[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016072000A1 - Wireless communication system, base station, terminal, and processing method - Google Patents

Wireless communication system, base station, terminal, and processing method Download PDF

Info

Publication number
WO2016072000A1
WO2016072000A1 PCT/JP2014/079510 JP2014079510W WO2016072000A1 WO 2016072000 A1 WO2016072000 A1 WO 2016072000A1 JP 2014079510 W JP2014079510 W JP 2014079510W WO 2016072000 A1 WO2016072000 A1 WO 2016072000A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
base station
transmission
signal
transmitted
Prior art date
Application number
PCT/JP2014/079510
Other languages
French (fr)
Japanese (ja)
Inventor
剛史 下村
須田 健二
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2014/079510 priority Critical patent/WO2016072000A1/en
Publication of WO2016072000A1 publication Critical patent/WO2016072000A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a wireless communication system, a base station, a terminal, and a processing method.
  • LTE Long Term Evolution
  • LTE-advanced Long Term Evolution-advanced
  • CS Carrier Sense
  • a technique for performing wireless communication using a shared band such as an unlicensed band in addition to a band allocated to an operator such as a licensed band is being studied.
  • the base station transmits a signal such as a reference signal or a synchronization signal in the shared band
  • the signal is transmitted after detecting a free space in the shared band using carrier sense or the like. .
  • an object of the present invention is to provide a radio communication system, a base station, a terminal, and a processing method that allow a terminal to accurately specify a signal transmission timing by a base station in a shared band.
  • a first band shared with another wireless communication system and a second band different from the first band are provided.
  • a base station transmits at least one of a reference signal and a synchronization signal in the first band during a period in which the radio signal of the first band is not transmitted in the other radio communication system, and the reference Control information for specifying timing for transmitting at least one of a signal and a synchronization signal is transmitted in the second band, and a terminal is based on the control information transmitted in the second band from the base station,
  • a wireless communication system, a base station, a terminal, and a processing method for receiving at least one of the reference signal and the synchronization signal transmitted from the base station in the first band are proposed.
  • the terminal can accurately specify the transmission timing of the signal by the base station in the shared band.
  • FIG. 1A is a diagram illustrating an example of a wireless communication system according to an embodiment.
  • 1B is a diagram illustrating an example of a signal flow in the wireless communication system illustrated in FIG. 1A.
  • FIG. 2 is a sequence diagram illustrating an example of processing in the wireless communication system.
  • FIG. 3 is a diagram illustrating an example of a U-band frequency channel used by the base station.
  • FIG. 4 is a diagram illustrating an example of correspondence information transmitted by the base station.
  • FIG. 5 is a diagram illustrating Example 1 of RS transmission information.
  • FIG. 6 is a diagram illustrating an example of a transmission method of RS transmission information.
  • FIG. 7 is a diagram illustrating another example of the RS transmission information transmission method.
  • FIG. 1A is a diagram illustrating an example of a wireless communication system according to an embodiment.
  • 1B is a diagram illustrating an example of a signal flow in the wireless communication system illustrated in FIG. 1A.
  • FIG. 2 is a sequence diagram illustrating
  • FIG. 8A is a diagram illustrating a first example of a case in which the presence / absence of RS transmission can be determined when RS transmission information is transmitted.
  • FIG. 8B is a diagram illustrating a second example of a case in which the presence / absence of RS transmission can be determined when RS transmission information is transmitted.
  • FIG. 8C is a diagram illustrating a third example of a case in which the presence / absence of RS transmission can be determined when RS transmission information is transmitted.
  • FIG. 8D is a diagram illustrating a fourth example of a case in which the presence / absence of RS transmission can be determined when RS transmission information is transmitted.
  • FIG. 9 is a diagram illustrating an example of the timing of each signal transmitted by the base station.
  • FIG. 10 is a diagram illustrating another example of the timing of each signal transmitted by the base station.
  • FIG. 11 is a flowchart illustrating an example of processing by the base station in Example 1 of RS transmission information.
  • FIG. 12 is a flowchart illustrating an example of processing performed by the terminal in Example 1 of RS transmission information.
  • FIG. 13 is a diagram illustrating Example 2 of RS transmission information.
  • FIG. 14A is a diagram illustrating a first example of a case where it is not possible to determine whether or not RS transmission is performed when transmitting RS transmission information.
  • FIG. 14B is a diagram illustrating a second example of a case where it is not possible to determine whether or not RS transmission is performed when transmitting RS transmission information.
  • FIG. 14A is a diagram illustrating a first example of a case where it is not possible to determine whether or not RS transmission is performed when transmitting RS transmission information.
  • FIG. 14B is a diagram illustrating a second example of a case where it is
  • FIG. 15 is a flowchart illustrating an example of processing performed by the base station in RS transmission information example 2.
  • FIG. 16 is a flowchart illustrating an example of processing by the terminal in the RS transmission information example 2.
  • FIG. 17 is a diagram illustrating Example 3 of RS transmission information.
  • FIG. 18 is a flowchart illustrating an example of processing by the base station in Example 3 of RS transmission information.
  • FIG. 19 is a flowchart illustrating an example of processing performed by the terminal in the third example of RS transmission information.
  • FIG. 20 is a flowchart illustrating another example of processing performed by the terminal in the third example of RS transmission information.
  • FIG. 21 is a diagram illustrating Example 4 of RS transmission information.
  • FIG. 22 is a diagram illustrating an example of transmission data in three formats.
  • FIG. 23 is a diagram illustrating a first modification of the fourth example of RS transmission information.
  • FIG. 24 is a diagram illustrating an example of transmission data in two formats.
  • FIG. 25 is a diagram illustrating a second modification of the fourth example of RS transmission information.
  • FIG. 26 is a flowchart illustrating an example of processing by the base station in the fourth example of RS transmission information.
  • FIG. 27 is a flowchart illustrating an example of processing performed by a terminal in the fourth example of RS transmission information.
  • FIG. 28 is a flowchart illustrating another example of processing performed by the terminal in the fourth example of RS transmission information.
  • FIG. 29 is a diagram illustrating an example of the synchronization signal transmission information.
  • FIG. 30 is a flowchart illustrating an example of processing performed by the base station when the synchronization signal transmission information is used.
  • FIG. 31 is a flowchart illustrating an example of processing performed by the terminal when the synchronization signal transmission information is used.
  • FIG. 32 is a diagram illustrating Example 5 of RS transmission information.
  • FIG. 33 is a diagram illustrating an example of a head subframe in continuous transmission.
  • FIG. 34 is a flowchart illustrating an example of processing by the base station in Example 5 of RS transmission information.
  • FIG. 35 is a flowchart illustrating an example of a process performed by a terminal in RS transmission information example 5.
  • FIG. 36 is a flowchart illustrating another example of processing performed by the terminal in the fifth example of RS transmission information.
  • FIG. 37 is a diagram illustrating Example 6 of RS transmission information.
  • FIG. 38A is a diagram illustrating an example of a base station according to the embodiment.
  • FIG. 38B is a diagram illustrating an example of signal flow in the base station depicted in FIG. 38A.
  • FIG. 38C is a diagram illustrating an example of the hardware configuration of the base station.
  • FIG. 39A is a diagram illustrating an example of a terminal according to the embodiment.
  • FIG. 39B is a diagram showing an example of a signal flow in the terminal shown in FIG. 39A.
  • FIG. 39C is a diagram illustrating an example of a hardware configuration of the terminal.
  • FIG. 40A is a diagram illustrating a first example of a transmission channel for U-band resource allocation information.
  • FIG. 40A is a diagram illustrating a first example of a transmission channel for U-band resource allocation information.
  • FIG. 40B is a diagram illustrating a second example of the transmission channel for U-band resource allocation information.
  • FIG. 40C is a diagram illustrating a third example of the transmission channel for the U-band resource allocation information.
  • FIG. 40D is a diagram illustrating a fourth example of the transmission channel for the U-band resource allocation information.
  • FIG. 1A is a diagram illustrating an example of a wireless communication system according to an embodiment.
  • 1B is a diagram illustrating an example of a signal flow in the wireless communication system illustrated in FIG. 1A.
  • the wireless communication system 100 according to the embodiment includes a base station 110 and a terminal 120.
  • the wireless communication system 100 is a wireless communication system that can use the first band and the second band for wireless communication between the base station 110 and the terminal 120.
  • the first band is a band shared with other wireless communication systems.
  • the second band is a band different from the first band.
  • the second band is a band occupied by the wireless communication system 100 (own system).
  • the base station 110 includes a first transmission unit 111 and a second transmission unit 112.
  • the first transmission unit 111 transmits at least one of the reference signal and the synchronization signal using the first band during a period in which the wireless signal of the first band is not transmitted in another wireless communication system. Further, the first transmission unit 111 outputs control information for specifying the timing of transmitting at least one of the reference signal and the synchronization signal to the second transmission unit 112 using the first band.
  • the second transmission unit 112 transmits the control information output from the first transmission unit 111 using the second band.
  • the control information can be information indicating whether or not at least one of the reference signal and the synchronization signal is transmitted or is scheduled to be transmitted for each periodic period (for example, subframe).
  • the terminal 120 includes a first receiving unit 121 and a second receiving unit 122.
  • the first receiving unit 121 receives control information transmitted from the base station 110 using the second band, and outputs the received control information to the second receiving unit 122.
  • the second receiver 122 Based on the control information output from the first receiver 121, the second receiver 122 receives at least one of the reference signal and the synchronization signal transmitted from the base station 110 using the first band.
  • the terminal 120 performs processing based on at least one of the reference signal and the synchronization signal received by the second receiving unit 122.
  • the control information for specifying the timing at which the base station 110 transmits at least one of the reference signal and the synchronization signal using the shared first band is provided.
  • the second band different from the first band can be used for transmission.
  • the terminal 120 receives the control information transmitted from the base station 110 using the second band, so that the base station 110 transmits at least one of the reference signal and the synchronization signal using the first band.
  • the timing to perform can be specified accurately. Therefore, the terminal 120 can efficiently receive at least one of the reference signal and the synchronization signal by the base station 110 using the first band, and perform processing based on the received signal.
  • the base station 110 can detect a period in which the wireless signal in the first band is not transmitted in another wireless communication system, for example, based on the detection result of the wireless signal in the first band.
  • the detection of the radio signal in the first band is, for example, CCA (Clear Channel Assessment) that detects a vacant carrier in the first band, for example, carrier sense.
  • detection of a radio signal in the first band is a process of detecting a radio signal by detecting received power (received energy) of radio waves in the first band and comparing the detected received power with a predetermined power.
  • the detection of the radio signal in the first band may be a process of detecting the radio signal by detecting a predetermined pattern (for example, a preamble) of the radio signal based on the radio wave in the first band.
  • the base station 110 detects a period in which the first band radio signal is not transmitted in another radio communication system based on, for example, whether or not the radio signal is transmitted from the base station. As an example, when the base station 110 is transmitting a radio signal in the first band in the first period (for example, subframe), the base station 110 performs other in the second period immediately after the first period. In this wireless communication system, it can be determined that the wireless signal of the first band is not transmitted.
  • the first band can be an unlicensed band (unlicensed band) that is not assigned to a specific operator.
  • the second band may be a licensed band that is assigned to an operator of the wireless communication system 100 and is occupied by the wireless communication system 100, for example.
  • U band unlicensed band
  • L band licensed band
  • FIG. 2 is a sequence diagram illustrating an example of processing in the wireless communication system.
  • the base station 110 and the terminal 120 perform connection processing in the L band with each other (step S201). This enables wireless communication in the L band between the base station 110 and the terminal 120.
  • the terminal 120 notifies the base station 110 of the capability regarding the U band (Capability) (step S202). For example, the terminal 120 notifies the base station 110 that it supports wireless communication using the U band together with the L band for which connection processing has been performed in step S201.
  • step S203 correspondence information between the U-band carrier (frequency channel) used by the base station 110 in wireless communication with each terminal and the channel number assigned to the U-band carrier by the base station 110 is transmitted to the terminal 120. Transmit (step S203).
  • the base station 110 individually transmits correspondence information to each terminal (including the terminal 120) using an individual channel such as RRC (Radio Resource Control).
  • the base station 110 may broadcast the correspondence information to each terminal (including the terminal 120) using a broadcast channel such as a PBCH (Physical Broadcast Channel).
  • PBCH Physical Broadcast Channel
  • the base station 110 starts transmission of RS transmission information indicating the transmission timing of RS (Reference Signal) in the U band in the L band.
  • the RS transmission information is information indicating the presence or absence of RS transmission by designating the U band carrier using the channel number associated with the U band carrier (frequency channel) in the correspondence information transmitted in step S203, for example.
  • RS transmission information is information which shows the transmission timing of RS for every sub-frame, for example.
  • the RS may be transmitted together with the data or may be transmitted alone.
  • the base station 110 transmits an RRM measurement request for requesting RRM (Radio Resource Management) measurement related to the U-band carrier to the terminal 120 (step S204).
  • the terminal 120 performs RRM measurement regarding the U band in response to the RRM measurement request transmitted in step S204, and transmits the result of the RRM measurement to the base station 110 (step S205).
  • the RRM measurement is, for example, a quality measurement for selecting a frequency channel to be used from a plurality of frequency channels.
  • the terminal 120 specifies the RS transmission timing from the base station 110 in the U band based on the correspondence information received in step S203 and the RS transmission information from the base station 110. Then, the terminal 120 receives the RS from the base station 110 in the U band at the specified transmission timing, and performs RRM measurement based on the received RS.
  • the terminal 120 may perform RRM measurement based on the result of timing tracking or frequency tracking based on the received RS.
  • Timing tracking is, for example, processing for tracking the transmission timing of a radio signal by the base station 110.
  • Frequency tracking is a process for compensating for, for example, a frequency offset of a radio signal transmitted from the base station 110 and a frequency offset in a frequency generator in the terminal 120.
  • the base station 110 transmits information on the U-band carrier used for communication with the terminal 120 to the terminal 120 based on the result of the RRM measurement transmitted at step S205 (step S206). For example, base station 110 determines the frequency channel of the U-band carrier to be used for communication with terminal 120 based on the result of RRM measurement. Then, the base station 110 transmits information indicating the determined frequency channel in step S206. For example, the base station 110 transmits information on the U-band carrier used for communication with the terminal 120 to the terminal 120 using a dedicated channel such as RRC.
  • a dedicated channel such as RRC.
  • the base station 110 and the terminal 120 start communication using the L band carrier and the U band carrier (step S207). Further, in the communication using the U-band carrier started in step S207, the terminal 120 performs various processes based on the RS transmitted by the base station 110 using the U-band.
  • Various processes based on RS include, for example, timing tracking, frequency tracking, RRM measurement, CQI (Channel Quality Indicator) measurement, CSI (Channel State Information) measurement, and the like.
  • Timing tracking and frequency tracking are performed for RRM measurement, CQI measurement, CSI measurement, data reception processing, and the like.
  • the CQI measurement is, for example, channel quality measurement for selecting a modulation scheme, a transmission rate, and the like.
  • the CSI measurement is, for example, channel quality measurement for selecting parameters such as MIMO (Multiple Input Multiple Output) and beam forming.
  • FIG. 3 is a diagram illustrating an example of a U-band frequency channel used by the base station.
  • numbers on the horizontal axis (“0” to “6”) indicate common numbers in the radio communication system 100 for frequency channels in the U band. It is assumed that the base station 110 can use the frequency channels “0” to “6” included in the U band for wireless communication with the terminal 120.
  • the base station 110 selects a frequency channel to be used for wireless communication with the terminal 120 from the frequency channels “0” to “6” and performs numbering.
  • the base station 110 selects the frequency channels “3”, “4”, and “1”, and assigns the channel numbers # 1 and # 1 to the frequency channels “3”, “4”, and “1”, respectively. Assume that numbering is performed to add 2 and # 3.
  • FIG. 4 is a diagram illustrating an example of correspondence information transmitted by the base station.
  • the base station 110 transmits, for example, correspondence information 400 illustrated in FIG. 4 to the terminal 120 as correspondence information between the U-band carrier (frequency channel) and the channel number.
  • the correspondence information 400 includes frequency channels “3”, “4”, and “1” selected by the base station 110, and channel numbers # numbered by the base station 110 to the frequency channels “3”, “4”, and “1”. Information indicating 1 to # 3 in association with each other.
  • FIG. 5 is a diagram illustrating Example 1 of RS transmission information.
  • the RS transmission information transmitted by the base station 110 can be, for example, RS transmission information 500 shown in FIG.
  • RS transmission information 500 shown in FIG. 5 is 1-bit information and indicates the presence / absence of RS transmission.
  • the RS transmission information 500 indicates that there is no RS transmission (no RS transmission) when the value is “0”, and that there is RS transmission (with RS transmission) when the value is “1”.
  • the terminal 120 can accurately identify the presence or absence of RS transmission, so that the RS 120 can be accurately received and each measurement based on the RS can be accurately performed. Can do.
  • the circuit scale of the terminal 120 can be reduced.
  • the power consumption in the terminal 120 can be reduced.
  • RS transmission information transmission method For transmission of RS transmission information, for example, a channel for transmitting L1 and L2 control signals in LTE can be used. Examples of such channels include PDCCH (Physical Downlink Control Channel: Physical Downlink Control Channel) and PHICH (Physical HARQ Indicator Channel: Physical HARQ Indicator Channel).
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical HARQ Indicator Channel
  • the PDCCH is a control channel for transmitting information and commands related to downlink resource allocation, uplink resource allocation, uplink power control, and the like on the downlink.
  • Each PDCCH includes a 16-bit CRC (Cyclic Redundancy Check).
  • the CRC is masked by an RNTI (Radio Network Temporary Identifier) indicating the destination and usage.
  • RNTI Radio Network Temporary Identifier
  • the PDCCH for sending resource allocation information addressed to each terminal is masked with a C-RNTI (Cell-Radio Network Temporary Identifier: cell radio network temporary identifier) indicating the ID (identifier) of each terminal.
  • C-RNTI Cell-Radio Network Temporary Identifier: cell radio network temporary identifier
  • the CRC of the PDCCH that collectively sends power control commands addressed to a plurality of terminals is masked with the common RNTI.
  • PHICH is a control channel for returning a response signal (ACK / NACK) related to an uplink data signal transmitted from a terminal.
  • FIG. 6 is a diagram illustrating an example of a method for transmitting RS transmission information.
  • the base station 110 includes the RS transmission information 610 in the PDCCH 600 and transmits the RS transmission information to each terminal (including the terminal 120).
  • the RS transmission information 610 is 5-bit information (“10001” in the example shown in FIG. 6), and indicates whether or not RSs are transmitted in a maximum of five frequency channels.
  • bit 611 (“1”) of the first bit of RS transmission information 610 indicates that there is RS transmission in the frequency channel corresponding to channel number # 1.
  • the second bit 612 (“0”) of the RS transmission information 610 indicates that there is no RS transmission in the frequency channel corresponding to the channel number # 2.
  • the third bit 613 (“0”) of the RS transmission information 610 indicates that there is no RS transmission in the frequency channel corresponding to channel number # 3.
  • the terminal 120 based on the correspondence information 400 received from the base station 110 and the RS transmission information 610, the RS of the RS from the base station 110 in the frequency channel used by the terminal 120 for wireless communication with the base station 110.
  • the presence or absence of transmission can be determined.
  • the terminal 120 acquires the channel number # 3 corresponding to the frequency channel “1” from the correspondence information 400. To do. Then, the terminal 120 acquires the bit 613 of the third bit of the RS transmission information 610 based on the channel number # 3, and transmits the RS from the base station 110 in the frequency channel “1” based on the acquired bit 613. The presence or absence of is determined. In the example illustrated in FIG. 6, base station 110 can determine that there is no RS transmission on frequency channel “1” in the subframe corresponding to PDCCH 600.
  • the presence or absence of RS transmission in a plurality of U-band frequency channels can be collectively reported to each terminal using one PDCCH.
  • the number of bits of the RS transmission information 610 can be reduced by associating the channel number assigned by the base station 110 with the bit position in the RS transmission information 610 using the correspondence information 400.
  • the base station 110 uses less than 5 U-band frequency channels and one or more bits out of 5 bits of the RS transmission information 610 are left, the base station 110, for example, A process (for example, zero padding) is performed to set a constant value.
  • the base station 110 transmits the RS transmission information 610 (first control information) for each of the plurality of U-band frequency channels in the L-band PDCCH 600 (control channel).
  • the base station 110 transmits correspondence information 400 (second control information) for specifying the arrangement of the RS transmission information 610 in the PDCCH 600 for each of a plurality of frequency channels in the U band using the L band.
  • the terminal 120 transmits the RS transmission information 610 on the frequency channel used by the terminal of the plurality of frequency channels in the U band from the PDCCH. Can be received. Thereby, the bit number of RS transmission information 610 can be reduced.
  • FIG. 7 is a diagram illustrating another example of the RS transmission information transmission method.
  • the base station 110 may transmit, for example, dedicated control channels 701 to 703 shown in FIG. 7 as RS transmission information.
  • the individual control channels 701 to 703 are RS transmission information indicating the presence or absence of RS transmission in the frequency channels corresponding to the channel numbers # 1 to # 3, respectively.
  • a newly defined downlink dedicated control channel PUTICH: Physical Unified Band Transmission Indicator Channel
  • PUTICH Physical Unified Band Transmission Indicator Channel
  • a part of PHICH may be used for the individual control channels 701 to 703.
  • the RS transmission information to each terminal can be individually transmitted.
  • the terminal 120 can identify the RS transmission information addressed to the terminal 120 itself. .
  • the base station 110 transmits the RS transmission information 610 (first control information) for each of a plurality of U-band frequency channels through the L-band individual control channels 701 to 703.
  • the base station 110 transmits correspondence information 400 (second control information) for specifying correspondence between a plurality of U-band frequency channels and dedicated control channels 701 to 703 using the L band.
  • the terminal 120 transmits the RS transmission information about the frequency channel used by the terminal among the plurality of U-band frequency channels based on the correspondence information 400 transmitted by the L band from the base station 110 to the dedicated control channel. 701 to 703 can be received. Thereby, the bit number of RS transmission information 610 can be reduced.
  • the base station 110 transmits RS transmission information corresponding to each of the U-band frequency channels using the downlink L1 link and L2 link control channels in the L band.
  • the correspondence between the channel number and the arrangement order of PDCCH 600 or dedicated control channels 701 to 703 is defined in advance in radio communication system 100 using, for example, mathematical formulas and tables, and stored in the memory of base station 110 and terminal 120.
  • FIG. 8A is a diagram illustrating a first example of a case in which the presence / absence of RS transmission can be determined when RS transmission information is transmitted.
  • the horizontal axis (t) indicates time.
  • the frequency channel pl1 indicates an L-band frequency channel used between the base station 110 and the terminal 120.
  • the frequency channel su1 indicates a U-band frequency channel used between the base station 110 and the terminal 120. For example, when the base station 110 performs carrier sense in the subframe sb1 and detects the vacancy of the frequency channel su1, the base station 110 transmits the dummy signal 801 through the frequency channel su1 in the subframe sb1.
  • the base station 110 can determine to transmit the RS in the next subframe sb2. Moreover, even if there is no transmission data, the base station 110 can determine to transmit the RS in the next subframe sb2 when transmitting the RS alone.
  • the base station 110 transmits the RS transmission information 802 indicating “RS transmission is present” on the frequency channel pl1 in the subframe sb2, and transmits a signal 803 including the RS. It transmits on the frequency channel su1.
  • the base station 110 may determine that the RS is transmitted in the subframe sb2 in the subsequent subframes by transmitting the dummy signal 801 through the frequency channel su1 when the vacancy of the frequency channel su1 is detected. it can.
  • the dummy signal 801 is transmitted when a vacant band is detected will be described, but a preamble signal having a predetermined pattern may be transmitted instead of the dummy signal 801.
  • FIG. 8B is a diagram illustrating a second example of a case where it is possible to determine whether or not RS transmission is performed when RS transmission information is transmitted.
  • the same parts as those shown in FIG. 8A are denoted by the same reference numerals and description thereof is omitted.
  • the base station 110 transmits a signal 821 including RS on the frequency channel su1.
  • the frequency channel su1 in the next subframe sb2 can be secured (occupied). For this reason, when there is data to be transmitted continuously, the base station 110 can determine to transmit the RS in the next subframe sb2. In this case, in the subframe sb2, the base station 110 transmits the RS transmission information 802 indicating “RS transmission is present” using the frequency channel pl1, and transmits the signal 803 including the RS using the frequency channel su1.
  • the base station 110 when the base station 110 continuously transmits a signal in the frequency channel su1, it can determine that the RS is transmitted in the subframe sb2 after two subframes.
  • FIG. 8C is a diagram illustrating an example 3 of a case in which the presence or absence of RS transmission can be determined when RS transmission information is transmitted.
  • the same parts as those shown in FIG. 8A are denoted by the same reference numerals and description thereof is omitted.
  • the base station 110 transmits the signal 805 including the RS in the subframe sb2
  • the base station 110 transmits the RS transmission information 806 indicating “RS transmission is present” on the frequency channel pl1 in the subframe sb2.
  • the base station 110 transmits the RS transmission information 806 in the end portion of the subframe sb2.
  • the terminal 120 buffers the signal 805 including the RS transmitted in the subframe sb2, and based on the RS transmission information 806 received late, the signal 805 including the RS that has been buffered. Receive processing. In this way, by configuring the terminal 120 to buffer the signal from the base station 110, the base station 110 actually transmits the signal 805 including the RS and then transmits the RS transmission information 806. Can do. On the other hand, the terminal 120 can receive the RS efficiently by performing the reception process of the buffered signal only when the RS transmission information 806 indicating “RS transmission is present” is received. it can.
  • FIG. 8D is a diagram illustrating an example 4 of a case where it is possible to determine whether or not RS transmission is performed when transmitting RS transmission information.
  • the same parts as those shown in FIG. 8A are denoted by the same reference numerals and description thereof is omitted.
  • the base station 110 transmits the signal 807 including the RS in the subframe sb1
  • the base station 110 transmits the RS transmission information 808 indicating “with RS transmission” on the frequency channel pl1 in the next subframe sb2.
  • the base station 110 transmits the RS transmission information 808 at the head portion of the subframe sb2.
  • the terminal 120 buffers the signal 807 including the RS transmitted in the subframe sb1, and based on the RS transmission information 808 received late, the signal 807 including the RS that has been buffered. Receive processing. In this way, by configuring the terminal 120 to buffer the signal from the base station 110, the base station 110 transmits the RS transmission information 808 after actually transmitting the signal 807 including the RS. Can do. On the other hand, the terminal 120 can receive the RS efficiently by performing reception processing of the buffered signal only when the RS transmission information 808 indicating “RS transmission is present” is received. it can.
  • the RS transmission is transmitted at the time of transmission of the RS transmission information about the head of the signal transmission (for example, signals 805 and 807). The presence or absence can be determined.
  • FIG. 9 is a diagram illustrating an example of the timing of each signal transmitted by the base station.
  • the horizontal axis (t) indicates time.
  • the frequency channel pl1 represents an L-band frequency channel.
  • Frequency channels su1 to su3 indicate frequency channels of U-band channel numbers # 1 to # 3. Further, “B” indicates a busy state (no bandwidth is available) as a result of carrier sense, and “I” indicates an idle state (a bandwidth is available) as a result of carrier sense.
  • the base station 110 transmits RS transmission information using a common PDCCH using, for example, U-RNTI (UTRAN-Radio Network Temporary Identifier: UTRAN wireless network temporary identifier).
  • U-RNTI UTRAN-Radio Network Temporary Identifier: UTRAN wireless network temporary identifier
  • the base station 110 transmits each signal as shown in FIG. 9, for example.
  • subframe 901 indicates a subframe (1 [ms]) in the licensed band
  • subframe 902 indicates a subframe (1 [ms]) in the unlicensed band.
  • the subframes 901 and 902 may have the same timing, or may have different timings as in the example illustrated in FIG.
  • the base station 110 transmits PDCCH 911 (“100”) based on the result of carrier sense using the frequency channel pl1 in the first subframe 901 shown in FIG.
  • PDCCH 911 channel number # 1 indicates RS transmission
  • channel numbers # 2 and # 3 indicate no RS transmission.
  • the base station 110 transmits a signal 912 including RS using the frequency channel su1.
  • the base station 110 performs carrier sense on the frequency channel su2, and is continuously busy (B), and the vacancy of the frequency channel su3 is not detected.
  • the base station 110 Since the base station 110 transmits a signal using the frequency channel su1 in the first subframe 902 shown in FIG. 9, the base station 110 uses the frequency channel su1 in the second subframe 902 shown in FIG. It is determined that RS can be transmitted. Further, since the vacancy of the frequency channel su2 is detected in the first subframe 902 shown in FIG. 9, the base station 110 uses the frequency channel su2 in the second subframe 902 shown in FIG. Judge that transmission is possible. Further, since the vacancy of the frequency channel su3 is not detected in the first subframe 902 shown in FIG. 9, the base station 110 uses the frequency channel su3 in the second subframe 902 shown in FIG. Is determined not to be sent.
  • the base station 110 uses the frequency channel pl1 in the second subframe 901 shown in FIG. 9, and channel numbers # 1 and # 2 indicate RS transmission, and channel number # 3 indicates no RS transmission.
  • PDCCH 921 (“110”) is transmitted.
  • the base station 110 transmits a signal 922 including RS using su1.
  • the base station 110 transmits a signal 923 including RS using su2.
  • the base station 110 performs carrier sense for the frequency channel su3 for a predetermined number of times (for example, four times) continuously after busy (B), It is assumed that a vacant frequency channel su3 is detected.
  • the base station 110 Since the base station 110 transmits a signal using the frequency channel su1 in the second subframe 902 shown in FIG. 9, the base station 110 uses the frequency channel su1 in the third subframe 902 shown in FIG. It is determined that RS can be transmitted. Further, it is assumed that the base station 110 determines that the RS is not transmitted using the frequency channel su2 in the third subframe 902 illustrated in FIG. 9 because there is no data to be transmitted using the frequency channel su2. Also, since the vacancy of the frequency channel su3 is detected in the second subframe 902 shown in FIG. 9, the base station 110 uses the frequency channel su3 in the third subframe 902 shown in FIG. Judge that transmission is possible.
  • the base station 110 uses the L-band frequency channel pl1 in the third subframe 901 shown in FIG. 9, channel numbers # 1 and # 3 are RS transmissions, and channel number # 2 is RS transmissions. PDCCH 931 (“101”) indicating none is transmitted. In this case, in the third subframe 902 shown in FIG. 9, the base station 110 transmits a signal 932 including RS using su1. In addition, in the third subframe 902 illustrated in FIG. 9, the base station 110 transmits a signal 933 including an RS using su3.
  • FIG. 10 is a diagram illustrating another example of the timing of each signal transmitted by the base station.
  • the same parts as those shown in FIG. For example, when the base station 110 transmits RS transmission information using the dedicated control channel, the base station 110 transmits each signal as shown in FIG. 10, for example.
  • base station 110 indicates presence / absence of RS transmission in channel numbers # 1 to # 3 based on the result of carrier sense using frequency channel pl1 in first subframe 901 shown in FIG.
  • the individual control channels 1011 to 1013 are transmitted.
  • the dedicated control channel 1011 indicates that channel number # 1 is RS transmission (“1”).
  • the dedicated control channel 1012 indicates that channel number # 2 is not RS transmission (“0”).
  • the dedicated control channel 1013 indicates that channel number # 3 is not RS transmission (“0”).
  • the operation of the base station 110 in the first subframe 902 shown in FIG. 10 is the same as the operation shown in FIG.
  • the base station 110 transmits dedicated control channels 1021 to 1023 indicating the presence / absence of RS transmission in channel numbers # 1 to # 3, respectively, using the frequency channel pl1.
  • the dedicated control channel 1021 indicates that the channel number # 1 is RS transmission (“1”).
  • the dedicated control channel 1022 indicates that channel number # 2 is RS transmission ("1").
  • the dedicated control channel 1023 indicates that the channel number # 3 is not RS transmission (“0”).
  • the operation of the base station 110 in the second subframe 902 shown in FIG. 10 is the same as the operation shown in FIG.
  • the base station 110 transmits individual control channels 1031 to 1033 indicating the presence / absence of RS transmission in the channel numbers # 1 to # 3, respectively, using the frequency channel pl1.
  • the dedicated control channel 1031 indicates that channel number # 1 is RS transmission (“1”).
  • the dedicated control channel 1032 indicates that channel number # 2 is not RS transmission (“0”).
  • the dedicated control channel 1033 indicates that channel number # 3 is RS transmission ("1").
  • the operation of the base station 110 in the third subframe 902 shown in FIG. 10 is the same as the operation shown in FIG.
  • FIG. 11 is a flowchart illustrating an example of processing by the base station in Example 1 of RS transmission information.
  • the base station 110 executes, for example, each step shown in FIG. 11 for each subframe.
  • the base station 110 performs each step shown in FIG. 11 about each RS to transmit.
  • the multiple types of RS include, for example, CRS (Cell-Specific Reference Signal: Cell Specific Reference Signal), CSI-RS (Channel State Information-Reference Signal: Channel State Information Reference Signal), and DRS (Discovery Reference Signal).
  • CRS Cell-Specific Reference Signal: Cell Specific Reference Signal
  • CSI-RS Channel State Information-Reference Signal: Channel State Information Reference Signal
  • DRS Discovery Reference Signal
  • the CRS is a common RS in the cell, and is used for frequency correction, CQI measurement, demodulation, RRM measurement, etc. in the terminal 120, for example.
  • CSI-RS is used, for example, for channel estimation for precoding in terminal 120 and estimation of other cells for CoMP (Coordinated Multiple-Point transmission and reception).
  • an arrangement example defined in 3GPP (3rd Generation Partnership Project) TS36.211 can be used.
  • an arrangement of CSI-RS in radio resources for example, an arrangement example defined in 3GPP TS36.211 can be used.
  • the base station 110 determines whether or not RS can be transmitted in the U band in the next subframe (step S1101). For example, when the base station 110 is continuously transmitting a radio signal, or when a transmission opportunity is secured by detecting a vacant band by carrier sense and transmitting a dummy signal, a preamble signal, etc., It is determined that RS can be transmitted in the subframe. In addition, the base station 110 determines that the RS cannot be transmitted in the next subframe when the radio signal is not continuously transmitted and the transmission opportunity is not secured by a dummy signal or a preamble signal.
  • step S1101 if the RS can be transmitted in the U band in the subframe (step S1101: Yes), the base station 110 determines whether or not the RS transmission timer satisfies a specified value (step S1102).
  • the RS transmission timer is a timer for measuring the transmission timing (transmission subframe) of the target RS, and is set according to the transmission cycle of the target RS. That is, in step S1101, the base station 110 determines whether or not the next subframe is a subframe in which the target RS is to be transmitted.
  • step S1102 if the RS transmission timer satisfies the specified value (step S1102: Yes), the base station 110 sets the RS transmission information to be transmitted to “1” (with RS transmission) (step S1103). In this case, the base station 110 transmits the RS in the U band in the next subframe. In addition, the base station 110 resets the RS transmission timer (step S1104), and ends a series of processes.
  • step S1101 when the RS cannot be transmitted in the U band in the subframe (step S1101: No), the base station 110 sets the RS transmission information to be transmitted to “0” (no RS transmission) (step S1105). Further, the base station 110 advances the RS transmission timer by one subframe (step S1106). And the base station 110 complete
  • step S1102 if the RS transmission timer does not satisfy the specified value (step S1102: No), the base station 110 determines whether there is transmission data to the terminal 120 and whether simultaneous RS transmission is required (step S1102). S1107).
  • the transmission data to the terminal 120 is user data to be transmitted to the terminal 120.
  • the case where RS simultaneous transmission is required is a case where the terminal 120 receiving transmission data requires simultaneous transmission of transmission data and RS for demodulation or the like.
  • step S1107 if there is transmission data to the terminal 120 and RS simultaneous transmission is required (step S1107: Yes), the base station 110 moves to step S1103. If there is no transmission data to the terminal 120 or RS simultaneous transmission is not required (step S1107: No), the base station 110 proceeds to step S1105.
  • step S1107 is processing when the target is CRS. If the target is CSI-RS or DRS, step S1107 may be omitted. In this case, when the RS transmission timer does not satisfy the specified value in step S1102 (step S1102: No), the base station 110 proceeds to step S1105.
  • FIG. 12 is a flowchart illustrating an example of processing performed by the terminal in Example 1 of RS transmission information.
  • the RS transmission information 500 shown in FIG. 5 is used as the RS transmission information and the CQI is measured based on the RS transmitted from the base station 110 in the U band, the terminal 120, for example, for each subframe
  • Each step shown in FIG. 12 is executed.
  • step S1202 when there is no RS transmission (step S1202: No), the terminal 120 ends a series of processes. If RS transmission is present (step S1202: Yes), the terminal 120 measures CQI based on the RS transmitted from the base station 110 in the U band (step S1203), and ends a series of processes.
  • the terminal 120 executes the steps illustrated in FIG. 12 for each subframe. However, in this case, the terminal 120 performs RRM measurement based on the RS transmitted from the base station 110 in the U band in step S1203.
  • the terminal 120 executes the steps shown in FIG. 12 for each subframe. However, in this case, in step S1203, the terminal 120 performs timing tracking and frequency tracking based on the RS transmitted from the base station 110 in the U band.
  • the terminal 120 may perform reception processing of data transmitted from the base station 110 simultaneously with the RS, together with CQI measurement in step S1203.
  • FIG. 13 is a diagram illustrating Example 2 of RS transmission information.
  • the RS transmission information transmitted by the base station 110 may be, for example, RS transmission information 1300 illustrated in FIG.
  • the RS transmission information 1300 shown in FIG. 13 is 1-bit information and indicates whether or not RS transmission is scheduled.
  • RS transmission information 1300 when the value of the RS transmission information 1300 is “0”, it indicates that there is no RS transmission plan (no RS transmission plan). Further, when the value of the RS transmission information 1300 is “1”, it indicates that the RS transmission is scheduled (RS transmission is scheduled). For example, in the case where the presence or absence of RS transmission cannot be determined when RS transmission information is transmitted, RS transmission information 1300 indicating whether or not RS transmission is scheduled can be used.
  • the terminal 120 can be configured not to perform the process of detecting an RS in a subframe without an RS transmission schedule, thereby reducing power consumption in the terminal 120. Can be achieved.
  • the terminal 120 can receive the RS if the RS is transmitted by performing the process of detecting the RS in the subframe with the RS transmission.
  • the process of detecting the RS can be, for example, a process of calculating the correlation between the replica signal having the same pattern as the RS and the received signal, and determining that there is an RS when the calculated correlation is higher than a threshold value.
  • FIG. 14A is a diagram illustrating a first example of a case where it is not possible to determine whether or not RS transmission is performed when transmitting RS transmission information.
  • the same parts as those shown in FIG. 8A are denoted by the same reference numerals and description thereof is omitted.
  • the base station 110 sets a periodic subframe as a subframe to be transmitted if an RS can be transmitted.
  • the base station 110 sets the subframe sb2 as a subframe to be transmitted if the RS can be transmitted.
  • the base station 110 transmits the RS transmission information 1401 indicating “RS transmission is scheduled” on the frequency channel pl1 in the subframe sb2.
  • the base station 110 performs carrier sense of the frequency channel su1 in the subframe sb2, and transmits a signal 1402 including the RS on the frequency channel su1 when a free band of the frequency channel su1 is detected by the carrier sense.
  • FIG. 14B is a diagram illustrating Example 2 of a case where it is not possible to determine whether or not RS transmission is performed when RS transmission information is transmitted.
  • the same parts as those shown in FIG. 14A are denoted by the same reference numerals and description thereof is omitted.
  • the base station 110 performs carrier sense at a predetermined timing in the subframe sb2, and transmits the signal 1402 including the RS from the time point when the free band of the frequency channel su1 is detected by the carrier sense. Send with su1.
  • FIG. 15 is a flowchart illustrating an example of processing performed by the base station in RS transmission information example 2.
  • the base station 110 executes, for example, each step illustrated in FIG. 15 for each subframe.
  • the base station 110 executes the steps shown in FIG. 15 for each RS to be transmitted.
  • the base station 110 determines whether or not the RS transmission timer satisfies a specified value (step S1501). When the RS transmission timer satisfies the specified value (step S1501: Yes), the base station 110 sets the RS transmission information to be transmitted to “1” (RS transmission scheduled) (step S1502). Next, the base station 110 performs RS transmission processing (step S1503).
  • the base station 110 performs carrier sense in the U band, and transmits an RS when a free band is detected by carrier sense.
  • the base station 110 transmits the RS without performing carrier sense.
  • the base station 110 does not transmit the RS when the wireless signal is not continuously transmitted in the U band and the vacant band is not detected even if the carrier sense is performed.
  • the base station 110 determines whether or not the RS has been transmitted in step S1503 (step S1504).
  • the base station 110 resets the RS transmission timer (step S1505) and ends the series of processes.
  • the base station 110 advances the RS transmission timer by one subframe (step S1506). And the base station 110 complete
  • step S1501 when the RS transmission timer does not satisfy the specified value (step S1501: No), the base station 110 determines whether there is transmission data to the terminal 120 and RS simultaneous transmission is required (step S1501). S1507).
  • step S1507 when it is determined that there is transmission data to the terminal 120 and RS simultaneous transmission is required (step S1507: Yes), the base station 110 proceeds to step S1502. If it is determined that there is no transmission data to the terminal 120 or that RS simultaneous transmission is not required (step S1507: No), the base station 110 proceeds to step S1508.
  • the base station 110 sets the RS transmission information to be transmitted to “0” (no RS transmission) (step S1508). Also, the base station 110 advances the RS transmission timer by one subframe (step S1509). And the base station 110 complete
  • step S1507 is processing when the processing target is CRS.
  • step S1507 may be omitted.
  • the base station 110 proceeds to step S1508.
  • FIG. 16 is a flowchart illustrating an example of processing by the terminal in the RS transmission information example 2.
  • RS transmission information 1300 shown in FIG. 13 is used as the RS transmission information, and CQI measurement is performed based on RS transmitted from the base station 110 in the U band, the terminal 120 may Each step shown in FIG. 16 is executed.
  • step S1602 if the RS transmission is not scheduled (step S1602: No), the terminal 120 ends the series of processes.
  • the terminal 120 performs an RS detection process for detecting an RS from the base station 110 in the U band (step S1603). For example, the terminal 120 calculates the correlation between the RS replica signal and the received signal, and performs RS detection processing for determining that RS transmission has occurred when the calculated correlation is higher than a threshold.
  • the terminal 120 determines whether or not there is an RS transmission from the base station 110 in the U band based on the result of the RS detection process in step S1603 (step S1604).
  • step S1604: No the terminal 120 ends a series of processes.
  • step S1604: Yes the terminal 120 performs CQI measurement based on the RS transmitted from the base station 110 in the U band (step S1605), and ends a series of processes.
  • the terminal 120 performs the steps illustrated in FIG. 16 for each subframe.
  • step S1605 the terminal 120 performs RRM measurement based on the RS transmitted by the base station 110.
  • the terminal 120 when performing timing tracking and frequency tracking based on RS transmitted from the base station 110 in the U band, the terminal 120 performs the steps shown in FIG. 16 for each subframe. However, in this case, in step S1605, the terminal 120 performs timing tracking and frequency tracking based on the RS transmitted by the base station 110.
  • the terminal 120 may perform reception processing of data transmitted from the base station 110 simultaneously with the RS, together with CQI measurement in step S1605.
  • FIG. 17 is a diagram illustrating Example 3 of RS transmission information.
  • the RS transmission information transmitted by the base station 110 may be, for example, RS transmission information 1700 illustrated in FIG.
  • the RS transmission information 1700 shown in FIG. 17 is 2-bit information, and indicates the type of RS to be transmitted when there is RS transmission in addition to the presence or absence of RS transmission.
  • the base station 110 transmits CRS and CSI-RS as RS will be described.
  • the RS transmission information 1700 indicates that there is no RS transmission (no RS transmission) when the value is “00”.
  • the RS transmission information 1700 indicates that there is CRS transmission and no CSI-RS transmission (with CRS transmission).
  • the RS transmission information 1700 indicates that there is CSI-RS transmission and no CRS transmission (with CSI-RS transmission).
  • the value of the RS transmission information 1700 is “11”, it indicates that both CRS and CSI-RS transmissions are present (with CRS and CSI-RS transmissions).
  • FIG. 18 is a flowchart illustrating an example of processing by the base station in Example 3 of RS transmission information.
  • the base station 110 executes, for example, each step illustrated in FIG. 18 for each subframe. First, the base station 110 determines whether or not RS can be transmitted in the U band in the next subframe (step S1801).
  • the base station 110 when the base station 110 is continuously transmitting a radio signal, or when a transmission opportunity is secured by detecting a vacant band by carrier sense and transmitting a dummy signal, a preamble signal, etc., It is determined that RS can be transmitted in the subframe. In addition, the base station 110 determines that the RS cannot be transmitted in the next subframe when the radio signal is not continuously transmitted and the transmission opportunity is not secured by a dummy signal or a preamble signal.
  • step S1801 when the RS can be transmitted in the U band in the subframe (step S1801: Yes), the base station 110 determines whether or not the CRS transmission timer satisfies the specified value (step S1802).
  • the CRS transmission timer is a timer for measuring the transmission timing (transmission subframe) of the target CRS, and is set according to the transmission cycle of the target CRS. That is, the base station 110 determines whether or not the next subframe is a subframe in which CRS is to be transmitted.
  • step S1802 when the CRS transmission timer satisfies the specified value (step S1802: Yes), the base station 110 resets the CRS transmission timer (step S1803). Further, the base station 110 determines whether or not the CSI-RS transmission timer satisfies a specified value (step S1804).
  • the CSI-RS transmission timer is a timer for measuring the transmission timing (transmission subframe) of the target CSI-RS, and is set according to the transmission cycle of the target CSI-RS. That is, base station 110 determines whether or not the next subframe is a subframe in which CSI-RS is to be transmitted.
  • step S1804 when the CSI-RS transmission timer satisfies the specified value (step S1804: Yes), the base station 110 sets the RS transmission information to be transmitted to “11” (with CRS and CSI-RS transmission) ( Step S1805). Further, the base station 110 resets the CSI-RS transmission timer (step S1806), and ends a series of processing.
  • step S1804 if the CSI-RS transmission timer does not satisfy the specified value (step S1804: No), the base station 110 sets the RS transmission information to be transmitted to “01” (with CRS transmission) (step S1807). . In addition, the base station 110 advances the CSI-RS transmission timer by one subframe (step S1808). And the base station 110 complete
  • step S1802 when the CRS transmission timer does not satisfy the specified value (step S1802: No), the base station 110 determines whether there is transmission data to the terminal 120 and whether CRS simultaneous transmission is required (step S1802). S1809).
  • the case where CRS simultaneous transmission is required is a case where the terminal 120 that receives transmission data requires simultaneous transmission of transmission data and CRS for demodulation or the like.
  • step S1809 If it is determined in step S1809 that there is transmission data and CRS simultaneous transmission is required (step S1809: Yes), the base station 110 proceeds to step S1803. If it is determined that there is no transmission data or that CRS simultaneous transmission is not required (step S1809: No), the base station 110 proceeds to step S1810. That is, the base station 110 advances the CRS transmission timer by one subframe (step S1810).
  • the base station 110 determines whether or not the CSI-RS transmission timer satisfies a specified value (step S1811). That is, base station 110 determines whether or not the next subframe is a subframe in which CSI-RS is to be transmitted.
  • the base station 110 sets the RS transmission information to be transmitted to “10” (with CSI-RS transmission) (step S1812). Further, the base station 110 resets the CSI-RS transmission timer (step S1813), and ends a series of processes.
  • step S1811 if the CSI-RS transmission timer does not satisfy the specified value (step S1811: No), the base station 110 sets the RS transmission information to be transmitted to “00” (no RS transmission) (step S1814). . Further, the base station 110 advances the CSI-RS transmission timer by one subframe (step S1815). And the base station 110 complete
  • step S1801 if the RS cannot be transmitted in the U band in the next subframe (step S1801: No), the base station 110 proceeds to step S1814.
  • FIG. 19 is a flowchart illustrating an example of processing performed by the terminal in the third example of RS transmission information.
  • RS transmission information 1700 shown in FIG. 17 is used as the RS transmission information, and CQI measurement is performed based on CRS transmitted from the base station 110 in the U band, the terminal 120, for example, Each step shown in FIG. 19 is executed every time.
  • the terminal 120 receives RS transmission information transmitted in the L band by the base station 110 (step S1901).
  • the terminal 120 determines whether there is CRS transmission for the current subframe based on the RS transmission information received in step S1901 (step S1902).
  • the case of CRS transmission is a case where the value of RS transmission information is “01” or “11” (see, for example, FIG. 17).
  • step S1902 when there is no CRS transmission (step S1902: No), the terminal 120 returns to step S1901.
  • step S1902: Yes the terminal 120 measures CQI based on the CRS transmitted from the base station 110 in the U band (step S1903), and ends a series of processes.
  • the terminal 120 when the R120 measurement is performed based on the CRS transmitted from the base station 110 in the U band, the terminal 120 performs the steps illustrated in FIG. 19 for each subframe. However, in this case, in step S1903, the terminal 120 performs RRM measurement based on the CRS transmitted by the base station 110.
  • the terminal 120 executes the steps shown in FIG. 19 for each subframe. However, in this case, in step S1903, the terminal 120 performs timing tracking and frequency tracking based on the CRS transmitted by the base station 110.
  • FIG. 20 is a flowchart showing another example of processing by the terminal in Example 3 of RS transmission information.
  • RS transmission information 1700 shown in FIG. 17 is used as the RS transmission information, and CSI is measured based on CSI-RS transmitted from base station 110 in the U band, terminal 120, for example, Each step shown in FIG. 20 is executed for each frame.
  • the terminal 120 receives RS transmission information transmitted in the L band by the base station 110 (step S2001).
  • the terminal 120 determines whether there is CSI-RS transmission for the current subframe based on the RS transmission information received in step S2001 (step S2002).
  • the case of CSI-RS transmission is a case where the value of RS transmission information is “10” or “11” (see, for example, FIG. 17).
  • step S2002 when there is no CSI-RS transmission (step S2002: No), the terminal 120 returns to step S2001.
  • step S2002: Yes the terminal 120 measures CSI based on the CSI-RS transmitted from the base station 110 in the U band (step S2003), and ends a series of processes. To do.
  • FIG. 21 is a diagram illustrating Example 4 of RS transmission information.
  • the RS transmission information transmitted by the base station 110 may be, for example, RS transmission information 2100 illustrated in FIG.
  • the RS transmission information 2100 shown in FIG. 21 is 2-bit information, and indicates the transmission data format when there is RS transmission in addition to the presence or absence of RS transmission.
  • the RS transmission information 2100 indicates that there is no RS transmission (no RS transmission) when the value is “00”. Further, in the RS transmission information 2100, when the value is “01”, there is RS transmission, and the transmission data format is “format 1”. Further, in the RS transmission information 2100, when the value is “10”, there is RS transmission, and the transmission data format is “format 2”. The RS transmission information 2100 indicates that there is RS transmission when the value is “11”, and the transmission data format is “format 3”.
  • the transmission data format is, for example, a format related to the start position and end position of the data signal in the subframe.
  • the start position and the end position of the data signal are represented by OFDM (Orthogonal Frequency Division Multiplexing) symbols, respectively.
  • format 1 is a format in which the start position of the data signal is the second OFDM symbol and the end position of the data signal is the 14th OFDM symbol.
  • Form 2 is a format in which the start position of the data signal is the first OFDM symbol and the end position of the data signal is the 14th OFDM symbol.
  • Form 3 is a format in which the start position of the data signal is the first OFDM symbol and the end position of the data signal is the thirteenth OFDM symbol.
  • control information can be reduced by adopting a configuration in which the transmission data format is notified using the RS transmission information.
  • FIG. 22 is a diagram illustrating an example of transmission data in three formats.
  • the horizontal axis (t) indicates time.
  • base station 110 performs data transmissions 2201 to 2204 in subframes sb1 to sb4, respectively.
  • Data transmissions 2201 to 2204 are data transmissions of “format 1”, “format 2”, “format 2”, and “format 3”, respectively.
  • the base station 110 transmits data using one of three formats for each subframe. Then, the base station 110 notifies the terminal 120 of the transmission data format in addition to the RS transmission by the RS transmission information 2100.
  • FIG. 23 is a diagram illustrating a first modification of the fourth example of RS transmission information.
  • the RS transmission information transmitted by the base station 110 may be, for example, the RS transmission information 2300 illustrated in FIG.
  • the RS transmission information 2300 shown in FIG. 23 is 2-bit information, and indicates the transmission data format when there is RS transmission in addition to the presence or absence of RS transmission.
  • the RS transmission information 2300 indicates that there is no RS transmission (no RS transmission) when the value is “00”. Further, in the RS transmission information 2300, when the value is “01”, there is RS transmission, and the transmission data format is “format 1”. Further, in the RS transmission information 2300, when the value is “10”, there is RS transmission, and the transmission data format is “format 2”.
  • FIG. 24 is a diagram illustrating an example of transmission data in two formats.
  • the base station 110 performs data transmission 2401 to 2403 in subframes sb1 to sb3, respectively.
  • Data transmissions 2401 to 2403 are data transmissions of “format 1”, “format 2”, and “format 2”, respectively.
  • the base station 110 may perform data transmission using one of two formats for each subframe. Then, the base station 110 notifies the terminal 120 of the transmission data format in addition to the RS transmission by the RS transmission information 2100.
  • FIG. 25 is a diagram illustrating a second modification of the fourth example of RS transmission information.
  • the RS transmission information transmitted by the base station 110 may be, for example, the RS transmission information 2500 illustrated in FIG.
  • the RS transmission information 2500 shown in FIG. 25 is 2-bit information, and indicates the transmission data format and the presence / absence of data transmission when there is RS transmission in addition to the presence / absence of RS transmission.
  • the RS transmission information 2500 indicates that there is no RS transmission (no RS transmission) when the value is “00”. Further, in the RS transmission information 2500, when the value is “01”, it indicates that there is RS transmission and the transmission data format is “format 1”. In addition, when the value is “10”, the RS transmission information 2500 indicates that there is RS transmission and the transmission data format is “format 2”. Further, in the RS transmission information 2500, when the value is “11”, it indicates that there is RS transmission and no data transmission.
  • FIG. 26 is a flowchart illustrating an example of processing by the base station in the fourth example of RS transmission information.
  • the base station 110 executes, for example, each step illustrated in FIG. 26 for each subframe.
  • the base station 110 determines whether or not the RS transmission timer satisfies a specified value (step S2601). When the RS transmission timer satisfies the specified value (step S2601: Yes), the base station 110 determines whether or not RS can be transmitted in the next subframe (step S2602). For example, when the base station 110 is continuously transmitting a radio signal, or when a transmission opportunity is secured by detecting a vacant band by carrier sense and transmitting a dummy signal, a preamble signal, etc., It is determined that RS can be transmitted in the subframe. In addition, the base station 110 determines that the RS cannot be transmitted in the next subframe when the radio signal is not continuously transmitted and the transmission opportunity is not secured by a dummy signal or a preamble signal.
  • step S2602 when the RS can be transmitted in the next subframe (step S2602: Yes), the base station 110 sets the RS transmission information based on the data transmission format (step S2603). For example, in the example shown in FIG. 21, base station 110 sets RS transmission information to “01” when “format 1” is used for data transmission of the next subframe. Also, the base station 110 sets the RS transmission information to “10” when “format 2” is used for data transmission of the next subframe. Further, the base station 110 sets the RS transmission information to “11” when “format 3” is used for data transmission of the next subframe.
  • the base station 110 resets the RS transmission timer (step S2604), and ends a series of processes.
  • step S2602 if the RS cannot be transmitted in the next subframe (step S2602: No), the base station 110 sets the RS transmission information to be transmitted to “00” (no RS transmission) (step S2605). Further, the base station 110 advances the RS transmission timer by one subframe (step S2606). Then, the base station 110 ends a series of processes.
  • step S2601 when the RS transmission timer does not satisfy the specified value (step S2601: No), the base station 110 determines whether there is transmission data to the terminal 120 and whether RS simultaneous transmission is required (step S2601: No). Step S2607). When it is determined that there is transmission data to terminal 120 and RS simultaneous transmission is required (step S2607: Yes), base station 110 determines whether or not RS can be transmitted in the next subframe (step S2607). S2608). The determination in step S2608 is the same as the determination in step S2602.
  • step S2608 when the RS can be transmitted in the next subframe (step S2608: Yes), the base station 110 sets the RS transmission information based on the data transmission format (step S2609).
  • the setting in step S2609 is the same as the setting in step S2603, for example.
  • the base station 110 resets the RS transmission timer (step S2610), and ends a series of processes.
  • step S2607 If it is determined in step S2607 that there is no transmission data to the terminal 120 or that RS simultaneous transmission is not required (step S2607: No), the base station 110 sets the RS transmission information to be transmitted to “00” (RS transmission). (None) (step S2611). Further, the base station 110 advances the RS transmission timer by one subframe (step S2612). And the base station 110 complete
  • step S2608 when the RS cannot be transmitted in the next subframe (step S2608: No), the base station 110 proceeds to step S2611.
  • FIG. 27 is a flowchart illustrating an example of processing performed by a terminal in the fourth example of RS transmission information.
  • RS transmission information 2100 shown in FIG. 21 is used as RS transmission information and terminal 120 does not receive data in the current subframe
  • terminal 120 executes, for example, each step shown in FIG. 27 for each subframe.
  • the case where the terminal 120 does not receive data in the current subframe is, for example, the case where the terminal 120 does not receive the PDCCH for resource allocation in the current subframe from the base station 110.
  • the terminal 120 receives RS transmission information transmitted in the L band by the base station 110 (step S2701).
  • the terminal 120 determines whether or not there is RS transmission for the current subframe based on the RS transmission information received in step S2701 (step S2702).
  • the case of RS transmission is a case where the value of RS transmission information is “01”, “10”, or “11” (see, for example, FIG. 21).
  • step S2702 when there is no RS transmission (step S2702: No), the terminal 120 returns to step S2701.
  • step S2702: Yes when there is RS transmission (step S2702: Yes), the terminal 120 measures CQI based on the RS transmitted from the base station 110 in the U band (step S2703), and ends a series of processes.
  • the terminal 120 when the terminal 120 performs RRM measurement based on the RS transmitted from the base station 110 in the U band, the terminal 120 performs the steps illustrated in FIG. 27 for each subframe. However, in this case, in step S2703, the terminal 120 performs RRM measurement based on the RS transmitted by the base station 110.
  • the terminal 120 executes the steps shown in FIG. 27 for each subframe. However, in this case, in step S2703, the terminal 120 performs timing tracking and frequency tracking based on the RS transmitted by the base station 110.
  • FIG. 28 is a flowchart illustrating another example of processing by the terminal in the fourth example of RS transmission information.
  • RS transmission information 2100 shown in FIG. 21 is used as RS transmission information and terminal 120 receives data in the current subframe
  • terminal 120 executes each step shown in FIG. 28 for each subframe, for example.
  • the case where the terminal 120 receives data in the current subframe is, for example, a case where the terminal 120 receives the PDCCH for resource allocation in the current subframe from the base station 110.
  • the terminal 120 receives RS transmission information transmitted in the L band by the base station 110 (step S2801).
  • the terminal 120 determines whether or not there is RS transmission for the current subframe based on the RS transmission information received in step S2801 (step S2802).
  • the case of RS transmission is a case where the value of RS transmission information is “01”, “10”, or “11” (see, for example, FIG. 21).
  • step S2802 if there is no RS transmission (step S2802: No), the terminal 120 returns to step S2801. If RS transmission is present (step S2802: YES), the terminal 120 extracts data from a radio signal transmitted in the U band from the base station 110, performs reception processing (step S2803), and ends a series of processing. .
  • the data extraction and reception processing in step S2803 can be performed based on the transmission data format indicated by the RS transmission information received in step S2801.
  • FIG. 29 is a diagram illustrating an example of the synchronization signal transmission information.
  • the base station 110 may transmit, for example, the synchronization signal transmission information 2900 illustrated in FIG. 29 to the terminal 120 together with the RS transmission information described above or instead of the RS transmission information described above.
  • the synchronization signal transmission information 2900 is 1-bit information and indicates whether or not a synchronization signal is scheduled to be transmitted.
  • the synchronization signal is, for example, a PSS (Primary Synchronization Signal) or SSS (Secondary Synchronization Signal) transmitted by the base station 110.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the synchronization signal transmission information 2900 indicates that the synchronization signal transmission is not scheduled (no synchronization signal transmission is scheduled), and when the value is “1”, the synchronization signal transmission is scheduled. (Synchronization signal is scheduled to be transmitted).
  • the synchronization signal transmission information 2900 indicating whether or not the synchronization signal transmission is scheduled can be used. The case where the presence / absence of synchronization signal transmission cannot be determined is the same as the case where the presence / absence of RS transmission cannot be determined at the time of transmission of the RS transmission information shown in FIGS. 14A and 14B, for example.
  • FIG. 30 is a flowchart illustrating an example of processing performed by the base station when the synchronization signal transmission information is used.
  • the base station 110 executes, for example, each step shown in FIG. 30 for each subframe.
  • base station 110 may execute the steps shown in FIG. 30 for each of the synchronization signals to be transmitted.
  • the base station 110 determines whether or not the synchronization signal transmission timer satisfies a specified value (step S3001).
  • the synchronization signal transmission timer is a timer for measuring the transmission timing (transmission subframe) of the target synchronization signal, and is set according to the transmission interval of the synchronization signal required in, for example, timing tracking or frequency tracking.
  • step S3001 when the synchronization signal transmission timer satisfies the specified value (step S3001: Yes), the base station 110 sets the synchronization signal transmission information to be transmitted to “1” (synchronization signal transmission scheduled) (step S3002). ).
  • the base station 110 performs a synchronization signal transmission process (step S3003).
  • the base station 110 performs carrier sense in the U band, and transmits a synchronization signal when a free band is detected by carrier sense.
  • the base station 110 transmits a synchronization signal without performing carrier sense.
  • the base station 110 does not transmit a synchronization signal when a wireless signal is not continuously transmitted in the U band and a vacant band is not detected even after performing carrier sense.
  • the base station 110 determines whether or not the synchronization signal has been transmitted in step S3003 (step S3004).
  • the base station 110 resets the synchronization signal transmission timer (step S3005) and ends the series of processes.
  • the base station 110 advances the synchronization signal transmission timer by one subframe (step S3006). And the base station 110 complete
  • step S3001 when the synchronization signal transmission timer does not satisfy the specified value (step S3001: No), the base station 110 determines whether there is transmission data to the terminal 120 and whether synchronization signal simultaneous transmission is required. (Step S3007). When it is determined that there is transmission data to the terminal 120 and synchronization signal simultaneous transmission is required (step S3007: Yes), the base station 110 proceeds to step S3002. If it is determined that there is no transmission data to the terminal 120 or that synchronous signal simultaneous transmission is not required (step S3007: No), the base station 110 proceeds to step S3008.
  • the base station 110 sets the synchronization signal transmission information to be transmitted to “0” (no synchronization signal transmission) (step S3008). Also, the base station 110 advances the synchronization signal transmission timer by one subframe (step S3009). And the base station 110 complete
  • FIG. 31 is a flowchart illustrating an example of processing performed by the terminal when the synchronization signal transmission information is used.
  • the terminal 120 is shown in FIG. 31 for each subframe. Perform each step.
  • synchronization signal transmission information 1
  • step S3102 if the synchronization signal transmission is not scheduled (step S3102: No), the terminal 120 ends the series of processes. If the synchronization signal is scheduled to be transmitted (step S3102: Yes), the terminal 120 performs a synchronization signal detection process for detecting a synchronization signal from the base station 110 in the U band (step S3103). For example, the terminal 120 calculates a correlation between the replica signal of the synchronization signal and the received signal, and performs a synchronization signal detection process that determines that there is a synchronization signal transmission when the calculated correlation is higher than a threshold value.
  • the terminal 120 determines whether or not there is a synchronization signal transmission from the base station 110 in the U band based on the result of the synchronization signal detection process in step S3103 (step S3104).
  • step S3104: No the terminal 120 ends a series of processes.
  • step S3104: Yes the terminal 120 performs at least one of timing tracking and frequency tracking based on the synchronization signal transmitted from the base station 110 in the U band (step S3105), Terminate the process.
  • the terminal 120 when the synchronization processing is performed based on the synchronization signal transmitted from the base station 110 in the U band, the terminal 120 performs the steps illustrated in FIG. 31 for each subframe. However, in this case, in step S3105, the terminal 120 performs synchronization processing based on the synchronization signal transmitted by the base station 110.
  • the terminal 120 executes each step shown in FIG. 31 for each subframe.
  • step S3105 the terminal 120 performs timing tracking and frequency tracking based on the synchronization signal transmitted by the base station 110.
  • the terminal 120 may perform reception processing of data transmitted from the base station 110 simultaneously with the synchronization signal, together with timing tracking and frequency tracking in step S3105.
  • the synchronization signal transmission information 2900 indicating whether or not the synchronization signal is scheduled to be transmitted has been described.
  • a synchronization signal indicating the presence / absence of transmission of the synchronization signal as in the RS transmission information 500 shown in FIG. Transmission information may be used.
  • FIG. 32 is a diagram illustrating Example 5 of RS transmission information.
  • the RS transmission information transmitted by the base station 110 may be, for example, RS transmission information 3200 illustrated in FIG.
  • the RS transmission information 3200 shown in FIG. 32 is an extension of the RS transmission information 2100 shown in FIG. That is, RS transmission information 3200 is 2-bit information, and whether RS and PSS / SSS are transmitted and whether transmission is scheduled in the first subframe in continuous transmission or transmission is performed in a subframe other than the first. Indicates whether there is.
  • RS transmission information 3200 is 2-bit information, and whether RS and PSS / SSS are transmitted and whether transmission is scheduled in the first subframe in continuous transmission or transmission is performed in a subframe other than the first. Indicates whether there is.
  • a case where the base station 110 transmits a CRS as an RS will be described.
  • the RS transmission information 3200 indicates that CRS and PSS / SSS are not transmitted (no transmission).
  • the RS transmission information 3200 indicates that CRS and PSS / SSS are scheduled to be transmitted in the first subframe (including PSS / SSS / CRS).
  • the value of the RS transmission information 3200 is “10”, it indicates that there is CRS transmission in a subframe other than the head, and that there is no PSS / SSS transmission (with CRS without PSS / SSS).
  • the RS transmission information 3200 indicates that there is transmission in a subframe other than the head, but there is no transmission of CRS and PSS / SSS (no CRS without PSS / SSS).
  • PSS and SSS have the following characteristics because they use more elements in one subframe than CRS. That is, by using PSS and SSS in addition to CRS, timing tracking and frequency tracking that can be executed in one subframe are improved, and the RS transmission cycle for synchronization can be extended. In addition, the detection accuracy when the terminal 120 detects blindly becomes higher by using PSS and SSS in addition to CRS as compared with the case where only CRS is used. For this reason, the efficiency of blind detection and synchronization in terminal 120 can be improved by including PSS and SSS in the first subframe of continuous transmission.
  • FIG. 33 is a diagram illustrating an example of a head subframe in continuous transmission.
  • the horizontal axis (t) indicates time.
  • base station 110 performs data transmissions 3301 to 3303 continuously over subframes sb2 to sb4.
  • the base station 110 transmits a radio signal including at least one of PSS and SSS in the data transmission 3301 in the first subframe sb2.
  • FIG. 34 is a flowchart illustrating an example of processing by the base station in Example 5 of RS transmission information.
  • the base station 110 executes, for example, each step shown in FIG. 34 for each subframe.
  • base station 110 may execute the steps shown in FIG. 34 for each of the synchronization signals to be transmitted.
  • the base station 110 determines whether or not the synchronization signal transmission timer satisfies a specified value (step S3401). In step S3401, when the synchronization signal transmission timer satisfies the specified value (step S3401: YES), the base station 110 sets the RS transmission information to be transmitted to “01” (step S3402).
  • the base station 110 performs a synchronization signal transmission process (step S3403).
  • the base station 110 performs carrier sense in the U band, and transmits a synchronization signal when a free band is detected by carrier sense.
  • the base station 110 transmits a synchronization signal without performing carrier sense.
  • the base station 110 does not transmit a synchronization signal when a wireless signal is not continuously transmitted in the U band and no vacant band is detected even after performing carrier sense.
  • the base station 110 also transmits CRS, when a synchronization signal can be transmitted in step S3403.
  • the base station 110 determines whether or not the synchronization signal has been transmitted in step S3403 (step S3404). If the synchronization signal can be transmitted (step S3404: YES), the base station 110 resets the synchronization signal transmission timer (step S3405) and ends the series of processes. If the synchronization signal cannot be transmitted (step S3404: NO), the base station 110 advances the synchronization signal transmission timer and the CRS transmission timer by one subframe (step S3406). And the base station 110 complete
  • step S3401 if the synchronization signal transmission timer does not satisfy the specified value (step S3401: NO), the base station 110 proceeds to step S3407. That is, the base station 110 determines whether there is transmission data to the terminal 120 and whether the target subframe is the first subframe in continuous transmission (step S3407).
  • the case where the target subframe is the first subframe in continuous transmission is, for example, the case where a signal is not transmitted in a subframe before the target subframe.
  • step S3407 if it is determined that there is transmission data to the terminal 120 and that it is the first subframe (step S3407: Yes), the base station 110 moves to step S3402. If it is determined that there is no transmission data to the terminal 120 or that it is not the first subframe (step S3407: No), the base station 110 proceeds to step S3408.
  • the base station 110 determines whether or not the first subframe in the continuous transmission has been transmitted and the CRS transmission timer satisfies the specified value (step S3408).
  • the base station 110 determines whether the current subframe is an intermediate subframe (step S3409).
  • step S3409 if it is an intermediate subframe (step S3409: Yes), the base station 110 sets the RS transmission information to be transmitted to “10” (step S3410). In addition, the base station 110 resets the CRS transmission timer (step S3411), and ends a series of processes.
  • step S3409 if it is not an intermediate subframe (step S3409: No), the base station 110 sets the RS transmission information to be transmitted to “11” (step S3412). In addition, the base station 110 resets the CRS transmission timer (step S3413) and ends the series of processes.
  • step S3408 if the first subframe has not been transmitted or the CRS transmission timer does not satisfy the specified value (step S3408: No), the base station 110 sets the RS transmission information to be transmitted to “00” (Ste S3414). In addition, the base station 110 advances the CRS transmission timer by one subframe (step S3415). And the base station 110 complete
  • FIG. 35 is a flowchart illustrating an example of a process performed by a terminal in RS transmission information example 5.
  • RS transmission information 3200 shown in FIG. 32 is used as RS transmission information and timing tracking and frequency tracking are performed based on PSS / SSS from base station 110, terminal 120 shows, for example, for each subframe shown in FIG. Perform each step.
  • step S3502 when there is a PSS / SSS transmission plan (step S3502: Yes), the terminal 120 detects PSS / SSS transmitted from the base station 110 in the U band. If the terminal 120 succeeds in detecting the PSS / SSS, the terminal 120 performs at least one of timing tracking and frequency tracking based on the detected PSS / SSS (step S3503), and ends the series of processes.
  • FIG. 36 is a flowchart showing another example of processing by the terminal in Example 5 of RS transmission information.
  • RS transmission information 3200 shown in FIG. 32 is used as RS transmission information and CQI measurement is performed based on CRS from base station 110, terminal 120 executes each step shown in FIG. 36 for each subframe, for example. To do.
  • step S3602 If there is CRS transmission in step S3602 (step S3602: Yes), terminal 120 measures CQI based on CRS transmitted from base station 110 in the U band (step S3603), and ends a series of processing. To do.
  • step S3604 when there is a PSS / SSS transmission plan (step S3604: Yes), the terminal 120 detects PSS / SSS transmitted from the base station 110 in the U band. If the terminal 120 succeeds in detecting the PSS / SSS, the terminal 120 measures the CQI based on the detected PSS / SSS (step S3605), and ends the series of processes.
  • FIG. 37 is a diagram illustrating Example 6 of RS transmission information.
  • the RS transmission information transmitted by the base station 110 may be, for example, RS transmission information 3700 illustrated in FIG.
  • the RS transmission information 3700 shown in FIG. 37 is obtained by replacing CSI-RS with at least one of PSS and SSS (PSS / SSS) in the RS transmission information 1700 shown in FIG. That is, the RS transmission information 3700 shown in FIG. 37 is 2-bit information, and indicates whether or not PSS / SSS is transmitted in addition to the presence or absence of RS transmission.
  • PSS / SSS PSS / SSS
  • the RS transmission information 3700 indicates that there is no RS transmission (no RS transmission) when the value is “00”.
  • the RS transmission information 3700 indicates that there is CRS transmission and no PSS / SSS transmission (with CRS transmission) when the value is “01”.
  • the RS transmission information 3700 indicates that there is PSS / SSS transmission and no CRS transmission (with PSS / SSS transmission) when the value is “10”.
  • when the value of the RS transmission information 3700 is “11”, it indicates that both CRS and PSS / SSS are transmitted (CRS and PSS / SSS are transmitted).
  • the processing by the base station 110 replaces CSI-RS with at least one of PSS and SSS (PSS / SSS), for example, in the processing shown in FIG. Processing.
  • the processing by the terminal 120 in this case is, for example, the processing shown in FIG. 20 in which CSI-RS is replaced with at least one of PSS and SSS, and CSI measurement is replaced with at least one of timing tracking and frequency tracking. Can do.
  • FIG. 38A is a diagram illustrating an example of a base station according to the embodiment.
  • FIG. 38B is a diagram illustrating an example of signal flow in the base station depicted in FIG. 38A.
  • the base station 110 includes an antenna 3801, an L-band RF unit 3802, and an uplink baseband signal processing unit 3803.
  • the base station 110 includes a downlink control unit 3804, a downlink control channel processing unit 3805, a downlink data channel processing unit 3806, and a downlink L band baseband signal generation unit 3807.
  • the base station 110 includes an antenna 3808, a U-band RF unit 3809, a carrier sense unit 3810, and a downlink U-band baseband signal generation unit 3811.
  • Antenna 3801 receives a signal wirelessly transmitted from terminal 120 and outputs the signal to L-band RF unit 3802. Antenna 3801 wirelessly transmits the signal output from L-band RF section 3802 to terminal 120.
  • the L-band RF unit 3802 extracts an L-band signal from the uplink signal output from the antenna 3801, and performs an RF reception process on the extracted signal.
  • the RF reception processing by the L-band RF unit 3802 includes, for example, amplification, frequency conversion from an L-band RF (Radio Frequency) band to a baseband band, conversion from an analog signal to a digital signal, and the like.
  • the L-band RF unit 3802 outputs the signal subjected to the RF reception processing to the uplink baseband signal processing unit 3803.
  • the L-band RF unit 3802 performs RF transmission processing of the downlink signal output from the downlink L-band baseband signal generation unit 3807.
  • the RF transmission processing by the L band RF unit 3802 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband band to an L band RF band, amplification, and the like.
  • L-band RF unit 3802 outputs the signal subjected to the RF transmission process to antenna 3801.
  • the uplink baseband signal processing unit 3803 performs baseband signal processing on the uplink signals output from the L-band RF unit 3802 and the U-band RF unit 3809. Then, uplink baseband signal processing section 3803 outputs control information included in the data obtained by the baseband signal processing to downlink control section 3804.
  • the downlink control unit 3804 controls downlink communication from the base station 110 to the terminal 120 based on the control information output from the uplink baseband signal processing unit 3803. For example, the downlink control unit 3804 notifies the downlink U-band baseband signal generation unit 3811 of a transmission mode indicating a radio signal transmission scheme by the base station 110.
  • the downlink control unit 3804 controls the generation of control information by the downlink control channel processing unit 3805. For example, the downlink control unit 3804 notifies the downlink control channel processing unit 3805 of the number of the U-band frequency channel to be used. Also, the downlink control unit 3804 controls transmission data generation by the downlink data channel processing unit 3806.
  • the downlink control channel processing unit 3805 generates control information for L band to be transmitted through the downlink control channel under the control of the downlink control unit 3804.
  • the control information generated by the downlink control channel processing unit 3805 includes RS transmission information indicating the RS transmission timing notified from the downlink U band baseband signal generation unit 3811.
  • the downlink control channel processing unit 3805 outputs the generated control information to the downlink L band baseband signal generation unit 3807.
  • the downlink data channel processing unit 3806 generates transmission data to be transmitted through the downlink data channel under the control of the downlink control unit 3804. Then, the downlink data channel processing unit 3806 transmits the transmission data (L-band transmission data) to be transmitted in the L band of the generated transmission data under the control of the downlink control unit 3804 to the downlink L-band baseband. The signal is output to the signal generation unit 3807. Also, the downlink data channel processing unit 3806 outputs transmission data (U-band transmission data) to be transmitted in the U band among the generated transmission data to the downlink U band baseband signal generation unit 3811.
  • the downlink L band baseband signal generation unit 3807 generates a baseband signal in the downlink L band from the base station 110 to the terminal 120.
  • the signal generated by the downlink L-band baseband signal generation unit 3807 includes control information output from the downlink control channel processing unit 3805, transmission data for L band output from the downlink data channel processing unit 3806, and Is included.
  • the downlink L band baseband signal generation unit 3807 outputs the generated signal to the L band RF unit 3802.
  • the antenna 3808 receives a signal wirelessly transmitted from the terminal 120 and outputs the signal to the U-band RF unit 3809. Further, antenna 3808 wirelessly transmits the signal output from U-band RF section 3809 to terminal 120.
  • the U-band RF unit 3809 extracts a U-band signal from uplink signals output from the antenna 3808, and performs RF reception processing on the extracted signal.
  • the RF reception processing by the U-band RF unit 3809 includes, for example, amplification, frequency conversion from the U-band RF band to the baseband, conversion from an analog signal to a digital signal, and the like.
  • U-band RF section 3809 outputs the signal subjected to the RF reception process to uplink baseband signal processing section 3803 and carrier sense section 3810.
  • the U-band RF unit 3809 performs RF transmission processing of the downlink signal output from the downlink U-band baseband signal generation unit 3811.
  • the RF transmission processing by the U-band RF unit 3809 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband band to a U-band RF band, amplification, and the like.
  • U-band RF section 3809 outputs the signal subjected to the RF transmission processing to antenna 3808.
  • the carrier sense unit 3810 performs carrier sense based on the signal output from the U-band RF unit 3809. Then, the carrier sense unit 3810 notifies the result of the carrier sense to the downlink U band baseband signal generation unit 3811. For example, when the carrier sense unit 3810 detects a free band as a result of the carrier sense, the carrier sense unit 3810 notifies the downlink U band baseband signal generation unit 3811 that the free band has been detected.
  • the downlink U band baseband signal generation unit 3811 generates a baseband signal in the downlink U band from the base station 110 to the terminal 120 under the control of the downlink control unit 3804. Then, the downlink U band baseband signal generation unit 3811 outputs the baseband signal to the U band RF unit 3809 at the timing when the carrier sense unit 3810 is notified that a free band has been detected.
  • the signal generated by the downlink U-band baseband signal generation unit 3811 is transmitted as an L-band transmission data output from the downlink data channel processing unit 3806 and an RS transmitted together with the L-band transmission data or independently. RS.
  • the downlink U band baseband signal generation unit 3811 notifies the downlink control channel processing unit 3805 of the RS transmission timing.
  • RS transmission information indicating RS transmission timing in the U band is multiplexed with data, for example, and transmitted to the terminal 120 through the L band.
  • 1A and 1B can be realized, for example, by an antenna 3808, a U-band RF unit 3809, a carrier sense unit 3810, and a downlink U-band baseband signal generation unit 3811.
  • 1A and 1B can be implemented by, for example, antenna 3801, L-band RF unit 3802, downlink control channel processing unit 3805, and downlink L-band baseband signal generation unit 3807. .
  • FIG. 38C is a diagram illustrating an example of a hardware configuration of the base station.
  • the base station 110 shown in FIGS. 38A and 38B can be realized by the communication device 3830 shown in FIG. 38C, for example.
  • the communication device 3830 includes a processor 3831, a main storage device 3832, an auxiliary storage device 3833, a network interface 3834, a radio device 3835, and an antenna 3836.
  • the processor 3831, the main storage device 3832, the auxiliary storage device 3833, the network interface 3834, and the wireless device 3835 are connected by a bus 3839.
  • the processor 3831 governs overall control of the communication device 3830.
  • the processor 3831 can be realized by, for example, a CPU (Central Processing Unit).
  • the main storage device 3832 is used as a work area of the processor 3831, for example.
  • the main memory 3832 can be realized by, for example, a RAM (Random Access Memory).
  • the auxiliary storage device 3833 is a non-volatile memory such as a magnetic disk, an optical disk, or a flash memory.
  • the auxiliary storage device 3833 stores various programs for operating the communication device 3830.
  • the program stored in the auxiliary storage device 3833 is loaded into the main storage device 3832 and executed by the processor 3831.
  • the network interface 3834 is a communication interface that communicates with the outside of the communication device 3830 (for example, a host device of the base station 110 or a core network) by, for example, wireless or wired.
  • the network interface 3834 is controlled by the processor 3831.
  • the wireless device 3835 is a communication interface that performs communication with another communication device (for example, the terminal 120) wirelessly using the antenna 3836.
  • the wireless device 3835 is controlled by the processor 3831.
  • the antennas 3801 and 3808 shown in FIGS. 38A and 38B can be realized by the antenna 3836, for example.
  • the L-band RF unit 3802 and the U-band RF unit 3809 shown in FIGS. 38A and 38B can be realized by, for example, the wireless device 3835.
  • the uplink baseband signal processing unit 3803, the downlink control unit 3804, the downlink control channel processing unit 3805, and the downlink data channel processing unit 3806 shown in FIGS. 38A and 38B can be realized by the processor 3831, for example.
  • the downlink L-band baseband signal generation unit 3807, the carrier sense unit 3810, and the downlink U-band baseband signal generation unit 3811 illustrated in FIGS. 38A and 38B can be realized by the processor 3831, for example.
  • FIG. 39A is a diagram illustrating an example of a terminal according to the embodiment.
  • FIG. 39B is a diagram showing an example of a signal flow in the terminal shown in FIG. 39A.
  • the terminal 120 includes an antenna 3901, an L-band RF unit 3902, a downlink baseband signal processing unit 3903, an uplink control channel processing unit 3904, and an uplink baseband signal.
  • a generation unit 3905 the terminal 120 includes an antenna 3906, a U-band RF unit 3907, and a downlink U-band baseband signal processing unit 3908.
  • Antenna 3901 receives a signal wirelessly transmitted from base station 110 and outputs the signal to L-band RF unit 3902.
  • the antenna 3901 wirelessly transmits the signal output from the L-band RF unit 3902 to the base station 110.
  • the L-band RF unit 3902 extracts an L-band signal from the uplink signal output from the antenna 3901 and performs RF reception processing on the extracted signal.
  • the RF reception processing by the L band RF unit 3902 includes, for example, amplification, frequency conversion from the L band RF band to the base band, conversion from an analog signal to a digital signal, and the like.
  • L-band RF section 3902 outputs the signal subjected to the RF reception process to downlink baseband signal processing section 3903.
  • the L-band RF unit 3902 performs RF transmission processing on the uplink signal output from the uplink baseband signal generation unit 3905.
  • the RF transmission processing by the L band RF unit 3902 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband band to an L band RF band, amplification, and the like.
  • L-band RF section 3902 outputs a signal subjected to RF transmission processing to antenna 3901.
  • the downlink baseband signal processing unit 3903 performs baseband signal processing on the downlink signal output from the L-band RF unit 3902.
  • the baseband signal processing by the downlink baseband signal processing unit 3903 includes, for example, measurement of CQI in the downlink L band.
  • the downlink baseband signal processing unit 3903 outputs control information related to the L band based on the baseband signal processing to the uplink control channel processing unit 3904.
  • the control information output by the downlink baseband signal processing unit 3903 to the uplink control channel processing unit 3904 includes, for example, a measurement result of CQI in the downlink L band.
  • the downlink baseband signal processing unit 3903 outputs control information related to the U band based on the baseband signal processing to the downlink U band baseband signal processing unit 3908.
  • the control information output from the downlink baseband signal processing unit 3903 to the downlink U band baseband signal processing unit 3908 includes, for example, RS transmission information indicating RS transmission timing in the U band.
  • the control information output from the downlink baseband signal processing unit 3903 to the downlink U band baseband signal processing unit 3908 includes, for example, synchronization signal transmission information indicating the transmission timing of the synchronization signal (PSS / SSS) in the U band. May be included.
  • the uplink control channel processing unit 3904 generates L-band control information to be transmitted through the uplink control channel.
  • the control information generated by the uplink control channel processing unit 3904 includes control information output from the downlink baseband signal processing unit 3903 (eg, CQI), control information output from the antenna 3906 (eg, CQI measurement results, and RRM measurement results).
  • the uplink control channel processing unit 3904 outputs the generated control information to the uplink baseband signal generation unit 3905.
  • the uplink baseband signal generation unit 3905 generates a baseband signal in the uplink L band.
  • the signal generated by the uplink baseband signal generation unit 3905 includes, for example, control information output from the uplink control channel processing unit 3904.
  • the signal generated by the uplink baseband signal generation unit 3905 may include uplink L-band transmission data.
  • Uplink baseband signal generation section 3905 outputs the generated signal to L-band RF section 3902.
  • the antenna 3906 receives a signal wirelessly transmitted from the base station 110 and outputs the signal to the U-band RF unit 3907.
  • the antenna 3906 wirelessly transmits the signal output from the U-band RF unit 3907 to the base station 110.
  • the U-band RF unit 3907 extracts a U-band signal from uplink signals output from the antenna 3906, and performs an RF reception process on the extracted signal.
  • the RF reception processing by the U-band RF unit 3907 includes, for example, amplification, frequency conversion from the U band RF band to the base band, conversion from an analog signal to a digital signal, and the like.
  • the U-band RF unit 3907 outputs the signal subjected to the RF reception processing to the downlink baseband signal processing unit 3903 and the downlink U-band baseband signal processing unit 3908.
  • the U-band RF unit 3907 may perform an RF transmission process on an uplink signal to be transmitted by the U band.
  • the RF transmission processing by the U-band RF unit 3907 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband band to a U-band RF band, amplification, and the like.
  • the U-band RF unit 3907 outputs the signal subjected to the RF transmission process to the antenna 3906.
  • the downlink U-band baseband signal processing unit 3908 performs baseband signal processing on the downlink signal output from the U-band RF unit 3907. For example, the downlink U band baseband signal processing unit 3908, based on the RS transmission information included in the control information from the downlink baseband signal processing unit 3903, the RS of the RS included in the signal from the U band RF unit 3907. Perform reception processing. Also, the downlink U band baseband signal processing unit 3908 is based on the synchronization signal transmission information included in the control information from the downlink baseband signal processing unit 3903, and the synchronization included in the signal from the U band RF unit 3907. A signal reception process may be performed.
  • the downlink U-band baseband signal processing unit 3908 performs, for example, reception processing of a synchronization signal included in the signal output from the U-band RF unit 3907. Then, the downlink U band baseband signal processing unit 3908 performs various processes based on the RS and the synchronization signal for which the reception process has been performed.
  • the downlink U-band baseband signal processing unit 3908 includes a synchronization unit 3909, a timing / frequency tracking unit 3910, a CQI measurement unit 3911, and an RRM measurement unit 3912.
  • the synchronization unit 3909 performs synchronization processing with the base station 110 in the downlink U band based on the synchronization signal obtained by the baseband signal processing in the downlink U band baseband signal processing unit 3908.
  • Timing / frequency tracking unit 3910 performs timing tracking and frequency tracking in the downlink U band based on RS and PSS / SSS obtained by baseband signal processing. Note that the timing / frequency tracking unit 3910 may perform only one of timing tracking and frequency tracking.
  • the CQI measurement unit 3911 measures CQI in the downlink U band based on RS and PSS / SSS obtained by the baseband signal processing in the downlink U band baseband signal processing unit 3908.
  • the RRM measurement unit 3912 measures the RRM in the downlink U band based on the RS obtained by the baseband signal processing in the downlink U band baseband signal processing unit 3908.
  • the downlink U band baseband signal processing unit 3908 outputs control information based on the baseband processing to the uplink control channel processing unit 3904.
  • the control information output from the downlink U-band baseband signal processing unit 3908 to the uplink control channel processing unit 3904 includes, for example, the CQI measurement result by the CQI measurement unit 3911 and the RRM measurement result by the RRM measurement unit 3912. included.
  • the second receiving unit 122 illustrated in FIGS. 1A and 1B can be realized by, for example, the antenna 3906, the U-band RF unit 3907, and the downlink U-band baseband signal processing unit 3908.
  • FIG. 39C is a diagram illustrating an example of a hardware configuration of the terminal.
  • the terminal 120 shown in FIGS. 39A and 39B can be realized by, for example, the communication device 3930 shown in FIG. 39C.
  • the communication device 3930 includes a processor 3931, a main storage device 3932, an auxiliary storage device 3933, a user interface 3934, a wireless device 3935, and an antenna 3936.
  • the processor 3931, the main storage device 3932, the auxiliary storage device 3933, the user interface 3934 and the wireless device 3935 are connected by a bus 3939.
  • the processor 3931 manages the overall control of the communication device 3930.
  • the processor 3931 can be realized by a CPU, for example.
  • the main storage device 3932 is used as a work area of the processor 3931, for example.
  • the main storage device 3932 can be realized by a RAM, for example.
  • the auxiliary storage device 3933 is a non-volatile memory such as a magnetic disk, an optical disk, or a flash memory.
  • the auxiliary storage device 3933 stores various programs for operating the communication device 3930.
  • the program stored in the auxiliary storage device 3933 is loaded into the main storage device 3932 and executed by the processor 3931.
  • the user interface 3934 includes, for example, an input device that receives an operation input from the user, an output device that outputs information to the user, and the like.
  • the input device can be realized by a key (for example, a keyboard) or a remote controller, for example.
  • the output device can be realized by, for example, a display or a speaker. Further, an input device and an output device may be realized by a touch panel or the like.
  • the user interface 3934 is controlled by the processor 3931.
  • the wireless device 3935 is a communication interface that performs communication with another communication device (for example, the base station 110) wirelessly using the antenna 3936.
  • the radio 3935 is controlled by the processor 3931.
  • the antennas 3901 and 3906 shown in FIGS. 39A and 39B can be realized by the antenna 3936, for example.
  • the L-band RF unit 3902 and the U-band RF unit 3907 shown in FIGS. 39A and 39B can be realized by, for example, the wireless device 3935.
  • the downlink baseband signal processing unit 3903, the uplink control channel processing unit 3904, and the downlink U band baseband signal processing unit 3908 shown in FIGS. 39A and 39B can be realized by the processor 3931, for example.
  • FIG. 40A is a diagram illustrating a first example of a transmission channel for U-band resource allocation information.
  • the same parts as those shown in FIG. 8A are denoted by the same reference numerals and description thereof is omitted.
  • the base station 110 transmits resource allocation information 4001 related to the U band, for example, using the PDCCH of the frequency channel su1 of the U band.
  • the base station 110 includes the resource allocation information 4001 in the head part of the signal 803 including the RS transmitted by the frequency channel su1.
  • Resource allocation information 4001 is information indicating an allocation resource, a modulation scheme, and the like for each terminal including the terminal 120, for example. For example, when resource allocation changes for each subframe, resource allocation information 4001 may be transmitted for each subframe.
  • FIG. 40B is a diagram illustrating Example 2 of a transmission channel of U-band resource allocation information.
  • the same portions as those shown in FIG. 40A are denoted by the same reference numerals, and description thereof is omitted.
  • the base station 110 may transmit the resource allocation information 4001 related to the U band by the E-PDCCH (Enhanced-Physical Downlink Control Channel) of the U-band frequency channel su1. Good.
  • E-PDCCH Enhanced-Physical Downlink Control Channel
  • the base station 110 can transmit, for example, resource allocation information related to the U band using the frequency channel su1 of the U band.
  • FIG. 40C is a diagram illustrating a third example of a transmission channel for U-band resource allocation information.
  • the base station 110 may transmit the resource allocation information 4001 related to the U band using the PDCCH of the frequency channel pl1 of the L band.
  • the base station 110 transmits the resource allocation information 4001 in the head part of the subframe of the frequency channel pl1.
  • FIG. 40D is a diagram illustrating a fourth example of a transmission channel for U-band resource allocation information.
  • the same parts as those shown in FIG. 40C are denoted by the same reference numerals and description thereof is omitted.
  • the base station 110 may transmit the resource allocation information 4001 related to the U band from the E-PDCCH of the L-band frequency channel pl1.
  • the base station 110 may transmit resource allocation information related to the U band, for example, using the L-band frequency channel pl1.
  • the base station 110 transmits control information for specifying the timing of transmitting at least one of the reference signal and the synchronization signal using the U band using the L band. can do.
  • the terminal 120 receives the control information transmitted from the base station 110 using the L band, whereby the base station 110 transmits at least one of the reference signal and the synchronization signal using the U band. Can be accurately identified. For this reason, the terminal 120 can efficiently receive at least one of the reference signal and the synchronization signal using the U band by the base station 110 and perform processing based on the received signal.
  • the terminal can accurately specify the signal transmission timing of the base station in the shared band.
  • a terminal performs timing tracking, frequency tracking, CQI measurement, RRM measurement, CSI measurement, and the like based on a reference signal and a synchronization signal transmitted from a base station.
  • the RS is periodically transmitted from the base station.
  • CRS is transmitted for each subframe, and CSI-RS is periodically transmitted.
  • LTE-u using LTE in the U band has been proposed to cope with the increase in traffic.
  • a system that uses the U band for data transmission while connecting in the L band is expected to contribute to an improvement in throughput.
  • LBT Listen-Before-Talk
  • the terminal can efficiently receive the RS and the synchronization signal transmitted from the base station in the U band.
  • a terminal detects an RS or a synchronization signal at an unknown timing whether or not an RS or a synchronization signal is transmitted, a false detection such as detecting a signal that is not an RS or a synchronization signal as an RS or a synchronization signal occurs.
  • the RS and the synchronization signal cannot be received with high accuracy.
  • a dedicated detection circuit is provided to detect the RS and the synchronization signal by pattern comparison, which increases the circuit scale.
  • the base station performs CS in the U band, and starts transmission if downlink transmission including RS and a synchronization signal is possible. Also, the base station informs the terminal whether or not downlink transmission including RS and synchronization signal is performed in the U band using the control channel in the L band.
  • the terminal can accurately grasp the subframe in which the RS and the synchronization signal are transmitted, and can perform the frequency tracking and CQI measurement with high accuracy.
  • timing tracking, the frequency tracking, the CQI measurement, the RRM measurement, the CSI measurement, the data reception, and the like are given as the processes performed by the terminal based on the RS and the synchronization signal, the present invention is not limited thereto, and various processes can be performed. .
  • Wireless communication system 110 Base station 111 First transmission unit 112 Second transmission unit 120 Terminal 121 First reception unit 122 Second reception Part 400 corresponding information 500, 610, 802, 806, 808, 1300, 1401, 1700, 2100, 2300, 2500, 3200, 3700 RS transmission information 600, 911, 921, 931 PDCCH 611 to 613 bits 701 to 703, 1011 to 1013, 1021 to 1023, 1031 to 1033 Dedicated control channel 801 Dummy signal 803, 805, 807, 821, 912, 922, 923, 932, 933, 1402 Signal 2201 to 2204, 2401 2403, 3301 to 3303 Data transmission 2900 Synchronization signal transmission information 3801, 3808, 3836, 3901, 3906, 3936 Antenna 3802, 3902 L-band RF unit 3803 Uplink baseband signal processing unit 3804 Downlink control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A wireless communication system (100) is capable of using a first band that is shared with another wireless communication system and a second band that is different from the first band. When the other wireless communication system is not transmitting a wireless signal in the first band, a base station (110) transmits at least one of a reference signal and a synchronization signal in the first band. Furthermore, the base station (110) uses the second band to transmit control information for specifying the timing by which at least one of the reference signal and the synchronization signal is transmitted. A terminal (120) receives at least one of the reference signal and the synchronization signal transmitted from the base station (110) via the first band on the basis of the control information transmitted from the base station (110) via the second band.

Description

無線通信システム、基地局、端末および処理方法Wireless communication system, base station, terminal, and processing method
 本発明は、無線通信システム、基地局、端末および処理方法に関する。 The present invention relates to a wireless communication system, a base station, a terminal, and a processing method.
 従来、LTE(Long Term Evolution)やLTE-advancedなどの移動体通信が知られている。また、LTEなどのeNB(evolved Node B)が、Uバンド(無認可帯域)によりPDSCH(Physical Downlink Shared Channel:物理下りリンク共有チャネル)を送信するためにキャリアセンス(CS:Carrier Sense)を行う技術が知られている(たとえば、下記特許文献1参照。)。 Conventionally, mobile communication such as LTE (Long Term Evolution) and LTE-advanced is known. In addition, there is a technology in which an eNB such as LTE (evolved Node B) performs carrier sense (CS: Carrier Sense) in order to transmit PDSCH (Physical Downlink Shared Physical Channel) using the U band (unlicensed band). It is known (for example, see Patent Document 1 below).
 また、たとえばライセンスドバンド(Licensed band)などのオペレータに割り当てられた帯域に加えて、アンライセンスドバンド(Unlicensed band)などの共用帯域を用いて無線通信を行う技術が検討されている。 In addition, for example, a technique for performing wireless communication using a shared band such as an unlicensed band in addition to a band allocated to an operator such as a licensed band is being studied.
米国特許出願公開第2014/0036853号明細書US Patent Application Publication No. 2014/0036853
 しかしながら、上述した従来技術では、基地局が共用帯域で参照信号や同期信号などの信号を送信する場合に、キャリアセンスなどを用いて共用帯域の空きを検出してから信号を送信することになる。このため、共用帯域での基地局による信号の送信タイミングを端末が正確に特定することが困難である場合がある。 However, in the above-described conventional technology, when the base station transmits a signal such as a reference signal or a synchronization signal in the shared band, the signal is transmitted after detecting a free space in the shared band using carrier sense or the like. . For this reason, it may be difficult for the terminal to accurately specify the signal transmission timing by the base station in the shared band.
 1つの側面では、本発明は、共用帯域での基地局による信号の送信タイミングを端末が正確に特定することができる無線通信システム、基地局、端末および処理方法を提供することを目的とする。 In one aspect, an object of the present invention is to provide a radio communication system, a base station, a terminal, and a processing method that allow a terminal to accurately specify a signal transmission timing by a base station in a shared band.
 上述した課題を解決し、目的を達成するため、本発明の一側面によれば、他の無線通信システムとの間で共用する第1帯域と、前記第1帯域と異なる第2帯域と、を使用可能な無線通信システムにおいて、基地局が、前記他の無線通信システムにおいて前記第1帯域の無線信号が送信されない期間に前記第1帯域で参照信号および同期信号の少なくとも一方を送信し、前記参照信号および同期信号の少なくとも一方を送信するタイミングを特定するための制御情報を前記第2帯域で送信し、端末が、前記基地局から前記第2帯域で送信された前記制御情報に基づいて、前記基地局から前記第1帯域で送信された前記参照信号および同期信号の少なくとも一方を受信する無線通信システム、基地局、端末および処理方法が提案される。 In order to solve the above-described problems and achieve the object, according to one aspect of the present invention, a first band shared with another wireless communication system and a second band different from the first band are provided. In a usable radio communication system, a base station transmits at least one of a reference signal and a synchronization signal in the first band during a period in which the radio signal of the first band is not transmitted in the other radio communication system, and the reference Control information for specifying timing for transmitting at least one of a signal and a synchronization signal is transmitted in the second band, and a terminal is based on the control information transmitted in the second band from the base station, A wireless communication system, a base station, a terminal, and a processing method for receiving at least one of the reference signal and the synchronization signal transmitted from the base station in the first band are proposed.
 本発明の一側面によれば、共用帯域での基地局による信号の送信タイミングを端末が正確に特定することができるという効果を奏する。 According to one aspect of the present invention, there is an effect that the terminal can accurately specify the transmission timing of the signal by the base station in the shared band.
図1Aは、実施の形態にかかる無線通信システムの一例を示す図である。FIG. 1A is a diagram illustrating an example of a wireless communication system according to an embodiment. 図1Bは、図1Aに示した無線通信システムにおける信号の流れの一例を示す図である。1B is a diagram illustrating an example of a signal flow in the wireless communication system illustrated in FIG. 1A. 図2は、無線通信システムにおける処理の一例を示すシーケンス図である。FIG. 2 is a sequence diagram illustrating an example of processing in the wireless communication system. 図3は、基地局が使用するUバンドの周波数チャネルの一例を示す図である。FIG. 3 is a diagram illustrating an example of a U-band frequency channel used by the base station. 図4は、基地局が送信する対応情報の一例を示す図である。FIG. 4 is a diagram illustrating an example of correspondence information transmitted by the base station. 図5は、RS送信情報の例1を示す図である。FIG. 5 is a diagram illustrating Example 1 of RS transmission information. 図6は、RS送信情報の送信方法の一例を示す図である。FIG. 6 is a diagram illustrating an example of a transmission method of RS transmission information. 図7は、RS送信情報の送信方法の他の例を示す図である。FIG. 7 is a diagram illustrating another example of the RS transmission information transmission method. 図8Aは、RS送信情報の送信時にRS送信の有無を判断できるケースの例1を示す図である。FIG. 8A is a diagram illustrating a first example of a case in which the presence / absence of RS transmission can be determined when RS transmission information is transmitted. 図8Bは、RS送信情報の送信時にRS送信の有無を判断できるケースの例2を示す図である。FIG. 8B is a diagram illustrating a second example of a case in which the presence / absence of RS transmission can be determined when RS transmission information is transmitted. 図8Cは、RS送信情報の送信時にRS送信の有無を判断できるケースの例3を示す図である。FIG. 8C is a diagram illustrating a third example of a case in which the presence / absence of RS transmission can be determined when RS transmission information is transmitted. 図8Dは、RS送信情報の送信時にRS送信の有無を判断できるケースの例4を示す図である。FIG. 8D is a diagram illustrating a fourth example of a case in which the presence / absence of RS transmission can be determined when RS transmission information is transmitted. 図9は、基地局が送信する各信号のタイミングの一例を示す図である。FIG. 9 is a diagram illustrating an example of the timing of each signal transmitted by the base station. 図10は、基地局が送信する各信号のタイミングの他の例を示す図である。FIG. 10 is a diagram illustrating another example of the timing of each signal transmitted by the base station. 図11は、RS送信情報の例1における基地局による処理の一例を示すフローチャートである。FIG. 11 is a flowchart illustrating an example of processing by the base station in Example 1 of RS transmission information. 図12は、RS送信情報の例1における端末による処理の一例を示すフローチャートである。FIG. 12 is a flowchart illustrating an example of processing performed by the terminal in Example 1 of RS transmission information. 図13は、RS送信情報の例2を示す図である。FIG. 13 is a diagram illustrating Example 2 of RS transmission information. 図14Aは、RS送信情報の送信時にRS送信の有無を判断できないケースの例1を示す図である。FIG. 14A is a diagram illustrating a first example of a case where it is not possible to determine whether or not RS transmission is performed when transmitting RS transmission information. 図14Bは、RS送信情報の送信時にRS送信の有無を判断できないケースの例2を示す図である。FIG. 14B is a diagram illustrating a second example of a case where it is not possible to determine whether or not RS transmission is performed when transmitting RS transmission information. 図15は、RS送信情報の例2における基地局による処理の一例を示すフローチャートである。FIG. 15 is a flowchart illustrating an example of processing performed by the base station in RS transmission information example 2. 図16は、RS送信情報の例2における端末による処理の一例を示すフローチャートである。FIG. 16 is a flowchart illustrating an example of processing by the terminal in the RS transmission information example 2. 図17は、RS送信情報の例3を示す図である。FIG. 17 is a diagram illustrating Example 3 of RS transmission information. 図18は、RS送信情報の例3における基地局による処理の一例を示すフローチャートである。FIG. 18 is a flowchart illustrating an example of processing by the base station in Example 3 of RS transmission information. 図19は、RS送信情報の例3における端末による処理の一例を示すフローチャートである。FIG. 19 is a flowchart illustrating an example of processing performed by the terminal in the third example of RS transmission information. 図20は、RS送信情報の例3における端末による処理の他の例を示すフローチャートである。FIG. 20 is a flowchart illustrating another example of processing performed by the terminal in the third example of RS transmission information. 図21は、RS送信情報の例4を示す図である。FIG. 21 is a diagram illustrating Example 4 of RS transmission information. 図22は、3通りのフォーマットによる送信データの一例を示す図である。FIG. 22 is a diagram illustrating an example of transmission data in three formats. 図23は、RS送信情報の例4における変形例1を示す図である。FIG. 23 is a diagram illustrating a first modification of the fourth example of RS transmission information. 図24は、2通りのフォーマットによる送信データの一例を示す図である。FIG. 24 is a diagram illustrating an example of transmission data in two formats. 図25は、RS送信情報の例4における変形例2を示す図である。FIG. 25 is a diagram illustrating a second modification of the fourth example of RS transmission information. 図26は、RS送信情報の例4における基地局による処理の一例を示すフローチャートである。FIG. 26 is a flowchart illustrating an example of processing by the base station in the fourth example of RS transmission information. 図27は、RS送信情報の例4における端末による処理の一例を示すフローチャートである。FIG. 27 is a flowchart illustrating an example of processing performed by a terminal in the fourth example of RS transmission information. 図28は、RS送信情報の例4における端末による処理の他の例を示すフローチャートである。FIG. 28 is a flowchart illustrating another example of processing performed by the terminal in the fourth example of RS transmission information. 図29は、同期信号送信情報の一例を示す図である。FIG. 29 is a diagram illustrating an example of the synchronization signal transmission information. 図30は、同期信号送信情報を用いる場合における基地局による処理の一例を示すフローチャートである。FIG. 30 is a flowchart illustrating an example of processing performed by the base station when the synchronization signal transmission information is used. 図31は、同期信号送信情報を用いる場合における端末による処理の一例を示すフローチャートである。FIG. 31 is a flowchart illustrating an example of processing performed by the terminal when the synchronization signal transmission information is used. 図32は、RS送信情報の例5を示す図である。FIG. 32 is a diagram illustrating Example 5 of RS transmission information. 図33は、連続送信における先頭のサブフレームの一例を示す図である。FIG. 33 is a diagram illustrating an example of a head subframe in continuous transmission. 図34は、RS送信情報の例5における基地局による処理の一例を示すフローチャートである。FIG. 34 is a flowchart illustrating an example of processing by the base station in Example 5 of RS transmission information. 図35は、RS送信情報の例5における端末による処理の一例を示すフローチャートである。FIG. 35 is a flowchart illustrating an example of a process performed by a terminal in RS transmission information example 5. 図36は、RS送信情報の例5における端末による処理の他の例を示すフローチャートである。FIG. 36 is a flowchart illustrating another example of processing performed by the terminal in the fifth example of RS transmission information. 図37は、RS送信情報の例6を示す図である。FIG. 37 is a diagram illustrating Example 6 of RS transmission information. 図38Aは、実施の形態にかかる基地局の一例を示す図である。FIG. 38A is a diagram illustrating an example of a base station according to the embodiment. 図38Bは、図38Aに示した基地局における信号の流れの一例を示す図である。FIG. 38B is a diagram illustrating an example of signal flow in the base station depicted in FIG. 38A. 図38Cは、基地局のハードウェア構成の一例を示す図である。FIG. 38C is a diagram illustrating an example of the hardware configuration of the base station. 図39Aは、実施の形態にかかる端末の一例を示す図である。FIG. 39A is a diagram illustrating an example of a terminal according to the embodiment. 図39Bは、図39Aに示した端末における信号の流れの一例を示す図である。FIG. 39B is a diagram showing an example of a signal flow in the terminal shown in FIG. 39A. 図39Cは、端末のハードウェア構成の一例を示す図である。FIG. 39C is a diagram illustrating an example of a hardware configuration of the terminal. 図40Aは、Uバンドのリソース割当情報の送信チャネルの例1を示す図である。FIG. 40A is a diagram illustrating a first example of a transmission channel for U-band resource allocation information. 図40Bは、Uバンドのリソース割当情報の送信チャネルの例2を示す図である。FIG. 40B is a diagram illustrating a second example of the transmission channel for U-band resource allocation information. 図40Cは、Uバンドのリソース割当情報の送信チャネルの例3を示す図である。FIG. 40C is a diagram illustrating a third example of the transmission channel for the U-band resource allocation information. 図40Dは、Uバンドのリソース割当情報の送信チャネルの例4を示す図である。FIG. 40D is a diagram illustrating a fourth example of the transmission channel for the U-band resource allocation information.
 以下に図面を参照して、本発明にかかる無線通信システム、基地局、端末および処理方法の実施の形態を詳細に説明する。 Hereinafter, embodiments of a radio communication system, a base station, a terminal, and a processing method according to the present invention will be described in detail with reference to the drawings.
(実施の形態)
(実施の形態にかかる無線通信システム)
 図1Aは、実施の形態にかかる無線通信システムの一例を示す図である。図1Bは、図1Aに示した無線通信システムにおける信号の流れの一例を示す図である。図1A,図1Bに示すように、実施の形態にかかる無線通信システム100は、基地局110と、端末120と、を含む。無線通信システム100は、基地局110と端末120との間の無線通信に、第1帯域および第2帯域を使用可能な無線通信システムである。
(Embodiment)
(Radio communication system according to embodiment)
FIG. 1A is a diagram illustrating an example of a wireless communication system according to an embodiment. 1B is a diagram illustrating an example of a signal flow in the wireless communication system illustrated in FIG. 1A. As illustrated in FIGS. 1A and 1B, the wireless communication system 100 according to the embodiment includes a base station 110 and a terminal 120. The wireless communication system 100 is a wireless communication system that can use the first band and the second band for wireless communication between the base station 110 and the terminal 120.
 第1帯域は、他の無線通信システムとの間で共用する帯域である。第2帯域は、第1帯域と異なる帯域である。たとえば、第2帯域は、無線通信システム100(自システム)が占用する帯域である。 The first band is a band shared with other wireless communication systems. The second band is a band different from the first band. For example, the second band is a band occupied by the wireless communication system 100 (own system).
 基地局110は、第1送信部111と、第2送信部112と、を備える。第1送信部111は、他の無線通信システムにおいて第1帯域の無線信号が送信されない期間に、第1帯域を使用して参照信号および同期信号の少なくとも一方を送信する。また、第1送信部111は、第1帯域を使用して参照信号および同期信号の少なくとも一方を送信するタイミングを特定するための制御情報を第2送信部112へ出力する。 The base station 110 includes a first transmission unit 111 and a second transmission unit 112. The first transmission unit 111 transmits at least one of the reference signal and the synchronization signal using the first band during a period in which the wireless signal of the first band is not transmitted in another wireless communication system. Further, the first transmission unit 111 outputs control information for specifying the timing of transmitting at least one of the reference signal and the synchronization signal to the second transmission unit 112 using the first band.
 第2送信部112は、第1送信部111から出力された制御情報を、第2帯域を使用して送信する。制御情報は、一例としては、参照信号および同期信号の少なくとも一方の送信の有無または送信予定の有無を周期的な期間(たとえばサブフレーム)ごとに示す情報とすることができる。 The second transmission unit 112 transmits the control information output from the first transmission unit 111 using the second band. As an example, the control information can be information indicating whether or not at least one of the reference signal and the synchronization signal is transmitted or is scheduled to be transmitted for each periodic period (for example, subframe).
 端末120は、第1受信部121と、第2受信部122と、を備える。第1受信部121は、基地局110から第2帯域を使用して送信された制御情報を受信し、受信した制御情報を第2受信部122へ出力する。第2受信部122は、第1受信部121から出力された制御情報に基づいて、基地局110から第1帯域を使用して送信された参照信号および同期信号の少なくとも一方を受信する。端末120は、第2受信部122により受信された参照信号および同期信号の少なくとも一方に基づく処理を行う。 The terminal 120 includes a first receiving unit 121 and a second receiving unit 122. The first receiving unit 121 receives control information transmitted from the base station 110 using the second band, and outputs the received control information to the second receiving unit 122. Based on the control information output from the first receiver 121, the second receiver 122 receives at least one of the reference signal and the synchronization signal transmitted from the base station 110 using the first band. The terminal 120 performs processing based on at least one of the reference signal and the synchronization signal received by the second receiving unit 122.
 図1A,図1Bに示した無線通信システム100によれば、基地局110が、共用の第1帯域を使用して参照信号および同期信号の少なくとも一方を送信するタイミングを特定するための制御情報を、第1帯域と異なる第2帯域を使用して送信することができる。 According to the wireless communication system 100 shown in FIG. 1A and FIG. 1B, the control information for specifying the timing at which the base station 110 transmits at least one of the reference signal and the synchronization signal using the shared first band is provided. The second band different from the first band can be used for transmission.
 これにより、端末120は、基地局110から第2帯域を使用して送信された制御情報を受信することで、基地局110が第1帯域を使用して参照信号および同期信号の少なくとも一方を送信するタイミングを正確に特定することができる。このため、端末120は、基地局110が第1帯域を使用して参照信号および同期信号の少なくとも一方を効率よく受信し、受信した信号に基づく処理を行うことができる。 Accordingly, the terminal 120 receives the control information transmitted from the base station 110 using the second band, so that the base station 110 transmits at least one of the reference signal and the synchronization signal using the first band. The timing to perform can be specified accurately. Therefore, the terminal 120 can efficiently receive at least one of the reference signal and the synchronization signal by the base station 110 using the first band, and perform processing based on the received signal.
<他の無線通信システムにおいて無線信号が送信されない期間の検出>
 基地局110は、他の無線通信システムにおいて第1帯域の無線信号が送信されない期間を、たとえば第1帯域における無線信号の検出結果に基づいて検出することができる。第1帯域における無線信号の検出は、たとえば、第1帯域における搬送波の空きを検出するCCA(Clear Channel Assessment:クリアチャネル評価)であって、たとえばキャリアセンスである。
<Detection of a period during which no radio signal is transmitted in another radio communication system>
The base station 110 can detect a period in which the wireless signal in the first band is not transmitted in another wireless communication system, for example, based on the detection result of the wireless signal in the first band. The detection of the radio signal in the first band is, for example, CCA (Clear Channel Assessment) that detects a vacant carrier in the first band, for example, carrier sense.
 たとえば、第1帯域における無線信号の検出は、第1帯域における電波の受信電力(受信エネルギー)を検出し、検出した受信電力と所定電力とを比較することにより無線信号を検出する処理である。または、第1帯域における無線信号の検出は、第1帯域における電波に基づいて無線信号の所定のパターン(たとえばプリアンブル)を検出することにより無線信号を検出する処理であってもよい。 For example, detection of a radio signal in the first band is a process of detecting a radio signal by detecting received power (received energy) of radio waves in the first band and comparing the detected received power with a predetermined power. Alternatively, the detection of the radio signal in the first band may be a process of detecting the radio signal by detecting a predetermined pattern (for example, a preamble) of the radio signal based on the radio wave in the first band.
 また、基地局110は、他の無線通信システムにおいて第1帯域の無線信号が送信されない期間を、たとえば自局からの無線信号の送信の有無に基づいて検出する。一例としては、基地局110は、第1の期間(たとえばサブフレーム)において自局が第1帯域で無線信号を送信している場合は、第1の期間の直後の第2の期間において、他の無線通信システムにおいて第1帯域の無線信号が送信されないと判断することができる。 Further, the base station 110 detects a period in which the first band radio signal is not transmitted in another radio communication system based on, for example, whether or not the radio signal is transmitted from the base station. As an example, when the base station 110 is transmitting a radio signal in the first band in the first period (for example, subframe), the base station 110 performs other in the second period immediately after the first period. In this wireless communication system, it can be determined that the wireless signal of the first band is not transmitted.
<第1帯域および第2帯域の例>
 たとえば、第1帯域は、特定のオペレータに割り当てられていないアンライセンスドバンド(免許不要帯域)とすることができる。また、第2帯域は、たとえば無線通信システム100のオペレータに割り当てられ、無線通信システム100が占用するライセンスドバンドとすることができる。以下、第1帯域をアンライセンスドバンド(以下、「Uバンド」と称する)とし、第2帯域をライセンスドバンド(以下、「Lバンド」と称する)とする場合について説明する。
<Examples of the first band and the second band>
For example, the first band can be an unlicensed band (unlicensed band) that is not assigned to a specific operator. The second band may be a licensed band that is assigned to an operator of the wireless communication system 100 and is occupied by the wireless communication system 100, for example. Hereinafter, a case where the first band is an unlicensed band (hereinafter referred to as “U band”) and the second band is a licensed band (hereinafter referred to as “L band”) will be described.
(無線通信システムにおける処理)
 図2は、無線通信システムにおける処理の一例を示すシーケンス図である。無線通信システム100においては、たとえば図2に示す各ステップが実行される。まず、基地局110および端末120が、互いにLバンドにおける接続処理を行う(ステップS201)。これにより、基地局110および端末120の間で、Lバンドにおける無線通信が可能になる。
(Processing in wireless communication system)
FIG. 2 is a sequence diagram illustrating an example of processing in the wireless communication system. In the wireless communication system 100, for example, each step shown in FIG. 2 is executed. First, the base station 110 and the terminal 120 perform connection processing in the L band with each other (step S201). This enables wireless communication in the L band between the base station 110 and the terminal 120.
 つぎに、端末120が、Uバンドに関するケイパビリティ(Capability)を基地局110へ通知する(ステップS202)。たとえば、端末120は、ステップS201により接続処理を行ったLバンドとともに、Uバンドを用いた無線通信に対応していることを基地局110へ通知する。 Next, the terminal 120 notifies the base station 110 of the capability regarding the U band (Capability) (step S202). For example, the terminal 120 notifies the base station 110 that it supports wireless communication using the U band together with the L band for which connection processing has been performed in step S201.
 つぎに、基地局110が、各端末との間の無線通信で使用するUバンドキャリア(周波数チャネル)と、該Uバンドキャリアに基地局110が付したチャネル番号と、の対応情報を端末120へ送信する(ステップS203)。 Next, correspondence information between the U-band carrier (frequency channel) used by the base station 110 in wireless communication with each terminal and the channel number assigned to the U-band carrier by the base station 110 is transmitted to the terminal 120. Transmit (step S203).
 たとえば、基地局110は、ステップS203において、対応情報を、RRC(Radio Resource Control:無線リソース制御)などの個別チャネルを用いて各端末(端末120を含む)に個別に送信する。または、基地局110は、対応情報を、PBCH(Physical Broadcast Channel:物理報知チャネル)などの報知チャネルを用いて各端末(端末120を含む)に報知してもよい。基地局110が送信する対応情報については後述する(たとえば図4)。 For example, in step S203, the base station 110 individually transmits correspondence information to each terminal (including the terminal 120) using an individual channel such as RRC (Radio Resource Control). Alternatively, the base station 110 may broadcast the correspondence information to each terminal (including the terminal 120) using a broadcast channel such as a PBCH (Physical Broadcast Channel). The correspondence information transmitted by the base station 110 will be described later (for example, FIG. 4).
 また、基地局110は、UバンドにおけるRS(Reference Signal:参照信号)の送信タイミングを示すRS送信情報のLバンドでの送信を開始する。RS送信情報は、たとえば、ステップS203により送信した対応情報においてUバンドキャリア(周波数チャネル)と対応付けられるチャネル番号を用いてUバンドキャリアを指定してRSの送信の有無を示す情報である。また、RS送信情報は、たとえば、サブフレームごとのRSの送信タイミングを示す情報である。RSは、データとともに送信されてもよいし、単独で送信されてもよい。 Also, the base station 110 starts transmission of RS transmission information indicating the transmission timing of RS (Reference Signal) in the U band in the L band. The RS transmission information is information indicating the presence or absence of RS transmission by designating the U band carrier using the channel number associated with the U band carrier (frequency channel) in the correspondence information transmitted in step S203, for example. Moreover, RS transmission information is information which shows the transmission timing of RS for every sub-frame, for example. The RS may be transmitted together with the data or may be transmitted alone.
 また、基地局110が、Uバンドキャリアに関するRRM(Radio Resource Management:無線リソース管理)測定を要求するRRM測定要求を端末120へ送信する(ステップS204)。つぎに、端末120が、ステップS204によって送信されたRRM測定要求に応じてUバンドに関するRRM測定を行い、RRM測定の結果を基地局110へ送信する(ステップS205)。RRM測定は、たとえば、複数の周波数チャネルの中から使用する周波数チャネルを選択するための品質測定である。 Also, the base station 110 transmits an RRM measurement request for requesting RRM (Radio Resource Management) measurement related to the U-band carrier to the terminal 120 (step S204). Next, the terminal 120 performs RRM measurement regarding the U band in response to the RRM measurement request transmitted in step S204, and transmits the result of the RRM measurement to the base station 110 (step S205). The RRM measurement is, for example, a quality measurement for selecting a frequency channel to be used from a plurality of frequency channels.
 たとえば、端末120は、ステップS203において受信した対応情報と、基地局110からのRS送信情報と、に基づいてUバンドにおける基地局110からのRSの送信タイミングを特定する。そして、端末120は、特定した送信タイミングにおいて、Uバンドにおける基地局110からのRSを受信し、受信したRSに基づくRRM測定を行う。 For example, the terminal 120 specifies the RS transmission timing from the base station 110 in the U band based on the correspondence information received in step S203 and the RS transmission information from the base station 110. Then, the terminal 120 receives the RS from the base station 110 in the U band at the specified transmission timing, and performs RRM measurement based on the received RS.
 また、端末120は、受信したRSに基づくタイミングトラッキングや周波数トラッキングの結果に基づいてRRM測定を行ってもよい。タイミングトラッキングは、たとえば、基地局110による無線信号の送信タイミングを追従する処理である。周波数トラッキングは、たとえば、基地局110から送信される無線信号の周波数のオフセットや、端末120における周波数生成器における周波数のオフセットなどを補償する処理である。 Further, the terminal 120 may perform RRM measurement based on the result of timing tracking or frequency tracking based on the received RS. Timing tracking is, for example, processing for tracking the transmission timing of a radio signal by the base station 110. Frequency tracking is a process for compensating for, for example, a frequency offset of a radio signal transmitted from the base station 110 and a frequency offset in a frequency generator in the terminal 120.
 つぎに、基地局110が、ステップS205によって送信されたRRM測定の結果に基づいて、端末120との通信で使用するUバンドキャリアに関する情報を端末120へ送信する(ステップS206)。たとえば、基地局110は、RRM測定の結果に基づいて、端末120との通信で使用するUバンドキャリアの周波数チャネルを決定する。そして、基地局110は、決定した周波数チャネルを示す情報をステップS206において送信する。また、たとえば、基地局110は、端末120との通信で使用するUバンドキャリアに関する情報を、RRCなどの個別チャネルを用いて端末120へ送信する。 Next, the base station 110 transmits information on the U-band carrier used for communication with the terminal 120 to the terminal 120 based on the result of the RRM measurement transmitted at step S205 (step S206). For example, base station 110 determines the frequency channel of the U-band carrier to be used for communication with terminal 120 based on the result of RRM measurement. Then, the base station 110 transmits information indicating the determined frequency channel in step S206. For example, the base station 110 transmits information on the U-band carrier used for communication with the terminal 120 to the terminal 120 using a dedicated channel such as RRC.
 つぎに、基地局110および端末120が、LバンドキャリアおよびUバンドキャリアを用いた通信を開始する(ステップS207)。また、ステップS207によって開始されたUバンドキャリアによる通信において、基地局110がUバンドによって送信するRSに基づく各種の処理が端末120によって行われる。 Next, the base station 110 and the terminal 120 start communication using the L band carrier and the U band carrier (step S207). Further, in the communication using the U-band carrier started in step S207, the terminal 120 performs various processes based on the RS transmitted by the base station 110 using the U-band.
 RSに基づく各種の処理には、たとえば、タイミングトラッキング、周波数トラッキング、RRM測定、CQI(Channel Quality Indicator:チャネル品質指標)の測定、CSI(Channel State Information:チャネル状態情報)の測定などが含まれる。 Various processes based on RS include, for example, timing tracking, frequency tracking, RRM measurement, CQI (Channel Quality Indicator) measurement, CSI (Channel State Information) measurement, and the like.
 タイミングトラッキングや周波数トラッキングは、たとえばRRM測定、CQIの測定、CSIの測定およびデータ受信処理などのために行われる。CQIの測定は、たとえば、変調方式や伝送レートなどを選択するためのチャネル品質測定である。CSIの測定は、たとえば、MIMO(Multiple Input Multiple Output:多元入力多元出力)やビームフォーミングなどのパラメータを選択するためのチャネル品質測定である。 Timing tracking and frequency tracking are performed for RRM measurement, CQI measurement, CSI measurement, data reception processing, and the like. The CQI measurement is, for example, channel quality measurement for selecting a modulation scheme, a transmission rate, and the like. The CSI measurement is, for example, channel quality measurement for selecting parameters such as MIMO (Multiple Input Multiple Output) and beam forming.
(基地局が使用するUバンドの周波数チャネル)
 図3は、基地局が使用するUバンドの周波数チャネルの一例を示す図である。図3において、横軸の番号(“0”~“6”)は、Uバンドにおける周波数チャネルの無線通信システム100における共通番号を示す。基地局110は、Uバンドに含まれる周波数チャネル“0”~“6”を端末120との間の無線通信に使用可能であるとする。
(U-band frequency channel used by the base station)
FIG. 3 is a diagram illustrating an example of a U-band frequency channel used by the base station. In FIG. 3, numbers on the horizontal axis (“0” to “6”) indicate common numbers in the radio communication system 100 for frequency channels in the U band. It is assumed that the base station 110 can use the frequency channels “0” to “6” included in the U band for wireless communication with the terminal 120.
 基地局110は、周波数チャネル“0”~“6”の中から、端末120との間の無線通信に使用する周波数チャネルを選択して番号づけを行う。図3に示す例では、基地局110は、周波数チャネル“3”、“4”、“1”を選択し、周波数チャネル“3”、“4”、“1”にそれぞれチャネル番号#1、#2、#3を付加する番号づけを行ったとする。 The base station 110 selects a frequency channel to be used for wireless communication with the terminal 120 from the frequency channels “0” to “6” and performs numbering. In the example illustrated in FIG. 3, the base station 110 selects the frequency channels “3”, “4”, and “1”, and assigns the channel numbers # 1 and # 1 to the frequency channels “3”, “4”, and “1”, respectively. Assume that numbering is performed to add 2 and # 3.
(基地局が送信する対応情報)
 図4は、基地局が送信する対応情報の一例を示す図である。図2に示したステップS203において、基地局110は、Uバンドキャリア(周波数チャネル)とチャネル番号との対応情報として、たとえば図4に示す対応情報400を端末120へ送信する。対応情報400は、基地局110が選択した周波数チャネル“3”、“4”、“1”と、周波数チャネル“3”、“4”、“1”に基地局110が番号づけたチャネル番号#1~#3と、を対応付けて示す情報である。
(Corresponding information transmitted by the base station)
FIG. 4 is a diagram illustrating an example of correspondence information transmitted by the base station. In step S203 illustrated in FIG. 2, the base station 110 transmits, for example, correspondence information 400 illustrated in FIG. 4 to the terminal 120 as correspondence information between the U-band carrier (frequency channel) and the channel number. The correspondence information 400 includes frequency channels “3”, “4”, and “1” selected by the base station 110, and channel numbers # numbered by the base station 110 to the frequency channels “3”, “4”, and “1”. Information indicating 1 to # 3 in association with each other.
(RS送信情報の例1)
 図5は、RS送信情報の例1を示す図である。基地局110が送信するRS送信情報は、たとえば図5に示すRS送信情報500とすることができる。図5に示すRS送信情報500は、1ビットの情報であり、RS送信の有無を示す。たとえば、RS送信情報500は、値が“0”の場合はRS送信がないこと(RS送信なし)を示し、値が“1”の場合はRS送信があること(RS送信あり)を示す。
(Example 1 of RS transmission information)
FIG. 5 is a diagram illustrating Example 1 of RS transmission information. The RS transmission information transmitted by the base station 110 can be, for example, RS transmission information 500 shown in FIG. RS transmission information 500 shown in FIG. 5 is 1-bit information and indicates the presence / absence of RS transmission. For example, the RS transmission information 500 indicates that there is no RS transmission (no RS transmission) when the value is “0”, and that there is RS transmission (with RS transmission) when the value is “1”.
 図5に示すRS送信情報500を用いることで、端末120は、RSの送信の有無を正確に特定することができるため、RSを精度よく受信し、RSに基づく各測定などを精度良く行うことができる。また、RSの送信タイミングが不明な状態でRSを検出するための回路を端末120に設けなくてもよいため、端末120の回路規模の低減を図ることができる。また、RSの送信タイミングが不明な状態でRSを検出する処理を行わなくてもRSを受信できるため、端末120における消費電力の低減を図ることができる。 By using the RS transmission information 500 shown in FIG. 5, the terminal 120 can accurately identify the presence or absence of RS transmission, so that the RS 120 can be accurately received and each measurement based on the RS can be accurately performed. Can do. In addition, since it is not necessary to provide the terminal 120 with a circuit for detecting the RS when the RS transmission timing is unknown, the circuit scale of the terminal 120 can be reduced. Further, since the RS can be received without performing the process of detecting the RS when the RS transmission timing is unknown, the power consumption in the terminal 120 can be reduced.
(RS送信情報の送信方法)
 RS送信情報の送信には、たとえば、LTEにおいてL1やL2の制御信号を送信するためのチャネルを用いることができる。このようなチャネルには、たとえばPDCCH(Physical Downlink Control Channel:物理下りリンク制御チャネル)やPHICH(Physical HARQ Indicator Channel:物理HARQインジケータチャネル)などがある。
(RS transmission information transmission method)
For transmission of RS transmission information, for example, a channel for transmitting L1 and L2 control signals in LTE can be used. Examples of such channels include PDCCH (Physical Downlink Control Channel: Physical Downlink Control Channel) and PHICH (Physical HARQ Indicator Channel: Physical HARQ Indicator Channel).
 PDCCHは、下りリンクのリソース割り当て、上りリンクのリソース割り当て、上りリンクの電力制御などに関する情報や命令を下りリンクで送信するための制御チャネルである。それぞれのPDCCHには16ビットのCRC(Cyclic Redundancy Check:巡回冗長検査)が含まれている。CRCは宛先および用途を示すRNTI(Radio Network Temporary Identifier:無線ネットワーク一時識別子)によってマスクされる。 The PDCCH is a control channel for transmitting information and commands related to downlink resource allocation, uplink resource allocation, uplink power control, and the like on the downlink. Each PDCCH includes a 16-bit CRC (Cyclic Redundancy Check). The CRC is masked by an RNTI (Radio Network Temporary Identifier) indicating the destination and usage.
 たとえば、各端末宛てのリソース割り当て情報を送るためのPDCCHは、それぞれの端末のID(識別子)を示すC-RNTI(Cell-Radio Network Temporary Identifier:セル無線ネットワーク一時識別子)でマスクされる。複数の端末宛の電力制御命令をまとめて送るPDCCHのCRCは共通RNTIでマスクされる。PHICHは、端末から送られてきた上りリンクのデータ信号に関する応答信号(ACK/NACK)を返すための制御チャネルである。 For example, the PDCCH for sending resource allocation information addressed to each terminal is masked with a C-RNTI (Cell-Radio Network Temporary Identifier: cell radio network temporary identifier) indicating the ID (identifier) of each terminal. The CRC of the PDCCH that collectively sends power control commands addressed to a plurality of terminals is masked with the common RNTI. PHICH is a control channel for returning a response signal (ACK / NACK) related to an uplink data signal transmitted from a terminal.
 図6は、RS送信情報の送信方法の一例を示す図である。基地局110は、RS送信情報として、たとえば図6に示すように、RS送信情報610をPDCCH600に含めて各端末(端末120を含む)へ送信する。RS送信情報610は、5ビットの情報(図6に示す例では“10001”)であり、最大で5つの周波数チャネルにおけるRSの送信の有無を示す。 FIG. 6 is a diagram illustrating an example of a method for transmitting RS transmission information. For example, as illustrated in FIG. 6, the base station 110 includes the RS transmission information 610 in the PDCCH 600 and transmits the RS transmission information to each terminal (including the terminal 120). The RS transmission information 610 is 5-bit information (“10001” in the example shown in FIG. 6), and indicates whether or not RSs are transmitted in a maximum of five frequency channels.
 たとえば、RS送信情報610の1ビット目のビット611(“1”)は、チャネル番号#1に対応する周波数チャネルにおいてRSの送信があることを示している。また、RS送信情報610の2ビット目のビット612(“0”)は、チャネル番号#2に対応する周波数チャネルにおいてRSの送信がないことを示している。また、RS送信情報610の3ビット目のビット613(“0”)は、チャネル番号#3に対応する周波数チャネルにおいてRSの送信がないことを示している。 For example, bit 611 (“1”) of the first bit of RS transmission information 610 indicates that there is RS transmission in the frequency channel corresponding to channel number # 1. The second bit 612 (“0”) of the RS transmission information 610 indicates that there is no RS transmission in the frequency channel corresponding to the channel number # 2. Also, the third bit 613 (“0”) of the RS transmission information 610 indicates that there is no RS transmission in the frequency channel corresponding to channel number # 3.
 端末120は、基地局110から受信した対応情報400と、RS送信情報610と、に基づいて、端末120が基地局110との間の無線通信で使用する周波数チャネルにおける基地局110からのRSの送信の有無を判定することができる。 The terminal 120, based on the correspondence information 400 received from the base station 110 and the RS transmission information 610, the RS of the RS from the base station 110 in the frequency channel used by the terminal 120 for wireless communication with the base station 110. The presence or absence of transmission can be determined.
 たとえば、基地局110と端末120との間で使用する周波数チャネルが周波数チャネル“1”である場合は、端末120は、対応情報400から、周波数チャネル“1”に対応するチャネル番号#3を取得する。そして、端末120は、チャネル番号#3に基づいて、RS送信情報610の3ビット目のビット613を取得し、取得したビット613に基づいて周波数チャネル“1”における基地局110からのRSの送信の有無を判定する。図6に示す例では、基地局110は、PDCCH600に対応するサブフレームにおいて、周波数チャネル“1”でのRS送信がないと判定することができる。 For example, when the frequency channel used between the base station 110 and the terminal 120 is the frequency channel “1”, the terminal 120 acquires the channel number # 3 corresponding to the frequency channel “1” from the correspondence information 400. To do. Then, the terminal 120 acquires the bit 613 of the third bit of the RS transmission information 610 based on the channel number # 3, and transmits the RS from the base station 110 in the frequency channel “1” based on the acquired bit 613. The presence or absence of is determined. In the example illustrated in FIG. 6, base station 110 can determine that there is no RS transmission on frequency channel “1” in the subframe corresponding to PDCCH 600.
 図6に示した例によれば、1つのPDCCHでUバンドの複数の周波数チャネルにおけるRS送信の有無をまとめて各端末へ通知することができる。この場合に、基地局110が付したチャネル番号と、RS送信情報610におけるビット位置と、を対応情報400により対応付けることで、RS送信情報610のビット数の低減を図ることができる。 According to the example shown in FIG. 6, the presence or absence of RS transmission in a plurality of U-band frequency channels can be collectively reported to each terminal using one PDCCH. In this case, the number of bits of the RS transmission information 610 can be reduced by associating the channel number assigned by the base station 110 with the bit position in the RS transmission information 610 using the correspondence information 400.
 なお、基地局110が使用するUバンドの周波数チャネルが5個未満であり、RS送信情報610の5ビットのうちの1つ以上のビットが余る場合は、基地局110は、たとえば、余ったビットを一定値とする処理(たとえばゼロ埋め)を行う。 In addition, when the base station 110 uses less than 5 U-band frequency channels and one or more bits out of 5 bits of the RS transmission information 610 are left, the base station 110, for example, A process (for example, zero padding) is performed to set a constant value.
 このように、基地局110は、Uバンドの複数の周波数チャネルのそれぞれについてのRS送信情報610(第1制御情報)をLバンドのPDCCH600(制御チャネル)に配置して送信する。また、基地局110は、Uバンドの複数の周波数チャネルのそれぞれについてのRS送信情報610のPDCCH600における配置を特定するための対応情報400(第2制御情報)をLバンドにより送信する。 In this way, the base station 110 transmits the RS transmission information 610 (first control information) for each of the plurality of U-band frequency channels in the L-band PDCCH 600 (control channel). In addition, the base station 110 transmits correspondence information 400 (second control information) for specifying the arrangement of the RS transmission information 610 in the PDCCH 600 for each of a plurality of frequency channels in the U band using the L band.
 これにより、端末120は、基地局110からLバンドにより送信された対応情報400に基づいて、Uバンドの複数の周波数チャネルのうちの自端末が使用する周波数チャネルについてのRS送信情報610をPDCCHから受信することができる。これにより、RS送信情報610のビット数の低減を図ることができる。 As a result, based on the correspondence information 400 transmitted by the L band from the base station 110, the terminal 120 transmits the RS transmission information 610 on the frequency channel used by the terminal of the plurality of frequency channels in the U band from the PDCCH. Can be received. Thereby, the bit number of RS transmission information 610 can be reduced.
(RS送信情報の送信方法の他の例)
 図7は、RS送信情報の送信方法の他の例を示す図である。基地局110は、RS送信情報として、たとえば図7に示す個別制御チャネル701~703を送信してもよい。個別制御チャネル701~703は、それぞれチャネル番号#1~#3に対応する周波数チャネルにおけるRS送信の有無を示すRS送信情報である。
(Another example of RS transmission information transmission method)
FIG. 7 is a diagram illustrating another example of the RS transmission information transmission method. The base station 110 may transmit, for example, dedicated control channels 701 to 703 shown in FIG. 7 as RS transmission information. The individual control channels 701 to 703 are RS transmission information indicating the presence or absence of RS transmission in the frequency channels corresponding to the channel numbers # 1 to # 3, respectively.
 個別制御チャネル701~703には、たとえば、新たに定義した下りリンクの個別制御チャネル(PUTICH:Physical Unlicensedband Transmission Indicator Channel)を用いることができる。または、個別制御チャネル701~703には、PHICHの一部などを用いてもよい。 As the dedicated control channels 701 to 703, for example, a newly defined downlink dedicated control channel (PUTICH: Physical Unified Band Transmission Indicator Channel) can be used. Alternatively, a part of PHICH may be used for the individual control channels 701 to 703.
 図7に示した例によれば、各端末へのRS送信情報を個別に送信することができる。この場合に、基地局110が付したチャネル番号と、個別制御チャネル701~703の並び順と、を対応情報400により対応付けることで、端末120は自端末宛のRS送信情報を特定することができる。 According to the example shown in FIG. 7, the RS transmission information to each terminal can be individually transmitted. In this case, by associating the channel number assigned by the base station 110 with the arrangement order of the dedicated control channels 701 to 703 using the correspondence information 400, the terminal 120 can identify the RS transmission information addressed to the terminal 120 itself. .
 このように、基地局110は、Uバンドの複数の周波数チャネルのそれぞれについてのRS送信情報610(第1制御情報)をLバンドの個別制御チャネル701~703により送信する。また、基地局110は、Uバンドの複数の周波数チャネルと個別制御チャネル701~703との対応を特定するための対応情報400(第2制御情報)をLバンドにより送信する。 Thus, the base station 110 transmits the RS transmission information 610 (first control information) for each of a plurality of U-band frequency channels through the L-band individual control channels 701 to 703. In addition, the base station 110 transmits correspondence information 400 (second control information) for specifying correspondence between a plurality of U-band frequency channels and dedicated control channels 701 to 703 using the L band.
 これにより、端末120は、基地局110からLバンドにより送信された対応情報400に基づいて、Uバンドの複数の周波数チャネルのうちの自端末が使用する周波数チャネルについてのRS送信情報を個別制御チャネル701~703から受信できる。これにより、RS送信情報610のビット数の低減を図ることができる。 As a result, the terminal 120 transmits the RS transmission information about the frequency channel used by the terminal among the plurality of U-band frequency channels based on the correspondence information 400 transmitted by the L band from the base station 110 to the dedicated control channel. 701 to 703 can be received. Thereby, the bit number of RS transmission information 610 can be reduced.
 図6,図7に示したように、基地局110は、Uバンドの周波数チャネルのそれぞれに対応するRS送信情報を、Lバンドにおける下りリンクのL1リンクやL2リンクの制御チャネルを用いて送信する。また、チャネル番号と、PDCCH600または個別制御チャネル701~703の並び順と、の対応付けは、たとえば、数式やテーブルによってあらかじめ無線通信システム100において定義され、基地局110および端末120のメモリに格納される。図6,図7に示した例では、たとえば「PDCCH600または個別制御チャネル701~703の並び順=チャネル番号」という数式が無線通信システム100において定義される。 As shown in FIGS. 6 and 7, the base station 110 transmits RS transmission information corresponding to each of the U-band frequency channels using the downlink L1 link and L2 link control channels in the L band. . Also, the correspondence between the channel number and the arrangement order of PDCCH 600 or dedicated control channels 701 to 703 is defined in advance in radio communication system 100 using, for example, mathematical formulas and tables, and stored in the memory of base station 110 and terminal 120. The In the example shown in FIGS. 6 and 7, for example, a mathematical expression “arrangement order of PDCCH 600 or dedicated control channels 701 to 703 = channel number” is defined in radio communication system 100.
(RS送信情報の送信時にRS送信の有無を判断できるケース)
 図8Aは、RS送信情報の送信時にRS送信の有無を判断できるケースの例1を示す図である。図8Aにおいて、横軸(t)は時間を示す。また、周波数チャネルpl1は、基地局110と端末120との間で使用されるLバンドの周波数チャネルを示す。また、周波数チャネルsu1は、基地局110との端末120の間で使用されるUバンドの周波数チャネルを示す。たとえば、基地局110は、サブフレームsb1においてキャリアセンスを行い、周波数チャネルsu1の空きを検出した場合に、サブフレームsb1において周波数チャネルsu1でダミー信号801を送信する。
(Case where the presence or absence of RS transmission can be determined at the time of transmission of RS transmission information)
FIG. 8A is a diagram illustrating a first example of a case in which the presence / absence of RS transmission can be determined when RS transmission information is transmitted. In FIG. 8A, the horizontal axis (t) indicates time. The frequency channel pl1 indicates an L-band frequency channel used between the base station 110 and the terminal 120. The frequency channel su1 indicates a U-band frequency channel used between the base station 110 and the terminal 120. For example, when the base station 110 performs carrier sense in the subframe sb1 and detects the vacancy of the frequency channel su1, the base station 110 transmits the dummy signal 801 through the frequency channel su1 in the subframe sb1.
 これにより、次のサブフレームsb2における周波数チャネルsu1を確保(占有)することができる。このため、基地局110は、送信データがある場合は、次のサブフレームsb2においてRSを送信すると判断することができる。また、基地局110は、送信データがなくても、RSを単独で送信する場合は、次のサブフレームsb2においてRSを送信すると判断することができる。 Thereby, the frequency channel su1 in the next subframe sb2 can be secured (occupied). For this reason, when there is transmission data, the base station 110 can determine to transmit the RS in the next subframe sb2. Moreover, even if there is no transmission data, the base station 110 can determine to transmit the RS in the next subframe sb2 when transmitting the RS alone.
 次のサブフレームsb2においてRSを送信すると判断した場合は、基地局110は、サブフレームsb2において、“RS送信あり”を示すRS送信情報802を周波数チャネルpl1で送信し、RSを含む信号803を周波数チャネルsu1で送信する。 If it is determined that the RS is to be transmitted in the next subframe sb2, the base station 110 transmits the RS transmission information 802 indicating “RS transmission is present” on the frequency channel pl1 in the subframe sb2, and transmits a signal 803 including the RS. It transmits on the frequency channel su1.
 このように、基地局110は、周波数チャネルsu1の空きを検出した場合に周波数チャネルsu1でダミー信号801を送信することで、以降のサブフレームにおいてはサブフレームsb2においてRSを送信すると判断することができる。ここでは空き帯域を検出した場合にダミー信号801を送信する場合について説明するが、ダミー信号801に代えて所定パターンのプリアンブル信号を送信してもよい。 As described above, the base station 110 may determine that the RS is transmitted in the subframe sb2 in the subsequent subframes by transmitting the dummy signal 801 through the frequency channel su1 when the vacancy of the frequency channel su1 is detected. it can. Here, the case where the dummy signal 801 is transmitted when a vacant band is detected will be described, but a preamble signal having a predetermined pattern may be transmitted instead of the dummy signal 801.
 図8Bは、RS送信情報の送信時にRS送信の有無を判断できるケースの例2を示す図である。図8Bにおいて、図8Aに示した部分と同様の部分については同一の符号を付して説明を省略する。たとえば、サブフレームsb1において、基地局110は周波数チャネルsu1でRSを含む信号821を送信しているとする。 FIG. 8B is a diagram illustrating a second example of a case where it is possible to determine whether or not RS transmission is performed when RS transmission information is transmitted. In FIG. 8B, the same parts as those shown in FIG. 8A are denoted by the same reference numerals and description thereof is omitted. For example, in the subframe sb1, it is assumed that the base station 110 transmits a signal 821 including RS on the frequency channel su1.
 この場合は、次のサブフレームsb2における周波数チャネルsu1を確保(占有)することができる。このため、基地局110は、続けて送信すべきデータがある場合は、次のサブフレームsb2においてRSを送信すると判断することができる。この場合は、基地局110は、サブフレームsb2において、“RS送信あり”を示すRS送信情報802を周波数チャネルpl1で送信するとともに、RSを含む信号803を周波数チャネルsu1で送信する。 In this case, the frequency channel su1 in the next subframe sb2 can be secured (occupied). For this reason, when there is data to be transmitted continuously, the base station 110 can determine to transmit the RS in the next subframe sb2. In this case, in the subframe sb2, the base station 110 transmits the RS transmission information 802 indicating “RS transmission is present” using the frequency channel pl1, and transmits the signal 803 including the RS using the frequency channel su1.
 このように、基地局110は、周波数チャネルsu1において信号を連続送信する場合は、2サブフレーム以降においてはサブフレームsb2においてRSを送信すると判断することができる。 As described above, when the base station 110 continuously transmits a signal in the frequency channel su1, it can determine that the RS is transmitted in the subframe sb2 after two subframes.
 図8Cは、RS送信情報の送信時にRS送信の有無を判断できるケースの例3を示す図である。図8Cにおいて、図8Aに示した部分と同様の部分については同一の符号を付して説明を省略する。たとえば、基地局110は、サブフレームsb2においてRSを含む信号805を送信した場合に、サブフレームsb2において、“RS送信あり”を示すRS送信情報806を周波数チャネルpl1で送信する。図8Cに示す例では、基地局110は、RS送信情報806をサブフレームsb2の末尾部分において送信している。 FIG. 8C is a diagram illustrating an example 3 of a case in which the presence or absence of RS transmission can be determined when RS transmission information is transmitted. In FIG. 8C, the same parts as those shown in FIG. 8A are denoted by the same reference numerals and description thereof is omitted. For example, when the base station 110 transmits the signal 805 including the RS in the subframe sb2, the base station 110 transmits the RS transmission information 806 indicating “RS transmission is present” on the frequency channel pl1 in the subframe sb2. In the example illustrated in FIG. 8C, the base station 110 transmits the RS transmission information 806 in the end portion of the subframe sb2.
 これに対して、端末120は、サブフレームsb2において送信されたRSを含む信号805をバッファリングしておき、遅れて受信したRS送信情報806に基づいて、バッファリングしていたRSを含む信号805の受信処理を行う。このように、端末120が基地局110からの信号をバッファリングしておく構成とすることで、基地局110は、実際にRSを含む信号805を送信してからRS送信情報806を送信することができる。これに対して、端末120は、“RS送信あり”を示すRS送信情報806を受信した場合にのみ、バッファリングしておいた信号の受信処理を行うことで、効率よくRSを受信することができる。 On the other hand, the terminal 120 buffers the signal 805 including the RS transmitted in the subframe sb2, and based on the RS transmission information 806 received late, the signal 805 including the RS that has been buffered. Receive processing. In this way, by configuring the terminal 120 to buffer the signal from the base station 110, the base station 110 actually transmits the signal 805 including the RS and then transmits the RS transmission information 806. Can do. On the other hand, the terminal 120 can receive the RS efficiently by performing the reception process of the buffered signal only when the RS transmission information 806 indicating “RS transmission is present” is received. it can.
 図8Dは、RS送信情報の送信時にRS送信の有無を判断できるケースの例4を示す図である。図8Dにおいて、図8Aに示した部分と同様の部分については同一の符号を付して説明を省略する。たとえば、基地局110は、サブフレームsb1においてRSを含む信号807を送信した場合に、次のサブフレームsb2において、“RS送信あり”を示すRS送信情報808を周波数チャネルpl1で送信する。図8Dに示す例では、基地局110は、RS送信情報808をサブフレームsb2の先頭部分において送信している。 FIG. 8D is a diagram illustrating an example 4 of a case where it is possible to determine whether or not RS transmission is performed when transmitting RS transmission information. In FIG. 8D, the same parts as those shown in FIG. 8A are denoted by the same reference numerals and description thereof is omitted. For example, when the base station 110 transmits the signal 807 including the RS in the subframe sb1, the base station 110 transmits the RS transmission information 808 indicating “with RS transmission” on the frequency channel pl1 in the next subframe sb2. In the example illustrated in FIG. 8D, the base station 110 transmits the RS transmission information 808 at the head portion of the subframe sb2.
 これに対して、端末120は、サブフレームsb1において送信されたRSを含む信号807をバッファリングしておき、遅れて受信したRS送信情報808に基づいて、バッファリングしていたRSを含む信号807の受信処理を行う。このように、端末120が基地局110からの信号をバッファリングしておく構成とすることで、基地局110は、実際にRSを含む信号807を送信してからRS送信情報808を送信することができる。これに対して、端末120は、“RS送信あり”を示すRS送信情報808を受信した場合にのみ、バッファリングしておいた信号の受信処理を行うことで、効率よくRSを受信することができる。 On the other hand, the terminal 120 buffers the signal 807 including the RS transmitted in the subframe sb1, and based on the RS transmission information 808 received late, the signal 807 including the RS that has been buffered. Receive processing. In this way, by configuring the terminal 120 to buffer the signal from the base station 110, the base station 110 transmits the RS transmission information 808 after actually transmitting the signal 807 including the RS. Can do. On the other hand, the terminal 120 can receive the RS efficiently by performing reception processing of the buffered signal only when the RS transmission information 808 indicating “RS transmission is present” is received. it can.
 図8C,図8Dのケースによれば、ダミー信号やプリアンブル信号による周波数チャネルsu1の確保を行わない構成において、信号送信の先頭(たとえば信号805,807)についてのRS送信情報の送信時にRS送信の有無を判断することができる。 According to the cases of FIGS. 8C and 8D, in the configuration in which the frequency channel su1 is not secured by the dummy signal or the preamble signal, the RS transmission is transmitted at the time of transmission of the RS transmission information about the head of the signal transmission (for example, signals 805 and 807). The presence or absence can be determined.
(基地局が送信する各信号のタイミング)
 図9は、基地局が送信する各信号のタイミングの一例を示す図である。図9において、横軸(t)は時間を示す。また、周波数チャネルpl1はLバンドの周波数チャネルを示す。また、周波数チャネルsu1~su3はUバンドのチャネル番号#1~#3の周波数チャネルを示す。また、“B”はキャリアセンスの結果におけるビジー状態(帯域の空きなし)を示し、“I”はキャリアセンスの結果におけるアイドル状態(帯域の空きあり)を示す。
(Timing of each signal transmitted by the base station)
FIG. 9 is a diagram illustrating an example of the timing of each signal transmitted by the base station. In FIG. 9, the horizontal axis (t) indicates time. The frequency channel pl1 represents an L-band frequency channel. Frequency channels su1 to su3 indicate frequency channels of U-band channel numbers # 1 to # 3. Further, “B” indicates a busy state (no bandwidth is available) as a result of carrier sense, and “I” indicates an idle state (a bandwidth is available) as a result of carrier sense.
 基地局110がたとえばU-RNTI(UTRAN-Radio Network Temporary Identifier:UTRAN 無線ネットワーク仮識別子)を用いた共通PDCCHによりRS送信情報を送信する場合について説明する。この場合に、基地局110は、たとえば図9に示すように各信号を送信する。 A case will be described in which the base station 110 transmits RS transmission information using a common PDCCH using, for example, U-RNTI (UTRAN-Radio Network Temporary Identifier: UTRAN wireless network temporary identifier). In this case, the base station 110 transmits each signal as shown in FIG. 9, for example.
 図9において、サブフレーム901はランセンスドバンドにおけるサブフレーム(1[ms])を示し、サブフレーム902はアンランセンスドバンドにおけるサブフレーム(1[ms])を示す。サブフレーム901,902は、同一タイミングであってもよいし、図9に示す例のように異なるタイミングであってもよい。 9, subframe 901 indicates a subframe (1 [ms]) in the licensed band, and subframe 902 indicates a subframe (1 [ms]) in the unlicensed band. The subframes 901 and 902 may have the same timing, or may have different timings as in the example illustrated in FIG.
 まず、基地局110が、図9に示す1つ目のサブフレーム901において、周波数チャネルpl1を用いて、キャリアセンスの結果などに基づいてPDCCH911(“100”)を送信したとする。PDCCH911は、チャネル番号#1はRS送信あり、チャネル番号#2,#3はRS送信なしを示している。この場合は、図9に示す1つ目のサブフレーム902において、基地局110は、周波数チャネルsu1を用いてRSを含む信号912を送信する。 First, it is assumed that the base station 110 transmits PDCCH 911 (“100”) based on the result of carrier sense using the frequency channel pl1 in the first subframe 901 shown in FIG. In the PDCCH 911, channel number # 1 indicates RS transmission, and channel numbers # 2 and # 3 indicate no RS transmission. In this case, in the first subframe 902 shown in FIG. 9, the base station 110 transmits a signal 912 including RS using the frequency channel su1.
 また、1つ目のサブフレーム902において、基地局110が周波数チャネルsu2についてのキャリアセンスを行った結果、ビジー(B)の後に連続して所定回数(たとえば4回)以上アイドル(I)となり、周波数チャネルsu2の空きが検出されたとする。また、1つ目のサブフレーム902において、基地局110が周波数チャネルsu3についてのキャリアセンスを行った結果、連続してビジー(B)となり、周波数チャネルsu3の空きが検出されなかったとする。 Further, in the first subframe 902, as a result of the base station 110 performing carrier sense on the frequency channel su2, it becomes idle (I) for a predetermined number of times (for example, four times) or more continuously after busy (B), It is assumed that a vacant frequency channel su2 is detected. In addition, in the first subframe 902, it is assumed that the base station 110 performs the carrier sense on the frequency channel su3, and is continuously busy (B), and the vacancy of the frequency channel su3 is not detected.
 基地局110は、図9に示す1つ目のサブフレーム902において周波数チャネルsu1を用いて信号を送信しているため、図9に示す2つ目のサブフレーム902において、周波数チャネルsu1を用いてRSを送信できると判断する。また、基地局110は、図9に示す1つ目のサブフレーム902において周波数チャネルsu2の空きが検出されたため、図9に示す2つ目のサブフレーム902において、周波数チャネルsu2を用いてRSを送信できると判断する。また、基地局110は、図9に示す1つ目のサブフレーム902において周波数チャネルsu3の空きが検出されなかったため、図9に示す2つ目のサブフレーム902において、周波数チャネルsu3を用いてRSを送信できないと判断する。 Since the base station 110 transmits a signal using the frequency channel su1 in the first subframe 902 shown in FIG. 9, the base station 110 uses the frequency channel su1 in the second subframe 902 shown in FIG. It is determined that RS can be transmitted. Further, since the vacancy of the frequency channel su2 is detected in the first subframe 902 shown in FIG. 9, the base station 110 uses the frequency channel su2 in the second subframe 902 shown in FIG. Judge that transmission is possible. Further, since the vacancy of the frequency channel su3 is not detected in the first subframe 902 shown in FIG. 9, the base station 110 uses the frequency channel su3 in the second subframe 902 shown in FIG. Is determined not to be sent.
 このため、基地局110は、図9に示す2つ目のサブフレーム901において、周波数チャネルpl1を用いて、チャネル番号#1,#2はRS送信あり、チャネル番号#3はRS送信なしを示すPDCCH921(“110”)を送信する。この場合は、図9に示す2つ目のサブフレーム902において、基地局110は、su1を用いてRSを含む信号922を送信する。また、図9に示す2つ目のサブフレーム902において、基地局110は、su2を用いてRSを含む信号923を送信する。また、2つ目のサブフレーム902において、基地局110が周波数チャネルsu3についてのキャリアセンスを行った結果、ビジー(B)の後に連続して所定回数(たとえば4回)以上アイドル(I)となり、周波数チャネルsu3の空きが検出されたとする。 Therefore, the base station 110 uses the frequency channel pl1 in the second subframe 901 shown in FIG. 9, and channel numbers # 1 and # 2 indicate RS transmission, and channel number # 3 indicates no RS transmission. PDCCH 921 (“110”) is transmitted. In this case, in the second subframe 902 illustrated in FIG. 9, the base station 110 transmits a signal 922 including RS using su1. Also, in the second subframe 902 shown in FIG. 9, the base station 110 transmits a signal 923 including RS using su2. Further, in the second subframe 902, as a result of the base station 110 performing carrier sense for the frequency channel su3, it becomes idle (I) for a predetermined number of times (for example, four times) continuously after busy (B), It is assumed that a vacant frequency channel su3 is detected.
 基地局110は、図9に示す2つ目のサブフレーム902において周波数チャネルsu1を用いて信号を送信しているため、図9に示す3つ目のサブフレーム902において、周波数チャネルsu1を用いてRSを送信できると判断する。また、基地局110は、周波数チャネルsu2で送信すべきデータがなくなったため、図9に示す3つ目のサブフレーム902において、周波数チャネルsu2を用いてRSを送信しないと判断したとする。また、基地局110は、図9に示す2つ目のサブフレーム902において周波数チャネルsu3の空きが検出されたため、図9に示す3つ目のサブフレーム902において、周波数チャネルsu3を用いてRSを送信できると判断する。 Since the base station 110 transmits a signal using the frequency channel su1 in the second subframe 902 shown in FIG. 9, the base station 110 uses the frequency channel su1 in the third subframe 902 shown in FIG. It is determined that RS can be transmitted. Further, it is assumed that the base station 110 determines that the RS is not transmitted using the frequency channel su2 in the third subframe 902 illustrated in FIG. 9 because there is no data to be transmitted using the frequency channel su2. Also, since the vacancy of the frequency channel su3 is detected in the second subframe 902 shown in FIG. 9, the base station 110 uses the frequency channel su3 in the third subframe 902 shown in FIG. Judge that transmission is possible.
 このため、基地局110は、図9に示す3つ目のサブフレーム901において、Lバンドの周波数チャネルpl1を用いて、チャネル番号#1,#3はRS送信あり、チャネル番号#2はRS送信なしを示すPDCCH931(“101”)を送信する。この場合は、図9に示す3つ目のサブフレーム902において、基地局110は、su1を用いてRSを含む信号932を送信する。また、図9に示す3つ目のサブフレーム902において、基地局110は、su3を用いてRSを含む信号933を送信する。 Therefore, the base station 110 uses the L-band frequency channel pl1 in the third subframe 901 shown in FIG. 9, channel numbers # 1 and # 3 are RS transmissions, and channel number # 2 is RS transmissions. PDCCH 931 (“101”) indicating none is transmitted. In this case, in the third subframe 902 shown in FIG. 9, the base station 110 transmits a signal 932 including RS using su1. In addition, in the third subframe 902 illustrated in FIG. 9, the base station 110 transmits a signal 933 including an RS using su3.
 図10は、基地局が送信する各信号のタイミングの他の例を示す図である。図10において、図9に示した部分と同様の部分については同一の符号を付して説明を省略する。たとえば基地局110が個別制御チャネルを用いてRS送信情報を送信する場合に、基地局110は、たとえば図10に示すように各信号を送信する。 FIG. 10 is a diagram illustrating another example of the timing of each signal transmitted by the base station. In FIG. 10, the same parts as those shown in FIG. For example, when the base station 110 transmits RS transmission information using the dedicated control channel, the base station 110 transmits each signal as shown in FIG. 10, for example.
 まず、基地局110が、図10に示す1つ目のサブフレーム901において、周波数チャネルpl1を用いて、キャリアセンスの結果などに基づき、それぞれチャネル番号#1~#3におけるRS送信の有無を示す個別制御チャネル1011~1013を送信する。個別制御チャネル1011は、チャネル番号#1はRS送信ありのこと(“1”)を示している。個別制御チャネル1012は、チャネル番号#2はRS送信なしであること(“0”)を示している。個別制御チャネル1013は、チャネル番号#3はRS送信なしであること(“0”)を示している。この場合における、図10に示す1つ目のサブフレーム902での基地局110の動作は図9に示した動作と同様である。 First, base station 110 indicates presence / absence of RS transmission in channel numbers # 1 to # 3 based on the result of carrier sense using frequency channel pl1 in first subframe 901 shown in FIG. The individual control channels 1011 to 1013 are transmitted. The dedicated control channel 1011 indicates that channel number # 1 is RS transmission (“1”). The dedicated control channel 1012 indicates that channel number # 2 is not RS transmission (“0”). The dedicated control channel 1013 indicates that channel number # 3 is not RS transmission (“0”). In this case, the operation of the base station 110 in the first subframe 902 shown in FIG. 10 is the same as the operation shown in FIG.
 基地局110は、図10に示す2つ目のサブフレーム901において、周波数チャネルpl1を用いて、それぞれチャネル番号#1~#3におけるRS送信の有無を示す個別制御チャネル1021~1023を送信する。個別制御チャネル1021は、チャネル番号#1はRS送信ありのこと(“1”)を示している。個別制御チャネル1022は、チャネル番号#2はRS送信ありのこと(“1”)を示している。個別制御チャネル1023は、チャネル番号#3はRS送信なしであること(“0”)を示している。この場合における、図10に示す2つ目のサブフレーム902での基地局110の動作は図9に示した動作と同様である。 In the second subframe 901 shown in FIG. 10, the base station 110 transmits dedicated control channels 1021 to 1023 indicating the presence / absence of RS transmission in channel numbers # 1 to # 3, respectively, using the frequency channel pl1. The dedicated control channel 1021 indicates that the channel number # 1 is RS transmission (“1”). The dedicated control channel 1022 indicates that channel number # 2 is RS transmission ("1"). The dedicated control channel 1023 indicates that the channel number # 3 is not RS transmission (“0”). In this case, the operation of the base station 110 in the second subframe 902 shown in FIG. 10 is the same as the operation shown in FIG.
 基地局110は、図10に示す3つ目のサブフレーム901において、周波数チャネルpl1を用いて、それぞれチャネル番号#1~#3におけるRS送信の有無を示す個別制御チャネル1031~1033を送信する。個別制御チャネル1031は、チャネル番号#1はRS送信ありのこと(“1”)を示している。個別制御チャネル1032は、チャネル番号#2はRS送信なしであること(“0”)を示している。個別制御チャネル1033は、チャネル番号#3はRS送信ありのこと(“1”)を示している。この場合における、図10に示す3つ目のサブフレーム902での基地局110の動作は図9に示した動作と同様である。 In the third subframe 901 shown in FIG. 10, the base station 110 transmits individual control channels 1031 to 1033 indicating the presence / absence of RS transmission in the channel numbers # 1 to # 3, respectively, using the frequency channel pl1. The dedicated control channel 1031 indicates that channel number # 1 is RS transmission (“1”). The dedicated control channel 1032 indicates that channel number # 2 is not RS transmission (“0”). The dedicated control channel 1033 indicates that channel number # 3 is RS transmission ("1"). In this case, the operation of the base station 110 in the third subframe 902 shown in FIG. 10 is the same as the operation shown in FIG.
(RS送信情報の例1における基地局による処理)
 図11は、RS送信情報の例1における基地局による処理の一例を示すフローチャートである。RS送信情報として図5に示したRS送信情報500を用いる場合は、基地局110は、たとえば、サブフレームごとに図11に示す各ステップを実行する。また、基地局110は、Uバンドにおいて複数種類のRSを送信する場合は、送信するRSのそれぞれについて図11に示す各ステップを実行する。
(Processing by base station in example 1 of RS transmission information)
FIG. 11 is a flowchart illustrating an example of processing by the base station in Example 1 of RS transmission information. When the RS transmission information 500 shown in FIG. 5 is used as the RS transmission information, the base station 110 executes, for example, each step shown in FIG. 11 for each subframe. Moreover, when transmitting multiple types of RS in U band, the base station 110 performs each step shown in FIG. 11 about each RS to transmit.
 複数種類のRSには、たとえば、CRS(Cell-specific Reference Signal:セル固有参照信号)、CSI-RS(Channel State Information-Reference Signal:チャネル状態情報参照信号)、DRS(Discovery Reference Signal)などがある。CRSは、セル内で共通のRSであって、たとえば端末120における周波数補正、CQI測定、復調、RRM測定などに用いられる。CSI-RSは、たとえば、端末120におけるプリコーディングのためのチャネル推定や、CoMP(Coordinated Multiple-Point transmission and reception:多地点協調通信)のための他セルの推定に用いられる。 The multiple types of RS include, for example, CRS (Cell-Specific Reference Signal: Cell Specific Reference Signal), CSI-RS (Channel State Information-Reference Signal: Channel State Information Reference Signal), and DRS (Discovery Reference Signal). . The CRS is a common RS in the cell, and is used for frequency correction, CQI measurement, demodulation, RRM measurement, etc. in the terminal 120, for example. CSI-RS is used, for example, for channel estimation for precoding in terminal 120 and estimation of other cells for CoMP (Coordinated Multiple-Point transmission and reception).
 無線リソースにおけるCRSの配置としては、たとえば3GPP(3rd Generation Partnership Project)のTS36.211に規定された配置例を用いることができる。無線リソースにおけるCSI-RSの配置としては、たとえば3GPPのTS36.211に規定された配置例を用いることができる。 As the arrangement of the CRS in the radio resource, for example, an arrangement example defined in 3GPP (3rd Generation Partnership Project) TS36.211 can be used. As an arrangement of CSI-RS in radio resources, for example, an arrangement example defined in 3GPP TS36.211 can be used.
 まず、基地局110は、次のサブフレームにおいてUバンドでRSを送信可能か否かを判断する(ステップS1101)。たとえば、基地局110は、無線信号を連続送信中である場合や、キャリアセンスによって空き帯域を検出し、ダミー信号やプリアンブル信号などを送信することにより送信機会を確保できている場合は、次のサブフレームにおいてRSを送信可能と判断する。また、基地局110は、無線信号を連続送信中でなく、かつ、ダミー信号やプリアンブル信号などにより送信機会を確保できていない場合は、次のサブフレームにおいてRSを送信不可と判断する。 First, the base station 110 determines whether or not RS can be transmitted in the U band in the next subframe (step S1101). For example, when the base station 110 is continuously transmitting a radio signal, or when a transmission opportunity is secured by detecting a vacant band by carrier sense and transmitting a dummy signal, a preamble signal, etc., It is determined that RS can be transmitted in the subframe. In addition, the base station 110 determines that the RS cannot be transmitted in the next subframe when the radio signal is not continuously transmitted and the transmission opportunity is not secured by a dummy signal or a preamble signal.
 ステップS1101において、サブフレームにおいてUバンドでRSを送信可能である場合(ステップS1101:Yes)は、基地局110は、RS送信タイマが規定値を満たすか否かを判断する(ステップS1102)。RS送信タイマは、対象のRSの送信タイミング(送信サブフレーム)を測るタイマであって、対象のRSの送信周期に応じて設定される。すなわち、ステップS1101において、基地局110は、次のサブフレームが、対象のRSを送信すべきサブフレームであるか否かを判断する。 In step S1101, if the RS can be transmitted in the U band in the subframe (step S1101: Yes), the base station 110 determines whether or not the RS transmission timer satisfies a specified value (step S1102). The RS transmission timer is a timer for measuring the transmission timing (transmission subframe) of the target RS, and is set according to the transmission cycle of the target RS. That is, in step S1101, the base station 110 determines whether or not the next subframe is a subframe in which the target RS is to be transmitted.
 ステップS1102において、RS送信タイマが規定値を満たす場合(ステップS1102:Yes)は、基地局110は、送信するRS送信情報を“1”(RS送信あり)に設定する(ステップS1103)。この場合は、基地局110は、次のサブフレームにおいてUバンドでRSを送信する。また、基地局110は、RS送信タイマをリセットし(ステップS1104)、一連の処理を終了する。 In step S1102, if the RS transmission timer satisfies the specified value (step S1102: Yes), the base station 110 sets the RS transmission information to be transmitted to “1” (with RS transmission) (step S1103). In this case, the base station 110 transmits the RS in the U band in the next subframe. In addition, the base station 110 resets the RS transmission timer (step S1104), and ends a series of processes.
 ステップS1101において、サブフレームにおいてUバンドでRSを送信可能でない場合(ステップS1101:No)は、基地局110は、送信するRS送信情報を“0”(RS送信なし)に設定する(ステップS1105)。また、基地局110は、RS送信タイマを1サブフレーム分進める(ステップS1106)。そして、基地局110は、一連の処理を終了する。 In step S1101, when the RS cannot be transmitted in the U band in the subframe (step S1101: No), the base station 110 sets the RS transmission information to be transmitted to “0” (no RS transmission) (step S1105). . Further, the base station 110 advances the RS transmission timer by one subframe (step S1106). And the base station 110 complete | finishes a series of processes.
 ステップS1102において、RS送信タイマが規定値を満たさない場合(ステップS1102:No)は、基地局110は、端末120への送信データがあり、かつRS同時送信を要するか否かを判断する(ステップS1107)。端末120への送信データとは、端末120へ送信すべきユーザデータである。RS同時送信を要する場合とは、送信データを受信する端末120において、復調などのために送信データとRSの同時送信を要する場合である。 In step S1102, if the RS transmission timer does not satisfy the specified value (step S1102: No), the base station 110 determines whether there is transmission data to the terminal 120 and whether simultaneous RS transmission is required (step S1102). S1107). The transmission data to the terminal 120 is user data to be transmitted to the terminal 120. The case where RS simultaneous transmission is required is a case where the terminal 120 receiving transmission data requires simultaneous transmission of transmission data and RS for demodulation or the like.
 ステップS1107において、端末120への送信データがあり、かつRS同時送信を要する場合(ステップS1107:Yes)は、基地局110は、ステップS1103へ移行する。端末120への送信データがなく、またはRS同時送信を要しない場合(ステップS1107:No)は、基地局110は、ステップS1105へ移行する。 In step S1107, if there is transmission data to the terminal 120 and RS simultaneous transmission is required (step S1107: Yes), the base station 110 moves to step S1103. If there is no transmission data to the terminal 120 or RS simultaneous transmission is not required (step S1107: No), the base station 110 proceeds to step S1105.
 なお、ステップS1107は、対象がCRSの場合の処理である。対象がCSI-RSまたはDRSである場合は、ステップS1107を省いてもよい。この場合に、基地局110は、ステップS1102においてRS送信タイマが規定値を満たさない場合(ステップS1102:No)は、ステップS1105へ移行する。 Note that step S1107 is processing when the target is CRS. If the target is CSI-RS or DRS, step S1107 may be omitted. In this case, when the RS transmission timer does not satisfy the specified value in step S1102 (step S1102: No), the base station 110 proceeds to step S1105.
(RS送信情報の例1における端末による処理)
 図12は、RS送信情報の例1における端末による処理の一例を示すフローチャートである。RS送信情報として図5に示したRS送信情報500を用いる場合であって、基地局110からUバンドで送信されるRSに基づいてCQIの測定を行う場合は、端末120は、たとえばサブフレームごとに図12に示す各ステップを実行する。
(Processing by terminal in example 1 of RS transmission information)
FIG. 12 is a flowchart illustrating an example of processing performed by the terminal in Example 1 of RS transmission information. When the RS transmission information 500 shown in FIG. 5 is used as the RS transmission information and the CQI is measured based on the RS transmitted from the base station 110 in the U band, the terminal 120, for example, for each subframe Each step shown in FIG. 12 is executed.
 まず、端末120は、基地局110によってLバンドで送信されるRS送信情報を受信する(ステップS1201)。つぎに、端末120は、ステップS1201により受信したRS送信情報に基づいて、現在のサブフレームについてRS送信あり(RS送信情報=1)か否かを判断する(ステップS1202)。 First, the terminal 120 receives RS transmission information transmitted in the L band by the base station 110 (step S1201). Next, based on the RS transmission information received in step S1201, the terminal 120 determines whether there is RS transmission (RS transmission information = 1) for the current subframe (step S1202).
 ステップS1202において、RS送信ありでない場合(ステップS1202:No)は、端末120は、一連の処理を終了する。RS送信ありの場合(ステップS1202:Yes)は、端末120は、基地局110からUバンドで送信されるRSに基づいてCQIの測定を行い(ステップS1203)、一連の処理を終了する。 In step S1202, when there is no RS transmission (step S1202: No), the terminal 120 ends a series of processes. If RS transmission is present (step S1202: Yes), the terminal 120 measures CQI based on the RS transmitted from the base station 110 in the U band (step S1203), and ends a series of processes.
 また、端末120は、たとえば、基地局110からUバンドで送信されるRSに基づいてRRM測定を行う場合も、サブフレームごとに図12に示す各ステップを実行する。ただし、この場合は、端末120は、ステップS1203において、基地局110からUバンドで送信されるRSに基づいてRRM測定を行う。 Also, for example, when the R120 measurement is performed based on RS transmitted from the base station 110 in the U band, the terminal 120 executes the steps illustrated in FIG. 12 for each subframe. However, in this case, the terminal 120 performs RRM measurement based on the RS transmitted from the base station 110 in the U band in step S1203.
 また、端末120は、たとえば、基地局110からUバンドで送信されるRSに基づいてタイミングトラッキングや周波数トラッキングを行う場合も、サブフレームごとに図12に示す各ステップを実行する。ただし、この場合は、端末120は、ステップS1203において、基地局110からUバンドで送信されるRSに基づいてタイミングトラッキングや周波数トラッキングを行う。 Also, for example, when performing timing tracking or frequency tracking based on RS transmitted from the base station 110 in the U band, the terminal 120 executes the steps shown in FIG. 12 for each subframe. However, in this case, in step S1203, the terminal 120 performs timing tracking and frequency tracking based on the RS transmitted from the base station 110 in the U band.
 また、端末120は、ステップS1203におけるCQIの測定などとともに、RSと同時に基地局110から送信されるデータの受信処理を行ってもよい。 Also, the terminal 120 may perform reception processing of data transmitted from the base station 110 simultaneously with the RS, together with CQI measurement in step S1203.
(RS送信情報の例2)
 図13は、RS送信情報の例2を示す図である。基地局110が送信するRS送信情報は、たとえば図13に示すRS送信情報1300としてもよい。図13に示すRS送信情報1300は、1ビットの情報であり、RS送信の予定の有無を示す。
(Example 2 of RS transmission information)
FIG. 13 is a diagram illustrating Example 2 of RS transmission information. The RS transmission information transmitted by the base station 110 may be, for example, RS transmission information 1300 illustrated in FIG. The RS transmission information 1300 shown in FIG. 13 is 1-bit information and indicates whether or not RS transmission is scheduled.
 たとえば、RS送信情報1300は、値が“0”の場合はRS送信の予定がないこと(RS送信予定なし)を示す。また、RS送信情報1300は、値が“1”の場合はRS送信の予定があること(RS送信予定あり)を示す。たとえば、RS送信情報の送信時にRS送信の有無を判断できないケースにおいては、RS送信の予定の有無を示すRS送信情報1300を用いることができる。 For example, when the value of the RS transmission information 1300 is “0”, it indicates that there is no RS transmission plan (no RS transmission plan). Further, when the value of the RS transmission information 1300 is “1”, it indicates that the RS transmission is scheduled (RS transmission is scheduled). For example, in the case where the presence or absence of RS transmission cannot be determined when RS transmission information is transmitted, RS transmission information 1300 indicating whether or not RS transmission is scheduled can be used.
 図13に示すRS送信情報1300を用いることで、端末120は、RS送信予定なしのサブフレームにおいてはRSを検出する処理を行わないようにすることが可能になり、端末120における消費電力の低減を図ることができる。 By using the RS transmission information 1300 illustrated in FIG. 13, the terminal 120 can be configured not to perform the process of detecting an RS in a subframe without an RS transmission schedule, thereby reducing power consumption in the terminal 120. Can be achieved.
 また、端末120は、RS送信ありのサブフレームにおいてはRSを検出する処理を行うことで、RSが送信されていればRSを受信することができる。RSを検出する処理は、たとえば、RSと同じパターンのレプリカ信号と受信信号との相関を計算し、計算した相関が閾値より高い場合にRSがあると判断する処理とすることができる。 In addition, the terminal 120 can receive the RS if the RS is transmitted by performing the process of detecting the RS in the subframe with the RS transmission. The process of detecting the RS can be, for example, a process of calculating the correlation between the replica signal having the same pattern as the RS and the received signal, and determining that there is an RS when the calculated correlation is higher than a threshold value.
(RS送信情報の送信時にRS送信の有無を判断できないケース)
 図14Aは、RS送信情報の送信時にRS送信の有無を判断できないケースの例1を示す図である。図14Aにおいて、図8Aに示した部分と同様の部分については同一の符号を付して説明を省略する。たとえば、基地局110は、周期的なサブフレームを、RSを送信可能であれば送信するサブフレームとして設定する。図14Aに示す例では、基地局110は、サブフレームsb2を、RSを送信可能であれば送信するサブフレームとして設定したとする。
(Case where the presence or absence of RS transmission cannot be determined when transmitting RS transmission information)
FIG. 14A is a diagram illustrating a first example of a case where it is not possible to determine whether or not RS transmission is performed when transmitting RS transmission information. In FIG. 14A, the same parts as those shown in FIG. 8A are denoted by the same reference numerals and description thereof is omitted. For example, the base station 110 sets a periodic subframe as a subframe to be transmitted if an RS can be transmitted. In the example illustrated in FIG. 14A, it is assumed that the base station 110 sets the subframe sb2 as a subframe to be transmitted if the RS can be transmitted.
 この場合は、たとえば、基地局110は、サブフレームsb2において、“RS送信予定あり”を示すRS送信情報1401を周波数チャネルpl1で送信する。また、基地局110は、サブフレームsb2において、周波数チャネルsu1のキャリアセンスを行い、キャリアセンスによって周波数チャネルsu1の空き帯域が検出された場合に、RSを含む信号1402を周波数チャネルsu1で送信する。 In this case, for example, the base station 110 transmits the RS transmission information 1401 indicating “RS transmission is scheduled” on the frequency channel pl1 in the subframe sb2. In addition, the base station 110 performs carrier sense of the frequency channel su1 in the subframe sb2, and transmits a signal 1402 including the RS on the frequency channel su1 when a free band of the frequency channel su1 is detected by the carrier sense.
 図14Bは、RS送信情報の送信時にRS送信の有無を判断できないケースの例2を示す図である。図14Bにおいて、図14Aに示した部分と同様の部分については同一の符号を付して説明を省略する。図14Bに示す例では、基地局110は、サブフレームsb2のうちの所定のタイミングにおいてキャリアセンスを行い、キャリアセンスにより周波数チャネルsu1の空き帯域が検出された時点からRSを含む信号1402を周波数チャネルsu1で送信する。 FIG. 14B is a diagram illustrating Example 2 of a case where it is not possible to determine whether or not RS transmission is performed when RS transmission information is transmitted. In FIG. 14B, the same parts as those shown in FIG. 14A are denoted by the same reference numerals and description thereof is omitted. In the example illustrated in FIG. 14B, the base station 110 performs carrier sense at a predetermined timing in the subframe sb2, and transmits the signal 1402 including the RS from the time point when the free band of the frequency channel su1 is detected by the carrier sense. Send with su1.
(RS送信情報の例2における基地局による処理)
 図15は、RS送信情報の例2における基地局による処理の一例を示すフローチャートである。RS送信情報として図13に示したRS送信情報1300を用いる場合は、基地局110は、たとえば、サブフレームごとに図15に示す各ステップを実行する。また、基地局110は、Uバンドにおいて複数種類のRS(たとえばCRSおよびDRS)を送信する場合は、送信するRSのそれぞれについて図15に示す各ステップを実行する。
(Processing by base station in example 2 of RS transmission information)
FIG. 15 is a flowchart illustrating an example of processing performed by the base station in RS transmission information example 2. When the RS transmission information 1300 illustrated in FIG. 13 is used as the RS transmission information, the base station 110 executes, for example, each step illustrated in FIG. 15 for each subframe. In addition, when transmitting a plurality of types of RSs (for example, CRS and DRS) in the U band, the base station 110 executes the steps shown in FIG. 15 for each RS to be transmitted.
 まず、基地局110は、RS送信タイマが規定値を満たすか否かを判断する(ステップS1501)。RS送信タイマが規定値を満たす場合(ステップS1501:Yes)は、基地局110は、送信するRS送信情報を“1”(RS送信予定あり)に設定する(ステップS1502)。つぎに、基地局110は、RSの送信処理を行う(ステップS1503)。 First, the base station 110 determines whether or not the RS transmission timer satisfies a specified value (step S1501). When the RS transmission timer satisfies the specified value (step S1501: Yes), the base station 110 sets the RS transmission information to be transmitted to “1” (RS transmission scheduled) (step S1502). Next, the base station 110 performs RS transmission processing (step S1503).
 たとえば、基地局110は、Uバンドでのキャリアセンスを行い、キャリアセンスによって帯域の空きが検出された場合はRSの送信を行う。また、基地局110は、Uバンドで無線信号を連続送信中である場合は、キャリアセンスを行わずにRSの送信を行う。一方、基地局110は、Uバンドで無線信号を連続送信中ではなく、かつキャリアセンスを行っても帯域の空きが検出されなかった場合はRSの送信を行わない。 For example, the base station 110 performs carrier sense in the U band, and transmits an RS when a free band is detected by carrier sense. In addition, when the radio signal is being continuously transmitted in the U band, the base station 110 transmits the RS without performing carrier sense. On the other hand, the base station 110 does not transmit the RS when the wireless signal is not continuously transmitted in the U band and the vacant band is not detected even if the carrier sense is performed.
 つぎに、基地局110は、ステップS1503によりRSを送信できたか否かを判断する(ステップS1504)。RSを送信できた場合(ステップS1504:Yes)は、基地局110は、RS送信タイマをリセットし(ステップS1505)、一連の処理を終了する。RSを送信できなかった場合(ステップS1504:No)は、基地局110は、RS送信タイマを1サブフレーム分進める(ステップS1506)。そして、基地局110は、一連の処理を終了する。 Next, the base station 110 determines whether or not the RS has been transmitted in step S1503 (step S1504). When the RS can be transmitted (step S1504: Yes), the base station 110 resets the RS transmission timer (step S1505) and ends the series of processes. When the RS cannot be transmitted (step S1504: No), the base station 110 advances the RS transmission timer by one subframe (step S1506). And the base station 110 complete | finishes a series of processes.
 ステップS1501において、RS送信タイマが規定値を満たさない場合(ステップS1501:No)は、基地局110は、端末120への送信データがあり、かつRS同時送信を要するか否かを判断する(ステップS1507)。 In step S1501, when the RS transmission timer does not satisfy the specified value (step S1501: No), the base station 110 determines whether there is transmission data to the terminal 120 and RS simultaneous transmission is required (step S1501). S1507).
 ステップS1507において、端末120への送信データがあり、かつRS同時送信を要すると判断した場合(ステップS1507:Yes)は、基地局110は、ステップS1502へ移行する。端末120への送信データがなく、またはRS同時送信を要しないと判断した場合(ステップS1507:No)は、基地局110は、ステップS1508へ移行する。 In step S1507, when it is determined that there is transmission data to the terminal 120 and RS simultaneous transmission is required (step S1507: Yes), the base station 110 proceeds to step S1502. If it is determined that there is no transmission data to the terminal 120 or that RS simultaneous transmission is not required (step S1507: No), the base station 110 proceeds to step S1508.
 すなわち、基地局110は、送信するRS送信情報を“0”(RS送信なし)に設定する(ステップS1508)。また、基地局110は、RS送信タイマを1サブフレーム分進める(ステップS1509)。そして、基地局110は、一連の処理を終了する。 That is, the base station 110 sets the RS transmission information to be transmitted to “0” (no RS transmission) (step S1508). Also, the base station 110 advances the RS transmission timer by one subframe (step S1509). And the base station 110 complete | finishes a series of processes.
 なお、ステップS1507は、処理対象がCRSの場合の処理である。処理対象がDRSである場合は、ステップS1507を省いてもよい。この場合に、基地局110は、ステップS1501において、RS送信タイマが規定値を満たさない場合(ステップS1501:No)は、ステップS1508へ移行する。 Note that step S1507 is processing when the processing target is CRS. When the processing target is DRS, step S1507 may be omitted. In this case, when the RS transmission timer does not satisfy the specified value in step S1501 (step S1501: No), the base station 110 proceeds to step S1508.
(RS送信情報の例2における端末による処理)
 図16は、RS送信情報の例2における端末による処理の一例を示すフローチャートである。RS送信情報として図13に示したRS送信情報1300を用いる場合であって、基地局110からUバンドで送信されるRSに基づいてCQIの測定を行う場合は、端末120は、サブフレームごとに図16に示す各ステップを実行する。
(Processing by terminal in RS transmission information example 2)
FIG. 16 is a flowchart illustrating an example of processing by the terminal in the RS transmission information example 2. When RS transmission information 1300 shown in FIG. 13 is used as the RS transmission information, and CQI measurement is performed based on RS transmitted from the base station 110 in the U band, the terminal 120 may Each step shown in FIG. 16 is executed.
 まず、端末120は、基地局110によってLバンドで送信されるRS送信情報を受信する(ステップS1601)。つぎに、端末120は、ステップS1601により受信したRS送信情報に基づいて、現在のサブフレームについてRS送信予定あり(RS送信情報=1)か否かを判断する(ステップS1602)。 First, the terminal 120 receives RS transmission information transmitted in the L band by the base station 110 (step S1601). Next, the terminal 120 determines whether or not there is an RS transmission plan for the current subframe (RS transmission information = 1) based on the RS transmission information received in step S1601 (step S1602).
 ステップS1602において、RS送信予定ありでない場合(ステップS1602:No)は、端末120は、一連の処理を終了する。RS送信予定ありの場合(ステップS1602:Yes)は、端末120は、Uバンドにおける基地局110からのRSを検出するRS検出処理を行う(ステップS1603)。たとえば、端末120は、RSのレプリカ信号と受信信号との相関を計算し、計算した相関が閾値より高い場合にRS送信があったと判断するRS検出処理を行う。 In step S1602, if the RS transmission is not scheduled (step S1602: No), the terminal 120 ends the series of processes. When there is an RS transmission plan (step S1602: Yes), the terminal 120 performs an RS detection process for detecting an RS from the base station 110 in the U band (step S1603). For example, the terminal 120 calculates the correlation between the RS replica signal and the received signal, and performs RS detection processing for determining that RS transmission has occurred when the calculated correlation is higher than a threshold.
 つぎに、端末120は、ステップS1603によるRS検出処理の結果に基づいて、Uバンドにおいて基地局110からRS送信があったか否かを判定する(ステップS1604)。RS送信がなかった場合(ステップS1604:No)は、端末120は、一連の処理を終了する。RS送信があった場合(ステップS1604:Yes)は、端末120は、基地局110からUバンドで送信されたRSに基づいてCQIの測定を行い(ステップS1605)、一連の処理を終了する。 Next, the terminal 120 determines whether or not there is an RS transmission from the base station 110 in the U band based on the result of the RS detection process in step S1603 (step S1604). When there is no RS transmission (step S1604: No), the terminal 120 ends a series of processes. When there is RS transmission (step S1604: Yes), the terminal 120 performs CQI measurement based on the RS transmitted from the base station 110 in the U band (step S1605), and ends a series of processes.
 また、端末120は、たとえば、基地局110からUバンドで送信されるRSに基づいてRRM測定を行う場合も、サブフレームごとに図16に示す各ステップを実行する。ただし、この場合は、ステップS1605において、端末120は、基地局110によって送信されたRSに基づいてRRM測定を行う。 Further, for example, also when the terminal 120 performs RRM measurement based on the RS transmitted from the base station 110 in the U band, the terminal 120 performs the steps illustrated in FIG. 16 for each subframe. However, in this case, in step S1605, the terminal 120 performs RRM measurement based on the RS transmitted by the base station 110.
 また、端末120は、たとえば、基地局110からUバンドで送信されるRSに基づいてタイミングトラッキングや周波数トラッキングを行う場合も、サブフレームごとに図16に示す各ステップを実行する。ただし、この場合は、ステップS1605において、端末120は、基地局110によって送信されたRSに基づいてタイミングトラッキングや周波数トラッキングを行う。 Also, for example, when performing timing tracking and frequency tracking based on RS transmitted from the base station 110 in the U band, the terminal 120 performs the steps shown in FIG. 16 for each subframe. However, in this case, in step S1605, the terminal 120 performs timing tracking and frequency tracking based on the RS transmitted by the base station 110.
 また、端末120は、ステップS1605におけるCQIの測定などとともに、RSと同時に基地局110から送信されるデータの受信処理を行ってもよい。 Further, the terminal 120 may perform reception processing of data transmitted from the base station 110 simultaneously with the RS, together with CQI measurement in step S1605.
(RS送信情報の例3)
 図17は、RS送信情報の例3を示す図である。基地局110が送信するRS送信情報は、たとえば図17に示すRS送信情報1700としてもよい。図17に示すRS送信情報1700は、2ビットの情報であり、RS送信の有無に加えて、RS送信がある場合は送信するRSの種別を示す。図17に示す例では、基地局110は、RSとして、CRSおよびCSI-RSを送信する場合について説明する。
(Example 3 of RS transmission information)
FIG. 17 is a diagram illustrating Example 3 of RS transmission information. The RS transmission information transmitted by the base station 110 may be, for example, RS transmission information 1700 illustrated in FIG. The RS transmission information 1700 shown in FIG. 17 is 2-bit information, and indicates the type of RS to be transmitted when there is RS transmission in addition to the presence or absence of RS transmission. In the example illustrated in FIG. 17, the case where the base station 110 transmits CRS and CSI-RS as RS will be described.
 たとえば、RS送信情報1700は、値が“00”の場合はRS送信がないこと(RS送信なし)を示す。また、RS送信情報1700は、値が“01”の場合はCRSの送信があり、かつCSI-RSの送信がないこと(CRS送信あり)を示す。また、RS送信情報1700は、値が“10”の場合はCSI-RSの送信があり、かつCRSの送信がないこと(CSI-RS送信あり)を示す。また、RS送信情報1700は、値が“11”の場合はCRSおよびCSI-RSの両方の送信があること(CRS,CSI-RS送信あり)を示す。 For example, the RS transmission information 1700 indicates that there is no RS transmission (no RS transmission) when the value is “00”. In addition, when the value is “01”, the RS transmission information 1700 indicates that there is CRS transmission and no CSI-RS transmission (with CRS transmission). Further, when the value is “10”, the RS transmission information 1700 indicates that there is CSI-RS transmission and no CRS transmission (with CSI-RS transmission). Further, when the value of the RS transmission information 1700 is “11”, it indicates that both CRS and CSI-RS transmissions are present (with CRS and CSI-RS transmissions).
(RS送信情報の例3における基地局による処理)
 図18は、RS送信情報の例3における基地局による処理の一例を示すフローチャートである。RS送信情報として図17に示したRS送信情報1700を用いる場合は、基地局110は、たとえば、サブフレームごとに図18に示す各ステップを実行する。まず、基地局110は、次のサブフレームにおいてUバンドでRSを送信可能か否かを判断する(ステップS1801)。
(Processing by base station in example 3 of RS transmission information)
FIG. 18 is a flowchart illustrating an example of processing by the base station in Example 3 of RS transmission information. When the RS transmission information 1700 illustrated in FIG. 17 is used as the RS transmission information, the base station 110 executes, for example, each step illustrated in FIG. 18 for each subframe. First, the base station 110 determines whether or not RS can be transmitted in the U band in the next subframe (step S1801).
 たとえば、基地局110は、無線信号を連続送信中である場合や、キャリアセンスによって空き帯域を検出し、ダミー信号やプリアンブル信号などを送信することにより送信機会を確保できている場合は、次のサブフレームにおいてRSを送信可能と判断する。また、基地局110は、無線信号を連続送信中でなく、かつ、ダミー信号やプリアンブル信号などにより送信機会を確保できていない場合は、次のサブフレームにおいてRSを送信不可と判断する。 For example, when the base station 110 is continuously transmitting a radio signal, or when a transmission opportunity is secured by detecting a vacant band by carrier sense and transmitting a dummy signal, a preamble signal, etc., It is determined that RS can be transmitted in the subframe. In addition, the base station 110 determines that the RS cannot be transmitted in the next subframe when the radio signal is not continuously transmitted and the transmission opportunity is not secured by a dummy signal or a preamble signal.
 ステップS1801において、サブフレームにおいてUバンドでRSを送信可能である場合(ステップS1801:Yes)は、基地局110は、CRS送信タイマが規定値を満たすか否かを判断する(ステップS1802)。CRS送信タイマは、対象のCRSの送信タイミング(送信サブフレーム)を測るタイマであって、対象のCRSの送信周期に応じて設定される。すなわち、基地局110は、次のサブフレームがCRSを送信すべきサブフレームであるか否かを判断する。 In step S1801, when the RS can be transmitted in the U band in the subframe (step S1801: Yes), the base station 110 determines whether or not the CRS transmission timer satisfies the specified value (step S1802). The CRS transmission timer is a timer for measuring the transmission timing (transmission subframe) of the target CRS, and is set according to the transmission cycle of the target CRS. That is, the base station 110 determines whether or not the next subframe is a subframe in which CRS is to be transmitted.
 ステップS1802において、CRS送信タイマが規定値を満たす場合(ステップS1802:Yes)は、基地局110は、CRS送信タイマをリセットする(ステップS1803)。また、基地局110は、CSI-RS送信タイマが規定値を満たすか否かを判断する(ステップS1804)。CSI-RS送信タイマは、対象のCSI-RSの送信タイミング(送信サブフレーム)を測るタイマであって、対象のCSI-RSの送信周期に応じて設定される。すなわち、基地局110は、次のサブフレームが、CSI-RSを送信すべきサブフレームであるか否かを判断する。 In step S1802, when the CRS transmission timer satisfies the specified value (step S1802: Yes), the base station 110 resets the CRS transmission timer (step S1803). Further, the base station 110 determines whether or not the CSI-RS transmission timer satisfies a specified value (step S1804). The CSI-RS transmission timer is a timer for measuring the transmission timing (transmission subframe) of the target CSI-RS, and is set according to the transmission cycle of the target CSI-RS. That is, base station 110 determines whether or not the next subframe is a subframe in which CSI-RS is to be transmitted.
 ステップS1804において、CSI-RS送信タイマが規定値を満たす場合(ステップS1804:Yes)は、基地局110は、送信するRS送信情報を“11”(CRS,CSI-RS送信あり)に設定する(ステップS1805)。また、基地局110は、CSI-RS送信タイマをリセットし(ステップS1806)、一連の処理を終了する。 In step S1804, when the CSI-RS transmission timer satisfies the specified value (step S1804: Yes), the base station 110 sets the RS transmission information to be transmitted to “11” (with CRS and CSI-RS transmission) ( Step S1805). Further, the base station 110 resets the CSI-RS transmission timer (step S1806), and ends a series of processing.
 ステップS1804において、CSI-RS送信タイマが規定値を満たさない場合(ステップS1804:No)は、基地局110は、送信するRS送信情報を“01”(CRS送信あり)に設定する(ステップS1807)。また、基地局110は、CSI-RS送信タイマを1サブフレーム分進める(ステップS1808)。そして、基地局110は、一連の処理を終了する。 In step S1804, if the CSI-RS transmission timer does not satisfy the specified value (step S1804: No), the base station 110 sets the RS transmission information to be transmitted to “01” (with CRS transmission) (step S1807). . In addition, the base station 110 advances the CSI-RS transmission timer by one subframe (step S1808). And the base station 110 complete | finishes a series of processes.
 ステップS1802において、CRS送信タイマが規定値を満たさない場合(ステップS1802:No)は、基地局110は、端末120への送信データがあり、かつCRS同時送信を要するか否かを判断する(ステップS1809)。CRS同時送信を要する場合とは、送信データを受信する端末120において、復調などのために送信データとCRSの同時送信を要する場合である。 In step S1802, when the CRS transmission timer does not satisfy the specified value (step S1802: No), the base station 110 determines whether there is transmission data to the terminal 120 and whether CRS simultaneous transmission is required (step S1802). S1809). The case where CRS simultaneous transmission is required is a case where the terminal 120 that receives transmission data requires simultaneous transmission of transmission data and CRS for demodulation or the like.
 ステップS1809において、送信データがあり、かつCRS同時送信を要すると判断した場合(ステップS1809:Yes)は、基地局110は、ステップS1803へ移行する。送信データがなく、またはCRS同時送信を要しないと判断した場合(ステップS1809:No)は、基地局110は、ステップS1810へ移行する。すなわち、基地局110は、CRS送信タイマを1サブフレーム分進める(ステップS1810)。 If it is determined in step S1809 that there is transmission data and CRS simultaneous transmission is required (step S1809: Yes), the base station 110 proceeds to step S1803. If it is determined that there is no transmission data or that CRS simultaneous transmission is not required (step S1809: No), the base station 110 proceeds to step S1810. That is, the base station 110 advances the CRS transmission timer by one subframe (step S1810).
 つぎに、基地局110は、CSI-RS送信タイマが規定値を満たすか否かを判断する(ステップS1811)。すなわち、基地局110は、次のサブフレームが、CSI-RSを送信すべきサブフレームであるか否かを判断する。CSI-RS送信タイマが規定値を満たす場合(ステップS1811:Yes)は、基地局110は、送信するRS送信情報を“10”(CSI-RS送信あり)に設定する(ステップS1812)。また、基地局110は、CSI-RS送信タイマをリセットし(ステップS1813)、一連の処理を終了する。 Next, the base station 110 determines whether or not the CSI-RS transmission timer satisfies a specified value (step S1811). That is, base station 110 determines whether or not the next subframe is a subframe in which CSI-RS is to be transmitted. When the CSI-RS transmission timer satisfies the specified value (step S1811: Yes), the base station 110 sets the RS transmission information to be transmitted to “10” (with CSI-RS transmission) (step S1812). Further, the base station 110 resets the CSI-RS transmission timer (step S1813), and ends a series of processes.
 ステップS1811において、CSI-RS送信タイマが規定値を満たさない場合(ステップS1811:No)は、基地局110は、送信するRS送信情報を“00”(RS送信なし)に設定する(ステップS1814)。また、基地局110は、CSI-RS送信タイマを1サブフレーム分進める(ステップS1815)。そして、基地局110は、一連の処理を終了する。 In step S1811, if the CSI-RS transmission timer does not satisfy the specified value (step S1811: No), the base station 110 sets the RS transmission information to be transmitted to “00” (no RS transmission) (step S1814). . Further, the base station 110 advances the CSI-RS transmission timer by one subframe (step S1815). And the base station 110 complete | finishes a series of processes.
 ステップS1801において、次のサブフレームにおいてUバンドでRSを送信可能でない場合(ステップS1801:No)は、基地局110は、ステップS1814へ移行する。 In step S1801, if the RS cannot be transmitted in the U band in the next subframe (step S1801: No), the base station 110 proceeds to step S1814.
(RS送信情報の例3における端末による処理)
 図19は、RS送信情報の例3における端末による処理の一例を示すフローチャートである。RS送信情報として図17に示したRS送信情報1700を用いる場合であって、基地局110からUバンドで送信されるCRSに基づいてCQIの測定を行う場合は、端末120は、たとえば、サブフレームごとに図19に示す各ステップを実行する。
(Processing by terminal in RS transmission information example 3)
FIG. 19 is a flowchart illustrating an example of processing performed by the terminal in the third example of RS transmission information. When RS transmission information 1700 shown in FIG. 17 is used as the RS transmission information, and CQI measurement is performed based on CRS transmitted from the base station 110 in the U band, the terminal 120, for example, Each step shown in FIG. 19 is executed every time.
 まず、端末120は、基地局110によってLバンドで送信されるRS送信情報を受信する(ステップS1901)。つぎに、端末120は、ステップS1901により受信したRS送信情報に基づいて、現在のサブフレームについてCRS送信ありか否かを判断する(ステップS1902)。CRS送信ありの場合とは、RS送信情報の値が“01”または“11”の場合である(たとえば図17参照)。 First, the terminal 120 receives RS transmission information transmitted in the L band by the base station 110 (step S1901). Next, the terminal 120 determines whether there is CRS transmission for the current subframe based on the RS transmission information received in step S1901 (step S1902). The case of CRS transmission is a case where the value of RS transmission information is “01” or “11” (see, for example, FIG. 17).
 ステップS1902において、CRS送信ありでない場合(ステップS1902:No)は、端末120は、ステップS1901へ戻る。CRS送信ありの場合(ステップS1902:Yes)は、端末120は、基地局110からUバンドで送信されるCRSに基づいてCQIの測定を行い(ステップS1903)、一連の処理を終了する。 In step S1902, when there is no CRS transmission (step S1902: No), the terminal 120 returns to step S1901. When there is CRS transmission (step S1902: Yes), the terminal 120 measures CQI based on the CRS transmitted from the base station 110 in the U band (step S1903), and ends a series of processes.
 また、端末120は、たとえば、基地局110からUバンドで送信されるCRSに基づいてRRM測定を行う場合も、サブフレームごとに図19に示す各ステップを実行する。ただし、この場合は、ステップS1903において、端末120は、基地局110によって送信されたCRSに基づいてRRM測定を行う。 Also, for example, when the R120 measurement is performed based on the CRS transmitted from the base station 110 in the U band, the terminal 120 performs the steps illustrated in FIG. 19 for each subframe. However, in this case, in step S1903, the terminal 120 performs RRM measurement based on the CRS transmitted by the base station 110.
 また、端末120は、たとえば、基地局110からUバンドで送信されるCRSに基づいてタイミングトラッキングや周波数トラッキングを行う場合も、サブフレームごとに図19に示す各ステップを実行する。ただし、この場合は、ステップS1903において、端末120は、基地局110によって送信されたCRSに基づいてタイミングトラッキングや周波数トラッキングを行う。 Also, for example, when performing timing tracking and frequency tracking based on CRS transmitted from the base station 110 in the U band, the terminal 120 executes the steps shown in FIG. 19 for each subframe. However, in this case, in step S1903, the terminal 120 performs timing tracking and frequency tracking based on the CRS transmitted by the base station 110.
 図20は、RS送信情報の例3における端末による処理の他の例を示すフローチャートである。RS送信情報として図17に示したRS送信情報1700を用いる場合であって、基地局110からUバンドで送信されるCSI-RSに基づいてCSIの測定を行う場合は、端末120は、たとえばサブフレームごとに図20に示す各ステップを実行する。 FIG. 20 is a flowchart showing another example of processing by the terminal in Example 3 of RS transmission information. When RS transmission information 1700 shown in FIG. 17 is used as the RS transmission information, and CSI is measured based on CSI-RS transmitted from base station 110 in the U band, terminal 120, for example, Each step shown in FIG. 20 is executed for each frame.
 まず、端末120は、基地局110によってLバンドで送信されるRS送信情報を受信する(ステップS2001)。つぎに、端末120は、ステップS2001により受信したRS送信情報に基づいて、現在のサブフレームについてCSI-RS送信ありか否かを判断する(ステップS2002)。CSI-RS送信ありの場合とは、RS送信情報の値が“10”または“11”の場合である(たとえば図17参照)。 First, the terminal 120 receives RS transmission information transmitted in the L band by the base station 110 (step S2001). Next, the terminal 120 determines whether there is CSI-RS transmission for the current subframe based on the RS transmission information received in step S2001 (step S2002). The case of CSI-RS transmission is a case where the value of RS transmission information is “10” or “11” (see, for example, FIG. 17).
 ステップS2002において、CSI-RS送信ありでない場合(ステップS2002:No)は、端末120は、ステップS2001へ戻る。CSI-RS送信ありの場合(ステップS2002:Yes)は、端末120は、基地局110からUバンドで送信されるCSI-RSに基づいてCSIの測定を行い(ステップS2003)、一連の処理を終了する。 In step S2002, when there is no CSI-RS transmission (step S2002: No), the terminal 120 returns to step S2001. When there is CSI-RS transmission (step S2002: Yes), the terminal 120 measures CSI based on the CSI-RS transmitted from the base station 110 in the U band (step S2003), and ends a series of processes. To do.
(RS送信情報の例4)
 図21は、RS送信情報の例4を示す図である。基地局110が送信するRS送信情報は、たとえば図21に示すRS送信情報2100としてもよい。図21に示すRS送信情報2100は、2ビットの情報であり、RS送信の有無に加えて、RS送信がある場合は送信データフォーマットを示す。
(Example 4 of RS transmission information)
FIG. 21 is a diagram illustrating Example 4 of RS transmission information. The RS transmission information transmitted by the base station 110 may be, for example, RS transmission information 2100 illustrated in FIG. The RS transmission information 2100 shown in FIG. 21 is 2-bit information, and indicates the transmission data format when there is RS transmission in addition to the presence or absence of RS transmission.
 たとえば、RS送信情報2100は、値が“00”の場合はRS送信がないこと(RS送信なし)を示す。また、RS送信情報2100は、値が“01”の場合はRS送信があり、送信データフォーマットが“フォーマット1”であることを示す。また、RS送信情報2100は、値が“10”の場合はRS送信があり、送信データフォーマットが“フォーマット2”であることを示す。また、RS送信情報2100は、値が“11”の場合はRS送信があり、送信データフォーマットが“フォーマット3”であることを示す。 For example, the RS transmission information 2100 indicates that there is no RS transmission (no RS transmission) when the value is “00”. Further, in the RS transmission information 2100, when the value is “01”, there is RS transmission, and the transmission data format is “format 1”. Further, in the RS transmission information 2100, when the value is “10”, there is RS transmission, and the transmission data format is “format 2”. The RS transmission information 2100 indicates that there is RS transmission when the value is “11”, and the transmission data format is “format 3”.
 送信データフォーマットは、たとえばサブフレームにおけるデータ信号の開始位置および終了位置に関するフォーマットである。データ信号の開始位置および終了位置は、それぞれOFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)シンボルによって表される。 The transmission data format is, for example, a format related to the start position and end position of the data signal in the subframe. The start position and the end position of the data signal are represented by OFDM (Orthogonal Frequency Division Multiplexing) symbols, respectively.
 一例としては、“フォーマット1”は、データ信号の開始位置が2番目のOFDMシンボルであり、データ信号の終了位置が14番目のOFDMシンボルであるフォーマットである。“フォーマット2”は、データ信号の開始位置が1番目のOFDMシンボルであり、データ信号の終了位置が14番目のOFDMシンボルであるフォーマットである。“フォーマット3”は、データ信号の開始位置が1番目のOFDMシンボルであり、データ信号の終了位置が13番目のOFDMシンボルであるフォーマットである。 As an example, “format 1” is a format in which the start position of the data signal is the second OFDM symbol and the end position of the data signal is the 14th OFDM symbol. “Format 2” is a format in which the start position of the data signal is the first OFDM symbol and the end position of the data signal is the 14th OFDM symbol. “Format 3” is a format in which the start position of the data signal is the first OFDM symbol and the end position of the data signal is the thirteenth OFDM symbol.
 このように、RS送信情報を用いて送信データフォーマットを通知する構成とすることで、制御情報の低減を図ることができる。 Thus, the control information can be reduced by adopting a configuration in which the transmission data format is notified using the RS transmission information.
(3通りのフォーマットによる送信データ)
 図22は、3通りのフォーマットによる送信データの一例を示す図である。図22において、横軸(t)は時間を示す。基地局110は、たとえば、図22に示すように、サブフレームsb1~sb4において、それぞれデータ送信2201~2204を行う。データ送信2201~2204は、それぞれ“フォーマット1”、“フォーマット2”、“フォーマット2”、“フォーマット3”によるデータ送信である。
(Transmission data in three formats)
FIG. 22 is a diagram illustrating an example of transmission data in three formats. In FIG. 22, the horizontal axis (t) indicates time. For example, as shown in FIG. 22, base station 110 performs data transmissions 2201 to 2204 in subframes sb1 to sb4, respectively. Data transmissions 2201 to 2204 are data transmissions of “format 1”, “format 2”, “format 2”, and “format 3”, respectively.
 このように、基地局110は、サブフレームごとに、3通りのフォーマットのいずれかを用いてデータ送信を行う。そして、基地局110は、RS送信情報2100によって、RS送信に加えて送信データフォーマットを端末120へ通知する。 In this way, the base station 110 transmits data using one of three formats for each subframe. Then, the base station 110 notifies the terminal 120 of the transmission data format in addition to the RS transmission by the RS transmission information 2100.
(RS送信情報の例4における変形例1)
 図23は、RS送信情報の例4における変形例1を示す図である。基地局110が使用する送信データフォーマットが2通りである場合は、基地局110が送信するRS送信情報は、たとえば図23に示すRS送信情報2300としてもよい。図23に示すRS送信情報2300は、2ビットの情報であり、RS送信の有無に加えて、RS送信がある場合は送信データフォーマットを示す。
(Modification 1 in Example 4 of RS transmission information)
FIG. 23 is a diagram illustrating a first modification of the fourth example of RS transmission information. When there are two transmission data formats used by the base station 110, the RS transmission information transmitted by the base station 110 may be, for example, the RS transmission information 2300 illustrated in FIG. The RS transmission information 2300 shown in FIG. 23 is 2-bit information, and indicates the transmission data format when there is RS transmission in addition to the presence or absence of RS transmission.
 たとえば、RS送信情報2300は、値が“00”の場合はRS送信がないこと(RS送信なし)を示す。また、RS送信情報2300は、値が“01”の場合はRS送信があり、送信データフォーマットが“フォーマット1”であることを示す。また、RS送信情報2300は、値が“10”の場合はRS送信があり、送信データフォーマットが“フォーマット2”であることを示す。 For example, the RS transmission information 2300 indicates that there is no RS transmission (no RS transmission) when the value is “00”. Further, in the RS transmission information 2300, when the value is “01”, there is RS transmission, and the transmission data format is “format 1”. Further, in the RS transmission information 2300, when the value is “10”, there is RS transmission, and the transmission data format is “format 2”.
(2通りのフォーマットによる送信データ)
 図24は、2通りのフォーマットによる送信データの一例を示す図である。図24において、図22に示した部分と同様の部分については同一の符号を付して説明を省略する。基地局110は、たとえば、図24に示すように、サブフレームsb1~sb3において、それぞれデータ送信2401~2403を行う。データ送信2401~2403は、それぞれ“フォーマット1”、“フォーマット2”、“フォーマット2”によるデータ送信である。
(Transmission data in two formats)
FIG. 24 is a diagram illustrating an example of transmission data in two formats. In FIG. 24, the same parts as those shown in FIG. For example, as shown in FIG. 24, the base station 110 performs data transmission 2401 to 2403 in subframes sb1 to sb3, respectively. Data transmissions 2401 to 2403 are data transmissions of “format 1”, “format 2”, and “format 2”, respectively.
 このように、基地局110は、サブフレームごとに、2通りのフォーマットのいずれかを用いてデータ送信を行ってもよい。そして、基地局110は、RS送信情報2100によって、RS送信に加えて送信データフォーマットを端末120へ通知する。 Thus, the base station 110 may perform data transmission using one of two formats for each subframe. Then, the base station 110 notifies the terminal 120 of the transmission data format in addition to the RS transmission by the RS transmission information 2100.
(RS送信情報の例4における変形例2)
 図25は、RS送信情報の例4における変形例2を示す図である。基地局110が使用する送信データフォーマットが2通りである場合は、基地局110が送信するRS送信情報は、たとえば図25に示すRS送信情報2500としてもよい。図25に示すRS送信情報2500は、2ビットの情報であり、RS送信の有無に加えて、RS送信がある場合は送信データフォーマットおよびデータ送信の有無を示す。
(Modification 2 in example 4 of RS transmission information)
FIG. 25 is a diagram illustrating a second modification of the fourth example of RS transmission information. When there are two transmission data formats used by the base station 110, the RS transmission information transmitted by the base station 110 may be, for example, the RS transmission information 2500 illustrated in FIG. The RS transmission information 2500 shown in FIG. 25 is 2-bit information, and indicates the transmission data format and the presence / absence of data transmission when there is RS transmission in addition to the presence / absence of RS transmission.
 たとえば、RS送信情報2500は、値が“00”の場合はRS送信がないこと(RS送信なし)を示す。また、RS送信情報2500は、値が“01”の場合はRS送信があり、かつ送信データフォーマットが“フォーマット1”であることを示す。また、RS送信情報2500は、値が“10”の場合はRS送信があり、かつ送信データフォーマットが“フォーマット2”であることを示す。また、RS送信情報2500は、値が“11”の場合はRS送信があり、かつデータ送信がないことを示す。 For example, the RS transmission information 2500 indicates that there is no RS transmission (no RS transmission) when the value is “00”. Further, in the RS transmission information 2500, when the value is “01”, it indicates that there is RS transmission and the transmission data format is “format 1”. In addition, when the value is “10”, the RS transmission information 2500 indicates that there is RS transmission and the transmission data format is “format 2”. Further, in the RS transmission information 2500, when the value is “11”, it indicates that there is RS transmission and no data transmission.
 図23~図25において、RS送信情報の例4における変形例について説明したが、以下、図21に示したRS送信情報2100を用いる場合について説明する。 23 to 25, the modification example of the RS transmission information example 4 has been described. Hereinafter, the case of using the RS transmission information 2100 illustrated in FIG. 21 will be described.
(RS送信情報の例4における基地局による処理)
 図26は、RS送信情報の例4における基地局による処理の一例を示すフローチャートである。RS送信情報として図21に示したRS送信情報2100を用いる場合は、基地局110は、たとえば、サブフレームごとに図26に示す各ステップを実行する。
(Processing by base station in RS transmission information example 4)
FIG. 26 is a flowchart illustrating an example of processing by the base station in the fourth example of RS transmission information. When the RS transmission information 2100 illustrated in FIG. 21 is used as the RS transmission information, the base station 110 executes, for example, each step illustrated in FIG. 26 for each subframe.
 まず、基地局110は、RS送信タイマが規定値を満たすか否かを判断する(ステップS2601)。RS送信タイマが規定値を満たす場合(ステップS2601:Yes)は、基地局110は、次のサブフレームでRSを送信可能か否かを判断する(ステップS2602)。たとえば、基地局110は、無線信号を連続送信中である場合や、キャリアセンスによって空き帯域を検出し、ダミー信号やプリアンブル信号などを送信することにより送信機会を確保できている場合は、次のサブフレームにおいてRSを送信可能と判断する。また、基地局110は、無線信号を連続送信中でなく、かつ、ダミー信号やプリアンブル信号などにより送信機会を確保できていない場合は、次のサブフレームにおいてRSを送信不可と判断する。 First, the base station 110 determines whether or not the RS transmission timer satisfies a specified value (step S2601). When the RS transmission timer satisfies the specified value (step S2601: Yes), the base station 110 determines whether or not RS can be transmitted in the next subframe (step S2602). For example, when the base station 110 is continuously transmitting a radio signal, or when a transmission opportunity is secured by detecting a vacant band by carrier sense and transmitting a dummy signal, a preamble signal, etc., It is determined that RS can be transmitted in the subframe. In addition, the base station 110 determines that the RS cannot be transmitted in the next subframe when the radio signal is not continuously transmitted and the transmission opportunity is not secured by a dummy signal or a preamble signal.
 ステップS2602において、次のサブフレームでRSを送信可能である場合(ステップS2602:Yes)は、基地局110は、データ送信フォーマットに基づいてRS送信情報を設定する(ステップS2603)。たとえば、図21に示した例では、基地局110は、次のサブフレームのデータ送信に“フォーマット1”を用いる場合はRS送信情報を“01”に設定する。また、基地局110は、次のサブフレームのデータ送信に“フォーマット2”を用いる場合はRS送信情報を“10”に設定する。また、基地局110は、次のサブフレームのデータ送信に“フォーマット3”を用いる場合はRS送信情報を“11”に設定する。 In step S2602, when the RS can be transmitted in the next subframe (step S2602: Yes), the base station 110 sets the RS transmission information based on the data transmission format (step S2603). For example, in the example shown in FIG. 21, base station 110 sets RS transmission information to “01” when “format 1” is used for data transmission of the next subframe. Also, the base station 110 sets the RS transmission information to “10” when “format 2” is used for data transmission of the next subframe. Further, the base station 110 sets the RS transmission information to “11” when “format 3” is used for data transmission of the next subframe.
 また、基地局110は、RS送信タイマをリセットし(ステップS2604)、一連の処理を終了する。 In addition, the base station 110 resets the RS transmission timer (step S2604), and ends a series of processes.
 ステップS2602において、次のサブフレームでRSを送信可能でない場合(ステップS2602:No)は、基地局110は、送信するRS送信情報を“00”(RS送信なし)に設定する(ステップS2605)。また、基地局110は、RS送信タイマを1サブフレーム分進める(ステップS2606)。そして、基地局110は一連の処理を終了する。 In step S2602, if the RS cannot be transmitted in the next subframe (step S2602: No), the base station 110 sets the RS transmission information to be transmitted to “00” (no RS transmission) (step S2605). Further, the base station 110 advances the RS transmission timer by one subframe (step S2606). Then, the base station 110 ends a series of processes.
 ステップS2601において、RS送信タイマが規定値を満たさない場合(ステップS2601:No)は、基地局110は、端末120への送信データがあり、かつ、RS同時送信を要するか否かを判断する(ステップS2607)。端末120への送信データがあり、かつ、RS同時送信を要すると判断した場合(ステップS2607:Yes)は、基地局110は、次のサブフレームでRSを送信可能か否かを判断する(ステップS2608)。ステップS2608における判断は、ステップS2602における判断と同様である。 In step S2601, when the RS transmission timer does not satisfy the specified value (step S2601: No), the base station 110 determines whether there is transmission data to the terminal 120 and whether RS simultaneous transmission is required (step S2601: No). Step S2607). When it is determined that there is transmission data to terminal 120 and RS simultaneous transmission is required (step S2607: Yes), base station 110 determines whether or not RS can be transmitted in the next subframe (step S2607). S2608). The determination in step S2608 is the same as the determination in step S2602.
 ステップS2608において、次のサブフレームでRSを送信可能である場合(ステップS2608:Yes)は、基地局110は、データ送信フォーマットに基づいてRS送信情報を設定する(ステップS2609)。ステップS2609による設定は、たとえばステップS2603による設定と同様である。また、基地局110は、RS送信タイマをリセットし(ステップS2610)、一連の処理を終了する。 In step S2608, when the RS can be transmitted in the next subframe (step S2608: Yes), the base station 110 sets the RS transmission information based on the data transmission format (step S2609). The setting in step S2609 is the same as the setting in step S2603, for example. In addition, the base station 110 resets the RS transmission timer (step S2610), and ends a series of processes.
 ステップS2607において、端末120への送信データがなく、または、RS同時送信を要しないと判断した場合(ステップS2607:No)は、基地局110は、送信するRS送信情報を“00”(RS送信なし)に設定する(ステップS2611)。また、基地局110は、RS送信タイマを1サブフレーム分進める(ステップS2612)。そして、基地局110は、一連の処理を終了する。 If it is determined in step S2607 that there is no transmission data to the terminal 120 or that RS simultaneous transmission is not required (step S2607: No), the base station 110 sets the RS transmission information to be transmitted to “00” (RS transmission). (None) (step S2611). Further, the base station 110 advances the RS transmission timer by one subframe (step S2612). And the base station 110 complete | finishes a series of processes.
 ステップS2608において、次のサブフレームでRSを送信可能でない場合(ステップS2608:No)は、基地局110は、ステップS2611へ移行する。 In step S2608, when the RS cannot be transmitted in the next subframe (step S2608: No), the base station 110 proceeds to step S2611.
(RS送信情報の例4における端末による処理)
 図27は、RS送信情報の例4における端末による処理の一例を示すフローチャートである。RS送信情報として図21に示したRS送信情報2100を用い、現サブフレームで端末120がデータ受信を行わない場合は、端末120は、たとえば、サブフレームごとに図27に示す各ステップを実行する。現サブフレームで端末120がデータ受信を行わない場合とは、たとえば、現サブフレームにおけるリソース割当用のPDCCHを端末120が基地局110から受信しなかった場合である。
(Processing by terminal in RS transmission information example 4)
FIG. 27 is a flowchart illustrating an example of processing performed by a terminal in the fourth example of RS transmission information. When RS transmission information 2100 shown in FIG. 21 is used as RS transmission information and terminal 120 does not receive data in the current subframe, terminal 120 executes, for example, each step shown in FIG. 27 for each subframe. . The case where the terminal 120 does not receive data in the current subframe is, for example, the case where the terminal 120 does not receive the PDCCH for resource allocation in the current subframe from the base station 110.
 まず、端末120は、基地局110によってLバンドで送信されるRS送信情報を受信する(ステップS2701)。つぎに、端末120は、ステップS2701により受信したRS送信情報に基づいて、現在のサブフレームについてRS送信ありか否かを判断する(ステップS2702)。RS送信ありの場合とは、RS送信情報の値が“01”、“10”または“11”の場合である(たとえば図21参照)。 First, the terminal 120 receives RS transmission information transmitted in the L band by the base station 110 (step S2701). Next, the terminal 120 determines whether or not there is RS transmission for the current subframe based on the RS transmission information received in step S2701 (step S2702). The case of RS transmission is a case where the value of RS transmission information is “01”, “10”, or “11” (see, for example, FIG. 21).
 ステップS2702において、RS送信ありでない場合(ステップS2702:No)は、端末120は、ステップS2701へ戻る。RS送信ありの場合(ステップS2702:Yes)は、端末120は、基地局110からUバンドで送信されるRSに基づいてCQIの測定を行い(ステップS2703)、一連の処理を終了する。 In step S2702, when there is no RS transmission (step S2702: No), the terminal 120 returns to step S2701. When there is RS transmission (step S2702: Yes), the terminal 120 measures CQI based on the RS transmitted from the base station 110 in the U band (step S2703), and ends a series of processes.
 また、端末120は、たとえば、基地局110からUバンドで送信されるRSに基づいてRRM測定を行う場合も、サブフレームごとに図27に示す各ステップを実行する。ただし、この場合は、ステップS2703において、端末120は、基地局110によって送信されたRSに基づいてRRM測定を行う。 In addition, for example, when the terminal 120 performs RRM measurement based on the RS transmitted from the base station 110 in the U band, the terminal 120 performs the steps illustrated in FIG. 27 for each subframe. However, in this case, in step S2703, the terminal 120 performs RRM measurement based on the RS transmitted by the base station 110.
 また、端末120は、たとえば、基地局110からUバンドで送信されるRSに基づいてタイミングトラッキングや周波数トラッキングを行う場合も、サブフレームごとに図27に示す各ステップを実行する。ただし、この場合は、ステップS2703において、端末120は、基地局110によって送信されたRSに基づいてタイミングトラッキングや周波数トラッキングを行う。 Also, for example, when performing timing tracking and frequency tracking based on RS transmitted from the base station 110 in the U band, the terminal 120 executes the steps shown in FIG. 27 for each subframe. However, in this case, in step S2703, the terminal 120 performs timing tracking and frequency tracking based on the RS transmitted by the base station 110.
 図28は、RS送信情報の例4における端末による処理の他の例を示すフローチャートである。RS送信情報として図21に示したRS送信情報2100を用い、現サブフレームで端末120がデータ受信を行う場合は、端末120は、たとえば、サブフレームごとに図28に示す各ステップを実行する。現サブフレームで端末120がデータ受信を行う場合とは、たとえば、現サブフレームにおけるリソース割当用のPDCCHを端末120が基地局110から受信した場合である。 FIG. 28 is a flowchart illustrating another example of processing by the terminal in the fourth example of RS transmission information. When RS transmission information 2100 shown in FIG. 21 is used as RS transmission information and terminal 120 receives data in the current subframe, terminal 120 executes each step shown in FIG. 28 for each subframe, for example. The case where the terminal 120 receives data in the current subframe is, for example, a case where the terminal 120 receives the PDCCH for resource allocation in the current subframe from the base station 110.
 まず、端末120は、基地局110によってLバンドで送信されるRS送信情報を受信する(ステップS2801)。つぎに、端末120は、ステップS2801により受信したRS送信情報に基づいて、現在のサブフレームについてRS送信ありか否かを判断する(ステップS2802)。RS送信ありの場合とは、RS送信情報の値が“01”、“10”または“11”の場合である(たとえば図21参照)。 First, the terminal 120 receives RS transmission information transmitted in the L band by the base station 110 (step S2801). Next, the terminal 120 determines whether or not there is RS transmission for the current subframe based on the RS transmission information received in step S2801 (step S2802). The case of RS transmission is a case where the value of RS transmission information is “01”, “10”, or “11” (see, for example, FIG. 21).
 ステップS2802において、RS送信ありでない場合(ステップS2802:No)は、端末120は、ステップS2801へ戻る。RS送信ありの場合(ステップS2802:Yes)は、端末120は、基地局110からUバンドで送信される無線信号からデータを抽出して受信処理を行い(ステップS2803)、一連の処理を終了する。ステップS2803によるデータの抽出および受信処理は、ステップS2801により受信したRS送信情報が示す送信データフォーマットに基づいて行うことができる。 In step S2802, if there is no RS transmission (step S2802: No), the terminal 120 returns to step S2801. If RS transmission is present (step S2802: YES), the terminal 120 extracts data from a radio signal transmitted in the U band from the base station 110, performs reception processing (step S2803), and ends a series of processing. . The data extraction and reception processing in step S2803 can be performed based on the transmission data format indicated by the RS transmission information received in step S2801.
(同期信号送信情報)
 図29は、同期信号送信情報の一例を示す図である。基地局110は、上述したRS送信情報とともに、または上述したRS送信情報に代えて、たとえば図29に示す同期信号送信情報2900を端末120へ送信してもよい。同期信号送信情報2900は、1ビットの情報であり、同期信号の送信の予定の有無を示す。同期信号は、たとえば基地局110が送信するPSS(Primary Synchronization Signal:プライマリ同期信号)やSSS(Secondary Synchronization Signal:セカンダリ同期信号)である。無線リソースにおけるPSSおよびSSSの配置としては、たとえば3GPPのTS36.211に規定された配置例を用いることができる。
(Synchronous signal transmission information)
FIG. 29 is a diagram illustrating an example of the synchronization signal transmission information. The base station 110 may transmit, for example, the synchronization signal transmission information 2900 illustrated in FIG. 29 to the terminal 120 together with the RS transmission information described above or instead of the RS transmission information described above. The synchronization signal transmission information 2900 is 1-bit information and indicates whether or not a synchronization signal is scheduled to be transmitted. The synchronization signal is, for example, a PSS (Primary Synchronization Signal) or SSS (Secondary Synchronization Signal) transmitted by the base station 110. As the arrangement of the PSS and the SSS in the radio resource, for example, an arrangement example defined in 3GPP TS36.211 can be used.
 たとえば、同期信号送信情報2900は、値が“0”の場合は同期信号送信の予定がないこと(同期信号送信予定なし)を示し、値が“1”の場合は同期信号送信の予定があること(同期信号送信予定あり)を示す。たとえば、同期信号送信の有無を判断できないケースにおいては、同期信号送信の予定の有無を示す同期信号送信情報2900を用いることができる。同期信号送信の有無を判断できないケースとしては、たとえば図14A,図14Bに示したRS送信情報の送信時にRS送信の有無を判断できないケースと同様である。 For example, when the value is “0”, the synchronization signal transmission information 2900 indicates that the synchronization signal transmission is not scheduled (no synchronization signal transmission is scheduled), and when the value is “1”, the synchronization signal transmission is scheduled. (Synchronization signal is scheduled to be transmitted). For example, in the case where it is not possible to determine the presence or absence of synchronization signal transmission, the synchronization signal transmission information 2900 indicating whether or not the synchronization signal transmission is scheduled can be used. The case where the presence / absence of synchronization signal transmission cannot be determined is the same as the case where the presence / absence of RS transmission cannot be determined at the time of transmission of the RS transmission information shown in FIGS. 14A and 14B, for example.
(同期信号送信情報を用いる場合における基地局による処理)
 図30は、同期信号送信情報を用いる場合における基地局による処理の一例を示すフローチャートである。同期信号送信情報として図29に示した同期信号送信情報2900を用いる場合は、基地局110は、たとえば、サブフレームごとに図30に示す各ステップを実行する。また、基地局110は、Uバンドにおいて複数種類の同期信号(たとえばPSSおよびSSS)を送信する場合は、送信する同期信号のそれぞれについて図30に示す各ステップを実行してもよい。
(Processing by base station when using synchronous signal transmission information)
FIG. 30 is a flowchart illustrating an example of processing performed by the base station when the synchronization signal transmission information is used. When using the synchronization signal transmission information 2900 shown in FIG. 29 as the synchronization signal transmission information, the base station 110 executes, for example, each step shown in FIG. 30 for each subframe. In addition, when transmitting a plurality of types of synchronization signals (for example, PSS and SSS) in the U band, base station 110 may execute the steps shown in FIG. 30 for each of the synchronization signals to be transmitted.
 まず、基地局110は、同期信号送信タイマが規定値を満たすか否かを判断する(ステップS3001)。同期信号送信タイマは、対象の同期信号の送信タイミング(送信サブフレーム)を測るタイマであって、たとえばタイミングトラッキングや周波数トラッキングなどにおいて求められる同期信号の送信間隔に応じて設定される。ステップS3001において、同期信号送信タイマが規定値を満たす場合(ステップS3001:Yes)は、基地局110は、送信する同期信号送信情報を“1”(同期信号送信予定あり)に設定する(ステップS3002)。 First, the base station 110 determines whether or not the synchronization signal transmission timer satisfies a specified value (step S3001). The synchronization signal transmission timer is a timer for measuring the transmission timing (transmission subframe) of the target synchronization signal, and is set according to the transmission interval of the synchronization signal required in, for example, timing tracking or frequency tracking. In step S3001, when the synchronization signal transmission timer satisfies the specified value (step S3001: Yes), the base station 110 sets the synchronization signal transmission information to be transmitted to “1” (synchronization signal transmission scheduled) (step S3002). ).
 つぎに、基地局110は、同期信号の送信処理を行う(ステップS3003)。たとえば、基地局110は、Uバンドでのキャリアセンスを行い、キャリアセンスによって帯域の空きが検出された場合は同期信号の送信を行う。また、基地局110は、Uバンドで無線信号を連続送信中である場合は、キャリアセンスを行わずに同期信号の送信を行う。一方、基地局110は、Uバンドで無線信号を連続送信中ではなく、かつキャリアセンスを行っても帯域の空きが検出されなかった場合は同期信号の送信を行わない。 Next, the base station 110 performs a synchronization signal transmission process (step S3003). For example, the base station 110 performs carrier sense in the U band, and transmits a synchronization signal when a free band is detected by carrier sense. In addition, when the radio signal is being continuously transmitted in the U band, the base station 110 transmits a synchronization signal without performing carrier sense. On the other hand, the base station 110 does not transmit a synchronization signal when a wireless signal is not continuously transmitted in the U band and a vacant band is not detected even after performing carrier sense.
 つぎに、基地局110は、ステップS3003により同期信号を送信できたか否かを判断する(ステップS3004)。同期信号を送信できた場合(ステップS3004:Yes)は、基地局110は、同期信号送信タイマをリセットし(ステップS3005)、一連の処理を終了する。同期信号を送信できなかった場合(ステップS3004:No)は、基地局110は、同期信号送信タイマを1サブフレーム分進める(ステップS3006)。そして、基地局110は、一連の処理を終了する。 Next, the base station 110 determines whether or not the synchronization signal has been transmitted in step S3003 (step S3004). When the synchronization signal can be transmitted (step S3004: Yes), the base station 110 resets the synchronization signal transmission timer (step S3005) and ends the series of processes. When the synchronization signal cannot be transmitted (step S3004: No), the base station 110 advances the synchronization signal transmission timer by one subframe (step S3006). And the base station 110 complete | finishes a series of processes.
 ステップS3001において、同期信号送信タイマが規定値を満たさない場合(ステップS3001:No)は、基地局110は、端末120への送信データがあり、かつ同期信号同時送信を要するか否かを判断する(ステップS3007)。端末120への送信データがあり、かつ同期信号同時送信を要すると判断した場合(ステップS3007:Yes)は、基地局110は、ステップS3002へ移行する。端末120への送信データがなく、または同期信号同時送信を要しないと判断した場合(ステップS3007:No)は、基地局110は、ステップS3008へ移行する。 In step S3001, when the synchronization signal transmission timer does not satisfy the specified value (step S3001: No), the base station 110 determines whether there is transmission data to the terminal 120 and whether synchronization signal simultaneous transmission is required. (Step S3007). When it is determined that there is transmission data to the terminal 120 and synchronization signal simultaneous transmission is required (step S3007: Yes), the base station 110 proceeds to step S3002. If it is determined that there is no transmission data to the terminal 120 or that synchronous signal simultaneous transmission is not required (step S3007: No), the base station 110 proceeds to step S3008.
 すなわち、基地局110は、送信する同期信号送信情報を“0”(同期信号送信なし)に設定する(ステップS3008)。また、基地局110は、同期信号送信タイマを1サブフレーム分進める(ステップS3009)。そして、基地局110は、一連の処理を終了する。 That is, the base station 110 sets the synchronization signal transmission information to be transmitted to “0” (no synchronization signal transmission) (step S3008). Also, the base station 110 advances the synchronization signal transmission timer by one subframe (step S3009). And the base station 110 complete | finishes a series of processes.
(同期信号送信情報を用いる場合における端末による処理)
 図31は、同期信号送信情報を用いる場合における端末による処理の一例を示すフローチャートである。図29に示した同期信号送信情報2900を用い、基地局110からUバンドで送信される同期信号に基づいてタイミングトラッキングや周波数トラッキングを行う場合は、端末120は、サブフレームごとに図31に示す各ステップを実行する。
(Processing by terminal when using synchronous signal transmission information)
FIG. 31 is a flowchart illustrating an example of processing performed by the terminal when the synchronization signal transmission information is used. When using the synchronization signal transmission information 2900 shown in FIG. 29 and performing timing tracking and frequency tracking based on the synchronization signal transmitted in the U band from the base station 110, the terminal 120 is shown in FIG. 31 for each subframe. Perform each step.
 まず、端末120は、基地局110によってLバンドで送信される同期信号送信情報を受信する(ステップS3101)。つぎに、端末120は、ステップS3101により受信した同期信号送信情報に基づいて、現在のサブフレームについて同期信号送信予定あり(同期信号送信情報=1)か否かを判断する(ステップS3102)。 First, the terminal 120 receives synchronization signal transmission information transmitted in the L band by the base station 110 (step S3101). Next, the terminal 120 determines whether or not there is a synchronization signal transmission schedule (synchronization signal transmission information = 1) for the current subframe based on the synchronization signal transmission information received in step S3101 (step S3102).
 ステップS3102において、同期信号送信予定ありでない場合(ステップS3102:No)は、端末120は、一連の処理を終了する。同期信号送信予定ありの場合(ステップS3102:Yes)は、端末120は、Uバンドにおける基地局110からの同期信号を検出する同期信号検出処理を行う(ステップS3103)。たとえば、端末120は、同期信号のレプリカ信号と受信信号との相関を計算し、計算した相関が閾値より高い場合に同期信号送信があったと判断する同期信号検出処理を行う。 In step S3102, if the synchronization signal transmission is not scheduled (step S3102: No), the terminal 120 ends the series of processes. If the synchronization signal is scheduled to be transmitted (step S3102: Yes), the terminal 120 performs a synchronization signal detection process for detecting a synchronization signal from the base station 110 in the U band (step S3103). For example, the terminal 120 calculates a correlation between the replica signal of the synchronization signal and the received signal, and performs a synchronization signal detection process that determines that there is a synchronization signal transmission when the calculated correlation is higher than a threshold value.
 つぎに、端末120は、ステップS3103による同期信号検出処理の結果に基づいて、Uバンドにおいて基地局110から同期信号送信があったか否かを判定する(ステップS3104)。同期信号送信がなかった場合(ステップS3104:No)は、端末120は、一連の処理を終了する。同期信号送信があった場合(ステップS3104:Yes)は、端末120は、基地局110からUバンドで送信された同期信号に基づいてタイミングトラッキングおよび周波数トラッキングの少なくとも一方を行い(ステップS3105)、一連の処理を終了する。 Next, the terminal 120 determines whether or not there is a synchronization signal transmission from the base station 110 in the U band based on the result of the synchronization signal detection process in step S3103 (step S3104). When there is no synchronization signal transmission (step S3104: No), the terminal 120 ends a series of processes. When there is a synchronization signal transmission (step S3104: Yes), the terminal 120 performs at least one of timing tracking and frequency tracking based on the synchronization signal transmitted from the base station 110 in the U band (step S3105), Terminate the process.
 また、端末120は、たとえば、基地局110からUバンドで送信される同期信号に基づいて同期処理を行う場合も、サブフレームごとに図31に示す各ステップを実行する。ただし、この場合は、ステップS3105において、端末120は、基地局110によって送信された同期信号に基づいて同期処理を行う。 Also, for example, when the synchronization processing is performed based on the synchronization signal transmitted from the base station 110 in the U band, the terminal 120 performs the steps illustrated in FIG. 31 for each subframe. However, in this case, in step S3105, the terminal 120 performs synchronization processing based on the synchronization signal transmitted by the base station 110.
 また、端末120は、たとえば、基地局110からUバンドで送信される同期信号に基づいてタイミングトラッキングや周波数トラッキングを行う場合も、サブフレームごとに図31に示す各ステップを実行する。ただし、この場合は、ステップS3105において、端末120は、基地局110によって送信された同期信号に基づいてタイミングトラッキングや周波数トラッキングを行う。 Also, for example, when performing timing tracking and frequency tracking based on a synchronization signal transmitted from the base station 110 in the U band, the terminal 120 executes each step shown in FIG. 31 for each subframe. However, in this case, in step S3105, the terminal 120 performs timing tracking and frequency tracking based on the synchronization signal transmitted by the base station 110.
 また、端末120は、ステップS3105におけるタイミングトラッキングや周波数トラッキングなどとともに、同期信号と同時に基地局110から送信されるデータの受信処理を行ってもよい。 Further, the terminal 120 may perform reception processing of data transmitted from the base station 110 simultaneously with the synchronization signal, together with timing tracking and frequency tracking in step S3105.
 図29~図31において、同期信号の送信の予定の有無を示す同期信号送信情報2900を用いる場合について説明した。これに対して、たとえば、同期信号送信情報の送信時点で同期信号送信の有無を判断できるケースにおいては、図5に示したRS送信情報500のように、同期信号の送信の有無を示す同期信号送信情報を用いてもよい。 29 to 31, the case where the synchronization signal transmission information 2900 indicating whether or not the synchronization signal is scheduled to be transmitted has been described. On the other hand, for example, in the case where the presence / absence of synchronization signal transmission can be determined at the time of transmission of the synchronization signal transmission information, a synchronization signal indicating the presence / absence of transmission of the synchronization signal as in the RS transmission information 500 shown in FIG. Transmission information may be used.
(RS送信情報の例5)
 図32は、RS送信情報の例5を示す図である。基地局110が送信するRS送信情報は、たとえば図32に示すRS送信情報3200としてもよい。図32に示すRS送信情報3200は、たとえば図21に示したRS送信情報2100を拡張したものである。すなわち、RS送信情報3200は、2ビットの情報であり、RSおよびPSS/SSSの送信の有無と、連続送信における先頭のサブフレームで送信の予定があるか、または先頭以外のサブフレームで送信があるかを示す。図32に示す例では、基地局110がRSとしてCRSを送信する場合について説明する。
(Example 5 of RS transmission information)
FIG. 32 is a diagram illustrating Example 5 of RS transmission information. The RS transmission information transmitted by the base station 110 may be, for example, RS transmission information 3200 illustrated in FIG. The RS transmission information 3200 shown in FIG. 32 is an extension of the RS transmission information 2100 shown in FIG. That is, RS transmission information 3200 is 2-bit information, and whether RS and PSS / SSS are transmitted and whether transmission is scheduled in the first subframe in continuous transmission or transmission is performed in a subframe other than the first. Indicates whether there is. In the example illustrated in FIG. 32, a case where the base station 110 transmits a CRS as an RS will be described.
 たとえば、RS送信情報3200は、値が“00”の場合は、CRSおよびPSS/SSSの送信がないこと(送信なし)を示す。また、RS送信情報3200は、値が“01”の場合は、先頭のサブフレームでCRSおよびPSS/SSSの送信の予定があること(PSS/SSS/CRS含む)を示す。また、RS送信情報3200は、値が“10”の場合は、先頭以外のサブフレームでCRSの送信があり、かつPSS/SSSの送信はないこと(PSS/SSSなしCRSあり)を示す。また、RS送信情報3200は、値が“11”の場合は、先頭以外のサブフレームで送信があるが、CRSおよびPSS/SSSの送信はないこと(PSS/SSSなしCRSなし)を示す。 For example, if the value of the RS transmission information 3200 is “00”, it indicates that CRS and PSS / SSS are not transmitted (no transmission). In addition, when the value is “01”, the RS transmission information 3200 indicates that CRS and PSS / SSS are scheduled to be transmitted in the first subframe (including PSS / SSS / CRS). Further, when the value of the RS transmission information 3200 is “10”, it indicates that there is CRS transmission in a subframe other than the head, and that there is no PSS / SSS transmission (with CRS without PSS / SSS). Further, when the value is “11”, the RS transmission information 3200 indicates that there is transmission in a subframe other than the head, but there is no transmission of CRS and PSS / SSS (no CRS without PSS / SSS).
 PSSやSSSは、CRSより1サブフレームの中で使用するエレメントが多いため、以下の特徴がある。すなわち、CRSに加えてPSSやSSSも使用することで、1サブフレームで実行できるタイミングトラッキングや周波数トラッキングの精度が高くなり、同期をとるためのRSの送信周期を長くすることができる。また、端末120がブラインドで検出する場合の検出精度も、CRSに加えてPSSやSSSも使用することで、CRSのみを使用する場合に比べて高くなる。このため、連続送信の先頭のサブフレームにPSSやSSSを含めることで、端末120におけるブラインド検出および同期の効率を向上させることができる。 PSS and SSS have the following characteristics because they use more elements in one subframe than CRS. That is, by using PSS and SSS in addition to CRS, timing tracking and frequency tracking that can be executed in one subframe are improved, and the RS transmission cycle for synchronization can be extended. In addition, the detection accuracy when the terminal 120 detects blindly becomes higher by using PSS and SSS in addition to CRS as compared with the case where only CRS is used. For this reason, the efficiency of blind detection and synchronization in terminal 120 can be improved by including PSS and SSS in the first subframe of continuous transmission.
(連続送信における先頭のサブフレーム)
 図33は、連続送信における先頭のサブフレームの一例を示す図である。図33において、横軸(t)は時間を示す。たとえば、基地局110は、図33に示すように、サブフレームsb2~sb4にかけて連続してデータ送信3301~3303を行う。この場合に、基地局110は、先頭のサブフレームsb2におけるデータ送信3301において、PSSおよびSSSの少なくとも一方を含めた無線信号を送信する。
(First subframe in continuous transmission)
FIG. 33 is a diagram illustrating an example of a head subframe in continuous transmission. In FIG. 33, the horizontal axis (t) indicates time. For example, as shown in FIG. 33, base station 110 performs data transmissions 3301 to 3303 continuously over subframes sb2 to sb4. In this case, the base station 110 transmits a radio signal including at least one of PSS and SSS in the data transmission 3301 in the first subframe sb2.
(RS送信情報の例5における基地局による処理)
 図34は、RS送信情報の例5における基地局による処理の一例を示すフローチャートである。RS送信情報として図32に示したRS送信情報3200を用いる場合は、基地局110は、たとえば、サブフレームごとに図34に示す各ステップを実行する。また、基地局110は、Uバンドにおいて複数種類の同期信号(たとえばPSSおよびSSS)を送信する場合は、送信する同期信号のそれぞれについて図34に示す各ステップを実行してもよい。
(Processing by base station in example 5 of RS transmission information)
FIG. 34 is a flowchart illustrating an example of processing by the base station in Example 5 of RS transmission information. When the RS transmission information 3200 shown in FIG. 32 is used as the RS transmission information, the base station 110 executes, for example, each step shown in FIG. 34 for each subframe. In addition, when transmitting a plurality of types of synchronization signals (for example, PSS and SSS) in the U band, base station 110 may execute the steps shown in FIG. 34 for each of the synchronization signals to be transmitted.
 まず、基地局110は、同期信号送信タイマが規定値を満たすか否かを判断する(ステップS3401)。ステップS3401において、同期信号送信タイマが規定値を満たす場合(ステップS3401:Yes)は、基地局110は、送信するRS送信情報を“01”に設定する(ステップS3402)。 First, the base station 110 determines whether or not the synchronization signal transmission timer satisfies a specified value (step S3401). In step S3401, when the synchronization signal transmission timer satisfies the specified value (step S3401: YES), the base station 110 sets the RS transmission information to be transmitted to “01” (step S3402).
 つぎに、基地局110は、同期信号の送信処理を行う(ステップS3403)。たとえば、基地局110は、Uバンドでのキャリアセンスを行い、キャリアセンスによって帯域の空きが検出された場合は同期信号の送信を行う。また、基地局110は、Uバンドで無線信号を連続送信中である場合は、キャリアセンスを行わずに同期信号の送信を行う。また、基地局110は、Uバンドで無線信号を連続送信中ではなく、かつキャリアセンスを行っても帯域の空きが検出されなかった場合は同期信号の送信を行わない。また、基地局110は、ステップS3403において同期信号を送信できる場合はCRSも送信する。 Next, the base station 110 performs a synchronization signal transmission process (step S3403). For example, the base station 110 performs carrier sense in the U band, and transmits a synchronization signal when a free band is detected by carrier sense. In addition, when the radio signal is being continuously transmitted in the U band, the base station 110 transmits a synchronization signal without performing carrier sense. In addition, the base station 110 does not transmit a synchronization signal when a wireless signal is not continuously transmitted in the U band and no vacant band is detected even after performing carrier sense. Moreover, the base station 110 also transmits CRS, when a synchronization signal can be transmitted in step S3403.
 つぎに、基地局110は、ステップS3403により同期信号を送信できたか否かを判断する(ステップS3404)。同期信号を送信できた場合(ステップS3404:Yes)は、基地局110は、同期信号送信タイマをリセットし(ステップS3405)、一連の処理を終了する。同期信号を送信できなかった場合(ステップS3404:No)は、基地局110は、同期信号送信タイマとCRS送信タイマを1サブフレーム分進める(ステップS3406)。そして、基地局110は、一連の処理を終了する。 Next, the base station 110 determines whether or not the synchronization signal has been transmitted in step S3403 (step S3404). If the synchronization signal can be transmitted (step S3404: YES), the base station 110 resets the synchronization signal transmission timer (step S3405) and ends the series of processes. If the synchronization signal cannot be transmitted (step S3404: NO), the base station 110 advances the synchronization signal transmission timer and the CRS transmission timer by one subframe (step S3406). And the base station 110 complete | finishes a series of processes.
 ステップS3401において、同期信号送信タイマが規定値を満たさない場合(ステップS3401:No)は、基地局110は、ステップS3407へ移行する。すなわち、基地局110は、端末120への送信データがあり、かつ対象のサブフレームが連続送信における先頭サブフレームか否かを判断する(ステップS3407)。対象のサブフレームが連続送信における先頭サブフレームである場合とは、たとえば対象のサブフレームの前のサブフレームにおいて信号を送信していない場合である。 In step S3401, if the synchronization signal transmission timer does not satisfy the specified value (step S3401: NO), the base station 110 proceeds to step S3407. That is, the base station 110 determines whether there is transmission data to the terminal 120 and whether the target subframe is the first subframe in continuous transmission (step S3407). The case where the target subframe is the first subframe in continuous transmission is, for example, the case where a signal is not transmitted in a subframe before the target subframe.
 ステップS3407において、端末120への送信データがあり、かつ先頭サブフレームであると判断した場合(ステップS3407:Yes)は、基地局110は、ステップS3402へ移行する。端末120への送信データがなく、または先頭サブフレームでないと判断した場合(ステップS3407:No)は、基地局110は、ステップS3408へ移行する。 In step S3407, if it is determined that there is transmission data to the terminal 120 and that it is the first subframe (step S3407: Yes), the base station 110 moves to step S3402. If it is determined that there is no transmission data to the terminal 120 or that it is not the first subframe (step S3407: No), the base station 110 proceeds to step S3408.
 すなわち、基地局110は、連続送信における先頭サブフレームを送信済みであり、かつCRS送信タイマが規定値を満たすか否かを判断する(ステップS3408)。先頭サブフレームを送信済みであり、かつCRS送信タイマが規定値を満たす場合(ステップS3408:Yes)は、基地局110は、現在のサブフレームが中間サブフレームか否かを判断する(ステップS3409)。 That is, the base station 110 determines whether or not the first subframe in the continuous transmission has been transmitted and the CRS transmission timer satisfies the specified value (step S3408). When the first subframe has been transmitted and the CRS transmission timer satisfies the specified value (step S3408: Yes), the base station 110 determines whether the current subframe is an intermediate subframe (step S3409). .
 ステップS3409において、中間サブフレームである場合(ステップS3409:Yes)は、基地局110は、送信するRS送信情報を“10”に設定する(ステップS3410)。また、基地局110は、CRS送信タイマをリセットし(ステップS3411)、一連の処理を終了する。 In step S3409, if it is an intermediate subframe (step S3409: Yes), the base station 110 sets the RS transmission information to be transmitted to “10” (step S3410). In addition, the base station 110 resets the CRS transmission timer (step S3411), and ends a series of processes.
 ステップS3409において、中間サブフレームでない場合(ステップS3409:No)は、基地局110は、送信するRS送信情報を“11”に設定する(ステップS3412)。また、基地局110は、CRS送信タイマをリセットし(ステップS3413)、一連の処理を終了する。 In step S3409, if it is not an intermediate subframe (step S3409: No), the base station 110 sets the RS transmission information to be transmitted to “11” (step S3412). In addition, the base station 110 resets the CRS transmission timer (step S3413) and ends the series of processes.
 ステップS3408において、先頭サブフレームを送信済みでなく、またはCRS送信タイマが規定値を満たさない場合(ステップS3408:No)は、基地局110は、送信するRS送信情報を“00”に設定する(ステップS3414)。また、基地局110は、CRS送信タイマを1サブフレーム分進める(ステップS3415)。そして、基地局110は、一連の処理を終了する。 In step S3408, if the first subframe has not been transmitted or the CRS transmission timer does not satisfy the specified value (step S3408: No), the base station 110 sets the RS transmission information to be transmitted to “00” ( Step S3414). In addition, the base station 110 advances the CRS transmission timer by one subframe (step S3415). And the base station 110 complete | finishes a series of processes.
(RS送信情報の例5における端末による処理)
 図35は、RS送信情報の例5における端末による処理の一例を示すフローチャートである。RS送信情報として図32に示したRS送信情報3200を用い、基地局110からのPSS/SSSに基づいてタイミングトラッキングや周波数トラッキングを行う場合は、端末120は、たとえばサブフレームごとに図35に示す各ステップを実行する。
(Processing by terminal in RS transmission information example 5)
FIG. 35 is a flowchart illustrating an example of a process performed by a terminal in RS transmission information example 5. When RS transmission information 3200 shown in FIG. 32 is used as RS transmission information and timing tracking and frequency tracking are performed based on PSS / SSS from base station 110, terminal 120 shows, for example, for each subframe shown in FIG. Perform each step.
 まず、端末120は、基地局110によってLバンドで送信されるRS送信情報を受信する(ステップS3501)。つぎに、端末120は、ステップS3501により受信したRS送信情報に基づいて、現在のサブフレームについてPSS/SSS送信予定あり(RS送信情報=01)か否かを判断する(ステップS3502)。PSS/SSS送信予定ありでない場合(ステップS3502:No)は、端末120は、一連の処理を終了する。 First, the terminal 120 receives RS transmission information transmitted in the L band by the base station 110 (step S3501). Next, based on the RS transmission information received in step S3501, the terminal 120 determines whether or not there is a PSS / SSS transmission schedule (RS transmission information = 01) for the current subframe (step S3502). When there is no PSS / SSS transmission plan (step S3502: No), the terminal 120 ends a series of processes.
 ステップS3502において、PSS/SSS送信予定ありの場合(ステップS3502:Yes)は、端末120は、基地局110からUバンドで送信されるPSS/SSSを検出する。そして、端末120は、PSS/SSSの検出に成功すれば、検出したPSS/SSSに基づいてタイミングトラッキングおよび周波数トラッキングの少なくとも一方を行い(ステップS3503)、一連の処理を終了する。 In step S3502, when there is a PSS / SSS transmission plan (step S3502: Yes), the terminal 120 detects PSS / SSS transmitted from the base station 110 in the U band. If the terminal 120 succeeds in detecting the PSS / SSS, the terminal 120 performs at least one of timing tracking and frequency tracking based on the detected PSS / SSS (step S3503), and ends the series of processes.
 図36は、RS送信情報の例5における端末による処理の他の例を示すフローチャートである。RS送信情報として図32に示したRS送信情報3200を用い、基地局110からのCRSに基づいてCQIの測定を行う場合は、端末120は、たとえばサブフレームごとに図36に示す各ステップを実行する。 FIG. 36 is a flowchart showing another example of processing by the terminal in Example 5 of RS transmission information. When RS transmission information 3200 shown in FIG. 32 is used as RS transmission information and CQI measurement is performed based on CRS from base station 110, terminal 120 executes each step shown in FIG. 36 for each subframe, for example. To do.
 まず、端末120は、基地局110によってLバンドで送信されるRS送信情報を受信する(ステップS3601)。つぎに、端末120は、ステップS3601により受信したRS送信情報に基づいて、現在のサブフレームについてCRS送信あり(RS送信情報=01または10)か否かを判断する(ステップS3602)。 First, the terminal 120 receives RS transmission information transmitted in the L band by the base station 110 (step S3601). Next, based on the RS transmission information received in step S3601, the terminal 120 determines whether there is CRS transmission (RS transmission information = 01 or 10) for the current subframe (step S3602).
 ステップS3602において、CRS送信ありの場合(ステップS3602:Yes)は、端末120は、基地局110からUバンドで送信されるCRSに基づいてCQIの測定を行い(ステップS3603)、一連の処理を終了する。 If there is CRS transmission in step S3602 (step S3602: Yes), terminal 120 measures CQI based on CRS transmitted from base station 110 in the U band (step S3603), and ends a series of processing. To do.
 ステップS3602において、CRS送信ありでない場合(ステップS3602:No)は、端末120は、ステップS3604へ移行する。すなわち、端末120は、ステップS3601により受信したRS送信情報に基づいて、現在のサブフレームについてPSS/SSS送信予定あり(RS送信情報=01)か否かを判断する(ステップS3604)。PSS/SSS送信予定ありでない場合(ステップS3604:No)は、端末120は、一連の処理を終了する。 In step S3602, if there is no CRS transmission (step S3602: No), the terminal 120 proceeds to step S3604. That is, terminal 120 determines whether or not there is a PSS / SSS transmission plan for the current subframe (RS transmission information = 01) based on the RS transmission information received in step S3601 (step S3604). If the PSS / SSS transmission is not scheduled (step S3604: NO), the terminal 120 ends the series of processes.
 ステップS3604において、PSS/SSS送信予定ありの場合(ステップS3604:Yes)は、端末120は、基地局110からUバンドで送信されるPSS/SSSを検出する。そして、端末120は、PSS/SSSの検出に成功すれば、検出したPSS/SSSに基づいてCQIの測定を行い(ステップS3605)、一連の処理を終了する。 In step S3604, when there is a PSS / SSS transmission plan (step S3604: Yes), the terminal 120 detects PSS / SSS transmitted from the base station 110 in the U band. If the terminal 120 succeeds in detecting the PSS / SSS, the terminal 120 measures the CQI based on the detected PSS / SSS (step S3605), and ends the series of processes.
(RS送信情報の例6)
 図37は、RS送信情報の例6を示す図である。基地局110が送信するRS送信情報は、たとえば図37に示すRS送信情報3700としてもよい。図37に示すRS送信情報3700は、図17に示したRS送信情報1700において、CSI-RSをPSSおよびSSSの少なくとも一方(PSS/SSS)に置き換えたものである。すなわち、図37に示すRS送信情報3700は、2ビットの情報であり、RS送信の有無に加えて、PSS/SSSの送信の有無を示す。図37に示す例では、基地局110がRSとしてCRSを送信する場合について説明する。
(Example 6 of RS transmission information)
FIG. 37 is a diagram illustrating Example 6 of RS transmission information. The RS transmission information transmitted by the base station 110 may be, for example, RS transmission information 3700 illustrated in FIG. The RS transmission information 3700 shown in FIG. 37 is obtained by replacing CSI-RS with at least one of PSS and SSS (PSS / SSS) in the RS transmission information 1700 shown in FIG. That is, the RS transmission information 3700 shown in FIG. 37 is 2-bit information, and indicates whether or not PSS / SSS is transmitted in addition to the presence or absence of RS transmission. In the example illustrated in FIG. 37, a case where the base station 110 transmits a CRS as an RS will be described.
 たとえば、RS送信情報3700は、値が“00”の場合はRS送信がないこと(RS送信なし)を示す。また、RS送信情報3700は、値が“01”の場合はCRSの送信があり、かつPSS/SSSの送信がないこと(CRS送信あり)を示す。また、RS送信情報3700は、値が“10”の場合はPSS/SSSの送信があり、かつCRSの送信がないこと(PSS/SSS送信あり)を示す。また、RS送信情報3700は、値が“11”の場合はCRSおよびPSS/SSSの両方の送信があること(CRS,PSS/SSS送信あり)を示す。 For example, the RS transmission information 3700 indicates that there is no RS transmission (no RS transmission) when the value is “00”. The RS transmission information 3700 indicates that there is CRS transmission and no PSS / SSS transmission (with CRS transmission) when the value is “01”. Further, the RS transmission information 3700 indicates that there is PSS / SSS transmission and no CRS transmission (with PSS / SSS transmission) when the value is “10”. Further, when the value of the RS transmission information 3700 is “11”, it indicates that both CRS and PSS / SSS are transmitted (CRS and PSS / SSS are transmitted).
 RS送信情報として図37に示したRS送信情報3700を用いる場合における基地局110による処理は、たとえば図18に示した処理において、CSI-RSをPSSおよびSSSの少なくとも一方(PSS/SSS)に置き換えた処理とすることができる。この場合の端末120による処理は、たとえば図20に示した処理において、CSI-RSをPSSおよびSSSの少なくとも一方に置き換え、CSIの測定をタイミングトラッキングおよび周波数トラッキングの少なくとも一方に置換した処理とすることができる。 When the RS transmission information 3700 shown in FIG. 37 is used as the RS transmission information, the processing by the base station 110 replaces CSI-RS with at least one of PSS and SSS (PSS / SSS), for example, in the processing shown in FIG. Processing. The processing by the terminal 120 in this case is, for example, the processing shown in FIG. 20 in which CSI-RS is replaced with at least one of PSS and SSS, and CSI measurement is replaced with at least one of timing tracking and frequency tracking. Can do.
(実施の形態にかかる基地局)
 図38Aは、実施の形態にかかる基地局の一例を示す図である。図38Bは、図38Aに示した基地局における信号の流れの一例を示す図である。図38A,図38Bに示すように、基地局110は、アンテナ3801と、Lバンド用RF部3802と、上りリンクベースバンド信号処理部3803と、を備える。また、基地局110は、下りリンク制御部3804と、下りリンク制御チャネル処理部3805と、下りリンクデータチャネル処理部3806と、下りリンクLバンドベースバンド信号生成部3807と、を備える。また、基地局110は、アンテナ3808と、Uバンド用RF部3809と、キャリアセンス部3810と、下りリンクUバンドベースバンド信号生成部3811と、を備える。
(Base station according to the embodiment)
FIG. 38A is a diagram illustrating an example of a base station according to the embodiment. FIG. 38B is a diagram illustrating an example of signal flow in the base station depicted in FIG. 38A. As illustrated in FIGS. 38A and 38B, the base station 110 includes an antenna 3801, an L-band RF unit 3802, and an uplink baseband signal processing unit 3803. Further, the base station 110 includes a downlink control unit 3804, a downlink control channel processing unit 3805, a downlink data channel processing unit 3806, and a downlink L band baseband signal generation unit 3807. In addition, the base station 110 includes an antenna 3808, a U-band RF unit 3809, a carrier sense unit 3810, and a downlink U-band baseband signal generation unit 3811.
 アンテナ3801は、端末120から無線送信された信号を受信してLバンド用RF部3802へ出力する。また、アンテナ3801は、Lバンド用RF部3802から出力された信号を端末120へ無線送信する。 Antenna 3801 receives a signal wirelessly transmitted from terminal 120 and outputs the signal to L-band RF unit 3802. Antenna 3801 wirelessly transmits the signal output from L-band RF section 3802 to terminal 120.
 Lバンド用RF部3802は、アンテナ3801から出力された上りリンクの信号のうちのLバンドの信号を抽出し、抽出した信号のRF受信処理を行う。Lバンド用RF部3802によるRF受信処理には、たとえば、増幅、LバンドのRF(Radio Frequency:高周波)帯からベースバンド帯への周波数変換、アナログ信号からデジタル信号への変換などが含まれる。Lバンド用RF部3802は、RF受信処理を行った信号を上りリンクベースバンド信号処理部3803へ出力する。 The L-band RF unit 3802 extracts an L-band signal from the uplink signal output from the antenna 3801, and performs an RF reception process on the extracted signal. The RF reception processing by the L-band RF unit 3802 includes, for example, amplification, frequency conversion from an L-band RF (Radio Frequency) band to a baseband band, conversion from an analog signal to a digital signal, and the like. The L-band RF unit 3802 outputs the signal subjected to the RF reception processing to the uplink baseband signal processing unit 3803.
 また、Lバンド用RF部3802は、下りリンクLバンドベースバンド信号生成部3807から出力された下りリンクの信号のRF送信処理を行う。Lバンド用RF部3802によるRF送信処理には、たとえば、デジタル信号からアナログ信号への変換、ベースバンド帯からLバンドのRF帯への周波数変換、増幅などが含まれる。Lバンド用RF部3802は、RF送信処理を行った信号をアンテナ3801へ出力する。 Also, the L-band RF unit 3802 performs RF transmission processing of the downlink signal output from the downlink L-band baseband signal generation unit 3807. The RF transmission processing by the L band RF unit 3802 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband band to an L band RF band, amplification, and the like. L-band RF unit 3802 outputs the signal subjected to the RF transmission process to antenna 3801.
 上りリンクベースバンド信号処理部3803は、Lバンド用RF部3802およびUバンド用RF部3809から出力された上りリンクの信号のベースバンド信号処理を行う。そして、上りリンクベースバンド信号処理部3803は、ベースバンド信号処理により得られたデータに含まれる制御情報を下りリンク制御部3804へ出力する。 The uplink baseband signal processing unit 3803 performs baseband signal processing on the uplink signals output from the L-band RF unit 3802 and the U-band RF unit 3809. Then, uplink baseband signal processing section 3803 outputs control information included in the data obtained by the baseband signal processing to downlink control section 3804.
 下りリンク制御部3804は、上りリンクベースバンド信号処理部3803から出力された制御情報に基づいて、基地局110から端末120への下りリンクの通信の制御を行う。たとえば、下りリンク制御部3804は、基地局110による無線信号の送信方式を示す送信モードを下りリンクUバンドベースバンド信号生成部3811へ通知する。 The downlink control unit 3804 controls downlink communication from the base station 110 to the terminal 120 based on the control information output from the uplink baseband signal processing unit 3803. For example, the downlink control unit 3804 notifies the downlink U-band baseband signal generation unit 3811 of a transmission mode indicating a radio signal transmission scheme by the base station 110.
 また、下りリンク制御部3804は、下りリンク制御チャネル処理部3805による制御情報の生成を制御する。たとえば、下りリンク制御部3804は、使用するUバンドの周波数チャネルの番号を下りリンク制御チャネル処理部3805へ通知する。また、下りリンク制御部3804は、下りリンクデータチャネル処理部3806による送信データの生成を制御する。 Also, the downlink control unit 3804 controls the generation of control information by the downlink control channel processing unit 3805. For example, the downlink control unit 3804 notifies the downlink control channel processing unit 3805 of the number of the U-band frequency channel to be used. Also, the downlink control unit 3804 controls transmission data generation by the downlink data channel processing unit 3806.
 下りリンク制御チャネル処理部3805は、下りリンク制御部3804からの制御により、下りリンクの制御チャネルにより送信するLバンド用の制御情報を生成する。下りリンク制御チャネル処理部3805が生成する制御情報には、下りリンクUバンドベースバンド信号生成部3811から通知されたRSの送信タイミングを示すRS送信情報が含まれる。下りリンク制御チャネル処理部3805は、生成した制御情報を下りリンクLバンドベースバンド信号生成部3807へ出力する。 The downlink control channel processing unit 3805 generates control information for L band to be transmitted through the downlink control channel under the control of the downlink control unit 3804. The control information generated by the downlink control channel processing unit 3805 includes RS transmission information indicating the RS transmission timing notified from the downlink U band baseband signal generation unit 3811. The downlink control channel processing unit 3805 outputs the generated control information to the downlink L band baseband signal generation unit 3807.
 下りリンクデータチャネル処理部3806は、下りリンク制御部3804からの制御により、下りリンクのデータチャネルにより送信する送信データを生成する。そして、下りリンクデータチャネル処理部3806は、下りリンク制御部3804からの制御により、生成した送信データのうちのLバンドにより送信すべき送信データ(Lバンド用送信データ)を下りリンクLバンドベースバンド信号生成部3807へ出力する。また、下りリンクデータチャネル処理部3806は、生成した送信データのうちのUバンドにより送信すべき送信データ(Uバンド用送信データ)を下りリンクUバンドベースバンド信号生成部3811へ出力する。 The downlink data channel processing unit 3806 generates transmission data to be transmitted through the downlink data channel under the control of the downlink control unit 3804. Then, the downlink data channel processing unit 3806 transmits the transmission data (L-band transmission data) to be transmitted in the L band of the generated transmission data under the control of the downlink control unit 3804 to the downlink L-band baseband. The signal is output to the signal generation unit 3807. Also, the downlink data channel processing unit 3806 outputs transmission data (U-band transmission data) to be transmitted in the U band among the generated transmission data to the downlink U band baseband signal generation unit 3811.
 下りリンクLバンドベースバンド信号生成部3807は、基地局110から端末120への下りリンクのLバンドにおけるベースバンド信号の生成を行う。下りリンクLバンドベースバンド信号生成部3807が生成する信号には、下りリンク制御チャネル処理部3805から出力された制御情報と、下りリンクデータチャネル処理部3806から出力されたLバンド用送信データと、が含まれる。下りリンクLバンドベースバンド信号生成部3807は、生成した信号をLバンド用RF部3802へ出力する。 The downlink L band baseband signal generation unit 3807 generates a baseband signal in the downlink L band from the base station 110 to the terminal 120. The signal generated by the downlink L-band baseband signal generation unit 3807 includes control information output from the downlink control channel processing unit 3805, transmission data for L band output from the downlink data channel processing unit 3806, and Is included. The downlink L band baseband signal generation unit 3807 outputs the generated signal to the L band RF unit 3802.
 アンテナ3808は、端末120から無線送信された信号を受信してUバンド用RF部3809へ出力する。また、アンテナ3808は、Uバンド用RF部3809から出力された信号を端末120へ無線送信する。 The antenna 3808 receives a signal wirelessly transmitted from the terminal 120 and outputs the signal to the U-band RF unit 3809. Further, antenna 3808 wirelessly transmits the signal output from U-band RF section 3809 to terminal 120.
 Uバンド用RF部3809は、アンテナ3808から出力された上りリンクの信号のうちのUバンドの信号を抽出し、抽出した信号のRF受信処理を行う。Uバンド用RF部3809によるRF受信処理には、たとえば、増幅、UバンドのRF帯からベースバンド帯への周波数変換、アナログ信号からデジタル信号への変換などが含まれる。Uバンド用RF部3809は、RF受信処理を行った信号を上りリンクベースバンド信号処理部3803およびキャリアセンス部3810へ出力する。 The U-band RF unit 3809 extracts a U-band signal from uplink signals output from the antenna 3808, and performs RF reception processing on the extracted signal. The RF reception processing by the U-band RF unit 3809 includes, for example, amplification, frequency conversion from the U-band RF band to the baseband, conversion from an analog signal to a digital signal, and the like. U-band RF section 3809 outputs the signal subjected to the RF reception process to uplink baseband signal processing section 3803 and carrier sense section 3810.
 また、Uバンド用RF部3809は、下りリンクUバンドベースバンド信号生成部3811から出力された下りリンクの信号のRF送信処理を行う。Uバンド用RF部3809によるRF送信処理には、たとえば、デジタル信号からアナログ信号への変換、ベースバンド帯からUバンドのRF帯への周波数変換、増幅などが含まれる。Uバンド用RF部3809は、RF送信処理を行った信号をアンテナ3808へ出力する。 Also, the U-band RF unit 3809 performs RF transmission processing of the downlink signal output from the downlink U-band baseband signal generation unit 3811. The RF transmission processing by the U-band RF unit 3809 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband band to a U-band RF band, amplification, and the like. U-band RF section 3809 outputs the signal subjected to the RF transmission processing to antenna 3808.
 キャリアセンス部3810は、Uバンド用RF部3809から出力された信号に基づくキャリアセンスを行う。そして、キャリアセンス部3810は、キャリアセンスの結果を下りリンクUバンドベースバンド信号生成部3811へ通知する。たとえば、キャリアセンス部3810は、キャリアセンスの結果、空き帯域を検出すると、空き帯域を検出したことを下りリンクUバンドベースバンド信号生成部3811へ通知する。 The carrier sense unit 3810 performs carrier sense based on the signal output from the U-band RF unit 3809. Then, the carrier sense unit 3810 notifies the result of the carrier sense to the downlink U band baseband signal generation unit 3811. For example, when the carrier sense unit 3810 detects a free band as a result of the carrier sense, the carrier sense unit 3810 notifies the downlink U band baseband signal generation unit 3811 that the free band has been detected.
 下りリンクUバンドベースバンド信号生成部3811は、下りリンク制御部3804からの制御により、基地局110から端末120への下りリンクのUバンドにおけるベースバンド信号の生成を行う。そして、下りリンクUバンドベースバンド信号生成部3811は、空き帯域を検出したことがキャリアセンス部3810から通知されたタイミングにおいて、ベースバンド信号をUバンド用RF部3809へ出力する。 The downlink U band baseband signal generation unit 3811 generates a baseband signal in the downlink U band from the base station 110 to the terminal 120 under the control of the downlink control unit 3804. Then, the downlink U band baseband signal generation unit 3811 outputs the baseband signal to the U band RF unit 3809 at the timing when the carrier sense unit 3810 is notified that a free band has been detected.
 下りリンクUバンドベースバンド信号生成部3811が生成する信号には、下りリンクデータチャネル処理部3806から出力されたLバンド用送信データと、Lバンド用送信データとともに送信されるRSまたは単独で送信されるRSと、が含まれる。 The signal generated by the downlink U-band baseband signal generation unit 3811 is transmitted as an L-band transmission data output from the downlink data channel processing unit 3806 and an RS transmitted together with the L-band transmission data or independently. RS.
 また、下りリンクUバンドベースバンド信号生成部3811は、RSの送信タイミングを下りリンク制御チャネル処理部3805へ通知する。これにより、UバンドによるRSの送信タイミングを示すRS送信情報が、たとえばデータと多重されてLバンドにより端末120へ送信される。 Also, the downlink U band baseband signal generation unit 3811 notifies the downlink control channel processing unit 3805 of the RS transmission timing. Thereby, RS transmission information indicating RS transmission timing in the U band is multiplexed with data, for example, and transmitted to the terminal 120 through the L band.
 図1A,図1Bに示した第1送信部111は、たとえばアンテナ3808、Uバンド用RF部3809、キャリアセンス部3810および下りリンクUバンドベースバンド信号生成部3811により実現することができる。図1A,図1Bに示した第2送信部112は、たとえばアンテナ3801、Lバンド用RF部3802、下りリンク制御チャネル処理部3805および下りリンクLバンドベースバンド信号生成部3807により実現することができる。 1A and 1B can be realized, for example, by an antenna 3808, a U-band RF unit 3809, a carrier sense unit 3810, and a downlink U-band baseband signal generation unit 3811. 1A and 1B can be implemented by, for example, antenna 3801, L-band RF unit 3802, downlink control channel processing unit 3805, and downlink L-band baseband signal generation unit 3807. .
 図38Cは、基地局のハードウェア構成の一例を示す図である。図38A,図38Bに示した基地局110は、たとえば図38Cに示す通信装置3830によって実現することができる。通信装置3830は、プロセッサ3831と、主記憶装置3832と、補助記憶装置3833と、ネットワークインタフェース3834と、無線機3835と、アンテナ3836と、を備える。プロセッサ3831、主記憶装置3832、補助記憶装置3833、ネットワークインタフェース3834および無線機3835は、バス3839によって接続される。 FIG. 38C is a diagram illustrating an example of a hardware configuration of the base station. The base station 110 shown in FIGS. 38A and 38B can be realized by the communication device 3830 shown in FIG. 38C, for example. The communication device 3830 includes a processor 3831, a main storage device 3832, an auxiliary storage device 3833, a network interface 3834, a radio device 3835, and an antenna 3836. The processor 3831, the main storage device 3832, the auxiliary storage device 3833, the network interface 3834, and the wireless device 3835 are connected by a bus 3839.
 プロセッサ3831は、通信装置3830の全体の制御を司る。プロセッサ3831は、たとえばCPU(Central Processing Unit:中央処理装置)により実現することができる。主記憶装置3832は、たとえばプロセッサ3831のワークエリアとして使用される。主記憶装置3832は、たとえばRAM(Random Access Memory:ランダムアクセスメモリ)により実現することができる。 The processor 3831 governs overall control of the communication device 3830. The processor 3831 can be realized by, for example, a CPU (Central Processing Unit). The main storage device 3832 is used as a work area of the processor 3831, for example. The main memory 3832 can be realized by, for example, a RAM (Random Access Memory).
 補助記憶装置3833は、たとえば磁気ディスク、光ディスク、フラッシュメモリなどの不揮発メモリである。補助記憶装置3833には、通信装置3830を動作させる各種のプログラムが記憶される。補助記憶装置3833に記憶されたプログラムは、主記憶装置3832にロードされてプロセッサ3831によって実行される。 The auxiliary storage device 3833 is a non-volatile memory such as a magnetic disk, an optical disk, or a flash memory. The auxiliary storage device 3833 stores various programs for operating the communication device 3830. The program stored in the auxiliary storage device 3833 is loaded into the main storage device 3832 and executed by the processor 3831.
 ネットワークインタフェース3834は、たとえば、無線や有線によって通信装置3830の外部(たとえば基地局110の上位装置やコアネットワーク)との間で通信を行う通信インタフェースである。ネットワークインタフェース3834は、プロセッサ3831によって制御される。 The network interface 3834 is a communication interface that communicates with the outside of the communication device 3830 (for example, a host device of the base station 110 or a core network) by, for example, wireless or wired. The network interface 3834 is controlled by the processor 3831.
 無線機3835は、アンテナ3836を用いて、無線により他の通信装置(たとえば端末120)との間で通信を行う通信インタフェースである。無線機3835は、プロセッサ3831によって制御される。 The wireless device 3835 is a communication interface that performs communication with another communication device (for example, the terminal 120) wirelessly using the antenna 3836. The wireless device 3835 is controlled by the processor 3831.
 図38A,図38Bに示したアンテナ3801,3808は、たとえばアンテナ3836により実現することができる。図38A,図38Bに示したLバンド用RF部3802およびUバンド用RF部3809は、たとえば無線機3835により実現することができる。 The antennas 3801 and 3808 shown in FIGS. 38A and 38B can be realized by the antenna 3836, for example. The L-band RF unit 3802 and the U-band RF unit 3809 shown in FIGS. 38A and 38B can be realized by, for example, the wireless device 3835.
 図38A,図38Bに示した上りリンクベースバンド信号処理部3803、下りリンク制御部3804、下りリンク制御チャネル処理部3805および下りリンクデータチャネル処理部3806は、たとえばプロセッサ3831により実現することができる。図38A,図38Bに示した下りリンクLバンドベースバンド信号生成部3807、キャリアセンス部3810および下りリンクUバンドベースバンド信号生成部3811は、たとえばプロセッサ3831により実現することができる。 The uplink baseband signal processing unit 3803, the downlink control unit 3804, the downlink control channel processing unit 3805, and the downlink data channel processing unit 3806 shown in FIGS. 38A and 38B can be realized by the processor 3831, for example. The downlink L-band baseband signal generation unit 3807, the carrier sense unit 3810, and the downlink U-band baseband signal generation unit 3811 illustrated in FIGS. 38A and 38B can be realized by the processor 3831, for example.
(実施の形態にかかる端末)
 図39Aは、実施の形態にかかる端末の一例を示す図である。図39Bは、図39Aに示した端末における信号の流れの一例を示す図である。図39A,図39Bに示すように、端末120は、アンテナ3901と、Lバンド用RF部3902と、下りリンクベースバンド信号処理部3903と、上りリンク制御チャネル処理部3904と、上りリンクベースバンド信号生成部3905と、を備える。また、端末120は、アンテナ3906と、Uバンド用RF部3907と、下りリンクUバンドベースバンド信号処理部3908と、を備える。
(Terminal according to the embodiment)
FIG. 39A is a diagram illustrating an example of a terminal according to the embodiment. FIG. 39B is a diagram showing an example of a signal flow in the terminal shown in FIG. 39A. As illustrated in FIGS. 39A and 39B, the terminal 120 includes an antenna 3901, an L-band RF unit 3902, a downlink baseband signal processing unit 3903, an uplink control channel processing unit 3904, and an uplink baseband signal. A generation unit 3905. In addition, the terminal 120 includes an antenna 3906, a U-band RF unit 3907, and a downlink U-band baseband signal processing unit 3908.
 アンテナ3901は、基地局110から無線送信された信号を受信してLバンド用RF部3902へ出力する。また、アンテナ3901は、Lバンド用RF部3902から出力された信号を基地局110へ無線送信する。 Antenna 3901 receives a signal wirelessly transmitted from base station 110 and outputs the signal to L-band RF unit 3902. The antenna 3901 wirelessly transmits the signal output from the L-band RF unit 3902 to the base station 110.
 Lバンド用RF部3902は、アンテナ3901から出力された上りリンクの信号のうちのLバンドの信号を抽出し、抽出した信号のRF受信処理を行う。Lバンド用RF部3902によるRF受信処理には、たとえば、増幅、LバンドのRF帯からベースバンド帯への周波数変換、アナログ信号からデジタル信号への変換などが含まれる。Lバンド用RF部3902は、RF受信処理を行った信号を下りリンクベースバンド信号処理部3903へ出力する。 The L-band RF unit 3902 extracts an L-band signal from the uplink signal output from the antenna 3901 and performs RF reception processing on the extracted signal. The RF reception processing by the L band RF unit 3902 includes, for example, amplification, frequency conversion from the L band RF band to the base band, conversion from an analog signal to a digital signal, and the like. L-band RF section 3902 outputs the signal subjected to the RF reception process to downlink baseband signal processing section 3903.
 また、Lバンド用RF部3902は、上りリンクベースバンド信号生成部3905から出力された上りリンクの信号のRF送信処理を行う。Lバンド用RF部3902によるRF送信処理には、たとえば、デジタル信号からアナログ信号への変換、ベースバンド帯からLバンドのRF帯への周波数変換、増幅などが含まれる。Lバンド用RF部3902は、RF送信処理を行った信号をアンテナ3901へ出力する。 Also, the L-band RF unit 3902 performs RF transmission processing on the uplink signal output from the uplink baseband signal generation unit 3905. The RF transmission processing by the L band RF unit 3902 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband band to an L band RF band, amplification, and the like. L-band RF section 3902 outputs a signal subjected to RF transmission processing to antenna 3901.
 下りリンクベースバンド信号処理部3903は、Lバンド用RF部3902から出力された下りリンクの信号のベースバンド信号処理を行う。下りリンクベースバンド信号処理部3903によるベースバンド信号処理には、たとえば下りリンクのLバンドにおけるCQIの測定などが含まれる。 The downlink baseband signal processing unit 3903 performs baseband signal processing on the downlink signal output from the L-band RF unit 3902. The baseband signal processing by the downlink baseband signal processing unit 3903 includes, for example, measurement of CQI in the downlink L band.
 下りリンクベースバンド信号処理部3903は、ベースバンド信号処理に基づくLバンドに関する制御情報を上りリンク制御チャネル処理部3904へ出力する。下りリンクベースバンド信号処理部3903が上りリンク制御チャネル処理部3904へ出力する制御情報には、たとえば下りリンクのLバンドにおけるCQIの測定結果などが含まれる。 The downlink baseband signal processing unit 3903 outputs control information related to the L band based on the baseband signal processing to the uplink control channel processing unit 3904. The control information output by the downlink baseband signal processing unit 3903 to the uplink control channel processing unit 3904 includes, for example, a measurement result of CQI in the downlink L band.
 また、下りリンクベースバンド信号処理部3903は、ベースバンド信号処理に基づくUバンドに関する制御情報を下りリンクUバンドベースバンド信号処理部3908へ出力する。下りリンクベースバンド信号処理部3903が下りリンクUバンドベースバンド信号処理部3908へ出力する制御情報には、たとえばUバンドでのRSの送信タイミングを示すRS送信情報が含まれる。また、下りリンクベースバンド信号処理部3903が下りリンクUバンドベースバンド信号処理部3908へ出力する制御情報には、たとえばUバンドでの同期信号(PSS/SSS)の送信タイミングを示す同期信号送信情報が含まれていてもよい。 Also, the downlink baseband signal processing unit 3903 outputs control information related to the U band based on the baseband signal processing to the downlink U band baseband signal processing unit 3908. The control information output from the downlink baseband signal processing unit 3903 to the downlink U band baseband signal processing unit 3908 includes, for example, RS transmission information indicating RS transmission timing in the U band. The control information output from the downlink baseband signal processing unit 3903 to the downlink U band baseband signal processing unit 3908 includes, for example, synchronization signal transmission information indicating the transmission timing of the synchronization signal (PSS / SSS) in the U band. May be included.
 上りリンク制御チャネル処理部3904は、上りリンクの制御チャネルにより送信するLバンド用の制御情報を生成する。上りリンク制御チャネル処理部3904が生成する制御情報には、下りリンクベースバンド信号処理部3903から出力された制御情報(たとえばCQI)や、アンテナ3906から出力された制御情報(たとえばCQIの測定結果およびRRM測定の結果)が含まれる。上りリンク制御チャネル処理部3904は、生成した制御情報を上りリンクベースバンド信号生成部3905へ出力する。 The uplink control channel processing unit 3904 generates L-band control information to be transmitted through the uplink control channel. The control information generated by the uplink control channel processing unit 3904 includes control information output from the downlink baseband signal processing unit 3903 (eg, CQI), control information output from the antenna 3906 (eg, CQI measurement results, and RRM measurement results). The uplink control channel processing unit 3904 outputs the generated control information to the uplink baseband signal generation unit 3905.
 上りリンクベースバンド信号生成部3905は、上りリンクのLバンドにおけるベースバンド信号の生成を行う。上りリンクベースバンド信号生成部3905が生成する信号には、たとえば上りリンク制御チャネル処理部3904から出力された制御情報が含まれる。また、上りリンクベースバンド信号生成部3905が生成する信号には、上りのLバンド用送信データが含まれてもよい。上りリンクベースバンド信号生成部3905は、生成した信号をLバンド用RF部3902へ出力する。 The uplink baseband signal generation unit 3905 generates a baseband signal in the uplink L band. The signal generated by the uplink baseband signal generation unit 3905 includes, for example, control information output from the uplink control channel processing unit 3904. The signal generated by the uplink baseband signal generation unit 3905 may include uplink L-band transmission data. Uplink baseband signal generation section 3905 outputs the generated signal to L-band RF section 3902.
 アンテナ3906は、基地局110から無線送信された信号を受信してUバンド用RF部3907へ出力する。また、アンテナ3906は、Uバンド用RF部3907から出力された信号を基地局110へ無線送信する。 The antenna 3906 receives a signal wirelessly transmitted from the base station 110 and outputs the signal to the U-band RF unit 3907. The antenna 3906 wirelessly transmits the signal output from the U-band RF unit 3907 to the base station 110.
 Uバンド用RF部3907は、アンテナ3906から出力された上りリンクの信号のうちのUバンドの信号を抽出し、抽出した信号のRF受信処理を行う。Uバンド用RF部3907によるRF受信処理には、たとえば、増幅、UバンドのRF帯からベースバンド帯への周波数変換、アナログ信号からデジタル信号への変換などが含まれる。Uバンド用RF部3907は、RF受信処理を行った信号を下りリンクベースバンド信号処理部3903および下りリンクUバンドベースバンド信号処理部3908へ出力する。 The U-band RF unit 3907 extracts a U-band signal from uplink signals output from the antenna 3906, and performs an RF reception process on the extracted signal. The RF reception processing by the U-band RF unit 3907 includes, for example, amplification, frequency conversion from the U band RF band to the base band, conversion from an analog signal to a digital signal, and the like. The U-band RF unit 3907 outputs the signal subjected to the RF reception processing to the downlink baseband signal processing unit 3903 and the downlink U-band baseband signal processing unit 3908.
 また、Uバンド用RF部3907は、Uバンドにより送信すべき上りリンクの信号のRF送信処理を行ってもよい。Uバンド用RF部3907によるRF送信処理には、たとえば、デジタル信号からアナログ信号への変換、ベースバンド帯からUバンドのRF帯への周波数変換、増幅などが含まれる。Uバンド用RF部3907は、RF送信処理を行った信号をアンテナ3906へ出力する。 Also, the U-band RF unit 3907 may perform an RF transmission process on an uplink signal to be transmitted by the U band. The RF transmission processing by the U-band RF unit 3907 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband band to a U-band RF band, amplification, and the like. The U-band RF unit 3907 outputs the signal subjected to the RF transmission process to the antenna 3906.
 下りリンクUバンドベースバンド信号処理部3908は、Uバンド用RF部3907から出力された下りリンクの信号のベースバンド信号処理を行う。たとえば、下りリンクUバンドベースバンド信号処理部3908は、下りリンクベースバンド信号処理部3903からの制御情報に含まれるRS送信情報に基づいて、Uバンド用RF部3907からの信号に含まれるRSの受信処理を行う。また、下りリンクUバンドベースバンド信号処理部3908は、下りリンクベースバンド信号処理部3903からの制御情報に含まれる同期信号送信情報に基づいて、Uバンド用RF部3907からの信号に含まれる同期信号の受信処理を行ってもよい。 The downlink U-band baseband signal processing unit 3908 performs baseband signal processing on the downlink signal output from the U-band RF unit 3907. For example, the downlink U band baseband signal processing unit 3908, based on the RS transmission information included in the control information from the downlink baseband signal processing unit 3903, the RS of the RS included in the signal from the U band RF unit 3907. Perform reception processing. Also, the downlink U band baseband signal processing unit 3908 is based on the synchronization signal transmission information included in the control information from the downlink baseband signal processing unit 3903, and the synchronization included in the signal from the U band RF unit 3907. A signal reception process may be performed.
 また、下りリンクUバンドベースバンド信号処理部3908は、たとえば、Uバンド用RF部3907から出力される信号に含まれる同期信号の受信処理を行う。そして、下りリンクUバンドベースバンド信号処理部3908は、受信処理を行ったRSや同期信号に基づく各種の処理を行う。たとえば、下りリンクUバンドベースバンド信号処理部3908は、同期部3909と、タイミング/周波数トラッキング部3910と、CQI測定部3911と、RRM測定部3912と、を備える。 Also, the downlink U-band baseband signal processing unit 3908 performs, for example, reception processing of a synchronization signal included in the signal output from the U-band RF unit 3907. Then, the downlink U band baseband signal processing unit 3908 performs various processes based on the RS and the synchronization signal for which the reception process has been performed. For example, the downlink U-band baseband signal processing unit 3908 includes a synchronization unit 3909, a timing / frequency tracking unit 3910, a CQI measurement unit 3911, and an RRM measurement unit 3912.
 同期部3909は、下りリンクUバンドベースバンド信号処理部3908におけるベースバンド信号処理により得られた同期信号に基づいて、下りリンクのUバンドにおける基地局110との同期処理を行う。 The synchronization unit 3909 performs synchronization processing with the base station 110 in the downlink U band based on the synchronization signal obtained by the baseband signal processing in the downlink U band baseband signal processing unit 3908.
 タイミング/周波数トラッキング部3910は、ベースバンド信号処理により得られたRSやPSS/SSSに基づいて、下りリンクのUバンドにおけるタイミングトラッキングおよび周波数トラッキングを行う。なお、タイミング/周波数トラッキング部3910は、タイミングトラッキングおよび周波数トラッキングのうちのいずれか一方のみを行ってもよい。 Timing / frequency tracking unit 3910 performs timing tracking and frequency tracking in the downlink U band based on RS and PSS / SSS obtained by baseband signal processing. Note that the timing / frequency tracking unit 3910 may perform only one of timing tracking and frequency tracking.
 CQI測定部3911は、下りリンクUバンドベースバンド信号処理部3908におけるベースバンド信号処理により得られたRSやPSS/SSSに基づいて、下りリンクのUバンドにおけるCQIを測定する。 The CQI measurement unit 3911 measures CQI in the downlink U band based on RS and PSS / SSS obtained by the baseband signal processing in the downlink U band baseband signal processing unit 3908.
 RRM測定部3912は、下りリンクUバンドベースバンド信号処理部3908におけるベースバンド信号処理により得られたRSに基づいて、下りリンクのUバンドにおけるRRMを測定する。 The RRM measurement unit 3912 measures the RRM in the downlink U band based on the RS obtained by the baseband signal processing in the downlink U band baseband signal processing unit 3908.
 また、下りリンクUバンドベースバンド信号処理部3908は、ベースバンド処理に基づく制御情報を上りリンク制御チャネル処理部3904へ出力する。下りリンクUバンドベースバンド信号処理部3908が上りリンク制御チャネル処理部3904へ出力する制御情報には、たとえば、CQI測定部3911によるCQIの測定結果や、RRM測定部3912によるRRM測定の結果などが含まれる。 Also, the downlink U band baseband signal processing unit 3908 outputs control information based on the baseband processing to the uplink control channel processing unit 3904. The control information output from the downlink U-band baseband signal processing unit 3908 to the uplink control channel processing unit 3904 includes, for example, the CQI measurement result by the CQI measurement unit 3911 and the RRM measurement result by the RRM measurement unit 3912. included.
 図1A,図1Bに示した第1受信部121は、たとえばアンテナ3901、Lバンド用RF部3902および下りリンクベースバンド信号処理部3903により実現することができる。図1A,図1Bに示した第2受信部122は、たとえばアンテナ3906、Uバンド用RF部3907および下りリンクUバンドベースバンド信号処理部3908により実現することができる。 1A and 1B can be realized by, for example, an antenna 3901, an L-band RF unit 3902, and a downlink baseband signal processing unit 3903. The second receiving unit 122 illustrated in FIGS. 1A and 1B can be realized by, for example, the antenna 3906, the U-band RF unit 3907, and the downlink U-band baseband signal processing unit 3908.
 図39Cは、端末のハードウェア構成の一例を示す図である。図39A,図39Bに示した端末120は、たとえば図39Cに示す通信装置3930によって実現することができる。通信装置3930は、プロセッサ3931と、主記憶装置3932と、補助記憶装置3933と、ユーザインタフェース3934と、無線機3935と、アンテナ3936と、を備える。プロセッサ3931、主記憶装置3932、補助記憶装置3933、ユーザインタフェース3934および無線機3935は、バス3939によって接続される。 FIG. 39C is a diagram illustrating an example of a hardware configuration of the terminal. The terminal 120 shown in FIGS. 39A and 39B can be realized by, for example, the communication device 3930 shown in FIG. 39C. The communication device 3930 includes a processor 3931, a main storage device 3932, an auxiliary storage device 3933, a user interface 3934, a wireless device 3935, and an antenna 3936. The processor 3931, the main storage device 3932, the auxiliary storage device 3933, the user interface 3934 and the wireless device 3935 are connected by a bus 3939.
 プロセッサ3931は、通信装置3930の全体の制御を司る。プロセッサ3931は、たとえばCPUにより実現することができる。主記憶装置3932は、たとえばプロセッサ3931のワークエリアとして使用される。主記憶装置3932は、たとえばRAMにより実現することができる。 The processor 3931 manages the overall control of the communication device 3930. The processor 3931 can be realized by a CPU, for example. The main storage device 3932 is used as a work area of the processor 3931, for example. The main storage device 3932 can be realized by a RAM, for example.
 補助記憶装置3933は、たとえば磁気ディスク、光ディスク、フラッシュメモリなどの不揮発メモリである。補助記憶装置3933には、通信装置3930を動作させる各種のプログラムが記憶される。補助記憶装置3933に記憶されたプログラムは、主記憶装置3932にロードされてプロセッサ3931によって実行される。 The auxiliary storage device 3933 is a non-volatile memory such as a magnetic disk, an optical disk, or a flash memory. The auxiliary storage device 3933 stores various programs for operating the communication device 3930. The program stored in the auxiliary storage device 3933 is loaded into the main storage device 3932 and executed by the processor 3931.
 ユーザインタフェース3934は、たとえば、ユーザからの操作入力を受け付ける入力デバイスや、ユーザへ情報を出力する出力デバイスなどを含む。入力デバイスは、たとえばキー(たとえばキーボード)やリモコンなどによって実現することができる。出力デバイスは、たとえばディスプレイやスピーカなどによって実現することができる。また、タッチパネルなどによって入力デバイスおよび出力デバイスを実現してもよい。ユーザインタフェース3934は、プロセッサ3931によって制御される。 The user interface 3934 includes, for example, an input device that receives an operation input from the user, an output device that outputs information to the user, and the like. The input device can be realized by a key (for example, a keyboard) or a remote controller, for example. The output device can be realized by, for example, a display or a speaker. Further, an input device and an output device may be realized by a touch panel or the like. The user interface 3934 is controlled by the processor 3931.
 無線機3935は、アンテナ3936を用いて、無線により他の通信装置(たとえば基地局110)との間で通信を行う通信インタフェースである。無線機3935は、プロセッサ3931によって制御される。 The wireless device 3935 is a communication interface that performs communication with another communication device (for example, the base station 110) wirelessly using the antenna 3936. The radio 3935 is controlled by the processor 3931.
 図39A,図39Bに示したアンテナ3901,3906は、たとえばアンテナ3936により実現することができる。図39A,図39Bに示したLバンド用RF部3902およびUバンド用RF部3907は、たとえば無線機3935により実現することができる。 The antennas 3901 and 3906 shown in FIGS. 39A and 39B can be realized by the antenna 3936, for example. The L-band RF unit 3902 and the U-band RF unit 3907 shown in FIGS. 39A and 39B can be realized by, for example, the wireless device 3935.
 図39A,図39Bに示した下りリンクベースバンド信号処理部3903、上りリンク制御チャネル処理部3904および下りリンクUバンドベースバンド信号処理部3908は、たとえばプロセッサ3931により実現することができる。 The downlink baseband signal processing unit 3903, the uplink control channel processing unit 3904, and the downlink U band baseband signal processing unit 3908 shown in FIGS. 39A and 39B can be realized by the processor 3931, for example.
(Uバンドのリソース割当情報の送信チャネルの例)
 図40Aは、Uバンドのリソース割当情報の送信チャネルの例1を示す図である。図40Aにおいて、図8Aに示した部分と同様の部分については同一の符号を付して説明を省略する。図40Aに示すように、基地局110は、Uバンドに関するリソース割当情報4001を、たとえばUバンドの周波数チャネルsu1のPDCCHにより送信する。図40Aに示す例では、基地局110は、周波数チャネルsu1により送信するRSを含む信号803の先頭部分にリソース割当情報4001を含めている。
(Example of U-band resource allocation information transmission channel)
FIG. 40A is a diagram illustrating a first example of a transmission channel for U-band resource allocation information. In FIG. 40A, the same parts as those shown in FIG. 8A are denoted by the same reference numerals and description thereof is omitted. As illustrated in FIG. 40A, the base station 110 transmits resource allocation information 4001 related to the U band, for example, using the PDCCH of the frequency channel su1 of the U band. In the example shown in FIG. 40A, the base station 110 includes the resource allocation information 4001 in the head part of the signal 803 including the RS transmitted by the frequency channel su1.
 リソース割当情報4001は、たとえば端末120を含む端末ごとの割当リソースや変調方式などを示す情報である。たとえば、サブフレームごとにリソースの割当が変化する場合は、サブフレームごとにリソース割当情報4001が送信されるようにしてもよい。 Resource allocation information 4001 is information indicating an allocation resource, a modulation scheme, and the like for each terminal including the terminal 120, for example. For example, when resource allocation changes for each subframe, resource allocation information 4001 may be transmitted for each subframe.
 図40Bは、Uバンドのリソース割当情報の送信チャネルの例2を示す図である。図40Bにおいて、図40Aに示した部分と同様の部分については同一の符号を付して説明を省略する。図40Bに示すように、基地局110は、Uバンドに関するリソース割当情報4001をUバンドの周波数チャネルsu1のE-PDCCH(Enhanced-Physical Downlink Control Channel:拡張物理下りリンク制御チャネル)により送信してもよい。 FIG. 40B is a diagram illustrating Example 2 of a transmission channel of U-band resource allocation information. In FIG. 40B, the same portions as those shown in FIG. 40A are denoted by the same reference numerals, and description thereof is omitted. As shown in FIG. 40B, the base station 110 may transmit the resource allocation information 4001 related to the U band by the E-PDCCH (Enhanced-Physical Downlink Control Channel) of the U-band frequency channel su1. Good.
 図40A,図40Bに示したように、基地局110は、たとえば、Uバンドに関するリソース割当情報を、Uバンドの周波数チャネルsu1で送信することができる。 As shown in FIGS. 40A and 40B, the base station 110 can transmit, for example, resource allocation information related to the U band using the frequency channel su1 of the U band.
 図40Cは、Uバンドのリソース割当情報の送信チャネルの例3を示す図である。図40Cにおいて、図40Aに示した部分と同様の部分については同一の符号を付して説明を省略する。図40Cに示すように、基地局110は、Uバンドに関するリソース割当情報4001を、Lバンドの周波数チャネルpl1のPDCCHにより送信してもよい。図40Cに示す例では、基地局110は、周波数チャネルpl1のサブフレームの先頭部分においてリソース割当情報4001を送信している。 FIG. 40C is a diagram illustrating a third example of a transmission channel for U-band resource allocation information. In FIG. 40C, portions similar to those illustrated in FIG. 40A are denoted by the same reference numerals and description thereof is omitted. As illustrated in FIG. 40C, the base station 110 may transmit the resource allocation information 4001 related to the U band using the PDCCH of the frequency channel pl1 of the L band. In the example shown in FIG. 40C, the base station 110 transmits the resource allocation information 4001 in the head part of the subframe of the frequency channel pl1.
 図40Dは、Uバンドのリソース割当情報の送信チャネルの例4を示す図である。図40Dにおいて、図40Cに示した部分と同様の部分については同一の符号を付して説明を省略する。図40Dに示すように、基地局110は、Uバンドに関するリソース割当情報4001を、Lバンドの周波数チャネルpl1のE-PDCCHより送信してもよい。 FIG. 40D is a diagram illustrating a fourth example of a transmission channel for U-band resource allocation information. In FIG. 40D, the same parts as those shown in FIG. 40C are denoted by the same reference numerals and description thereof is omitted. As illustrated in FIG. 40D, the base station 110 may transmit the resource allocation information 4001 related to the U band from the E-PDCCH of the L-band frequency channel pl1.
 図40C,図40Dに示したように、基地局110は、たとえば、Uバンドに関するリソース割当情報を、Lバンドの周波数チャネルpl1で送信してもよい。 As shown in FIGS. 40C and 40D, the base station 110 may transmit resource allocation information related to the U band, for example, using the L-band frequency channel pl1.
 このように、実施の形態によれば、基地局110が、Uバンドを使用して参照信号および同期信号の少なくとも一方を送信するタイミングを特定するための制御情報を、Lバンドを使用して送信することができる。 As described above, according to the embodiment, the base station 110 transmits control information for specifying the timing of transmitting at least one of the reference signal and the synchronization signal using the U band using the L band. can do.
 これにより、端末120は、基地局110からLバンドを使用して送信された制御情報を受信することで、基地局110がUバンドを使用して参照信号および同期信号の少なくとも一方を送信するタイミングを正確に特定することができる。このため、端末120は、基地局110がUバンドを使用して参照信号および同期信号の少なくとも一方を効率よく受信し、受信した信号に基づく処理を行うことができる。 Thereby, the terminal 120 receives the control information transmitted from the base station 110 using the L band, whereby the base station 110 transmits at least one of the reference signal and the synchronization signal using the U band. Can be accurately identified. For this reason, the terminal 120 can efficiently receive at least one of the reference signal and the synchronization signal using the U band by the base station 110 and perform processing based on the received signal.
 以上説明したように、無線通信システム、基地局、端末および処理方法によれば、共用帯域での基地局による信号の送信タイミングを端末が正確に特定することができる。 As described above, according to the wireless communication system, the base station, the terminal, and the processing method, the terminal can accurately specify the signal transmission timing of the base station in the shared band.
 たとえば、従来、LTEやLTE-advancedなどにおいては、基地局から送信される参照信号や同期信号に基づいて、端末がタイミングトラッキング、周波数トラッキング、CQI測定、RRM測定、CSI測定などを行う。たとえば、Lバンドにおいては基地局からRSが周期的に送信される。また、Lバンドにおいては、CRSがサブフレームごとに送信され、CSI-RSが周期的に送信される。 For example, conventionally, in LTE, LTE-advanced, and the like, a terminal performs timing tracking, frequency tracking, CQI measurement, RRM measurement, CSI measurement, and the like based on a reference signal and a synchronization signal transmitted from a base station. For example, in the L band, the RS is periodically transmitted from the base station. In the L band, CRS is transmitted for each subframe, and CSI-RS is periodically transmitted.
 一方、トラフィックの増大に対応するためにUバンドにおいてもLTEを利用するLTE-uが提案されている。たとえば、Lバンドで接続をしながら、Uバンドを補助的にデータ送信に使う方式がスループットの向上に寄与すると期待されている。 On the other hand, LTE-u using LTE in the U band has been proposed to cope with the increase in traffic. For example, a system that uses the U band for data transmission while connecting in the L band is expected to contribute to an improvement in throughput.
 ここで、UバンドでLTEによる送信を行う場合は、LTE-u間およびWLAN(Wireless Local Area Network:無線構内通信網)など他システムとの共存を実現するために、LBT(Listen-Before-Talk)を行うことを要する。LBTを行う場合、基地局などのそれぞれの無線局が送信を行うためには先にキャリアセンスを行い、無線周波数チャネルが使用されていない(Idle)ことを確認することになる。無線周波数チャネルが使用されている(Busy)場合は無線信号を送信できないため、サブフレームごとに(または周期的に)基地局からRSや同期信号を含む信号の送信が行われるとは限らない。 Here, when performing transmission by LTE in the U band, in order to realize coexistence with other systems such as between LTE-u and WLAN (Wireless Local Area Network), LBT (Listen-Before-Talk) ). When performing LBT, in order for each radio station such as a base station to perform transmission, carrier sense is performed first and it is confirmed that the radio frequency channel is not used (Idle). When a radio frequency channel is used (Busy), a radio signal cannot be transmitted. Therefore, a signal including an RS and a synchronization signal is not always transmitted from the base station for each subframe (or periodically).
 このため、端末は、Uバンドで基地局からRSや同期信号が送信されるタイミングを特定することが困難であり、Uバンドで基地局から送信されるRSや同期信号を効率よく受信することができない。たとえば、RSや同期信号が送信されているか否かが不明なタイミングで端末がRSや同期信号の検出を行うと、RSや同期信号でない信号をRSや同期信号として検出するなどの誤検出が発生し、RSや同期信号を精度よく受信することができない。また、パターン比較によりRSや同期信号を検出するには専用の検出回路を設けることになり、回路規模が増大する。 For this reason, it is difficult for the terminal to specify the timing at which the RS and the synchronization signal are transmitted from the base station in the U band, and the terminal can efficiently receive the RS and the synchronization signal transmitted from the base station in the U band. Can not. For example, if a terminal detects an RS or a synchronization signal at an unknown timing whether or not an RS or a synchronization signal is transmitted, a false detection such as detecting a signal that is not an RS or a synchronization signal as an RS or a synchronization signal occurs. However, the RS and the synchronization signal cannot be received with high accuracy. In addition, a dedicated detection circuit is provided to detect the RS and the synchronization signal by pattern comparison, which increases the circuit scale.
 これに対して、上述した各実施の形態によれば、基地局は、UバンドにおいてCSを行い、RSや同期信号を含む下りリンク送信が可能であれば送信を開始する。また、基地局は、Lバンドにおける制御チャネルを使ってUバンドにおいてRSや同期信号を含む下りリンク送信が行われるかどうかを端末に知らせる。 On the other hand, according to each embodiment described above, the base station performs CS in the U band, and starts transmission if downlink transmission including RS and a synchronization signal is possible. Also, the base station informs the terminal whether or not downlink transmission including RS and synchronization signal is performed in the U band using the control channel in the L band.
 これにより、Uバンドを利用する通信システムにおいて、端末がRSや同期信号が送信されるサブフレームを正確に把握し、周波数トラッキングやCQI測定などを精度よく行うことが可能になる。 Thereby, in the communication system using the U band, the terminal can accurately grasp the subframe in which the RS and the synchronization signal are transmitted, and can perform the frequency tracking and CQI measurement with high accuracy.
 なお、端末がRSや同期信号に基づいて行う処理について、タイミングトラッキング、周波数トラッキング、CQI測定、RRM測定、CSI測定、データ受信などを挙げたが、これらに限らず各種の処理とすることができる。 In addition, although the timing tracking, the frequency tracking, the CQI measurement, the RRM measurement, the CSI measurement, the data reception, and the like are given as the processes performed by the terminal based on the RS and the synchronization signal, the present invention is not limited thereto, and various processes can be performed. .
 pl1,su1,su2,su3 周波数チャネル
 sb1,sb2,sb3,sb4,901,902 サブフレーム
 100 無線通信システム
 110 基地局
 111 第1送信部
 112 第2送信部
 120 端末
 121 第1受信部
 122 第2受信部
 400 対応情報
 500,610,802,806,808,1300,1401,1700,2100,2300,2500,3200,3700 RS送信情報
 600,911,921,931 PDCCH
 611~613 ビット
 701~703,1011~1013,1021~1023,1031~1033 個別制御チャネル
 801 ダミー信号
 803,805,807,821,912,922,923,932,933,1402 信号
 2201~2204,2401~2403,3301~3303 データ送信
 2900 同期信号送信情報
 3801,3808,3836,3901,3906,3936 アンテナ
 3802,3902 Lバンド用RF部
 3803 上りリンクベースバンド信号処理部
 3804 下りリンク制御部
 3805 下りリンク制御チャネル処理部
 3806 下りリンクデータチャネル処理部
 3807 下りリンクLバンドベースバンド信号生成部
 3809,3907 Uバンド用RF部
 3810 キャリアセンス部
 3811 下りリンクUバンドベースバンド信号生成部
 3830,3930 通信装置
 3831,3931 プロセッサ
 3832,3932 主記憶装置
 3833,3933 補助記憶装置
 3834 ネットワークインタフェース
 3835,3935 無線機
 3839,3939 バス
 3903 下りリンクベースバンド信号処理部
 3904 上りリンク制御チャネル処理部
 3905 上りリンクベースバンド信号生成部
 3908 下りリンクUバンドベースバンド信号処理部
 3909 同期部
 3910 タイミング/周波数トラッキング部
 3911 CQI測定部
 3912 RRM測定部
 3934 ユーザインタフェース
 4001 リソース割当情報
pl1, su1, su2, su3 Frequency channels sb1, sb2, sb3, sb4, 901, 902 Subframe 100 Wireless communication system 110 Base station 111 First transmission unit 112 Second transmission unit 120 Terminal 121 First reception unit 122 Second reception Part 400 corresponding information 500, 610, 802, 806, 808, 1300, 1401, 1700, 2100, 2300, 2500, 3200, 3700 RS transmission information 600, 911, 921, 931 PDCCH
611 to 613 bits 701 to 703, 1011 to 1013, 1021 to 1023, 1031 to 1033 Dedicated control channel 801 Dummy signal 803, 805, 807, 821, 912, 922, 923, 932, 933, 1402 Signal 2201 to 2204, 2401 2403, 3301 to 3303 Data transmission 2900 Synchronization signal transmission information 3801, 3808, 3836, 3901, 3906, 3936 Antenna 3802, 3902 L-band RF unit 3803 Uplink baseband signal processing unit 3804 Downlink control unit 3805 Downlink control Channel processing unit 3806 Downlink data channel processing unit 3807 Downlink L-band baseband signal generation unit 3809, 3907 U-band RF unit 3810 Carrier sense unit 811 Downlink U-band baseband signal generator 3830, 3930 Communication device 3831, 3931 Processor 3832, 3932 Main storage device 3833, 3933 Auxiliary storage device 3835 Network interface 3835, 3935 Radio 3839, 3939 Bus 3903 Downlink baseband signal processing Unit 3904 uplink control channel processing unit 3905 uplink baseband signal generation unit 3908 downlink U band baseband signal processing unit 3909 synchronization unit 3910 timing / frequency tracking unit 3911 CQI measurement unit 3912 RRM measurement unit 3934 user interface 4001 resource allocation information

Claims (13)

  1.  他の無線通信システムとの間で共用する第1帯域と、前記第1帯域と異なる第2帯域と、を使用可能な無線通信システムにおいて、
     前記他の無線通信システムにおいて前記第1帯域の無線信号が送信されない期間に前記第1帯域で参照信号および同期信号の少なくとも一方を送信する基地局であって、前記参照信号および同期信号の少なくとも一方を送信するタイミングを特定するための制御情報を前記第2帯域で送信する基地局と、
     前記基地局から前記第2帯域で送信された前記制御情報に基づいて、前記基地局から前記第1帯域で送信された前記参照信号および同期信号の少なくとも一方を受信する端末と、
     を含むことを特徴とする無線通信システム。
    In a radio communication system capable of using a first band shared with other radio communication systems and a second band different from the first band,
    A base station that transmits at least one of a reference signal and a synchronization signal in the first band during a period in which the wireless signal of the first band is not transmitted in the other wireless communication system, and at least one of the reference signal and the synchronization signal A base station for transmitting control information in the second band for specifying the timing for transmitting
    Based on the control information transmitted from the base station in the second band, a terminal that receives at least one of the reference signal and the synchronization signal transmitted from the base station in the first band;
    A wireless communication system comprising:
  2.  前記基地局は、前記第1帯域における無線信号の検出結果に基づいて前記期間を検出し、検出した前記期間に前記参照信号および同期信号の少なくとも一方を送信することを特徴とする請求項1に記載の無線通信システム。 The base station detects the period based on a detection result of a radio signal in the first band, and transmits at least one of the reference signal and the synchronization signal in the detected period. The wireless communication system described.
  3.  前記基地局は、前記第1帯域における自局からの無線信号の送信の有無に基づいて前記期間を検出し、検出した前記期間に前記参照信号および同期信号の少なくとも一方を送信することを特徴とする請求項1または2に記載の無線通信システム。 The base station detects the period based on presence / absence of transmission of a radio signal from the own station in the first band, and transmits at least one of the reference signal and the synchronization signal in the detected period. The wireless communication system according to claim 1 or 2.
  4.  前記第2帯域は、自システムが占用する帯域であることを特徴とする請求項1~3のいずれか一つに記載の無線通信システム。 The wireless communication system according to any one of claims 1 to 3, wherein the second band is a band occupied by the own system.
  5.  前記制御情報は、前記参照信号および同期信号の少なくとも一方の送信の有無または送信予定の有無を周期的な期間ごとに示す情報であることを特徴とする請求項1~4のいずれか一つに記載の無線通信システム。 5. The control information according to claim 1, wherein the control information is information indicating, for each periodic period, whether or not at least one of the reference signal and the synchronization signal is transmitted. The wireless communication system described.
  6.  前記基地局は、他の無線通信システムとの間で共用する複数の第1帯域のそれぞれについての前記制御情報(以下、「第1制御情報」と称する)を前記第2帯域の制御チャネルに配置して送信し、前記複数の第1帯域のそれぞれについての前記制御情報の前記制御チャネルにおける配置を特定するための第2制御情報を前記第2帯域で送信し、
     前記端末は、前記基地局から前記第2帯域で送信された前記第2制御情報に基づいて、前記複数の第1帯域のうちの自端末が使用する第1帯域についての前記第1制御情報を前記制御チャネルから受信する、
     ことを特徴とする請求項1~5のいずれか一つに記載の無線通信システム。
    The base station arranges the control information (hereinafter referred to as “first control information”) for each of a plurality of first bands shared with other wireless communication systems in a control channel of the second band. And transmitting the second control information for specifying the arrangement of the control information in the control channel for each of the plurality of first bands in the second band,
    The terminal, based on the second control information transmitted from the base station in the second band, the first control information on the first band used by the terminal among the plurality of first bands. Receiving from the control channel;
    The wireless communication system according to any one of claims 1 to 5, wherein:
  7.  前記基地局は、他の無線通信システムとの間で共用する複数の第1帯域のそれぞれについての前記制御情報(以下、「第1制御情報」と称する)を前記第2帯域の個別の制御チャネルにより送信し、前記複数の第1帯域と前記個別の制御チャネルとの対応を特定するための第2制御情報を前記第2帯域で送信し、
     前記端末は、前記基地局から前記第2帯域で送信された前記第2制御情報に基づいて、前記複数の第1帯域のうちの自端末が使用する第1帯域についての前記第1制御情報を前記個別の制御チャネルから受信する、
     ことを特徴とする請求項1~6のいずれか一つに記載の無線通信システム。
    The base station transmits the control information (hereinafter referred to as “first control information”) for each of a plurality of first bands shared with other wireless communication systems to an individual control channel of the second band. And transmitting second control information for identifying correspondence between the plurality of first bands and the individual control channel in the second band,
    The terminal, based on the second control information transmitted from the base station in the second band, the first control information on the first band used by the terminal among the plurality of first bands. Receiving from said individual control channel;
    The wireless communication system according to any one of claims 1 to 6, wherein:
  8.  前記基地局は、前記参照信号および同期信号の少なくとも一方を送信するタイミングと、送信する前記参照信号および同期信号の少なくとも一方の種別と、を特定するための前記制御情報を送信することを特徴とする請求項1~7のいずれか一つに記載の無線通信システム。 The base station transmits the control information for specifying the timing for transmitting at least one of the reference signal and the synchronization signal and the type of at least one of the reference signal and the synchronization signal to be transmitted. The wireless communication system according to any one of claims 1 to 7.
  9.  前記基地局は、前記参照信号および同期信号の少なくとも一方を送信するタイミングと、前記基地局が前記第1帯域で送信するデータ信号のフォーマットと、を特定するための前記制御情報を送信することを特徴とする請求項1~8のいずれか一つに記載の無線通信システム。 The base station transmits the control information for specifying a timing for transmitting at least one of the reference signal and the synchronization signal and a format of a data signal transmitted by the base station in the first band. The wireless communication system according to any one of claims 1 to 8, characterized in that:
  10.  他の無線通信システムとの間で共用する第1帯域と、前記第1帯域と異なる第2帯域と、を使用可能な無線通信システムの基地局において、
     前記他の無線通信システムにおいて前記第1帯域の無線信号が送信されない期間に前記第1帯域で参照信号および同期信号の少なくとも一方を送信する第1送信部と、
     前記第1送信部が前記参照信号および同期信号の少なくとも一方を送信するタイミングを特定するための制御情報を前記第2帯域で送信する第2送信部と、
     を備えることを特徴とする基地局。
    In a base station of a radio communication system capable of using a first band shared with other radio communication systems and a second band different from the first band,
    A first transmitter that transmits at least one of a reference signal and a synchronization signal in the first band during a period in which the radio signal of the first band is not transmitted in the other wireless communication system;
    A second transmitter that transmits control information in the second band for specifying the timing at which the first transmitter transmits at least one of the reference signal and the synchronization signal;
    A base station comprising:
  11.  他の無線通信システムとの間で共用する第1帯域と、前記第1帯域と異なる第2帯域と、を使用可能な無線通信システムの端末において、
     前記他の無線通信システムにおいて前記第1帯域の無線信号が送信されない期間に前記第1帯域で参照信号および同期信号の少なくとも一方を送信する基地局から、前記参照信号および同期信号の少なくとも一方を送信するタイミングを特定するための制御情報を前記第2帯域で受信する第1受信部と、
     前記第1受信部によって受信された前記制御情報に基づいて、前記基地局から前記第1帯域で送信された前記参照信号および同期信号の少なくとも一方を受信する第2受信部と、
     を備えることを特徴とする端末。
    In a terminal of a wireless communication system capable of using a first band shared with other wireless communication systems and a second band different from the first band,
    At least one of the reference signal and the synchronization signal is transmitted from a base station that transmits at least one of the reference signal and the synchronization signal in the first band during a period in which the radio signal of the first band is not transmitted in the other wireless communication system. A first receiving unit that receives control information for specifying the timing to perform in the second band;
    A second receiving unit that receives at least one of the reference signal and the synchronization signal transmitted from the base station in the first band based on the control information received by the first receiving unit;
    A terminal comprising:
  12.  他の無線通信システムとの間で共用する第1帯域と、前記第1帯域と異なる第2帯域と、を使用可能な無線通信システムの基地局による処理方法において、
     前記他の無線通信システムにおいて前記第1帯域の無線信号が送信されない期間に前記第1帯域で参照信号および同期信号の少なくとも一方を送信し、
     前記参照信号および同期信号の少なくとも一方を送信するタイミングを特定するための制御情報を前記第2帯域で送信する、
     ことを特徴とする処理方法。
    In a processing method by a base station of a radio communication system capable of using a first band shared with other radio communication systems and a second band different from the first band,
    Transmitting at least one of a reference signal and a synchronization signal in the first band during a period in which the radio signal of the first band is not transmitted in the other wireless communication system;
    Transmitting control information for specifying timing for transmitting at least one of the reference signal and the synchronization signal in the second band;
    A processing method characterized by the above.
  13.  他の無線通信システムとの間で共用する第1帯域と、前記第1帯域と異なる第2帯域と、を使用可能な無線通信システムの端末による処理方法において、
     前記他の無線通信システムにおいて前記第1帯域の無線信号が送信されない期間に前記第1帯域で参照信号および同期信号の少なくとも一方を送信する基地局から、前記参照信号および同期信号の少なくとも一方を送信するタイミングを特定するための制御情報を前記第2帯域で受信し、
     受信した前記制御情報に基づいて、前記基地局から前記第1帯域で送信された前記参照信号および同期信号の少なくとも一方を受信する、
     ことを特徴とする処理方法。
    In a processing method by a terminal of a radio communication system capable of using a first band shared with other radio communication systems and a second band different from the first band,
    At least one of the reference signal and the synchronization signal is transmitted from a base station that transmits at least one of the reference signal and the synchronization signal in the first band during a period in which the radio signal of the first band is not transmitted in the other wireless communication system. Receiving control information for specifying the timing to perform in the second band,
    Based on the received control information, receiving at least one of the reference signal and the synchronization signal transmitted from the base station in the first band,
    A processing method characterized by the above.
PCT/JP2014/079510 2014-11-06 2014-11-06 Wireless communication system, base station, terminal, and processing method WO2016072000A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079510 WO2016072000A1 (en) 2014-11-06 2014-11-06 Wireless communication system, base station, terminal, and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/079510 WO2016072000A1 (en) 2014-11-06 2014-11-06 Wireless communication system, base station, terminal, and processing method

Publications (1)

Publication Number Publication Date
WO2016072000A1 true WO2016072000A1 (en) 2016-05-12

Family

ID=55908752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079510 WO2016072000A1 (en) 2014-11-06 2014-11-06 Wireless communication system, base station, terminal, and processing method

Country Status (1)

Country Link
WO (1) WO2016072000A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532897A (en) * 2014-11-07 2017-11-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Synchronization in LTE License Assisted Access (LAA) in unlicensed band
US10869287B2 (en) 2014-11-17 2020-12-15 Qualcomm Incorporated Techniques for transmitting synchronization signals in a shared radio frequency spectrum band

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534395A (en) * 2010-08-16 2013-09-02 クゥアルコム・インコーポレイテッド Method and apparatus for using license spectrum for control channel in cognitive radio communication
WO2013151158A1 (en) * 2012-04-06 2013-10-10 株式会社エヌ・ティ・ティ・ドコモ Communication system, local area base station device, mobile communication terminal, and communication method
JP2014500685A (en) * 2010-12-06 2014-01-09 インターデイジタル パテント ホールディングス インコーポレイテッド How to enable wireless operation in the unlicensed spectrum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534395A (en) * 2010-08-16 2013-09-02 クゥアルコム・インコーポレイテッド Method and apparatus for using license spectrum for control channel in cognitive radio communication
JP2014500685A (en) * 2010-12-06 2014-01-09 インターデイジタル パテント ホールディングス インコーポレイテッド How to enable wireless operation in the unlicensed spectrum
WO2013151158A1 (en) * 2012-04-06 2013-10-10 株式会社エヌ・ティ・ティ・ドコモ Communication system, local area base station device, mobile communication terminal, and communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TELIASONERA: "An operator view on LTE in unlicensed spectrum", 3GPP RWS-140011, 5 June 2014 (2014-06-05), pages 1 - 7, XP050868290, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/workshop/2014-06-13LTE-U/Docs> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017532897A (en) * 2014-11-07 2017-11-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Synchronization in LTE License Assisted Access (LAA) in unlicensed band
US10440636B2 (en) 2014-11-07 2019-10-08 Panasonic Intellectual Property Corporation Of America Synchronization for LTE licensed assisted access in unlicensed bands
US10869287B2 (en) 2014-11-17 2020-12-15 Qualcomm Incorporated Techniques for transmitting synchronization signals in a shared radio frequency spectrum band

Similar Documents

Publication Publication Date Title
KR102313906B1 (en) Method and apparatus for transmitting configuration information of resource for control channel, method and apparatus for transmitting configuration information of resource for uplink discovery reference signal, method and apparatus for transmitting indicator indicating type of subframe/slot, and method and apparatus for transmitting the number of downlink symbols
US11202272B2 (en) Beam-specific timing advance groups
EP3131356B1 (en) Methods and devices for scheduling unlicensed spectrum
EP3497955B1 (en) Method and apparatus for network planning and operation of a beam-based communication system
US9930626B2 (en) Device, network, and method for communications with dynamic adaptation
EP3065427B1 (en) Radio base station, user terminal, and radio communication method
JP2018526858A (en) Beam detection, beam tracking, and random access in millimeter wave small cells in heterogeneous networks
CN111903076A (en) Signal transmission method, related equipment and system
KR102137898B1 (en) Wireless device for managing signaling in wireless communication network, wireless network node, and method for performing same
CN110463067B (en) Radio network node, wireless device and methods performed therein
JP2016526836A (en) Physical random access channel transmission and reception method, and base station and user equipment
EP2919407B1 (en) Coverage extension in wireless communication
US10342011B2 (en) Method and device for allocating resource in wireless LAN system, communication terminal method and communication terminal
CN102468933A (en) Method, device and system for feeding back channel state information
EP3286847B1 (en) Adaptive beamforming
JP7447153B2 (en) Terminal, base station, communication system, and communication method
WO2016072000A1 (en) Wireless communication system, base station, terminal, and processing method
KR101571881B1 (en) Method for generating sounding reference signal, method for sending uplink and base station device
JP2020515144A (en) Cell quality derivation configuration
CN115669038A (en) Beam management method, device, equipment and storage medium
KR102571817B1 (en) Apparatus for transmitting and receiving data through unlicensed band
CN105634700A (en) Channel design method and device in unauthorized carrier
GB2498927A (en) Configuring random access channels based on an ABS pattern within the vicinity of an apparatus
JP7169874B2 (en) Radio base station and communication control method
EP3761542A1 (en) Flexible transmission grid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP