WO2016063775A1 - たばこ原料の製造方法 - Google Patents
たばこ原料の製造方法 Download PDFInfo
- Publication number
- WO2016063775A1 WO2016063775A1 PCT/JP2015/079053 JP2015079053W WO2016063775A1 WO 2016063775 A1 WO2016063775 A1 WO 2016063775A1 JP 2015079053 W JP2015079053 W JP 2015079053W WO 2016063775 A1 WO2016063775 A1 WO 2016063775A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solvent
- raw material
- tobacco raw
- closed space
- capture
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/18—Treatment of tobacco products or tobacco substitutes
- A24B15/24—Treatment of tobacco products or tobacco substitutes by extraction; Tobacco extracts
- A24B15/241—Extraction of specific substances
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/18—Treatment of tobacco products or tobacco substitutes
- A24B15/24—Treatment of tobacco products or tobacco substitutes by extraction; Tobacco extracts
- A24B15/26—Use of organic solvents for extraction
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B13/00—Tobacco for pipes, for cigars, e.g. cigar inserts, or for cigarettes; Chewing tobacco; Snuff
Definitions
- This invention relates to the manufacturing method of the tobacco raw material containing a flavor component.
- a technique for containing a flavor ingredient for example, alkaloid containing a nicotine ingredient
- a technique for utilizing a tobacco raw material itself as a flavor source, or extracting a flavor ingredient from a tobacco raw material to obtain a flavor source Techniques for supporting a substrate are known.
- the first feature is a method for producing a tobacco raw material containing a flavor component, wherein the tobacco raw material subjected to alkali treatment is heated in a closed space, and the flavor component released as a gas phase from the tobacco raw material is Step A to be taken out of the closed space; and outside the closed space, the first flavoring component released as a gas phase in Step A is brought into contact with a first solvent that is a liquid substance at room temperature, thereby The step B for capturing the flavor component in the step, and after the step A, the second solvent is supplied to the tobacco raw material in the closed space, and is normally released as a liquid phase from the tobacco raw material to the second solvent.
- step C the component is taken out together with the second solvent, and after step B and step C, the first solvent that has captured the flavor component in step B is the closed space in step A. And summarized in that and a step D to be added to the tobacco material after releasing the flavor and taste components to the outside.
- the second feature is that, in the first feature, the step D includes, after the step B and the step C, the first solvent that has captured the flavor component in the step B in the closed space.
- the gist is that it is a step of adding to the tobacco raw material after releasing the flavor component out of the closed space in the step A.
- the third feature is summarized in that, in the first feature or the second feature, the step C is repeated at least twice before the step D.
- the fourth feature is that, in the third feature, when n is an integer equal to or greater than 1, the solvent A is used as the second solvent in the n-th step C, and the n-th step C includes the first
- the gist is that a solvent B different from the solvent A is used as the two solvents.
- the fifth feature is summarized in that, in the third feature or the fourth feature, the step C is repeated at least twice using the second solvents having different temperatures.
- the sixth feature is summarized in that, in the fifth feature, the step C includes a step of bubbling while adding CO 2 gas to the second solvent having the lowest temperature among different temperatures. .
- the seventh feature is that, in the fifth feature or the sixth feature, the step C includes a step of bubbling while adding CO 2 gas to the second solvent having a temperature of 20 ° C. or less. To do.
- the step C takes out the normal component out of the closed space using water having a first temperature as the second solvent. And using the water having a second temperature lower than the first temperature as the second solvent and bubbling while adding CO 2 gas to the water having the second temperature, And a step of taking it out of the closed space.
- the step A includes a step of subjecting the tobacco source to a water treatment.
- a tenth feature is characterized in that, in the ninth feature, in step A, the amount of water in the tobacco source before heating the tobacco source is 30% by weight or more by the hydration treatment. .
- the eleventh feature is summarized in any one of the first to tenth features, wherein the step A includes a step of adding a non-aqueous solvent to the tobacco raw material.
- the twelfth feature is summarized in that, in the eleventh feature, the amount of the non-aqueous solvent is 10% by weight or more based on the tobacco raw material.
- the thirteenth feature is summarized in that, in the eleventh feature or the twelfth feature, the step A includes a step of adding water to the tobacco raw material in addition to the non-aqueous solvent.
- the fourteenth feature is summarized as any one of the first to thirteenth features, wherein the temperature of the first solvent is 10 ° C. or higher and 40 ° C. or lower.
- the volume of the closed space referred to in the first feature is preferably not significantly different from the volume of the tobacco raw material from the viewpoint of reducing the loss of the tobacco raw material by reducing the inner surface of the closed space. . Moreover, it is preferable that the volume of the closed space referred to in the first feature is not extremely different from the volume of the tobacco raw material from the viewpoint of efficient cleaning.
- the shape of the closed space referred to in the first feature preferably does not include an extremely elongated portion from the viewpoint of reducing the loss of the tobacco raw material by reducing the inner surface of the closed space. In addition, it is preferable that the shape of the closed space mentioned in the first feature does not include an extremely long and narrow portion from the viewpoint of efficient cleaning.
- the volume of the closed space is preferably 3 to 50 times the volume of the tobacco raw material.
- the lengths of the longest portions in the X direction, the Y direction, and the Z direction, which are directions that intersect each other at 90 degrees in the closed space are X, Y, and Z, respectively.
- L is preferably 10 times or less of S.
- the area where the tobacco material contacts the inner surface of the closed space is reduced, and the closed space is closed. It should be noted that the tobacco raw material loss is reduced because the tobacco raw material that adheres to the inner surface of the space also decreases.
- FIG. 1 is a diagram illustrating an example of a manufacturing apparatus according to the first embodiment.
- FIG. 2 is a diagram illustrating an example of the manufacturing apparatus according to the first embodiment.
- FIG. 3 is a diagram for explaining an application example of the flavor component.
- FIG. 4 is a flowchart showing the manufacturing method according to the first embodiment.
- FIG. 5 is a diagram for explaining the first experiment.
- FIG. 6 is a diagram for explaining the first experiment.
- FIG. 7 is a diagram for explaining the first experiment.
- FIG. 8 is a diagram for explaining the second experiment.
- FIG. 9 is a diagram for explaining the second experiment.
- FIG. 10 is a diagram for explaining the third experiment.
- FIG. 11 is a diagram for explaining the third experiment.
- FIG. 12 is a diagram for explaining the fourth experiment.
- FIG. 13 is a diagram for explaining the fourth experiment.
- FIG.1 and FIG.2 is a figure which shows an example of the manufacturing apparatus which concerns on 1st Embodiment.
- the processing apparatus 10 includes a container 11 and a sprayer 12.
- the container 11 accommodates the tobacco raw material 50.
- the container 11 is comprised by the member (for example, SUS; Steel Used Stainless) which has heat resistance and pressure resistance, for example.
- the container 11 preferably constitutes a closed space.
- the “closed space” is a space for flavor components (for example, nicotine components) contained in the tobacco raw material 50 in normal handling (processing operation, transportation, storage, etc.) to prevent solid foreign matters from entering the space. It is a space where movement to the outside is suppressed. As a result, the tobacco raw material is kept hygienic, and there is no need to transfer the tobacco raw material, thereby reducing the loss of the tobacco raw material.
- step S30 capturing process
- step S60 cleaning
- the nicotine component is an example of a flavor component that contributes to tobacco flavor, and is used as an indicator of the flavor component in the embodiment.
- the sprayer 12 applies an alkaline substance to the tobacco raw material 50.
- the alkaline substance for example, a basic substance such as an aqueous potassium carbonate solution is preferably used.
- the sprayer 12 applies an alkaline substance to the tobacco raw material 50 until the pH of the tobacco raw material 50 becomes 8.0 or more. More preferably, the sprayer 12 preferably applies an alkaline substance to the tobacco raw material 50 until the pH of the tobacco raw material 50 is in the range of 8.9 to 9.7. Further, in order to efficiently release the flavor component from the tobacco raw material 50 as a gas phase, the moisture content of the tobacco raw material 50 after spraying the alkaline substance is preferably 10% by weight or more, and more preferably 30% by weight or more. Is more preferable. Although the upper limit of the moisture content of the tobacco raw material 50 is not specifically limited, For example, in order to heat the tobacco raw material 50 efficiently, it is preferable to set it as 50 weight% or less.
- the initial content of the flavor component (here, nicotine component) contained in the tobacco raw material 50 is 2.0% by weight or more when the total weight of the tobacco raw material 50 is 100% by weight in the dry state. Preferably there is. More preferably, the initial content of the flavor component (here, nicotine component) is preferably 4.0% by weight or more.
- a tobacco genus raw material such as Nicotiana tabacum or Nicotiana rustica can be used.
- Nicotiana tabacam for example, varieties such as Burley or yellow can be used.
- tobacco raw materials other than Burley species and yellow species may be used.
- the tobacco raw material 50 may be composed of tobacco raw materials in chopped or granular form.
- the particle size of the step or powder is preferably 0.5 mm to 1.18 mm.
- the capture device 20 includes a container 21, a pipe 22, a discharge portion 23, and a pipe 24.
- the container 21 accommodates the capture solvent 70 (that is, the first solvent).
- the container 21 is made of, for example, a member (for example, glass or stainless steel (SUS)) that has resistance to a trapping solvent and volatile flavor components / volatile impurities. It is preferable that the container 21 constitutes a space having airtightness that can suppress the movement of air to the outside of the space.
- the temperature of the capture solvent 70 is, for example, room temperature.
- the lower limit of the normal temperature is, for example, a temperature at which the capture solvent 70 does not solidify, preferably 10 ° C.
- the upper limit of normal temperature is 40 degrees C or less, for example.
- An arbitrary acid such as malic acid or citric acid may be added to the capture solvent 70 in order to prevent re-volatilization of the flavor component captured by the capture solvent 70.
- a solvent such as an aqueous citric acid solution may be added to the capture solvent 70 in order to increase the capture efficiency of the flavor component. That is, the capture solvent 70 may be composed of a plurality of types of solvents.
- the initial pH of the capture solvent 70 is preferably lower than the pH of the tobacco raw material 50 after the alkali treatment.
- the pipe 22 guides the release component 61 released from the tobacco raw material 50 as a gas phase by heating the tobacco raw material 50 to the trapping solvent 70.
- the release component 61 includes at least a nicotine component that is an index of the flavor component. Since the tobacco raw material 50 is alkali-treated, the release component 61 may contain ammonium ions depending on the time (processing time) that has elapsed since the start of the step of capturing the flavor component. The release component 61 may contain TSNA depending on the time (processing time) that has elapsed since the start of the capture process.
- the discharge part 23 is provided at the tip of the pipe 22 and is immersed in the capture solvent 70.
- the discharge portion 23 has a plurality of openings 23A.
- the release component 61 guided by the pipe 22 is released into the capture solvent 70 as a foam-like release component 62 from the plurality of openings 23A.
- the pipe 24 guides the remaining component 63 not captured by the capture solvent 70 to the outside of the container 21.
- the release component 62 is a component released as a gas phase by heating the tobacco raw material 50, the temperature of the trapping solvent 70 may be increased by the release component 62. Therefore, the capture device 20 may have a function of cooling the capture solvent 70 in order to maintain the temperature of the capture solvent 70 at room temperature.
- the capture device 20 may have a Raschig ring to increase the contact area of the release component 62 with the capture solvent 70.
- FIG. 3 is a diagram for explaining an application example of the flavor component.
- the flavor component is given to a component of a luxury item (for example, a flavor source of a flavor suction tool).
- the flavor suction device 100 includes a holder 110, a carbon heat source 120, a flavor source 130, and a filter 140.
- the holder 110 is, for example, a paper tube having a cylindrical shape.
- the carbon heat source 120 generates heat for heating the flavor source 130.
- the flavor source 130 is a substance that generates a flavor, and is an example of a flavor source base material to which a flavor component is imparted.
- the filter 140 suppresses the contamination material from being guided to the inlet side.
- the flavor suction tool 100 has been described as an application example of the flavor component, but the embodiment is not limited thereto.
- the flavor component may be applied to other suction devices such as an electronic cigarette aerosol source (so-called E-ligid).
- a flavor component may be provided to flavor source base materials, such as a gum, a tablet, a film, and a candy.
- FIG. 4 is a flowchart showing the manufacturing method according to the first embodiment.
- an alkaline substance is applied to the tobacco raw material 50 using the processing apparatus 10 described above.
- the alkaline substance for example, a basic substance such as an aqueous potassium carbonate solution can be used.
- the initial content of the flavor component (here, nicotine component) contained in the tobacco raw material 50 is 2.0% by weight or more when the total weight of the tobacco raw material 50 is 100% by weight in the dry state. Preferably there is. More preferably, the initial content of the flavor component (here, nicotine component) is preferably 4.0% by weight or more.
- the pH of the tobacco raw material 50 after the alkali treatment is preferably 8.0 or more. More preferably, the pH of the tobacco raw material 50 after the alkali treatment is preferably in the range of 8.9 to 9.7.
- step S20 the tobacco raw material 50 subjected to alkali treatment is heated in a closed space (in the above-described container 11 in the embodiment), and a flavor component released from the tobacco raw material 50 as a gas phase. Is taken out of the closed space.
- the tobacco raw material 50 can be heated together with the container 11 in a state where the tobacco raw material 50 is accommodated in the container 11 of the processing apparatus 10.
- the pipe 22 of the capturing device 20 is attached to the container 11.
- the heating temperature of the tobacco raw material 50 is in the range of 80 ° C. or more and less than 150 ° C.
- the timing at which a sufficient flavor component is released from the tobacco raw material 50 can be advanced.
- the timing at which TSNA is released from the tobacco raw material 50 can be delayed.
- a treatment for subjecting the tobacco raw material 50 to a hydration treatment may be performed before the tobacco raw material 50 is heated.
- a hydration process may be performed in step S10, and may be performed before heating the tobacco raw material 50 in step S20.
- the hydration treatment may be performed while heating the tobacco raw material 50 in step S20 in order to compensate for moisture that decreases with the heating of the tobacco raw material 50 in step S20.
- the hydration treatment may be performed intermittently at least once.
- the water treatment may be performed continuously over a predetermined period.
- the moisture content of the tobacco raw material 50 before heating the tobacco raw material 50 is preferably 30% by weight or more.
- the upper limit of the moisture content of the tobacco raw material 50 is not specifically limited, For example, in order to heat the tobacco raw material 50 efficiently, it is preferable to set it as 50 weight% or less.
- step S20 heat treatment preferably includes a step of adding a non-aqueous solvent to the tobacco raw material 50.
- the amount of the non-aqueous solvent is preferably 10 wt% or more and 50 wt% or less with respect to the tobacco raw material 50.
- the non-aqueous solvent may be a solvent other than water.
- non-aqueous solvent examples include glycerin, propylene glycol, ethanol, alcohol, acetonitrile, hexane and the like.
- water may be added to the tobacco raw material 50 in addition to the non-aqueous solvent.
- the timing of adding the non-aqueous solvent to the tobacco raw material 50 may be the timing until step S20 (heat treatment) is completed.
- the timing at which the non-aqueous solvent is added to the tobacco raw material 50 may be the timing between step S10 (alkali treatment) and step S20 (heat treatment).
- the timing which adds a non-aqueous solvent to the tobacco raw material 50 may be the timing in the middle of step S20 (heating process).
- the nonaqueous solvent is preferably a solvent that does not substantially vaporize at the heating temperature in step S20 (heat treatment). Thereby, in Step S30 to be described later, it is possible to prevent the non-aqueous solvent and the contaminants dissolved in the non-aqueous solvent from being mixed into the capture solvent.
- the tobacco raw material 50 may be subjected to a hydration treatment while the tobacco raw material 50 is being heated. It is preferable that the moisture content of the tobacco raw material 50 is maintained at 10% or more and 50% or less by the hydration treatment.
- the tobacco raw material 50 may be continuously hydrated. The amount of water added is preferably adjusted so that the moisture content of the tobacco raw material 50 is 10% or more and 50% or less. Furthermore, you may add the non-aqueous solvent mentioned above to the tobacco raw material 50 with a hydration process.
- step S20 it is preferable to subject the tobacco material 50 to aeration.
- the amount of flavor components contained in the release component 61 released from the tobacco-treated tobacco material 50 into the gas phase can be increased.
- the aeration treatment for example, saturated water vapor at 80 ° C. is brought into contact with the tobacco raw material 50. Since the aeration time in the aeration treatment varies depending on the apparatus for treating the tobacco raw material 50 and the amount of the tobacco raw material 50, it cannot be specified in general. For example, when the tobacco raw material 50 is 500 g, the aeration time is Within 300 minutes.
- the total aeration amount in the aeration treatment also varies depending on the apparatus for treating the tobacco raw material 50 and the amount of the tobacco raw material 50, and thus cannot be generally specified. For example, when the tobacco raw material 50 is 500 g, 10 L / It is about g.
- the air used in the ventilation process may not be saturated water vapor.
- the moisture content of the air used in the aeration treatment does not particularly require humidification of the tobacco raw material 50, for example, so that the moisture contained in the tobacco raw material 50 to which the heat treatment and the aeration treatment are applied falls within a range of less than 50%. May be adjusted.
- the gas used in the aeration process is not limited to air, and may be an inert gas such as nitrogen or argon.
- step S30 (that is, step B2), the flavor components released as a vapor phase in step S20 in the capture device 20 outside the closed space (in the embodiment, outside the container 11 described above), that is, in the embodiment, at room temperature.
- the capturing solvent 70 first solvent which is a liquid substance
- step S20 and step S30 are shown as separate processes in FIG. 4, but it should be noted that steps S20 and S30 are processes performed in parallel. Note that parallel means that the period in which step S30 is performed overlaps with the period in which step S20 is performed, and step S20 and step S30 do not have to start and end at the same time.
- the pressure in the container 11 of the processing apparatus 10 is equal to or lower than the normal pressure.
- the upper limit of the pressure in the container 11 of the processing apparatus 10 is +0.1 MPa or less in gauge pressure.
- the inside of the container 11 of the processing apparatus 10 may be a reduced pressure atmosphere.
- the capture solvent 70 for example, glycerin, water, or ethanol can be used as described above.
- the temperature of the trapping solvent 70 is room temperature.
- the lower limit of the normal temperature is, for example, a temperature at which the capture solvent 70 does not solidify, preferably 10 ° C.
- the upper limit of normal temperature is 40 degrees C or less, for example.
- step S40 in order to increase the concentration of the flavor component contained in the capture solution, the trapping solvent 70 that captures the flavor component is subjected to a vacuum concentration process, a heat concentration process, or a salting-out process.
- a vacuum concentration process a heat concentration process, or a salting-out process.
- the process of step S40 is not essential and may be omitted.
- the vacuum concentration treatment is performed in a space having airtightness that can suppress the movement of air to the outside of the space. Thereby, there is little air contact and it is not necessary to raise the trapping solvent 70 to a high temperature, so there is little concern about component changes. Therefore, the use of vacuum concentration increases the types of capture solvents that can be used.
- the concentration of the flavor component can be increased as compared with the vacuum concentration treatment, but since the flavor component in the liquid solvent phase / water phase is half, the yield of the flavor component is poor. Moreover, since coexistence of a hydrophobic substance (MCT etc.) is assumed to be essential, salting-out may not occur depending on the ratio of the capture solvent, water and flavor components.
- MCT hydrophobic substance
- step S50 the tobacco raw material 50 after releasing the flavor component in step S20 is prepared.
- the tobacco raw material 50 is still maintained in the closed space (in the embodiment, in the container 11 described above).
- step S60 that is, step C
- a cleaning solvent (second solvent) is supplied to the tobacco raw material 50 in the closed space (in the above-described container 11 in the embodiment), and the tobacco raw material 50 is supplied as a liquid phase to the cleaning solvent.
- the released normal components are taken out of the closed space (in the embodiment, out of the container 11 described above) together with the cleaning solvent.
- step S30 after the flavor component contained in the tobacco raw material 50 is extracted, in step S60 (cleaning process), the residue after the flavor component is extracted is the cleaning solvent. It is washed by. Thereby, the normal component (contaminating substance) remaining in the tobacco raw material 50 (residue) is removed.
- step S60 cleaning process
- the manufacturing method according to the embodiment can easily remove unnecessary contaminants from the tobacco raw material 50 (residue).
- step S60 cleaning process
- step S30 capturing process
- the cleaning solvent is supplied from the sprayer 12 to the tobacco raw material 50 (residue). And spraying, and then cleaning is performed by rotating and shaking the container 11 for about 10 to 60 minutes.
- the weight ratio of the tobacco raw material 50 (residue) to the washing solvent (washing solvent / residue) can be 10 to 20 when the tobacco raw material 50 (residue) is 1.
- an aqueous solvent can be mentioned, and specific examples thereof include pure water and ultrapure water, and can include city water. Further, the temperature of the cleaning solvent may be from room temperature (for example, 20 ° C. ⁇ 15 ° C.) to 70 ° C.
- a solution obtained by bubbling CO 2 gas may be used, and specific examples include an aqueous solution containing carbonated water or supersaturated CO 2 gas.
- an aqueous solvent such as water may be used in which ozone is bubbled.
- Step S60 may be repeated at least twice.
- n is an integer of 1 or more
- the solvent A is used as the cleaning solvent in the n-th step
- the solvent B different from the solvent A is used as the cleaning solvent in the n + 1-th step. May be.
- step S60 (cleaning process) is repeated three times or more
- three or more types of solvents may be used as the cleaning solvent.
- step S60 (cleaning process) is repeated three or more times, the same solvent may be used in two or more steps S60 (cleaning process).
- cleaning may be performed first with water and then with an aqueous solvent in which CO 2 gas is bubbled. Each washing may be performed a plurality of times. When washing is performed using such a procedure or an aqueous solvent, contaminants are efficiently removed.
- step S60 may be repeated at least twice using second solvents having different temperatures.
- step S60 cleaning process
- Step S60 cleaning process
- Basic substances such as aqueous potassium solution) can be efficiently neutralized and removed.
- step S60 includes a step of taking out normal components out of the closed space using water having a first temperature (for example, 40 to 80 ° C.) as the second solvent (hereinafter referred to as the first cleaning step).
- a first temperature for example, 40 to 80 ° C.
- the second solvent By using water having a second temperature lower than the first temperature (for example, 10 to 15 ° C.) as the second solvent and performing bubbling while adding CO 2 gas to the water having the second temperature, And a step of taking out the outside of the closed space (hereinafter referred to as a second cleaning step). Accordingly, by performing the cleaning process using water having a relatively high first temperature, water-soluble impurities are removed, and bubbling is performed while adding CO 2 gas to water having a relatively low second temperature.
- the alkaline substance (basic substance such as an aqueous potassium carbonate solution) imparted to the tobacco raw material 50 is efficiently neutralized and removed while suppressing the decrease in the solubility of the CO 2 gas. it can.
- the second cleaning step is preferably performed after the first cleaning step.
- the first cleaning step may be performed twice or more.
- the second cleaning step may be performed twice or more.
- washing solvent in addition to the above aqueous solvent, a non-aqueous solvent such as propylene glycol, glycerin, ethanol, MCT), hexane, methanol, acetonitrile can also be used. Moreover, these can also be mixed and used for said aqueous solvent.
- a non-aqueous solvent such as propylene glycol, glycerin, ethanol, MCT), hexane, methanol, acetonitrile.
- an acidic solvent may be used as a cleaning solvent.
- an acidic solvent the solvent containing carboxylic acids, such as an acetic acid and malic acid, is mentioned, for example.
- drying conditions include a mode in which air is circulated at a temperature of about 110 to 125 ° C. (ventilation amount: 10 to 20 L / min / 250 g-min) for about 100 to 150 minutes.
- step S60 cleaning process
- the types of contaminant components having high affinity with the cleaning solvent can be made different by properly using the type of cleaning solvent used in each cleaning process. And various kinds of contaminating components can be removed.
- step S60 cleaning process
- step S70 backing process
- step S70 in the closed space (in the embodiment, in the container 11 described above), the trapping solvent (first solvent) that captured the flavor component in step S30 is removed from the closed space in step S20.
- the capture solvent (first solvent) added to the tobacco raw material 50 (washed tobacco raw material residue) may be neutralized.
- the tobacco raw material containing the flavor component may be neutralized after being added to the tobacco raw material 50 (washed tobacco raw material residue) to the capture solvent (first solvent).
- the tobacco raw material containing the savory ingredients is produced by the processing described above. However, as described above, the process of step S40 (concentration process) may be omitted.
- step S70 may be performed outside the closed space (in the embodiment, outside the container 11 described above).
- the residue (washed tobacco raw material residue) obtained through the cleaning process in step S60 (cleaning process) may be pulverized and granulated.
- the pulverization process is, for example, a process of pulverizing the cleaned tobacco raw material residue, adding a binder to the pulverized residue, and mixing the pulverized residue and the binder.
- the granule molding process is, for example, a process of kneading and extruding a mixture of pulverized residue and binder and then sizing and drying the mixture while stirring the mixture with a mixer.
- the granule forming process may be performed simultaneously with step S70 (backing process).
- step S20 heating process
- step S30 capture process
- the flavor component contained in the tobacco raw material is captured by the capture solvent
- the capture solvent capturing the flavor component is added to the tobacco raw material.
- step S70 extraction process
- impurities contained in the tobacco raw material such as ammonia can be selectively reduced by a simple and low-cost process.
- step S60 washing
- contaminant components such as TSNA are further selectively reduced.
- step S20 heating process
- step S60 cleaning process
- step S30 capture processing
- the first condition is that the pH of the capture solution after the pH of the capture solution containing the capture solvent 70 and the release component 62 has decreased by 0.2 or more from the maximum value on the time axis that has elapsed since the start of step S20.
- the time elapsed after the start of step S20 (hereinafter, processing time) is a condition for reaching the start timing of the stable section.
- the stable section is a section where the fluctuation amount of the pH of the capture solution falls within a predetermined range (for example, the average fluctuation amount per unit time is ⁇ 0.01 / min), and the trapping in the section is performed.
- the fluctuation range of the pH of the solution falls within a predetermined range (for example, the difference between the pH at the time when the interval starts and the pH when the second condition described later is satisfied is ⁇ 0.2).
- the start timing of the stable interval is, for example, capture This is the timing when the pH of the solution stops decreasing.
- the pH profile of the capture solution is measured in advance under the same conditions as in actual processing, and the pH of the capture solution is preferably replaced with the treatment time. That is, it is preferable that the first condition is replaced with the processing time. As a result, it is not necessary to monitor the amount of fluctuation in the pH of the capture solution in real time, and ammonium ions (NH 4 + ) can be removed from the capture solution by simple control.
- the second condition is that when the weight of the tobacco raw material 50 is 100% by weight in the dry state, the remaining amount of the flavor component (here, the nicotine component) contained in the tobacco raw material 50 reaches 0.3% by weight. It is a condition to decrease to. More preferably, the second condition is that when the weight of the tobacco raw material 50 is 100% by weight in the dry state, the remaining amount of the flavor component (here, the nicotine component) contained in the tobacco raw material 50 is 0.4. It is a condition that decreases until reaching% by weight. More preferably, the second condition is that, in a dry state, when the weight of the tobacco raw material 50 is 100% by weight, the remaining amount of the flavor component (here, the nicotine component) contained in the tobacco raw material 50 is 0.6. It is a condition that decreases until reaching% by weight.
- the profile of the remaining amount of the flavor component (here, the nicotine component) contained in the tobacco raw material 50 is measured in advance under the same conditions as those in the actual processing, and the remaining amount of the flavor component is determined by the processing. It is preferred that it be replaced by time. That is, it is preferable that the second condition is replaced with the processing time. Thereby, it is not necessary to monitor the remaining amount of the flavor component in real time, and it is possible to suppress an increase in the content of TSNA contained in the capture solvent by simple control.
- the total content of sugars contained in the tobacco raw material 50 is 10.0% by weight or less when the total weight of the tobacco raw material 50 is 100% by weight in the dry state.
- the saccharide contained in the tobacco raw material 50 is fructose, glucose, saccharose, maltose, inositol.
- step S30 in which the released component is brought into contact with the capture solvent 70 is continued until at least the first condition is satisfied.
- ammonium ions (NH 4 + ) contained in the release component are sufficiently removed from the capture solution.
- other volatile impurities specifically, acetaldehyde and pyridine
- acetaldehyde and pyridine that exhibit the same behavior as ammonium ions in the release from the tobacco raw material 50 and the extraction with the capture solvent are captured by satisfying the first condition. Removed from solution.
- step S30 in which the released component is brought into contact with the capture solvent 70 ends at least until the second condition is satisfied.
- step S20 and step S30 it is possible to sufficiently extract the flavor components while suppressing the mixing of ammonium ions (NH 4 + ) and contaminating components such as TSNA. That is, a savory component can be extracted with a simple device.
- ammonium ions NH 4 +
- contaminating components such as TSNA
- the non-volatile component contained in the tobacco raw material 50 does not move to the capture solvent, but only the component that volatilizes at about 120 ° C. can be captured by the capture solvent, the component captured by the capture solvent It can be used as an aerosol source.
- This makes it possible to deliver an aerosol containing tobacco flavor to the user while suppressing the increase of volatile contaminants such as ammonium ions, acetaldehyde, and pyridine in electronic cigarettes, and further suppresses the migration of non-volatile components to the capture solvent. Therefore, it is possible to suppress the burn of the heater that heats the aerosol source.
- electrocigarette includes a liquid aerosol source and an electric heater for heating and atomizing the aerosol source, and a non-combustion flavor inhaler or aerosol suction for delivering the aerosol to the user.
- aerosol inhaler described in Japanese Patent No. 5196673, aerosol electronic cigarette described in Japanese Patent No. 5385418, etc.
- aerosol suction for delivering the aerosol to the user.
- step S30 (capturing process) is performed until any timing from when the first condition is satisfied until the second condition is satisfied.
- the first condition is that, in a dry state, when the weight of the tobacco raw material is 100% by weight, the remaining amount of the flavor component (here, nicotine component) contained in the tobacco raw material reaches 1.7% by weight. It is a condition to decrease to.
- the second condition is that when the weight of the tobacco raw material 50 is 100% by weight in the dry state, the remaining amount of the flavor component (here, the nicotine component) contained in the tobacco raw material 50 reaches 0.3% by weight. It is a condition to decrease to. More preferably, the second condition is that when the weight of the tobacco raw material 50 is 100% by weight in the dry state, the remaining amount of the flavor component (here, the nicotine component) contained in the tobacco raw material 50 is 0.4. It is a condition that decreases until reaching% by weight. More preferably, the second condition is that, in a dry state, when the weight of the tobacco raw material 50 is 100% by weight, the remaining amount of the flavor component (here, the nicotine component) contained in the tobacco raw material 50 is 0.6. It is a condition that decreases until reaching% by weight.
- the profile of the remaining amount of the flavor component (here, the nicotine component) contained in the tobacco raw material 50 is measured in advance under the same conditions as those in the actual processing, and the remaining amount of the flavor component is determined by the processing. It is preferred that it be replaced by time. That is, it is preferable that the second condition is replaced with the processing time. Thereby, it is not necessary to monitor the remaining amount of the flavor component in real time, and it is possible to suppress an increase in the content of TSNA contained in the capture solvent by simple control.
- step S30 of bringing the released component into contact with the capture solvent 70 continues until at least the first condition is satisfied.
- step S30 is continued in a section where the rate of decrease in the remaining amount of flavor components contained in the tobacco raw material (that is, the speed at which the nicotine component volatilizes from the tobacco raw material 50) is equal to or higher than the predetermined speed.
- the taste component can be recovered.
- step S30 for bringing the released component into contact with the trapping solvent 70 ends at least until the second condition is satisfied. As a result, by terminating S30 before the amount of TSNA released increases, an increase in the TSNA content contained in the capture solution is suppressed.
- step S20 and step S30 it is possible to sufficiently extract the flavor components while suppressing the mixing of the miscellaneous components such as TSNA. That is, a savory component can be extracted with a simple device.
- the non-volatile component contained in the tobacco raw material 50 does not move to the capture solvent, but only the component that volatilizes at about 120 ° C. can be captured by the capture solvent, the component captured by the capture solvent It can be used as an aerosol source.
- This makes it possible to deliver an aerosol containing tobacco flavor to the user while suppressing the increase of volatile contaminants such as ammonium ions, acetaldehyde, and pyridine in electronic cigarettes, and further suppresses the migration of non-volatile components to the capture solvent. Therefore, it is possible to suppress the burn of the heater that heats the aerosol source.
- electrocigarette includes a liquid aerosol source and an electric heater for heating and atomizing the aerosol source, and a non-combustion flavor inhaler or aerosol suction for delivering the aerosol to the user.
- aerosol inhaler described in Japanese Patent No. 5196673, aerosol electronic cigarette described in Japanese Patent No. 5385418, etc.
- aerosol suction for delivering the aerosol to the user.
- the nicotine content (Nic. Amount) and ammonium ion content (NH 4 + amount) of Sample A to Sample C are as shown in FIG.
- the content of saccharide (fructose, glucose, saccharose, maltose, inositol) in sample A is almost zero (less than the detection limit), and the saccharide (fructose, glucose, saccharose, maltose, inositol) in sample B is almost all.
- the total content is 9.37% by weight, and the total content of saccharides (fructose, glucose, saccharose, maltose, inositol) of Sample C is 18.81% by weight.
- processing time is the time which passed after starting the heat processing (S20) of a tobacco raw material. You may think that processing time is the time which passed since the capture
- the gas used in the bubbling process is an atmosphere of about 20 ° C. and about 60% -RH.
- the stable section is a section in which the amount of fluctuation in the pH of the capture solution falls within a predetermined range (for example, the average amount of fluctuation per unit time is ⁇ 0.01 / min), and
- the range in which the fluctuation range of the pH of the capture solution in the section falls within a predetermined range for example, the difference between the pH when the section starts and the pH when the second condition described later is satisfied is ⁇ 0.2). It is.
- the saccharides fructtose, glucose, saccharose, maltose, inositol
- the volatile organic acid acetic acid / formic acid
- the increase amount of the volatile organic acid was sample C> sample B> sample A, and it was confirmed that the increase amount of a volatile organic acid is so large that the content of the saccharide contained in a tobacco raw material is high. This is considered to be because an acidic substance is generated by the decomposition of the sugar and moves to the capture solution.
- the tobacco raw material of the Burley species having a low content of saccharides contained in the tobacco raw material specifically, the total content of saccharides contained in the tobacco raw material is 10.0% by weight or less. It was confirmed that by using the tobacco raw material, it was possible to clearly determine a stable pH section indicating that the ammonium ion concentration in the capture solution was sufficiently reduced.
- the use of a Burley-type tobacco raw material having a high ammonium ion (NH 4 + ) concentration makes it easy to determine the profile accompanying a decrease in pH.
- Example A a sample of a burley tobacco material (sample A described above) was prepared, and the remaining amount of alkaloid (here, nicotine component) contained in the tobacco material in a dry state under the following conditions (hereinafter referred to as nicotine component) Nicotine concentration in the tobacco raw material), and the concentration of TSNA contained in the capture solution (hereinafter referred to as capture solution TSNA concentration).
- the measurement result of the nicotine concentration in the tobacco raw material is as shown in FIG. 8, and the measurement result of the concentration of TSNA contained in the capture solution is as shown in FIG.
- the residual amount of the nicotine component contained in the tobacco raw material is indicated by weight% when the weight of the tobacco raw material is 100% by weight in the dry state.
- the concentration of TSNA contained in the capture solution is shown in wt% when the capture solution is 100 wt%. 8 and 9, the processing time is the time that has elapsed since the start of the tobacco raw material heat treatment (S20). You may think that processing time is the time which passed since the capture processing (S30) of a nicotine component was started.
- NNK N′-Nitrosonoricotine
- NNN N′-Nitrosonatabine
- NAB Nitrosonabasine
- the gas used in the bubbling process is an atmosphere of about 20 ° C. and about 60% -RH.
- the residual amount of the nicotine component contained in the tobacco raw material is intermittently reduced.
- NNK did not change, but it was confirmed that NNN, NAT and NAB increase after a certain period of time.
- sample P to Q were prepared, and the pH of the capture solution and the concentration of alkaloid (here, nicotine component) contained in the capture solution were measured under the following conditions.
- Sample P is a sample using glycerin as a capture solvent.
- Sample Q is a sample using water as a capture solvent.
- Sample R is a sample using ethanol as a capture solvent.
- the measurement result of the pH of the capture solution is as shown in FIG.
- the measurement result of the concentration of the nicotine component contained in the capture solution is as shown in FIG.
- processing time is the time which passed since starting the heat processing (S20) of a tobacco raw material. You may think that processing time is the time which passed since the capture processing (S30) of a nicotine component was started.
- the gas used in the bubbling process is an atmosphere of about 20 ° C. and about 60% -RH.
- the temperature of the capture solvent is a set temperature of a chiller (constant temperature bath) that controls the temperature of the container that stores the capture solvent. It should be noted that the temperature of the capture solvent converges about 60 minutes after setting the container on the chiller and starting the temperature control.
- the method was performed in accordance with the German Standardization Organization DIN 10373. That is, 250 mg of tobacco raw material was collected, 7.5 mL of an 11% aqueous sodium hydroxide solution and 10 mL of hexane were added, and the mixture was extracted by shaking for 60 minutes. After extraction, the supernatant hexane phase was subjected to a gas chromatograph mass spectrometer (GC / MS), and the weight of nicotine contained in the tobacco material was quantified.
- GC / MS gas chromatograph mass spectrometer
- the weight of the tobacco raw material in the dry state is calculated by subtracting the above-described moisture content from the total weight of the tobacco raw material.
- GC analysis conditions The conditions of GC analysis used in the measurement of the nicotine component and the amount of water contained in the tobacco raw material are as shown in the following table.
- step S10 alkali processing
- step S60 cleaning processing
- the embodiment is not limited to this.
- step S20 heating process
- step S30 capturing process
- step S60 cleaning process
- step S20 heating process
- step S30 capturing process
- step S60 cleaning process
- the volume of the closed space formed by the container 11 used in step S20 (heating process) and step S60 (cleaning process) is reduced by reducing the inner surface of the closed space. From the viewpoint of reducing loss, it is preferable that there is no extreme difference with respect to the volume of the tobacco raw material. Moreover, it is preferable that the volume of the closed space is not significantly different from the volume of the tobacco raw material from the viewpoint of efficient cleaning.
- the shape of the closed space formed by the container 11 preferably does not include an extremely elongated portion from the viewpoint of reducing the loss of the tobacco raw material by reducing the inner surface of the closed space. Moreover, it is preferable that the shape of the closed space does not include an extremely elongated portion from the viewpoint of efficient cleaning.
- the volume of the closed space is preferably 3 to 50 times the volume of the tobacco raw material.
- the lengths of the longest portions in the X direction, the Y direction, and the Z direction, which are directions that intersect each other at 90 degrees in the closed space are X, Y, and Z, respectively.
- L is preferably 10 times or less of S. If the volume and shape of the closed space are as described above, the loss of the tobacco material can be reduced, and the tobacco material in Step S60 (cleaning process) with an appropriate amount of solvent while stirring the tobacco material appropriately. (Residue) can be sufficiently washed.
- the area where the tobacco material contacts the inner surface of the closed space is reduced, and the closed space is closed. It should be noted that the tobacco raw material loss is reduced because the tobacco raw material that adheres to the inner surface of the space also decreases.
- the cleaning process (step S60) is performed before the multiplying process (step S70), but the embodiment is not limited to this.
- the cleaning process (step S60) may be omitted.
- the present invention it is possible to provide a method for producing a tobacco raw material that can selectively reduce the impurities contained in the tobacco raw material by a simple and low-cost process.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Tobacco Products (AREA)
Abstract
香喫味成分を含むたばこ原料の製造方法は、アルカリ処理されたたばこ原料を閉空間内で加熱して、前記たばこ原料から気相として放出される香喫味成分を前記閉空間外へ取り出す工程Aと、前記閉空間外において、前記工程Aで気相として放出された前記香喫味成分を常温で液体の物質である第1溶媒に接触させることによって、前記第1溶媒に前記香喫味成分を捕捉させる工程Bと、前記工程Aの後に、前記閉空間内において前記たばこ原料に第2溶媒を供給し、前記たばこ原料から前記第2溶媒に液相として放出される通常成分を前記第2溶媒とともに前記閉空間外へ取り出す工程Cと、前記工程B及び前記工程Cの後に、前記工程Bで前記香喫味成分を捕捉した前記第1溶媒を、前記工程Aにおいて前記閉空間外に前記香喫味成分を放出した後のたばこ原料に添加する工程Dとを備える。
Description
本発明は、香喫味成分を含むたばこ原料の製造方法に関する。
従来、香味源に対して香喫味成分(例えば、ニコチン成分を含むアルカロイド)を含有させる技術として、たばこ原料そのものを香味源として活用する技術や、たばこ原料中から香喫味成分を抽出して香味源基材に担持させる技術が知られている。
上述の技術では、たばこ原料に含まれる夾雑成分が喫味等に悪影響を及ぼす虞があるため、たばこ原料から夾雑成分のみを選択的に分離/低減することが望ましいが、既存の技術では、煩雑なプロセスを要するため、簡便かつ低コストに実施することが困難であるという問題点があった。
第1の特徴は、香喫味成分を含むたばこ原料の製造方法であって、アルカリ処理されたたばこ原料を閉空間内で加熱して、前記たばこ原料から気相として放出される香喫味成分を前記閉空間外へ取り出す工程Aと、前記閉空間外において、前記工程Aで気相として放出された前記香喫味成分を常温で液体の物質である第1溶媒に接触させることによって、前記第1溶媒に前記香喫味成分を捕捉させる工程Bと、前記工程Aの後に、前記閉空間内において前記たばこ原料に第2溶媒を供給し、前記たばこ原料から前記第2溶媒に液相として放出される通常成分を前記第2溶媒とともに前記閉空間外へ取り出す工程Cと、前記工程B及び前記工程Cの後に、前記工程Bで前記香喫味成分を捕捉した前記第1溶媒を、前記工程Aにおいて前記閉空間外に前記香喫味成分を放出した後のたばこ原料に添加する工程Dとを備えることを要旨とする。
第2の特徴は、第1の特徴において、前記工程Dは、前記工程B及び前記工程Cの後に、前記閉空間内において、前記工程Bで前記香喫味成分を捕捉した前記第1溶媒を、前記工程Aにおいて前記閉空間外に前記香喫味成分を放出した後のたばこ原料に添加する工程であることを要旨とする。
第3の特徴は、第1の特徴又は第2の特徴において、前記工程Cは、前記工程Dの前に、少なくとも2回以上繰り返されることを要旨とする。
第4の特徴は、第3の特徴において、nが1以上の整数である場合に、n回目の工程Cにおいて、前記第2溶媒として溶媒Aが用いられ、n+1回目の工程Cにおいて、前記第2溶媒として前記溶媒Aとは異なる溶媒Bが用いられることを要旨とする。
第5の特徴は、第3の特徴又は第4の特徴において、前記工程Cは、互いに異なる温度を有する前記第2溶媒を用いて、少なくとも2回以上繰り返されることを要旨とする。
第6の特徴は、第5の特徴において、前記工程Cは、互いに異なる温度のうち、最も低い温度を有する前記第2溶媒にCO2ガスを加えながらバブリングを行う工程を含むことを要旨とする。
第7の特徴は、第5の特徴又は第6の特徴において、前記工程Cは、20℃以下の温度を有する前記第2溶媒にCO2ガスを加えながらバブリングを行う工程を含むことを要旨とする。
第8の特徴は、第1の特徴乃至第7の特徴のいずれかにおいて、前記工程Cは、前記第2溶媒として第1温度を有する水を用いて、前記通常成分を前記閉空間外へ取り出す工程と、前記第2溶媒として前記第1温度よりも低い第2温度を有する水を用いるとともに、前記第2温度を有する水にCO2ガスを加えながらバブリングを行うことによって、前記通常成分を前記閉空間外へ取り出す工程とを含むことを要旨とする。
第9の特徴は、第1の特徴乃至第8の特徴のいずれかにおいて、前記工程Aにおいて、前記たばこ源に対して加水処理を施す工程を備えることを要旨とする。
第10の特徴は、第9の特徴において、前記工程Aにおいて、前記たばこ源を加熱する前における前記たばこ源の水分量は、前記加水処理によって30重量%以上になっていることを要旨とする。
第11の特徴は、第1の特徴乃至第10の特徴のいずれかにおいて、前記工程Aは、非水溶媒を前記たばこ原料に加える工程を含むことを要旨とする。
第12の特徴は、第11の特徴において、前記非水溶媒の量は、前記たばこ原料に対して10重量%以上であることを要旨とする。
第13の特徴は、第11の特徴又は第12の特徴において、前記工程Aは、前記非水溶媒に加えて水を前記たばこ原料に加える工程を含むことを要旨とする。
第14の特徴は、第1の特徴乃至第13の特徴のいずれかにおいて、前記第1溶媒の温度は、10℃以上かつ40℃以下であることを要旨とする。
なお、第1の特徴で言及する閉空間の体積は、閉空間の内側表面を小さくすることによってたばこ原料のロスを低減する観点から、たばこ原料の体積に対して極端に差が無い方が好ましい。また、第1の特徴で言及する閉空間の体積は、効率的な洗浄の観点からも、たばこ原料の体積に対して極端に差が無い方が好ましい。第1の特徴で言及する閉空間の形状は、閉空間の内側表面を小さくすることによってたばこ原料のロスを低減する観点から、極端に細長い部分などを含まない方が好ましい。また、第1の特徴で言及する閉空間の形状は、効率的な洗浄の観点からも、極端に細長い部分などを含まない方が好ましい。例えば、閉空間の体積は、たばこ原料の体積に対して3倍以上50倍以下であることが好ましい。また、閉空間の形状については、閉空間において互いに90度に交わる方向である、X方向Y方向Z方向の最も長い部分の長さをそれぞれX、Y、Zとし、XとYとZとの間でもっとも値が離れている2つの値をLとSとにした場合(SはLよりも小さい値)、LはSの10倍以下であることが好ましい。閉空間の体積や形状が上述の通りであれば、たばこ原料のロスを低減することができるとともに、適度にたばこ原料を撹拌しながら適度な量の溶媒で、第1の特徴で言及する工程Cにおいてたばこ原料(残渣)の洗浄を十分に行うことができる。
ここで、閉空間の内側表面を小さくし、或いは、閉空間の形状を極端に細長い部分などを含まないようにすることによって、閉空間の内側表面にたばこ原料が接触する面積が減少し、閉空間の内側表面に固着するたばこ原料も減少するため、たばこ原料のロスが低減することに留意すべきである。
なお、上述した重量%は、いずれも乾燥状態における重量%であることに留意すべきである。
以下において、本発明の実施形態について説明する。なお、以下の図面の記載において、同一または類似の部分には、同一または類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率などは現実のものとは異なることに留意すべきである。
したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
[第1実施形態]
(製造装置)
以下において、第1実施形態に係る製造装置について説明する。図1及び図2は、第1実施形態に係る製造装置の一例を示す図である。
(製造装置)
以下において、第1実施形態に係る製造装置について説明する。図1及び図2は、第1実施形態に係る製造装置の一例を示す図である。
第1に、処理装置10の一例について、図1を参照しながら説明する。処理装置10は、容器11と、噴霧器12とを有する。
容器11は、たばこ原料50を収容する。容器11は、例えば、耐熱性・耐圧性を有する部材(例えば、SUS;Steel Used Stainless)によって構成される。容器11は、閉空間を構成することが好ましい。「閉空間」とは、通常の取り扱い(処理動作、運搬、保存等)において、空間内への固形の異物の混入を防ぎ、たばこ原料50に含まれる香喫味成分(例えば、ニコチン成分)の空間外側へ移動が抑制される空間である。これによって、たばこ原料が衛生的に保たれ、たばこ原料の移し替えが不要であるため、たばこ原料のロスが少なくなる。但し、後述するステップS30(捕捉処理)やステップS60(洗浄)などのように所定成分を意図的に空間外に取り出す処理は、上述した「閉空間」の定義に反しないことに留意すべきである。
なお、ニコチン成分は、たばこ香喫味に寄与する香喫味成分の一例であり、実施形態では、香喫味成分の指標として用いられていることに留意すべきである。
噴霧器12は、アルカリ物質をたばこ原料50に付与する。アルカリ物質としては、例えば、炭酸カリウム水溶液等の塩基性物質を用いることが好ましい。
ここで、噴霧器12は、たばこ原料50のpHが8.0以上となるまで、アルカリ物質をたばこ原料50に付与することが好ましい。さらに好ましくは、噴霧器12は、たばこ原料50のpHが8.9~9.7の範囲となるまで、アルカリ物質をたばこ原料50に付与することが好ましい。また、たばこ原料50から効率的に香喫味成分を気相として放出させるため、アルカリ物質噴霧後のたばこ原料50の水分量は、10重量%以上であることが好ましく、30重量%以上であることがさらに好ましい。たばこ原料50の水分量の上限は、特に限定されるものではないが、例えば、たばこ原料50を効率的に加熱するために、50重量%以下とすることが好ましい。
なお、たばこ原料50に含まれる香喫味成分(ここでは、ニコチン成分)の初期含有量は、乾燥状態において、たばこ原料50の総重量が100重量%である場合に、2.0重量%以上であることが好ましい。さらに好ましくは、香喫味成分(ここでは、ニコチン成分)の初期含有量は、4.0重量%以上であることが好ましい。
たばこ原料50としては、例えば、ニコチアナ・タバカム(Nicotiana.tabacum)やニコチアナ・ルスチカ(Nicotiana.rustica)等のタバコ属の原料を用いることができる。ニコチアナ・タバカムとしては、例えば、バーレー種又は黄色種等の品種を用いることができる。なお、たばこ原料50としては、バーレー種及び黄色種以外の種類のたばこ原料を用いてもよい。
たばこ原料50は、刻み又は粉粒体のたばこ原料によって構成されてもよい。このような場合において、刻み又は粉粒体の粒径は、0.5mm~1.18mmであることが好ましい。
第2に、捕捉装置20の一例について、図2を参照しながら説明する。捕捉装置20は、容器21と、パイプ22と、放出部分23と、パイプ24とを有する。
容器21は、捕捉溶媒70(すなわち、第1溶媒)を収容する。容器21は、例えば、捕捉溶媒及び揮発性香喫味成分・揮発性夾雑物に対して耐性を有する部材(例えば、ガラスやステンレス(SUS))によって構成される。容器21は、空間外への空気の移動を抑制可能な程度の気密性を有する空間を構成することが好ましい。
捕捉溶媒70の温度は、例えば、常温である。ここで、常温の下限は、例えば、捕捉溶媒70が凝固しない温度、好ましくは、10℃である。常温の上限は、例えば、40℃以下である。捕捉溶媒70の温度を10℃以上40℃以下とすることで、香喫味成分を捕捉した捕捉溶媒70(以下、捕捉溶液と称することもある)からの香喫味成分の揮散を抑制しつつ、アンモニウムイオンやピリジン等の揮発性夾雑成分を捕捉溶液から効率的に除去することができる。捕捉溶媒70としては、例えば、グリセリン、水又はエタノールを用いることができる。捕捉溶媒70によって捕捉された香喫味成分の再揮散を防ぐために、捕捉溶媒70に対して、リンゴ酸やクエン酸等の任意の酸が添加されてもよい。香喫味成分の捕捉効率を上昇するために、捕捉溶媒70に対して、クエン酸水溶液等の溶媒が添加されてもよい。すなわち、捕捉溶媒70は、複数種類の溶媒によって構成されていてもよい。香喫味成分の捕捉効率を上昇するために、捕捉溶媒70の初期pHは、アルカリ処理後のたばこ原料50のpHよりも低いことが好ましい。なお、捕捉溶媒70の温度を10℃以上40℃以下とするために、容器21の温度を常温よりも低い温度(例えば、5℃)に冷却してもよい。
パイプ22は、たばこ原料50の加熱によってたばこ原料50から気相として放出される放出成分61を捕捉溶媒70に導く。放出成分61は、少なくとも、香喫味成分の指標であるニコチン成分を含む。たばこ原料50にアルカリ処理されているため、放出成分61は、香喫味成分の捕捉工程を開始してから経過する時間(処理時間)によっては、アンモニウムイオンを含むこともある。放出成分61は、捕捉工程を開始してから経過する時間(処理時間)によっては、TSNAを含むこともある。
放出部分23は、パイプ22の先端に設けられており、捕捉溶媒70に浸漬される。放出部分23は、複数の開口23Aを有している。パイプ22によって導かれた放出成分61は、複数の開口23Aから泡状の放出成分62として捕捉溶媒70中に放出される。
パイプ24は、捕捉溶媒70によって捕捉されなかった残存成分63を容器21の外側に導く。
ここで、放出成分62は、たばこ原料50の加熱によって気相として放出される成分であるため、放出成分62によって捕捉溶媒70の温度が上昇する可能性がある。従って、捕捉装置20は、捕捉溶媒70の温度を常温に維持するために、捕捉溶媒70を冷却する機能を有していてもよい。
捕捉装置20は、捕捉溶媒70に対する放出成分62の接触面積を増大するために、ラシヒリングを有していてもよい。
(適用例)
以下において、たばこ原料50から抽出された香喫味成分の適用例について説明する。図3は、香喫味成分の適用例を説明するための図である。例えば、香喫味成分は、嗜好品の構成要素(例えば、香味吸引具の香味源)に付与される。
以下において、たばこ原料50から抽出された香喫味成分の適用例について説明する。図3は、香喫味成分の適用例を説明するための図である。例えば、香喫味成分は、嗜好品の構成要素(例えば、香味吸引具の香味源)に付与される。
図3に示すように、香味吸引具100は、ホルダ110と、炭素熱源120と、香味源130と、フィルタ140とを有する。
ホルダ110は、例えば、筒状形状を有する紙管である。炭素熱源120は、香味源130を加熱するための熱を発生する。香味源130は、香味を発生する物質であり、香喫味成分が付与される香味源基材の一例である。フィルタ140は、夾雑物質が吸口側に導かれることを抑制する。
ここでは、香喫味成分の適用例として、香味吸引具100について説明したが、実施形態は、これに限定されるものではない。香喫味成分は、その他の吸引具、例えば、電子シガレットのエアロゾル源(いわゆるE-liguid)に適用されてもよい。また、香喫味成分は、ガム、タブレット、フィルム、飴等の香味源基材に付与されてもよい。
(製造方法)
以下において、第1実施形態に係るたばこ原料の製造方法について説明する。図4は、第1実施形態に係る製造方法を示すフロー図である。
以下において、第1実施形態に係るたばこ原料の製造方法について説明する。図4は、第1実施形態に係る製造方法を示すフロー図である。
図4に示すように、ステップS10において、上述した処理装置10を用いて、アルカリ物質をたばこ原料50に付与する。アルカリ物質としては、例えば、炭酸カリウム水溶液等の塩基性物質を用いることができる。
なお、たばこ原料50に含まれる香喫味成分(ここでは、ニコチン成分)の初期含有量は、乾燥状態において、たばこ原料50の総重量が100重量%である場合に、2.0重量%以上であることが好ましい。さらに好ましくは、香喫味成分(ここでは、ニコチン成分)の初期含有量は、4.0重量%以上であることが好ましい。
アルカリ処理後のたばこ原料50のpHは、上述したように、8.0以上であることが好ましい。さらに好ましくは、アルカリ処理後のたばこ原料50のpHは、8.9~9.7の範囲であることが好ましい。
ステップS20(すなわち、工程A)において、アルカリ処理されたたばこ原料50を閉空間内(実施形態では、上述した容器11内)で加熱して、たばこ原料50から気相として放出される香喫味成分を閉空間外へ取り出す。例えば、加熱処理においては、処理装置10の容器11にたばこ原料50が収容された状態で、容器11とともにたばこ原料50を加熱することができる。このようなケースにおいて、捕捉装置20のパイプ22が容器11に取り付けられることは勿論である。
ここで、たばこ原料50の加熱温度は、80℃以上かつ150℃未満の範囲である。たばこ原料50の加熱温度が80℃以上であることによって、たばこ原料50から十分な香喫味成分が放出されるタイミングを早めることができる。一方で、たばこ原料50の加熱温度が150℃未満であることによって、たばこ原料50からTSNAが放出されるタイミングを遅らせることができる。
ここで、たばこ原料50を加熱する前において、たばこ原料50に対して加水処理を施す処理が行われてもよい。このような加水処理は、ステップS10で行われてもよく、ステップS20においてたばこ原料50を加熱する前に行われてもよい。或いは、加水処理は、ステップS20におけるたばこ原料50の加熱に伴って減少する水分を補うために、ステップS20においてたばこ原料50を加熱している途中で行われてよい。このような場合において、加水処理は、少なくとも1回以上、間欠的に行われてもよい。或いは、加水処理は、所定期間に亘って連続的に行われてもよい。たばこ原料50を加熱する前におけるたばこ原料50の水分量は、30重量%以上であることが好ましい。たばこ原料50の水分量の上限は、特に限定されるものではないが、例えば、たばこ原料50を効率的に加熱するために、50重量%以下とすることが好ましい。
また、ステップS20(加熱処理)は、非水溶媒をたばこ原料50に加える工程を含むことが好ましい。非水溶媒の量は、たばこ原料50に対して10重量%以上50重量%以下であることが好ましい。これによって、加熱条件下でかかる非水溶媒に可溶な夾雑物質がたばこ原料50から液相を介して非水溶媒に移行するため、後述するステップS60(洗浄処理)において夾雑物質を効率的に除去することができる。非水溶媒とは、水以外の溶媒であればよい。非水溶媒の具体的な例として、グリセリン、プロピレングリコール、エタノール、アルコール、アセトニトリル、ヘキサン等が挙げられる。ここで、非水溶媒をたばこ原料50に加える工程において、非水溶媒に加えて水をたばこ原料50に加えてもよい。
非水溶媒をたばこ原料50に添加するタイミングは、ステップS20(加熱処理)が完了するまでのタイミングであればよい。例えば、非水溶媒をたばこ原料50に添加するタイミングは、ステップS10(アルカリ処理)とステップS20(加熱処理)との間のタイミングであってもよい。或いは、非水溶媒をたばこ原料50に添加するタイミングは、ステップS20(加熱処理)の途中のタイミングであってもよい。また、非水溶媒は、ステップS20(加熱処理)における加熱温度で実質的に気化しない溶媒であることが好ましい。これによって、後述するステップS30において、かかる非水溶媒及び非水溶媒に溶解した夾雑物質が捕捉溶媒に混入することを抑制することができる。
なお、ステップS20において、たばこ原料50を加熱しているときに、たばこ原料50に対して加水処理を施してもよい。加水処理によって、たばこ原料50の水分量は、10%以上かつ50%以下に保たれることが好ましい。また、ステップ20において、たばこ原料50に対して連続的に加水してもよい。加水量は、たばこ原料50の水分量が10%以上かつ50%以下となるように調整されることが好ましい。さらには、加水処理とともに、上述した非水溶媒をたばこ原料50に加えてもよい。
また、ステップS20において、たばこ原料50に対して通気処理を施すことが好ましい。これによって、アルカリ処理されたたばこ原料50から気相に放出される放出成分61に含まれる香喫味成分量を増大させることができる。通気処理では、例えば、80℃における飽和水蒸気をたばこ原料50に接触させる。通気処理における通気時間は、たばこ原料50を処理する装置及びたばこ原料50の量によって異なるため、一概に特定することができないが、例えば、たばこ原料50が500gである場合には、通気時間は、300分以内である。通気処理における総通気量についても、たばこ原料50を処理する装置及びたばこ原料50の量によって異なるため、一概に特定することができないが、例えば、たばこ原料50が500gである場合には、10L/g程度である。
なお、通気処理で用いる空気は、飽和水蒸気でなくてもよい。通気処理で用いる空気の水分量は、特にたばこ原料50の加湿を必要とせずに、例えば、加熱処理及び通気処理が適用されているたばこ原料50に含まれる水分が50%未満の範囲に収まるように調整されてもよい。通気処理で用いる気体は、空気に限定されるものではなく、窒素、アルゴン等の不活性ガスであってもよい。
ステップS30(すなわち、工程B2)において、閉空間外(実施形態では、上述した容器11外)、すなわち、実施形態では捕捉装置20において、ステップS20で気相として放出された香喫味成分を常温で液体の物質である捕捉溶媒70(第1溶媒)に接触させることによって、捕捉溶媒70に香喫味成分を捕捉させる。なお、説明の便宜上、図4においてステップS20及びステップS30を別々な処理として記載しているが、ステップS20及びステップS30は、並列的に行われる処理であることに留意すべきである。並列的とは、ステップS30を行う期間がステップS20を行う期間と重複することを意味しており、ステップS20及びステップS30が同時に開始・終了する必要はないことに留意すべきである。
ここで、ステップS20及びステップS30において、処理装置10の容器11内の圧力は常圧以下である。詳細には、処理装置10の容器11内の圧力の上限は、ゲージ圧で+0.1MPa以下である。また、処理装置10の容器11の内部は、減圧雰囲気であってもよい。
ここで、捕捉溶媒70としては、上述したように、例えば、グリセリン、水又はエタノールを用いることができる。捕捉溶媒70の温度は、上述したように、常温である。ここで、常温の下限は、例えば、捕捉溶媒70が凝固しない温度、好ましくは、10℃である。常温の上限は、例えば、40℃以下である。
ステップS40において、捕捉溶液に含まれる香喫味成分の濃度を上昇するために、香喫味成分を捕捉する捕捉溶媒70に対して、減圧濃縮処理、加熱濃縮処理又は塩析処理が施される。但し、ステップS40(濃縮処理)の処理は必須ではなく省略されてもよいことに留意すべきである。
ここで、減圧濃縮処理は、空間外への空気の移動を抑制可能な程度の気密性を有する空間で行われることが好ましい。これによって、空気接触が少なく、捕捉溶媒70を高温にする必要がないため、成分変化の懸念が少ない。従って、減圧濃縮を用いれば、利用可能な捕捉溶媒の種類が増大する。
加熱濃縮処理では、香喫味成分の酸化などのような液の変性の懸念があるが、香味を増強する効果が得られる可能性がある。但し、減圧濃縮と比べると、利用可能な捕捉溶媒の種類が減少する。例えば、MCT(Medium Chain Triglyceride)のようなエステル構造を有する捕捉溶媒を用いることができない可能性がある。
塩析処理では、減圧濃縮処理と比べて、香喫味成分の濃度を高めることが可能であるが、液溶媒相/水相における香喫味成分が半々であるため、香喫味成分の歩留まりが悪い。また、疎水性物質(MCT等)の共存が必須であると想定されるため、捕捉溶媒、水及び香喫味成分の比率によっては、塩析が生じない可能性がある。
ステップS50において、ステップS20で香喫味成分を放出した後のたばこ原料50を準備する。ここで、たばこ原料50は、依然として閉空間内(実施形態では、上述した容器11内)に維持されていることに留意すべきである。
ステップS60(すなわち、工程C)において、閉空間内(実施形態では、上述した容器11内)においてたばこ原料50に洗浄溶媒(第2溶媒)を供給し、たばこ原料50から洗浄溶媒に液相として放出される通常成分を洗浄溶媒とともに閉空間外(実施形態では、上述した容器11外)へ取り出す。
ここで、ステップS30(捕捉処理)において、たばこ原料50中に含まれていた香喫味成分が取り出された後、ステップS60(洗浄処理)において、香喫味成分が取り出された後の残渣が洗浄溶媒により洗浄される。これにより、たばこ原料50(残渣)に残存する通常成分(夾雑物質)が除去される。実施形態に係る製造方法は、ステップS60(洗浄処理)を含むことにより、不要な夾雑物質をたばこ原料50(残渣)から簡便に除去できる。
ステップS60(洗浄処理)がステップS30(捕捉処理)に引き続いて処理装置10を用いて行われる場合には、洗浄の態様としては、例えば、噴霧器12から洗浄溶媒をたばこ原料50(残渣)に対して噴霧し、その後10~60分程度、容器11を回転及び搖動させて洗浄を行う態様を挙げることができる。
その際、たばこ原料50(残渣)と洗浄溶媒との重量比(洗浄溶媒/残渣)としては、たばこ原料50(残渣)を1とした場合に、10~20を挙げることができる。
ステップS60(洗浄処理)で用いる洗浄溶媒として、水性溶媒を挙げることができ、その具体例としては、純水や超純水でもよく、市水を挙げることができる。また、洗浄溶媒の温度としては常温(例えば、20℃±15℃)~70℃を挙げることができる。
洗浄溶媒として水性溶媒を用いる場合にはCO2ガスをバブリングしたものを用いてもよく、具体的には炭酸水や過飽和のCO2ガスを含む水溶液を挙げることができる。また、水性溶媒、例えば水には、オゾンをバブリングしたものを用いることもできる。
ステップS60(洗浄処理)は、少なくとも2回以上回繰り返されてもよい。このようなケースにおいて、nが1以上の整数である場合に、n回目の工程において、洗浄溶媒として溶媒Aが用いられ、n+1回目の工程において、洗浄溶媒として溶媒Aとは異なる溶媒Bが用いられてもよい。なお、ステップS60(洗浄処理)が3回以上繰り返される場合には、3種類以上の溶媒が洗浄溶媒として用いられてもよい。さらに、ステップS60(洗浄処理)が3回以上繰り返される場合に、2回以上のステップS60(洗浄処理)において同一の溶媒が用いられてもよい。
例えば、洗浄溶媒として水性溶媒を用いる場合には、初めに水で洗浄を行い、その後CO2ガスをバブリングした水性溶媒で洗浄を行ってもよい。それぞれの洗浄は、複数回行ってもよい。このような手順や水性溶媒を用いて洗浄を行うと、効率よく夾雑物質が除去される。
ここで、ステップS60(洗浄処理)は、互いに異なる温度を有する第2溶媒を用いて、少なくとも2回以上繰り返されてもよい。このようなケースにおいて、ステップS60(洗浄処理)は、互いに異なる温度のうち、最も低い温度を有する第2溶媒にCO2ガスを加えながらバブリングを行う工程を含んでもよい。ステップS60(洗浄処理)は、20℃以下の温度を有する第2溶媒にCO2ガスを加えながらバブリングを行う工程を含んでもよい。このように、相対的に低い温度を有する第2溶媒にCO2ガスを加えながらバブリングを行うことによって、CO2ガスの溶解度の低下を抑制しながら、たばこ原料50に付与されたアルカリ性物質(炭酸カリウム水溶液等の塩基性物質)を効率的に中和されるととともに除去することができる。
例えば、ステップS60(洗浄処理)は、第2溶媒として第1温度(例えば、40~80℃)を有する水を用いて、通常成分を閉空間外へ取り出す工程(以下、第1洗浄工程)と、第2溶媒として第1温度よりも低い第2温度(例えば、10~15℃)を有する水を用いるとともに、第2温度を有する水にCO2ガスを加えながらバブリングを行うことによって、通常成分を閉空間外へ取り出す工程(以下、第2洗浄工程)とを含んでもよい。これによって、相対的に高い第1温度を有する水を用いて洗浄処理を行うことによって、水溶性の夾雑物を取り除くとともに、相対的に低い第2温度を有する水にCO2ガスを加えながらバブリングを行うことによって、CO2ガスの溶解度の低下を抑制しながら、たばこ原料50に付与されたアルカリ性物質(炭酸カリウム水溶液等の塩基性物質)を効率的に中和されるととともに除去することができる。第2洗浄工程は、第1洗浄工程の後に行われることが好ましい。第1洗浄工程は2回以上行われてもよい。第2洗浄工程は2回以上行われてもよい。
洗浄溶媒としては、上記の水性溶媒とは別に、プロピレングリコール、グリセリン、エタノール、MCT)、ヘキサン、メタノール、アセトニトリルのような非水溶媒を用いることもできる。また、これらを上記の水性溶媒と混合して用いることもできる。
上述したCO2ガスを用いたバブリングに代えて、洗浄溶媒として酸性溶媒を用いてもよい。酸性溶媒としては、例えば、酢酸やリンゴ酸などのカルボン酸を含む溶媒が挙げられる。
洗浄溶媒による洗浄後、残渣に対して乾燥処理が施されてもよい。乾燥条件としては110~125℃程度の温度で、空気を流通させながら(換気量10~20L/min/250g-刻)、100~150分程度行う態様を挙げることができる。
上述したように、ステップS60(洗浄処理)が複数回繰り返される場合に、各回の洗浄処理で用いる洗浄溶媒の種類を使い分けることによって、洗浄溶媒と親和性が高い夾雑成分の種類を異ならせることができ、様々な種類の夾雑成分を除去することができる。
ステップS60(洗浄処理)の洗浄処理を経て得られる残渣は、後述するステップS70(掛け戻し処理)に供される。
ステップS70(すなわち、工程D)において、閉空間内(実施形態では、上述した容器11内)において、ステップS30で香喫味成分を捕捉した捕捉溶媒(第1溶媒)を、ステップS20において閉空間外に香喫味成分を放出した後のたばこ原料50(洗浄済みたばこ原料残渣)に添加する。ステップS70において、たばこ原料50(洗浄済みたばこ原料残渣)に添加する捕捉溶媒(第1溶媒)は中和されてもよい。或いは、ステップS70において、たばこ原料50(洗浄済みたばこ原料残渣)に捕捉溶媒(第1溶媒)に添加した後に、香喫味成分を含むたばこ原料を中和してもよい。
以上説明した処理によって、香喫味成分を含むたばこ原料が製造される。但し、上述したように、ステップS40(濃縮処理)の処理は省略されてもよい。
ここで、ステップS70(掛け戻し処理)は、閉空間外(実施形態では、上述した容器11外)で行われてもよい。ステップS70(掛け戻し処理)が行われる前において、ステップS60(洗浄処理)の洗浄処理を経て得られる残渣(洗浄済みたばこ原料残渣)の粉砕処理及び顆粒成形処理が行われてもよい。粉砕処理は、例えば、洗浄済みたばこ原料残渣を粉砕するとともに、粉砕された残渣にバインダーを添加し、粉砕された残渣及びバインダーを混合する処理である。顆粒成形処理は、例えば、粉砕された残渣及びバインダーの混合物を混練して押し出した後に、ミキサーによって混合物を撹拌しながら整粒・乾燥する処理である。顆粒成形処理は、ステップS70(掛け戻し処理)と同時に行われてもよい。
なお、上述した重量%は、いずれも乾燥状態における重量%であることに留意すべきである。
(作用及び効果)
第1実施形態では、ステップS20(加熱処理)及びステップS30(捕捉処理)によって、たばこ原料に含まれる香喫味成分を捕捉溶媒に捕捉させ、香喫味成分を捕捉した捕捉溶媒をたばこ原料に添加するステップS70(掛け戻し処理)を行うことで、簡便かつ低コストなプロセスによって、例えばアンモニアなどのたばこ原料に含まれる夾雑物を選択的に低減することができる。
第1実施形態では、ステップS20(加熱処理)及びステップS30(捕捉処理)によって、たばこ原料に含まれる香喫味成分を捕捉溶媒に捕捉させ、香喫味成分を捕捉した捕捉溶媒をたばこ原料に添加するステップS70(掛け戻し処理)を行うことで、簡便かつ低コストなプロセスによって、例えばアンモニアなどのたばこ原料に含まれる夾雑物を選択的に低減することができる。
さらに、第1実施形態では、香喫味成分を捕捉した捕捉溶媒をたばこ原料に添加するステップS70(掛け戻し処理)の前に、たばこ原料を洗浄するステップS60(洗浄処理)が行われる。これによって、例えばTSNA等の夾雑成分がさらに選択的に低減される。
また、第1実施形態では、少なくともステップS20(加熱処理)及びステップS60(洗浄処理)は、たばこ原料が閉空間内(実施形態では、上述した容器11内)に維持された状態のまま行われるため、たばこ原料が衛生的に保たれ、たばこ原料に含まれる香喫味成分の揮散を抑制し、たばこ原料の移し替えが不要であるため、たばこ原料のロスが少なくなる。
[変更例1]
以下において、第1実施形態の変更例1について説明する。以下においては、第1実施形態に対する差異について主として説明する。
以下において、第1実施形態の変更例1について説明する。以下においては、第1実施形態に対する差異について主として説明する。
変更例1において、上述したステップS30(捕捉処理)は、第1条件が満たされてから第2条件が満たされるまでのいずれかのタイミングまで行われる。
第1条件は、ステップS20を開始してから経過する時間軸上において、捕捉溶媒70及び放出成分62を含む捕捉溶液のpHが極大値から0.2以上減少した後において、捕捉溶液のpHの変動量が所定範囲内に収まる安定区間が存在する場合に、ステップS20を開始してから経過する時間(以下、処理時間)が安定区間の開始タイミングに達する条件である。
ここで、安定区間とは、捕捉溶液のpHの変動量が所定範囲(例えば、単位時間当たりの平均変動量が±0.01/分)内に収まる区間であって、かつ、当該区間における捕捉溶液のpHの変動幅が所定範囲(例えば、当該区間が開始した時点におけるpHと、後述する第2条件を満たした時点におけるpHとの差が±0.2)内に収まる区間である。なお、捕捉溶液のpHが極大値から0.2以上減少した後において、捕捉溶液のpHの変動量が所定範囲内に収まる安定区間が存在するケースにおいて、安定区間の開始タイミングは、例えば、捕捉溶液のpHが下げ止まるタイミングである。
ここで、捕捉溶液のpHのプロファイルは、実際の処理における条件と同じ条件で予め測定されており、捕捉溶液のpHは、処理時間で置き換えられていることが好ましい。すなわち、第1条件は、処理時間で置き換えられていることが好ましい。これによって、リアルタイムで捕捉溶液のpHの変動量をモニタリングする必要がなく、簡易な制御によって、アンモニウムイオン(NH4
+)を捕捉溶液から除去することが可能である。
第2条件は、乾燥状態において、たばこ原料50の重量が100重量%である場合に、たばこ原料50に含まれる香喫味成分(ここでは、ニコチン成分)の残存量が0.3重量%に達するまで減少する条件である。さらに好ましくは、第2条件は、乾燥状態において、たばこ原料50の重量が100重量%である場合に、たばこ原料50に含まれる香喫味成分(ここでは、ニコチン成分)の残存量が0.4重量%に達するまで減少する条件である。さらに好ましくは、第2条件は、乾燥状態において、たばこ原料50の重量が100重量%である場合に、たばこ原料50に含まれる香喫味成分(ここでは、ニコチン成分)の残存量が0.6重量%に達するまで減少する条件である。
ここで、たばこ原料50に含まれる香喫味成分(ここでは、ニコチン成分)の残存量のプロファイルは、実際の処理における条件と同じ条件で予め測定されており、香喫味成分の残存量は、処理時間で置き換えられていることが好ましい。すなわち、第2条件は、処理時間で置き換えられていることが好ましい。これによって、リアルタイムで香喫味成分の残存量をモニタリングする必要がなく、簡易な制御によって、捕捉溶媒に含まれるTSNAの含有量の増大を抑制することが可能である。
変更例1においては、たばこ原料50に含まれる糖類の含有量の合計は、乾燥状態において、たばこ原料50の総重量が100重量%である場合に、10.0重量%以下である。たばこ原料50に含まれる糖類とは、フルクトース・グルコース・サッカロース・マルトース・イノシトールである。これによって、捕捉溶液中のアンモニウムイオン濃度が十分に低減されたことを示すpHの安定区間を明瞭に見極めることができる。
(作用及び効果)
変更例1では、放出成分を捕捉溶媒70に接触させるステップS30は、少なくとも、第1条件が満たされるまで継続する。これによって、放出成分に含まれるアンモニウムイオン(NH4 +)が捕捉溶液から十分に除去される。また、たばこ原料50からの放出及び捕捉溶媒での抽出において、アンモニウムイオンと同様の挙動を示す他の揮発性夾雑成分(具体的には、アセトアルデヒド、ピリジン)も、第1条件を満たすことによって捕捉溶液から除去される。
変更例1では、放出成分を捕捉溶媒70に接触させるステップS30は、少なくとも、第1条件が満たされるまで継続する。これによって、放出成分に含まれるアンモニウムイオン(NH4 +)が捕捉溶液から十分に除去される。また、たばこ原料50からの放出及び捕捉溶媒での抽出において、アンモニウムイオンと同様の挙動を示す他の揮発性夾雑成分(具体的には、アセトアルデヒド、ピリジン)も、第1条件を満たすことによって捕捉溶液から除去される。
一方で、放出成分を捕捉溶媒70に接触させるステップS30は、少なくとも、第2条件が満たされるまでに終了する。これによって、TSNAの放出量が増大する前にS30を終了することによって、捕捉溶液に含まれるTSNAの含有量の増大が抑制される。
このように、ステップS20及びステップS30等の簡易な処理によって、アンモニウムイオン(NH4
+)及びTSNA等の夾雑成分の混入を抑制しながらも、香喫味成分を十分に抽出することができる。すなわち、簡易な装置によって香喫味成分を抽出することができる。
変更例1では、たばこ原料50に含まれる不揮発性成分が捕捉溶媒に移行せずに、120℃程度で揮発する成分のみを捕捉溶媒に捕捉できるため、捕捉溶媒によって捕捉される成分を電子シガレットのエアロゾル源として用いることができる。これによって、電子シガレットにおいてアンモニウムイオンやアセトアルデヒド、ピリジンといった揮発性夾雑成分の増大を抑制しながらたばこ香味を含むエアロゾルをユーザに送達することができ、さらに、捕捉溶媒への不揮発性成分の移行が抑制されているため、エアロゾル源を加熱するヒータの焦げ等を抑制することができる。なお、ここでの「電子シガレット」という用語は、液体のエアロゾル源及びエアロゾル源を加熱霧化するための電気ヒータを具備し、ユーザへエアロゾルを送達するための非燃焼型香味吸引器又はエアロゾル吸引器(例えば、特許第5196673号記載のエアロゾル吸引器や特許第5385418号記載のエアロゾル電子たばこ等)を指す。
[変更例2]
以下において、第1実施形態の変更例2について説明する。以下においては、第1実施形態に対する差異について主として説明する。
以下において、第1実施形態の変更例2について説明する。以下においては、第1実施形態に対する差異について主として説明する。
変更例2において、上述したステップS30(捕捉処理)は、第1条件が満たされてから第2条件が満たされるまでのいずれかのタイミングまで行われる。
第1条件は、乾燥状態において、前記たばこ原料の重量が100重量%である場合に、前記たばこ原料に含まれる香喫味成分(ここでは、ニコチン成分)の残存量が1.7重量%に達するまで減少する条件である。
第2条件は、乾燥状態において、たばこ原料50の重量が100重量%である場合に、たばこ原料50に含まれる香喫味成分(ここでは、ニコチン成分)の残存量が0.3重量%に達するまで減少する条件である。さらに好ましくは、第2条件は、乾燥状態において、たばこ原料50の重量が100重量%である場合に、たばこ原料50に含まれる香喫味成分(ここでは、ニコチン成分)の残存量が0.4重量%に達するまで減少する条件である。さらに好ましくは、第2条件は、乾燥状態において、たばこ原料50の重量が100重量%である場合に、たばこ原料50に含まれる香喫味成分(ここでは、ニコチン成分)の残存量が0.6重量%に達するまで減少する条件である。
ここで、たばこ原料50に含まれる香喫味成分(ここでは、ニコチン成分)の残存量のプロファイルは、実際の処理における条件と同じ条件で予め測定されており、香喫味成分の残存量は、処理時間で置き換えられていることが好ましい。すなわち、第2条件は、処理時間で置き換えられていることが好ましい。これによって、リアルタイムで香喫味成分の残存量をモニタリングする必要がなく、簡易な制御によって、捕捉溶媒に含まれるTSNAの含有量の増大を抑制することが可能である。
(作用及び効果)
変更例2では、放出成分を捕捉溶媒70に接触させるステップS30は、少なくとも、第1条件が満たされるまで継続する。これによって、たばこ原料に含まれる香喫味成分の残存量の減少速度(すなわち、たばこ原料50からニコチン成分が揮発する速度)が所定速度以上である区間においてステップS30を継続するため、効率的に香喫味成分を回収することができる。一方で、放出成分を捕捉溶媒70に接触させるステップS30は、少なくとも、第2条件が満たされるまでに終了する。これによって、TSNAの放出量が増大する前にS30を終了することによって、捕捉溶液に含まれるTSNAの含有量の増大が抑制される。
変更例2では、放出成分を捕捉溶媒70に接触させるステップS30は、少なくとも、第1条件が満たされるまで継続する。これによって、たばこ原料に含まれる香喫味成分の残存量の減少速度(すなわち、たばこ原料50からニコチン成分が揮発する速度)が所定速度以上である区間においてステップS30を継続するため、効率的に香喫味成分を回収することができる。一方で、放出成分を捕捉溶媒70に接触させるステップS30は、少なくとも、第2条件が満たされるまでに終了する。これによって、TSNAの放出量が増大する前にS30を終了することによって、捕捉溶液に含まれるTSNAの含有量の増大が抑制される。
このように、ステップS20及びステップS30等の簡易な処理によって、TSNA等の夾雑成分の混入を抑制しながらも、香喫味成分を十分に抽出することができる。すなわち、簡易な装置によって香喫味成分を抽出することができる。
変更例2では、たばこ原料50に含まれる不揮発性成分が捕捉溶媒に移行せずに、120℃程度で揮発する成分のみを捕捉溶媒に捕捉できるため、捕捉溶媒によって捕捉される成分を電子シガレットのエアロゾル源として用いることができる。これによって、電子シガレットにおいてアンモニウムイオンやアセトアルデヒド、ピリジンといった揮発性夾雑成分の増大を抑制しながらたばこ香味を含むエアロゾルをユーザに送達することができ、さらに、捕捉溶媒への不揮発性成分の移行が抑制されているため、エアロゾル源を加熱するヒータの焦げ等を抑制することができる。なお、ここでの「電子シガレット」という用語は、液体のエアロゾル源及びエアロゾル源を加熱霧化するための電気ヒータを具備し、ユーザへエアロゾルを送達するための非燃焼型香味吸引器又はエアロゾル吸引器(例えば、特許第5196673号記載のエアロゾル吸引器や特許第5385418号記載のエアロゾル電子たばこ等)を指す。
[実験結果]
(第1実験)
第1実験では、図5に示すサンプル(サンプルA~サンプルC)を準備して、以下の条件下において、捕捉溶液のpH及び捕捉溶液に含まれるアンモニウムイオン(NH4 +)を測定した。
(第1実験)
第1実験では、図5に示すサンプル(サンプルA~サンプルC)を準備して、以下の条件下において、捕捉溶液のpH及び捕捉溶液に含まれるアンモニウムイオン(NH4 +)を測定した。
乾燥状態において、サンプルA~サンプルCのニコチン含有量(Nic.量)及びアンモニウムイオンの含有量(NH4
+量)は、図5に示す通りである。なお、サンプルAの糖類(フルクトース・グルコース・サッカロース・マルトース・イノシトール)の含有量は、いずれも殆どゼロ(検出限界未満)であり、サンプルBの糖類(フルクトース・グルコース・サッカロース・マルトース・イノシトール)の含有量の合計は、9.37重量%であり、サンプルCの糖類(フルクトース・グルコース・サッカロース・マルトース・イノシトール)の含有量の合計は、18.81重量%である。また、捕捉溶液のpHの測定結果は、図6に示す通りであり、捕捉溶液に含まれるアンモニウムイオン(NH4
+)の測定結果は、図7に示す通りである。図6及び図7において、処理時間は、たばこ原料の加熱処理(S20)を開始してから経過した時間である。処理時間は、香喫味成分(以下においては、ニコチン成分)の捕捉処理(S30)を開始してから経過した時間であると考えてもよい。
-実験条件-
・たばこ原料の加熱温度:120℃
・アルカリ処理後のたばこ原料のpH:9.6
・アルカリ処理後のたばこ原料の初期水分量:39%±2%
・捕捉溶媒の種類:グリセリン
・捕捉溶媒の温度:20℃
・捕捉溶媒の量:61g
・バブリング処理(通気処理及び捕捉処理)時の通気流量:15L/min
・たばこ原料の加熱温度:120℃
・アルカリ処理後のたばこ原料のpH:9.6
・アルカリ処理後のたばこ原料の初期水分量:39%±2%
・捕捉溶媒の種類:グリセリン
・捕捉溶媒の温度:20℃
・捕捉溶媒の量:61g
・バブリング処理(通気処理及び捕捉処理)時の通気流量:15L/min
なお、バブリング処理(通気処理)で用いる気体は、約20℃、約60%-RHの大気である。
サンプルAについては、図6に示すように、捕捉溶液のpHのプロファイルにおいて、捕捉溶液のpHが極大値から0.2以上減少した後において、捕捉溶液のpHの変動量が所定範囲内に収まる安定区間が存在することが確認された。図7に示すように、安定区間が開始するタイミング(例えば、処理時間=40min)において、捕捉溶液に含まれるアンモニウムイオン(NH4
+)の濃度が十分に低減されていることが確認された。
これに対して、サンプルBについては、図6に示すように、捕捉溶液のpHのプロファイルにおいて、捕捉溶液のpHが極大値から0.2以上減少する区間が存在しないことが確認された。サンプルCについては、図6に示すように、捕捉溶液のpHのプロファイルにおいて、捕捉溶液のpHが断続的に低減し、上述した安定区間が存在しないことが確認された。
なお、安定区間とは、上述したように、捕捉溶液のpHの変動量が所定範囲(例えば、単位時間当たりの平均変動量が±0.01/分)内に収まる区間であって、かつ、当該区間における捕捉溶液のpHの変動幅が所定範囲(例えば、当該区間が開始した時点におけるpHと、後述する第2条件を満たした時点におけるpHとの差が±0.2)内に収まる区間である。
ここで、加熱処理及び捕捉処理によって、たばこ原料に含まれる糖類(フルクトース・グルコース・サッカロース・マルトース・イノシトール)が減少し、揮発性の有機酸(酢酸・ギ酸)が増加することが確認された。また、揮発性有機酸の増加量は、サンプルC>サンプルB>サンプルAであり、たばこ原料に含まれる糖類の含有量が高いサンプルほど揮発性有機酸の増加量が大きいことが確認された。これは、糖の分解によって酸性物質が生成され、捕捉溶液に移行するためであると考えられる。言い換えると、サンプルAのように、たばこ原料に含まれる糖類の含有量が低いバーレー種のたばこ原料、詳細には、たばこ原料に含まれる糖類の含有量の合計が10.0重量%以下であるたばこ原料を用いることによって、捕捉溶液中のアンモニウムイオン濃度が十分に低減されたことを示すpHの安定区間を明瞭に見極めることができることが確認された。また、アンモニウムイオン(NH4
+)の濃度が高いバーレー種のたばこ原料を敢えて用いることによって、pHの減少を伴うプロファイルの見極めが容易である。さらには、アンモニウムイオン(NH4
+)の低減処理によって、アンモニウムイオン(NH4
+)と同様の放出・回収の挙動を示す揮発性夾雑成分(具体的には、アセトアルデヒド、ピリジン)も同時に低減されるため、揮発性夾雑成分(具体的には、アセトアルデヒド、ピリジン)の除去が容易である。
このような実験結果から、サンプルAのように、捕捉溶液のpHのプロファイルにおいて、捕捉溶液のpHが極大値から0.2以上減少した後において、捕捉溶液のpHの変動量が所定範囲内に収まる安定区間が存在する場合に、処理時間が安定区間の開始タイミングを超えると、アンモニウムイオン(NH4
+)の濃度が十分に低減されていることが確認された。すなわち、第1条件は、処理時間が安定区間の開始タイミングに達することであることが好ましいことが確認された。
(第2実験)
第2実験では、バーレー種のたばこ原料のサンプル(上述したサンプルA)を準備して、以下の条件下において、乾燥状態におけるたばこ原料に含まれるアルカロイド(ここでは、ニコチン成分)の残存量(以下、たばこ原料中ニコチン濃度)、捕捉溶液に含まれるTSNAの濃度(以下、捕捉溶液TSNA濃度)を測定した。
第2実験では、バーレー種のたばこ原料のサンプル(上述したサンプルA)を準備して、以下の条件下において、乾燥状態におけるたばこ原料に含まれるアルカロイド(ここでは、ニコチン成分)の残存量(以下、たばこ原料中ニコチン濃度)、捕捉溶液に含まれるTSNAの濃度(以下、捕捉溶液TSNA濃度)を測定した。
たばこ原料中ニコチン濃度の測定結果は、図8に示す通りであり、捕捉溶液に含まれるTSNAの濃度の測定結果は、図9に示す通りである。たばこ原料に含まれるニコチン成分の残存量は、乾燥状態において、たばこ原料の重量が100重量%である場合における重量%で示されている。捕捉溶液に含まれるTSNAの濃度は、捕捉溶液が100重量%である場合における重量%で示されている。図8及び図9において、処理時間は、たばこ原料の加熱処理(S20)を開始してから経過した時間である。処理時間は、ニコチン成分の捕捉処理(S30)を開始してから経過した時間であると考えてもよい。
なお、TSNAとして4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone(以下、NNK)、N′-Nitrosonornicotine(以下、NNN)、N′-Nitrosoanatabine(以下、NAT)及びN′-Nitrosoanabasine(以下、NAB)の4種類について、これらの濃度を測定した。
-実験条件-
・たばこ原料の加熱温度:120℃
・アルカリ処理後のたばこ原料のpH:9.6
・アルカリ処理後のたばこ原料の初期水分量:39%±2%
・捕捉溶媒の種類:グリセリン
・捕捉溶媒の温度:20℃
・捕捉溶媒の量:60g
・バブリング処理(通気処理及び捕捉処理)時の通気流量:15L/min
・たばこ原料の加熱温度:120℃
・アルカリ処理後のたばこ原料のpH:9.6
・アルカリ処理後のたばこ原料の初期水分量:39%±2%
・捕捉溶媒の種類:グリセリン
・捕捉溶媒の温度:20℃
・捕捉溶媒の量:60g
・バブリング処理(通気処理及び捕捉処理)時の通気流量:15L/min
なお、バブリング処理(通気処理)で用いる気体は、約20℃、約60%-RHの大気である。
図8に示すように、たばこ原料中ニコチン濃度のプロファイルにおいて、たばこ原料に含まれるニコチン成分の残存量は断続的に減少する。図9に示すように、TSNA濃度のプロファイルにおいて、NNKは変化しないが、NNN、NAT及びNABは、一定期間が経過した後に増大することが確認された。
詳細には、たばこ原料中ニコチン濃度が0.3重量%に達するタイミング(本実験結果では、300分)を処理時間が超えると、たばこ原料に含まれるニコチン成分の残存量の減少速度(すなわち、たばこ原料からニコチン成分が揮発する速度)が低下しており、ニコチン成分の回収率の上昇が見込めないことが確認された。また、たばこ原料中ニコチン濃度が0.4重量%に達するタイミング(本実験結果では、180分)を処理時間が超えると、NABが緩やかに増大することが確認された。さらに、たばこ原料中ニコチン濃度が0.6重量%に達するタイミング(本実験結果では、120分)を処理時間が超えると、NNN及びNATが著しく増大することが確認された。
このような実験結果から、たばこ原料中ニコチン濃度が0.3重量%に達するタイミングよりも前に、加熱処理(S20)及び捕捉処理(S30)を終了することが好ましいことが確認された。すなわち、第2条件は、たばこ原料中ニコチン濃度が0.3重量%に達するまで減少することが好ましいことが確認された。たばこ原料中ニコチン濃度が0.4重量%に達するタイミングよりも前に、加熱処理(S20)及び捕捉処理(S30)を終了することがさらに好ましいことが確認された。すなわち、第2条件は、たばこ原料中ニコチン濃度が0.4重量%に達するまで減少することがさらに好ましいことが確認された。たばこ原料中ニコチン濃度が0.6重量%に達するタイミングよりも前に、加熱処理(S20)及び捕捉処理(S30)を終了することがさらに好ましいことが確認された。すなわち、第2条件は、たばこ原料中ニコチン濃度が0.6重量%に達するまで減少することがさらに好ましいことが確認された。
(第3実験)
第3実験では、サンプルP~サンプルQを準備して、以下の条件下において、捕捉溶液のpH及び捕捉溶液に含まれるアルカロイド(ここでは、ニコチン成分)の濃度を測定した。サンプルPは、捕捉溶媒としてグリセリンを用いたサンプルである。サンプルQは、捕捉溶媒として水を用いたサンプルである。サンプルRは、捕捉溶媒としてエタノールを用いたサンプルである。捕捉溶液のpHの測定結果は、図10に示す通りである。捕捉溶液に含まれるニコチン成分の濃度の測定結果は、図11に示す通りである。図10及び図11において、処理時間は、たばこ原料の加熱処理(S20)を開始してから経過した時間である。処理時間は、ニコチン成分の捕捉処理(S30)を開始してから経過した時間であると考えてもよい。
第3実験では、サンプルP~サンプルQを準備して、以下の条件下において、捕捉溶液のpH及び捕捉溶液に含まれるアルカロイド(ここでは、ニコチン成分)の濃度を測定した。サンプルPは、捕捉溶媒としてグリセリンを用いたサンプルである。サンプルQは、捕捉溶媒として水を用いたサンプルである。サンプルRは、捕捉溶媒としてエタノールを用いたサンプルである。捕捉溶液のpHの測定結果は、図10に示す通りである。捕捉溶液に含まれるニコチン成分の濃度の測定結果は、図11に示す通りである。図10及び図11において、処理時間は、たばこ原料の加熱処理(S20)を開始してから経過した時間である。処理時間は、ニコチン成分の捕捉処理(S30)を開始してから経過した時間であると考えてもよい。
-実験条件-
・たばこ原料の種類;バーレー種
・たばこ原料の加熱温度:120℃
・アルカリ処理後のたばこ原料のpH:9.6
・捕捉溶媒の温度:20℃
・捕捉溶媒の量:60g
・バブリング処理(通気処理及び捕捉処理)時の通気流量:15L/min
・たばこ原料の種類;バーレー種
・たばこ原料の加熱温度:120℃
・アルカリ処理後のたばこ原料のpH:9.6
・捕捉溶媒の温度:20℃
・捕捉溶媒の量:60g
・バブリング処理(通気処理及び捕捉処理)時の通気流量:15L/min
なお、バブリング処理(通気処理)で用いる気体は、約20℃、約60%-RHの大気である。
図10に示すように、グリセリン、水又はエタノールを捕捉溶媒として用いる場合には、安定区間における捕捉溶液のpHの絶対値が異なっているが、捕捉溶液のpHのプロファイルとしては、各捕捉溶媒の有意差は見られなかった。同様に、図11に示すように、グリセリン、水又はエタノールを捕捉溶媒として用いる場合には、捕捉溶液に含まれるニコチン成分の濃度の有意差は見られなかった。
このような実験結果から、グリセリン、水又はエタノールを捕捉溶媒として用いることができることが確認された。
(第4実験)
第4実験では、以下の条件下において、捕捉溶媒の温度を変更することによって、捕捉溶液に含まれるアンモニウムイオン及びピリジンの重量を測定した。捕捉溶液に含まれるアンモニウムイオンの重量は、図12に示す通りである。捕捉溶液に含まれるピリジンの重量は、図13に示す通りである。
第4実験では、以下の条件下において、捕捉溶媒の温度を変更することによって、捕捉溶液に含まれるアンモニウムイオン及びピリジンの重量を測定した。捕捉溶液に含まれるアンモニウムイオンの重量は、図12に示す通りである。捕捉溶液に含まれるピリジンの重量は、図13に示す通りである。
-実験条件-
・たばこ原料の種類;バーレー種
・たばこ原料の加熱温度:120℃
・アルカリ処理後のたばこ原料のpH:9.6
・捕捉溶媒の種類:グリセリン
・捕捉溶媒の量:60g
・たばこ原料の種類;バーレー種
・たばこ原料の加熱温度:120℃
・アルカリ処理後のたばこ原料のpH:9.6
・捕捉溶媒の種類:グリセリン
・捕捉溶媒の量:60g
第1に、図12に示すように、捕捉溶媒の温度が10℃以上である場合に、アンモニウムイオンが効率的に除去することができることが確認された。一方で、捕捉溶媒の温度を制御しなかった場合であっても、アンモニウムイオンを効率的に除去することができることが確認された。なお、捕捉溶液からのアルカロイド(ここでは、ニコチン成分)の揮散は、捕捉溶媒の温度が40℃以下であれば抑制される。このような観点から、捕捉溶媒の温度を10℃以上40℃以下とすることで、捕捉溶液からのニコチン成分の揮散を抑制しつつ、アンモニウムイオンを捕捉溶液から効率的に除去することができる。
第2に、図13に示すように、捕捉溶媒の温度が10℃以上である場合に、ピリジンが効率的に除去することができることが確認された。一方で、捕捉溶媒の温度を制御しなかった場合であっても、ピリジンを効率的に除去することができることが確認された。なお、捕捉溶液からのニコチン成分の揮散は、捕捉溶媒の温度が40℃以下であれば抑制される。このような観点から、捕捉溶媒の温度を10℃以上40℃以下とすることで、捕捉溶液からのニコチン成分の揮散を抑制しつつ、ピリジンを捕捉溶液から効率的に除去することができる。
なお、捕捉溶媒の温度とは、捕捉溶媒を収容する容器の温度を制御するチラー(恒温槽)の設定温度である。捕捉溶媒の温度は、チラーに容器をセットして温度制御を開始してから約60分で収束することに留意すべきである。
[測定方法]
(捕捉溶液のpHの測定方法)
捕捉溶媒を22℃の室温でコントロールされた実験室内で、室温になるまで密閉容器内で放置して温度調和した。調和後、ふたを開けて、pHメーター(METTLER TOLEDO社製:セブンイージーS20)のガラス電極を捕捉液に浸して測定を開始した。pHメーターは、あらかじめpH4.01、6.87、9.21のpHメーター校正液にて校正した。センサーからの出力変動が5秒間で0.1mV以内に安定した点を、その捕捉溶媒のpHとした。
(捕捉溶液のpHの測定方法)
捕捉溶媒を22℃の室温でコントロールされた実験室内で、室温になるまで密閉容器内で放置して温度調和した。調和後、ふたを開けて、pHメーター(METTLER TOLEDO社製:セブンイージーS20)のガラス電極を捕捉液に浸して測定を開始した。pHメーターは、あらかじめpH4.01、6.87、9.21のpHメーター校正液にて校正した。センサーからの出力変動が5秒間で0.1mV以内に安定した点を、その捕捉溶媒のpHとした。
(捕捉溶媒に含まれるNH4
+の測定方法)
捕捉溶媒を50μL採取し、0.05Nの希硫酸水溶液950μLを添加することで希釈し、イオンクロマトグラフィーで分析し、捕捉溶媒に含まれるアンモニウムイオンを定量した。
捕捉溶媒を50μL採取し、0.05Nの希硫酸水溶液950μLを添加することで希釈し、イオンクロマトグラフィーで分析し、捕捉溶媒に含まれるアンモニウムイオンを定量した。
(たばこ原料に含まれるニコチン成分の測定方法)
ドイツ標準化機構DIN 10373に準ずる方法で行った。すなわち、たばこ原料を250mg採取し、11%水酸化ナトリウム水溶液7.5mLとヘキサン10mLを加え、60分間振とう抽出した。抽出後、上澄みであるヘキサン相をガスクロマトグラフ質量分析計(GC/MS)に供し、たばこ原料に含まれるニコチン重量を定量した。
ドイツ標準化機構DIN 10373に準ずる方法で行った。すなわち、たばこ原料を250mg採取し、11%水酸化ナトリウム水溶液7.5mLとヘキサン10mLを加え、60分間振とう抽出した。抽出後、上澄みであるヘキサン相をガスクロマトグラフ質量分析計(GC/MS)に供し、たばこ原料に含まれるニコチン重量を定量した。
(たばこ原料に含まれる水分量の測定方法)
たばこ原料を250mg採取し、エタノール10mLを加え、60分間振とう抽出を行った。抽出後、抽出液を0.45μmのメンブレンフィルタでろ過し、熱伝導度検出器を備えたガスクロマトグラフ(GC/TCD)に供し、たばこ原料に含まれる水分量を定量した。
たばこ原料を250mg採取し、エタノール10mLを加え、60分間振とう抽出を行った。抽出後、抽出液を0.45μmのメンブレンフィルタでろ過し、熱伝導度検出器を備えたガスクロマトグラフ(GC/TCD)に供し、たばこ原料に含まれる水分量を定量した。
なお、乾燥状態におけるたばこ原料の重量は、上述した水分量をたばこ原料の総重量から差し引くことによって算出される。
(捕捉溶液に含まれるTSNAの測定方法)
捕捉溶液を0.5mL採取し、0.1Mの酢酸アンモニウム水溶液9.5mLを添加することで希釈し、高速液体クロマトグラフ質量分析計(LC-MS/MS)にて分析し、捕捉溶液に含まれるTSNAを定量した。
捕捉溶液を0.5mL採取し、0.1Mの酢酸アンモニウム水溶液9.5mLを添加することで希釈し、高速液体クロマトグラフ質量分析計(LC-MS/MS)にて分析し、捕捉溶液に含まれるTSNAを定量した。
(GC分析条件)
たばこ原料に含まれるニコチン成分及び水分量の測定で用いるGC分析の条件は、以下の表に示す通りである。
たばこ原料に含まれるニコチン成分及び水分量の測定で用いるGC分析の条件は、以下の表に示す通りである。
[その他の実施形態]
本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
実施形態では、ステップS10(アルカリ処理)及びステップS60(洗浄処理)において、同一の処理装置10(容器11)を用いるケースを例示した。しかしながら、実施形態はこれに限定されるものではない。例えば、予めアルカリ処理や加水処理が施されたたばこ原料を容器11に配置した上で、ステップS20(加熱処理)、ステップS30(捕捉処理)及びステップS60(洗浄処理)が行われてもよい。
実施形態では詳述していないが、ステップS20(加熱処理)及びステップS60(洗浄処理)で用いる容器11によって形成される閉空間の体積は、閉空間の内側表面を小さくすることによってたばこ原料のロスを低減する観点から、たばこ原料の体積に対して極端に差が無い方が好ましい。また、閉空間の体積は、効率的な洗浄の観点からも、たばこ原料の体積に対して極端に差が無い方が好ましい。容器11によって形成される閉空間の形状は、閉空間の内側表面を小さくすることによってたばこ原料のロスを低減する観点から、極端に細長い部分などを含まない方が好ましい。また、閉空間の形状は、効率的な洗浄の観点からも、極端に細長い部分などを含まない方が好ましい。例えば、閉空間の体積は、たばこ原料の体積に対して3倍以上50倍以下であることが好ましい。また、閉空間の形状については、閉空間において互いに90度に交わる方向である、X方向Y方向Z方向の最も長い部分の長さをそれぞれX、Y、Zとし、XとYとZとの間でもっとも値が離れている2つの値をLとSとにした場合(SはLよりも小さい値)、LはSの10倍以下であることが好ましい。閉空間の体積や形状が上述の通りであれば、たばこ原料のロスを低減することができるとともに、適度にたばこ原料を撹拌しながら適度な量の溶媒で、ステップS60(洗浄処理)においてたばこ原料(残渣)の洗浄を十分に行うことができる。
ここで、閉空間の内側表面を小さくし、或いは、閉空間の形状を極端に細長い部分などを含まないようにすることによって、閉空間の内側表面にたばこ原料が接触する面積が減少し、閉空間の内側表面に固着するたばこ原料も減少するため、たばこ原料のロスが低減することに留意すべきである。
実施形態では、掛け戻し処理(ステップS70)の前に洗浄処理(ステップS60)が行われるが、実施形態はこれに限定されるものではない。洗浄処理(ステップS60)は省略されてもよい。
本発明によれば、簡便かつ低コストなプロセスによって、たばこ原料に含まれる夾雑成分を選択的に低減することができるたばこ原料の製造方法を提供することができる。
Claims (14)
- 香喫味成分を含むたばこ原料の製造方法であって、
アルカリ処理されたたばこ原料を閉空間内で加熱して、前記たばこ原料から気相として放出される香喫味成分を前記閉空間外へ取り出す工程Aと、
前記閉空間外において、前記工程Aで気相として放出された前記香喫味成分を常温で液体の物質である第1溶媒に接触させることによって、前記第1溶媒に前記香喫味成分を捕捉させる工程Bと、
前記工程Aの後に、前記閉空間内において前記たばこ原料に第2溶媒を供給し、前記たばこ原料から前記第2溶媒に液相として放出される通常成分を前記第2溶媒とともに前記閉空間外へ取り出す工程Cと、
前記工程B及び前記工程Cの後に、前記工程Bで前記香喫味成分を捕捉した前記第1溶媒を、前記工程Aにおいて前記閉空間外に前記香喫味成分を放出した後のたばこ原料に添加する工程Dとを備えることを特徴とする製造方法。 - 前記工程Dは、前記工程B及び前記工程Cの後に、前記閉空間内において、前記工程Bで前記香喫味成分を捕捉した前記第1溶媒を、前記工程Aにおいて前記閉空間外に前記香喫味成分を放出した後のたばこ原料に添加する工程であることを特徴とする請求項1に記載の製造方法。
- 前記工程Cは、前記工程Dの前に、少なくとも2回以上繰り返されることを特徴とする請求項1又は請求項2に記載の製造方法。
- nが1以上の整数である場合に、
n回目の工程Cにおいて、前記第2溶媒として溶媒Aが用いられ、
n+1回目の工程Cにおいて、前記第2溶媒として前記溶媒Aとは異なる溶媒Bが用いられることを特徴とする請求項3に記載の製造方法。 - 前記工程Cは、互いに異なる温度を有する前記第2溶媒を用いて、少なくとも2回以上繰り返されることを特徴とする請求項3又は請求項4に記載の製造方法。
- 前記工程Cは、互いに異なる温度のうち、最も低い温度を有する前記第2溶媒にCO2ガスを加えながらバブリングを行う工程を含むことを特徴とする請求項5に記載の製造方法。
- 前記工程Cは、20℃以下の温度を有する前記第2溶媒にCO2ガスを加えながらバブリングを行う工程を含むことを特徴とする請求項5又は請求項6に記載の製造方法。
- 前記工程Cは、前記第2溶媒として第1温度を有する水を用いて、前記通常成分を前記閉空間外へ取り出す工程と、前記第2溶媒として前記第1温度よりも低い第2温度を有する水を用いるとともに、前記第2温度を有する水にCO2ガスを加えながらバブリングを行うことによって、前記通常成分を前記閉空間外へ取り出す工程とを含むことを特徴とする請求項1乃至請求項7のいずれかに記載の製造方法。
- 前記工程Aにおいて、前記たばこ源に対して加水処理を施す工程を備えることを特徴とする請求項1乃至請求項8のいずれかに記載の製造方法。
- 前記工程Aにおいて、前記たばこ源を加熱する前における前記たばこ源の水分量は、前記加水処理によって30重量%以上になっていることを特徴とする請求項9に記載の製造方法。
- 前記工程Aは、非水溶媒を前記たばこ原料に加える工程を含むことを特徴とする請求項1乃至請求項10のいずれかに記載の製造方法。
- 前記非水溶媒の量は、前記たばこ原料に対して10重量%以上であることを特徴とする請求項11に記載の製造方法。
- 前記工程Aは、前記非水溶媒に加えて水を前記たばこ原料に加える工程を含むことを特徴とする請求項11又は請求項12に記載の製造方法。
- 前記第1溶媒の温度は、10℃以上かつ40℃以下であることを特徴とする請求項1乃至請求項13のいずれかに記載の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016555187A JP6259927B2 (ja) | 2014-02-26 | 2015-10-14 | たばこ原料の製造方法 |
EP15852051.0A EP3207809B1 (en) | 2014-10-24 | 2015-10-14 | Producing method of tobacco raw materials |
US15/493,400 US10624387B2 (en) | 2014-02-26 | 2017-04-21 | Producing method of tobacco raw material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/078410 WO2015129098A1 (ja) | 2014-02-26 | 2014-10-24 | たばこ原料の製造方法 |
JPPCT/JP2014/078410 | 2014-10-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/493,400 Continuation US10624387B2 (en) | 2014-02-26 | 2017-04-21 | Producing method of tobacco raw material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016063775A1 true WO2016063775A1 (ja) | 2016-04-28 |
Family
ID=55789331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/079053 WO2016063775A1 (ja) | 2014-02-26 | 2015-10-14 | たばこ原料の製造方法 |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3207809B1 (ja) |
WO (1) | WO2016063775A1 (ja) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9549573B2 (en) | 2013-12-23 | 2017-01-24 | Pax Labs, Inc. | Vaporization device systems and methods |
WO2017183589A1 (ja) * | 2016-04-22 | 2017-10-26 | 日本たばこ産業株式会社 | 香味源の製造方法 |
USD825102S1 (en) | 2016-07-28 | 2018-08-07 | Juul Labs, Inc. | Vaporizer device with cartridge |
US10045567B2 (en) | 2013-12-23 | 2018-08-14 | Juul Labs, Inc. | Vaporization device systems and methods |
US10045568B2 (en) | 2013-12-23 | 2018-08-14 | Juul Labs, Inc. | Vaporization device systems and methods |
US10058130B2 (en) | 2013-12-23 | 2018-08-28 | Juul Labs, Inc. | Cartridge for use with a vaporizer device |
US10076139B2 (en) | 2013-12-23 | 2018-09-18 | Juul Labs, Inc. | Vaporizer apparatus |
US10104915B2 (en) | 2013-12-23 | 2018-10-23 | Juul Labs, Inc. | Securely attaching cartridges for vaporizer devices |
US10111470B2 (en) | 2013-12-23 | 2018-10-30 | Juul Labs, Inc. | Vaporizer apparatus |
USD836541S1 (en) | 2016-06-23 | 2018-12-25 | Pax Labs, Inc. | Charging device |
USD842536S1 (en) | 2016-07-28 | 2019-03-05 | Juul Labs, Inc. | Vaporizer cartridge |
US10244793B2 (en) | 2005-07-19 | 2019-04-02 | Juul Labs, Inc. | Devices for vaporization of a substance |
USD848057S1 (en) | 2016-06-23 | 2019-05-07 | Pax Labs, Inc. | Lid for a vaporizer |
US10279934B2 (en) | 2013-03-15 | 2019-05-07 | Juul Labs, Inc. | Fillable vaporizer cartridge and method of filling |
USD849996S1 (en) | 2016-06-16 | 2019-05-28 | Pax Labs, Inc. | Vaporizer cartridge |
USD851830S1 (en) | 2016-06-23 | 2019-06-18 | Pax Labs, Inc. | Combined vaporizer tamp and pick tool |
US10405582B2 (en) | 2016-03-10 | 2019-09-10 | Pax Labs, Inc. | Vaporization device with lip sensing |
US10463069B2 (en) | 2013-12-05 | 2019-11-05 | Juul Labs, Inc. | Nicotine liquid formulations for aerosol devices and methods thereof |
US10512282B2 (en) | 2014-12-05 | 2019-12-24 | Juul Labs, Inc. | Calibrated dose control |
USD887632S1 (en) | 2017-09-14 | 2020-06-16 | Pax Labs, Inc. | Vaporizer cartridge |
US10865001B2 (en) | 2016-02-11 | 2020-12-15 | Juul Labs, Inc. | Fillable vaporizer cartridge and method of filling |
US10952468B2 (en) | 2013-05-06 | 2021-03-23 | Juul Labs, Inc. | Nicotine salt formulations for aerosol devices and methods thereof |
US11478021B2 (en) | 2014-05-16 | 2022-10-25 | Juul Labs, Inc. | Systems and methods for aerosolizing a vaporizable material |
WO2023053185A1 (ja) | 2021-09-28 | 2023-04-06 | 日本たばこ産業株式会社 | 吸引具の霧化ユニットの製造方法 |
US11660403B2 (en) | 2016-09-22 | 2023-05-30 | Juul Labs, Inc. | Leak-resistant vaporizer device |
US12053024B2 (en) | 2018-11-05 | 2024-08-06 | Juul Labs, Inc. | Cartridges for vaporizer devices |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01235571A (ja) * | 1988-01-27 | 1989-09-20 | R J Reynolds Tobacco Co | タバコエキストラクトの提供方法 |
JPH0249572A (ja) * | 1988-04-21 | 1990-02-19 | R J Reynolds Tobacco Co | タバコエキストラクトの提供方法 |
JPH02238873A (ja) * | 1988-12-21 | 1990-09-21 | R J Reynolds Tobacco Co | 喫煙品用フレーバー物質 |
JPH0310667A (ja) * | 1989-05-30 | 1991-01-18 | R J Reynolds Tobacco Co | タバコ材加工方法 |
JPH057485A (ja) * | 1990-02-23 | 1993-01-19 | R J Reynolds Tobacco Co | タバコ処理方法 |
JP2872408B2 (ja) * | 1991-12-31 | 1999-03-17 | イマスコ・リミテッド | タバコの処理 |
JP2002520005A (ja) * | 1998-07-08 | 2002-07-09 | ノボザイムス アクティーゼルスカブ | タバコの処理におけるフェノール酸化酵素の利用 |
JP2006180715A (ja) * | 2004-12-24 | 2006-07-13 | Japan Tobacco Inc | タバコ固有のニトロソアミンを低減するためのタバコ抽出液の処理方法、再生タバコ材の製造方法および再生タバコ材 |
JP2011522558A (ja) * | 2008-06-13 | 2011-08-04 | ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド | タバコの処理方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2822306A (en) * | 1955-07-01 | 1958-02-04 | Plate Gmbh Dr | Aromatic and pleasant tasting de-nicotinized tobacco and method of producing same |
CN1050540A (zh) * | 1990-09-06 | 1991-04-10 | 冯世型 | 用干馏法从烟草中制取烟碱制品的工艺 |
US5235992A (en) * | 1991-06-28 | 1993-08-17 | R. J. Reynolds Tobacco Company | Processes for producing flavor substances from tobacco and smoking articles made therewith |
US5445169A (en) * | 1992-08-17 | 1995-08-29 | R. J. Reynolds Tobacco Company | Process for providing a tobacco extract |
US8887737B2 (en) * | 2005-07-29 | 2014-11-18 | Philip Morris Usa Inc. | Extraction and storage of tobacco constituents |
WO2013146952A1 (ja) * | 2012-03-30 | 2013-10-03 | 日本たばこ産業株式会社 | たばこ原料の処理方法 |
CN103589514A (zh) * | 2013-11-14 | 2014-02-19 | 上海烟草集团有限责任公司 | 一种烟草或烟草制品嗅香特征香气成分的制备方法 |
-
2015
- 2015-10-14 WO PCT/JP2015/079053 patent/WO2016063775A1/ja active Application Filing
- 2015-10-14 EP EP15852051.0A patent/EP3207809B1/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01235571A (ja) * | 1988-01-27 | 1989-09-20 | R J Reynolds Tobacco Co | タバコエキストラクトの提供方法 |
JPH0249572A (ja) * | 1988-04-21 | 1990-02-19 | R J Reynolds Tobacco Co | タバコエキストラクトの提供方法 |
JPH02238873A (ja) * | 1988-12-21 | 1990-09-21 | R J Reynolds Tobacco Co | 喫煙品用フレーバー物質 |
JPH0310667A (ja) * | 1989-05-30 | 1991-01-18 | R J Reynolds Tobacco Co | タバコ材加工方法 |
JPH057485A (ja) * | 1990-02-23 | 1993-01-19 | R J Reynolds Tobacco Co | タバコ処理方法 |
JP2872408B2 (ja) * | 1991-12-31 | 1999-03-17 | イマスコ・リミテッド | タバコの処理 |
JP2002520005A (ja) * | 1998-07-08 | 2002-07-09 | ノボザイムス アクティーゼルスカブ | タバコの処理におけるフェノール酸化酵素の利用 |
JP2006180715A (ja) * | 2004-12-24 | 2006-07-13 | Japan Tobacco Inc | タバコ固有のニトロソアミンを低減するためのタバコ抽出液の処理方法、再生タバコ材の製造方法および再生タバコ材 |
JP2011522558A (ja) * | 2008-06-13 | 2011-08-04 | ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド | タバコの処理方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3207809A4 * |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10244793B2 (en) | 2005-07-19 | 2019-04-02 | Juul Labs, Inc. | Devices for vaporization of a substance |
US10638792B2 (en) | 2013-03-15 | 2020-05-05 | Juul Labs, Inc. | Securely attaching cartridges for vaporizer devices |
US10279934B2 (en) | 2013-03-15 | 2019-05-07 | Juul Labs, Inc. | Fillable vaporizer cartridge and method of filling |
US10952468B2 (en) | 2013-05-06 | 2021-03-23 | Juul Labs, Inc. | Nicotine salt formulations for aerosol devices and methods thereof |
US11744277B2 (en) | 2013-12-05 | 2023-09-05 | Juul Labs, Inc. | Nicotine liquid formulations for aerosol devices and methods thereof |
US11510433B2 (en) | 2013-12-05 | 2022-11-29 | Juul Labs, Inc. | Nicotine liquid formulations for aerosol devices and methods thereof |
US10463069B2 (en) | 2013-12-05 | 2019-11-05 | Juul Labs, Inc. | Nicotine liquid formulations for aerosol devices and methods thereof |
US10111470B2 (en) | 2013-12-23 | 2018-10-30 | Juul Labs, Inc. | Vaporizer apparatus |
US10058124B2 (en) | 2013-12-23 | 2018-08-28 | Juul Labs, Inc. | Vaporization device systems and methods |
US10076139B2 (en) | 2013-12-23 | 2018-09-18 | Juul Labs, Inc. | Vaporizer apparatus |
US10104915B2 (en) | 2013-12-23 | 2018-10-23 | Juul Labs, Inc. | Securely attaching cartridges for vaporizer devices |
US9549573B2 (en) | 2013-12-23 | 2017-01-24 | Pax Labs, Inc. | Vaporization device systems and methods |
US10117466B2 (en) | 2013-12-23 | 2018-11-06 | Juul Labs, Inc. | Vaporization device systems and methods |
US10117465B2 (en) | 2013-12-23 | 2018-11-06 | Juul Labs, Inc. | Vaporization device systems and methods |
US11752283B2 (en) | 2013-12-23 | 2023-09-12 | Juul Labs, Inc. | Vaporization device systems and methods |
US10045567B2 (en) | 2013-12-23 | 2018-08-14 | Juul Labs, Inc. | Vaporization device systems and methods |
US10159282B2 (en) | 2013-12-23 | 2018-12-25 | Juul Labs, Inc. | Cartridge for use with a vaporizer device |
US10201190B2 (en) | 2013-12-23 | 2019-02-12 | Juul Labs, Inc. | Cartridge for use with a vaporizer device |
US10912331B2 (en) | 2013-12-23 | 2021-02-09 | Juul Labs, Inc. | Vaporization device systems and methods |
US10058129B2 (en) | 2013-12-23 | 2018-08-28 | Juul Labs, Inc. | Vaporization device systems and methods |
US10264823B2 (en) | 2013-12-23 | 2019-04-23 | Juul Labs, Inc. | Vaporization device systems and methods |
US10701975B2 (en) | 2013-12-23 | 2020-07-07 | Juul Labs, Inc. | Vaporization device systems and methods |
US10058130B2 (en) | 2013-12-23 | 2018-08-28 | Juul Labs, Inc. | Cartridge for use with a vaporizer device |
US10667560B2 (en) | 2013-12-23 | 2020-06-02 | Juul Labs, Inc. | Vaporizer apparatus |
US10045568B2 (en) | 2013-12-23 | 2018-08-14 | Juul Labs, Inc. | Vaporization device systems and methods |
US10070669B2 (en) | 2013-12-23 | 2018-09-11 | Juul Labs, Inc. | Cartridge for use with a vaporizer device |
US11478021B2 (en) | 2014-05-16 | 2022-10-25 | Juul Labs, Inc. | Systems and methods for aerosolizing a vaporizable material |
US10512282B2 (en) | 2014-12-05 | 2019-12-24 | Juul Labs, Inc. | Calibrated dose control |
US10865001B2 (en) | 2016-02-11 | 2020-12-15 | Juul Labs, Inc. | Fillable vaporizer cartridge and method of filling |
US10405582B2 (en) | 2016-03-10 | 2019-09-10 | Pax Labs, Inc. | Vaporization device with lip sensing |
US11330834B2 (en) | 2016-04-22 | 2022-05-17 | Japan Tobacco Inc. | Flavor source manufacturing method |
EP3437493A4 (en) * | 2016-04-22 | 2019-12-11 | Japan Tobacco, Inc. | PROCESS FOR THE PRODUCTION OF TASTE SOURCES |
JPWO2017183589A1 (ja) * | 2016-04-22 | 2018-12-06 | 日本たばこ産業株式会社 | 香味源の製造方法 |
WO2017183589A1 (ja) * | 2016-04-22 | 2017-10-26 | 日本たばこ産業株式会社 | 香味源の製造方法 |
USD849996S1 (en) | 2016-06-16 | 2019-05-28 | Pax Labs, Inc. | Vaporizer cartridge |
USD913583S1 (en) | 2016-06-16 | 2021-03-16 | Pax Labs, Inc. | Vaporizer device |
USD929036S1 (en) | 2016-06-16 | 2021-08-24 | Pax Labs, Inc. | Vaporizer cartridge and device assembly |
USD836541S1 (en) | 2016-06-23 | 2018-12-25 | Pax Labs, Inc. | Charging device |
USD848057S1 (en) | 2016-06-23 | 2019-05-07 | Pax Labs, Inc. | Lid for a vaporizer |
USD851830S1 (en) | 2016-06-23 | 2019-06-18 | Pax Labs, Inc. | Combined vaporizer tamp and pick tool |
USD842536S1 (en) | 2016-07-28 | 2019-03-05 | Juul Labs, Inc. | Vaporizer cartridge |
USD825102S1 (en) | 2016-07-28 | 2018-08-07 | Juul Labs, Inc. | Vaporizer device with cartridge |
US11660403B2 (en) | 2016-09-22 | 2023-05-30 | Juul Labs, Inc. | Leak-resistant vaporizer device |
USD887632S1 (en) | 2017-09-14 | 2020-06-16 | Pax Labs, Inc. | Vaporizer cartridge |
US12053024B2 (en) | 2018-11-05 | 2024-08-06 | Juul Labs, Inc. | Cartridges for vaporizer devices |
WO2023053185A1 (ja) | 2021-09-28 | 2023-04-06 | 日本たばこ産業株式会社 | 吸引具の霧化ユニットの製造方法 |
JP7560679B2 (ja) | 2021-09-28 | 2024-10-02 | 日本たばこ産業株式会社 | 吸引具の霧化ユニットの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3207809A4 (en) | 2018-07-04 |
EP3207809A1 (en) | 2017-08-23 |
EP3207809B1 (en) | 2021-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016063775A1 (ja) | たばこ原料の製造方法 | |
JP6259927B2 (ja) | たばこ原料の製造方法 | |
JP6101859B2 (ja) | 香喫味成分の抽出方法及び嗜好品の構成要素の製造方法 | |
CN105142430B (zh) | 含有香味成分的嗜好品的构成元件的制造方法及含有香味成分的嗜好品的构成元件 | |
JP6101860B2 (ja) | 香喫味成分の抽出方法及び嗜好品の構成要素の製造方法 | |
JP6727128B2 (ja) | 口腔用たばこ組成物及びその製造方法 | |
JP6419208B2 (ja) | 口腔用たばこ組成物及びその製造方法 | |
JP7342277B2 (ja) | 香味成分の抽出方法及び加工済たばこ葉の構成要素の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15852051 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016555187 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015852051 Country of ref document: EP |