly.
  • an adhesive tape is required to have a foamed resin base material having excellent anti-static properties even if it is thin and thin. Moreover, since a portable electronic device may be used or left at a high temperature or may receive an impact force, heat resistance and impact resistance are required. Furthermore, in order to easily peel off the adhesive tape without problems when re-attaching fixed parts or replacing parts during repair in the portable electronic device manufacturing process, the adhesive tape has excellent reworkability or high repairability. is necessary.
  • An object of the present invention is to provide a pressure-sensitive adhesive tape having sufficient characteristics even when it is thin and thin, and having particularly excellent waterproof properties, anti-static properties, impact resistance, heat resistance, repair properties and flexibility, and a method for producing the same. It is to provide.
  • the present invention is an adhesive tape having a foamed resin base material containing closed cells and an adhesive layer provided on at least one side of the foamed resin base material, wherein the average void diameter of the closed cells is 20 to 180 ⁇ m, The maximum void diameter is 300 ⁇ m or less, the heating dimensional change rate of the adhesive tape is within 100% ⁇ 5% when the dimension before heating is 100%, and the rubber elastic elongation recovery rate of the adhesive tape is 85% It is the adhesive tape which is the above.
  • the present invention is a method for producing the above-mentioned pressure-sensitive adhesive tape, comprising a step of obtaining a foamed resin base material by forming closed cells using thermally expandable microcapsules and / or already expanded hollow fillers. It is a manufacturing method of an adhesive tape.
  • the adhesive tape of the present invention controls the void diameter of closed cells of the foamed resin base material to a small size within a specific range, and thus has excellent waterproofness, electrostatic resistance and impact resistance in a narrow tape. Furthermore, since the heating dimensional change rate of the adhesive tape is low, it has excellent heat resistance, and since the rubber elastic elongation recovery rate is high, it has excellent repairability.
  • closed cells are formed using thermally expandable microcapsules and / or pre-expanded hollow fillers. Therefore, the void diameter of closed cells in a substrate is set to a small size within a specific range of the present invention. Can be easily controlled.
  • the foamed resin base material in the present invention is a base material in which closed cells are formed by foaming the resin.
  • the foamed resin base material containing closed cells is superior in water resistance and artificial sebum sweat oil resistance compared to the foamed resin base material containing open cells.
  • the average void diameter of closed cells in the foamed resin substrate is 20 to 180 ⁇ m, preferably 30 to 150 ⁇ m, more preferably 40 to 120 ⁇ m. Further, the maximum void diameter of the closed cells is 300 ⁇ m or less, preferably 250 ⁇ m or less, more preferably 200 ⁇ m or less.
  • FIG. 1 is an optical micrograph of one form of closed cells in the pressure-sensitive adhesive tape of the present invention.
  • FIG. 2 is an optical micrograph of one form of closed cells in a conventional adhesive tape. As is apparent from these photographs, the size of the closed cells is greatly different.
  • Electrostatic resistance is generally affected by the resin type of the foamed resin base material, but when the resin type is the same, the size of closed cells is considered to affect the antistatic characteristics.
  • FIG. 2 prior art
  • the average void diameter is as large as several hundred ⁇ m
  • applying a static electricity of 15 kV in the width direction of the narrow-width processed adhesive tape will cause the foamed resin substrate to break down easily. In some cases, characteristics such as waterproofness may be impaired.
  • the kind of resin is the same, if the void diameter is controlled to a small size within a specific range as shown in FIG. 1 (the present invention), the foamed resin base material is difficult to break.
  • the reason why the antistatic property is improved is not necessarily clear, but there is a possibility that, for example, an increase in the number of resin films between bubbles is one of the factors.
  • the resin portion interposed between two bubbles is defined as a single “resin film”, the number of resin films increases when there are many small bubbles if the porosity is the same.
  • the number of resin films in the form of FIG. 1 (present invention) is about 10 times or more the number of sheets in FIG. 2 (prior art). In the present invention, it can be presumed that such an increase in the number of resin films has a favorable influence on the improvement of the antistatic property.
  • the foamed resin base material is likely to be destructed by an impact at a low temperature.
  • a film base material having no air bubbles or a double-sided pressure-sensitive adhesive tape having no base material is likely to peel off the adherend due to impact, and the display member such as glass may be destroyed.
  • the void diameter is controlled to a small size within a specific range as in the present invention, the impact absorbability is improved and sufficient impact resistance is exhibited even at low temperatures.
  • the foamed resin base material in the present invention is resistant to water resistance, artificial sebum sweat oil resistance, static electricity resistance and other characteristics, and is also a very excellent base material in terms of stability of each performance.
  • the resin constituting the foamed resin base material is not particularly limited.
  • a base polymer and a crosslinking agent having water resistance and oil resistance from the viewpoint of waterproofness and resistance to artificial sebum sweat oil.
  • base polymers include polyurethane resins, which are polymers of polyols and polyfunctional isocyanates; polyolefins such as polyethylene and polypropylene; styrene-butadiene-styrene-block copolymer, styrene-isobutylene-styrene-block copolymer Styrene block copolymer such as polymer; Ethylene copolymer such as ethylene-vinyl acetate, ethylene-ethyl acrylate, ethylene-methyl methacrylate; Acrylic block such as methyl methacrylate-butyl acrylate-methyl methacrylate Copolymerized polymers; acrylic acid ester copolymers obtained by copolymerizing 2-ethylhexyl acrylate, methyl acrylate and the like; halogenated polymers such as polyvinyl chloride; Of these, polyurethane resins are preferred from the viewpoints of antistatic properties, heat resistance,
  • the polyurethane-based resin is generally a resin including a soft segment composed of a polyol monomer unit and a hard segment composed of a polyfunctional isocyanate compound or a low molecular glycol monomer unit.
  • the polyol used for the polyurethane-based resin is a compound having two or more hydroxyl groups.
  • the number of hydroxyl groups in the polyol is preferably close to 2 from the viewpoint of improving characteristics such as rubber elastic elongation recovery rate.
  • the number of hydroxyl groups in the polyol is preferably 2 to 3, and more preferably 2.
  • polyester polyol, polyether polyol, polycaprolactone polyol, polycarbonate polyol, or castor oil-based polyol can be used. Two or more polyols may be used in combination.
  • Polyester polyol is obtained, for example, by an esterification reaction between a polyol component and an acid component.
  • the polyol component include ethylene glycol, diethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl- 1,3-propanediol, 2,4-diethyl-1,5-pentanediol, 1,2-hexanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 2- Examples include methyl-1,8-octanediol, 1,8-decanediol, octadecanediol, glycerin, trimethylolpropane, pentaerythritol, hexa
  • the acid component include succinic acid, methyl succinic acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, dimer acid, 2-methyl-1 , 4-cyclohexanedicarboxylic acid, 2-ethyl-1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, isophthalic acid, terephthalic acid, 1,4-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid
  • acids and acid anhydrides thereof include acids and acid anhydrides thereof.
  • Polyether polyols start with, for example, water, low molecular weight polyols (eg propylene glycol, ethylene glycol, glycerin, trimethylolpropane, pentaerythritol), bisphenols (eg bisphenol A) or dihydroxybenzenes (eg catechol, resorcin, hydroquinone)
  • alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide.
  • Specific examples include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
  • Specific examples of the polycaprolactone polyol include ring-opening polymers of cyclic ester monomers such as ⁇ -caprolactone and ⁇ -valerolactone.
  • polycarbonate polyol examples include polycarbonate polyols obtained by polycondensation reaction of each of the above polyol components and phosgene; each of the above polyol components, dimethyl carbonate, diethyl carbonate, diprovir carbonate, diisopropyl carbonate, dibutyl carbonate, ethylbutyl carbonate, ethylene Polycarbonate polyol obtained by transesterification condensation with carbonic acid diesters such as carbonate, propylene carbonate, diphenyl carbonate and dibenzyl carbonate; copolymer polycarbonate polyol obtained by using two or more of each of the above polyol components; A polycarbonate polyol obtained by an esterification reaction with a carboxyl group-containing compound; each of the above polycarbonate polyols and a hydroxyl group-containing compound; Polycarbonate polyol obtained by etherification reaction; polycarbonate polyol obtained by transesterification of each of the above polycarbonate polyol and ester
  • Castor oil-based polyol is obtained, for example, by reacting castor oil fatty acid with each of the above polyol components (for example, polypropylene glycol).
  • polyfunctional isocyanate compound used for the polyurethane resin for example, a polyfunctional aliphatic isocyanate compound, a polyfunctional alicyclic isocyanate compound, or a polyfunctional aromatic isocyanate compound can be used. Trimethylolpropane adducts of these compounds, burettes reacted with water, and trimers having an isocyanurate ring can also be used. Two or more polyfunctional isocyanate compounds may be used in combination.
  • polyfunctional aliphatic isocyanate compound examples include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,3-butylene diisocyanate, dodecamethylene diisocyanate, 2,4. 1,4-trimethylhexamethylene diisocyanate.
  • polyfunctional alicyclic isocyanate compound examples include 1,3-cyclopentene diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, Examples include hydrogenated tolylene diisocyanate and hydrogenated tetramethylxylylene diisocyanate.
  • polyfunctional aromatic diisocyanate compound examples include phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,2′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, Examples include 4,4'-toluidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, and xylylene diisocyanate.
  • the polyurethane-based resin is obtained by curing the composition containing the polyol and the polyfunctional isocyanate compound described above.
  • a low crystalline linear polyester polyurethane resin is preferable, and a hexanediol copolyester polyurethane resin and a polytetramethylene glycol polyurethane resin are more preferable.
  • polyurethane resins examples include the product name Samprene manufactured by Sanyo Kasei Kogyo Co., Ltd., the product name Desmocol manufactured by Sumika Bayer Urethane Co., Ltd., and the product name NIPPOLAN manufactured by Nippon Polyurethane Industry Co., Ltd.
  • JIS K 6253 “Rubber Hardness Standard” the low crystallinity is obtained by preparing a resin test piece having a thickness of 6 mm and melting the test piece at 100 ° C. for 30 minutes, 23 ⁇ 2 ° C., relative humidity This can be determined by measuring the time from when the resin is left in an environment of 50 ⁇ 5% until the hardness of the resin reaches Shore A90.
  • a resin having a time period of 72 hours or longer until Shore A 90 is reached can be referred to as a low crystalline resin.
  • the product name Desmocol 500 manufactured by Sumika Bayer Urethane Co., Ltd. is a highly crystalline resin that takes about 5 minutes to reach Shore A90, and the product name Desmocol 540 is about 10 minutes. It is a medium crystalline resin for 48 hours.
  • desmocol 406 is a low crystalline resin for 72 hours.
  • a crosslinking agent from the viewpoint of improving properties such as strength, heat resistance and rubber elasticity of the base polymer.
  • a crosslinking agent for example, a metal chelate-based, metal alkoxide-based, epoxy-based, isocyanate-based, aziridine-based, polyfunctional acrylate, carbodiimide-based, oxazoline-based, or melamine-based crosslinking agent can be used.
  • an isocyanate-based crosslinking agent is preferable from the viewpoints of reactivity, ease of synthesis, flexibility and impact resistance of the substrate itself, and adhesion to the pressure-sensitive adhesive layer.
  • catalysts other resin components may be added to the resin composition for constituting the foamed resin base material.
  • catalysts other resin components, tackifiers, inorganic fillers, organic fillers, metal powders, pigments, foils, softeners, plasticizers, anti-aging agents, heat dissipation agents, conductive agents
  • Antioxidants, ultraviolet absorbers, light stabilizers, surface lubricants, leveling agents, corrosion inhibitors, heat stabilizers, polymerization inhibitors, lubricants, and solvents can be added.
  • a catalyst such as an organometallic compound or a tertiary amine compound for the curing reaction.
  • organometallic compounds include iron compounds, tin compounds, titanium compounds, zirconium compounds, lead compounds, cobalt compounds, zinc compounds, and bismuth compounds.
  • iron-based compounds and bismuth-based compounds are preferable.
  • the method of forming closed cells in the resin described above is not particularly limited, but a method of forming using a foaming agent such as a thermally expandable microcapsule, an already expanded hollow filler, an inorganic foaming agent, an organic foaming agent, or the like. preferable. Among these, it is particularly preferable to use thermally expandable microcapsules and / or already expanded hollow fillers.
  • a foaming agent such as a thermally expandable microcapsule, an already expanded hollow filler, an inorganic foaming agent, an organic foaming agent, or the like.
  • the average void diameter is as large as several hundreds ⁇ m or partially as 1 to 2 mm as shown in FIG. 2 (prior art)
  • a penetration state may be partially formed.
  • the foamed resin-based adhesive tape processed with a narrow width is a big problem in properties such as waterproofness and electrostatic resistance. Therefore, in the prior art, an extremely large closed cell portion is removed by an optical detector.
  • problems such as a lack of reliability, a decrease in yield due to variations in manufacturing lots, and an increase in costs due to an increase in processing costs arise.
  • a foaming control system using thermally expandable microcapsules and / or already expanded hollow fillers is employed, the void diameter can be easily controlled to a small size within the specific range of the present invention.
  • the heat-expandable microcapsule is typically a microsphere comprising an outer shell mainly composed of a thermoplastic resin and a liquid low-boiling hydrocarbon contained in the outer shell.
  • the boiling point of the liquid low boiling point hydrocarbon is not higher than the softening temperature of the thermoplastic resin constituting the outer shell.
  • Closed cells can be formed by heating and foaming the resin containing the thermally expandable microcapsules.
  • the thermally expandable microcapsules are dispersed in a resin for constituting the base material, and thermally expand to such an extent that they do not rupture when the resin is thermoformed, and maintain the expanded shape after molding. Thereby, closed cells are formed in the resin.
  • the average particle diameter of the thermally expandable microcapsule before expansion is preferably 5 to 50 ⁇ m, more preferably 10 to 30 ⁇ m, and the average particle diameter after expansion is preferably 30 to 150 ⁇ m, more preferably 40 to 120 ⁇ m.
  • the thermal expansion start temperature of the thermally expandable microcapsule is preferably 100 to 170 ° C.
  • the maximum foaming temperature is preferably 160 to 200 ° C.
  • the volume expansion coefficient is preferably about 50 to 100 times.
  • the thermoplastic resin constituting the outer shell of the thermally expandable microcapsule may be appropriately selected according to conditions such as the softening temperature and thermoforming temperature of the resin constituting the base material.
  • Specific examples include homopolymers composed of monomers such as (meth) acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate; and copolymers composed of two or more of these monomers.
  • Inorganic particles such as titanium oxide, zinc oxide, alumina, silica, and calcium carbonate may be fixed to the surface of the outer shell using a binder resin.
  • the foaming characteristics (for example, the expansion coefficient) can be controlled by forming the outer shell mainly from acrylonitrile and silicon and adjusting the blending amount of silicon.
  • the liquid low-boiling hydrocarbons encapsulated in the thermally expandable microcapsules are preferably hydrocarbons that are vaporized when the resin constituting the substrate is thermoformed.
  • Specific examples include low-boiling liquids such as normal butane, isobutane, normal pentane, isopentane, and petroleum ether.
  • thermal expandable microcapsules examples include Matsumoto Microspheres F-36D, F-36LVD, FN-80GSD, FN-100SD, FN-100MD, FN-100SSD, and FN manufactured by Matsumoto Yushi Seiyaku Co., Ltd. -105D, FN-180SSD, etc., trade names such as EXPANCEL 053-40, 909-80, 930-120, etc., and trade names Fine Cell Master MS401K, MS402K, MS405K, etc., manufactured by Dainichi Seika Kogyo.
  • the already expanded hollow filler is obtained by foaming a thermally expandable microcapsule alone. Only one of the thermally expandable microcapsule and the already expanded hollow filler may be used, or both may be used in combination.
  • the inorganic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, and sodium borohydride.
  • organic foaming agent examples include chlorofluorinated alkanes such as trichloromonofluoromethane and dichloromonofluoromethane, azo compounds such as azobisisobutyronitrile, azodicarbonamide, barium azodicarboxylate, and paratoluene.
  • chlorofluorinated alkanes such as trichloromonofluoromethane and dichloromonofluoromethane
  • azo compounds such as azobisisobutyronitrile, azodicarbonamide, barium azodicarboxylate, and paratoluene.
  • Hydrazine compounds such as sulfonyl hydrazide, diphenyl sulfone-3,3′-disulfonyl hydrazide, 4,4′-oxybis (benzenesulfonyl hydrazide), allyl bis (sulfonyl hydrazide), ⁇ -toluylene sulfonyl semicarbazide, 4,4′- Semicarbazide compounds such as oxybis (benzenesulfonyl semicarbazide), triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole, N, N′-dinitrosopentamethylenetetramine, N, N′-dimethyl- N, N'-Gini N- nitroso compounds such as nitroso terephthalamide and the like.
  • the foamed resin base material used in the present invention is a base material in which closed cells are formed by foaming the resin.
  • the expansion ratio is preferably 1.2 to 4 times, more preferably 2 to 3 times.
  • the thickness of the foamed resin base material is preferably 0.05 to 1.0 mm, more preferably 0.08 to 0.3 mm.
  • the foamed resin base material may be subjected to a surface treatment for improving adhesion with the pressure-sensitive adhesive layer or other layers.
  • the surface treatment include corona treatment, flame treatment, plasma treatment, hot air treatment, ozone / ultraviolet treatment, and application of an easy adhesion treatment agent.
  • the degree of surface treatment can be determined by, for example, a wetting index with a wetting reagent. From the viewpoint of adhesion to the pressure-sensitive adhesive layer, the wetting index of the substrate surface after the surface treatment is preferably 36 mN / m or more, more preferably 40 mN / m, and particularly preferably 48 mN / m.
  • An adhesive layer is a layer which consists of an adhesive composition, and is provided in the at least single side
  • the pressure-sensitive adhesive composition is not particularly limited as long as it contains a pressure-sensitive adhesive that does not impair the effects of the present invention.
  • an emulsion-based adhesive, a solvent-based adhesive, an oligomer-based adhesive, a solid adhesive, and a hot-melt adhesive can be used.
  • Examples of the type of pressure-sensitive adhesive include acrylic pressure-sensitive adhesive, rubber-based pressure-sensitive adhesive (natural rubber-based pressure-sensitive adhesive or synthetic rubber-based pressure-sensitive adhesive), silicone-based pressure-sensitive adhesive, polyester-based pressure-sensitive adhesive, urethane-based pressure-sensitive adhesive, and polyamide-based pressure-sensitive adhesive. Agents, epoxy adhesives, vinyl alkyl ether adhesives, and fluorine adhesives. Two or more pressure-sensitive adhesives may be used in combination.
  • an acrylic pressure-sensitive adhesive is preferable from the viewpoint of properties such as heat resistance, cold resistance, water resistance, and resistance to artificial sebum sweat oil.
  • the acrylic pressure-sensitive adhesive is generally a composition containing as a main component a compound obtained by curing an acrylic copolymer [(meth) acrylic acid ester copolymer etc.] as a base polymer with a crosslinking agent.
  • an acrylic copolymer [(meth) acrylic acid ester copolymer etc.]
  • a crosslinking agent e.g., the pressure-sensitive adhesive described in International Publication No. 2014/002203 can be suitably used.
  • the acrylic copolymer used for the acrylic pressure-sensitive adhesive is typically a (meth) acrylic acid ester copolymer having a hydroxyl group and a carboxyl group.
  • (meth) acrylic acid ester copolymer obtained by copolymerizing at least four components of long chain (meth) acrylic acid alkyl ester, carboxyl group-containing monomer, hydroxyl group-containing monomer and short chain (meth) acrylic acid alkyl ester Coalescence is preferred.
  • the long-chain (meth) acrylic acid alkyl ester is preferably a (meth) acrylic acid alkyl ester having an alkyl group having 4 to 12 carbon atoms.
  • Specific examples thereof include butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, and lauryl (meth) acrylate.
  • carboxyl group-containing monomer examples include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, 2-stroxy-1-butene, 2-strol-1-oxypentene, 2-strol ruboxy. Examples include -1-hexene and 2-stroxyl-heptene.
  • the hydroxyl group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • the short chain (meth) acrylic acid alkyl ester is a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 3 carbon atoms. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, propyl ( (Meth) acrylate. Of these, methyl acrylate is preferable.
  • the content of the long chain (meth) acrylic acid alkyl ester unit is preferably 50 to 90% by mass, more preferably 50%, in 100% by mass of the constituent component (monomer unit) of the (meth) acrylic acid ester copolymer. ⁇ 80% by mass.
  • the content of the carboxyl group-containing monomer unit is preferably 3 to 20% by mass, more preferably 3 to 12% by mass.
  • the content of the hydroxyl group-containing monomer unit is preferably 3 to 20% by mass, more preferably 3 to 18% by mass.
  • the content of the short-chain (meth) acrylic acid alkyl ester unit is preferably 3 to 15% by mass, more preferably 3 to 12% by mass.
  • the total content of the carboxyl group-containing monomer unit and the hydroxyl group-containing monomer unit is preferably 13% by mass or more. Moreover, within the range which does not impair the effect of this invention, monomer units other than these four components may be included.
  • the acrylic copolymer can be obtained by copolymerizing a plurality of monomers.
  • the polymerization method is not particularly limited, but radical solution polymerization is preferable from the viewpoint of easy polymer design.
  • an acrylic syrup composed of an acrylic copolymer and its monomer may be prepared first, and this acrylic syrup may be blended with a crosslinking agent and an additional photopolymerization initiator for polymerization.
  • the weight average molecular weight of the acrylic copolymer is preferably 700,000 to 2,000,000, more preferably 700 to 1,500,000.
  • the lower limit of these ranges is significant in terms of load resistance and workability.
  • an upper limit has significance in the point of the applicability
  • This weight average molecular weight is a value measured by the GPC method.
  • the theoretical Tg of the acrylic copolymer is preferably ⁇ 40 ° C. or lower, more preferably ⁇ 50 ° C. to ⁇ 75 ° C. This theoretical Tg is a value calculated by the FOX equation.
  • the main resin component of the acrylic pressure-sensitive adhesive is an acrylic copolymer, but other types of resin components can be used in combination as long as the characteristics are not impaired.
  • the crosslinking agent used for the acrylic pressure-sensitive adhesive is a compound that reacts with the acrylic copolymer to form a crosslinked structure, and typically reacts with a carboxyl group and / or a hydroxyl group of the acrylic copolymer.
  • the resulting compound In particular, from the viewpoint of properties such as waterproofness, load resistance, processability, impact resistance, artificial sebum resistance, and artificial sweat oil resistance, an isocyanate-based crosslinking agent and an epoxy-based crosslinking agent are preferable. These may be used in combination.
  • the blending amount of the crosslinking agent is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the acrylic copolymer.
  • isocyanate crosslinking agent examples include tolylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and modified prepolymers thereof. Two or more of these may be used in combination.
  • the amount of the isocyanate-based crosslinking agent is preferably 0.02 to 1 part by mass, more preferably 0.05 to 0.2 part by mass with respect to 100 parts by mass of the acrylic copolymer.
  • the epoxy crosslinking agent examples include epoxy groups such as N, N, N ′, N′-tetraglycidyl-m-xylylenediamine and 1,3-bis (N, N′-diglycidylaminomethyl) cyclohexane.
  • the compound which has 2 or more is mentioned. Two or more of these may be used in combination.
  • the blending amount of the epoxy crosslinking agent is preferably 0.001 to 0.5 parts by mass, more preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the acrylic copolymer.
  • a tackifier for example, a plasticizer, a filler, and a colorant can be added to the adhesive.
  • the tackifier include rosin resins (rosin ester, polymerized rosin, disproportionated rosin ester, etc.), terpene phenol resins, terpene resins, petroleum resins, and styrene resins.
  • a specific example of the filler is silicon oxide.
  • the colorant include carbon black, titanium oxide, aniline black, acetylene black, and ketjen black. Further, for example, carbon black, carbon nanotube, or black inorganic filler may be added as the light-shielding filler.
  • the pressure-sensitive adhesive layer can be formed by, for example, applying a pressure-sensitive adhesive on a base material and causing a crosslinking reaction by heating or ultraviolet irradiation. Further, for example, the pressure-sensitive adhesive can be applied on a release paper or other film, and a pressure-sensitive adhesive layer can be formed by crosslinking reaction by heating or ultraviolet irradiation, and this pressure-sensitive adhesive layer can be bonded to one side or both sides of the substrate. .
  • a coating device such as a roll coater, a die coater, or a lip coater can be used.
  • the solvent in the pressure-sensitive adhesive composition can be removed together with the crosslinking reaction by heating.
  • the thickness of the pressure-sensitive adhesive layer is preferably 5 to 100 ⁇ m, more preferably 10 to 80 ⁇ m.
  • the pressure-sensitive adhesive tape of the present invention has the above-described foamed resin base material containing closed cells and a pressure-sensitive adhesive layer provided on at least one surface of the foamed resin base material.
  • a single-sided adhesive tape having an adhesive layer provided on only one side of the substrate may be used, but a double-sided adhesive tape provided on both sides is particularly preferred.
  • the base material of the adhesive tape it is preferable to use the above-described foamed resin base material containing closed cells alone.
  • a laminate obtained by laminating another base material or another layer on the foamed resin base material can be used as the base material within a range not impairing the effects of the present invention.
  • the antistatic property according to IEC6100 of the adhesive tape is preferably 15 kV or more, more preferably 18 kV or more.
  • the antistatic properties are generally considered to be affected by the type of resin, but if the resin type is the same, the void diameter of the closed cell of the foamed resin substrate should be controlled to a small size within a specific range. It is estimated that the anti-static property is improved.
  • the value of the above-mentioned antistatic property is a measured value with respect to the adhesive tape, it is preferable that the measured value is the same even when measured with respect to the foamed resin base material alone.
  • the anti-static property based on IEC6100 is the voltage value when a constant voltage in the width direction of the adhesive tape is sparked by 100 shots with an electrostatic gun as described in the examples described later. Means.
  • the heating dimensional change rate of the adhesive tape is 100% ⁇ 5% or less, preferably ⁇ 1% or less, assuming that the dimension before heating is 100%.
  • This heating dimensional change rate (heat resistance) is important in applications of products that may be used or left at high temperatures.
  • portable information terminals such as a car navigation system used in the vicinity of a front panel or a dashboard of an automobile may have a temperature exceeding 80 ° C. in summer.
  • the base material of the adhesive tape that fixes the information display unit of the car navigation and the housing may shrink and peel off due to distortion.
  • requirement of narrowing of adhesive tapes, such as the recent information portable terminal such peeling at high temperature tends to arise.
  • the heating dimensional change rate means the dimensional change rate after heating the adhesive tape at 90 ° C. for 2 hours and allowing it to stand at room temperature for 1 hour or longer as described in Examples below.
  • the rubber elastic elongation recovery rate (2 times and 4 times) of the adhesive tape is 85% or more, preferably 90% or more.
  • This rubber elastic elongation recovery rate is important in applications of products that require reworkability, repairability (elongation peelability) and flexibility.
  • the repair property is a state in which two hard surfaces are bonded to each other with a double-sided adhesive tape, and one end of the adhesive tape is pulled and stretched to easily peel off without any problem. It means the performance that enables. For example, when one component of an information portable terminal such as a smartphone or a mobile phone breaks down, the adhesive tape that has been fixed between the components can be easily removed in order to replace the component, and a residue such as an adhesive is left at the separation location.
  • the adhesive tape does not have an appropriate elasticity, even if one end of the adhesive tape is pulled, the adhesive layer does not extend sufficiently, resulting in insufficient decrease in adhesive strength, and the adhesive tape is cut off halfway.
  • the pressure-sensitive adhesive tape can be obtained by pulling one end of the pressure-sensitive adhesive tape as long as the pressure-sensitive adhesive tape has a recovery rate and a high degree of flexibility. The layer is also continuously stretched uniformly and the adhesive strength is moderately reduced. As a result, the layer can be easily peeled off without any problem.
  • this rubber elastic elongation recovery rate is the elongation at the time when 10 seconds have elapsed after the tape length was pulled to double or quadruple and the tensile force was released. The percentage of recovery per hit.
  • the compressive deformation rate in the thickness direction of the adhesive tape is preferably 3.0% or more, more preferably 5.0% or more.
  • This compressive deformation rate is important in applications of products in which there are irregularities and steps on the adherend surface, and the member itself may be distorted.
  • the adherend surface of each member is not necessarily a flat surface, and usually has unevenness and steps.
  • each member itself may be distorted during use. Therefore, if the adhesive tape cannot absorb these distortions, peeling will occur.
  • the compression deformation rate is based on the thickness when the dial gauge load is 20 kPa according to the thickness test method of JIS Z 0237: 2000, as described in Examples below. This is the rate of change in thickness when the load is increased to 100 kPa.
  • the interlayer strength of the entire pressure-sensitive adhesive tape having the foamed resin base material is preferably 10 N / 10 mm or more, more preferably 15 N / 10 mm or more.
  • This interlaminar strength (90-degree peel adhesion) is important in the use of products that require reworkability.
  • the reworkability means a performance that allows easy peeling without any problem when peeling the adhesive tape in a bonded state, as described in Examples below. For example, it may be necessary to peel off the adhesive tape once bonded in the manufacturing process of an information portable terminal such as a smart phone or a mobile phone and start the process again (rework).
  • the adhesive tape can be easily peeled off and that a residue such as an adhesive does not remain at the peeled portion.
  • the interlaminar strength of the foamed resin base material is low, the base material itself is destroyed when the adhesive tape is peeled, or the adhesiveness between the adhesive layer and the foamed base material (depending on the strength of the adhesive strength of the adhesive layer)
  • the adhesive strength is weak, delamination between the pressure-sensitive adhesive layer and the substrate occurs, and it becomes difficult to remove the residue by adhering to the adherend.
  • the interlayer strength is 90 ° peel adhesive strength in accordance with JISJZ 0237 “Testing method of adhesive tape / adhesive sheet” as described in the examples described later.
  • the tensile strength in the longitudinal direction and the transverse direction of the adhesive tape is preferably 6.0 N / 10 mm or more.
  • the tensile strength is preferably 110% or more when the tensile strength of the foamed resin base material alone is 100%.
  • the other tensile strength is within 100% ⁇ 15%.
  • the elongation at break in the longitudinal and lateral directions of the adhesive tape is preferably 300% or more. Further, when one of the elongation at break in the longitudinal direction and the transverse direction is defined as 100%, the tensile strength of the other is within 100% ⁇ 15%.
  • the aspect ratio of tensile strength and elongation is small, which is important in the use of products that require an adhesive tape formed into a frame shape by punching.
  • an adhesive tape that fixes an information display unit and a housing of an information portable terminal such as a smartphone or a mobile phone is often punched into a substantially rectangular frame shape.
  • the tensile strength and the aspect ratio of elongation are large, variations in physical properties occur.
  • the pressure-sensitive adhesive tape has a small aspect ratio, variations in physical properties are unlikely to occur regardless of the direction of punching.
  • the tensile strength and elongation are the strength and elongation at break when a specific size adhesive tape is subjected to a tensile test, as described in Examples below.
  • the loss factor (tan ⁇ ) of the adhesive tape at ⁇ 20 ° C. is preferably 0.20 or more, more preferably 0.3 or more.
  • the storage elastic modulus at 85 ° C. is preferably 2.0 ⁇ 10 5 Pa or more, more preferably 2.5 ⁇ 10 5 Pa or more, and the loss coefficient (tan ⁇ ) at 85 ° C. is preferably 0.20 or more. More preferably, it is 0.3 or more.
  • This storage modulus and loss factor are important in product applications where a narrow adhesive tape is required. For example, information mobile terminals such as smartphones and mobile phones have been developed to increase the screen size of information display units (displays, etc.), to make the entire product slimmer, and to improve the design. It is becoming.
  • the storage elastic modulus and loss factor are low, there may be a problem in adhesion.
  • the pressure-sensitive adhesive tape has the above storage elastic modulus and loss factor, even a narrow-width processed pressure-sensitive adhesive tape is less likely to cause an adhesive problem.
  • the storage elastic modulus and loss factor were measured and calculated at a frequency of 1 Hz with an adhesive tape having a thickness of 0.2 mm sandwiched between parallel plates of a viscoelasticity tester as described in Examples below. Value.
  • Each of the above characteristics is manifested mainly by appropriately adjusting various conditions such as the type of resin of the foamed resin base material, the size of closed cells, and the type of adhesive layer.
  • Specific examples of the foamed resin base material and the pressure-sensitive adhesive layer are as described above.
  • the width of the adhesive tape is not limited. However, the excellent characteristics obtained in the present invention are particularly useful in a narrow adhesive tape, and the width is preferably 0.5 to 5.0 mm, more preferably 0.7 to 3.0 mm.
  • the thickness of the adhesive tape is preferably 0.08 to 0.5 mm, more preferably 0.1 to 0.4 mm.
  • part means “part by mass”.
  • ⁇ Preparation of acrylic pressure-sensitive adhesive composition Mix 75 parts of 2-ethylhexyl acrylate, 10 parts of methyl acrylate, 10 parts of acrylic acid and 5 parts of 2-hydroxyethyl acrylate in a reactor equipped with a stirrer, thermometer, reflux condenser and nitrogen gas inlet tube. Then, ethyl acetate, n-dodecanethiol as a chain transfer agent, and 0.1 part of lauryl peroxide as a radical polymerization initiator were charged. Nitrogen gas was sealed in the reactor, and the polymerization reaction was carried out at 68 ° C. for 3 hours and then at 78 ° C. for 3 hours under a nitrogen gas stream while stirring.
  • ⁇ Preparation of polyurethane resin composition An appropriate amount of organic hot metal was added to powdery components such as a foaming agent and a colorant, and the mixture was dispersed with a stirrer. Next, a polyurethane resin solution and a crosslinking agent were added, and the mixture was stirred with a stirrer until uniform dispersion was obtained to obtain a polyurethane resin composition.
  • the amounts (parts) of each component are shown in Tables 1 and 2.
  • Examples 1-8 and Comparative Examples 1-2 The polyurethane resin composition was applied to one side of a release paper having a silicone release agent formed on both sides, and dried at 70 ° C. for 2 minutes + 90 ° C. for 2 minutes to remove the solvent. Subsequently, it was made to foam by heating at 130 degreeC for 2 minutes, and this was wound up. Further, aging was performed at 40 ° C. for 3 days to complete the curing reaction, and a foamed resin base material (thickness: 0.10 mm) was obtained.
  • the above-mentioned acrylic pressure-sensitive adhesive composition was applied to a release paper subjected to a double-sided silicone release treatment and dried to form a pressure-sensitive adhesive layer. And this adhesive layer was bonded together, performing a corona discharge process to a foamed resin base material. Furthermore, the pressure-sensitive adhesive layer was bonded to the opposite surface of the foamed resin substrate by the same method. Thereafter, aging was carried out at 40 ° C. for 3 days to complete the curing reaction of the pressure-sensitive adhesive layer, and a double-sided pressure-sensitive adhesive tape having a thickness of about 0.20 mm (the thickness of each pressure-sensitive adhesive layer was about 50 ⁇ m) was obtained.
  • Double-sided pressure-sensitive adhesive tape having a thickness of about 0.20 mm in the same manner as in Example 1 except that a polyethylene (PE) -based foam (manufactured by Sekisui Chemical Co., Ltd., trade name Bollala XL-H black # 1001) was used as the base material. (The thickness of each surface pressure-sensitive adhesive layer was about 50 ⁇ m).
  • PE polyethylene
  • ⁇ Comparative example 4> A double-sided adhesive tape having a thickness of about 0.20 mm (each side adhesive) except that a polyethylene terephthalate (PET) film (trade name Lumirror S-10, manufactured by Toray Industries, Inc.) was used as the substrate. A layer thickness of about 75 ⁇ m) was produced.
  • PET polyethylene terephthalate
  • a baseless double-sided tape having a thickness of 0.20 mm without a base material was produced by applying the acrylic pressure-sensitive adhesive composition of Example 1 to a release paper to a thickness of 0.2 mm.
  • Heating dimensional change rate [(Dimension after heating)-(Dimension before heating)] ⁇ (Dimension before heating) x 100
  • Double-sided adhesive tape is cut into a frame with a width of 0.8 mm and a size of 50 x 45 mm, one release paper is peeled off and bonded to a 2 mm thick glass plate, and the other release paper is peeled off to release a 3 mm thick polycarbonate. Laminated to the board. Then, using an autoclave, pressure treatment was performed at 23 ° C. and 0.5 MPa for 1 hour. Further, using a SUS plate, the whole weight was adjusted to 250 g, and placed in an environment of ⁇ 20 ° C. for 1 hour or longer. Then, from 1.5m height, pass the test plate vertically through the cylinder and drop it on the concrete floor until the glass plate peels or breaks (A) or until the interlaminar fracture of the substrate occurs ( The number of drops in B) was measured.
  • Double-sided adhesive tape is cut into a frame with a width of 0.8 mm and a size of 40 x 50 mm, one release paper is peeled off and bonded to a 2 mm thick glass plate, and the other release paper is peeled off to remove a 2 mm thick glass.
  • the plates were bonded together.
  • the sample was subjected to a pressure treatment (0.5 MPa) for 1 hour at 23 ° C. using an autoclave. After that, it was submerged in accordance with the IPX7 test method of the waterproof standard IEC “International Electrotechnical Commission” 60529: 2001 [equivalent standard: JIS C 0920: 2003 “Special Protection for Electrical Equipment (IP Code)”] and waterproofed. Sex was evaluated.
  • Another sample is subjected to a pressure treatment at 23 ° C. for 1 hour using an autoclave, and then, in water of 0.1 MPa, 0.25 MPa, and 0.5 MPa based on the waterproof standard IPX8 test method.
  • Each was submerged and evaluated for waterproofness. This evaluation was performed according to a level of grade that the waterproof property satisfies the condition defined in the protection class IPX8 or the waterproof property does not satisfy the condition defined in IPX7.
  • Double-sided adhesive tape is cut into a frame with a width of 0.8 mm and a size of 40 x 50 mm, one release paper is peeled off and bonded to a 2 mm thick glass plate, and the other release paper is peeled off to remove a 2 mm thick glass. The plates were bonded together. And the pressurization process for 1 hour was performed at 23 degreeC and 0.5 Mpa using the autoclave. This sample was immersed in artificial sebum (33.3% triolein, 20.0% oleic acid, 13.3% squalene, 33.4% myristyl octadodecylate) or artificial sweat oil for 1 hour.
  • a double-sided adhesive tape having a width of 0.7 mm was used as a test piece, and the double-sided adhesive tape 1 was disposed between the HV electrode 2 and the Touch pattern simulation electrode 3 as shown in FIG.
  • the electrodes 2 and 3 are wired on the TEG substrate 4, and the TEG substrate 4 is placed on the SUS table 6 via the insulating sheet 5.
  • the Touch pattern simulation electrode 3 is grounded to the SUS table 5.
  • the acrylic board 7 was covered on the test surface. Then, according to IEC61000-4-2, 100 voltage shots were applied to the HV electrode 2 using an electrostatic gun, and the voltage value when sparking toward the Touch pattern simulation electrode 3 was measured.
  • a double-sided adhesive tape having a width of 10 mm was bonded between two polycarbonate plates (50 ⁇ 50 mm) so that one end portion was longer than the glass plate by about 10 mm. After 30 minutes, one end of the tape was stretched to test whether the tape could be peeled off and evaluated according to the following criteria. “ ⁇ ”: Elongation and peeling were possible. “ ⁇ ”: When the elongation rate was slowed, elongation peeling was possible. “ ⁇ ”: The tape was cut.
  • UE1 Low crystalline linear polyester urethane elastomer (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name NIPPOLAN 2304)
  • UE2 Low crystalline linear polyester urethane elastomer (manufactured by Sumika Bayer Urethane Co., Ltd., trade name Desmocol 406)
  • UE3 Low crystalline linear polyester urethane elastomer (manufactured by Sanyo Chemical Industries, trade name Samprene LQ-540)
  • UE5 Medium crystalline linear polyester urethane elastomer (manufactured by Sumika Bayer Urethane Co., Ltd., trade name Desmocol 176)
  • UE6 Highly crystalline linear polyester urethane elastomer (manufactured
  • Comparative Examples 1 and 2 had a rubber elastic elongation recovery rate that was too low, so that even if the adhesive tape had sufficient tensile strength, the tape was broken during elongation peeling.
  • Comparative Examples 1 and 2 are significantly different from Examples 4 and 5.
  • the pressure-sensitive adhesive tape of Comparative Example 3 is an example using a PE-based foamed resin base material in which the bubble void diameter is too large, and was inferior in properties such as anti-static properties.
  • the pressure-sensitive adhesive tape of Comparative Example 4 is an example in which a PET film having no air bubbles is used as a base material, and properties such as impact resistance are inferior.
  • the pressure-sensitive adhesive tape of Comparative Example 5 is an example of a baseless double-sided tape without a substrate, and has poor properties such as impact resistance.
  • the adhesive tape of the present invention has an excellent waterproof property, even if the device is submerged or a high water pressure is applied, it is difficult for water to enter the inside, and the occurrence of device failure can be reduced.
  • it since it has excellent anti-static properties, even if a user charged with static electricity touches the device, it is difficult for the static electricity to pass through the adhesive tape, and the built-in components are not easily damaged.
  • it since it has excellent heat resistance and impact resistance, problems do not easily occur even if the device is used or left under high temperature or receives impact force.
  • it since it has excellent repairability (extension peelability), it is easy to replace parts when repairing the equipment.
  • the adhesive tape of the present invention is a member constituting a portable information terminal device such as a smartphone, a mobile phone, an electronic notebook, a PHS, a tablet PC, a digital camera, a music player, a portable TV, a notebook computer, and a game machine.
  • a portable information terminal device such as a smartphone, a mobile phone, an electronic notebook, a PHS, a tablet PC, a digital camera, a music player, a portable TV, a notebook computer, and a game machine.
  • applications that require thin and thin adhesive tapes such as bonding of protective panels and housings of information display sections (displays, etc.) of devices such as smartphones and mobile phones, or fixing of modules (batteries, etc.) of such devices can be preferably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Disclosed are: an adhesive tape having a foamed resin base material that includes closed pores, and an adhesive layer provided on at least one surface of the foamed resin base material, wherein the average void size of the closed pores is 20-180 μm, the maximum void size is 300 μm or less, the dimensional change upon heating of the adhesive tape is within 100 ± 5% where the dimension before heating is 100%, and the rubber elastic elongation recovery rate of the adhesive tape is 85% or greater, the adhesive tape having particularly exceptional water resistance, anti-static properties, impact resistance, heat resistance, repair properties, and flexibility; and a method for producing the adhesive tape.

Description

発泡樹脂基材を有する粘着テープ及びその製造方法Adhesive tape having foamed resin substrate and method for producing the same
 本発明は、発泡樹脂基材を有する粘着テープであって、薄く且つ細くても十分な諸特性を有し、特に優れた防水性、耐静電気特性、耐衝撃性、耐熱性、リペア性及び柔軟性を有する粘着テープ及びその製造方法に関する。 The present invention is a pressure-sensitive adhesive tape having a foamed resin base material, which has sufficient properties even when thin and thin, and has particularly excellent waterproof properties, anti-static properties, impact resistance, heat resistance, repair properties and flexibility. The present invention relates to a pressure-sensitive adhesive tape and a method for producing the same.
 スマートフォン、携帯電話等の携帯電子機器においては、ディスプレイの保護パネルと筐体との貼り合わせや、その他の各部材及びモジュールの固定の為に粘着テープが使用されている。そして、この粘着テープの防水性は携帯電子機器の防水性にとって重要である。例えば特許文献1及び2には、防水性の粘着テープが開示されている。ここでは、粘着テープの基材として柔軟な発泡体が使用され、薄くて良好な追従性を有するので携帯電子機器の用途に好適とされている。また特許文献3には、発泡体層と補強層(プラスチックフィルム)を積層したものを基材として用いた両面粘着テープが開示されている。この粘着テープは、再剥離性に優れるとされている。 In portable electronic devices such as smartphones and mobile phones, adhesive tape is used to bond the protective panel of the display to the housing and to fix other members and modules. And the waterproofness of this adhesive tape is important for the waterproofness of a portable electronic device. For example, Patent Documents 1 and 2 disclose waterproof adhesive tapes. Here, a flexible foam is used as the base material of the adhesive tape, and since it is thin and has good followability, it is suitable for use in portable electronic devices. Patent Document 3 discloses a double-sided pressure-sensitive adhesive tape using a laminate of a foam layer and a reinforcing layer (plastic film) as a base material. This adhesive tape is said to be excellent in removability.
 近年の携帯電子機器では、ディスプレイの大画面化、製品全体のスリム化やデザイン性向上が進んで来ている。これに伴い粘着テープは薄いだけではなく、テープ幅を細くするという要請も強くなって来ている。例えば、保護パネルと筐体の接着に用いられる粘着テープでは、かなり細幅化が進んでいる。これに伴い粘着テープには、薄く且つ細くても優れた防水性を有する発泡樹脂基材が必要になって来ている。また大画面化、スリム化された携帯電子機器にはアースをとるスペースが無い場合が多い、したがって、静電気を帯電した使用者が携帯電子機器に触れた際に、静電気が粘着テープを通過して内蔵の部品がダメージを受けて正常に動かなくなる場合がある。そこで粘着テープには、薄く且つ細くても優れた耐静電気特性を有する発泡樹脂基材が必要になって来ている。また、携帯電子機器は高温下で使用又は放置されたり、或いは衝撃力を受けることがあるので、耐熱性や耐衝撃性が必要である。さらに携帯電子機器製造工程において固定部品の貼り直し、又は修理時に部品の交換を生じた際に、粘着テープを問題無く容易に剥がす為には、粘着テープに優れたリワーク性、又は高いリペア性が必要である。 In recent portable electronic devices, the display has become larger, the entire product has been slimmed down, and the design has been improved. Along with this, not only is the adhesive tape thin, but there is an increasing demand for a narrow tape width. For example, the width of the adhesive tape used for bonding the protective panel and the housing has been considerably reduced. In connection with this, the foamed resin base material which has the waterproof property which was excellent even if it was thin and thin is needed for the adhesive tape. Also, portable electronic devices with larger screens and slimming often do not have a space for grounding. Therefore, when a user who is charged with static electricity touches the portable electronic device, the static electricity passes through the adhesive tape. Built-in parts may be damaged and not work properly. Therefore, an adhesive tape is required to have a foamed resin base material having excellent anti-static properties even if it is thin and thin. Moreover, since a portable electronic device may be used or left at a high temperature or may receive an impact force, heat resistance and impact resistance are required. Furthermore, in order to easily peel off the adhesive tape without problems when re-attaching fixed parts or replacing parts during repair in the portable electronic device manufacturing process, the adhesive tape has excellent reworkability or high repairability. is necessary.
特許第5370796号公報Japanese Patent No. 5370796 特許第5477517号公報Japanese Patent No. 5477517 特開2014-037543号公報JP 2014-037543 A
 本発明の目的は、薄く且つ細くても十分な諸特性を有し、特に優れた防水性、耐静電気特性、耐衝撃性、耐熱性、リペア性及び柔軟性を有する粘着テープ及びその製造方法を提供することにある。 An object of the present invention is to provide a pressure-sensitive adhesive tape having sufficient characteristics even when it is thin and thin, and having particularly excellent waterproof properties, anti-static properties, impact resistance, heat resistance, repair properties and flexibility, and a method for producing the same. It is to provide.
 本発明は、独立気泡を含む発泡樹脂基材と、該発泡樹脂基材の少なくとも片面に設けられた粘着剤層とを有する粘着テープであって、前記独立気泡の平均ボイド径が20~180μm、最大ボイド径が300μm以下であり、前記粘着テープの加熱寸法変化率が加熱前の寸法を100%とした場合に100%±5%以内であり、前記粘着テープのゴム弾性伸長回復率が85%以上である粘着テープである。 The present invention is an adhesive tape having a foamed resin base material containing closed cells and an adhesive layer provided on at least one side of the foamed resin base material, wherein the average void diameter of the closed cells is 20 to 180 μm, The maximum void diameter is 300 μm or less, the heating dimensional change rate of the adhesive tape is within 100% ± 5% when the dimension before heating is 100%, and the rubber elastic elongation recovery rate of the adhesive tape is 85% It is the adhesive tape which is the above.
 さらに本発明は、上記の粘着テープを製造する為の方法であって、熱膨張性マイクロカプセル及び/又は既膨張中空フィラーを用いて独立気泡を形成することにより発泡樹脂基材を得る工程を有する粘着テープの製造方法である。 Furthermore, the present invention is a method for producing the above-mentioned pressure-sensitive adhesive tape, comprising a step of obtaining a foamed resin base material by forming closed cells using thermally expandable microcapsules and / or already expanded hollow fillers. It is a manufacturing method of an adhesive tape.
 本発明の粘着テープは、発泡樹脂基材の独立気泡のボイド径を特定範囲の小さなサイズに制御しているので、優れた細幅テープにおける防水性、耐静電気特性及び耐衝撃性を有する。さらに、粘着テープの加熱寸法変化率が低いので優れた耐熱性を有し、またゴム弾性伸長回復率が高いので優れたリペア性を有する。 The adhesive tape of the present invention controls the void diameter of closed cells of the foamed resin base material to a small size within a specific range, and thus has excellent waterproofness, electrostatic resistance and impact resistance in a narrow tape. Furthermore, since the heating dimensional change rate of the adhesive tape is low, it has excellent heat resistance, and since the rubber elastic elongation recovery rate is high, it has excellent repairability.
 本発明の粘着テープの製造方法は、熱膨張性マイクロカプセル及び/又は既膨張中空フィラーを用いて独立気泡を形成するので、基材中の独立気泡のボイド径を本発明の特定範囲の小さなサイズに簡易に制御できる。 In the method for producing an adhesive tape of the present invention, closed cells are formed using thermally expandable microcapsules and / or pre-expanded hollow fillers. Therefore, the void diameter of closed cells in a substrate is set to a small size within a specific range of the present invention. Can be easily controlled.
本発明の粘着テープにおける独立気泡の一形態の光学顕微鏡写真である。It is an optical microscope photograph of one form of the closed cell in the adhesive tape of this invention. 従来の粘着テープにおける独立気泡の一形態の光学顕微鏡写真である。It is an optical micrograph of one form of the closed cell in the conventional adhesive tape. 実施例の耐静電気特性の試験方法を説明する為の模式図である。It is a schematic diagram for demonstrating the test method of the antistatic property of an Example. 実施例の耐静電気特性の試験方法を説明する為の模式図である。It is a schematic diagram for demonstrating the test method of the antistatic property of an Example.
 <発泡樹脂基材>
 本発明における発泡樹脂基材は、樹脂を発泡させることにより内部に独立気泡を形成した基材である。独立気泡を含む発泡樹脂基材は、連続気泡を含む発泡樹脂基材と比較して防水性及び耐人工皮脂汗油性が優れている。
<Foamed resin substrate>
The foamed resin base material in the present invention is a base material in which closed cells are formed by foaming the resin. The foamed resin base material containing closed cells is superior in water resistance and artificial sebum sweat oil resistance compared to the foamed resin base material containing open cells.
 本発明において、発泡樹脂基材中の独立気泡の平均ボイド径は20~180μmであり、好ましくは30~150μm、より好ましくは40~120μmである。また、独立気泡の最大ボイド径は300μm以下であり、好ましくは250μm以下、より好ましくは200μm以下である。ボイド径をこの特定範囲の小さなサイズに制御することにより、粘着テープが薄く且つ細くても優れた防水性、耐静電気特性及び耐衝撃性が発現する。 In the present invention, the average void diameter of closed cells in the foamed resin substrate is 20 to 180 μm, preferably 30 to 150 μm, more preferably 40 to 120 μm. Further, the maximum void diameter of the closed cells is 300 μm or less, preferably 250 μm or less, more preferably 200 μm or less. By controlling the void diameter to a small size within this specific range, even if the adhesive tape is thin and thin, excellent waterproofness, electrostatic resistance and impact resistance are exhibited.
 ボイド径の測定は、具体的には、発泡樹脂基材の5×5mm面積における多数の独立気泡を透過法による光学顕微鏡にて観察し、ボイド径の平均値と最大値を計測することにより行う。図1は本発明の粘着テープにおける独立気泡の一形態の光学顕微鏡写真である。図2は従来の粘着テープにおける独立気泡の一形態の光学顕微鏡写真である。これら写真から明らかなように、両者は独立気泡のサイズが大きく異なる。 Specifically, the measurement of the void diameter is performed by observing a number of closed cells in a 5 × 5 mm area of the foamed resin base material with an optical microscope using a transmission method, and measuring the average value and the maximum value of the void diameter. . FIG. 1 is an optical micrograph of one form of closed cells in the pressure-sensitive adhesive tape of the present invention. FIG. 2 is an optical micrograph of one form of closed cells in a conventional adhesive tape. As is apparent from these photographs, the size of the closed cells is greatly different.
 図2(従来技術)のように平均ボイド径が数百μmと大きい場合は、部分的に1~2mmレベルの大きな発泡が形成されることがある。そして、その部分は独立気泡の形態を維持できずに、貫通状態になってしまう。この貫通状態は、特に細幅加工された発泡樹脂基材粘着テープを用いる場合における防水性や耐静電気性等の点で大きな問題となる。また、気泡が全く無いフィルム基材を使用する場合は、基材の剛性が高いので、接着面に異物(極細銅線等)が有ると段差部分に浮きが生じて防水性が損なわれる。一方、本発明のようにボイド径を特定範囲の小さなサイズに制御するとそれらの問題が生じ難く、高い水圧がかかっても優れた防水性を維持できる。 When the average void diameter is as large as several hundred μm as shown in FIG. 2 (prior art), large foaming of 1 to 2 mm level may be partially formed. And the part will be in the penetration state, without maintaining the form of a closed cell. This penetrating state is a serious problem in terms of waterproofness, electrostatic resistance, etc., particularly when using a foamed resin base adhesive tape that has been processed to have a narrow width. Further, when using a film base material having no air bubbles, the base material has high rigidity, so that if there is a foreign substance (extra fine copper wire or the like) on the bonding surface, the stepped portion will float and the waterproofness will be impaired. On the other hand, when the void diameter is controlled to a small size within a specific range as in the present invention, these problems hardly occur, and excellent waterproofness can be maintained even when high water pressure is applied.
 耐静電気特性は、一般に発泡樹脂基材の樹脂の種類に影響されるが、樹脂の種類が同じ場合は独立気泡のサイズも耐静電気特性に影響を与えると考えられる。実際、図2(従来技術)のように平均ボイド径が数百μmと大きい場合は、細幅加工された粘着テープの幅方向に15kVの静電気を印加すると、発泡樹脂基材が容易に破壊してしまう傾向にあり、防水性等の特性が損なわれる場合がある。一方、樹脂の種類が同じであっても図1(本発明)のようにボイド径を特定範囲の小さなサイズに制御すれば、発泡樹脂基材は破壊し難い。耐静電気特性が向上する理由は必ずしも明らかではないが、例えば気泡-気泡間の樹脂膜の枚数の増加が要因の一つであるという可能性がある。二つの気泡の間に介在する樹脂部分を一枚の「樹脂膜」として定義した場合、同じ空隙率ならば小さい気泡が多数存在する方が樹脂膜の枚数が多くなる。具体的には、図1(本発明)の形態における樹脂膜の枚数は、図2(従来技術)の枚数の約10倍以上である。本発明では、このような樹脂膜の枚数の増加が耐静電気特性の向上に好ましい影響を与えていると推測できる。 Electrostatic resistance is generally affected by the resin type of the foamed resin base material, but when the resin type is the same, the size of closed cells is considered to affect the antistatic characteristics. In fact, as shown in FIG. 2 (prior art), when the average void diameter is as large as several hundred μm, applying a static electricity of 15 kV in the width direction of the narrow-width processed adhesive tape will cause the foamed resin substrate to break down easily. In some cases, characteristics such as waterproofness may be impaired. On the other hand, even if the kind of resin is the same, if the void diameter is controlled to a small size within a specific range as shown in FIG. 1 (the present invention), the foamed resin base material is difficult to break. The reason why the antistatic property is improved is not necessarily clear, but there is a possibility that, for example, an increase in the number of resin films between bubbles is one of the factors. When the resin portion interposed between two bubbles is defined as a single “resin film”, the number of resin films increases when there are many small bubbles if the porosity is the same. Specifically, the number of resin films in the form of FIG. 1 (present invention) is about 10 times or more the number of sheets in FIG. 2 (prior art). In the present invention, it can be presumed that such an increase in the number of resin films has a favorable influence on the improvement of the antistatic property.
 さらに図2(従来技術)のようにボイド径が大きいと、低温での衝撃によって発泡樹脂基材の層間破壊が生じ易い。また、気泡が全く無いフィルム基材や基材の無い両面粘着テープは、衝撃によって被着体の剥離が生じ易く、ガラス等の表示部材が破壊してしまう場合もある。一方、本発明のようにボイド径を特定範囲の小さなサイズに制御すると衝撃吸収性が向上し、低温でも十分な耐衝撃性が発現する。 Furthermore, when the void diameter is large as shown in FIG. 2 (prior art), the foamed resin base material is likely to be destructed by an impact at a low temperature. In addition, a film base material having no air bubbles or a double-sided pressure-sensitive adhesive tape having no base material is likely to peel off the adherend due to impact, and the display member such as glass may be destroyed. On the other hand, when the void diameter is controlled to a small size within a specific range as in the present invention, the impact absorbability is improved and sufficient impact resistance is exhibited even at low temperatures.
 以上の通り、本発明においては高い水圧がかかっても、静電気が印加されても、また衝撃を受けても発泡樹脂基材中の気泡は独立気泡の状態で維持される。したがって、本発明における発泡樹脂基材は、防水性、耐人工皮脂汗油性、耐静電気特性及びその他の諸特性も損なわれ難く、各性能の安定性の点でも非常に優れた基材である。 As described above, in the present invention, even if a high water pressure is applied, static electricity is applied, or an impact is applied, the bubbles in the foamed resin substrate are maintained in a closed cell state. Therefore, the foamed resin base material in the present invention is resistant to water resistance, artificial sebum sweat oil resistance, static electricity resistance and other characteristics, and is also a very excellent base material in terms of stability of each performance.
 本発明において、発泡樹脂基材を構成する樹脂は特に限定されない。例えば、防水性や耐人工皮脂汗油性の観点から、耐水性や耐油性を有するベースポリマー及び架橋剤を適宜選択することが好ましい。ベースポリマーの具体例としては、ポリオールと多官能イソシアネートの重合体であるポリウレタン系樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン類;スチレン-ブタジエン-スチレン-ブロック共重合ポリマー、スチレン-イソブチレン-スチレン-ブロック共重合ポリマー等のスチレン系ブロック共重合ポリマー;エチレン-酢酸ビニル、エチレン-アクリル酸エチル、エチレン-メタクリル酸メチル等のエチレン系共重合ポリマー;メタクリル酸メチル-アクリル酸ブチル-メタクリル酸メチル等のアクリル系ブロック共重合ポリマー;アクリル酸2-エチルヘキシルやアクリル酸メチル等を共重合したアクリル酸エステル共重合体;ポリ塩化ビニル等のハロゲン化ポリマー;が挙げられる。中でも、耐静電気特性、耐熱性、耐人工皮脂汗油性、柔軟性、耐衝撃性の点から、ポリウレタン系樹脂が好ましい。 In the present invention, the resin constituting the foamed resin base material is not particularly limited. For example, it is preferable to appropriately select a base polymer and a crosslinking agent having water resistance and oil resistance from the viewpoint of waterproofness and resistance to artificial sebum sweat oil. Specific examples of base polymers include polyurethane resins, which are polymers of polyols and polyfunctional isocyanates; polyolefins such as polyethylene and polypropylene; styrene-butadiene-styrene-block copolymer, styrene-isobutylene-styrene-block copolymer Styrene block copolymer such as polymer; Ethylene copolymer such as ethylene-vinyl acetate, ethylene-ethyl acrylate, ethylene-methyl methacrylate; Acrylic block such as methyl methacrylate-butyl acrylate-methyl methacrylate Copolymerized polymers; acrylic acid ester copolymers obtained by copolymerizing 2-ethylhexyl acrylate, methyl acrylate and the like; halogenated polymers such as polyvinyl chloride; Of these, polyurethane resins are preferred from the viewpoints of antistatic properties, heat resistance, artificial sebum sweat oil resistance, flexibility, and impact resistance.
 ポリウレタン系樹脂は、一般に、ポリオール単量体単位からなるソフトセグメントと、多官能イソシアネート化合物や低分子グリコール単量体単位からなるハードセグメントとを含む樹脂である。 The polyurethane-based resin is generally a resin including a soft segment composed of a polyol monomer unit and a hard segment composed of a polyfunctional isocyanate compound or a low molecular glycol monomer unit.
 ポリウレタン系樹脂に用いるポリオールは、水酸基を2個以上有する化合物である。例えばゴム弾性伸長回復率等の特性を高める観点からは、ポリオールの水酸基数は2に近いこと好ましい。具体的には、ポリオールの水酸基数は、好ましくは2~3であり、より好ましくは2である。ポリオールとしては、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオール、ひまし油系ポリオールを使用できる。2種以上のポリオールを併用しても良い。 The polyol used for the polyurethane-based resin is a compound having two or more hydroxyl groups. For example, the number of hydroxyl groups in the polyol is preferably close to 2 from the viewpoint of improving characteristics such as rubber elastic elongation recovery rate. Specifically, the number of hydroxyl groups in the polyol is preferably 2 to 3, and more preferably 2. As the polyol, for example, polyester polyol, polyether polyol, polycaprolactone polyol, polycarbonate polyol, or castor oil-based polyol can be used. Two or more polyols may be used in combination.
 ポリエステルポリオールは、例えば、ポリオール成分と酸成分とのエステル化反応によって得られる。ポリオール成分の具体例としては、エチレングリコール、ジエチレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,2-ヘキサンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,8-デカンジオール、オクタデカンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ヘキサントリオール、ポリプロピレングリコールが挙げられる。酸成分の具体例としては、コハク酸、メチルコハク酸、アジピン酸、ピメリック酸、アゼライン酸、セバシン酸、1,12-ドデカン二酸、1,14-テトラデカン二酸、ダイマー酸、2-メチル-1,4-シクロヘキサンジカルボン酸、2-エチル-1,4-シクロヘキサンジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、イソフタル酸、テレフタル酸、1,4-ナフタレンジカルボン酸、4,4'-ビフェエルジカルボン酸、及びこれらの酸無水物が挙げられる。 Polyester polyol is obtained, for example, by an esterification reaction between a polyol component and an acid component. Specific examples of the polyol component include ethylene glycol, diethylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl- 1,3-propanediol, 2,4-diethyl-1,5-pentanediol, 1,2-hexanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 2- Examples include methyl-1,8-octanediol, 1,8-decanediol, octadecanediol, glycerin, trimethylolpropane, pentaerythritol, hexanetriol, and polypropylene glycol. Specific examples of the acid component include succinic acid, methyl succinic acid, adipic acid, pimelic acid, azelaic acid, sebacic acid, 1,12-dodecanedioic acid, 1,14-tetradecanedioic acid, dimer acid, 2-methyl-1 , 4-cyclohexanedicarboxylic acid, 2-ethyl-1,4-cyclohexanedicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, isophthalic acid, terephthalic acid, 1,4-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid Examples include acids and acid anhydrides thereof.
 ポリエーテルポリオールは、例えば、水、低分子ポリオール(例えばプロピレングリコール、エチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール)、ビスフェノール類(例えばビスフェノールA)又はジヒドロキシベンゼン(例えばカテコール、レゾルシン、ハイドロキノン)を開始剤として、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイドを付加重合させて得られる。具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールが挙げられる。
 ポリカプロラクトンポリオールの具体例としては、ε-カプロラクトン、σ-バレーロラクトン等の環状エステルモノマーの開環重合体が挙げられる。
Polyether polyols start with, for example, water, low molecular weight polyols (eg propylene glycol, ethylene glycol, glycerin, trimethylolpropane, pentaerythritol), bisphenols (eg bisphenol A) or dihydroxybenzenes (eg catechol, resorcin, hydroquinone) As an agent, it can be obtained by addition polymerization of alkylene oxide such as ethylene oxide, propylene oxide, butylene oxide. Specific examples include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol.
Specific examples of the polycaprolactone polyol include ring-opening polymers of cyclic ester monomers such as ε-caprolactone and σ-valerolactone.
 ポリカーボネートポリオール具体例としては、上記各ポリオール成分とホスゲンとを重縮合反応させて得られるポリカーボネートポリオール;上記各ポリオール成分と、炭酸ジメチル、炭酸ジエチル、炭酸ジプロビル、炭酸ジイソプロピル、炭酸ジブチル、エチルブチル炭酸、エチレンカーボネート、プロピレンカーボネート、炭酸ジフェニル、炭酸ジベンジル等の炭酸ジエステル類とをエステル交換縮合させて得られるポリカーボネートポリオール;上記各ポリオール成分を2種以上併用して得られる共重合ポリカーボネートポリオール;上記各ポリカーボネートポリオールとカルボキシル基含有化合物とをエステル化反応させて得られるポリカーボネートポリオール;上記各ポリカーボネートポリオールとヒドロキシル基含有化合物とをエーテル化反応させて得られるポリカーボネートポリオール;上記各ポリカーボネートポリオールとエステル化合物とをエステル交換反応させて得られるポリカーボネートポリオール;上記各ポリカーボネートポリオールとヒドロキシル基含有化合物とをエステル交換反応させて得られるポリカーボネートポリオール;上記各ポリカーボネートポリオールとジカルボン酸化合物とを重縮合反応させて得られるポリエステル系ポリカーボネートポリオール;上記各ポリカーボネートポリオールとアルキレンオキサイドとを共重合させて得られる共重合ポリエーテル系ポリカーボネートポリオール;が挙げられる。 Specific examples of the polycarbonate polyol include polycarbonate polyols obtained by polycondensation reaction of each of the above polyol components and phosgene; each of the above polyol components, dimethyl carbonate, diethyl carbonate, diprovir carbonate, diisopropyl carbonate, dibutyl carbonate, ethylbutyl carbonate, ethylene Polycarbonate polyol obtained by transesterification condensation with carbonic acid diesters such as carbonate, propylene carbonate, diphenyl carbonate and dibenzyl carbonate; copolymer polycarbonate polyol obtained by using two or more of each of the above polyol components; A polycarbonate polyol obtained by an esterification reaction with a carboxyl group-containing compound; each of the above polycarbonate polyols and a hydroxyl group-containing compound; Polycarbonate polyol obtained by etherification reaction; polycarbonate polyol obtained by transesterification of each of the above polycarbonate polyol and ester compound; polycarbonate polyol obtained by transesterification of each of the above polycarbonate polyol and hydroxyl group-containing compound; And polyester polycarbonate polyols obtained by polycondensation reaction of the above polycarbonate polyols and dicarboxylic acid compounds; copolymer polyether polycarbonate polyols obtained by copolymerization of the above polycarbonate polyols and alkylene oxides.
 ひまし油系ポリオールは、例えば、ひまし油脂肪酸と上記各ポリオール成分(例えばポリプロピレングリコール)とを反応させて得られる。 Castor oil-based polyol is obtained, for example, by reacting castor oil fatty acid with each of the above polyol components (for example, polypropylene glycol).
 ポリウレタン系樹脂に用いる多官能イソシアネート化合物としては、例えば、多官能脂肪族系イソシアネート化合物、多官能脂環族系イソシアネート化合物、多官能芳香族系イソシアネート化合物を使用できる。また、これら化合物のトリメチロールプロパンアダクト体、水と反応したビュウレット体、イソシアヌレート環を有する3量体も使用できる。2種以上の多官能イソシアネート化合物を併用しても良い。 As the polyfunctional isocyanate compound used for the polyurethane resin, for example, a polyfunctional aliphatic isocyanate compound, a polyfunctional alicyclic isocyanate compound, or a polyfunctional aromatic isocyanate compound can be used. Trimethylolpropane adducts of these compounds, burettes reacted with water, and trimers having an isocyanurate ring can also be used. Two or more polyfunctional isocyanate compounds may be used in combination.
 多官能脂肪族系イソシアネート化合物の具体例としては、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、1,3-ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネートが挙げられる。 Specific examples of the polyfunctional aliphatic isocyanate compound include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 1,3-butylene diisocyanate, dodecamethylene diisocyanate, 2,4. 1,4-trimethylhexamethylene diisocyanate.
 多官能脂環族系イソシアネート化合物の具体例としては1,3-シクロペンテンジイソシアネート、1,3-シクロへキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加キシリレンジイソシアネート、水素添加トリレンジイソシアネート、水素添加テトラメチルキシリレンジイソシアネートが挙げられる。 Specific examples of the polyfunctional alicyclic isocyanate compound include 1,3-cyclopentene diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, hydrogenated xylylene diisocyanate, Examples include hydrogenated tolylene diisocyanate and hydrogenated tetramethylxylylene diisocyanate.
 多官能芳香族系ジイソシアネート化合物の具体例としては、フェニレンジイソシアネート、2,4-トリレンジイソソアネート、2,6-トリレンジイソシアネート、2,2'一ジフェニルメタンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、4,4'-トルイジンジイソシアネート、4,4'-ジフェニルエーテルジイソシアネート、4,4'-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、キシリレンジイソシアネートが挙げられる。 Specific examples of the polyfunctional aromatic diisocyanate compound include phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,2′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, Examples include 4,4'-toluidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, and xylylene diisocyanate.
 ポリウレタン系樹脂は、以上説明したポリオールと多官能イソシアネート化合物を含有する組成物を硬化させて得られる。特に、ゴム弾性伸長回復率等の特性の観点から、低結晶性の線状ポリエステル系ポリウレタン樹脂が好ましく、ヘキサンジオールコポリエステル系ポリウレタン樹脂、ポリテトラメチレングリコール系ポリウレタン樹脂がより好ましい。ポリウレタン樹脂の市販品としては、例えば、三洋化成工業社製の商品名サンプレン、住化バイエルウレタン社製の商品名デスモコール、日本ポリウレタン工業社製の商品名ニッポラン等がある。低結晶性は、具体的にはJIS K 6253「ゴム硬度規格」に準じて、膜厚6mmの樹脂試験片を作製し100℃×30分間で試験片を融解させて23±2℃、相対湿度50±5%の環境下に放置してから、樹脂の硬度がショアA90になるまでの時間を測定することにより判定できる。具体的には、ショアA90になるまでの時間が72時間以上の樹脂を低結晶性の樹脂と言うことができる。例えば、住化バイエルウレタン社製の商品名デスモコール500はショアA90になるまでの時間が5分程度、商品名デスモコール540が10分程度の高結晶性樹脂であり、商品名デスモコール176は48時間の中結晶性樹脂である。一方、デスモコール406は72時間の低結晶性樹脂である。 The polyurethane-based resin is obtained by curing the composition containing the polyol and the polyfunctional isocyanate compound described above. In particular, from the viewpoint of characteristics such as a rubber elastic elongation recovery rate, a low crystalline linear polyester polyurethane resin is preferable, and a hexanediol copolyester polyurethane resin and a polytetramethylene glycol polyurethane resin are more preferable. Examples of commercially available polyurethane resins include the product name Samprene manufactured by Sanyo Kasei Kogyo Co., Ltd., the product name Desmocol manufactured by Sumika Bayer Urethane Co., Ltd., and the product name NIPPOLAN manufactured by Nippon Polyurethane Industry Co., Ltd. Specifically, according to JIS K 6253 “Rubber Hardness Standard”, the low crystallinity is obtained by preparing a resin test piece having a thickness of 6 mm and melting the test piece at 100 ° C. for 30 minutes, 23 ± 2 ° C., relative humidity This can be determined by measuring the time from when the resin is left in an environment of 50 ± 5% until the hardness of the resin reaches Shore A90. Specifically, a resin having a time period of 72 hours or longer until Shore A 90 is reached can be referred to as a low crystalline resin. For example, the product name Desmocol 500 manufactured by Sumika Bayer Urethane Co., Ltd. is a highly crystalline resin that takes about 5 minutes to reach Shore A90, and the product name Desmocol 540 is about 10 minutes. It is a medium crystalline resin for 48 hours. On the other hand, desmocol 406 is a low crystalline resin for 72 hours.
 さらに本発明においては、ベースポリマーの強度、耐熱性、ゴム弾性等の特性向上の観点から、架橋剤を使用することが好ましい。架橋剤としては、例えば、金属キレート系、金属アルコキシド系、エポキシ系、イソシアネート系、アジリジン系、多官能アクリレート、カルボジイミド系、オキサゾリン系、メラミン系の架橋剤を使用できる。中でも、反応性、合成容易性、基材自体の柔軟性と耐衝撃性、粘着剤層との密着性等の特性の観点から、イソシアネート系架橋剤が好ましい。特に耐衝撃性の観点からは、ベースポリマーとしてポリウレタン系樹脂を使用し、これとイソシアネート系架橋剤を併せて使用することがより好ましい。 Furthermore, in the present invention, it is preferable to use a crosslinking agent from the viewpoint of improving properties such as strength, heat resistance and rubber elasticity of the base polymer. As the crosslinking agent, for example, a metal chelate-based, metal alkoxide-based, epoxy-based, isocyanate-based, aziridine-based, polyfunctional acrylate, carbodiimide-based, oxazoline-based, or melamine-based crosslinking agent can be used. Among these, an isocyanate-based crosslinking agent is preferable from the viewpoints of reactivity, ease of synthesis, flexibility and impact resistance of the substrate itself, and adhesion to the pressure-sensitive adhesive layer. In particular, from the viewpoint of impact resistance, it is more preferable to use a polyurethane-based resin as a base polymer and to use this together with an isocyanate-based crosslinking agent.
 発泡樹脂基材を構成する為の樹脂組成物には他の成分を添加しても良い。具体的には、例えば、触媒、他の樹脂成分、粘着付与剤、無機充填剤、有機充填剤、金属粉、顔料、箔状物、軟化剤、可塑剤、老化防止剤、放熱剤、導電剤、酸化防止剤、紫外線吸収剤、光安定剤、表面潤滑剤、レベリング剤、腐食防止剤、耐熱安定剤、重合禁止剤、滑剤、溶剤を添加できる。特に硬化反応の為に、有機金属系化合物、3級アミン化合物等の触媒を添加することが好ましい。有機金属系化合物の具体例としては、鉄系化合物、錫系化合物、チタン系化合物、ジルコニウム系化合物、鉛系化合物、コバルト系化合物、亜鉛系化合物、ビスマス系化合物が挙げられる。特に反応速度と環境負荷の観点から、鉄系化合物、ビスマス系化合物が好ましい。 Other components may be added to the resin composition for constituting the foamed resin base material. Specifically, for example, catalysts, other resin components, tackifiers, inorganic fillers, organic fillers, metal powders, pigments, foils, softeners, plasticizers, anti-aging agents, heat dissipation agents, conductive agents Antioxidants, ultraviolet absorbers, light stabilizers, surface lubricants, leveling agents, corrosion inhibitors, heat stabilizers, polymerization inhibitors, lubricants, and solvents can be added. In particular, it is preferable to add a catalyst such as an organometallic compound or a tertiary amine compound for the curing reaction. Specific examples of organometallic compounds include iron compounds, tin compounds, titanium compounds, zirconium compounds, lead compounds, cobalt compounds, zinc compounds, and bismuth compounds. In particular, from the viewpoint of reaction rate and environmental load, iron-based compounds and bismuth-based compounds are preferable.
 以上説明した樹脂中に独立気泡を形成する方法は特に限定されないが、熱膨張性マイクロカプセル、既膨張中空フィラー、無機系発泡剤、有機系発泡剤等の発泡剤を使用して形成する方法が好ましい。中でも、熱膨張性マイクロカプセル及び/又は既膨張中空フィラーを使用することが特に好ましい。 The method of forming closed cells in the resin described above is not particularly limited, but a method of forming using a foaming agent such as a thermally expandable microcapsule, an already expanded hollow filler, an inorganic foaming agent, an organic foaming agent, or the like. preferable. Among these, it is particularly preferable to use thermally expandable microcapsules and / or already expanded hollow fillers.
 先に説明したように、図2(従来技術)のように平均ボイド径が数百μm、又は部分的に1~2mmのレベルと大きい場合は部分的に貫通状態が形成されることがあり、特に細幅加工された発泡樹脂基材粘着テープにおける防水性や耐静電気性等の特性で大きな問題となる。そこで従来技術においては、極端に大きな独立気泡部分を光学的検出器で取り除くことが行われている。しかし、除去する検出精度が十分でないので、信頼性欠如や製造ロットのばらつきによる収率の悪化、加工費の増加によるコストアップなどの問題が生じてしまう。一方、熱膨張性マイクロカプセル及び/又は既膨張中空フィラーを使用した発泡制御方式を採用すれば、ボイド径を本発明の特定範囲の小さなサイズに簡易に制御できる。 As described above, when the average void diameter is as large as several hundreds μm or partially as 1 to 2 mm as shown in FIG. 2 (prior art), a penetration state may be partially formed. In particular, the foamed resin-based adhesive tape processed with a narrow width is a big problem in properties such as waterproofness and electrostatic resistance. Therefore, in the prior art, an extremely large closed cell portion is removed by an optical detector. However, since the detection accuracy to be removed is not sufficient, problems such as a lack of reliability, a decrease in yield due to variations in manufacturing lots, and an increase in costs due to an increase in processing costs arise. On the other hand, if a foaming control system using thermally expandable microcapsules and / or already expanded hollow fillers is employed, the void diameter can be easily controlled to a small size within the specific range of the present invention.
 熱膨張性マイクロカプセルは、代表的には、主として熱可塑性樹脂から構成される外殻とこの外殻に内包された液状の低沸点炭化水素を含んでなる微小球体である。液状の低沸点炭化水素の沸点は、外殻を構成する熱可塑性樹脂の軟化温度以下である。この熱膨張性マイクロカプセルを含む樹脂を加熱発泡させることにより独立気泡を形成できる。例えば、熱膨張性マイクロカプセルは基材を構成する為の樹脂中に分散され、樹脂を熱成形する際に破裂しない程度に熱膨張し、成形後は膨張した形状を維持する。これにより、樹脂中に独立気泡が形成される。熱膨張性マイクロカプセルの膨張前の平均粒径は好ましくは5~50μm、より好ましくは10~30μmであり、膨張後の平均粒径は好ましくは30~150μm、より好ましくは40~120μmである。熱膨張性マイクロカプセルの熱膨張開始温度は好ましくは100~170℃であり、最大発泡温度は好ましくは160~200℃であり、体積膨張率は好ましくは約50~100倍である。 The heat-expandable microcapsule is typically a microsphere comprising an outer shell mainly composed of a thermoplastic resin and a liquid low-boiling hydrocarbon contained in the outer shell. The boiling point of the liquid low boiling point hydrocarbon is not higher than the softening temperature of the thermoplastic resin constituting the outer shell. Closed cells can be formed by heating and foaming the resin containing the thermally expandable microcapsules. For example, the thermally expandable microcapsules are dispersed in a resin for constituting the base material, and thermally expand to such an extent that they do not rupture when the resin is thermoformed, and maintain the expanded shape after molding. Thereby, closed cells are formed in the resin. The average particle diameter of the thermally expandable microcapsule before expansion is preferably 5 to 50 μm, more preferably 10 to 30 μm, and the average particle diameter after expansion is preferably 30 to 150 μm, more preferably 40 to 120 μm. The thermal expansion start temperature of the thermally expandable microcapsule is preferably 100 to 170 ° C., the maximum foaming temperature is preferably 160 to 200 ° C., and the volume expansion coefficient is preferably about 50 to 100 times.
 熱膨張性マイクロカプセルの外殻を構成する熱可塑性樹脂は、基材を構成する樹脂の軟化温度や熱成形温度等の条件に応じて適宜選択すれば良い。具体例としては、(メタ)アクリルニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等のモノマーからなるホモポリマー;及び、これらモノマーの2種類以上からなるコポリマー;が挙げられる。外殻の表面にバインダー樹脂を用いて酸化チタン、酸化亜鉛、アルミナ、シリカ、炭酸カルシウム等の無機微粒子を固着させても良い。また、外殻を主にアクリルニトリルとシリコンにより形成し、シリコンの配合量を調整することで発泡特性(例えば膨張率)を制御することもできる。 The thermoplastic resin constituting the outer shell of the thermally expandable microcapsule may be appropriately selected according to conditions such as the softening temperature and thermoforming temperature of the resin constituting the base material. Specific examples include homopolymers composed of monomers such as (meth) acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate; and copolymers composed of two or more of these monomers. ; Inorganic particles such as titanium oxide, zinc oxide, alumina, silica, and calcium carbonate may be fixed to the surface of the outer shell using a binder resin. Further, the foaming characteristics (for example, the expansion coefficient) can be controlled by forming the outer shell mainly from acrylonitrile and silicon and adjusting the blending amount of silicon.
 熱膨張性マイクロカプセルに内包される液状の低沸点炭化水素は、基材を構成する樹脂を熱成形する際に気化する炭化水素が好ましい。具体例としては、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、石油エーテル等の低沸点液体が挙げられる。 The liquid low-boiling hydrocarbons encapsulated in the thermally expandable microcapsules are preferably hydrocarbons that are vaporized when the resin constituting the substrate is thermoformed. Specific examples include low-boiling liquids such as normal butane, isobutane, normal pentane, isopentane, and petroleum ether.
 熱膨張性マイクロカプセルの市販品としては、例えば、松本油脂製薬社製の商品名マツモトマイクロスフェアー F-36D、F-36LVD、FN-80GSD、FN-100SD、FN-100MD、FN-100SSD、FN-105D、FN-180SSD等、EXPANCEL社製の商品名Expancel 053-40、909-80、930-120等、大日精化工業社製の商品名ファインセルマスター MS401K、MS402K、MS405K等がある。 Examples of commercially available thermal expandable microcapsules include Matsumoto Microspheres F-36D, F-36LVD, FN-80GSD, FN-100SD, FN-100MD, FN-100SSD, and FN manufactured by Matsumoto Yushi Seiyaku Co., Ltd. -105D, FN-180SSD, etc., trade names such as EXPANCEL 053-40, 909-80, 930-120, etc., and trade names Fine Cell Master MS401K, MS402K, MS405K, etc., manufactured by Dainichi Seika Kogyo.
 既膨張中空フィラーは、熱膨張性マイクロカプセルを単独で発泡させたものである。なお、熱膨張性マイクロカプセル及び既膨張中空フィラーのどちらか一方のみを使用してもよいし、両者を併用してもよい。 The already expanded hollow filler is obtained by foaming a thermally expandable microcapsule alone. Only one of the thermally expandable microcapsule and the already expanded hollow filler may be used, or both may be used in combination.
 無機系発泡剤の具体例としては、炭酸アンモニウム、炭酸水素アンモニウム、炭酸水素ナトリウム、亜硝酸アンモニウム、水素化ホウ素ナトリウムが挙げられる。 Specific examples of the inorganic foaming agent include ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, ammonium nitrite, and sodium borohydride.
 有機系発泡剤の具体例としては、トリクロロモノフルオロメタン、ジクロロモノフルオロメタン等の塩フッ化アルカン、アゾビスイソブチロニトリル、アゾジカルボンアミド、バリウムアゾジカルボキシレート等のアゾ系化合物、パラトルエンスルホニルヒドラジド、ジフェニルスルホン‐3,3'‐ジスルホニルヒドラジド、4,4'‐オキシビス(ベンゼンスルホニルヒドラジド)、アリルビス(スルホニルヒドラジド)等のヒドラジン系化合物、ρ‐トルイレンスルホニルセミカルバジド、4,4'‐オキシビス(ベンゼンスルホニルセミカルバジド)等のセミカルバジド系化合物、5‐モルホリル‐1,2,3,4‐チアトリアゾール等のトリアゾール系化合物、N,N'‐ジニトロソペンタメチレンテトラミン、N,N'-ジメチル‐N,N'-ジニトロソテレフタルアミド等のN‐ニトロソ系化合物が挙げられる。 Specific examples of the organic foaming agent include chlorofluorinated alkanes such as trichloromonofluoromethane and dichloromonofluoromethane, azo compounds such as azobisisobutyronitrile, azodicarbonamide, barium azodicarboxylate, and paratoluene. Hydrazine compounds such as sulfonyl hydrazide, diphenyl sulfone-3,3′-disulfonyl hydrazide, 4,4′-oxybis (benzenesulfonyl hydrazide), allyl bis (sulfonyl hydrazide), ρ-toluylene sulfonyl semicarbazide, 4,4′- Semicarbazide compounds such as oxybis (benzenesulfonyl semicarbazide), triazole compounds such as 5-morpholyl-1,2,3,4-thiatriazole, N, N′-dinitrosopentamethylenetetramine, N, N′-dimethyl- N, N'-Gini N- nitroso compounds such as nitroso terephthalamide and the like.
 本発明に用いる発泡樹脂基材は、樹脂を発泡させることにより内部に独立気泡を形成した基材である。発泡倍率は、好ましくは1.2~4倍、より好ましくは2~3倍である。発泡樹脂基材の厚さは、好ましくは0.05~1.0mm、より好ましくは0.08~0.3mmである。 The foamed resin base material used in the present invention is a base material in which closed cells are formed by foaming the resin. The expansion ratio is preferably 1.2 to 4 times, more preferably 2 to 3 times. The thickness of the foamed resin base material is preferably 0.05 to 1.0 mm, more preferably 0.08 to 0.3 mm.
 発泡樹脂基材は、粘着剤層や他の層との密着性向上の為の表面処理が施されていても良い。表面処理としては、例えば、コロナ処理、火炎処理、プラズマ処理、熱風処理、オゾン・紫外線処理、易接着処理剤の塗布が挙げられる。表面処理の度合いは、例えばぬれ試薬によるぬれ指数により判断できる。粘着剤層との密着性の点から、表面処理後の基材表面のぬれ指数は好ましくは36mN/m以上、より好ましくは40mN/m、特に好ましくは48mN/mである。 The foamed resin base material may be subjected to a surface treatment for improving adhesion with the pressure-sensitive adhesive layer or other layers. Examples of the surface treatment include corona treatment, flame treatment, plasma treatment, hot air treatment, ozone / ultraviolet treatment, and application of an easy adhesion treatment agent. The degree of surface treatment can be determined by, for example, a wetting index with a wetting reagent. From the viewpoint of adhesion to the pressure-sensitive adhesive layer, the wetting index of the substrate surface after the surface treatment is preferably 36 mN / m or more, more preferably 40 mN / m, and particularly preferably 48 mN / m.
 <粘着剤層>
 粘着剤層は、粘着剤組成物からなる層であり、発泡樹脂基材の少なくとも片面に設けられる。粘着剤組成物は、本発明の効果を損なわない粘着剤を含む組成物であれば良く、特に限定されない。例えば、エマルジョン系粘着剤、溶剤系粘着剤、オリゴマー系粘着剤、固形粘着剤、ホットメルト型粘着剤を使用できる。
<Adhesive layer>
An adhesive layer is a layer which consists of an adhesive composition, and is provided in the at least single side | surface of a foamed resin base material. The pressure-sensitive adhesive composition is not particularly limited as long as it contains a pressure-sensitive adhesive that does not impair the effects of the present invention. For example, an emulsion-based adhesive, a solvent-based adhesive, an oligomer-based adhesive, a solid adhesive, and a hot-melt adhesive can be used.
 粘着剤の種類としては、例えば、アクリル系粘着剤、ゴム系粘着剤(天然ゴム系粘着剤又は合成ゴム系粘着剤)、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、ポリアミド系粘着剤、エポキシ系粘着剤、ビニルアルキルエーテル系粘着剤、フッ素系粘着剤が挙げられる。2種以上の粘着剤を併用しても良い。特に耐熱性、耐寒性、耐水性、耐人工皮脂汗油性等の特性の観点から、アクリル系粘着剤が好ましい。アクリル系粘着剤は、一般に、ベースポリマーであるアクリル系共重合体[(メタ)アクリル酸エステル共重合体など]を架橋剤で硬化させて得られる化合物を主成分として含む組成物である。具体的には、例えば国際公開第2014/002203号に記載の粘着剤を好適に使用できる。 Examples of the type of pressure-sensitive adhesive include acrylic pressure-sensitive adhesive, rubber-based pressure-sensitive adhesive (natural rubber-based pressure-sensitive adhesive or synthetic rubber-based pressure-sensitive adhesive), silicone-based pressure-sensitive adhesive, polyester-based pressure-sensitive adhesive, urethane-based pressure-sensitive adhesive, and polyamide-based pressure-sensitive adhesive. Agents, epoxy adhesives, vinyl alkyl ether adhesives, and fluorine adhesives. Two or more pressure-sensitive adhesives may be used in combination. In particular, an acrylic pressure-sensitive adhesive is preferable from the viewpoint of properties such as heat resistance, cold resistance, water resistance, and resistance to artificial sebum sweat oil. The acrylic pressure-sensitive adhesive is generally a composition containing as a main component a compound obtained by curing an acrylic copolymer [(meth) acrylic acid ester copolymer etc.] as a base polymer with a crosslinking agent. Specifically, for example, the pressure-sensitive adhesive described in International Publication No. 2014/002203 can be suitably used.
 アクリル系粘着剤に用いるアクリル系共重合体は、代表的には、ヒドロキシル基及びカルボキシル基を有する(メタ)アクリル酸エステル共重合体である。特に、少なくとも長鎖(メタ)アクリル酸アルキルエステル、カルボキシル基含有モノマー、水酸基含有モノマー及び短鎖(メタ)アクリル酸アルキルエステルの4成分を共重合させることによって得られる(メタ)アクリル酸エステル共重合体が好ましい。 The acrylic copolymer used for the acrylic pressure-sensitive adhesive is typically a (meth) acrylic acid ester copolymer having a hydroxyl group and a carboxyl group. In particular, (meth) acrylic acid ester copolymer obtained by copolymerizing at least four components of long chain (meth) acrylic acid alkyl ester, carboxyl group-containing monomer, hydroxyl group-containing monomer and short chain (meth) acrylic acid alkyl ester Coalescence is preferred.
 長鎖(メタ)アクリル酸アルキルエステルとしては、炭素原子数が4~12のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましい。その具体例としては、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、ラウリル(メタ)アクリレートが挙げられる。カルボキシル基含有モノマーの具体例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、2-力ルボキシ-1-ブテン、2-力ルボキシ-1-ペンテン、2-力ルボキシ-1-ヘキセン、2-力ルボキシ-1-ヘプテンが挙げられる。カルボキシル基含有モノマーを適量で使用すると、防水性、耐荷重性等の特性が向上する。水酸基含有モノマーの具体例としては、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートが挙げられる。短鎖(メタ)アクリル酸アルキルエステルは、炭素原子数1~3のアルキル基を有する(メタ)アクリル酸アルキルエステルであり、具体的にはメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレートである。中でも、メチルアクリレートが好ましい。 The long-chain (meth) acrylic acid alkyl ester is preferably a (meth) acrylic acid alkyl ester having an alkyl group having 4 to 12 carbon atoms. Specific examples thereof include butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, isooctyl (meth) acrylate, isononyl (meth) acrylate, and lauryl (meth) acrylate. Can be mentioned. Specific examples of the carboxyl group-containing monomer include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, 2-stroxy-1-butene, 2-strol-1-oxypentene, 2-strol ruboxy. Examples include -1-hexene and 2-stroxyl-heptene. When an appropriate amount of the carboxyl group-containing monomer is used, properties such as waterproofness and load resistance are improved. Specific examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate. The short chain (meth) acrylic acid alkyl ester is a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 3 carbon atoms. Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, propyl ( (Meth) acrylate. Of these, methyl acrylate is preferable.
 (メタ)アクリル酸エステル共重合体の構成成分(単量体単位)100質量%中、長鎖(メタ)アクリル酸アルキルエステル単位の含有量は、好ましくは50~90質量%、より好ましくは50~80質量%である。カルボキシル基含有モノマー単位の含有量は、好ましくは3~20質量%、より好ましくは3~12質量%である。水酸基含有モノマー単位の含有量は、好ましくは3~20質量%、より好ましくは3~18質量%である。短鎖(メタ)アクリル酸アルキルエステル単位の含有量は、好ましくは3~15質量%、より好ましくは3~12質量%である。さらに、カルボキシル基含有モノマー単位と水酸基含有モノマー単位の合計含有量は、好ましくは13質量%以上である。また、本発明の効果を損なわない範囲内で、これら4成分以外の単量体単位を含んでいても良い。 The content of the long chain (meth) acrylic acid alkyl ester unit is preferably 50 to 90% by mass, more preferably 50%, in 100% by mass of the constituent component (monomer unit) of the (meth) acrylic acid ester copolymer. ~ 80% by mass. The content of the carboxyl group-containing monomer unit is preferably 3 to 20% by mass, more preferably 3 to 12% by mass. The content of the hydroxyl group-containing monomer unit is preferably 3 to 20% by mass, more preferably 3 to 18% by mass. The content of the short-chain (meth) acrylic acid alkyl ester unit is preferably 3 to 15% by mass, more preferably 3 to 12% by mass. Furthermore, the total content of the carboxyl group-containing monomer unit and the hydroxyl group-containing monomer unit is preferably 13% by mass or more. Moreover, within the range which does not impair the effect of this invention, monomer units other than these four components may be included.
 アクリル系共重合体は、複数の単量体を共重合させることにより得られる。重合方法は特に限定されないが、ポリマー設計が容易な点からラジカル溶液重合が好ましい。また、アクリル系共重合体とそのモノマーとからなるアクリルシロップをまず調製し、このアクリルシロップに架橋剤と追加の光重合開始剤を配合して重合させても良い。 The acrylic copolymer can be obtained by copolymerizing a plurality of monomers. The polymerization method is not particularly limited, but radical solution polymerization is preferable from the viewpoint of easy polymer design. Alternatively, an acrylic syrup composed of an acrylic copolymer and its monomer may be prepared first, and this acrylic syrup may be blended with a crosslinking agent and an additional photopolymerization initiator for polymerization.
 アクリル系共重合体の重量平均分子量は、好ましくは70万~200万、より好ましくは70~150万である。これら範囲の下限値は、耐荷重性及び加工性の点で意義が有る。また上限値は、粘着剤組成物の塗工性の点で意義が有る。この重量平均分子量はGPC法により測定された値である。 The weight average molecular weight of the acrylic copolymer is preferably 700,000 to 2,000,000, more preferably 700 to 1,500,000. The lower limit of these ranges is significant in terms of load resistance and workability. Moreover, an upper limit has significance in the point of the applicability | paintability of an adhesive composition. This weight average molecular weight is a value measured by the GPC method.
 アクリル系共重合体の理論Tgは、好ましくは-40℃以下、より好ましくは-50℃~-75℃である。この理論TgはFOXの式により算出された値である。
 アクリル系粘着剤の主な樹脂成分はアクリル系共重合体であるが、その特性を損なわない範囲内において他の種類の樹脂成分も併用できる。
The theoretical Tg of the acrylic copolymer is preferably −40 ° C. or lower, more preferably −50 ° C. to −75 ° C. This theoretical Tg is a value calculated by the FOX equation.
The main resin component of the acrylic pressure-sensitive adhesive is an acrylic copolymer, but other types of resin components can be used in combination as long as the characteristics are not impaired.
 アクリル系粘着剤に用いる架橋剤は、アクリル系共重合体と反応して架橋構造を形成する為の化合物であり、代表的には、アクリル系共重合体のカルボキシル基及び/又は水酸基と反応し得る化合物である。特に、防水性、耐荷重性、加工性、耐衝撃性、耐人工皮脂、耐人工汗油等の特性の観点から、イソシアネート系架橋剤、エポキシ系架橋剤が好ましい。これらは併用しても良い。架橋剤の配合量は、アクリル系共重合体100質量部に対して、好ましくは0.001~1質量部である。 The crosslinking agent used for the acrylic pressure-sensitive adhesive is a compound that reacts with the acrylic copolymer to form a crosslinked structure, and typically reacts with a carboxyl group and / or a hydroxyl group of the acrylic copolymer. The resulting compound. In particular, from the viewpoint of properties such as waterproofness, load resistance, processability, impact resistance, artificial sebum resistance, and artificial sweat oil resistance, an isocyanate-based crosslinking agent and an epoxy-based crosslinking agent are preferable. These may be used in combination. The blending amount of the crosslinking agent is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the acrylic copolymer.
 イソシアネート系架橋剤の具体例としては、トリレンジイソシアネート、キシレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、及びこれらの変性プレポリマーが挙げられる。これらは二種以上を併用しても良い。イソシアネート系架橋剤の配合量は、アクリル系共重合体100質量部に対して、好ましくは0.02~1質量部、より好ましくは0.05~0.2質量部である。 Specific examples of the isocyanate crosslinking agent include tolylene diisocyanate, xylene diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, and modified prepolymers thereof. Two or more of these may be used in combination. The amount of the isocyanate-based crosslinking agent is preferably 0.02 to 1 part by mass, more preferably 0.05 to 0.2 part by mass with respect to 100 parts by mass of the acrylic copolymer.
 エポキシ系架橋剤の具体例としては、N,N,N',N'-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N'-ジグリシジルアミノメチル)シクロヘキサン等のエポキシ基を2個以上有する化合物が挙げられる。これらは二種以上を併用しても良い。エポキシ系架橋剤の配合量は、アクリル系共重合体100質量部に対して、好ましくは0.001~0.5質量部、より好ましくは0.001~0.1質量部である。 Specific examples of the epoxy crosslinking agent include epoxy groups such as N, N, N ′, N′-tetraglycidyl-m-xylylenediamine and 1,3-bis (N, N′-diglycidylaminomethyl) cyclohexane. The compound which has 2 or more is mentioned. Two or more of these may be used in combination. The blending amount of the epoxy crosslinking agent is preferably 0.001 to 0.5 parts by mass, more preferably 0.001 to 0.1 parts by mass with respect to 100 parts by mass of the acrylic copolymer.
 粘着剤には、例えば、粘着付与剤、可塑剤、充填剤、着色剤を添加できる。粘着付与剤の具体例としては、ロジン系樹脂(ロジンエステル系、重合ロジン系、不均化ロジンエステル系など)、テルペンフェノール系樹脂、テルペン系樹脂、石油系樹脂、スチレン系樹脂が挙げられる。充填剤の具体例としては、酸化珪素が挙げられる。着色剤の具体例としては、カーボンブラック、酸化チタン、アニリンブラック、アセチレンブラック、ケッチェンブラックが挙げられる。また遮光性フィラーとして、例えば、カーボンブラック、カーボンナノチューブ、黒色無機フィラーを添加しても良い。 For example, a tackifier, a plasticizer, a filler, and a colorant can be added to the adhesive. Specific examples of the tackifier include rosin resins (rosin ester, polymerized rosin, disproportionated rosin ester, etc.), terpene phenol resins, terpene resins, petroleum resins, and styrene resins. A specific example of the filler is silicon oxide. Specific examples of the colorant include carbon black, titanium oxide, aniline black, acetylene black, and ketjen black. Further, for example, carbon black, carbon nanotube, or black inorganic filler may be added as the light-shielding filler.
 粘着剤層は、例えば、粘着剤を基材上に塗布し、加熱又は紫外線照射により架橋反応させて形成できる。また例えば、粘着剤を離型紙又はその他のフィルム上に塗布し、加熱又は紫外線照射により架橋反応させて粘着剤層を形成し、この粘着剤層を基材の片面又は両面に貼り合せることもできる。粘着剤の塗布には、例えば、ロールコーター、ダイコーター、リップコーター等の塗布装置を使用できる。塗布後に加熱する場合は、加熱による架橋反応と共に粘着剤組成物中の溶剤も除去できる。粘着剤層の厚さは、好ましくは5~100μm、より好ましくは10~80μmである。 The pressure-sensitive adhesive layer can be formed by, for example, applying a pressure-sensitive adhesive on a base material and causing a crosslinking reaction by heating or ultraviolet irradiation. Further, for example, the pressure-sensitive adhesive can be applied on a release paper or other film, and a pressure-sensitive adhesive layer can be formed by crosslinking reaction by heating or ultraviolet irradiation, and this pressure-sensitive adhesive layer can be bonded to one side or both sides of the substrate. . For the application of the adhesive, for example, a coating device such as a roll coater, a die coater, or a lip coater can be used. When heating after application, the solvent in the pressure-sensitive adhesive composition can be removed together with the crosslinking reaction by heating. The thickness of the pressure-sensitive adhesive layer is preferably 5 to 100 μm, more preferably 10 to 80 μm.
 <粘着テープ>
 本発明の粘着テープは、以上説明した独立気泡を含む発泡樹脂基材と、この発泡樹脂基材の少なくとも片面に設けられた粘着剤層とを有する。粘着剤層を基材の片面のみに設けた片面粘着テープでも良いが、両面に設けた両面粘着テープが特に好ましい。
<Adhesive tape>
The pressure-sensitive adhesive tape of the present invention has the above-described foamed resin base material containing closed cells and a pressure-sensitive adhesive layer provided on at least one surface of the foamed resin base material. A single-sided adhesive tape having an adhesive layer provided on only one side of the substrate may be used, but a double-sided adhesive tape provided on both sides is particularly preferred.
 粘着テープの基材としては、以上説明した独立気泡を含む発泡樹脂基材を単独で使用することが好ましい。ただし、本発明の効果を損なわない範囲内において、例えば他の基材や他の層を発泡樹脂基材に積層してなる積層体を基材として使用することもできる。 As the base material of the adhesive tape, it is preferable to use the above-described foamed resin base material containing closed cells alone. However, for example, a laminate obtained by laminating another base material or another layer on the foamed resin base material can be used as the base material within a range not impairing the effects of the present invention.
 粘着テープのIEC6100に準拠した耐静電気特性は、好ましくは15kV以上、より好ましくは18kV以上である。先に説明した通り、耐静電気特性は一般に樹脂の種類に影響されると考えられるが、樹脂の種類が同じ場合は発泡樹脂基材の独立気泡のボイド径を特定範囲の小さなサイズに制御することにより耐静電気特性が向上すると推測される。上記の耐静電気特性の値は粘着テープに対する測定値であるが、もちろん発泡樹脂基材単独に対して測定する場合であっても同様の測定値であることが好ましい。このIEC6100に準拠した耐静電気特性は、具体的には後述する実施例に記載の通り、静電ガンにて粘着テープの幅方向にある一定の電圧を100ショットかけてスパークした時のその電圧値を意味する。 The antistatic property according to IEC6100 of the adhesive tape is preferably 15 kV or more, more preferably 18 kV or more. As explained above, the antistatic properties are generally considered to be affected by the type of resin, but if the resin type is the same, the void diameter of the closed cell of the foamed resin substrate should be controlled to a small size within a specific range. It is estimated that the anti-static property is improved. Although the value of the above-mentioned antistatic property is a measured value with respect to the adhesive tape, it is preferable that the measured value is the same even when measured with respect to the foamed resin base material alone. Specifically, the anti-static property based on IEC6100 is the voltage value when a constant voltage in the width direction of the adhesive tape is sparked by 100 shots with an electrostatic gun as described in the examples described later. Means.
 粘着テープの加熱寸法変化率は、加熱前の寸法を100%とした場合に100%±5%以内であり、好ましくは±1%以下である。この加熱寸法変化率(耐熱性)は、高温下で使用又は放置されることのある製品の用途において重要である。例えば、自動車のフロントパネルやダッシュボード周辺で使用されるカーナビゲーション等の情報携帯端末は、夏場では80℃を超える温度になることがある。この場合、カーナビゲーションの情報表示部と筐体を固定する粘着テープの基材が収縮し、歪によって剥がれ生じる恐れがある。そして、最近の情報携帯端末など粘着テープの細幅化の要望が高い製品用途においては、そのような高温下での剥がれが生じ易い。一方、たとえ細幅加工された粘着テープであっても上記の加熱寸法変化率を示すものであれば、高温下で使用又は放置され且つ長期に渡り振動が加えられても、剥がれの発生が生じ難くなる。このような加熱寸法変化率(耐熱性)の観点からは、ポリオレフィン系樹脂よりもポリウレタン系樹脂を発泡樹脂基材に使用することが好ましい。加熱寸法変化率は、具体的には後述する実施例に記載の通り、粘着テープを90℃で2時間加熱し、室温で1時間以上放置した後の寸法の変化率を意味する。 The heating dimensional change rate of the adhesive tape is 100% ± 5% or less, preferably ± 1% or less, assuming that the dimension before heating is 100%. This heating dimensional change rate (heat resistance) is important in applications of products that may be used or left at high temperatures. For example, portable information terminals such as a car navigation system used in the vicinity of a front panel or a dashboard of an automobile may have a temperature exceeding 80 ° C. in summer. In this case, the base material of the adhesive tape that fixes the information display unit of the car navigation and the housing may shrink and peel off due to distortion. And in the product use with the high request | requirement of narrowing of adhesive tapes, such as the recent information portable terminal, such peeling at high temperature tends to arise. On the other hand, even if it is an adhesive tape that has been processed to be narrow, if it exhibits the above-mentioned rate of change in heating dimensions, peeling will occur even if it is used or left under high temperature and subjected to vibration over a long period of time. It becomes difficult. From the viewpoint of such a heating dimensional change rate (heat resistance), it is preferable to use a polyurethane resin for the foamed resin base material rather than the polyolefin resin. Specifically, the heating dimensional change rate means the dimensional change rate after heating the adhesive tape at 90 ° C. for 2 hours and allowing it to stand at room temperature for 1 hour or longer as described in Examples below.
 粘着テープのゴム弾性伸長回復率(2倍及び4倍)は85%以上であり、好ましくは90%以上である。このゴム弾性伸長回復率は、リワーク性やリペア性(伸長剥離性)や柔軟性が要求される製品の用途において重要である。リペア性とは、具体的には後述する実施例に記載の通り、2つの硬質体の面同士を両面粘着テープで接着した状態において、その粘着テープの片端を引っ張って伸ばして問題無く簡単に剥離を可能とする性能を意味する。例えば、スマートフォンや携帯電話等の情報携帯端末の一部品が故障した場合、部品交換する為には部品間を固定していた粘着テープを容易に剥離でき、かつ剥離箇所に粘着剤等の残渣が残らないことが望まれる。しかし、粘着テープが適度な弾性を有していないと、粘着テープの片端を引っ張っても粘着剤層が十分には伸びず粘着力低下が不十分となり、粘着テープが途中で切れてしまう。一方、たとえ細幅加工された粘着テープであっても上記のゴム弾性伸長回復率を示すような回復率及び高度な柔軟性を有する粘着テープであれば、粘着テープの片端を引っ張ることにより粘着剤層も連続的に均一に引き伸ばされて粘着力が適度に低下し、その結果として問題無く簡単に剥離が可能となる。さらに高度な柔軟性は被着体の表面の凹凸、段差、歪みへの対応を可能とし、接着性、防水性、耐衝撃性等の特性の向上にも寄与する。このゴム弾性伸長回復率は、具体的には後述する実施例に記載の通り、テープの長さを2倍又は4倍になるよう引っ張り、引張力を解放した後10秒間経過した時点の伸長分当たりの回復分の割合である。 The rubber elastic elongation recovery rate (2 times and 4 times) of the adhesive tape is 85% or more, preferably 90% or more. This rubber elastic elongation recovery rate is important in applications of products that require reworkability, repairability (elongation peelability) and flexibility. Specifically, as described in the examples to be described later, the repair property is a state in which two hard surfaces are bonded to each other with a double-sided adhesive tape, and one end of the adhesive tape is pulled and stretched to easily peel off without any problem. It means the performance that enables. For example, when one component of an information portable terminal such as a smartphone or a mobile phone breaks down, the adhesive tape that has been fixed between the components can be easily removed in order to replace the component, and a residue such as an adhesive is left at the separation location. It is desirable not to remain. However, if the adhesive tape does not have an appropriate elasticity, even if one end of the adhesive tape is pulled, the adhesive layer does not extend sufficiently, resulting in insufficient decrease in adhesive strength, and the adhesive tape is cut off halfway. On the other hand, even if the pressure-sensitive adhesive tape has been processed to be narrow, the pressure-sensitive adhesive can be obtained by pulling one end of the pressure-sensitive adhesive tape as long as the pressure-sensitive adhesive tape has a recovery rate and a high degree of flexibility. The layer is also continuously stretched uniformly and the adhesive strength is moderately reduced. As a result, the layer can be easily peeled off without any problem. Furthermore, the high degree of flexibility enables to cope with unevenness, steps, and distortion on the surface of the adherend, and contributes to improvement in properties such as adhesion, waterproofness, and impact resistance. Specifically, as described in the examples described later, this rubber elastic elongation recovery rate is the elongation at the time when 10 seconds have elapsed after the tape length was pulled to double or quadruple and the tensile force was released. The percentage of recovery per hit.
 粘着テープの厚さ方向の圧縮変形率は好ましくは3.0%以上、より好ましくは5.0%以上である。この圧縮変形率は、被接着面の凹凸や段差があったり、部材自体に歪みが生じることがある製品の用途において重要である。例えばスマートフォンや携帯電話等の情報携帯端末の情報表示部材と筐体を貼り合わせる場合、各部材の被接着面は必ずしも平面ではなく通常は凹凸や段差が存在する。また使用時において各部材自体に歪みが生じる場合がある。したがって、粘着テープがそれら歪みを吸収できないと剥離が生じてしまう。一方、たとえ細幅加工された粘着テープであっても上記の圧縮変形率を示すような柔軟性や応力緩和性を有する粘着テープであれば、そのような場合であっても剥離が生じ難い。この圧縮変形率は、具体的には後述する実施例に記載の通り、JIS Z 0237:2000の厚さの試験法に準じて、ダイヤルゲージの負荷が20kPaの場合の厚さを基準とし、その負荷を100kPaに増した場合の厚さ変化の割合である。 The compressive deformation rate in the thickness direction of the adhesive tape is preferably 3.0% or more, more preferably 5.0% or more. This compressive deformation rate is important in applications of products in which there are irregularities and steps on the adherend surface, and the member itself may be distorted. For example, when an information display member of an information portable terminal such as a smartphone or a mobile phone is bonded to the housing, the adherend surface of each member is not necessarily a flat surface, and usually has unevenness and steps. In addition, each member itself may be distorted during use. Therefore, if the adhesive tape cannot absorb these distortions, peeling will occur. On the other hand, even if the pressure-sensitive adhesive tape is processed with a narrow width, if it is a pressure-sensitive adhesive tape having such flexibility and stress relaxation as to exhibit the above-described compression deformation rate, peeling is unlikely to occur. Specifically, the compression deformation rate is based on the thickness when the dial gauge load is 20 kPa according to the thickness test method of JIS Z 0237: 2000, as described in Examples below. This is the rate of change in thickness when the load is increased to 100 kPa.
 発泡樹脂基材を有する粘着テープ全体の層間強度は好ましくは10N/10mm以上、より好ましくは15N/10mm以上である。この層間強度(90度剥離粘着力)は、リワーク性が要求される製品の用途において重要である。リワーク性とは、具体的には後述する実施例に記載の通り、接着した状態の粘着テープを剥離する際に問題無く簡単に剥離を可能とする性能を意味する。例えば、スマートフォンや携帯電話等の情報携帯端末の製造工程において一旦接着した粘着テープを剥がしてその工程をやり直す(リワークする)必要が生じる場合がある。その際、粘着テープを容易に剥離でき、かつ剥離箇所に粘着剤等の残渣が残らないことが望まれる。しかし、発泡樹脂基材の層間強度が低いと、粘着層の粘着力の強度にもよるが粘着テープの剥離時に基材自体が破壊してしまい、或いは粘着剤層と発泡基材の密着性(接着強度)が弱いと粘着剤層と基材間の層間剥離を起こしてしまい、被着体に残渣が付着して取り除くことが困難になる。一方、上記の層間強度を有する発泡樹脂基材で構成された粘着テープであれば、そのような場合であっても従来の発泡樹脂基材より破壊が生じ難い。この層間強度は、具体的には後述する実施例に記載の通り、JIS Z 0237「粘着テープ・粘着シート試験方法」に準拠した90度剥離粘着力である。 The interlayer strength of the entire pressure-sensitive adhesive tape having the foamed resin base material is preferably 10 N / 10 mm or more, more preferably 15 N / 10 mm or more. This interlaminar strength (90-degree peel adhesion) is important in the use of products that require reworkability. Specifically, the reworkability means a performance that allows easy peeling without any problem when peeling the adhesive tape in a bonded state, as described in Examples below. For example, it may be necessary to peel off the adhesive tape once bonded in the manufacturing process of an information portable terminal such as a smart phone or a mobile phone and start the process again (rework). At that time, it is desirable that the adhesive tape can be easily peeled off and that a residue such as an adhesive does not remain at the peeled portion. However, if the interlaminar strength of the foamed resin base material is low, the base material itself is destroyed when the adhesive tape is peeled, or the adhesiveness between the adhesive layer and the foamed base material (depending on the strength of the adhesive strength of the adhesive layer) When the adhesive strength is weak, delamination between the pressure-sensitive adhesive layer and the substrate occurs, and it becomes difficult to remove the residue by adhering to the adherend. On the other hand, if it is an adhesive tape comprised with the said foaming resin base material which has said interlayer intensity | strength, even in such a case, it will be hard to produce a destruction from the conventional foaming resin base material. Specifically, the interlayer strength is 90 ° peel adhesive strength in accordance with JISJZ 0237 “Testing method of adhesive tape / adhesive sheet” as described in the examples described later.
 粘着テープの縦方向及び横方向の引張強度は、好ましくは6.0N/10mm以上である。またこの引張強度は、発泡樹脂基材単独の引張強度を100%とした場合に、好ましくは110%以上である。さらに縦方向及び横方向の引張強度の一方を100%とした場合に、他方の引張強度は100%±15%以内である。粘着テープの縦方向及び横方向の破断時の伸びは、好ましくは300%以上である。さらに縦方向及び横方向の破断時の伸びの一方を100%とした場合に、他方の引張強度は100%±15%以内である。特に引張強度及び伸びの縦横比が小さいことは、打抜き加工によって額縁状に成形した粘着テープが要求される製品の用途において重要である。例えば、スマートフォンや携帯電話等の情報携帯端末の情報表示部と筐体を固定する粘着テープは、ほぼ四角形の額縁状に打抜き加工されたものが多い。この場合、引張強度及び伸びの縦横比が大きいと物性のばらつきが生じてしまう。一方、上記の縦横比が小さい粘着テープであれば、どのような方向で打抜き加工しても物性のばらつきが生じ難い。引張強度及び伸びは、具体的には後述する実施例に記載の通り、特定サイズの粘着テープを引張試験した場合の破断時における強度と伸びである。 The tensile strength in the longitudinal direction and the transverse direction of the adhesive tape is preferably 6.0 N / 10 mm or more. The tensile strength is preferably 110% or more when the tensile strength of the foamed resin base material alone is 100%. Furthermore, when one of the tensile strengths in the longitudinal direction and the transverse direction is 100%, the other tensile strength is within 100% ± 15%. The elongation at break in the longitudinal and lateral directions of the adhesive tape is preferably 300% or more. Further, when one of the elongation at break in the longitudinal direction and the transverse direction is defined as 100%, the tensile strength of the other is within 100% ± 15%. Particularly, the aspect ratio of tensile strength and elongation is small, which is important in the use of products that require an adhesive tape formed into a frame shape by punching. For example, an adhesive tape that fixes an information display unit and a housing of an information portable terminal such as a smartphone or a mobile phone is often punched into a substantially rectangular frame shape. In this case, if the tensile strength and the aspect ratio of elongation are large, variations in physical properties occur. On the other hand, if the pressure-sensitive adhesive tape has a small aspect ratio, variations in physical properties are unlikely to occur regardless of the direction of punching. Specifically, the tensile strength and elongation are the strength and elongation at break when a specific size adhesive tape is subjected to a tensile test, as described in Examples below.
 粘着テープの-20℃における損失係数(tanδ)は好ましくは0.20以上、より好ましくは0.3以上である。また、85℃における貯蔵弾性率は好ましくは2.0×10Pa以上、より好ましくは2.5×10Pa以上であり、85℃における損失係数(tanδ)は好ましくは0.20以上、より好ましくは0.3以上である。この貯蔵弾性率及び損失係数は、細幅の粘着テープが要求される製品の用途において重要である。例えば、スマートフォンや携帯電話等の情報携帯端末は情報表示部(ディスプレイ等)の大画面化、製品全体のスリム化、デザイン性向上が進んで来たので、細幅の粘着テープが要求されるようになって来ている。この場合、貯蔵弾性率や損失係数が低いと接着性に問題が生じる場合がある。一方、上記の貯蔵弾性率及び損失係数を有する粘着テープであれば、細幅加工された粘着テープであっても接着性の問題が生じ難くなる。この貯蔵弾性率及び損失係数は、具体的には後述する実施例に記載の通り、粘弾性試験機の平行盤の間に厚さ0.2mmの粘着テープを挟み込み、周波数1Hzで測定・計算した値である。 The loss factor (tan δ) of the adhesive tape at −20 ° C. is preferably 0.20 or more, more preferably 0.3 or more. The storage elastic modulus at 85 ° C. is preferably 2.0 × 10 5 Pa or more, more preferably 2.5 × 10 5 Pa or more, and the loss coefficient (tan δ) at 85 ° C. is preferably 0.20 or more. More preferably, it is 0.3 or more. This storage modulus and loss factor are important in product applications where a narrow adhesive tape is required. For example, information mobile terminals such as smartphones and mobile phones have been developed to increase the screen size of information display units (displays, etc.), to make the entire product slimmer, and to improve the design. It is becoming. In this case, if the storage elastic modulus and loss factor are low, there may be a problem in adhesion. On the other hand, if the pressure-sensitive adhesive tape has the above storage elastic modulus and loss factor, even a narrow-width processed pressure-sensitive adhesive tape is less likely to cause an adhesive problem. Specifically, the storage elastic modulus and loss factor were measured and calculated at a frequency of 1 Hz with an adhesive tape having a thickness of 0.2 mm sandwiched between parallel plates of a viscoelasticity tester as described in Examples below. Value.
 以上の各特性は、主として発泡樹脂基材の樹脂の種類や独立気泡のサイズ及び粘着剤層の種類等の諸条件を適宜調整することによって発現する。発泡樹脂基材及び粘着剤層の具体例は先に説明した通りである。 Each of the above characteristics is manifested mainly by appropriately adjusting various conditions such as the type of resin of the foamed resin base material, the size of closed cells, and the type of adhesive layer. Specific examples of the foamed resin base material and the pressure-sensitive adhesive layer are as described above.
 粘着テープの幅は限定されない。ただし、本発明で得られる優れた諸特性は特に細幅の粘着テープにおいて有用という観点から、その幅は好ましくは0.5~5.0mm、より好ましくは0.7~3.0mmである。また粘着テープの厚さは、好ましくは0.08~0.5mm、より好ましくは0.1~0.4mmである。細幅の粘着テープを作製するために打抜き加工(細幅加工)を行う場合は、粘着剤層の厚さの合計が基材の厚さよりもあまり大きくならないように製品設計して、打抜き刃への粘着剤の付着やはみ出しを防止することが好ましい。 The width of the adhesive tape is not limited. However, the excellent characteristics obtained in the present invention are particularly useful in a narrow adhesive tape, and the width is preferably 0.5 to 5.0 mm, more preferably 0.7 to 3.0 mm. The thickness of the adhesive tape is preferably 0.08 to 0.5 mm, more preferably 0.1 to 0.4 mm. When punching (narrow processing) to produce a narrow adhesive tape, design the product so that the total thickness of the adhesive layer does not become much larger than the thickness of the base material, and to the punching blade It is preferable to prevent the adhesive from sticking or protruding.
 以下、実施例により本発明をさらに詳細に説明する。以下の記載において「部」は「質量部」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. In the following description, “part” means “part by mass”.
 <アクリル系粘着剤組成物の調製>
 撹拌機、温度計、還流冷却器及び窒素ガス導入管を備えた反応装置に、アクリル酸2-エチルヘキシル75部、アクリル酸メチル10部、アクリル酸10部、アクリル酸2-ヒドロキシエチル5部を混合し、酢酸エチル、連鎖移動剤としてn-ドデカンチオール及びラジカル重合開始剤としてラウリルパーオキサイド0.1部を仕込んだ。反応装置内に窒素ガスを封入し、撹拌しながら窒素ガス気流下に68℃で3時間、次いで78℃で3時間重合反応させた。
<Preparation of acrylic pressure-sensitive adhesive composition>
Mix 75 parts of 2-ethylhexyl acrylate, 10 parts of methyl acrylate, 10 parts of acrylic acid and 5 parts of 2-hydroxyethyl acrylate in a reactor equipped with a stirrer, thermometer, reflux condenser and nitrogen gas inlet tube. Then, ethyl acetate, n-dodecanethiol as a chain transfer agent, and 0.1 part of lauryl peroxide as a radical polymerization initiator were charged. Nitrogen gas was sealed in the reactor, and the polymerization reaction was carried out at 68 ° C. for 3 hours and then at 78 ° C. for 3 hours under a nitrogen gas stream while stirring.
 その後、室温まで冷却して酢酸エチルを添加した。これにより、固形分濃度30%、理論Tg-64.8、重量平均分子量110万のアクリル系共重合体を得た。次いで、このアクリル系共重合体100部にイソシアネート系架橋剤(日本ポリウレタン工業社製、商品名コロネートL)0.07部及び適量の有機溶剤を加えて、撹拌機で均一になるまで撹拌し、アクリル系粘着剤組成物を得た。 Then, it was cooled to room temperature and ethyl acetate was added. As a result, an acrylic copolymer having a solid content concentration of 30%, a theoretical Tg of 64.8, and a weight average molecular weight of 1.1 million was obtained. Next, 0.07 part of an isocyanate-based crosslinking agent (trade name Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.) and an appropriate amount of an organic solvent are added to 100 parts of this acrylic copolymer, and the mixture is stirred with a stirrer until uniform. An acrylic pressure-sensitive adhesive composition was obtained.
 <ポリウレタン系樹脂組成物の調製>
 発泡剤、着色剤などの粉末状成分に適量の有機溶劑を加えて、撹拌機で分散した。次いで、ポリウレタン系樹脂溶液及び架橋剤を加えて、撹拌機で均一分散になるまで撹拌し、ポリウレタン系樹脂組成物を得た。各成分の量(部)は表1及び2に示す。
<Preparation of polyurethane resin composition>
An appropriate amount of organic hot metal was added to powdery components such as a foaming agent and a colorant, and the mixture was dispersed with a stirrer. Next, a polyurethane resin solution and a crosslinking agent were added, and the mixture was stirred with a stirrer until uniform dispersion was obtained to obtain a polyurethane resin composition. The amounts (parts) of each component are shown in Tables 1 and 2.
 <実施例1~8及び比較例1~2>
 上記のポリウレタン系樹脂組成物を、両面にシリコーン離型剤を形成した剥離紙の片面に塗布し、70℃2分間+90℃2分間で乾燥して溶媒を除去した。次いで、130℃で2分間加熱することで発泡させ、これを巻き取った。さらに40℃で3日間熟成し、硬化反応を完結させて、発泡樹脂基材(厚さ0.10mm)を得た。
<Examples 1-8 and Comparative Examples 1-2>
The polyurethane resin composition was applied to one side of a release paper having a silicone release agent formed on both sides, and dried at 70 ° C. for 2 minutes + 90 ° C. for 2 minutes to remove the solvent. Subsequently, it was made to foam by heating at 130 degreeC for 2 minutes, and this was wound up. Further, aging was performed at 40 ° C. for 3 days to complete the curing reaction, and a foamed resin base material (thickness: 0.10 mm) was obtained.
 両面シリコーン離型処理した剥離紙に、上記のアクリル系粘着剤組成物を塗布・乾燥し、粘着剤層を形成した。そして、発泡樹脂基材にコロナ放電処理を施しながら、この粘着剤層を貼り合わせた。さらに、発泡樹脂基材の反対面にも同じ方法で粘着剤層を貼り合わせた。その後、40℃で3日間熟成し、粘着剤層の硬化反応を完結させて、厚さ約0.20mmの両面粘着テープ(各粘着剤層の厚さ約50μm)を得た。 The above-mentioned acrylic pressure-sensitive adhesive composition was applied to a release paper subjected to a double-sided silicone release treatment and dried to form a pressure-sensitive adhesive layer. And this adhesive layer was bonded together, performing a corona discharge process to a foamed resin base material. Furthermore, the pressure-sensitive adhesive layer was bonded to the opposite surface of the foamed resin substrate by the same method. Thereafter, aging was carried out at 40 ° C. for 3 days to complete the curing reaction of the pressure-sensitive adhesive layer, and a double-sided pressure-sensitive adhesive tape having a thickness of about 0.20 mm (the thickness of each pressure-sensitive adhesive layer was about 50 μm) was obtained.
 <比較例3>
 基材としてポリエチレン(PE)系発泡体(積水化学社製、商品名ボラーラ XL-H クロ #1001)を使用したこと以外は、実施例1と同様にして厚さ約0.20mmの両面粘着テープ(各面粘着剤層の厚さ約50μm)を製造した。
<Comparative Example 3>
Double-sided pressure-sensitive adhesive tape having a thickness of about 0.20 mm in the same manner as in Example 1 except that a polyethylene (PE) -based foam (manufactured by Sekisui Chemical Co., Ltd., trade name Bollala XL-H black # 1001) was used as the base material. (The thickness of each surface pressure-sensitive adhesive layer was about 50 μm).
 <比較例4>
 基材としてポリエチレンテレフタレート(PET)フィルム(東レ社製、商品名ルミラーS-10)を使用したこと以外は、実施例1と同様にして厚さ約0.20mmの両面粘着テープ(各面粘着剤層の厚さ約75μm)を製造した。
<Comparative example 4>
A double-sided adhesive tape having a thickness of about 0.20 mm (each side adhesive) except that a polyethylene terephthalate (PET) film (trade name Lumirror S-10, manufactured by Toray Industries, Inc.) was used as the substrate. A layer thickness of about 75 μm) was produced.
 <比較例5>
 基材が無い厚さ0.20mmのベースレス両面テープを実施例1のアクリル系粘着剤組成物を離型紙に0.2mmの厚さになる様に塗布して製造した。
<Comparative Example 5>
A baseless double-sided tape having a thickness of 0.20 mm without a base material was produced by applying the acrylic pressure-sensitive adhesive composition of Example 1 to a release paper to a thickness of 0.2 mm.
 <試験方法>
 実施例及び比較例で得た両面粘着テープに対して以下の試験を行った。結果を表1~3に示す。
<Test method>
The following tests were performed on the double-sided pressure-sensitive adhesive tapes obtained in the examples and comparative examples. The results are shown in Tables 1 to 3.
 [ボイド径]
 発泡樹脂基材の5×5mm面積における多数の独立気泡を透過法による光学顕微鏡にて観察し、ボイド径の平均値と最大値を計測した。
[Void diameter]
A number of closed cells in a 5 × 5 mm area of the foamed resin substrate were observed with an optical microscope based on the transmission method, and the average value and the maximum value of the void diameter were measured.
 [ゴム弾性伸長回復率]
 両面粘着テープを幅10mm、長さ150~200mmに切り出し、炭酸カルシウムで粘着性を失活させたものを試験片とした。試験片の一端を、チャック間隔を100mmに設定した引っ張り試験機に固定し、テープ試験分長さ100mmの両サイドにマジックで印を付けた。1500mm/分の速度で引っ張って、長さが2倍(伸長分100mm)又は4倍(伸長分300mm)になった時に片方のチャックを開放し、10秒間を経過した時点の印付部分の全長(回復時の全長)を測った。そして、この伸長分に対する回復分(伸長時の全長-回復時の全長)の割合を求め、これをゴム弾性伸長回復率とした。具体的な計算方法は以下の通りである。
 2倍伸長回復率(%)=(200-回復時の全長)÷100×100
 4倍伸長回復率(%)=(400-回復時の全長)÷300×100
[Rubber elastic recovery rate]
A double-sided pressure-sensitive adhesive tape was cut into a width of 10 mm and a length of 150 to 200 mm, and its adhesiveness was deactivated with calcium carbonate was used as a test piece. One end of the test piece was fixed to a tensile tester with a chuck interval set to 100 mm, and both sides with a length of 100 mm for the tape test were marked with magic. Pulling at a speed of 1500 mm / min and releasing the one chuck when the length is doubled (extended portion 100 mm) or quadrupled (extended portion 300 mm), the total length of the marked part after 10 seconds (Full length at the time of recovery) was measured. Then, the ratio of the recovery amount (the total length at the extension-the total length at the recovery) to the extension was determined, and this was used as the rubber elastic extension / recovery rate. The specific calculation method is as follows.
Double elongation recovery rate (%) = (200-total length at recovery) ÷ 100 x 100
4-fold elongation recovery rate (%) = (400-total length at recovery) / 300 x 100
 [加熱寸法変化率]
 両面粘着テープを100×100mmに切り出し、炭酸カルシウムで粘着性を失活させたものを試験片とした。試験片を90℃の乾燥機に2時間吊るし、その後室温で1時間以上放置して寸法を測定した。加熱寸法変化率の具体的な計算方法は以下の通りである。
 加熱寸法変化率(%)=[(加熱後寸法)-(加熱前寸法)]÷(加熱前寸法)×100
[Heating dimensional change rate]
A double-sided adhesive tape was cut into a size of 100 × 100 mm, and the test piece was prepared by deactivating the adhesiveness with calcium carbonate. The test piece was suspended in a dryer at 90 ° C. for 2 hours and then allowed to stand at room temperature for 1 hour or more to measure dimensions. A specific method for calculating the heating dimensional change rate is as follows.
Heating dimensional change rate (%) = [(Dimension after heating)-(Dimension before heating)] ÷ (Dimension before heating) x 100
 [細幅加工性]
 両面粘着テープを幅5mm、長さ125mmのサイズで10本に細断した状態を維持したまま(すなわち細断した各々の粘着テープが細断時の隣接した状態を維持したまま)、65℃、80%RHの雰囲気下に1日放置した。そして1本毎に180度方向に離型紙ごと剥離し、隣接した部分との癒着を目視にて確認し、以下の基準で細幅加工性を評価した。
 「〇」:隣接した部分との癒着がほとんど無く、隣接部分を剥すことなく剥離できた。
 「×」:隣接した部分に著しい癒着があり、隣接部分が同時に剥れてしまった。
[Narrow width workability]
While maintaining the state that the double-sided adhesive tape is shredded into 10 pieces having a width of 5 mm and a length of 125 mm (that is, each of the shredded adhesive tapes maintains the adjacent state at the time of shredding), 65 ° C., It was left for 1 day in an atmosphere of 80% RH. Then, the release paper was peeled in the direction of 180 degrees for each one, the adhesion with the adjacent portion was visually confirmed, and the narrow width workability was evaluated according to the following criteria.
“◯”: There was almost no adhesion with the adjacent part, and it was able to peel without peeling off the adjacent part.
"X": There was remarkable adhesion in the adjacent part, and the adjacent part was peeled off at the same time.
 [リワーク性]
 両面粘着テープの片面をアルミ箔(0.08mm厚)で裏打ちしたものを試験片とし、JIS Z 0237「粘着テープ・粘着シート試験方法」に準拠して、ステンレス板に対するテープ貼着30分後の90度剥離試験を行い、以下の基準で評価した。
 「〇」:基材の層間破壊や糊残りは無かった。
 「×(a)」:剥離時に基材の層間が破壊した。
 「×(b)」:剥離後、ステンレス板上に糊残りが認められた。
[Reworkability]
One side of the double-sided adhesive tape is lined with aluminum foil (0.08 mm thick) as a test piece, and in accordance with JIS Z 0237 “Adhesive tape / adhesive sheet test method”, 30 minutes after tape application to a stainless steel plate A 90-degree peel test was performed and evaluated according to the following criteria.
“◯”: There was no interlaminar fracture or adhesive residue on the substrate.
“× (a)”: The interlayer of the base material was broken during peeling.
“× (b)”: Adhesive residue was observed on the stainless steel plate after peeling.
 [耐荷重性]
 両面粘着テープを25×25mmのサイズに裁断し、一方の離型紙を剥離した。試験用フック板に両面粘着テープを貼り合せ、次いでもう一方の離型紙を剥離し、ポリカーボネート板に貼り合せた。そしてフックに700gfの荷重をかけ、85℃で60分間保持し、以下の基準で耐荷重性を評価した。
 「O」:60分間フックは落下しなかった。
 「×」:60分以内にフックが落下した。
[Load resistance]
The double-sided adhesive tape was cut into a size of 25 × 25 mm, and one release paper was peeled off. A double-sided adhesive tape was bonded to the test hook plate, and then the other release paper was peeled off and bonded to a polycarbonate plate. A load of 700 gf was applied to the hook and held at 85 ° C. for 60 minutes, and load resistance was evaluated according to the following criteria.
“O”: The hook did not fall for 60 minutes.
"X": The hook fell within 60 minutes.
 [耐衝撃性]
 両面粘着テープを幅0.8mmで50×45mmの枠状に裁断し、一方の離型紙を剥離して2mm厚のガラス板に貼り合せ、更にもう一方の剥離紙を剥離して3mm厚のポリカーボネート板に貼り合せた。そしてオートクレーブを用いて、23℃、0.5MPaで1時間の加圧処理を行った。さらにSUS板を用いて全体の重さを250gになる様に調整し、-20℃の環境下に1時間以上置いた。そして、1.5mの高さから試験板が垂直方向なる様に筒の中を通しながらコンクリート床に落とし、ガラス板が剥れるか割れるか迄(A)或いは基材の層間破壊が生じる迄(B)の落下回数を測定した。
[Shock resistance]
Double-sided adhesive tape is cut into a frame with a width of 0.8 mm and a size of 50 x 45 mm, one release paper is peeled off and bonded to a 2 mm thick glass plate, and the other release paper is peeled off to release a 3 mm thick polycarbonate. Laminated to the board. Then, using an autoclave, pressure treatment was performed at 23 ° C. and 0.5 MPa for 1 hour. Further, using a SUS plate, the whole weight was adjusted to 250 g, and placed in an environment of −20 ° C. for 1 hour or longer. Then, from 1.5m height, pass the test plate vertically through the cylinder and drop it on the concrete floor until the glass plate peels or breaks (A) or until the interlaminar fracture of the substrate occurs ( The number of drops in B) was measured.
 [防水性]
 両面粘着テープを幅0.8mmで40×50mmの枠状に裁断し、一方の離型紙を剥離して2mm厚のガラス板に貼り合わせ、更にもう一方の離型紙を剥離して2mm厚のガラス板を貼り合せた。そしてこのサンプルに対して、オートクレーブを用いて23℃で1時間の加圧処理(0.5MPa)を行った。その後、防水規格IEC「国際電気標準会議」60529:2001〔同等規格:JIS C 0920:2003「電気機械器具の外郭による保護特級(IPコード)」〕のIPX7の試験方法に基づき水没させて、防水性を評価した。また別のサンプルに対して、オートクレーブを用いて23℃で1時間の加圧処理を行い、その後、上記防水規格のIPX8の試験方法に基づき、0.1MPa、0.25MPa、0.5MPaの水中にそれぞれ沈め、防水性を評価した。この評価は、その防水性が保護等級IPX8に定めた条件を満たす、乃至、IPX7に定めた条件を満たさない防水性である、というレベルの段階分けで行った。
[Waterproof]
Double-sided adhesive tape is cut into a frame with a width of 0.8 mm and a size of 40 x 50 mm, one release paper is peeled off and bonded to a 2 mm thick glass plate, and the other release paper is peeled off to remove a 2 mm thick glass. The plates were bonded together. The sample was subjected to a pressure treatment (0.5 MPa) for 1 hour at 23 ° C. using an autoclave. After that, it was submerged in accordance with the IPX7 test method of the waterproof standard IEC “International Electrotechnical Commission” 60529: 2001 [equivalent standard: JIS C 0920: 2003 “Special Protection for Electrical Equipment (IP Code)”] and waterproofed. Sex was evaluated. Further, another sample is subjected to a pressure treatment at 23 ° C. for 1 hour using an autoclave, and then, in water of 0.1 MPa, 0.25 MPa, and 0.5 MPa based on the waterproof standard IPX8 test method. Each was submerged and evaluated for waterproofness. This evaluation was performed according to a level of grade that the waterproof property satisfies the condition defined in the protection class IPX8 or the waterproof property does not satisfy the condition defined in IPX7.
 また両面粘着テープの幅を2mmに変更し、一方の接合面に直径0.04mmの極細銅線1本を挿入して接着したこと以外は同じ試験を行った。この評価は、接合面に異物(極細銅線)が存在する状態での防水性の評価である。 Also, the same test was performed except that the width of the double-sided adhesive tape was changed to 2 mm, and one ultrafine copper wire having a diameter of 0.04 mm was inserted and bonded to one joining surface. This evaluation is an evaluation of waterproofness in a state where foreign matter (extra fine copper wire) exists on the joint surface.
 [耐人工皮脂・人工肝油性]
 両面粘着テープを幅0.8mmで40×50mmの枠状に裁断し、一方の離型紙を剥離して2mm厚のガラス板に貼り合せ、更にもう一方の離型紙を剥離して2mm厚のガラス板を貼り合せた。そして、オートクレーブを用いて23℃、0.5MPaで1時間の加圧処理を行った。このサンプルを、人工皮脂(トリオレイン33.3%、オレイン酸20.0%、スクワレン13.3%、ミリスチルオクタドデシレート33.4%)又は人工汗油に1時間浸漬した。このサンプルを取り出し、85℃、85%RHの雰囲気下で72時間静置し、その後通常の雰囲気下に240時間放置した。そのサンプルを目視観察し、以下の基準で耐人工皮脂・人工肝油性を評価した。
 「○」:テープの剥れ無し。
 「×」:テープの剥れ有り。
[Artificial sebum / artificial liver oil resistance]
Double-sided adhesive tape is cut into a frame with a width of 0.8 mm and a size of 40 x 50 mm, one release paper is peeled off and bonded to a 2 mm thick glass plate, and the other release paper is peeled off to remove a 2 mm thick glass. The plates were bonded together. And the pressurization process for 1 hour was performed at 23 degreeC and 0.5 Mpa using the autoclave. This sample was immersed in artificial sebum (33.3% triolein, 20.0% oleic acid, 13.3% squalene, 33.4% myristyl octadodecylate) or artificial sweat oil for 1 hour. This sample was taken out and allowed to stand in an atmosphere of 85 ° C. and 85% RH for 72 hours, and then left in a normal atmosphere for 240 hours. The sample was visually observed, and artificial sebum resistance and artificial liver oil resistance were evaluated according to the following criteria.
“O”: No tape peeling.
“×”: The tape is peeled off.
 [耐静電気特性]
 幅0.7mmの両面粘着テープを試験片とし、図3に示すようにHV電極2とTouchパターン模擬電極3の間に両面粘着テープ1を配置した。電極2及び3はTEG基板4上に配線されたものであり、このTEG基板4は絶縁シート5を介してSUS製テーブル6上に載置されている。Touchパターン模擬電極3はSUS製テーブル5にアースされている。さらに図4に示すように、試験面上にアクリル板7を被せた。そしてIEC61000-4-2に準じ、静電ガンを用いてHV電極2にある一定の電圧を100ショットかけ、Touchパターン模擬電極3に向かってスパークした時の電圧値を測定した。
[Static resistance]
A double-sided adhesive tape having a width of 0.7 mm was used as a test piece, and the double-sided adhesive tape 1 was disposed between the HV electrode 2 and the Touch pattern simulation electrode 3 as shown in FIG. The electrodes 2 and 3 are wired on the TEG substrate 4, and the TEG substrate 4 is placed on the SUS table 6 via the insulating sheet 5. The Touch pattern simulation electrode 3 is grounded to the SUS table 5. Furthermore, as shown in FIG. 4, the acrylic board 7 was covered on the test surface. Then, according to IEC61000-4-2, 100 voltage shots were applied to the HV electrode 2 using an electrostatic gun, and the voltage value when sparking toward the Touch pattern simulation electrode 3 was measured.
 [リペア性]
 2枚のポリカーボネート板(50×50mm)の間に、幅10mmの両面粘着テープを片端部が10mmほどガラス板より長くなるように貼りあわせた。30分後にその片端部を伸長してこのテープを剥がすことが出来るかどうかを試験し、以下の基準で評価した。
 「○」:伸長剥離できた。
 「△」:伸長速度を遅くした場合は伸長剥離できた。
 「×」:テープ切れが生じた。
[Repairability]
A double-sided adhesive tape having a width of 10 mm was bonded between two polycarbonate plates (50 × 50 mm) so that one end portion was longer than the glass plate by about 10 mm. After 30 minutes, one end of the tape was stretched to test whether the tape could be peeled off and evaluated according to the following criteria.
“◯”: Elongation and peeling were possible.
“Δ”: When the elongation rate was slowed, elongation peeling was possible.
“×”: The tape was cut.
 [引張強度及び伸び(テープ/基材)とその横縦比]
 発泡樹脂基材と両面粘着テープの各々を幅10mm、長さ200mmに切り出し、チャック間隔を100mmに設定した引っ張り試験機に固定し、300mm/分の速度で引っ張って、破断時の強度(N/10mm)と伸び(%)を測定した。さらに両面粘着テープに関しては、横方向が長さ200mmになるように切り出して強度及び伸びを同じ条件で測定し、各測定値の横縦比[(横方向の引張強度及び伸び/縦方向の引張強度及び伸び)×100]%を計算した。
[Tensile strength and elongation (tape / base material) and aspect ratio]
Each of the foamed resin base material and the double-sided pressure-sensitive adhesive tape was cut into a width of 10 mm and a length of 200 mm, fixed to a tensile tester with a chuck interval set to 100 mm, pulled at a speed of 300 mm / min, and the strength at break (N / 10 mm) and elongation (%). Further, regarding the double-sided adhesive tape, the transverse direction is cut out to have a length of 200 mm, and the strength and elongation are measured under the same conditions. The aspect ratio of each measured value [(lateral tensile strength and elongation / longitudinal tensile Strength and elongation) × 100]%.
 [圧縮変形率]
 JIS Z 0237:2000「粘着テープ・粘着シート試験方法」の厚さの試験法に準じ、ダイヤルゲージの負荷の小さい場合(20kPa)と大きい場合(100kPa)の両面粘着テープの厚さを測定した。そして、圧縮変形率(%)=[(100kPa圧力時の厚さ)-(20kPa圧力時の厚さ)]÷(20kPa圧力時の厚さ)×100 の計算式により圧縮変形率を求めた。
[Compression deformation rate]
According to the thickness test method of JIS Z 0237: 2000 “Adhesive tape / adhesive sheet test method”, the thickness of the double-sided adhesive tape was measured when the dial gauge load was small (20 kPa) and large (100 kPa). Then, the compression deformation rate (%) = [(thickness at a pressure of 100 kPa) − (thickness at a pressure of 20 kPa)] ÷ (thickness at a pressure of 20 kPa) × 100.
 [貯蔵弾性率及び損失係数]
 動的粘弾性測定の為に粘弾性試験機を用いて、厚さ約0.2mmの両面粘接着テープを試験機の測定部の平行盤の間に挟み込み、周波数1Hzで-50℃から150℃までの貯蔵弾性率(G')と損失弾性率(G'')を測定した。さらに、損失係数(tanδ)=G''/G' の計算式により損失係数を求めた。
[Storage modulus and loss factor]
Using a viscoelasticity tester for dynamic viscoelasticity measurement, a double-sided adhesive tape with a thickness of about 0.2 mm is sandwiched between the parallel plates of the measurement unit of the tester, and the frequency is 1 Hz and -50 ° C to 150 ° C. The storage elastic modulus (G ′) and loss elastic modulus (G ″) up to 0 ° C. were measured. Furthermore, the loss coefficient was obtained by the calculation formula of loss coefficient (tan δ) = G ″ / G ′.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [UE1]:低結晶性の線状ポリエステル系ウレタンエラストマー(日本ポリウレタン工業社製、商品名ニッポラン2304)
 [UE2]:低結晶性の線状ポリエステル系ウレタンエラストマー(住化バイエルウレタン社製、商品名デスモコール406)
 [UE3]:低結晶性の線状ポリエステル系ウレタンエラストマー(三洋化成工業社製、商品名サンプレンLQ-540)
 [UE4]:低結晶性の線状ポリエステル系ウレタンエラストマー(三洋化成工業社製、商品名サンプレンIB-129)
 [UE5]:中結晶性の線状ポリエステル系ウレタンエラストマー(住化バイエルウレタン社製、商品名デスモコール176)
 [UE6]:高結晶性の線状ポリエステル系ウレタンエラストマー(住化バイエルウレタン社製、商品名デスモコール500)
 「SIBS」:スチレン-イソブチレン-スチレン共重合体からなる合成ゴム(株式会社カネカ製、商品名シブスター)
 [CR]:イソシアネート系架橋剤(日本ポリウレタン工業社製、商品名コロネートL)
 [FA1]:熱膨張型発泡剤(松本油脂製薬社製、商品名FN100SSD)
 [FA2]:既膨張型発泡剤(日本フィライト社製、商品名920DE40d30)
 [CB]:カーボンブラック(電気化学工業社製、商品名デンカブラックHS100)
[UE1]: Low crystalline linear polyester urethane elastomer (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name NIPPOLAN 2304)
[UE2]: Low crystalline linear polyester urethane elastomer (manufactured by Sumika Bayer Urethane Co., Ltd., trade name Desmocol 406)
[UE3]: Low crystalline linear polyester urethane elastomer (manufactured by Sanyo Chemical Industries, trade name Samprene LQ-540)
[UE4]: Low crystalline linear polyester urethane elastomer (manufactured by Sanyo Chemical Industries, trade name Samprene IB-129)
[UE5]: Medium crystalline linear polyester urethane elastomer (manufactured by Sumika Bayer Urethane Co., Ltd., trade name Desmocol 176)
[UE6]: Highly crystalline linear polyester urethane elastomer (manufactured by Sumika Bayer Urethane Co., Ltd., trade name Desmocol 500)
"SIBS": Synthetic rubber made of styrene-isobutylene-styrene copolymer (manufactured by Kaneka Corporation, trade name: Shibster)
[CR]: Isocyanate-based crosslinking agent (trade name Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.)
[FA1]: Thermal expansion type foaming agent (Matsumoto Yushi Seiyaku Co., Ltd., trade name FN100SSD)
[FA2]: Expanded foaming agent (manufactured by Nippon Philite Co., Ltd., trade name: 920DE40d30)
[CB]: Carbon black (trade name Denka Black HS100, manufactured by Denki Kagaku Kogyo Co., Ltd.)
 <評価>
 表1~3に示す結果から明らかなように、実施例1~8の粘着テープは各特性が優れていた。なお、実施例4及び5の粘着テープは、リペア性(伸長剥離性)が劣っていた。ただし、実施例4及び5の粘着テープは引張強度が低いので、伸長剥離の際にテープ切れが生じてしまうのである。また実施例4及び5の粘着テープは、耐静電気特性等の他の特性に関しては優れていた。
<Evaluation>
As is clear from the results shown in Tables 1 to 3, the adhesive tapes of Examples 1 to 8 were excellent in each characteristic. In addition, the adhesive tape of Example 4 and 5 was inferior in repair property (elongation peelability). However, since the adhesive tapes of Examples 4 and 5 have low tensile strength, the tape breaks during elongation peeling. The adhesive tapes of Examples 4 and 5 were excellent with respect to other characteristics such as antistatic characteristics.
 一方、比較例1及び2の粘着テープはゴム弾性伸長回復率が低過ぎるので、たとえ粘着テープの引張強度が十分であっても、伸長剥離の際にテープ切れが生じてしまった。この点において、比較例1及び2は実施例4及び5とは大きく異なる例である。 On the other hand, the adhesive tapes of Comparative Examples 1 and 2 had a rubber elastic elongation recovery rate that was too low, so that even if the adhesive tape had sufficient tensile strength, the tape was broken during elongation peeling. In this respect, Comparative Examples 1 and 2 are significantly different from Examples 4 and 5.
 比較例3の粘着テープは、気泡のボイド径が大き過ぎるPE系の発泡樹脂基材を使用した例であり、耐静電気特性等の特性が劣っていた。比較例4の粘着テープは、気泡が無いPETフィルムを基材として使用した例であり、耐衝撃性等の特性が劣っていた。比較例5の粘着テープは、基材の無いベースレス両面テープの例であり、耐衝撃性等の特性が劣っていた。 The pressure-sensitive adhesive tape of Comparative Example 3 is an example using a PE-based foamed resin base material in which the bubble void diameter is too large, and was inferior in properties such as anti-static properties. The pressure-sensitive adhesive tape of Comparative Example 4 is an example in which a PET film having no air bubbles is used as a base material, and properties such as impact resistance are inferior. The pressure-sensitive adhesive tape of Comparative Example 5 is an example of a baseless double-sided tape without a substrate, and has poor properties such as impact resistance.
 例えば本発明の粘着テープは優れた防水性を有するので、機器が水没したり高い水圧がかかっても内部に水が浸入し難く、機器の故障の発生を低減できる。また、優れた耐静電気特性を有するので、静電気を帯電した使用者が機器に触れても静電気が粘着テープを通過し難く、内蔵の部品がダメージを受け難くなる。また、優れた耐熱性及び耐衝撃性を有するので、機器が高温下で使用又は放置されたり或いは衝撃力を受けたりしても問題が生じ難い。また、優れたリペア性(伸長剥離性)を有するので、機器の修理の際の部品交換作業も容易になる。したがって、本発明の粘着テープは、特にスマートフォン、携帯電話、電子手帳、PHS、タブレットPC、デジタルカメラ、音楽プレーヤー、携帯型テレビ、ノート型パソコン、ゲーム機等の携帯情報端末機器を構成する部材の接着又は固定の用途において非常に有用である。特に、スマートフォンや携帯電話等の機器の情報表示部(ディスプレイ等)の保護パネルと框体の接着、あるいはその機器のモジュール(電池等)の固定など、薄く且つ細い粘着テープが必要とされる用途において好適に使用できる。 For example, since the adhesive tape of the present invention has an excellent waterproof property, even if the device is submerged or a high water pressure is applied, it is difficult for water to enter the inside, and the occurrence of device failure can be reduced. In addition, since it has excellent anti-static properties, even if a user charged with static electricity touches the device, it is difficult for the static electricity to pass through the adhesive tape, and the built-in components are not easily damaged. In addition, since it has excellent heat resistance and impact resistance, problems do not easily occur even if the device is used or left under high temperature or receives impact force. In addition, since it has excellent repairability (extension peelability), it is easy to replace parts when repairing the equipment. Therefore, the adhesive tape of the present invention is a member constituting a portable information terminal device such as a smartphone, a mobile phone, an electronic notebook, a PHS, a tablet PC, a digital camera, a music player, a portable TV, a notebook computer, and a game machine. Very useful in adhesive or fastening applications. In particular, applications that require thin and thin adhesive tapes, such as bonding of protective panels and housings of information display sections (displays, etc.) of devices such as smartphones and mobile phones, or fixing of modules (batteries, etc.) of such devices Can be preferably used.
 1 両面粘着テープ
 2 HV電極
 3 Touchパターン模擬電極
 4 TEG基板
 5 絶縁シート
 6 SUS製テーブル
 7 アクリル板
 
DESCRIPTION OF SYMBOLS 1 Double-sided adhesive tape 2 HV electrode 3 Touch pattern simulation electrode 4 TEG board 5 Insulation sheet 6 SUS table 7 Acrylic board

Claims (10)

  1.  独立気泡を含む発泡樹脂基材と、該発泡樹脂基材の少なくとも片面に設けられた粘着剤層とを有する粘着テープであって、前記独立気泡の平均ボイド径が20~180μm、最大ボイド径が300μm以下であり、前記粘着テープの加熱寸法変化率が加熱前の寸法を100%とした場合に100%±5%以内であり、前記粘着テープのゴム弾性伸長回復率が85%以上である粘着テープ。 An adhesive tape having a foamed resin substrate containing closed cells and an adhesive layer provided on at least one side of the foamed resin substrate, wherein the average void diameter of the closed cells is 20 to 180 μm and the maximum void diameter is The pressure-sensitive adhesive tape is 300 μm or less, the heating dimensional change rate of the pressure-sensitive adhesive tape is 100% ± 5% or less when the dimension before heating is 100%, and the rubber elastic elongation recovery rate of the pressure-sensitive adhesive tape is 85% or more. tape.
  2.  発泡樹脂基材が、ベースポリマーとしてポリウレタン系樹脂を含む請求項1記載の粘着テープ。 The pressure-sensitive adhesive tape according to claim 1, wherein the foamed resin base material contains a polyurethane-based resin as a base polymer.
  3.  ポリウレタン系樹脂が、低結晶性の線状ポリエステル系ポリウレタン樹脂である請求項2記載の粘着テープ。 The pressure-sensitive adhesive tape according to claim 2, wherein the polyurethane resin is a low crystalline linear polyester polyurethane resin.
  4.  発泡樹脂基材の両面に粘着剤層が設けられた両面粘着テープである請求項1記載の粘着テープ。 2. The pressure-sensitive adhesive tape according to claim 1, wherein the pressure-sensitive adhesive tape is a double-sided pressure-sensitive adhesive tape provided with a pressure-sensitive adhesive layer on both sides of the foamed resin base material.
  5.  縦方向及び横方向の引張強度が6.0N/10mm以上であり、該引張強度は発泡樹脂基材単独の引張強度を100%とした場合に110%以上であり、縦方向及び横方向の引張強度の一方を100%とした場合に他方の引張強度は100%±15%以内であり、縦方向及び横方向の破断時の伸びが300%以上であり、縦方向及び横方向の破断時の伸びの一方を100%とした場合に他方の引張強度は100%±15%以内である請求項1記載の粘着テープ。 The tensile strength in the machine direction and the transverse direction is 6.0 N / 10 mm or more, and the tensile strength is 110% or more when the tensile strength of the foamed resin substrate alone is 100%. When one of the strengths is 100%, the tensile strength of the other is within 100% ± 15%, the elongation at break in the machine direction and the transverse direction is 300% or more, and at the time of break in the machine direction and the transverse direction 2. The pressure-sensitive adhesive tape according to claim 1, wherein when one of the elongations is 100%, the other has a tensile strength of 100% ± 15%.
  6.  IEC6100に準拠した耐静電気特性が15kV以上である請求項1記載の粘着テープ。 2. The pressure-sensitive adhesive tape according to claim 1, wherein the antistatic property conforming to IEC6100 is 15 kV or more.
  7.  厚さ方向の圧縮変形率が3.0%以上である請求項1記載の粘着テープ。 The pressure-sensitive adhesive tape according to claim 1, wherein the compressive deformation rate in the thickness direction is 3.0% or more.
  8.  -20℃における損失係数が0.20以上であり、85℃における貯蔵弾性率が2.0×10Pa以上で且つ85℃における損失係数が0.20以上である請求項1記載の粘着テープ。 2. The pressure-sensitive adhesive tape according to claim 1, wherein the loss coefficient at −20 ° C. is 0.20 or more, the storage elastic modulus at 85 ° C. is 2.0 × 10 5 Pa or more, and the loss coefficient at 85 ° C. is 0.20 or more. .
  9.  携帯情報端末機器を構成する部材の接着又は固定の為に用いられる請求項1記載の粘着テープ。 The pressure-sensitive adhesive tape according to claim 1, which is used for bonding or fixing a member constituting a portable information terminal device.
  10.  請求項1記載の粘着テープを製造する為の方法であって、熱膨張性マイクロカプセル及び/又は既膨張中空フィラーを用いて独立気泡を形成することにより発泡樹脂基材を得る工程を有する粘着テープの製造方法。
     
    It is a method for manufacturing the adhesive tape of Claim 1, Comprising: The adhesive tape which has the process of obtaining a foamed resin base material by forming a closed cell using a thermally expansible microcapsule and / or an already-expanded hollow filler. Manufacturing method.
PCT/JP2014/079819 2014-11-11 2014-11-11 Adhesive tape having foamed resin base material, and method for producing same WO2016075753A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480083292.8A CN107109148B (en) 2014-11-11 2014-11-11 Adhesive tape having foamed resin base material and method for producing same
JP2016558472A JP6326147B2 (en) 2014-11-11 2014-11-11 Adhesive tape having foamed resin substrate and method for producing the same
KR1020177003098A KR102350651B1 (en) 2014-11-11 2014-11-11 Adhesive tape having foamed resin base material, and method for producing same
PCT/JP2014/079819 WO2016075753A1 (en) 2014-11-11 2014-11-11 Adhesive tape having foamed resin base material, and method for producing same
TW104135089A TWI706019B (en) 2014-11-11 2015-10-26 Adhesive tape having foamed-resin base and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079819 WO2016075753A1 (en) 2014-11-11 2014-11-11 Adhesive tape having foamed resin base material, and method for producing same

Publications (1)

Publication Number Publication Date
WO2016075753A1 true WO2016075753A1 (en) 2016-05-19

Family

ID=55953866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079819 WO2016075753A1 (en) 2014-11-11 2014-11-11 Adhesive tape having foamed resin base material, and method for producing same

Country Status (5)

Country Link
JP (1) JP6326147B2 (en)
KR (1) KR102350651B1 (en)
CN (1) CN107109148B (en)
TW (1) TWI706019B (en)
WO (1) WO2016075753A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016170593A1 (en) * 2015-04-21 2017-11-24 株式会社寺岡製作所 Adhesive sheet
WO2018168750A1 (en) * 2017-03-15 2018-09-20 積水化学工業株式会社 Double-sided pressure-sensitive adhesive tape
JP2021024950A (en) * 2019-08-05 2021-02-22 日東電工株式会社 Pressure sensitive adhesive sheet
JP2021024907A (en) * 2019-08-01 2021-02-22 日東電工株式会社 Double-sided adhesive tape
EP3680305A4 (en) * 2017-08-30 2021-04-07 Teraoka Seisakusho Co., Ltd. Adhesive tape
US20210115309A1 (en) * 2018-04-16 2021-04-22 Teraoka Seisakusho Co., Ltd. Adhesive tape
KR20210091348A (en) * 2018-12-27 2021-07-21 생-고뱅 퍼포먼스 플라스틱스 코포레이션 Polyurethane foam and method of forming the same
WO2021215354A1 (en) * 2020-04-22 2021-10-28 日東電工株式会社 Double-sided adhesive tape
US11512229B2 (en) 2018-12-27 2022-11-29 Saint-Gobain Performance Plastics Corporation Polyurethane foam and methods of forming the same
JP7497217B2 (en) 2019-06-03 2024-06-10 積水化学工業株式会社 Adhesive tape

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108570294A (en) * 2017-03-14 2018-09-25 仁宝电脑工业股份有限公司 Decorative film configuration and its production method
CN111194239B (en) * 2017-09-04 2021-09-21 诺力昂化学品国际有限公司 Thermally expandable microspheres made from bio-based monomers
TWI812660B (en) * 2017-12-26 2023-08-21 日商Dic股份有限公司 Manufacturing method of article using adhesive tape
CN112601795B (en) * 2018-09-21 2023-06-06 积水化学工业株式会社 Double-sided adhesive tape
EP3916063A4 (en) * 2019-01-22 2022-09-21 Sekisui Chemical Co., Ltd. Adhesive tape, and method for producing same
WO2020218430A1 (en) * 2019-04-24 2020-10-29 積水化学工業株式会社 Pressure-sensitive adhesive tape
WO2021006185A1 (en) * 2019-07-05 2021-01-14 昭和電工マテリアルズ株式会社 Carrier film for electronic component and production method for carrier film
TW202106510A (en) * 2019-08-02 2021-02-16 仁寶電腦工業股份有限公司 Composite material and manufacturing method thereof, and electronic device
KR102527808B1 (en) * 2021-08-12 2023-05-03 주식회사 영우 Waterproof tape with excellent impact resistance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157654U (en) * 1986-03-31 1987-10-06
JP2000143969A (en) * 1998-11-06 2000-05-26 Kuraray Co Ltd Polyurethane composition having forming property and foam
JP2004189846A (en) * 2002-12-10 2004-07-08 Sekisui Chem Co Ltd Pressure sensitive double-sided adhesive tape for fixing abrasive
JP2008274156A (en) * 2007-05-01 2008-11-13 Kyowa Co Ltd Two-layered, foamed flame-retardant adhesive tape and two-layered, foamed flame-retardant sheet
JP2013053179A (en) * 2011-08-31 2013-03-21 Sekisui Chem Co Ltd Crosslinked polyolefin resin foamed sheet, pressure-sensitive adhesive tape, and sealing material
JP2014139287A (en) * 2012-05-28 2014-07-31 Nitto Denko Corp Resin foam, foaming member, foaming member laminate, electric or electronic equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181335B1 (en) * 2009-04-09 2012-09-11 디아이씨 가부시끼가이샤 Double sided pressure sensitive adhesive tape
DE102010062669A1 (en) * 2010-12-08 2012-06-14 Tesa Se Process for producing foamed polymer compositions, foamed polymer compositions and adhesive tape therewith
US10316221B2 (en) 2012-03-22 2019-06-11 Dic Corporation Adhesive tape
JP5477517B1 (en) 2012-04-13 2014-04-23 Dic株式会社 Adhesive tape
US20150099112A1 (en) * 2012-12-21 2015-04-09 Nitto Denko Corporation Resin foam and foam sealing material
JP2014037543A (en) 2013-10-04 2014-02-27 Nitto Denko Corp Double-sided adhesive tape

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157654U (en) * 1986-03-31 1987-10-06
JP2000143969A (en) * 1998-11-06 2000-05-26 Kuraray Co Ltd Polyurethane composition having forming property and foam
JP2004189846A (en) * 2002-12-10 2004-07-08 Sekisui Chem Co Ltd Pressure sensitive double-sided adhesive tape for fixing abrasive
JP2008274156A (en) * 2007-05-01 2008-11-13 Kyowa Co Ltd Two-layered, foamed flame-retardant adhesive tape and two-layered, foamed flame-retardant sheet
JP2013053179A (en) * 2011-08-31 2013-03-21 Sekisui Chem Co Ltd Crosslinked polyolefin resin foamed sheet, pressure-sensitive adhesive tape, and sealing material
JP2014139287A (en) * 2012-05-28 2014-07-31 Nitto Denko Corp Resin foam, foaming member, foaming member laminate, electric or electronic equipment

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016170593A1 (en) * 2015-04-21 2017-11-24 株式会社寺岡製作所 Adhesive sheet
WO2018168750A1 (en) * 2017-03-15 2018-09-20 積水化学工業株式会社 Double-sided pressure-sensitive adhesive tape
CN110177848A (en) * 2017-03-15 2019-08-27 积水化学工业株式会社 Double-faced adhesive tape
KR20190122201A (en) * 2017-03-15 2019-10-29 세키스이가가쿠 고교가부시키가이샤 Double sided adhesive tape
KR102645230B1 (en) 2017-03-15 2024-03-07 세키스이가가쿠 고교가부시키가이샤 double sided adhesive tape
EP3680305A4 (en) * 2017-08-30 2021-04-07 Teraoka Seisakusho Co., Ltd. Adhesive tape
US20210115309A1 (en) * 2018-04-16 2021-04-22 Teraoka Seisakusho Co., Ltd. Adhesive tape
JP7340610B2 (en) 2018-12-27 2023-09-07 サン-ゴバン パフォーマンス プラスティックス コーポレイション Polyurethane foam and methods of forming it
KR20210091348A (en) * 2018-12-27 2021-07-21 생-고뱅 퍼포먼스 플라스틱스 코포레이션 Polyurethane foam and method of forming the same
JP2022516098A (en) * 2018-12-27 2022-02-24 サン-ゴバン パフォーマンス プラスティックス コーポレイション Polyurethane foam and how to form it
US11512229B2 (en) 2018-12-27 2022-11-29 Saint-Gobain Performance Plastics Corporation Polyurethane foam and methods of forming the same
KR102698056B1 (en) 2018-12-27 2024-08-26 생-고뱅 퍼포먼스 플라스틱스 코포레이션 Polyurethane foam and method for forming the same
JP7497217B2 (en) 2019-06-03 2024-06-10 積水化学工業株式会社 Adhesive tape
JP2021024907A (en) * 2019-08-01 2021-02-22 日東電工株式会社 Double-sided adhesive tape
JP2021024950A (en) * 2019-08-05 2021-02-22 日東電工株式会社 Pressure sensitive adhesive sheet
WO2021215354A1 (en) * 2020-04-22 2021-10-28 日東電工株式会社 Double-sided adhesive tape

Also Published As

Publication number Publication date
TWI706019B (en) 2020-10-01
CN107109148A (en) 2017-08-29
KR20170082489A (en) 2017-07-14
JP6326147B2 (en) 2018-05-16
KR102350651B1 (en) 2022-01-11
CN107109148B (en) 2021-06-22
TW201623508A (en) 2016-07-01
JPWO2016075753A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6326147B2 (en) Adhesive tape having foamed resin substrate and method for producing the same
JP7036715B2 (en) Double-sided adhesive tape
TWI490306B (en) Adhesive tape
EP3006530A1 (en) Double-sided adhesive tape
TW201402763A (en) Adhesive tape
JP7323360B2 (en) double sided adhesive tape
TWI819096B (en) Double sided adhesive tape
EP3783077A1 (en) Pressure-sensitive adhesive tape
WO2018181765A1 (en) Adhesive sheet
WO2017033274A1 (en) Pressure-sensitive adhesive tape
JP6058870B1 (en) Foamed resin sheet and electric / electronic device including the same
JP2019065213A (en) Foam substrate adhesive tape, article and electronic device
US11781042B2 (en) Adhesive sheet
WO2022065392A1 (en) Double-sided adhesive tape
KR102732185B1 (en) double sided adhesive tape
JP6414942B2 (en) Adhesive sheet
JP7565330B2 (en) Adhesive tape
WO2021187368A1 (en) Double-sided adhesive tape
JP2020193338A (en) Double-sided adhesive tape and display device
JP7193229B2 (en) double sided adhesive tape
KR20190061555A (en) Adhesive tape with excellent impact resistance and resilience

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558472

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177003098

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906091

Country of ref document: EP

Kind code of ref document: A1