WO2016065859A1 - Intelligent antenna device - Google Patents
Intelligent antenna device Download PDFInfo
- Publication number
- WO2016065859A1 WO2016065859A1 PCT/CN2015/076648 CN2015076648W WO2016065859A1 WO 2016065859 A1 WO2016065859 A1 WO 2016065859A1 CN 2015076648 W CN2015076648 W CN 2015076648W WO 2016065859 A1 WO2016065859 A1 WO 2016065859A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna array
- antenna
- calibration network
- connector
- coupled
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/267—Phased-array testing or checking devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0075—Stripline fed arrays
Definitions
- a longitudinal metal partition is disposed between each two adjacent antenna array columns in the antenna array; and/or, between each two adjacent antenna array columns of the antenna array is disposed a lateral metal partition; and/or a metal side panel is disposed on a periphery of the antenna array.
- the coupled calibration network includes 16 identical microstrip directional coupling circuits 61 and 15 1:2 power split/combiners 62, 16
- the first RF connector 36 has a second RF connector 37 for calibrating the signal input and output.
- the antenna array, the coupling calibration network, and the metal reflector are all integrated on the same dielectric plate, and the antenna array element and the coupled calibration network are connected by a via hole to increase reliability and avoid the use of a large number of RF cables.
- the antenna size can be reduced, the base station system integration and miniaturization performance can be improved, and the realization of the large-scale smart antenna array coupling calibration network device is facilitated, which is convenient for production debugging and mass production, and is more suitable for the popularization of wireless communication systems.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Transceivers (AREA)
Abstract
An intelligent antenna device, the device comprising: a dielectric plate, a coupling calibration network, an antenna array, a first radio frequency connector, and a second radio frequency connector; the coupling calibration network is disposed on one side of the dielectric plate, the antenna array is disposed on the other side of the dielectric plate, a through hole is provided on the dielectric plate, and the antenna array is connected to the coupling calibration network via the through hole; the first radio frequency connector and the second radio frequency connector are arranged on the side having the coupling calibration network on the dielectric plate, and are respectively connected to the coupling calibration network.
Description
本文涉及无线通信系统的天线装置,更确切地说是涉及一种智能天线装置。This document relates to antenna devices for wireless communication systems, and more particularly to a smart antenna device.
在当代蜂窝系统中,用户对无线数据速率的不断增长的需求导致有限的带宽被相邻的小区共用,所造成的小区间的干扰是数据传输速率和服务质量的主要限制因素。处在小区边缘的用户受到小区的干扰尤其严重。很多无线服务供应商一直在努力改善小区边缘用户的服务质量。在这些尝试中,用多天线技术所提供的更多的自由度来缓解小区边缘用户的服务性能下降是最有潜力的方向。同时传统的4天线、8天线大功率基站系统对基站系统收发信机链路模块的设计难度高,如果将大功率均分到更大规模天线后,如16天线、64天线,将大大降低单天线功率,对基站系统收发信机链路设计难度大大降低。因此,大规模智能天线通信将成为一种发展趋势,而耦合校准网络作为大规模智能天线的关键部件之一,它的实现不但直接影响到大规模智能天线的波束赋形效果,而且间接影响到基站系统的模块架构设计。In contemporary cellular systems, the ever-increasing user demand for wireless data rates results in limited bandwidth being shared by neighboring cells, and the resulting inter-cell interference is a major limiting factor in data transmission rates and quality of service. Users at the edge of the cell are particularly disturbed by the cell. Many wireless service providers have been working hard to improve the quality of service for cell edge users. In these attempts, the more freedom provided by multi-antenna technology to alleviate the decline in service performance of cell edge users is the most promising direction. At the same time, the traditional 4-antenna and 8-antenna high-power base station system is difficult to design the base station system transceiver link module. If the high power is evenly distributed to a larger antenna, such as 16 antennas and 64 antennas, the single-chip will be greatly reduced. The antenna power is greatly reduced in design difficulty for the base station system transceiver link. Therefore, large-scale smart antenna communication will become a development trend, and the coupled calibration network is one of the key components of large-scale smart antennas. Its implementation not only directly affects the beamforming effect of large-scale smart antennas, but also indirectly affects The module architecture design of the base station system.
如图1所示,在中国专利CN2755871Y中给出一种直线排列智能天线阵的耦合校准网络装置,包含N个天线阵元、N个耦合器和若干个功分器/合路器(N≥2)。N个天线阵元(11)成直线排列成直线天线阵;耦合器是微带定向耦合器,由两条近距离的金属平行微带组成;N个微带定向耦合器与若干个功分器/合路器制作在一块耦合校准网络电路板(12)上,该电路板设置在直线天线阵辐射方向的后面,N个微带定向耦合器在耦合校准网络电路板上的分布随N个天线阵元一一对应地分布;一块金属反射板(13),设置在耦合校准网络电路板后面,使直线天线阵实现定向覆盖。此外,该装置还包括是耦合校准网络与天线阵元的射频连接器14、8个天线阵输入/输出接头15、和1个校准口输入/输出接头16。该专利天线阵、耦合校准网络、反射板各为单独板块,未集成在同一介质板上,不利于基站系统的集成化;天线阵
输入/输出接头及校准口输入/输出接头与基站系统相连是通过在耦合校准网络边缘引出射频连接器或通过直接焊接电缆引出,对于大规模天线阵,必然需要增加射频连接器或者焊接线缆数量,如此,会显得杂乱繁琐,不利于基站系统的小型化和生产。As shown in FIG. 1 , a coupling calibration network device for a linear array of smart antenna arrays is provided in Chinese patent CN2755871Y, comprising N antenna array elements, N couplers and several power splitters/combiners (N≥ 2). N antenna array elements (11) are arranged in a straight line into a linear antenna array; the coupler is a microstrip directional coupler composed of two close-range metal parallel microstrips; N microstrip directional couplers and several power dividers / Combiner is fabricated on a coupled calibration network board (12) that is placed behind the radiation direction of the linear array, and the distribution of the N microstrip directional couplers on the coupled calibration network board with N antennas The array elements are distributed one by one; a metal reflector (13) is disposed behind the coupled calibration network board to enable directional coverage of the linear antenna array. In addition, the apparatus includes a radio frequency connector 14, a plurality of antenna array input/output connectors 15, and a calibration port input/output connector 16 that are coupled to the calibration network and the antenna elements. The patent antenna array, the coupling calibration network, and the reflector are each a separate plate, which are not integrated on the same dielectric plate, which is not conducive to the integration of the base station system; the antenna array
The input/output connector and the calibration port input/output connector are connected to the base station system by pulling out the RF connector at the edge of the coupling calibration network or by directly soldering the cable. For large-scale antenna arrays, it is necessary to increase the number of RF connectors or welding cables. In this way, it will appear messy and cumbersome, which is not conducive to the miniaturization and production of the base station system.
如图2所示,在中国专利CN103746193A中公开了一种智能天线及其校准装置,包括反射板(21)、振子(22)、端盖(23)及连接反射板(21)与端盖(23)的安装板(24),其中,智能天线还包括校准装置;校准装置包括介质板(25)、多个接头(26)及校准网络(27);校准网络(27)印制于介质板的表面,包括多个功率分配器形成的功率分配网络及多个定向耦合器;功率分配器网络的任一分路端口连接一定向耦合器;接头内芯直接与功率分配网络的合路端口或定向耦合器的信号输入端口连接,且一接头对应一端口;校准装置固定于安装板的一侧;安装板(24)设有至少一条折弯条(241),折弯条(241)贯穿校准装置固定于反射板(21)上。该专利振子与校准网络之间通过焊接线缆(28)连接,若为大规模天线阵,线缆数量纵多,不利于生产;振子与校准网络之间是垂直装置关系,装配时还需借助一条折弯条(241)来固定装置,不利于后续生产,系统集成度不高。As shown in FIG. 2, a smart antenna and a calibration device thereof are disclosed in Chinese Patent No. CN103746193A, including a reflector (21), a vibrator (22), an end cover (23), and a connecting reflector (21) and an end cover ( 23) a mounting plate (24), wherein the smart antenna further comprises a calibration device; the calibration device comprises a dielectric plate (25), a plurality of connectors (26) and a calibration network (27); and the calibration network (27) is printed on the dielectric plate Surface comprising a power distribution network formed by a plurality of power splitters and a plurality of directional couplers; any branch port of the power splitter network is connected to a coupler; the connector core is directly connected to the power distribution network or The signal input port of the directional coupler is connected, and one connector corresponds to one port; the calibration device is fixed to one side of the mounting plate; the mounting plate (24) is provided with at least one bending strip (241), and the bending bar (241) runs through the calibration The device is fixed to the reflector (21). The patented vibrator and the calibration network are connected by a soldering cable (28). If it is a large-scale antenna array, the number of cables is large, which is not conducive to production; the vibrator and the calibration network are vertically connected, and the assembly needs to be assisted. A bending strip (241) is used to fix the device, which is not conducive to subsequent production, and the system integration is not high.
发明内容Summary of the invention
本发明提供一种智能天线装置,能减小天线尺寸、提高基站系统集成化及小型化性能,便于大规模生产。The invention provides a smart antenna device, which can reduce the antenna size, improve the integration and miniaturization performance of the base station system, and facilitate mass production.
一种智能天线装置,所述装置包括:介质板、耦合校准网络、天线阵列、第一射频连接器以及第二射频连接器;其中,所述耦合校准网络设置在所述介质板的一面,所述天线阵列设置在所述介质板的另一面,所述介质板上设有过孔,所述天线阵列与所述耦合校准网络通过过孔连接;所述第一射频连接器和第二射频连接器排布在所述介质板上设有所述耦合校准网络的一面,分别与所述耦合校准网络连接。A smart antenna device, the device comprising: a dielectric plate, a coupled calibration network, an antenna array, a first RF connector, and a second RF connector; wherein the coupled calibration network is disposed on one side of the dielectric panel The antenna array is disposed on the other side of the dielectric board, the dielectric board is provided with a via hole, and the antenna array is connected to the coupled calibration network through a via; the first RF connector and the second RF connection Arranging one side of the coupled calibration network on the dielectric board, respectively connected to the coupled calibration network.
可选地,所述耦合校准网络包括分路/合路器和M个微带定向耦合器;所述天线阵列包括M个天线阵元,所述第一射频连接器为M个,所述第二射频连接器为一个,M为不小于2的整数;每个所述天线阵元并联馈电后通
过过孔方式连接所述耦合校准网络上对应的微带定向耦合器;每个所述第一射频连接器连接一个所述微带定向耦合器,所述分路/合路器的合路端口连接所述第二射频连接器。Optionally, the coupled calibration network includes a splitter/combiner and M microstrip directional couplers; the antenna array includes M antenna array elements, and the first radio frequency connector is M, the first The two RF connectors are one, and M is an integer not less than 2; each of the antenna elements is connected in parallel and then passed through
Connecting a corresponding microstrip directional coupler on the coupled calibration network via a via mode; each of the first RF connectors is coupled to one of the microstrip directional couplers, the combined port of the shunt/combiner Connecting the second RF connector.
可选地,所述M个第一射频连接器和所述第二射频连接器排布在所述介质板的内部。Optionally, the M first RF connectors and the second RF connectors are arranged inside the dielectric board.
可选地,每个所述微带定向耦合器包括两个微带,其中一个微带的一端通过过孔连接对应的天线阵元,另一端连接所述第一射频连接器。Optionally, each of the microstrip directional couplers includes two microstrips, one end of which is connected to the corresponding antenna element through a via, and the other end is connected to the first RF connector.
可选地,所述M个天线阵元为直线排列、环形排列或者其他不规则形状排列。Optionally, the M antenna elements are arranged in a line, a ring, or other irregular shapes.
可选地,所述M个天线阵元为等间距排列或者不等间距排列。Optionally, the M antenna elements are arranged at equal intervals or unequal intervals.
可选地,述M个天线阵元为定向方式、单极化方式或者双极化方式。Optionally, the M antenna elements are in a directional mode, a single polarization mode, or a dual polarization mode.
可选地,所述天线阵列中每两个相邻天线阵元列之间设置有一条纵向金属隔板;和/或,所述天线阵列的每两个相邻天线阵元列之间设置有一条横向金属隔板;和/或,所述天线阵列的外围设置有金属侧板。Optionally, a longitudinal metal partition is disposed between each two adjacent antenna array columns in the antenna array; and/or, between each two adjacent antenna array columns of the antenna array is disposed a lateral metal partition; and/or a metal side panel is disposed on a periphery of the antenna array.
可选地,所述分路/合路器的数量根据分路数和天线阵元个数确定。Optionally, the number of the splitter/combiner is determined according to the number of branches and the number of antenna array elements.
可选地,所述介质板的中间层同时作为接地层和金属反射板。Optionally, the intermediate layer of the dielectric plate serves as both a ground layer and a metal reflector.
可选地,所述介质板为印刷电路板PCB。Optionally, the dielectric board is a printed circuit board PCB.
本发明实施例中,将天线阵列、耦合校准网络、金属反射板全部集成到同一块介质板上,且天线阵元与耦合校准网络采用过孔方式连接,增加可靠性,避免大量射频电缆的使用,可以减小天线尺寸、提高基站系统集成化及小型化性能,有利于大规模智能天线阵耦合校准网络装置的实现,便于生产调试和大规模生产,更适用于无线通信系统的普及发展。In the embodiment of the present invention, the antenna array, the coupling calibration network, and the metal reflector are all integrated on the same dielectric plate, and the antenna array element and the coupled calibration network are connected by a via hole to increase reliability and avoid the use of a large number of RF cables. The antenna size can be reduced, the base station system integration and miniaturization performance can be improved, and the realization of the large-scale smart antenna array coupling calibration network device is facilitated, which is convenient for production debugging and mass production, and is more suitable for the popularization of wireless communication systems.
附图概述BRIEF abstract
图1为相关专利直线排列智能天线阵的耦合校准网络装置的结构示意图;1 is a schematic structural view of a coupled calibration network device of a related patent linear array smart antenna array;
图2为相关专利智能天线及其校准装置的结构示意图;
2 is a schematic structural view of a related patent smart antenna and a calibration device thereof;
图3为根据本发明实施例M=16阵元的天线阵耦合校准网络装置立体结构侧视图;3 is a perspective view showing a three-dimensional structure of an antenna array coupling calibration network device of M=16 array elements according to an embodiment of the present invention;
图4为根据本发明实施例M=16双极化阵元的天线阵列一个实例的俯视示意图;4 is a top plan view showing an example of an antenna array of M=16 dual-polarized array elements according to an embodiment of the present invention;
图5为根据本发明实施例M=16双极化阵元的天线阵列另一个实例的俯视示意图;5 is a top plan view showing another example of an antenna array of M=16 dual-polarized array elements according to an embodiment of the present invention;
图6为根据本发明实施例M=16阵元耦合校准网络的结构示意图;6 is a schematic structural diagram of an M=16 array element coupled calibration network according to an embodiment of the present invention;
图7为根据本发明实施例耦合校准网络任意一个耦合单元的组成结构示意图。FIG. 7 is a schematic diagram showing the structure of a coupling unit of any one of the coupling calibration networks according to an embodiment of the present invention.
下面结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
图3是本发明实施例的M=16阵元天线阵耦合校准网络的立体结构侧视图,其中,该天线阵耦合校准网络包括:介质板31、耦合校准网络32、天线阵列、16个第一射频连接器36和一个第二射频连接器37,其中,天线阵列与耦合校准网络32分别设置在介质板31的正反两个面,介质板31的中间层同时作为接地层和金属反射板34,介质板31上设有过孔38,天线阵列通过过孔38与耦合校准网络32连接。3 is a perspective view of a three-dimensional structure of an M=16 array element array coupled calibration network according to an embodiment of the present invention, wherein the antenna array coupling calibration network includes: a dielectric board 31, a coupled calibration network 32, an antenna array, and 16 firsts. The RF connector 36 and a second RF connector 37, wherein the antenna array and the coupling calibration network 32 are respectively disposed on the front and back sides of the dielectric plate 31, and the intermediate layer of the dielectric plate 31 serves as both the ground layer and the metal reflector 34. A via 38 is provided in the dielectric plate 31, and the antenna array is connected to the coupled calibration network 32 via a via 38.
实际应用时,介质板31为印刷电路板(PCB,Printed Circuit Board),一面设置天线阵列,一面印刷耦合校准网络32;所述介质板31的中间层作为耦合校准网络32和天线阵列的接地层,同时也作为天线阵列的金属反射板34,加强天线阵列的定向辐射;In practical application, the dielectric board 31 is a printed circuit board (PCB), one side is provided with an antenna array, and one side is printed with a coupling calibration network 32; the middle layer of the dielectric board 31 serves as a ground layer of the coupling calibration network 32 and the antenna array. And also as a metal reflector 34 of the antenna array to enhance the directional radiation of the antenna array;
该天线阵列由16个用于接收或发射信号的天线阵元33排列组成,所述的16个天线阵元33可以是直线排列、环形排列或者其他不规则形状排列;和/或,16个天线阵元33还可以是等间距排列或者不等间距排列;和/或,16个天线阵元33还可以是定向方式、单极化方式或者双极化方式;和/或,16个天线阵元33的定向方式可以是任意角度的,如30°、60°等;和/或,16
个天线阵元33的双极化方式可以是水平垂直极化或者±45°极化。The antenna array is composed of 16 antenna array elements 33 for receiving or transmitting signals, and the 16 antenna array elements 33 may be arranged in a straight line, a circular array or other irregular shapes; and/or 16 antennas. The array elements 33 may also be equally spaced or unequally spaced; and/or the 16 antenna elements 33 may also be directional, single-polarized or dual-polarized; and/or, 16 antenna elements 33 can be oriented at any angle, such as 30°, 60°, etc.; and/or, 16
The dual polarization mode of the antenna elements 33 may be horizontal vertical polarization or ±45° polarization.
耦合校准网络32包括微带定向耦合器和分路/合路器,微带定向耦合器的个数与天线阵元的个数相同,并且一一对应,每个天线阵元33以微带线35等形式实现并联馈电后与耦合校准网络32上对应的微带定向耦合器通过过孔38连接,这样,可以使得天线阵列与耦合校准网络能设置在同一介质板上,还可以避免采用不利于生产的线缆焊接方式。The coupled calibration network 32 includes a microstrip directional coupler and a splitter/combiner. The number of microstrip directional couplers is the same as the number of antenna array elements, and one-to-one correspondence, each antenna array element 33 is a microstrip line. After the parallel feeding is implemented in 35 form, the corresponding microstrip directional coupler on the coupled calibration network 32 is connected through the via 38, so that the antenna array and the coupled calibration network can be disposed on the same dielectric board, and the use of the antenna array can be avoided. Cable welding method that is conducive to production.
上述装置的下行校准工作链路流程为:基站系统发射通道的16路射频信号分别由16个第一射频连接器36输入,经耦合校准网络32耦合并以“等差损、等相移”的方式合成一路校准信号后,通过第二射频连接器37输出到基站系统的校准链路进行校准。The downlink calibration working link flow of the above device is: 16 radio frequency signals of the base station system transmission channel are respectively input by 16 first RF connectors 36, coupled by the coupling calibration network 32 and "equal difference, equal phase shift" After synthesizing one calibration signal, the second RF connector 37 outputs a calibration link to the base station system for calibration.
上述装置的上行校准工作链路流程为:来自基站系统校准链路的校准信号通过所述第二射频连接器37输入,经由耦合校准网络32以“等差损、等相移”的方式分成16路信号并耦合作用后,分别由所述16个第一射频连接器36输出到基站系统的接收通道。The upstream calibration working link flow of the above device is: the calibration signal from the base station system calibration link is input through the second RF connector 37, and is divided into 16 via the coupled calibration network 32 by "equal loss, equal phase shift". After the signals are coupled and coupled, the 16 first RF connectors 36 are respectively output to the receiving channels of the base station system.
所述的16个第一射频连接器36和第二射频连接器37排布在介质板31内部(或安装在介质板上),非边缘延伸区域,有利于结构小型化及集成化,其他任何类似功能的可靠连接方式均可使用,不再赘述。第一射频连接器36用于输入或输出射频信号,第二射频连接器37用于输入或者输出校准信号,可以分别采用具有盲插、径向轴向浮动特性的射频连接器,便于与基站系统连接。The 16 first RF connectors 36 and the second RF connectors 37 are arranged inside the dielectric board 31 (or mounted on the dielectric board), and the non-edge extension area is advantageous for miniaturization and integration of the structure, and any other Reliable connections for similar functions can be used and will not be described again. The first RF connector 36 is used for inputting or outputting a radio frequency signal, and the second RF connector 37 is used for inputting or outputting a calibration signal. The RF connector with blind insertion and radial axial floating characteristics can be respectively used to facilitate the connection with the base station system. connection.
图4是天线阵列一种实例的排布示意图,是M=16双极化阵元的天线阵俯视示意图,其中,对于四个天线阵元列41、42、43、44,每个天线阵元列都包括4个双极化振子形成的天线阵元33,每个天线阵元列中每个天线阵元33关于垂直方向或者水平方向成+45°和-45°极化方向,用于发射信号和接收信号;每个天线阵元列中上下相邻的天线阵元33两两采用微带线35等结构实现并联馈电,通过过孔38与微带定向耦合器相连。其中,每个天线阵元可以是平行、等间距分布排列,也可是交错、不等间距分布排列或者这几种方式的不同组合分布排列。天线阵元33可以是金属振子,也可以是微带结构或者贴片结构,天线阵元33可以是双极化方式,也可以是单极化方
式。4 is a schematic diagram of an arrangement of an antenna array, which is a top view of an antenna array of M=16 dual-polarized array elements, wherein for each of the four antenna array elements 41, 42, 43, 44, each antenna array element The columns all comprise antenna elements 33 formed by four dual-polarized oscillators, each antenna element 33 in each array of antenna elements having a polarization direction of +45° and -45° with respect to the vertical or horizontal direction for transmission The signal and the received signal; the antenna elements 33 adjacent to each other in each antenna array column are connected in parallel by a structure such as a microstrip line 35, and are connected to the microstrip directional coupler through the via 38. Each of the antenna elements may be arranged in parallel, equally spaced, or may be arranged in an interlaced, unequal pitch, or a different combination of the modes. The antenna element 33 may be a metal oscillator, a microstrip structure or a patch structure, and the antenna element 33 may be a dual polarization mode or a single polarization mode.
formula.
出于优化性能的目的,为了加强阵元间隔离度,如图5所示,可以在相邻的两个天线阵元列41和42、42和43、以及43和44之间分别竖向设置纵向金属隔板51、52、53,金属隔板51、52、53与金属反射板34之间采用导电连接或者电容耦合连接。为优化性能,也可以以天线阵元为单位,四周都设置隔板,即可以增加与金属隔板51、52、53垂直相交的金属隔板54、55、56,同时还可以在天线阵元四周增加金属侧板57、58、59、60,金属隔板及四周侧板添加的方式不仅限于图5所示方式,所述的金属隔板可以单独设计,也可以集成在天线罩结构上,提高天线罩强度,加强天线系统安全稳定性。也可以在天线阵元上方增加小盖板等其他方式,使得每个天线阵元都有更加独立的空间,不再赘述。For the purpose of optimizing performance, in order to enhance the isolation between the elements, as shown in FIG. 5, the vertical arrangement between the adjacent two antenna array columns 41 and 42, 42 and 43, and 43 and 44, respectively. The longitudinal metal partitions 51, 52, 53 and the metal partitions 51, 52, 53 and the metal reflector 34 are electrically connected or capacitively coupled. In order to optimize performance, it is also possible to arrange the spacers around the antenna array element, that is, to increase the metal partitions 54, 55, 56 perpendicularly intersecting the metal partitions 51, 52, 53 and also to be in the antenna array elements. The manner of adding the metal side plates 57, 58, 59, 60, the metal partition plate and the surrounding side plates is not limited to the manner shown in FIG. 5, and the metal partition plate may be separately designed or integrated on the radome structure. Improve the strength of the radome and enhance the safety and stability of the antenna system. It is also possible to add a small cover or the like above the antenna element, so that each antenna element has a more independent space, and will not be described again.
图6是本发明实施例M=16阵元耦合校准网络的俯视示意图,耦合校准网络包括16个完全相同的微带定向耦合电路61、15个1:2功率分路/合路器62、16个第一射频连接器36、1个用于校准信号输入输出的第二射频连接器37。其中,每两个相邻的微带定向耦合电路61的通过一个1:2功率分路/合路器62连接,每个微带定向耦合电路61的一端连接一个第一射频连接器36,另一端通过一个1:2功率分路/合路器62连接相邻的微带定向耦合电路,每个1:2功率分路/合路器62的两个分路端口分别连接两个微带定向耦合电路61,15个1:2功率分路/合路器的合路端口连接后接到第二射频连接器37上。6 is a top plan view of an M=16 array element coupled calibration network in accordance with an embodiment of the present invention. The coupled calibration network includes 16 identical microstrip directional coupling circuits 61 and 15 1:2 power split/ combiners 62, 16 The first RF connector 36 has a second RF connector 37 for calibrating the signal input and output. Wherein, each of the two adjacent microstrip directional coupling circuits 61 is connected by a 1:2 power splitter/combiner 62, and one end of each of the microstrip directional coupling circuits 61 is connected to a first RF connector 36, and One end is connected to the adjacent microstrip directional coupling circuit through a 1:2 power splitter/combiner 62, and the two split ports of each 1:2 power splitter/combiner 62 are respectively connected to two microstrip orientations. The coupling circuit 61, the junction ports of the 15 1:2 power splitters/combiners are connected to the second RF connector 37.
16个微带定向耦合器的个数与天线阵元的个数一致,采用两条相近的金属平行微带线,故而具有极佳的产品性能一致性。16个微带定向耦合电路61在耦合校准网络的电路板上随16个天线阵元一一分布,每个微带定向耦合器连接一个第一射频连接器,便于与基站系统的射频收发信机通信;所述的16个微带定向耦合器完全相同,便于生产及调试;所述的16个微带定向耦合器与对应的天线阵元之间电性能连接采用过孔方式,性能上更好地保证了微带定向耦合器到天线阵子的信号的幅相一致性,同时结构上简洁集成,可靠性高便于生产。The number of 16 microstrip directional couplers is the same as the number of antenna elements, and two similar metal parallel microstrip lines are used, so that the product performance consistency is excellent. 16 microstrip directional coupling circuits 61 are distributed along the 16 antenna arrays on the circuit board of the coupled calibration network, and each microstrip directional coupler is connected to a first RF connector to facilitate the radio frequency transceiver with the base station system. Communication; the 16 microstrip directional couplers are identical, which is convenient for production and debugging; the electrical connection between the 16 microstrip directional couplers and the corresponding antenna array elements adopts a via mode, and the performance is better. The ground phase consistency of the signal from the microstrip directional coupler to the antenna array is ensured, and the structure is simple and integrated, and the reliability is high and the production is convenient.
功率分路/合路器62的个数受限于分路/合路数,图6中实施例采用了1:2功率分路/合路器,因此需要15个功率分路/合路器62来完成16路信号的分
路/合路,最终合成1路信号至第二射频连接器37。若采用1:4的功率分路/合路器,在设置16个天线阵元及16个微带定向耦合器后,则只需要5个1:4的功率分路/合路器来完成16路信号的分路/合路。The number of power splitters/combiners 62 is limited by the number of split/combiners. The embodiment of Figure 6 uses a 1:2 power split/combiner, thus requiring 15 power splitters/combiners 62 to complete the 16-way signal
The road/combination circuit finally combines one signal to the second RF connector 37. If a 1:4 power split/combiner is used, after setting 16 antenna elements and 16 microstrip directional couplers, only five 1:4 power splitters/combiners are needed to complete 16 Branch/combination of road signals.
图7是本发明实施例耦合校准网络中任意一个耦合单元示意图,一个耦合单元包括两个微带定向耦合器61和一个1:2功率分路/合路器,每个微带定向耦合器61包括两条微带,一条微带71的一端通过过孔38对应连接一个天线阵元33,另一端连接基站系统对应的射频收发信机的射频输入端,即连接第一射频连接器36;另一条微带72的一端接50Ω匹配负载74(也可接地),另一端连接1:2功率分路/合路器62的分路端口。图7中73为功率分路/合路器62的隔离电阻。7 is a schematic diagram of any one of the coupling units in the coupled calibration network according to an embodiment of the present invention. One coupling unit includes two microstrip directional couplers 61 and a 1:2 power split/combiner, and each microstrip directional coupler 61 Including two microstrips, one end of a microstrip 71 is connected to one antenna array 33 through a via 38, and the other end is connected to a radio frequency input end of a radio frequency transceiver corresponding to the base station system, that is, connected to the first radio frequency connector 36; One end of a microstrip 72 is connected to a 50Ω matching load 74 (which can also be grounded), and the other end is connected to a shunt port of the 1:2 power splitter/combiner 62. 73 in Fig. 7 is the isolation resistance of the power splitter/combiner 62.
上述实施例是16阵元天线阵耦合校准网络装置,按照相同的原理也可以设计32、64、128等更大规模的天线阵耦合校准网络装置。本发明实施例尤其适用于大规模天线阵。The above embodiment is a 16-element antenna array coupled calibration network device. According to the same principle, a larger-scale antenna array coupling calibration network device such as 32, 64, and 128 can also be designed. Embodiments of the invention are particularly applicable to large scale antenna arrays.
本发明实施例中所描述的每种单元、模块仅是根据其功能进行划分的一种示例,可理解地,在系统/装置/设备实现相同功能的情况下,本领域技术人员可给出一种或多种其他功能划分方式,在应用时可将其中任意一个或多个功能模块采用一个功能实体装置或单元实现,不可否认地,以上变换方式均在本申请保护范围之内。Each unit and module described in the embodiments of the present invention is only an example of division according to its function. It can be understood that, in the case that the system/device/device implements the same function, those skilled in the art can give a One or more other functional division modes may be implemented by using one functional entity device or unit when applying, and the above transformation manner is undeniable within the protection scope of the present application.
本发明实施例中,将天线阵列、耦合校准网络、金属反射板全部集成到同一块介质板上,且天线阵元与耦合校准网络采用过孔方式连接,增加可靠性,避免大量射频电缆的使用,可以减小天线尺寸、提高基站系统集成化及小型化性能,有利于大规模智能天线阵耦合校准网络装置的实现,便于生产调试和大规模生产,更适用于无线通信系统的普及发展。
In the embodiment of the present invention, the antenna array, the coupling calibration network, and the metal reflector are all integrated on the same dielectric plate, and the antenna array element and the coupled calibration network are connected by a via hole to increase reliability and avoid the use of a large number of RF cables. The antenna size can be reduced, the base station system integration and miniaturization performance can be improved, and the realization of the large-scale smart antenna array coupling calibration network device is facilitated, which is convenient for production debugging and mass production, and is more suitable for the popularization of wireless communication systems.
Claims (11)
- 一种智能天线装置,包括:介质板、耦合校准网络、天线阵列、第一射频连接器以及第二射频连接器;A smart antenna device includes: a dielectric board, a coupled calibration network, an antenna array, a first RF connector, and a second RF connector;其中,所述耦合校准网络设置在所述介质板的一面,所述天线阵列设置在所述介质板的另一面,所述介质板上设有过孔,所述天线阵列与所述耦合校准网络通过过孔连接;所述第一射频连接器和第二射频连接器排布在所述介质板设有所述耦合校准网络的一面,分别与所述耦合校准网络连接。Wherein the coupling calibration network is disposed on one side of the dielectric board, the antenna array is disposed on another side of the dielectric board, the dielectric board is provided with a via, the antenna array and the coupled calibration network The first RF connector and the second RF connector are disposed on a side of the dielectric board on which the coupled calibration network is disposed, and are respectively connected to the coupled calibration network.
- 根据权利要求1所述的装置,其中,所述耦合校准网络包括分路/合路器和M个微带定向耦合器;所述天线阵列包括M个天线阵元,所述第一射频连接器为M个,所述第二射频连接器为一个,M为不小于2的整数;The apparatus of claim 1 wherein said coupled calibration network comprises a shunt/combiner and M microstrip directional couplers; said antenna array comprising M antenna elements, said first radio frequency connector For M, the second RF connector is one, and M is an integer not less than 2;每个所述天线阵元并联馈电后通过所述过孔连接所述耦合校准网络上对应的微带定向耦合器;Each of the antenna elements is connected in parallel to connect a corresponding microstrip directional coupler on the coupled calibration network through the via;每个所述第一射频连接器连接一个所述微带定向耦合器,所述分路/合路器的合路端口连接所述第二射频连接器。Each of the first RF connectors is coupled to one of the microstrip directional couplers, and the combined port of the splitter/combiner is coupled to the second RF connector.
- 根据权利要求2所述的装置,其中,所述M个第一射频连接器和所述第二射频连接器排布在所述介质板的内部。The apparatus of claim 2 wherein said M first RF connectors and said second RF connectors are arranged inside said dielectric panel.
- 根据权利要求2所述的装置,其中,每个所述微带定向耦合器包括两个微带,所述微带的一端通过过孔连接对应的天线阵元,另一端连接所述第一射频连接器。The apparatus according to claim 2, wherein each of said microstrip directional couplers comprises two microstrips, one end of said microstrip is connected to a corresponding antenna element through a via, and the other end is connected to said first radio frequency Connector.
- 根据权利要求2所述的装置,其中,所述M个天线阵元为直线排列、环形排列或者其他不规则形状排列。The apparatus according to claim 2, wherein said M antenna elements are arranged in a line, a ring, or other irregular shape.
- 根据权利要求2所述的装置,其中,所述M个天线阵元为等间距排列或者不等间距排列。The apparatus of claim 2 wherein said M antenna elements are arranged at equal intervals or at unequal intervals.
- 根据权利要求2所述的装置,其中,所述M个天线阵元为定向方式、单极化方式或者双极化方式。The apparatus of claim 2, wherein the M antenna elements are in a directional mode, a single polarization mode, or a dual polarization mode.
- 根据权利要求2所述的装置,其中,The device according to claim 2, wherein所述天线阵列中每两个相邻天线阵元列之间设置有一条纵向金属隔板; a longitudinal metal partition is disposed between each two adjacent antenna array columns in the antenna array;和/或,所述天线阵列的每两个相邻天线阵元列之间设置有一条横向金属隔板;And/or, a transverse metal partition is disposed between each two adjacent antenna array columns of the antenna array;和/或,所述天线阵列的外围设置有金属侧板。And/or, the periphery of the antenna array is provided with a metal side plate.
- 根据权利要求2所述的装置,其中,所述分路/合路器的数量根据分路数和天线阵元个数确定。The apparatus of claim 2 wherein the number of splitters/combiners is determined based on the number of branches and the number of antenna elements.
- 根据权利要求1所述的装置,其中,所述介质板的中间层同时作为接地层和金属反射板。The apparatus according to claim 1, wherein the intermediate layer of the dielectric plate serves as both a ground layer and a metal reflector.
- 根据权利要求1所述的装置,其中,所述介质板为印刷电路板PCB。 The device of claim 1 wherein the dielectric board is a printed circuit board PCB.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15854044.3A EP3214700A4 (en) | 2014-10-28 | 2015-04-15 | Intelligent antenna device |
JP2017523399A JP2017539134A (en) | 2014-10-28 | 2015-04-15 | Smart antenna device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420630111.6U CN204243214U (en) | 2014-10-28 | 2014-10-28 | A kind of intelligent antenna equipment |
CN201420630111.6 | 2014-10-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016065859A1 true WO2016065859A1 (en) | 2016-05-06 |
Family
ID=52772665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/076648 WO2016065859A1 (en) | 2014-10-28 | 2015-04-15 | Intelligent antenna device |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3214700A4 (en) |
JP (1) | JP2017539134A (en) |
CN (1) | CN204243214U (en) |
WO (1) | WO2016065859A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021015961A1 (en) | 2019-07-19 | 2021-01-28 | Commscope Technologies Llc | Patch antenna |
US12107334B2 (en) | 2021-10-08 | 2024-10-01 | Samsung Electronics Co., Ltd. | Antenna structure and electronic device including the same |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204243214U (en) * | 2014-10-28 | 2015-04-01 | 中兴通讯股份有限公司 | A kind of intelligent antenna equipment |
CN105634627B (en) * | 2014-10-28 | 2021-04-02 | 中兴通讯股份有限公司 | Antenna array coupling calibration network device and calibration method |
CN105790860B (en) * | 2014-12-25 | 2020-12-29 | 中兴通讯股份有限公司 | Antenna coupling calibration system |
CN105390814B (en) * | 2015-10-18 | 2018-06-26 | 中国电子科技集团公司第十研究所 | Active phase array antenna with internal calibration network |
CN107402371A (en) * | 2016-05-20 | 2017-11-28 | 国家海洋技术中心 | A kind of smart antenna array |
CN106099394B (en) * | 2016-06-28 | 2019-01-29 | 武汉虹信通信技术有限责任公司 | A kind of closely spaced array antenna for 5G system |
WO2019209903A1 (en) * | 2018-04-27 | 2019-10-31 | Commscope Technologies Llc | Calibration circuits for beam-forming antennas and related base station antennas |
CN110416706B (en) * | 2018-04-27 | 2023-07-11 | 康普技术有限责任公司 | Calibration circuit for beam forming antennas and associated base station antennas |
CN108808224B (en) * | 2018-06-29 | 2020-12-15 | 京信通信技术(广州)有限公司 | MASSIVE MIMO antenna |
CN109005603A (en) * | 2018-09-11 | 2018-12-14 | 雷士(北京)光电工程技术有限公司 | Integral lighting device |
CN109994820B (en) * | 2019-03-28 | 2024-01-30 | 中天宽带技术有限公司 | Large-scale MIMO antenna |
WO2021000261A1 (en) * | 2019-07-02 | 2021-01-07 | 瑞声声学科技(深圳)有限公司 | Antenna substrate and manufacturing method for antenna substrate |
TWI748579B (en) * | 2019-08-16 | 2021-12-01 | 稜研科技股份有限公司 | Transition structure and multilayer transition structure for millimeter wave |
WO2021128327A1 (en) * | 2019-12-27 | 2021-07-01 | 瑞声声学科技(深圳)有限公司 | Base station antenna |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06125214A (en) * | 1992-10-13 | 1994-05-06 | Hitachi Chem Co Ltd | Planar antenna |
CN1398124A (en) * | 2001-07-20 | 2003-02-19 | 电信科学技术研究院 | Coupling calibration network and method for intelligent antenna array of radio communication system |
CN1507176A (en) * | 2002-10-01 | 2004-06-23 | ���ܿ���ϵͳ����˾ | Wireless point-to-multi-point system |
CN201134510Y (en) * | 2007-10-31 | 2008-10-15 | 京信通信系统(中国)有限公司 | Minimized intelligent antenna system |
CN204243214U (en) * | 2014-10-28 | 2015-04-01 | 中兴通讯股份有限公司 | A kind of intelligent antenna equipment |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5412414A (en) * | 1988-04-08 | 1995-05-02 | Martin Marietta Corporation | Self monitoring/calibrating phased array radar and an interchangeable, adjustable transmit/receive sub-assembly |
DE19806914C2 (en) * | 1998-02-19 | 2002-01-31 | Bosch Gmbh Robert | Method and device for calibrating a group antenna |
JP2002043832A (en) * | 2000-07-21 | 2002-02-08 | Tdk Corp | Circularly polarized wave patch antenna |
US20030227420A1 (en) * | 2002-06-05 | 2003-12-11 | Andrew Corporation | Integrated aperture and calibration feed for adaptive beamforming systems |
US20040063438A1 (en) * | 2002-10-01 | 2004-04-01 | Hsu Yun-Hsiang Kenny | Wireless point to multipoint system |
JP4118835B2 (en) * | 2004-05-25 | 2008-07-16 | 日本電波工業株式会社 | Functional planar array antenna |
CN2755871Y (en) * | 2004-11-17 | 2006-02-01 | 大唐移动通信设备有限公司 | Couple calibrating network device of linear-arranging intelligent antenna array |
WO2012000569A1 (en) * | 2010-07-01 | 2012-01-05 | Nokia Siemens Networks Oy | Antenna arrangement |
WO2014083948A1 (en) * | 2012-11-27 | 2014-06-05 | 国立大学法人佐賀大学 | Antenna device |
-
2014
- 2014-10-28 CN CN201420630111.6U patent/CN204243214U/en not_active Expired - Lifetime
-
2015
- 2015-04-15 WO PCT/CN2015/076648 patent/WO2016065859A1/en active Application Filing
- 2015-04-15 JP JP2017523399A patent/JP2017539134A/en active Pending
- 2015-04-15 EP EP15854044.3A patent/EP3214700A4/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06125214A (en) * | 1992-10-13 | 1994-05-06 | Hitachi Chem Co Ltd | Planar antenna |
CN1398124A (en) * | 2001-07-20 | 2003-02-19 | 电信科学技术研究院 | Coupling calibration network and method for intelligent antenna array of radio communication system |
CN1507176A (en) * | 2002-10-01 | 2004-06-23 | ���ܿ���ϵͳ����˾ | Wireless point-to-multi-point system |
CN201134510Y (en) * | 2007-10-31 | 2008-10-15 | 京信通信系统(中国)有限公司 | Minimized intelligent antenna system |
CN204243214U (en) * | 2014-10-28 | 2015-04-01 | 中兴通讯股份有限公司 | A kind of intelligent antenna equipment |
Non-Patent Citations (1)
Title |
---|
See also references of EP3214700A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021015961A1 (en) | 2019-07-19 | 2021-01-28 | Commscope Technologies Llc | Patch antenna |
EP4000133A4 (en) * | 2019-07-19 | 2023-07-19 | CommScope Technologies LLC | Patch antenna |
US11916298B2 (en) | 2019-07-19 | 2024-02-27 | Commscope Technologies Llc | Patch antenna |
US12107334B2 (en) | 2021-10-08 | 2024-10-01 | Samsung Electronics Co., Ltd. | Antenna structure and electronic device including the same |
Also Published As
Publication number | Publication date |
---|---|
CN204243214U (en) | 2015-04-01 |
JP2017539134A (en) | 2017-12-28 |
EP3214700A4 (en) | 2017-11-01 |
EP3214700A1 (en) | 2017-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016065859A1 (en) | Intelligent antenna device | |
WO2016065830A1 (en) | Antenna array coupling and calibrating network device and calibrating method, and storage medium | |
US11552385B2 (en) | Feed network of base station antenna, base station antenna, and base station | |
CN105790860B (en) | Antenna coupling calibration system | |
US10886634B2 (en) | Filter feeding network and base station antenna | |
CN106469848B (en) | A kind of broadband paster antenna based on double resonance mode | |
WO2018001007A1 (en) | Dense array antenna for use in 5g system | |
CN107004954B (en) | Dual-band antenna and antenna system | |
CN104600425A (en) | Broadband high-gain double-circle polarized patch antenna | |
CN105305073B (en) | Mimo antennas structure and mobile terminal | |
AU2008305785B2 (en) | Antenna arrangement for a multi radiator base station antenna | |
CN217641786U (en) | Cavity phase shifter and base station antenna | |
CN104966899A (en) | Omnidirectional antenna and omnidirectional antenna array | |
CN207852927U (en) | 3 × 3Butler matrix feed networks and antenna | |
CN207602790U (en) | A kind of TD-LTE smart antennas for applying to frequency range near 3500MHz | |
CN210040568U (en) | Single-layer coaxial feed dual-polarization microstrip array antenna | |
WO2020233518A1 (en) | Antenna unit and electronic device | |
CN106558764B (en) | Feed structure and dual-frequency common-caliber antenna | |
CN211045721U (en) | Antenna and antenna array | |
CN115764261A (en) | Element feeding device, communication antenna and base station antenna | |
CN213026480U (en) | Antenna device | |
WO2023044234A1 (en) | Housing for cavity phase shifter, cavity phase shifter and base station antenna | |
CN111029741B (en) | Antenna array structure and communication equipment | |
CN103730719B (en) | A kind of height of the small size based on printed circuit board (PCB) isolation three unit multi-input/output antennas | |
WO2024169336A1 (en) | Feed network and antenna device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15854044 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017523399 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015854044 Country of ref document: EP |