[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016064141A1 - 무선 통신 시스템에서 연결된 상태의 단말을 위하여 개선된 drx 방식을 구성하는 방법 및 장치 - Google Patents

무선 통신 시스템에서 연결된 상태의 단말을 위하여 개선된 drx 방식을 구성하는 방법 및 장치 Download PDF

Info

Publication number
WO2016064141A1
WO2016064141A1 PCT/KR2015/010955 KR2015010955W WO2016064141A1 WO 2016064141 A1 WO2016064141 A1 WO 2016064141A1 KR 2015010955 W KR2015010955 W KR 2015010955W WO 2016064141 A1 WO2016064141 A1 WO 2016064141A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
plane
signaling
signaling indicator
indicator
Prior art date
Application number
PCT/KR2015/010955
Other languages
English (en)
French (fr)
Inventor
조희정
고현수
최혜영
변일무
박경민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/520,022 priority Critical patent/US20170347389A1/en
Publication of WO2016064141A1 publication Critical patent/WO2016064141A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method and apparatus for configuring an improved DRX (discontinuous reception) scheme for a connected terminal in a wireless communication system.
  • DRX discontinuous reception
  • the fifth generation mobile communication technology is interworking between heterogeneous wireless communication systems.
  • Cellular system may be any one of 3GPP (3 rd generation partnership project) LTE (long-term evolution), 3GPP LTE-A (advanced), IEEE (institute of electrical and electronics engineers) 802.16 (WiMax, WiBro).
  • the WLAN system may be IEEE 802.11 (Wi-Fi).
  • Wi-Fi IEEE 802.11
  • the fifth generation mobile communication system may use a plurality of radio access technologies (RATs) through convergence between heterogeneous wireless communication systems.
  • RATs radio access technologies
  • Each entity of the plurality of RATs constituting the fifth generation mobile communication system may exchange information with each other, thereby providing an optimal communication system for a user in the fifth generation mobile communication system.
  • a specific RAT may operate as a primary RAT system
  • another specific RAT may operate as a secondary RAT system.
  • the primary RAT system may serve to mainly provide a communication system to users in the fifth generation mobile communication system
  • the secondary RAT system may serve to assist the primary RAT system.
  • a cellular system such as 3GPP LTE (-A) or IEEE 802.16, which has a relatively large coverage, may be a primary RAT system, and a Wi-Fi system having a relatively narrow coverage may be a secondary RAT system.
  • DRX discontinuous reception
  • the advantage is that the receiver can be started quickly with minimal signaling, which greatly improves the signaling task and user experience.
  • the present invention provides a method and apparatus for configuring an improved discontinuous reception (DRX) scheme for terminals connected in a wireless communication system.
  • the present invention provides a method for configuring a newly defined control plane (C-plane; control plane) DRX scheme for a terminal in a radio resource control (RRC) connection state in a wireless communication system in which a cellular system and a Wi-Fi system are fused.
  • C-plane control plane
  • RRC radio resource control
  • a method for establishing a control plane (C-plane) discontinuous reception (DRX) by a base station in a wireless communication system may include configuring a C-plane DRX in terminals having only activated C-planes transmitted and received through a cellular network, and indicating whether signaling to be transmitted is present to at least one terminal waking up in the C-plane DRX.
  • a method for extending an On duration according to a C-plane (discontinuous reception) by a terminal in a wireless communication system includes receiving C-plane DRX configuration information and a mobile terminating (MT) signaling indicator, and temporarily extending an On interval of DRX of the C-plane according to the C-plane configuration information and MT signaling indicator. .
  • MT mobile terminating
  • an efficient DRX scheme may be configured for a terminal having only a C-plane.
  • 1 is a cellular system.
  • FIG. 3 shows an example of a scenario of a communication system in which a cellular system and a Wi-Fi system are fused.
  • FIG. 4 shows an example of a tightly coupled cellular and Wi-Fi network.
  • FIG. 5 shows an example of a DRX operation scheme.
  • FIG. 6 shows another example of a DRX operation scheme.
  • FIG. 7 shows another example of a DRX operation scheme.
  • FIG 9 shows an example of a DRX operation scheme according to an embodiment of the present invention.
  • FIG. 10 illustrates an example of a manner in which DRX operates according to a fixed MT signaling indicator according to an embodiment of the present invention.
  • FIG. 11 illustrates an example of a method in which DRX operates according to a dynamic MT signaling indicator according to an embodiment of the present invention.
  • FIG. 12 shows another example of a manner in which DRX operates according to a dynamic MT signaling indicator according to an embodiment of the present invention.
  • FIG. 13 shows another example of a manner in which DRX operates according to a dynamic MT signaling indicator according to an embodiment of the present invention.
  • FIG. 14 shows another example of a manner in which DRX operates according to a dynamic MT signaling indicator according to an embodiment of the present invention.
  • FIG. 15 shows an example of a method for configuring a C-plane DRX according to an embodiment of the present invention.
  • FIG. 16 shows an example of a method of extending an On period according to a C-plane DRX according to an embodiment of the present invention.
  • 17 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented by a radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved-UMTS terrestrial radio access (E-UTRA).
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • cellular system 10 includes at least one base station (BS) 11.
  • BS 11 provides communication services for specific geographic regions (generally called cells) 15a, 15b, 15c. The cell can in turn be divided into a number of regions (called sectors).
  • a user equipment (UE 12) may be fixed or mobile, and may have a mobile station (MS), a mobile terminal (MS), a user terminal (UT), a subscriber station (SS), a wireless device, a PDA, and the like. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • BS 11 generally refers to a fixed point of communication with UE 12 and may be referred to in other terms, such as an evolved-NodeB (eNB), a base transceiver system (BTS), an access point, and the like.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point and the like.
  • the UE typically belongs to one cell, and the cell to which the UE belongs is called a serving cell.
  • a BS that provides a communication service for a serving cell is called a serving BS.
  • the cellular system includes another cell adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a BS that provides communication service for a neighbor cell is called a neighbor BS.
  • the serving cell and the neighbor cell are determined relatively based on the UE.
  • DL downlink
  • UL uplink
  • DL means communication from BS 11 to UE 12
  • UL means communication from UE 12 to BS 11.
  • the transmitter may be part of the BS 11 and the receiver may be part of the UE 12.
  • the transmitter is part of the UE 12 and the receiver may be part of the BS 11.
  • a wireless local area network (WLAN) system may be called Wi-Fi.
  • the WLAN system includes one access point (AP) 20 and a plurality of STAs 31, 32, 33, 34, and 40 stations.
  • the AP 20 may communicate with each STA 31, 32, 33, 34, and 40.
  • the WLAN system includes one or more basic service sets (BSS).
  • the BSS is a set of STAs capable of successfully communicating with the BSS and communicating with each other, and is not a concept indicating a specific area.
  • An infrastructure BSS includes an AP that provides one or more non-AP STAs, a distributed system connecting multiple APs, and a distributed system.
  • the AP manages the non-AP STA of the BSS.
  • the WLAN system shown in FIG. 2 may include an infrastructure BSS.
  • independent BSS IBSS is a BSS that operates in an ad-hoc mode. Since IBSS does not contain an AP, there is no centralized management entity. That is, in the IBSS, non-AP STAs are managed in a distributed manner. In the IBSS, all STAs may be mobile STAs, and access to a distributed system is not allowed to form a self-contained network.
  • a STA is any functional medium that includes a media access control (MAC) compliant with the IEEE 802.11 standard and a physical layer interface to a wireless medium, and broadly includes both an AP and a non-AP STA.
  • MAC media access control
  • a non-AP STA is an STA that is not an AP, and a non-AP STA is a mobile terminal, a wireless device, a wireless transmit / receive unit (WTRU), or user equipment (UE). ), A mobile station (MS), mobile subscriber unit, or simply another name, such as user.
  • a non-AP STA is referred to as an STA.
  • An AP is a functional entity that provides access to a distributed system over a wireless medium for an associated STA to the corresponding AP.
  • communication between STAs is basically performed through an AP, but direct communication between STAs is possible when a direct link is established.
  • the AP may be called a central controller, a base station (BS), a NodeB, a base transceiver system (BTS), a site controller, or the like.
  • Multiple infrastructure BSSs may be connected to each other through a distributed system.
  • a plurality of BSSs connected to each other may be referred to as an extended service set (ESS).
  • ESS extended service set
  • the AP and / or STA included in the ESS may communicate with each other, and within the same ESS, the STA may move from one BSS to another BSS while maintaining seamless communication.
  • FIG. 3 shows an example of a scenario of a communication system in which a cellular system and a Wi-Fi system are fused.
  • the cellular system operates as the primary RAT system of the converged communication system
  • the Wi-Fi system operates as the secondary RAT system of the converged communication system
  • the cellular system of FIG. 3 may be 3GPP LTE (-A).
  • the primary RAT system of the converged communication system is 3GPP LTE (-A)
  • the secondary RAT system of the communication system is IEEE 802.11, that is, a Wi-Fi system.
  • embodiments of the present invention to be described below are not limited thereto.
  • Each generic device 61, 62, 63, 64, 65 may be a UE of a cellular system.
  • the cellular base station 50 may communicate with each generic device 61, 62, 63, 64, 65 via a cellular air interface.
  • the cellular base station 50 performs voice telephony communication with each general device 61, 62, 63, 64, 65 or Wi-Fi of each general device 61, 62, 63, 64, 65. You can control access to the system.
  • the cellular base station 50 is connected to a serving gateway (S-GW) / mobility management entity (MME) 70 via a cellular system interface.
  • the MME has information about the UE's access information or the UE's capability, and this information can be mainly used for mobility management of the UE.
  • the MME is responsible for the function of the control plane.
  • S-GW is a gateway having an E-UTRAN as an endpoint.
  • S-GW is in charge of the user plane.
  • the S-GW / MME 70 is also connected to a PDN packet data network gateway (GW) 71 and a home subscriber server 72 (HSS) via a cellular system interface.
  • PDN GW (P-GW) is a gateway having a PDN as an endpoint.
  • P-GW 71 and HSS 72 are also coupled to 3GPP access authentication authorization (AAA) server 73 via a cellular system interface.
  • AAA 3GPP access authentication authorization
  • the P-GW 71 and the 3GPP AAA server 73 may be connected to an evolved packet data gateway (ePDG) 74 via a cellular system interface.
  • ePDG 74 may only be included in untrusted non-3GPP connections.
  • the e-PDG 74 may be connected to a WLAN access gateway 75.
  • the WAG 75 may play a role of P-GW in the Wi-Fi system.
  • a plurality of APs 81, 82, and 83 may exist within the coverage of the cellular base station 50.
  • Each AP 81, 82, 83 may have a smaller coverage than that of the cellular base station 50, respectively.
  • Each AP 81, 82, 83 can communicate with a generic device 61, 62, 63 within its coverage via a Wi-Fi air interface. That is, the generic device 61, 62, 63 may communicate with the cellular base station 50 and / or the APs 81, 82, 83.
  • the communication method of the general apparatus 61, 62, 63 is as follows.
  • the generic device 61 may communicate with the cellular base station 50 via the cellular wireless interface and perform high-speed data communication with the AP 81 via the Wi-Fi wireless interface. have.
  • the cellular base station 50 may control the voice call and / or Wi-Fi connection of the generic device 61.
  • the generic device 62 may communicate with either the cellular base station 50 or the AP 82 by user plane auto switch.
  • the control plane may exist in both the cellular system and the Wi-Fi system or may exist only in the cellular system.
  • Terminal cooperative transmission The generic device 64 acting as a source device communicates directly with the cellular base station 50 via the cellular air interface, or the cellular base station 50 via the generic device 65 acting as a cooperative device. Can communicate indirectly with That is, the cooperative device 65 may assist the source device 64 to allow the source device 64 to communicate with the cellular base station 50 indirectly through it. Source device 64 and cooperating device 65 communicate via a Wi-Fi air interface.
  • the AP 83 may perform a cellular link control mechanism such as paging or location registration of a network with respect to the cellular general device 63.
  • the generic device 63 is not directly connected to the cellular base station 50 but may communicate with the cellular base station 50 indirectly through the AP 83.
  • Each AP 81, 82, 83 is connected to the WAG 75 via a Wi-Fi system interface.
  • FIG. 4 shows an example of a tightly coupled cellular and Wi-Fi network.
  • the BS of the cellular network is connected to the P-GW and the PDN through the S-GW / MME as shown in FIG. 3.
  • the AP is connected to the BS and is connected to the P-GW and the PDN through the same interface as the BS.
  • the AP is connected to the P-GW via the WAG in FIG. 3. That is, in a tightly coupled cellular network and a Wi-Fi network, the BS and the AP are simultaneously located (collocated) or connected (connected).
  • the cellular network In order to seamlessly transmit data in a tightly coupled cellular network and a Wi-Fi network, the cellular network must manage the mobility of the terminal. This is because cellular networks have no coverage holes in tightly coupled cellular and Wi-Fi networks. Table 1 shows the role of cellular and Wi-Fi networks in tightly coupled cellular and Wi-Fi networks.
  • a C-plane (control plane) is provided only in the cellular network and not in the Wi-Fi network. That is, even if data is transmitted and received only on the U-plane (user plane) of the Wi-Fi network, the terminal and the cellular network transmit and receive control signals on the C-plane.
  • FIG. 5 shows an example of a DRX operation scheme.
  • the terminal is turned on only during some On durations of the DRX cycle (ie, active state) and turned off (ie, inactive state) in the remaining sections of the DRX cycle.
  • PDCCH physical downlink control channel
  • Table 2 shows various parameters for DRX operation.
  • DRX parameter Explanation DRX Cycle It represents the cycle repetition of the active state lasting for the On interval.
  • On Duration timer When a new DRX cycle starts, it indicates how many subframes the UE should be in an active state.
  • DRX Inactivity timer After successfully decoding the PDCCH, it indicates how many subframes the UE should remain active.
  • DRX Retransmission timer After the first possible retransmission time, this indicates the maximum number of consecutive PDCCH subframes in which the UE must remain active in order to wait for an incoming retransmission.
  • DRX Short Cycle When the UE is in a short DRX condition, it indicates a periodic repetition of an active state that continues for the On period. This is a kind of discrete inactivity timer.
  • FIG. 6 shows another example of a DRX operation scheme.
  • an On period is set in a long DRX cycle, and a hybrid automatic repeat request (HARQ) timer is set.
  • HARQ may be performed while the HARQ timer is operating.
  • FIG. 7 shows another example of a DRX operation scheme.
  • an On period is set in a long DRX cycle, and a short DRX cycle is additionally set.
  • the UE performs DRX according to the short DRX cycle while the short DRX cycle timer is in operation, and performs DRX according to the long DRX cycle when the short DRX cycle timer expires.
  • DRX reduces the power consumption of the terminal, but has a disadvantage in that the terminal does not know the existence of signaling or data to be transmitted to the terminal. That is, the UE must decode all PDCCHs in order to determine whether there is a radio resource allocated to the UE in the On period.
  • This feature of DRX may be particularly inefficient for terminals where only C-plane is present in the cellular network, especially in systems that are tightly coupled to cellular and Wi-Fi networks. That is, in a system in which a cellular network and a Wi-Fi network are tightly coupled, when only the C-plane is present in the cellular network, signaling occurrence may be difficult to predict and may be low in frequency.
  • NAS messages such as bearer context modification / deactivation messages, dedicated EPS bearer context activation messages, or RRC connection reconfiguration messages.
  • RRC messages a neighbor measurement configuration message according to cellular / Wi-Fi signal strength attenuation. That is, there is a high probability that such signaling will not be transmitted.
  • the transmission priority of such signaling may be high.
  • RRC messages have a priority of 1 and NAS messages have a priority of 3. Therefore, setting the DRX cycle to a large value may be undesirable.
  • a new DRX scheme may be proposed according to an embodiment of the present invention.
  • a newly defined DRX scheme according to an embodiment of the present invention is referred to as light DRX or C-plane DRX.
  • the light DRX and the C-plane DRX may be used interchangeably.
  • the light DRX may be applied only to a terminal having only an activated C-plane transmitted and received to and from the cellular network in a system in which the cellular network and the Wi-Fi network are tightly coupled, and activated to be transmitted and received to the cellular network.
  • a conventional DRX scheme (long DRX, short DRX) may be applied to a terminal having both a C-plane and a U-plane. It is possible to appropriately switch between the write DRX scheme and the existing DRX according to the active state of the terminal.
  • the UE after the DRX inactivity timer operates, the UE enters either a short DRX or a long DRX according to a condition, and enters a long DRX when the DRX short cycle timer expires in the short DRX.
  • FIG. 9 shows an example of a DRX operation scheme according to an embodiment of the present invention.
  • the UE enters into one of a short DRX, a long DRX, or a write DRX according to a condition.
  • the DRX short cycle timer expires, it enters either the long DRX or the light DRX.
  • the long DRX when the DRX long cycle timer expires, it enters the write DRX.
  • Table 3 shows various parameters for DRX operation according to an embodiment of the present invention.
  • DRX parameter Explanation DRX Cycle When the UE is in a long DRX condition, it indicates a periodic repetition of an active state that continues for the On period.
  • On Duration timer When a new DRX cycle starts, it indicates how many subframes the UE should be in an active state.
  • DRX Inactivity timer After successfully decoding the PDCCH, it indicates how many subframes the UE should remain active.
  • DRX Retransmission timer After the first possible retransmission time, this indicates the maximum number of consecutive PDCCH subframes in which the UE must remain active in order to wait for an incoming retransmission.
  • DRX Short Cycle When the UE is in a short DRX condition, it indicates a periodic repetition of an active state that continues for the On period.
  • DRX Short Cycle Timer After the DRX Inactivity Timer expires, this indicates the number of consecutive subframes in which the UE should follow a short DRX cycle.
  • Light DRX On Duration timer When the write DRX cycle starts, it indicates how many subframes the UE should be in an active state. It can be automatically changed to a fixed value (eg 1 ms) without being explicitly passed.
  • DRX Long Cycle Timer After the DRX inactivity timer expires, this indicates the number of consecutive subframes that the UE must follow a long DRX cycle.
  • the write DRX cycle parameter, the write DRX On interval timer parameter, and the DRX long cycle parameter may be additionally set. That is, the UE may perform DRX according to the write DRX cycle when the UE is in the write DRX condition, and an On period may be additionally set within the write DRX cycle. Also, the UE in the long DRX may enter the write DRX when in the DRX condition when the DRX long cycle timer expires.
  • the write DRX condition may correspond to a terminal having only an activated C-plane transmitted and received through the cellular network.
  • the starting point of the On interval in the write DRX cycle may be determined by Equation 1.
  • the base station may inform whether one or more terminals that have applied the write DRX and have woken in the corresponding subframe have signaling to transmit.
  • an indicator indicating whether signaling to be transmitted to the terminal exists is referred to as a mobile terminating (MT) signaling indicator.
  • MT signaling indicators There are two kinds of MT signaling indicators: fixed indications and dynamic indications. Fixed indicators and dynamic indicators can be applied at the same time. In addition, one or more dynamic indicator types may be applied. If the MT signaling indicator indicates that there is a signal to transmit to the terminal, the On period may be extended. The On period may be extended only for the terminal to receive the signaling, or the same On period time may be extended for all unspecified terminals.
  • the fixed MT signaling indicator may be a newly defined physical MT-signaling indicator channel (PSICH).
  • PSICH may indicate whether there is signaling to be transmitted to the terminal. For example, if the value of the PSICH is 0, it may indicate that signaling to be transmitted to the terminal does not exist, and if the value of the PSICH is 1, it may indicate that signaling to be transmitted to the terminal exists.
  • the presence of the PSICH and the radio resource region information allocated for the PSICH may be transmitted through the PSICH configuration information.
  • the PSICH configuration information may be transmitted through a system information block (SIB).
  • SIB system information block
  • the radio resource region information allocated for the PSICH may include information on an allocation time point and / or a resource region.
  • the information on the allocation time may be expressed by a system frame number (eg, even system frame, odd system frame or all system frame) or subframe number.
  • Information about the resource region may be expressed by the number of resource blocks and / or a frequency offset.
  • a PSICH is transmitted in an On period for a terminal to which a write DRX is applied (ie, a terminal having only an activated C-plane transmitted and received through a cellular network). If the PSICH is 0 in the On period, all UEs to which the DRX is applied transition to the sleep mode without decoding the PDCCH in the common search space (CSS) and the UE-specific search space.
  • SCS common search space
  • All UEs to which DRX is applied decode the PDCCH and temporarily extend the On period, in which the write DRX may be extended by the DRX inactive timer or the On period timer, as shown in FIG. Although extending the interval has been described as an example, only the On interval of the terminal to receive the signaling may be extended.
  • the dynamic MT signaling indicator may be transmitted in a multicast manner.
  • the dynamic MT signaling indicator is multicasted to the terminals in the On period in the corresponding subframe. Can be sent to.
  • the dynamic MT signaling indicator may indicate a terminal identifier such as a cell radio network temporary identifier (C-RNTI), a start offset, and an on interval extension.
  • C-RNTI cell radio network temporary identifier
  • the on period may start from a subframe that is (the current subframe number + start offset).
  • On interval extension is an interval in which the on interval is temporarily extended, the base station may schedule signaling in the interval.
  • an RNTI for a purpose of indicating that the MT signaling indicator may be newly defined.
  • Table 4 shows the RNTI for the purpose of indicating that the MT signaling indicator.
  • the value of the RNTI when the value of the RNTI is FFFD, it may indicate C-RNTI for MT signaling scheduling.
  • the dynamic MT signaling indicator may be transmitted in a unicast manner.
  • the dynamic MT signaling indicator may be transmitted to the corresponding terminal in the corresponding subframe by unicast scheme.
  • the dynamic MT signaling indicator may indicate a start offset and an on interval extension. According to the start offset, the on period may start from a subframe that is (the current subframe number + start offset).
  • On interval extension is an interval in which the on interval is temporarily extended, the base station may schedule signaling in the interval.
  • a method of DRX operation according to a dynamic MT signaling indicator according to an embodiment of the present invention will be described. According to the DRX operation method, it may be classified into any one of type 0, type 1 or type 2.
  • the base station may transmit resource allocation information masked by MT signaling scheduling C-RNTI or C-RNTI of the UE through the PDCCH in the existing DCI format.
  • the MT signaling indicator itself may be transmitted through a resource (eg, a physical downlink shared channel (PDSCH)) provided by the PDCCH.
  • the base station transmits signaling in the subframe when resource allocation is possible (ie, scheduling is possible) in the subframe corresponding to the on period.
  • the PDCCH including radio resource information corresponding to the corresponding signaling may also be transmitted.
  • the MT signaling indicator may inform the UE that signaling that is not scheduled but is transmitted in the corresponding subframe exists.
  • the UE that does not receive the PDCCH or MT signaling indicator corresponding to its C-RNTI in the On period transitions to the sleep mode.
  • the UE that receives the PDCCH corresponding to its C-RNTI in the On period operates as in the prior art.
  • the terminal receiving the MT signaling indicator in the On period temporarily extends the On period.
  • FIG. 11 illustrates an example of a method in which DRX operates according to a dynamic MT signaling indicator according to an embodiment of the present invention.
  • FIG. 11 illustrates a case in which the On interval of the UE is temporarily extended when the C-RNTI of the UE is 003D according to the type 0 DRX scheme.
  • a terminal that does not receive an MT signaling indicator corresponding to itself transitions to a sleep mode.
  • decoding priority may be given according to a search region.
  • the base station may transmit the MT signaling indicator masked by the MT signaling scheduling C-RNTI through the PDCCH on the CSS in the existing DCI format.
  • the UE to which the right DRX is applied may preferentially decode the PDCCH on the CSS.
  • the UE identifier may be used instead of the MT signaling indicator masked by the MT signaling scheduling C-RNTI according to the number of terminals. For example, according to the size limit of the DCI format, when the number of terminals at the same On period is large, the MT signaling indicator may be used, and when the number of terminals is small, the UE identifier may be used.
  • 12 shows another example of a manner in which DRX operates according to a dynamic MT signaling indicator according to an embodiment of the present invention.
  • 12 illustrates a case in which On intervals of all unspecified terminals at the same On interval time point are extended according to a Type 1 DRX scheme.
  • the UE transitions to the sleep mode without decoding the PDCCH on the USS.
  • the UE decodes the PDCCH and temporarily extends the On period.
  • FIG. 13 shows another example of a manner in which DRX operates according to a dynamic MT signaling indicator according to an embodiment of the present invention.
  • FIG. 13 illustrates a case in which the On interval of the UE is temporarily extended when the C-RNTI of the UE is 003D according to the type 1 DRX scheme.
  • the terminal if the terminal does not receive the MT signaling indicator corresponding to itself in the On period, the terminal transitions to the sleep mode without decoding the PDCCH on the USS.
  • the terminal receives the MT signaling indicator corresponding to itself in the On period, the terminal decodes the PDCCH and temporarily extends the On period.
  • decoding priority may be given according to the DCI format.
  • the base station may transmit the MT signaling indicator masked with the MT signaling scheduling C-RNTI through the PDCCH in a DCI format newly defined for the corresponding purpose.
  • the UE to which the right DRX is applied may preferentially decode the PDCCH in which the corresponding DCI format is transmitted. Accordingly, when extending the On interval of all unspecified terminals at the same On interval time point according to the dynamic MT signaling indicator, if all UEs to which the DRX is applied do not receive the MT signaling indicator in the On interval, a different DCI format is transmitted. Transition to sleep mode without decoding it. When all terminals to which the DRX is applied receive the MT signaling indicator in the On period, the UE decodes the PDCCH in which another DCI format is transmitted and temporarily extends the On period.
  • FIG. 14 shows another example of a manner in which DRX operates according to a dynamic MT signaling indicator according to an embodiment of the present invention.
  • FIG. 14 illustrates a case in which the On interval of a corresponding UE is temporarily extended when the C-RNTI of the UE is 003D according to the type 2 DRX scheme.
  • the terminal if the terminal does not receive the MT signaling indicator corresponding to itself in the On period, the terminal transitions to the sleep mode without decoding the PDCCH in which another DCI format is transmitted.
  • the terminal decodes the PDCCH in which another DCI format is transmitted and temporarily extends the On period.
  • FIG. 15 shows an example of a method for configuring a C-plane DRX according to an embodiment of the present invention.
  • the base station configures the C-plane DRX to the terminal having only the activated C-plane transmitted and received over the cellular network.
  • the C-plane DRX may be set by parameters such as a write DRX cycle, a write DRX On interval timer, and a DRX long cycle timer newly defined for the C-plane DRX.
  • the base station indicates whether there is signaling to transmit to one or more terminals waking up in the C-plane DRX. Indicating whether there is signaling to be transmitted to at least one terminal waking up in the C-plane DRX may include transmitting an MT signaling indicator to the at least one terminal.
  • the MT signaling indicator is a fixed MT signaling indicator, and the fixed MT signaling indicator may correspond to the PSICH. Information about the presence or absence of the PSICH and the allocated radio resource region may be transmitted, and the information may include information on the allocation time and the resource region of the PSICH.
  • the MT signaling indicator may be a dynamic MT signaling indicator.
  • the dynamic signaling indicator may be indicated in a multicast manner, where an MT signaling scheduling C-RNTI corresponding to the dynamic MT signaling indicator may be defined. Alternatively, the dynamic MT signaling indicator may be indicated in a unicast manner.
  • the dynamic MT signaling indicator may include at least one of a terminal identifier, a start offset, or an on interval extension.
  • step 200 the UE having only the activated C-plane transmitted and received through the cellular network receives the C-plane DRX configuration information and the MT signaling indicator.
  • step S210 the UE temporarily extends the On interval of the DRX of the C-plane according to the C-plane configuration information and the MT signaling indicator.
  • the MT signaling indicator is a fixed MT signaling indicator, and the DRX of the C-plane may be temporarily extended when the value of the fixed MT signaling indicator is a specific value.
  • the MT signaling indicator is a dynamic MT signaling indicator
  • the DRX of the C-plane is temporarily extended when the DCI format is masked with MT signaling scheduling C-RNTI or the C-RNTI of the terminal and received from the base station through the PDCCH. Can be.
  • the MT signaling indicator is a dynamic MT signaling indicator
  • the DRX of the C-plane is a DCI format including the dynamic MT signaling indicator is masked with MT signaling scheduling C-RNTI is received from the base station through the PDCCH on CSS Can be extended temporarily. This is the type 1 DRX operation described above.
  • the MT signaling indicator is a dynamic MT signaling indicator
  • the DRX of the C-plane is temporary when a new DCI format including the dynamic MT signaling indicator is masked with MT signaling scheduling C-RNTI and received from a base station through a PDCCH. Can be extended to This is the type 2 DRX operation described above.
  • 17 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 800 includes a processor 810, a memory 820, and a transceiver 830.
  • Processor 810 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 810.
  • the memory 820 is connected to the processor 810 and stores various information for driving the processor 810.
  • the transceiver 830 is connected to the processor 810 to transmit and / or receive a radio signal.
  • the terminal 900 includes a processor 910, a memory 920, and a transceiver 930.
  • Processor 910 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 910.
  • the memory 920 is connected to the processor 910 and stores various information for driving the processor 910.
  • the transceiver 930 is connected to the processor 910 to transmit and / or receive a radio signal.
  • Processors 810 and 910 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory 820, 920 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the transceiver 830 and 930 may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 820, 920 and executed by the processor 810, 910.
  • the memories 820 and 920 may be inside or outside the processors 810 and 910, and may be connected to the processors 810 and 910 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 C-plane (control plane) DRX(discontinuous reception)를 설정하는 방법 및 장치가 제공된다. 기지국은 셀룰러 망으로 송수신되는 활성화된 C-plane만을 보유한 단말들에 C-plane DRX를 설정하고, 상기 C-plane DRX 내에서 깨어난 하나 이상의 단말에게 전송할 시그널링이 존재하는지 여부를 지시한다. 또한, 무선 통신 시스템에서 C-plane DRX에 따라 On 구간(On duration)을 확장하는 방법 및 장치가 제공된다. 단말은 C-plane DRX 구성 정보 및 MT(mobile terminating) 시그널링 지시자를 수신하고, 상기 C-plane 구성 정보 및 MT 시그널링 지시자에 따라 C-plane의 DRX의 On 구간을 일시적으로 확장한다.

Description

무선 통신 시스템에서 연결된 상태의 단말을 위하여 개선된 DRX 방식을 구성하는 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 연결된 상태의 단말을 위한 개선된 DRX(discontinuous reception) 방식을 구성하는 방법 및 장치에 관한 것이다.
최근 고속 데이터 트래픽이 증가하는 추세에 따라, 이를 현실적으로 수용하고 효과적으로 지원할 수 있는 5세대 이동 통신 기술에 대한 논의가 진행되고 있다. 5세대 이동 통신 기술의 요구사항 중 하나로 이종 무선 통신 시스템 간의 연동이 있다. 특히, 셀룰러 시스템과 WLAN(wireless local area network) 시스템 간의 연동이 논의되고 있다. 셀룰러 시스템은 3GPP(3rd generation partnership project) LTE(long-term evolution), 3GPP LTE-A(advanced), IEEE(institute of electrical and electronics engineers) 802.16(WiMax, WiBro) 중 어느 하나일 수 있다. WLAN 시스템은 IEEE 802.11(Wi-Fi)일 수 있다. 특히 WLAN은 현재 매우 다양한 단말기에서 일반적으로 이용되는 무선 통신 시스템이므로, 셀룰러-WLAN 연동은 우선 순위가 높은 융합 기술 중 하나이다. 셀룰러-WLAN 연동에 의한 오프로딩(offloading)을 통해, 셀룰러 시스템의 커버리지와 용량이 증가할 수 있다.
즉, 5세대 이동 통신 시스템은 이종 무선 통신 시스템 간의 연동을 통하여 복수의 RAT(radio access technology)들을 융합하여 사용할 수 있다. 5세대 이동 통신 시스템을 구성하는 복수의 RAT들의 각 개체들은 서로 정보를 교환할 수 있고, 이에 따라 5세대 이동 통신 시스템 내의 사용자에게 최적의 통신 시스템을 제공할 수 있다. 5세대 이동 통신 시스템을 구성하는 복수의 RAT들 중 특정 RAT는 주(primary) RAT 시스템으로 동작할 수 있고, 다른 특정 RAT는 부(secondary) RAT 시스템으로 동작할 수 있다. 즉, 주 RAT 시스템이 5세대 이동 통신 시스템 내의 사용자에게 주로 통신 시스템을 제공하는 역할을 하고, 부 RAT 시스템은 주 RAT 시스템을 보조하는 역할을 할 수 있다. 일반적으로 커버리지가 비교적 넓은 3GPP LTE(-A) 또는 IEEE 802.16 등의 셀룰러 시스템이 주 RAT 시스템이 되며, 커버리지가 비교적 좁은 Wi-Fi 시스템이 부 RAT 시스템이 될 수 있다.
DRX(discontinuous reception)는 단말이 데이터를 감지하지 못할 때 수신기를 닫아 단말의 배터리를 절감해 주는 기술이다. 최소한의 시그널링으로 수신기를 빠르게 가동시킬 수 있어 시그널링 작업 및 사용자 경험의 대폭적인 향상이 가능하다는 장점이 있다.
셀룰러 시스템과 Wi-Fi 시스템이 단단히 결합된(tightly coupled) 무선 통신 시스템에서 개선된 방식의 DRX가 요구될 수 있다.
본 발명은 무선 통신 시스템에서 연결된 상태의 단말을 위하여 개선된 DRX(discontinuous reception) 방식을 구성하는 방법 및 장치를 제공한다. 본 발명은 셀룰러 시스템과 Wi-Fi 시스템이 융합된 무선 통신 시스템에서 RRC(radio resource control) 연결 상태에 있는 단말을 위하여 새롭게 정의되는 제어 평면(C-plane; control plane) DRX 방식을 구성하는 방법 및 장치를 제공한다.
일 양태에 있어서, 무선 통신 시스템에서 기지국에 의한 C-plane (control plane) DRX(discontinuous reception)를 설정하는 방법이 제공된다. 상기 방법은 셀룰러 망으로 송수신되는 활성화된 C-plane만을 보유한 단말들에 C-plane DRX를 설정하고, 및 상기 C-plane DRX 내에서 깨어난 하나 이상의 단말에게 전송할 시그널링이 존재하는지 여부를 지시하는 것을 포함한다.
다른 양태에 있어서, 무선 통신 시스템에서 단말에 의한 C-plane (control plane) DRX(discontinuous reception)에 따라 On 구간(On duration)을 확장하는 방법이 제공된다. 상기 방법은 C-plane DRX 구성 정보 및 MT(mobile terminating) 시그널링 지시자를 수신하고, 및 상기 C-plane 구성 정보 및 MT 시그널링 지시자에 따라 C-plane의 DRX의 On 구간을 일시적으로 확장하는 것을 포함한다.
셀룰러 망에서 C-plane만 존재하는 단말에 효율적인 DRX 방식을 구성할 수 있다.
도 1은 셀룰러 시스템이다.
도 2는 WLAN 시스템을 나타낸다.
도 3은 셀룰러 시스템과 Wi-Fi 시스템이 융합된 통신 시스템의 시나리오의 일 예를 나타낸다.
도 4는 단단히 결합된 셀룰러 망과 Wi-Fi 망의 일 예를 나타낸다.
도 5는 DRX 동작 방식의 일 예를 나타낸다.
도 6은 DRX 동작 방식의 또 다른 예를 나타낸다.
도 7은 DRX 동작 방식의 또 다른 예를 나타낸다.
도 8은 기존의 DRX 동작 방식의 일 예를 나타낸다.
도 9는 본 발명의 일 실시예에 따른 DRX 동작 방식의 일 예를 나타낸다.
도 10은 본 발명의 일 실시예에 따른 고정된 MT 시그널링 지시자에 따라 DRX가 동작하는 방식의 일 예를 나타낸다.
도 11은 본 발명의 일 실시예에 따른 동적 MT 시그널링 지시자에 따라 DRX가 동작하는 방식의 일 예를 나타낸다.
도 12는 본 발명의 일 실시예에 따른 동적 MT 시그널링 지시자에 따라 DRX가 동작하는 방식의 또 다른 예를 나타낸다.
도 13은 본 발명의 일 실시예에 따른 동적 MT 시그널링 지시자에 따라 DRX가 동작하는 방식의 또 다른 예를 나타낸다.
도 14는 본 발명의 일 실시예에 따른 동적 MT 시그널링 지시자에 따라 DRX가 동작하는 방식의 또 다른 예를 나타낸다.
도 15는 본 발명의 일 실시예에 따른 C-plane DRX를 설정하는 방법의 일 예를 나타낸다.
도 16은 본 발명의 일 실시예에 따른 C-plane DRX에 따라 On 구간을 확장하는 방법의 일 예를 나타낸다.
도 17은 본 발명의 실시예가 구현되는 무선 통신 시스템의 블록도이다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved-UMTS terrestrial radio access) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)을 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, LTE-A 및 IEEE 802.11을 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
도 1은 셀룰러 시스템이다. 도 1을 참조하면, 셀룰러 시스템(10)은 적어도 하나의 기지국(11; BS; base station)을 포함한다. BS(11)는 특정한 지리적 영역(일반적으로 셀이라고 함)(15a, 15b, 15c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다. 단말(12; UE; user equipment)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. BS(11)는 일반적으로 UE(12)와 통신하는 고정된 지점을 말하며, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다.
UE는 통상적으로 하나의 셀에 속하는데, UE가 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 BS를 서빙 BS라 한다. 셀룰러 시스템은 서빙 셀에 인접하는 다른 셀을 포함한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 BS를 인접 BS라 한다. 서빙 셀 및 인접 셀은 UE를 기준으로 상대적으로 결정된다.
이 기술은 하향링크(DL; downlink) 또는 상향링크(UL; uplink)에 사용될 수 있다. 일반적으로 DL은 BS(11)에서 UE(12)로의 통신을 의미하며, UL은 UE(12)에서 BS(11)으로의 통신을 의미한다. DL에서 송신기는 BS(11)의 일부분이고, 수신기는 UE(12)의 일부분일 수 있다. UL에서 송신기는 UE(12)의 일부분이고, 수신기는 BS(11)의 일부분일 수 있다.
도 2는 WLAN 시스템을 나타낸다. WLAN(wireless local area network) 시스템은 Wi-Fi로 불릴 수 있다. 도 2를 참조하면, WLAN 시스템은 하나의 AP(20; access point)와 복수의 STA(31, 32, 33, 34, 40; station)을 포함한다. AP(20)는 각 STA(31, 32, 33, 34, 40)와 연결되어 통신할 수 있다. WLAN 시스템은 하나 이상의 기본 서비스 세트(BSS; basic service set)를 포함한다. BSS는 BSS 성공적으로 동기화를 이루어서 서로 통신할 수 있는 STA의 집합으로써, 특정 영역을 가리키는 개념은 아니다.
인프라스트럭쳐 BSS(infrastructure BSS)는 하나 이상의 non-AP STA, 다수의 AP를 연결시키는 분산 시스템 및 분산 시스템을 제공하는 AP를 포함한다. 인프라스트럭쳐 BSS에서, AP는 BSS의 non-AP STA을 관리한다. 따라서, 도 2에서 보여진 WLAN 시스템은 인프라스트럭쳐 BSS를 포함할 수 있다. 반면, 독립 BSS(IBSS; independent BSS)는 애드-혹(ad-hoc) 모드로 동작하는 BSS이다. IBSS는 AP를 포함하지 않기 때문에 중앙에서 관리 기능을 수행하는 개체(centralized management entity)가 없다. 즉, IBSS에서는 non-AP STA가 분산된 방식으로 관리된다. IBSS에서는 모든 STA가 이동 STA으로 이루어질 수 있으며, 분산 시스템으로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.
STA은 IEEE 802.11 표준의 규정을 따르는 MAC(media access control)과 무선 매체에 대한 물리 계층(physical layer) 인터페이스를 포함하는 임의의 기능 매체로서, 보다 넓은 의미로 AP와 비 AP STA을 모두 포함한다.
non-AP STA는 AP은 아닌 STA으로, non-AP STA은 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(WTRU; wireless transmit/receive unit), 사용자 장비(UE; user equipment), 이동국(MS; mobile station), 이동 가입자 유닛(mobile subscriber unit) 또는 단순히 user 등의 다른 명칭으로도 불릴 수 있다. 이하에서는 설명의 편의를 위하여 non-AP STA을 STA으로 지칭하도록 한다.
AP는 해당 AP에게 결합된(associated) STA을 위하여 무선 매체를 통해 분산 시스템에 대한 접속을 제공하는 기능 개체이다. AP를 포함하는 인프라스트럭쳐 BSS에서 STA 사이의 통신은 기본적으로 AP를 통해 이루어지는 것이 원칙이나, 직접 링크(direct link)가 설정된 경우에는 STA 간의 직접 통신이 가능하다. AP는 집중 제어기(central controller), 기지국(BS; base station), NodeB, BTS(base transceiver system), 또는 사이트 제어기 등으로 불릴 수도 있다.
복수의 인프라스트럭쳐 BSS는 분산 시스템을 통해 서로 연결될 수 있다. 서로 연결된 복수의 BSS는 확장 서비스 세트(ESS; extended service set)로 불릴 수 있다. ESS에 포함되는 AP 및/또는 STA는 서로 통신할 수 있고, 동일한 ESS 내에서 STA는 끊김 없는(seamless) 통신을 유지하면서 한 BSS에서 다른 BSS로 이동할 수 있다.
도 3은 셀룰러 시스템과 Wi-Fi 시스템이 융합된 통신 시스템의 시나리오의 일 예를 나타낸다.
도 3에서 셀룰러 시스템은 융합 통신 시스템의 주 RAT 시스템으로 동작하며, Wi-Fi 시스템은 융합 통신 시스템의 부 RAT 시스템으로 동작하는 것으로 가정한다. 또한, 도 3의 셀룰러 시스템은 3GPP LTE(-A)일 수 있다. 이하의 설명에서는 편의상 융합 통신 시스템의 주 RAT 시스템은 3GPP LTE(-A), 통신 시스템의 부 RAT 시스템은 IEEE 802.11, 즉 Wi-Fi 시스템인 것으로 가정한다. 그러나 이하에서 설명할 본 발명의 실시예들은 이에 제한되지 않는다.
도 3을 참조하면, 셀룰러 기지국(50)의 커버리지 내에 복수의 일반 장치(61, 62, 63, 64, 65)들이 존재한다. 각 일반 장치(61, 62, 63, 64, 65)는 셀룰러 시스템의 UE일 수 있다. 셀룰러 기지국(50)은 셀룰러 무선 인터페이스를 통해 각 일반 장치(61, 62, 63, 64, 65)와 통신할 수 있다. 예를 들어, 셀룰러 기지국(50)은 각 일반 장치(61, 62, 63, 64, 65)와 음성 전화 통신을 수행하거나, 각 일반 장치(61, 62, 63, 64, 65)의 Wi-Fi 시스템에 대한 접속을 제어할 수 있다.
셀룰러 기지국(50)은 셀룰러 시스템 인터페이스를 통해 S-GW(serving gateway)/MME(mobility management entity) (70)와 연결된다. MME는 UE의 접속 정보나 UE의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 UE의 이동성 관리에 주로 사용될 수 있다. MME는 제어 평면의 기능을 담당한다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이다. S-GW는 사용자 평면의 기능을 담당한다. S-GW/MME(70)는 또한 셀룰러 시스템 인터페이스를 통해 PDN GW(packet data network gateway, 71) 및 HSS(home subscriber server, 72)와 연결된다. PDN GW(P-GW)는 PDN을 종단점으로 갖는 게이트웨이이다.
P-GW(71) 및 HSS(72)는 또한, 셀룰러 시스템 인터페이스를 통해 3GPP AAA(access authentication authorization) 서버(73)와 연결된다. P-GW(71) 및 3GPP AAA 서버(73)는 셀룰러 시스템 인터페이스를 통해 ePDG(evolved packet data gateway, 74)와 연결될 수 있다. e-PDG(74)는 신뢰되지 않는 비-3GPP 접속에서만 포함될 수 있다. e-PDG(74)는 WAG(WLAN access gateway, 75)와 연결될 수 있다. WAG(75)는 Wi-Fi 시스템에서 P-GW의 역할을 담당할 수 있다.
한편, 셀룰러 기지국(50)의 커버리지 내에 복수의 AP(81, 82, 83)들이 존재할 수 있다. 각 AP(81, 82, 83)는 각각 셀룰러 기지국(50)의 커버리지보다 작은 커버리지를 가질 수 있다. 각 AP(81, 82, 83)는 Wi-Fi 무선 인터페이스를 통해 자신의 커버리지 내에 있는 일반 장치(61, 62, 63)와 통신할 수 있다. 즉, 일반 장치(61, 62, 63)는 셀룰러 기지국(50) 및/또는 AP(81, 82, 83)와 통신할 수 있다. 일반 장치(61, 62, 63)의 통신 방법은 다음과 같다.
1) 셀룰러/Wi-Fi 동시 무선 전송: 일반 장치(61)는 셀룰러 무선 인터페이스를 통해 셀룰러 기지국(50)과 통신하는 동시에 Wi-Fi 무선 인터페이스를 통해 AP(81)와 고속 데이터 통신을 수행할 수 있다. 셀룰러 기지국(50)은 일반 장치(61)의 음성 통화 및/또는 Wi-Fi 접속을 제어할 수 있다.
2) 셀룰러/Wi-Fi 사용자 평면 자동 전환: 일반 장치(62)는 사용자 평면 자동 전환에 의하여 셀룰러 기지국(50) 또는 AP(82) 중 어느 하나와 통신할 수 있다. 이때 제어 평면은 셀룰러 시스템과 Wi-Fi 시스템에 모두 존재하거나, 셀룰러 시스템에만 존재할 수 있다.
3) 단말 협력 전송: 소스 장치로 동작하는 일반 장치(64)는 셀룰러 무선 인터페이스를 통해 셀룰러 기지국(50)과 직접적으로 통신하거나, 협력 장치로 동작하는 일반 장치(65)를 통해 셀룰러 기지국(50)과 간접적으로 통신할 수 있다. 즉, 협력 장치(65)는 소스 장치(64)가 자신을 통해 간접적으로 셀룰러 기지국(50)과 통신할 수 있도록 소스 장치(64)를 도울 수 있다. 소스 장치(64)와 협력 장치(65)는 Wi-Fi 무선 인터페이스를 통해 통신한다.
4) Wi-Fi 기반 셀룰러 링크 제어 메커니즘: AP(83)은 셀룰러 일반 장치(63)에 대하여 네트워크의 페이징 또는 위치 등록 등의 셀룰러 링크 제어 메커니즘을 수행할 수 있다. 일반 장치(63)는 셀룰러 기지국(50)과 직접 연결되지 않으며, AP(83)을 통해 간접적으로 셀룰러 기지국(50)과 통신할 수 있다.
각 AP(81, 82, 83)는 Wi-Fi 시스템 인터페이스를 통해 WAG(75)와 연결된다.
도 4는 단단히 결합된 셀룰러 망과 Wi-Fi 망의 일 예를 나타낸다. 도 4를 참조하면, 단단히 결합된(tightly couple) 셀룰러 망과 Wi-Fi 망에서, 셀룰러 망의 BS는 도 3에서 보여진 바와 같이 S-GW/MME를 통해 P-GW 및 PDN과 연결된다. 한편, AP는 BS와 연결되며, BS와 동일한 인터페이스를 통해 P-GW 및 PDN과 연결된다. 이는 도 3에서 AP가 WAG를 통해 P-GW과 연결되는 것과 다른 양태이다. 즉, 단단히 결합된 셀룰러 망과 Wi-Fi 망에서 BS와 AP는 동시에 위치(collocated)하거나 연결된다(connected).
단단히 결합된 셀룰러 망과 Wi-Fi 망에서 끊김 없는 데이터 전송을 위해, 셀룰러 망은 단말의 이동성 등을 총괄해야 한다. 이는 단단히 결합된 셀룰러 망과 Wi-Fi 망에서 셀룰러 망이 커버리지 홀(coverage hole)이 없기 때문이다. 표 1은 단단히 결합된 셀룰러 망과 Wi-Fi 망에서 셀룰러 망과 Wi-Fi 망의 역할을 나타낸다.
셀룰러 망 Wi-Fi 망
C-plane의 역할 - 사용자 이동성- 데이터 세션 관리- 망 자원 제어(오프로딩) 없음
U-plane의 역할 데이터 송수신 데이터 송수신
연결 여부 항상 요구에 따라
표 1을 참조하면, 단단히 결합된 셀룰러 망과 Wi-Fi 망에서 C-plane(control plane)은 셀룰러 망에서만 제공되고 Wi-Fi 망에서는 제공되지 않는다. 즉, Wi-Fi 망의 U-plane(user plane) 상으로만 데이터가 송수신 되더라도, 단말과 셀룰러 망은 C-plane 상으로 제어 신호를 송수신한다. 또한, C-plane 시그널링 전송의 우선 순위가 높기 때문에(RRC(radio resource control) 메시지=1, NAS(non-access stratum) 메시지=3), 단말은 셀룰러 망과 항상 연결 상태(RRC_CONNECTED)를 유지해야 한다. 따라서, 단말의 소모 전력이 증가하게 되며, 에너지 효율성이 떨어질 수 있다.
이하, DRX(discontinuous reception)을 설명한다.
도 5는 DRX 동작 방식의 일 예를 나타낸다. 도 5를 참조하면, 단말은 DRX 사이클 중의 일부 On 구간(On duration) 동안만 켜지고(즉, 활성 상태), DRX 사이클의 나머지 구간에서는 꺼진다(즉, 비활성 상태). 또한, On 구간에서 성공적으로 PDCCH(physical downlink control channel)를 디코딩 한 이후에, 비활성 타이머가 동작하는 동안 활성 상태로 남아 있는다. 표 2는 DRX 동작을 위한 각종 파라미터를 나타낸다.
DRX 파라미터 설 명
DRX 사이클(DRX Cycle) On 구간을 위해 지속되는 활성 상태의 주기 반복을 나타낸다.
On 구간 타이머(On Duration timer) 새로운 DRX 사이클이 시작될 때, 몇 서브프레임 동안 단말이 활성 상태에 있어야 하는지를 나타낸다.
DRX 비활성 타이머(DRX Inactivity timer) PDCCH를 성공적으로 디코딩 한 후에, 단말이 몇 서브프레임 동안 활성 상태로 남아 있어야 하는지를 나타낸다.
DRX 재전송 타이머(DRX Retransmission timer) 첫 번째로 가능한 재전송 시간 이후에, 인커밍(incoming) 재전송을 기다리기 위해 단말이 활성 상태로 남아 있어야 하는 연속한 PDCCH 서브프레임의 최대 개수를 나타낸다.
DRX 짧은 사이클(DRX Short Cycle) 단말이 짧은 DRX 조건에 있을 때 On 구간을 위해 지속되는 활성 상태의 주기 반복을 나타낸다. 이는 일종의 불연속한 비활성 타이머이다.
DRX 짧은 사이클 타이머(DRX Short Cycle timer) DRX 비활성 타이머가 만료된 후에, 단말이 짧은 DRX 사이클을 따라야 하는 연속된 서브프레임의 개수를 나타낸다.
긴 DRX 사이클 시작 오프셋(longDRX-CycleStartOffset) =drxStartOffset
도 6은 DRX 동작 방식의 또 다른 예를 나타낸다. 도 6을 참조하면, 긴 DRX 사이클 내에서 On 구간이 설정되고, 또한 HARQ(hybrid automatic repeat request) 타이머가 설정된다. HARQ 타이머가 동작하는 동안 HARQ가 수행될 수 있다.
도 7은 DRX 동작 방식의 또 다른 예를 나타낸다. 도 7을 참조하면, 단말이 짧은 DRX 조건에 있을 때, 긴 DRX 사이클 내에서 On 구간이 설정되고, 또한 짧은 DRX 사이클이 추가로 설정된다. 단말은 짧은 DRX 사이클 타이머가 동작하는 동안 짧은 DRX 사이클에 따라 DRX를 수행하고, 짧은 DRX 사이클 타이머가 만료하면 긴 DRX 사이클에 따라 DRX를 수행한다.
DRX는 단말의 소모 전력을 줄이는 기능을 하나, 단말이 자신에게 전송될 시그널링 또는 데이터의 존재를 알 수 없다는 단점이 있다. 즉, 단말은 On 구간에서 자신에게 할당된 무선 자원이 존재하는지를 파악하기 위해 모든 PDCCH를 디코딩해야 한다. DRX의 이러한 특징은, 특히 셀룰러 망과 Wi-Fi 망 단단히 결합된 시스템에서 C-plane만 셀룰러 망에 존재하는 단말에 특히 비효율적일 수 있다. 즉, 셀룰러 망과 Wi-Fi 망이 단단히 결합된 시스템에서 C-plane만 셀룰러 망에 존재하는 경우, 시그널링 발생을 예측하기 힘들고 빈도 수가 낮을 수 있다. C-plane으로 전송될 수 있는 메시지는 베어러 컨텍스트 수정/비활성(bearer context modification/deactivation) 메시지, 전용 EPS 베어러 컨텍스트 활성(dedicated EPS bearer context activation) 메시지 등의 NAS 메시지 또는 RRC 연결 재구성 메시지(RRC connection reconfiguration) 메시지 또는 셀룰러/Wi-Fi 신호 세기 감쇄에 따른 이웃 측정 구성(neighbor measurement configuration) 메시지 등을 포함할 수 있다. 즉, 이러한 시그널링은 전송되지 않을 확률이 높다. 반면, 이러한 시그널링의 전송 우선 순위는 높을 수 있다. 일반적으로 RRC 메시지의 우선 순위는 1이며, NAS 메시지의 우선 순위는 3이다. 따라서, DRX 사이클을 큰 값으로 설정하는 것은 바람직하지 않을 수 있다.
따라서, 기존의 DRX 방식의 문제점을 해결하기 위하여, 본 발명의 일 실시예에 따라 새로운 DRX 방식이 제안될 수 있다. 이하, 본 발명의 일 실시예에 따라 새롭게 정의되는 DRX 방식을 라이트 DRX(light DRX) 또는 C-plane DRX로 나타낸다. 이하에서 라이트 DRX와 C-plane DRX는 혼용되어 사용될 수 있다. 본 발명의 일 실시예에 따라, 라이트 DRX는 셀룰러 망과 Wi-Fi 망이 단단히 결합된 시스템에서 셀룰러 망으로 송수신되는 활성화된 C-plane만을 가지는 단말에게만 적용될 수 있고, 셀룰러 망으로 송수신되는 활성화된 C-plane 및 U-plane을 모두 가지는 단말에게는 기존의 DRX 방식(긴 DRX, 짧은 DRX)가 적용될 수 있다. 단말의 활성 상태에 따라서 라이트 DRX 방식과 기존의 DRX 사이를 적절하게 전환할 수 있다.
도 8은 기존의 DRX 동작 방식의 일 예를 나타낸다. 도 8을 참조하면, DRX 비활성 타이머가 동작한 이후에, 단말은 조건에 따라 짧은 DRX 또는 긴 DRX 중 어느 하나로 들어가며, 짧은 DRX에서 DRX 짧은 사이클 타이머가 만료하면 긴 DRX로 들어간다.
도 9는 본 발명의 일 실시예에 따른 DRX 동작 방식의 일 예를 나타낸다. 도 9를 참조하면, DRX 비활성 타이머가 동작한 이후에, 단말은 조건에 따라 짧은 DRX, 긴 DRX 또는 라이트 DRX 중 어느 하나로 들어간다. 짧은 DRX에서 DRX 짧은 사이클 타이머가 만료하면 긴 DRX 또는 라이트 DRX 중 어느 하나로 들어간다. 또한, 긴 DRX에서 DRX 긴 사이클 타이머가 만료하면 라이트 DRX로 들어간다.
표 3은 본 발명의 일 실시예에 따른 DRX 동작을 위한 각종 파라미터를 나타낸다.
DRX 파라미터 설 명
DRX 사이클(DRX Cycle) 단말이 긴 DRX 조건에 있을 때, On 구간을 위해 지속되는 활성 상태의 주기 반복을 나타낸다.
On 구간 타이머(On Duration timer) 새로운 DRX 사이클이 시작될 때, 몇 서브프레임 동안 단말이 활성 상태에 있어야 하는지를 나타낸다.
DRX 비활성 타이머(DRX Inactivity timer) PDCCH를 성공적으로 디코딩 한 후에, 단말이 몇 서브프레임 동안 활성 상태로 남아 있어야 하는지를 나타낸다.
DRX 재전송 타이머(DRX Retransmission timer) 첫 번째로 가능한 재전송 시간 이후에, 인커밍(incoming) 재전송을 기다리기 위해 단말이 활성 상태로 남아 있어야 하는 연속한 PDCCH 서브프레임의 최대 개수를 나타낸다.
DRX 짧은 사이클(DRX Short Cycle) 단말이 짧은 DRX 조건에 있을 때 On 구간을 위해 지속되는 활성 상태의 주기 반복을 나타낸다. 이는 일종의 불연속한 비활성 타이머이다.
DRX 짧은 사이클 타이머(DRX Short Cycle timer) DRX 비활성 타이머가 만료된 후에, 단말이 짧은 DRX 사이클을 따라야 하는 연속된 서브프레임의 개수를 나타낸다.
긴 DRX 사이클 시작 오프셋(longDRX-CycleStartOffset) =drxStartOffset
라이트 DRX 사이클(Light DRX Cycle) 단말이 라이트 DRX 조건에 있을 때, On 구간을 위해 지속되는 활성 상태의 주기 반복을 나타낸다.
라이트 DRX On 구간 타이머(Light DRX On Duration timer) 라이트 DRX 사이클이 시작될 때, 몇 서브프레임 동안 단말이 활성 상태에 있어야 하는지를 나타낸다. 이는 명시적으로 전달되지 않고 고정된 값(예를 들어, 1 ms)로 자동적으로 변경될 수 있다.
DRX 긴 사이클 타이머(DRX Long Cycle Timer) DRX 비활성 타이머가 만료된 후에, 단말이 긴 DRX 사이클을 따라야 하는 연속된 서브프레임의 개수를 나타낸다.
표 3을 참조하면, 표 2와 비교하여 라이트 DRX 사이클 파라미터, 라이트 DRX On 구간 타이머 파라미터 및 DRX 긴 사이클 파라미터가 추가적으로 설정될 수 있다. 즉, 단말은 라이트 DRX 조건에 있을 때 라이트 DRX 사이클에 따라 DRX를 수행할 수 있고, 라이트 DRX 사이클 내에서 On 구간이 추가적으로 설정될 수 있다. 또한, 긴 DRX에 있는 단말은 DRX 긴 사이클 타이머가 만료되면 라이트 DRX 조건에 있을 때 라이트 DRX로 들어갈 수 있다. 라이트 DRX 조건은 셀룰러 망으로 송수신되는 활성화된 C-plane만을 가지는 단말에 대응될 수 있다.
라이트 DRX 사이클 내에 On 구간의 시작점은 수학식 1에 의해 결정될 수 있다.
<수학식 1>
[(SFN*10)+서브프레임 번호] modulo (라이트 DRX 사이클) == drxStartOffset
이하, 본 발명의 일 실시예에 따라 셀룰러 망으로 송수신되는 활성화된 C-plane만을 가지는 단말에 라이트 DRX를 적용할 때, 시그널링이 발생한 경우를 설명한다. 본 발명의 일 실시예에 따라, 기지국은 라이트 DRX가 적용되고 해당 서브프레임에서 깨어난 하나 이상의 단말에게 전송할 시그널링이 존재하는지 여부를 알릴 수 있다. 이하, 단말에게 전송할 시그널링이 존재하는지 여부를 지시하는 지시자를 MT(mobile terminating) 시그널링 지시자라 한다. MT 시그널링 지시자는 고정된 지시자(fixed indication) 및 동적 지시자(dynamic indication)의 2가지 종류가 있을 수 있다. 고정된 지시자와 동적 지시자는 동시에 적용될 수 있다. 또한, 하나 이상의 동적 지시자 타입이 적용될 수도 있다. 만약 MT 시그널링 지시자가 단말에게 전송할 시그널이 존재함을 지시하는 경우, On 구간이 확장될 수 있다. On 구간은 시그널링을 수신할 단말에 대해서만 확장될 수도 있고, 또는 동일한 On 구간 시점이 모든 불특정 단말에 대해서 확장될 수도 있다.
먼저, 본 발명의 일 실시예에 따른 고정된 MT 시그널링 지시자에 대해서 설명한다. 고정된 MT 시그널링 지시자는 새롭게 정의되는 PSICH(physical MT-signaling indicator channel)일 수 있다. PSICH는 단말에게 전송될 시그널링이 존재하는지 여부를 지시할 수 있다. 예를 들어, PSICH의 값이 0이면 단말에게 전송될 시그널링이 존재하지 않음을 지시하고, PSICH의 값이 1이면 단말에게 전송될 시그널링이 존재함을 지시할 수 있다. PSICH의 존재 여부 및 PSICH를 위해 할당된 무선 자원 영역 정보는 PSICH 구성 정보를 통해 전송될 수 있다. 예를 들어, PSICH 구성 정보는 SIB(system information block)을 통해 전송될 수 있다. PSICH를 위해 할당되는 무선 자원 영역 정보는 할당 시점 및/또는 자원 영역에 대한 정보를 포함할 수 있다. 할당 시점에 대한 정보는 시스템 프레임 번호(예를 들어, 짝수 시스템 프레임, 홀수 시스템 프레임 또는 모든 시스템 프레임) 또는 서브프레임 번호로 표현될 수 있다. 자원 영역에 대한 정보는 자원 블록의 개수 및/또는 주파수 오프셋 등으로 표현될 수 있다.
도 10은 본 발명의 일 실시예에 따른 고정된 MT 시그널링 지시자에 따라 DRX가 동작하는 방식의 일 예를 나타낸다. 도 10을 참조하면, 라이트 DRX가 적용되는 단말(즉, 셀룰러 망으로 송수신되는 활성화된 C-plane만을 가지는 단말)에 대해, On 구간에서 PSICH가 전송된다. On 구간에서 PSICH가 0이면, 라이트 DRX가 적용된 모든 단말은 CSS(common search space) 및 USS(UE-specific search space에서 PDCCH를 디코딩 하지 않고 슬립 모드로 천이한다. On 구간에서 PSICH가 1이면, 라이트 DRX가 적용된 모든 단말은 PDCCH를 디코딩하며, On 구간을 일시적으로 확장한다. 이때 라이트 DRX는 DRX 비활성 타미어 또는 On 구간 타이머만큼 확장될 수 있다. 도 10에서는 동일한 On 구간 시점의 모든 불특정 단말의 On 구간을 확장하는 것을 예시로 설명하였으나, 시그널링을 수신할 단말의 On 구간만 확장될 수도 있다.
본 발명의 일 실시예에 따른 동적 MT 시그널링 지시자에 대해서 설명한다. 동적 MT 시그널링 지시자는 멀티캐스트(multicast) 방식으로 전송될 수 있다. 라이트 DRX가 적용되고 해당 서브프레임에서 On 구간에 있는 단말들 중 기지국이 전송할 시그널링이 존재하는 단말이 하나 이상 존재하는 경우, 동적 MT 시그널링 지시자가 해당 서브프레임에서 On 구간에 있는 단말들에게 멀티캐스트 방식으로 전송될 수 있다. 동적 MT 시그널링 지시자는 C-RNTI(cell radio network temporary identifier) 등의 단말 식별자, 시작 오프셋 및 On 구간 확장 등을 지시할 수 있다. 시작 오프셋에 따라 (현재 서브프레임 번호+시작 오프셋)인 서브프레임부터 On 구간이 시작할 수 있다. On 구간 확장은 On 구간이 임시적으로 확장되는 구간이며, 기지국은 해당 구간 내에 시그널링을 스케줄링 할 수 있다.
또한, 동적 시그널링 MT 지시자를 위하여, MT 시그널링 지시자임을 알리는 용도의 RNTI가 새롭게 정의될 수 있다. 표 4은 MT 시그널링 지시자임을 알리는 용도의 RNTI를 나타낸다.
값 (16진법) RNTI
0000 N/A
0001-003C RA-RNTI, C-RNTI, 비영구적 스케줄링(SPS; semi-persistent scheduling) C-RNTI, 임시 C-RNTI, TPC-PUCCH-RNTI and TPC-PUSCH-RNTI
003D-FFF3 C-RNTI, SPS C-RNTI, 임시 C-RNTI, TPC-PUCCH-RNTI and TPC-PUSCH-RNTI
FFF4-FFFC 나중을 위하여 유보됨
FFFD MT 시그널링 스케줄링 C- RNTI
FFFE P-RNTI
FFFF SI-RNTI
표 4를 참조하면, RNTI의 값이 FFFD일 때 MT 시그널링 스케줄링을 위한 C-RNTI을 지시할 수 있다.
또는, 동적 MT 시그널링 지시자는 유니캐스트(unicast) 방식으로 전송될 수 있다. 라이트 DRX가 적용되고 해당 서브프레임에서 On 구간에 있는 단말들 중 기지국이 전송할 시그널링이 존재하는 단말이 존재하는 경우, 동적 MT 시그널링 지시자가 해당 서브프레임에서 해당 단말에게 유니캐스트 방식으로 전송될 수 있다. 동적 MT 시그널링 지시자는 시작 오프셋 및 On 구간 확장 등을 지시할 수 있다. 시작 오프셋에 따라 (현재 서브프레임 번호+시작 오프셋)인 서브프레임부터 On 구간이 시작할 수 있다. On 구간 확장은 On 구간이 임시적으로 확장되는 구간이며, 기지국은 해당 구간 내에 시그널링을 스케줄링 할 수 있다.
본 발명의 일 실시예에 따른 동적 MT 시그널링 지시자에 따라 DRX가 동작하는 방식을 설명한다. DRX 동작 방식에 따라 타입 0, 타입 1 또는 타입 2 중 어느 하나로 구분될 수 있다.
타입 0 DRX 동작 방식에서, 기지국은 MT 시그널링 스케줄링 C-RNTI 또는 단말의 C-RNTI로 마스킹 된 자원 할당 정보를 기존 DCI 포맷으로 PDCCH를 통해 전송할 수 있다. 이때 MT 시그널링 지시자 자체는 PDCCH로 제공된 자원(예를 들어, PDSCH(physical downlink shared channel))을 통해 전송될 수 있다. 기지국은 On 구간에 해당하는 서브프레임에 자원 할당이 가능한 경우(즉, 스케줄링이 가능한 경우), 해당 서브프레임에서 시그널링을 전송한다. 이때 종래와 같이 해당 시그널링에 대응한 무선 자원 정보 등이 포함된 PDCCH도 함께 전송될 수 있다. 반면, On 구간에 해당하는 서브프레임에 자원 할당이 불가능한 경우(즉, 스케줄링이 불가능한 경우), 해당 서브프레임에 스케줄링 되지 않았지만 전송할 시그널링이 존재함을 MT 시그널링 지시자를 통해 단말에 알릴 수 있다. On 구간에서 자신의 C-RNTI에 해당하는 PDCCH 또는 MT 시그널링 지시자를 수신하지 못한 단말은 슬립 모드로 천이한다. On 구간에서 자신의 C-RNTI에 해당하는 PDCCH를 수신한 단말은 종래와 같이 동작한다. On 구간에서 MT 시그널링 지시자를 수신한 단말은 On 구간을 일시적으로 확장한다.
도 11은 본 발명의 일 실시예에 따른 동적 MT 시그널링 지시자에 따라 DRX가 동작하는 방식의 일 예를 나타낸다. 도 11은 타입 0 DRX 방식에 따라 단말의 C-RNTI가 003D인 경우에 해당 단말의 On 구간을 일시적으로 확장하는 경우를 나타낸다. 도 11을 참조하면, On 구간에서 자신에게 해당하는 MT 시그널링 지시자를 수신하지 못한 단말은 슬립 모드로 천이한다. On 구간에서 자신에게 해당하는 MT 시그널링 지시자를 수신한 단말(즉, C-RNTI=003D)은 On 구간을 일시적으로 확장한다.
타입 1 DRX 동작 방식에서는, 검색 영역에 따라 디코딩의 우선권이 부여될 수 있다. 기지국은 MT 시그널링 스케줄링 C-RNTI로 마스킹 된 MT 시그널링 지시자를 기존 DCI 포맷으로 CSS 상의 PDCCH를 통해 전송할 수 있다. 라이트 DRX가 적용된 단말은 CSS 상의 PDCCH를 우선적으로 디코딩 할 수 있다. 한편, 단말의 개수에 따라 MT 시그널링 스케줄링 C-RNTI로 마스킹 된 MT 시그널링 지시자 대신 UE 식별자가 사용될 수 있다. 예를 들어, DCI 포맷의 크기 한도에 따라, 동일한 On 구간 시점의 단말의 개수가 많을 때에는 MT시그널링 지시자를 사용하고, 단말의 개수가 적을 때에는 UE 식별자를 사용할 수 있다.
도 12는 본 발명의 일 실시예에 따른 동적 MT 시그널링 지시자에 따라 DRX가 동작하는 방식의 또 다른 예를 나타낸다. 도 12는 타입 1 DRX 방식에 따라 동일한 On 구간 시점의 모든 불특정 단말의 On 구간을 확장하는 경우를 나타낸다. 도 12를 참조하면, 라이트 DRX가 적용된 모든 단말은 On 구간에서 MT 시그널링 지시자를 수신하지 못하면, USS 상의 PDCCH를 디코딩하지 않고 슬립 모드로 천이한다. 라이트 DRX가 적용된 모든 단말은 On 구간에서 MT 시그널링 지시자를 수신하면, PDCCH를 디코딩하고 On 구간을 일시적으로 확장한다.
도 13은 본 발명의 일 실시예에 따른 동적 MT 시그널링 지시자에 따라 DRX가 동작하는 방식의 또 다른 예를 나타낸다. 도 13은 타입 1 DRX 방식에 따라 단말의 C-RNTI가 003D인 경우에 해당 단말의 On 구간을 일시적으로 확장하는 경우를 나타낸다. 도 13을 참조하면, 단말은 On 구간에서 자신에게 해당하는 MT 시그널링 지시자를 수신하지 못하면, USS 상의 PDCCH를 디코딩하지 않고 슬립 모드로 천이한다. 단말은 On 구간에서 자신에게 해당하는 MT 시그널링 지시자를 수신하면, PDCCH를 디코딩하고 On 구간을 일시적으로 확장한다.
타입 2 DRX 동작 방식에서는, DCI 포맷에 따라 디코딩의 우선권이 부여될 수 있다. 기지국은 MT 시그널링 스케줄링 C-RNTI로 마스킹 된 MT 시그널링 지시자를 해당 목적으로 새롭게 정의한 DCI 포맷으로 PDCCH를 통해 전송할 수 있다. 라이트 DRX가 적용된 단말은 해당 DCI 포맷이 전송되는 PDCCH를 우선적으로 디코딩 할 수 있다. 이에 따라, 동적 MT 시그널링 지시자에 따라 동일한 On 구간 시점의 모든 불특정 단말의 On 구간을 확장하는 경우, 라이트 DRX가 적용된 모든 단말은 On 구간에서 MT 시그널링 지시자를 수신하지 못하면, 다른 DCI 포맷이 전송되는 PDCCH를 디코딩하지 않고 슬립 모드로 천이한다. 라이트 DRX가 적용된 모든 단말은 On 구간에서 MT 시그널링 지시자를 수신하면, 다른 DCI 포맷이 전송되는 PDCCH를 디코딩하고 On 구간을 일시적으로 확장한다.
도 14는 본 발명의 일 실시예에 따른 동적 MT 시그널링 지시자에 따라 DRX가 동작하는 방식의 또 다른 예를 나타낸다. 도 14는 타입 2 DRX 방식에 따라 단말의 C-RNTI가 003D인 경우에 해당 단말의 On 구간을 일시적으로 확장하는 경우를 나타낸다. 도 14를 참조하면, 단말은 On 구간에서 자신에게 해당하는 MT 시그널링 지시자를 수신하지 못하면, 다른 DCI 포맷이 전송되는 PDCCH를 디코딩하지 않고 슬립 모드로 천이한다. 단말은 On 구간에서 자신에게 해당하는 MT 시그널링 지시자를 수신하면, 다른 DCI 포맷이 전송되는 PDCCH를 디코딩하고 On 구간을 일시적으로 확장한다.
도 15는 본 발명의 일 실시예에 따른 C-plane DRX를 설정하는 방법의 일 예를 나타낸다.
단계 S100에서, 기지국은 셀룰러 망으로 송수신되는 활성화된 C-plane만을 보유한 단말들에 C-plane DRX를 설정한다. 상기 C-plane DRX는 C-plane DRX를 위하여 새롭게 정의되는 라이트 DRX 주기, 라이트 DRX On 구간 타이머 및 DRX 긴 사이클 타이머 등의 파라미터에 의해 설정될 수 있다.
단계 S110에서, 기지국은 상기 C-plane DRX 내에서 깨어난 하나 이상의 단말에게 전송할 시그널링이 존재하는지 여부를 지시한다. 상기 C-plane DRX 내에서 깨어난 하나 이상의 단말에게 전송할 시그널링이 존재하는지 여부를 지시하는 것은 MT 시그널링 지시자를 상기 하나 이상의 단말로 전송하는 것을 포함할 수 있다. 상기 MT 시그널링 지시자는 고정된 MT 시그널링 지시자이며, 상기 고정된 MT 시그널링 지시자는 PSICH에 대응할 수 있다. 상기 PSICH의 존재 여부 및 할당된 무선 자원 영역에 대한 정보가 전송될 수 있으며, 해당 정보는 PSICH의 할당 시점 및 자원 영역에 대한 정보를 포함할 수 있다. 또는, 상기 MT 시그널링 지시자는 동적 MT 시그널링 지시자일 수 있다. 상기 동적 시그널링 지시자는 멀티캐스트 방식으로 지시될 수 있고, 이때 상기 동적 MT 시그널링 지시자에 대응하는 MT 시그널링 스케줄링 C-RNTI가 정의될 수 있다. 또는, 상기 상기 동적 MT 시그널링 지시자는 유니캐스트 방식으로 지시될 수 있다. 상기 동적 MT 시그널링 지시자는 단말 식별자, 시작 오프셋 또는 On 구간 확장 중 적어도 하나를 포함할 수 있다.
도 16은 본 발명의 일 실시예에 따른 C-plane DRX에 따라 On 구간을 확장하는 방법의 일 예를 나타낸다. 단계 200에서, 셀룰러 망으로 송수신되는 활성화된 C-plane만을 보유한 단말은, C-plane DRX 구성 정보 및 MT 시그널링 지시자를 수신한다. 단계 S210에서, 단말은 상기 C-plane 구성 정보 및 MT 시그널링 지시자에 따라 C-plane의 DRX의 On 구간을 일시적으로 확장한다. 상기 MT 시그널링 지시자는 고정된 MT 시그널링 지시자이며, 상기 C-plane의 DRX는 상기 고정된 MT 시그널링 지시자의 값이 특정 값인 경우 일시적으로 확장될 수 있다. 또는, 상기 MT 시그널링 지시자는 동적 MT 시그널링 지시자이며, 상기 C-plane의 DRX는 DCI 포맷이 MT 시그널링 스케줄링 C-RNTI 또는 상기 단말의 C-RNTI로 마스킹 되어 PDCCH를 통해 기지국으로부터 수신되는 경우 일시적으로 확장될 수 있다. 이는 상술한 타입 0 DRX 동작 방식이다. 또는, 상기 MT 시그널링 지시자는 동적 MT 시그널링 지시자이며, 상기 C-plane의 DRX는 상기 동적 MT 시그널링 지시자를 포함하는 DCI 포맷이 MT 시그널링 스케줄링 C-RNTI로 마스킹 되어 CSS 상의 PDCCH를 통해 기지국으로부터 수신되는 경우 일시적으로 확장될 수 있다. 이는 상술한 타입 1 DRX 동작 방식이다. 또는, 상기 MT 시그널링 지시자는 동적 MT 시그널링 지시자이며, 상기 C-plane의 DRX는 상기 동적 MT 시그널링 지시자를 포함하는 새로운 DCI 포맷이 MT 시그널링 스케줄링 C-RNTI로 마스킹 되어 PDCCH를 통해 기지국으로부터 수신되는 경우 일시적으로 확장될 수 있다. 이는 상술한 타입 2 DRX 동작 방식이다.
도 17은 본 발명의 실시예가 구현되는 무선 통신 시스템의 블록도이다.
기지국(800)은 프로세서(810; processor), 메모리(820; memory) 및 송수신부(830; transceiver)를 포함한다. 프로세서(810)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(810)에 의해 구현될 수 있다. 메모리(820)는 프로세서(810)와 연결되어, 프로세서(810)를 구동하기 위한 다양한 정보를 저장한다. 송수신부(830)는 프로세서(810)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(900)은 프로세서(910), 메모리(920) 및 송수신부(930)를 포함한다. 프로세서(910)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(910)에 의해 구현될 수 있다. 메모리(920)는 프로세서(910)와 연결되어, 프로세서(910)를 구동하기 위한 다양한 정보를 저장한다. 송수신부(930)는 프로세서(910)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(810, 910)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(820, 920)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 송수신부(830, 930)은 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(820, 920)에 저장되고, 프로세서(810, 910)에 의해 실행될 수 있다. 메모리(820, 920)는 프로세서(810, 910) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(810, 910)와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (15)

  1. 무선 통신 시스템에서 기지국에 의한 C-plane (control plane) DRX(discontinuous reception)를 설정하는 방법에 있어서,
    셀룰러 망으로 송수신되는 활성화된 C-plane만을 보유한 단말들에 C-plane DRX를 설정하고; 및
    상기 C-plane DRX 내에서 깨어난 하나 이상의 단말에게 전송할 시그널링이 존재하는지 여부를 지시하는 것을 포함하는 방법.
  2. 제 1 항에 있어서,
    상기 C-plane DRX는 라이트 DRX 주기(light DRX cycle), 라이트 DRX On 구간 타이머(light DRX On duration timer) 및 DRX 긴 사이클 타이머(DRX long cycle timer)에 의해 설정되는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 C-plane DRX 내에서 깨어난 하나 이상의 단말에게 전송할 시그널링이 존재하는지 여부를 지시하는 것은 MT(mobile terminating) 시그널링 지시자를 상기 하나 이상의 단말로 전송하는 것을 포함하는 방법.
  4. 제 3 항에 있어서,
    상기 MT 시그널링 지시자는 고정된(fixed) MT 시그널링 지시자이며,
    상기 고정된 MT 시그널링 지시자는 PSICH(physical MT-signaling indicator channel)에 대응하는 것을 특징으로 하는 방법.
  5. 제 4 항에 있어서,
    상기 PSICH의 존재 여부 및 할당된 무선 자원 영역에 대한 정보를 전송하는 것을 더 포함하는 방법.
  6. 제 3 항에 있어서,
    상기 MT 시그널링 지시자는 동적(dynamic) MT 시그널링 지시자인 것을 특징으로 하는 방법.
  7. 제 6 항에 있어서,
    상기 동적 MT 시그널링 지시자는 멀티캐스트(multicast) 방식으로 지시되며,
    상기 동적 MT 시그널링 지시자에 대응하는 MT 시그널링 스케줄링 C-RNTI(cell radio network temporary identifier)가 정의되는 것을 특징으로 하는 방법.
  8. 제 6 항에 있어서,
    상기 동적 MT 시그널링 지시자는 유니캐스트(unicast) 방식으로 지시되는 것을 특징으로 하는 방법.
  9. 제 6 항에 있어서,
    상기 동적 MT 시그널링 지시자는 단말 식별자, 시작 오프셋 또는 On 구간 확장 중 적어도 하나를 포함하는 것을 특징으로 하는 방법.
  10. 무선 통신 시스템에서 단말에 의한 C-plane (control plane) DRX(discontinuous reception)에 따라 On 구간(On duration)을 확장하는 방법에 있어서,
    C-plane DRX 구성 정보 및 MT(mobile terminating) 시그널링 지시자를 수신하고; 및
    상기 C-plane 구성 정보 및 MT 시그널링 지시자에 따라 C-plane의 DRX의 On 구간을 일시적으로 확장하는 것을 포함하는 방법.
  11. 제 10 항에 있어서,
    상기 단말은 셀룰러 망으로 송수신되는 활성화된 C-plane만을 보유한 단말인 것을 특징으로 하는 방법.
  12. 제 10 항에 있어서,
    상기 MT 시그널링 지시자는 고정된(fixed) MT 시그널링 지시자이며,
    상기 C-plane의 DRX는 상기 고정된 MT 시그널링 지시자의 값이 특정 값인 경우 일시적으로 확장되는 것을 특징으로 하는 방법.
  13. 제 10 항에 있어서,
    상기 MT 시그널링 지시자는 동적(dynamic) MT 시그널링 지시자이며,
    상기 C-plane의 DRX는 DCI(downlink control information) 포맷이 MT 시그널링 스케줄링 C-RNTI(cell radio network temporary identifier) 또는 상기 단말의 C-RNTI로 마스킹 되어 PDCCH(physical downlink control channel)를 통해 기지국으로부터 수신되는 경우 일시적으로 확장되는 것을 특징으로 하는 방법.
  14. 제 10 항에 있어서,
    상기 MT 시그널링 지시자는 동적 MT 시그널링 지시자이며,
    상기 C-plane의 DRX는 상기 동적 MT 시그널링 지시자를 포함하는 DCI 포맷이 MT 시그널링 스케줄링 C-RNTI로 마스킹 되어 CSS(common search space) 상의 PDCCH를 통해 기지국으로부터 수신되는 경우 일시적으로 확장되는 것을 특징으로 하는 방법.
  15. 제 10 항에 있어서,
    상기 MT 시그널링 지시자는 동적 MT 시그널링 지시자이며,
    상기 C-plane의 DRX는 상기 동적 MT 시그널링 지시자를 포함하는 새로운 DCI 포맷이 MT 시그널링 스케줄링 C-RNTI로 마스킹 되어 PDCCH를 통해 기지국으로부터 수신되는 경우 일시적으로 확장되는 것을 특징으로 하는 방법.
PCT/KR2015/010955 2014-10-23 2015-10-16 무선 통신 시스템에서 연결된 상태의 단말을 위하여 개선된 drx 방식을 구성하는 방법 및 장치 WO2016064141A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/520,022 US20170347389A1 (en) 2014-10-23 2015-10-16 Method and device for configuring improved drx scheme for connected terminals in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462067951P 2014-10-23 2014-10-23
US62/067,951 2014-10-23

Publications (1)

Publication Number Publication Date
WO2016064141A1 true WO2016064141A1 (ko) 2016-04-28

Family

ID=55761125

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2015/010956 WO2016064142A1 (ko) 2014-10-23 2015-10-16 무선 통신 시스템에서 wi-fi 링크를 통해 설정된 pdn 연결에 대한 가상 베어러 설정 방법 및 장치
PCT/KR2015/010955 WO2016064141A1 (ko) 2014-10-23 2015-10-16 무선 통신 시스템에서 연결된 상태의 단말을 위하여 개선된 drx 방식을 구성하는 방법 및 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010956 WO2016064142A1 (ko) 2014-10-23 2015-10-16 무선 통신 시스템에서 wi-fi 링크를 통해 설정된 pdn 연결에 대한 가상 베어러 설정 방법 및 장치

Country Status (2)

Country Link
US (2) US20170347389A1 (ko)
WO (2) WO2016064142A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023128676A1 (ko) * 2022-01-03 2023-07-06 한국전자통신연구원 민감한 트래픽을 위한 제어 채널의 송수신 방법 및 장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017132961A1 (zh) * 2016-02-04 2017-08-10 华为技术有限公司 通信链路建立方法、协议栈、终端及网络设备
JP2019068113A (ja) * 2016-02-16 2019-04-25 シャープ株式会社 端末装置、MME(MobilityManagementEntity)、および通信制御方法
US10848232B2 (en) * 2016-11-02 2020-11-24 Idac Holdings, Inc. Group-based beam management
CN110214460B (zh) * 2017-03-20 2021-01-29 华为技术有限公司 通信方法及其设备
CN111436101B (zh) * 2019-01-11 2024-06-04 华为技术有限公司 一种通信方法及装置
US20210314818A1 (en) * 2020-03-20 2021-10-07 Verizon Patent And Licensing Inc. Systems and methods for instructing a user equipment to utilize a fifth generation (5g) network instead of a wireless network
US11382131B2 (en) * 2020-05-05 2022-07-05 Telefonaktiebolaget Lm Ericsson (Publ) Data signaling for high frequency networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090099511A (ko) * 2006-10-30 2009-09-22 엘지전자 주식회사 무선통신 시스템에서 단말이 스케줄링 채널을 모니터링하기 위한 수신 레벨을 천이하기 위한 방법
KR20100114912A (ko) * 2008-02-01 2010-10-26 리서치 인 모션 리미티드 제어 신호 관리 시스템 및 방법
US20130003633A1 (en) * 2005-12-22 2013-01-03 Electronics And Telecommunications Research Institute Method and apparatus for discontinuous transmission/reception operation for reducing power consumption in cellular system
WO2014088295A1 (en) * 2012-12-03 2014-06-12 Lg Electronics Inc. Method and apparatus for supporting control plane and user plane in wireless communication system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098146A1 (en) * 2009-02-27 2010-09-02 Panasonic Corporation Method for a communication node with a plurality of communication interfaces to notify dynamic path setup and associated apparatus thereof
US9693299B2 (en) * 2009-11-30 2017-06-27 Nokia Technology Oy Method and apparatus for power saving operations in wireless network elements
US8654691B2 (en) * 2010-11-15 2014-02-18 Blackberry Limited Managing wireless communications
US9883441B2 (en) * 2011-11-10 2018-01-30 Nokia Technologies Oy Method and apparatus to route packet flows over two transport radios
US9735939B2 (en) * 2011-11-11 2017-08-15 Telefonaktiebolaget Lm Ericsson (Publ) Network node, user equipment and methods therein for transmitting and receiving control information
US20140119292A1 (en) * 2012-10-26 2014-05-01 Qualcomm Incorporated Systems and methods for samog bearer management
CN103067982B (zh) 2012-12-14 2015-09-09 华为技术有限公司 一种数据传输方法及设备
CN105027664B (zh) 2013-01-03 2018-11-02 英特尔公司 在使用无线局域网的无线通信系统中的分组数据连接
WO2014165832A1 (en) 2013-04-04 2014-10-09 Interdigital Patent Holdings, Inc. Methods for 3gpp wlan interworking for improved wlan usage through offload
US20150092540A1 (en) * 2013-09-30 2015-04-02 Broadcom Corporation System and Method for Traffic Offload
US9906992B1 (en) * 2017-04-04 2018-02-27 Verizon Patent And Licensing Inc. PDN management between LTE and WiFi

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130003633A1 (en) * 2005-12-22 2013-01-03 Electronics And Telecommunications Research Institute Method and apparatus for discontinuous transmission/reception operation for reducing power consumption in cellular system
KR20090099511A (ko) * 2006-10-30 2009-09-22 엘지전자 주식회사 무선통신 시스템에서 단말이 스케줄링 채널을 모니터링하기 위한 수신 레벨을 천이하기 위한 방법
KR20100114912A (ko) * 2008-02-01 2010-10-26 리서치 인 모션 리미티드 제어 신호 관리 시스템 및 방법
WO2014088295A1 (en) * 2012-12-03 2014-06-12 Lg Electronics Inc. Method and apparatus for supporting control plane and user plane in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "DRX Coordination in Dual Connectivity", 3GPP TSG-RAN WG2 MEETING #87BIS, R2-144440, 26 September 2014 (2014-09-26), Shanghai, China, XP050870342, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_87bis/Docs> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023128676A1 (ko) * 2022-01-03 2023-07-06 한국전자통신연구원 민감한 트래픽을 위한 제어 채널의 송수신 방법 및 장치

Also Published As

Publication number Publication date
US20170347389A1 (en) 2017-11-30
US10334636B2 (en) 2019-06-25
US20170339725A1 (en) 2017-11-23
WO2016064142A1 (ko) 2016-04-28

Similar Documents

Publication Publication Date Title
CN109923915B (zh) 用于接收下行链路信号的方法和用户设备
WO2016064141A1 (ko) 무선 통신 시스템에서 연결된 상태의 단말을 위하여 개선된 drx 방식을 구성하는 방법 및 장치
WO2018151534A1 (ko) 페이징을 릴레이하는 방법 및 릴레이 사용자기기, 및 페이징 수신 방법 및 리모트 사용자기기
WO2017026781A1 (ko) 단말이 scptm에 대한 pdcch 모니터링을 수행하는 방법 및 장치
WO2017078299A1 (en) Method for handling of drx timers for multiple repetition transmission in wireless communication system and a device therefor
WO2015170866A1 (en) Method and apparatus for configuring transmission of d2d control information in wireless communication system
WO2016178552A1 (en) Method and apparatus for performing sidelink transmission based on contention based scheduling request in wireless communication system
WO2015170871A1 (en) Method and apparatus for indicating d2d resource pool in wireless communication system
WO2011133004A2 (ko) 디바이스간의 직접 통신
WO2017026806A1 (en) Method and apparatus for notifying si update, eab update and pws message in wireless communication system
WO2016163733A1 (en) Method and apparatus for transmitting relay request indication in wireless communication system
WO2016175631A1 (en) Method and apparatus for configuring random access channel in short tti or contention based uplink transmission in wireless communication system
WO2015147615A1 (en) Method and apparatus for prioritizing d2d transmission and d2d reception in wireless communication system
WO2016167615A1 (en) Method and apparatus for performing extended drx operation based on uplink indication in wireless communication system
WO2016163834A1 (en) Method and apparatus for configuring criteria for relay configuration in wireless communication system
WO2015142132A1 (en) Method and apparatus for indicating d2d related information in wireless communication system
WO2013089524A1 (ko) 무선 통신 시스템에서 페이징 메시지 송수신 방법 및 이를 위한 장치
WO2015190750A1 (en) Method and apparatus for indicating usage of mbsfn area in wireless communication system
WO2009107968A2 (en) Method for supporting coexistence in a mobile station
WO2015147605A1 (en) Method and apparatus for performing d2d operation in wireless communication system
WO2016167616A1 (en) Method and apparatus for operating at cell not supporting extended drx in wireless communication system
WO2015137731A1 (en) Method and apparatus for indicating skipping of access class barring in wireless communication system
WO2015174781A1 (en) As-nas interaction method for d2d communication and apparatus for the same in wireless communication system
WO2016163735A1 (en) Method and apparatus for transmitting relay support indication in wireless communication system
WO2015170901A1 (ko) 무선 통신 시스템에서 무선 인터페이스를 기반으로 하는 셀간 동기화 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15851654

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15520022

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15851654

Country of ref document: EP

Kind code of ref document: A1