WO2016061726A1 - 无人机电机驱动智能功率控制系统和方法以及无人机 - Google Patents
无人机电机驱动智能功率控制系统和方法以及无人机 Download PDFInfo
- Publication number
- WO2016061726A1 WO2016061726A1 PCT/CN2014/088914 CN2014088914W WO2016061726A1 WO 2016061726 A1 WO2016061726 A1 WO 2016061726A1 CN 2014088914 W CN2014088914 W CN 2014088914W WO 2016061726 A1 WO2016061726 A1 WO 2016061726A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- temperature
- motors
- unmanned aerial
- drone
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000012545 processing Methods 0.000 claims abstract description 40
- 238000004804 winding Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 238000003466 welding Methods 0.000 claims description 3
- 210000000617 arm Anatomy 0.000 description 9
- 239000000243 solution Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 238000011217 control strategy Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/60—Controlling or determining the temperature of the motor or of the drive
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
- H02P29/028—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D31/00—Power plant control systems; Arrangement of power plant control systems in aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U10/00—Type of UAV
- B64U10/10—Rotorcrafts
- B64U10/13—Flying platforms
- B64U10/14—Flying platforms with four distinct rotor axes, e.g. quadcopters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/19—Propulsion using electrically powered motors
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/1917—Control of temperature characterised by the use of electric means using digital means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
- H02K11/25—Devices for sensing temperature, or actuated thereby
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/024—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
- H02P29/0241—Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an overvoltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
- H02P29/032—Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/80—Arrangement of on-board electronics, e.g. avionics systems or wiring
- B64U20/87—Mounting of imaging devices, e.g. mounting of gimbals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U30/00—Means for producing lift; Empennages; Arrangements thereof
- B64U30/20—Rotors; Rotor supports
Definitions
- the invention relates to an unmanned aerial motor driven intelligent power control system and method and a drone.
- Electric motors are increasingly becoming an important part of the power of unmanned aerial vehicles. Due to the limitations of the UAV load, the motor needs to achieve the highest possible power density while ensuring absolute system reliability. High power densities often require higher current densities in the motor windings or a greater iron loss, which in turn leads to greater heat generation. High system reliability requires that the system operating temperature be as low as possible, and never exceed the safe temperature, as this can cause overheating damage or even burnout of the motor. In the past, in order to achieve one of these two purposes, it is often necessary to sacrifice the other. For example, by increasing the motor capacity to achieve system reliability, this often sacrifices power density.
- the technical problem to be solved by the present invention is to provide an unmanned aerial motor driven intelligent power control system and method with high power density and high reliability, and a drone.
- a technical solution adopted by the present invention is to provide an unmanned aerial motor-driven intelligent power control system, and the unmanned aerial motor-driven intelligent power control system includes a motor temperature reading unit and a processing unit. And a motor power output control unit for reading a temperature of at least one of the motors installed in the drone, the processing unit for comparing whether the read temperature exceeds The first specific temperature controls the motor power output control unit to dynamically adjust the maximum power allowed by each motor according to the comparison result.
- the motor temperature reading unit respectively reads the temperatures of the plurality of motors, and when at least one of the read temperatures exceeds the first At a particular temperature, the processing unit controls the motor power output control unit to correspondingly reduce a maximum power of the allowable output of the motor whose temperature exceeds a first specific temperature.
- the motor temperature reading unit reads a temperature of one of the motors, and when the read temperature exceeds the first specific temperature, the processing unit Controlling the motor power output control unit simultaneously reduces the maximum power allowed by the plurality of motors.
- the motor temperature reading unit reads temperatures of the plurality of motors when one of the read temperatures exceeds the first specific temperature
- the processing unit controls the motor power output control unit to simultaneously reduce the maximum power allowed by the plurality of motors.
- the processing unit controls the motor power output control unit to increase the maximum power allowed to be output by each motor.
- the second specific temperature is less than the first specific temperature.
- the processing unit dynamically adjusts the maximum power allowed to be output by each motor by controlling the upper limit of the current of the motor.
- the processing unit dynamically adjusts the maximum power of the allowable output of each motor by controlling the upper limit of the voltage of the motor.
- a technical solution adopted by the present invention is: a UAV motor driven intelligent power control method, the method comprising the following steps:
- the power of each motor is dynamically adjusted based on the comparison result.
- the drone has a plurality of motors, respectively reading the temperatures of the plurality of motors, and when at least one of the read temperatures exceeds the first specific temperature, correspondingly reducing the The maximum power of the allowable output of the motor at which the temperature exceeds the first specific temperature.
- the drone when the drone has a plurality of motors, when the read temperature exceeds the first specific temperature, the maximum power of the allowable outputs of the plurality of motors is simultaneously reduced.
- the motor temperature reading unit reads temperatures of the plurality of motors when one of the read temperatures exceeds the first specific temperature
- the processing unit controls the motor power output control unit to simultaneously reduce the maximum power of the allowable outputs of the plurality of motors.
- the maximum power allowed by the motor is less than the maximum power of the motor.
- the power of each motor is dynamically adjusted by controlling the upper limit of the current of the motor.
- the power of each motor is dynamically adjusted by controlling the upper limit of the voltage of the motor.
- the temperature of the at least one motor is calculated according to the temperature-resistance curve of the wire material by detecting the resistance of the winding of the at least one motor in real time.
- the temperature of the at least one motor is obtained by providing a temperature detecting device in the motor.
- a technical solution adopted by the present invention is: a drone comprising a casing, a plurality of arms connected to the casing, being disposed on the arm and used to drive the aircraft to fly And a processor, the processor is electrically connected to the power device, the power device includes at least one motor, and the drone further includes at least one temperature detecting device, configured to detect the a temperature of the motor, the processor is configured to read a temperature of the at least one motor sensed by the at least one temperature detecting device, and compare whether the read temperature exceeds a first specific temperature, and control according to a comparison result
- the motor power output control unit dynamically adjusts the maximum power that each motor allows to output.
- the drone has a plurality of motors and a plurality of temperature detecting devices, the number of the motors being the same as the number of the temperature detecting devices, and each temperature detecting device respectively sensing the temperature of each of the motors, when The processor correspondingly reduces a maximum power of the allowable output of the motor at which the temperature exceeds the first specified temperature when at least one of the temperatures read by the processor exceeds the first particular temperature.
- the drone has a plurality of motors and a temperature detecting device
- the temperature detecting device is installed in one of the motors
- the temperature detecting device senses the temperature of the motor
- the processor reads The temperature of the motor, when the read temperature exceeds the first specific temperature, the processor controls to simultaneously reduce the maximum power of the allowable outputs of the plurality of motors.
- the drone has a plurality of motors and a plurality of temperature detecting devices, the number of the motors being the same as the number of the temperature detecting devices, and each temperature detecting device respectively sensing the temperature of each of the motors, when When one of the read temperatures exceeds the first particular temperature, the processor controls to simultaneously reduce the maximum power allowed for the plurality of motors.
- the processor controls to increase the maximum power allowed to be output by each motor.
- the second specific temperature is less than the first specific temperature.
- the processor dynamically adjusts the power of each motor by controlling the current upper limit or the upper voltage limit of the motor.
- the temperature detecting device is a temperature sensor.
- the temperature detecting device can detect the resistance of the winding of the motor in real time and calculate the temperature according to the temperature-resistance curve of the wire material.
- the drone further includes a cloud platform and a load mounted on the cloud platform, wherein the cloud platform is used to fix the load, adjust the posture of the load arbitrarily, and maintain the load stably. In a certain posture.
- the load is an imaging device.
- the processor further includes at least one driver disposed in the arm and electrically connected to the at least one motor and A master controller for receiving a control signal of the processor to adjust a rotational speed of the motor.
- the power device further comprises a rotor mounted on the motor, the rotor being used to drive the drone to fly under the driving of the motor.
- the arm is formed separately from the housing, and is fixedly connected by locking or welding.
- the arm can be folded relative to the housing.
- each of the arms is provided with a flight indicator light, and the flight indicator light is used to indicate the flight state of the drone.
- the flight indicator light is flashed by a yellow light to indicate the drone; the flight indicator light is a red light flashing to indicate a low battery alarm; and the flight indicator light is a red light flashing to indicate a severe low battery alarm;
- the flight indicator light flashes alternately with red and yellow lights to indicate that the compass data is incorrect and needs to be calibrated; the flight indicator light is flashing green light to indicate safe flight.
- the flight indicator light is an LED.
- the lower end of the housing is connected with a tripod, and the tripod is fixedly connected to the lower end of the housing by a fastener.
- the processing unit of the UAV motor driving intelligent power control system of the present invention is configured to compare whether the read temperature exceeds a first specific temperature, and control the motor power output control unit to dynamically adjust each motor according to a comparison result. power. Therefore, the unmanned aerial motor driving intelligent power control system of the invention can realize the two contradictory unifications of the high power density and high reliability of the motor, and complete the intelligent motor control strategy.
- FIG. 1 is a perspective view of a drone according to an embodiment of the present invention.
- FIG. 2 is a connection frame diagram of a drone according to an embodiment of the present invention.
- 3 is a functional module of an unmanned aerial motor driven intelligent power control system according to an embodiment of the present invention.
- FIG. 4 is a flow chart of a method for controlling intelligent power control of a motor of a drone according to an embodiment of the present invention.
- the unmanned aerial motor-driven intelligent power control system 100 of the first embodiment of the present invention is disposed on a drone 200.
- the drone 200 can be used as an auxiliary device for photography, photography, monitoring, and sampling, and can be mounted on a space base (such as a rotorcraft or a fixed-wing aircraft), a water-based (such as a submarine or a ship), a roadbed (such as a motor vehicle), or Space-based (eg satellite, space station, or spacecraft) and other fields.
- a space base such as a rotorcraft or a fixed-wing aircraft
- a water-based such as a submarine or a ship
- a roadbed such as a motor vehicle
- Space-based eg satellite, space station, or spacecraft
- the drone 200 includes a pan/tilt head 201 and a load 202 mounted on the pan/tilt head 201.
- the pan/tilt head 201 is configured to implement the fixing of the load 202, adjust the posture of the load arbitrarily (for example, change the height, the inclination angle and/or the direction of the load), and stably maintain the load 202 in a determined posture. on.
- the load 202 can be an imaging device such as a camera and a video camera.
- the drone 200 further includes a hollow housing 211, four arms 212 connected to the housing 211, a power unit 213 disposed on the arm 212 for driving the aircraft to fly, and a processor 225.
- the arm 212 may have a suitable shape such as a hollow arm shape, and may communicate with the inner cavity of the housing 11.
- the processor 225 functions as a key component of the drone 200, and can perform functions such as controlling various related components.
- the power device 213 includes a first motor 2131, a second motor 2132, a third motor 2133, a fourth motor 2134, and four mounted to the first motor 2131, the second motor 2132, and the third.
- Motor 2133, rotor 2139 of fourth motor 2134 The rotor 2139 may be a two-blade, a three-blade or the like for driving the drone 200 under the driving of the first motor 2131, the second motor 2132, the third motor 2133, and the fourth motor 2134.
- the first motor 2131, the second motor 2132, the third motor 2133, and the fourth motor 2134 are all brushless motors.
- the processor 225 includes a first driver 2135 disposed in one of the arms 212 and electrically connected to the first motor 2131, and is disposed in one of the arms 212 and electrically connected to the second motor 2132. a second driver 2136, a third driver 2137 disposed in one of the arms 212 and electrically connected to the third motor 2133, one disposed in one of the arms 212 and the fourth motor 2134 is electrically connected to the fourth driver 2138 and a main controller 214.
- the first driver 2135, the second driver 2136, the third driver 2137, and the fourth driver 2138 are configured to respectively control the rotational speeds of the first motor 2131, the second motor 2132, the third motor 2133, and the fourth motor 2134.
- the first, third, third, and fourth drivers 2135, 2136, 2137, and 2138 are electrically connected to the main controller 214 for receiving the control signal of the main controller 214 to correspond to the adjustment
- the rotational speeds of the first motor 2131, the second motor 2132, the third motor 2133, and the fourth motor 2134 are described.
- the first driver 2135, the second driver 2136, the third driver 2137, and the fourth driver 2138 need not be exposed, the first driver 2135, the second driver 2136, the third driver 2137, and the fourth may be disposed in the factory.
- a driver 2138 is assigned to the arm 212.
- the housing 211 and the arm 212 have a protective effect on the first driver 2135, the second driver 2136, the third driver 2137, and the fourth driver 2138.
- the drone 200 has good strength and rigidity, and can be very Goodly adapted to transportation and storage.
- the user does not need to assemble and debug the drone 200 by himself, which can achieve the effect of “getting it ready to use”, which is convenient for the user to use, greatly reduces the requirement on the professional level of the user, and avoids the user's installation error, thereby avoiding the situation.
- the damage of the drone or the like improves the reliability of the drone 200.
- the arm 212 is integrally or fixedly connected to the housing 211.
- the integral molding of the arm 212 and the housing 211 means that the arm 212 and the housing 211 can be integrally formed by injection molding or the like.
- the arm 212 and the housing 211 can also be separately formed and fixedly connected by locking or welding.
- the locking member can be a screw or the like.
- the number of the arm 212, the driver and the motor are the same, and is not limited to four of the embodiment.
- the arm 212 and the housing 211 may also be movably connected.
- the arm 212 can be integrally rotatably coupled to the housing 211, and the arm 212 can be folded relative to the housing 211. When not in use, the arm 212 can be folded for storage and carrying. In use, the arm 212 can be deployed and secured.
- the first driver 2135, the second driver 2136, the third driver 2137, and the fourth driver 2138 may be disposed in the housing 211.
- the four arm 212 are arranged in an "X" shape or a "ten” shape and are connected to the housing 211.
- the arm 212 may be centered on the central axis of the housing 11, and the number of circumferential arms 212 uniformly distributed around the housing 211 may be adjusted as needed.
- each of the armes 212 is provided with a flight indicator light 215.
- the flight indicator light 215 can be an LED.
- the flight indicator light 215 can be set according to the indicator light 215 of the drone 200. It is convenient to know the flight status of the drone 200, for example, the yellow light flashes to indicate the drone 200; the red light flashes slowly to indicate a low battery alarm; the red light flashes to indicate a severe low battery alarm; the red and yellow lights alternate Blinking indicates that the compass data is incorrect and needs to be calibrated; a slow green light indicates safe flight.
- the lower end of the housing 211 is connected with a stand 216.
- the stand 216 can be fixedly connected to the lower end of the housing 211 by a fastener, and the fastener can be a screw or the like.
- the stand 216 is used to support the housing 211, the pan/tilt 201, the load 202, and the like.
- the drone 200 further includes four temperature detecting devices such as a first temperature detecting device 221, a second temperature detecting device 222, a third temperature detecting device 223, and a fourth temperature detecting device 224.
- the first temperature detecting device 221, the second temperature detecting device 222, the third temperature detecting device 223, and the fourth temperature detecting device 224 are temperature sensors respectively disposed on the first motor 2131.
- the second motor 2132, the third motor 2133, and the fourth motor 2134 are configured to respectively sense the temperatures of the first motor 2131, the second motor 2132, the third motor 2133, and the fourth motor 2134.
- the temperature detecting means may be provided in one of the motors, or the temperature detecting means may be provided in two or three motors.
- the drone 200 can also obtain the temperatures of the first motor 2131, the second motor 2132, the third motor 2133, and the fourth motor 2134 by other means, such as the temperature detecting device can pass real-time.
- the resistances of the windings of the first motor 2131, the second motor 2132, the third motor 2133, and the fourth motor 2134 are detected, and the temperature is calculated according to the temperature-resistance curve of the wire material.
- an unmanned aerial motor driven intelligent power control system 100 includes a motor temperature reading unit 101 , a processing unit 102 , and a motor power output control unit 103 .
- the motor temperature reading unit 101 is configured to read the temperature of the first motor 2131 collected by the first temperature detecting device 221, the temperature of the second motor 2132 collected by the second temperature detecting device 222, The temperature of the third motor 2133 collected by the third temperature detecting device 223 and the temperature of the fourth motor 2134 collected by the fourth temperature detecting device 224.
- the motor temperature reading unit 101 since four temperature detecting devices 221, 222, 223, and 224 are provided, the motor temperature reading unit 101 reads the collected contents of the four temperature detecting devices 221, 222, 223, and 224, respectively. Real-time temperatures of the motors 2131, 2132, 2133, and 2134.
- a temperature detecting means may be provided in one of the four motors 2131, 2132, 2133, and 2134, and therefore, the motor temperature reading unit 101 reads only the temperature of the one temperature detecting means.
- the motor temperature reading unit 101 reads the temperature sensed by each temperature detecting means.
- the processing unit 102 is configured to dynamically adjust the maximum power allowed to be output by each motor according to the temperature of at least one of the motors 2131, 2132, 2133, and 2134 read by the motor temperature reading unit 101. Specifically, the processing unit 102 compares the temperatures of the motors 2131, 2132, 2133, and 2134 with a first specific temperature (eg, 60 degrees Celsius, but not limited to 60 degrees Celsius) when the respective motors 2131 are read. When any one or more of the temperatures of 2132, 2133, and 2134 exceeds the first specific temperature, the processing unit 102 controls the motor power output control unit 103 to correspondingly reduce the temperature exceeding the first specific temperature. The maximum power allowed by the motor.
- a first specific temperature eg, 60 degrees Celsius, but not limited to 60 degrees Celsius
- the processing unit 102 controls the motor power output control unit 103 to decrease the The upper limit of the current of the first motor 2131, the second motor 2132, the third motor 2133, and the fourth motor 2134 is used to dynamically adjust the maximum allowable output power of each motor, such as from the original current upper limit of 0.5 amps to 0.3 amps, thereby
- the heating power of the first motor 2131, the second motor 2132, the third motor 2133, and the fourth motor 2134 is effectively controlled to ensure the safety of the motors 2131, 2132, 2133, and 2134. It can be understood that the maximum power allowed by each motor can also be dynamically adjusted by controlling the upper voltage limit of the motor.
- the processing unit 102 controls the motor power output control unit 103 to moderately increase the temperature exceeding the first specific temperature.
- the current limit of the motor such as returning to the original upper limit of 0.5 amps.
- the second specific temperature is less than the first specific temperature. In this embodiment, the second specific temperature is, but is not limited to, 40 degrees Celsius, so that the first motor 2131, the second motor 2132, and the third The motor 2133 and the fourth motor 2134 obtain a higher power density.
- the temperature detecting device when the drone 200 has a plurality of motors and a temperature detecting device, the temperature detecting device is installed in one of the motors, and the temperature detecting is performed.
- the device senses a temperature of the motor, the motor temperature reading unit 101 reads a temperature of one of the motors, and when the read temperature exceeds the first specific temperature, the processing unit 102 controls the
- the motor power output control unit 103 simultaneously reduces the maximum power that each of the motors 2131, 2132, 2133, and 2134 allows to output.
- the drone 200 has four motors and four temperature detecting devices for respectively sensing the temperatures of the plurality of motors, as long as one of the motors reaches the temperature.
- the processing unit 102 controls the motor power output control unit 103 to simultaneously reduce the maximum power allowed to be output to the motors 2131, 2132, 2133, and 2134.
- the processing unit 102 controls the motor power output control unit 103 to lower the first motor when one of the motor temperatures reaches the first specific temperature. 2131.
- the maximum power of the second motor 2132, the third motor 2133, and the fourth motor 2134 that are allowed to be output.
- first and second specific temperatures may be designed according to actual needs, and are not limited to the embodiment.
- an unmanned aerial motor driving intelligent power control method includes the following steps:
- the drone 200 includes four temperature detecting devices such as a first temperature detecting device 221, a second temperature detecting device 222, a third temperature detecting device 223, and a fourth temperature detecting device 224.
- the first temperature detecting device 221, the second temperature detecting device 222, the third temperature detecting device 223, and the fourth temperature detecting device 224 are temperature sensors respectively disposed on the first motor 2131.
- the second motor 2132, the third motor 2133, and the fourth motor 2134 are configured to respectively sense the temperatures of the first motor 2131, the second motor 2132, the third motor 2133, and the fourth motor 2134 in real time.
- the motor temperature reading unit 101 is configured to read the temperature of the first motor 2131 sensed by the first temperature detecting device 221 and the second motor sensed by the second temperature detecting device 222 in real time.
- the processing unit 102 compares the temperatures of the motors 2131, 2132, 2133, and 2134 with a first specific temperature (eg, 60 degrees Celsius, but not limited to 60 degrees Celsius).
- a first specific temperature eg, 60 degrees Celsius, but not limited to 60 degrees Celsius.
- the processing unit 102 compares the temperatures of the motors 2131, 2132, 2133, and 2134 with a first specific temperature (eg, 60 degrees Celsius, but not limited to 60 degrees Celsius) when the respective motors 2131 are read.
- a first specific temperature eg, 60 degrees Celsius, but not limited to 60 degrees Celsius
- the processing unit 102 controls the motor power output control unit 103 to correspondingly reduce the temperature exceeding the first specific temperature. The maximum power allowed by the motor.
- the processing unit 102 controls the motor power output control unit 103 to reduce the current upper limit of the first motor 2131, the second motor 2132, the third motor 2133, and the fourth motor 2134 to dynamically adjust each motor.
- the maximum allowable output power is reduced from 0.3 amps to 0.3 amps from the original current upper limit, thereby effectively controlling the heating power of the first motor 2131, the second motor 2132, the third motor 2133, and the fourth motor 2134, thereby ensuring each The safety of the motors 2131, 2132, 2133, and 2134. It can be understood that the maximum power allowed by each motor can also be dynamically adjusted by controlling the upper voltage limit of the motor.
- the temperature detecting device when the drone 200 has a plurality of motors and a temperature detecting device, the temperature detecting device is installed in one of the motors, and the temperature detecting is performed.
- the device senses a temperature of the motor, the motor temperature reading unit 101 reads a temperature of one of the motors, and when the read temperature exceeds the first specific temperature, the processing unit 102 controls the
- the motor power output control unit 103 simultaneously reduces the maximum power that each of the motors 2131, 2132, 2133, and 2134 allows to output.
- the drone 200 has four motors and four temperature detecting devices for sensing the temperature of the plurality of motors, as long as one of the motors reaches the temperature.
- the processing unit 102 controls the motor power output control unit 103 to simultaneously reduce the maximum power output to the allowable outputs of the motors 2131, 2132, 2133, and 2134.
- the processing unit 102 controls the motor power output control unit 103 to lower the first motor when one of the motor temperatures reaches the first specific temperature. 2131.
- the maximum power of the second motor 2132, the third motor 2133, and the fourth motor 2134 that are allowed to be output.
- the processing unit 102 controls the motor power output control unit 103 to moderately increase the temperature exceeding the first specific temperature.
- the current limit of the motor such as returning to the original upper limit of 0.5 amps.
- the second specific temperature is less than the first specific temperature. In this embodiment, the second specific temperature is, but is not limited to, 40 degrees Celsius, so that the first motor 2131, the second motor 2132, and the third The motor 2133 and the fourth motor 2134 obtain a higher power density.
- the processing unit of the UAV motor driving intelligent power control system of the present invention is configured to compare whether the read temperature exceeds a first specific temperature, and control the control according to the comparison result.
- the motor power output control unit dynamically adjusts the power of each motor. Therefore, the unmanned aerial motor driving intelligent power control system of the invention can realize the two contradictory unifications of the high power density and high reliability of the motor, and complete the intelligent motor control strategy.
- the disclosed UAV motor-driven intelligent power control system and method can be implemented in other manners.
- the above-described embodiment of the UAV motor-driven intelligent power control system is merely illustrative.
- the division of the module or unit is only a logical function division, and the actual implementation may have another division manner.
- multiple units or components may be combined or integrated into another system, or some features may be omitted or not implemented.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
- the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
- a number of instructions are included to cause the main controller 214 or each of the drivers 2135, 2136, 2137, 2137 of the processor 225 to perform all or part of the steps of the method of various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Control Of Multiple Motors (AREA)
Abstract
一种无人机电机驱动智能功率控制系统,其包括一电机温度读取单元(101)、一处理单元(102)以及一电机功率输出控制单元(103)。所述电机温度读取单元(101)用于读取安装于所述无人机(200)的中的至少一电机的温度。所述处理单元(102)用于比较所述读取的温度是否超过第一特定温度,并根据比较结果控制所述电机功率输出控制单元(103)动态调节各电机允许输出的最大功率。还涉及无人机电机驱动智能功率控制方法、以及使用该无人机电机驱动智能功率控制系统的无人机(200)。
Description
本发明涉及一种无人机电机驱动智能功率控制系统和方法以及无人机。
电机正日益成为无人飞行器动力的重要组成部分。由于无人机载重的限制,电机需要达到尽可能高的功率密度,同时又要保证绝对的系统可靠性。高功率密度往往需要电机绕组中更高的电流密度,或者带来更大的铁损,而这都会带来更大的发热。高系统可靠性则要求系统运行温度尽可能低,同时决不允许超过安全温度,因为这会带来电机的过热损坏甚至烧毁。在过去,为了达到这两个目的中的一个,往往需要牺牲另外一个。比如通过加大电机容量来获得系统可靠性,这往往牺牲了功率密度。
一些现有的保护功能往往是简单的关闭整个电机,这往往会带来无人机部分或者全部系统的失效,严重时会带来坠机。
现有技术基本的两种策略:
1.通过牺牲功率密度和高可靠性中的一个来优化另外一个,比如要高功率密度,那就牺牲部分可靠性。或者为了高可靠性,用更大容量电机,或者人为限制现有电机的功率,牺牲高功率密度。
2.在电机温度达到一定上限的时候,简单地关闭电机来实现电机的保护,在无人飞行应用中,关闭电机往往会带来不可接受的后果。
本发明主要解决的技术问题是提供一种功率密度高且可靠性高的无人机电机驱动智能功率控制系统和方法以及无人机。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种无人机电机驱动智能功率控制系统,所述无人机电机驱动智能功率控制系统包括一电机温度读取单元、一处理单元以及一电机功率输出控制单元,所述电机温度读取单元用于读取安装于所述无人机的中的至少一电机的温度,所述处理单元用于比较所述读取的温度是否超过第一特定温度,并根据比较结果控制所述电机功率输出控制单元动态调节各电机允许输出的最大功率。
其中,当所述无人机具有多个电机时,所述电机温度读取单元分别读取所述多个电机的温度,当所述读取的温度中的至少其中之一超过所述第一特定温度时,所述处理单元控制所述电机功率输出控制单元对应降低该温度超过第一特定温度的所述电机的允许输出的最大功率。
其中,当所述无人机具有多个电机时,所述电机温度读取单元读取其中之一电机的温度,当所述读取的温度超过所述第一特定温度时,所述处理单元控制所述电机功率输出控制单元同时降低所述多个电机允许输出的最大功率。
其中,当所述无人机具有多个电机时,所述电机温度读取单元读取所述多个电机的温度,当所述读取的温度中的其中之一超过所述第一特定温度时,所述处理单元控制所述电机功率输出控制单元同时降低所述多个电机允许输出的最大功率。
其中,当任一所述电机的温度降到小于或等于一第二特定温度时,所述处理单元控制所述电机功率输出控制单元提高各电机允许输出的最大功率。
其中,所述第二特定温度小于所述第一特定温度。
其中,所述处理单元通过控制所述电机的电流上限的方式来动态调节各电机允许输出的最大功率。
其中,所述处理单元通过控制所述电机的电压上限的方式来动态调节各电机的允许输出的最大功率。
为解决上述技术问题,本发明采用的一个技术方案是:一种无人机电机驱动智能功率控制方法,所述方法包括以下步骤:
读取至少一电机的温度;
比较至少一电机的温度是否超过第一特定温度;
根据比较结果动态调节各电机的功率。
其中,当所述无人机具有多个电机时,分别读取所述多个电机的温度,当所述读取的温度中的至少其中之一超过所述第一特定温度时,对应降低该温度超过第一特定温度的所述电机的允许输出的最大功率。
其中,当所述无人机具有多个电机时,当所述读取的温度超过所述第一特定温度时,同时降低所述多个电机的允许输出的最大功率。
其中,当所述无人机具有多个电机时,所述电机温度读取单元读取所述多个电机的温度,当所述读取的温度中的其中之一超过所述第一特定温度时,所述处理单元控制所述电机功率输出控制单元同时降低所述多个电机的允许输出的最大功率。
其中,当任一所述电机的温度降到小于或等于一第二特定温度时,提高各电机的允许输出的最大功率。
其中,电机允许输出的最大功率小于该电机的最大功率。
其中,通过控制所述电机的电流上限的方式来动态调节各电机的功率。
其中,通过控制所述电机的电压上限的方式来动态调节各电机的功率。
其中,通过实时的检测所述至少一电机的绕组的电阻,根据导线材料的温度-电阻曲线来计算所述至少一电机的温度。
其中,通过在电机内设置温度检测装置来获取所述至少一电机的温度。
为解决上述技术问题,本发明采用的一个技术方案是:一种无人机,其包括一壳体、多个均与壳体相连的机臂、设置于所述机臂且用于驱动飞行器飞行的动力装置、以及一处理器,所述处理器电性连接于所述动力装置,所述动力装置包括至少一电机,所述无人机还包括至少一温度检测装置,其用于检测所述电机的温度,所述处理器用于读取所述至少一温度检测装置的感测的所述至少一电机的温度,并比较所述读取的温度是否超过第一特定温度,以及根据比较结果控制所述电机功率输出控制单元动态调节各电机允许输出的最大功率。
其中,所述无人机具有多个电机和多个温度检测装置,所述电机的数量与所述温度检测装置的数量相同,各个温度检测装置分别感测各所述电机的温度,当所述处理器读取的温度中的至少其中之一超过所述第一特定温度时,所述处理器对应降低该温度超过第一特定温度的所述电机的允许输出的最大功率。
其中,所述无人机具有多个电机和一个温度检测装置,所述温度检测装置安装于其中之一的电机内,所述温度检测装置感测所述电机的温度,所述处理器读取所述电机的温度,当所述读取的温度超过所述第一特定温度时,所述处理器控制同时降低所述多个电机的允许输出的最大功率。
其中,所述无人机具有多个电机和多个温度检测装置,所述电机的数量与所述温度检测装置的数量相同,各个温度检测装置分别感测各所述电机的温度,当所述读取的温度中的其中之一超过所述第一特定温度时,所述处理器控制同时降低所述多个电机的允许输出的最大功率。
其中,当所述电机的温度降到小于或等于一第二特定温度时,所述处理器控制提高各电机允许输出的最大功率。
其中,所述第二特定温度小于所述第一特定温度。
其中,所述处理器通过控制所述电机的电流上限或电压上限的方式来动态调节各电机的功率。
其中,所述温度检测装置为温度感测器。
其中,所述温度检测装置可通过实时的检测所述电机的绕组的电阻,并根据导线材料的温度-电阻曲线来计算温度。
其中,所述无人机还包括一云台和搭载在所述云台上的负载,所述云台用以实现所述负载的固定、随意调节所述负载的姿态和使所述负载稳定保持在确定的姿态上。
其中,所述负载为成像装置。
其中,所述机臂呈中空的臂状,其与所述壳体的内腔相连通,所述处理器还包括至少一设置于机臂内且与所述至少一电机电性连接的驱动器和一主控制器,所述驱动器用于接收所述处理器的控制信号以调节所述电机的转速。
其中,所述动力装置还包括安装于所述电机的旋翼,所述旋翼用于在所述电机的驱动下,带动所述无人机飞行。
其中,所述机臂与所述壳体分别成型,并通过锁紧件锁紧或焊接方式固定连接。
其中,所述机臂能够相对壳体折叠。
其中,每个所述机臂上设置有一飞行指示灯,所述飞行指示灯用于指示所述无人机的飞行状态。
其中,所述飞行指示灯为黄灯快闪表明所述无人机;所述飞行指示灯为红灯慢闪表明低电量报警;所述飞行指示灯为红灯快闪表明严重低电量报警;所述飞行指示灯为红黄灯交替闪烁表明指南针数据错误,需要校准;所述飞行指示灯为绿灯慢闪表明可安全飞行。
其中,所述飞行指示灯为LED。
其中,所述壳体的下端连接有脚架,所述脚架通过紧固件固定连接于所述壳体的下端。
本发明的有益效果是:
本发明的无人机电机驱动智能功率控制系统的所述处理单元用于比较所述读取的温度是否超过第一特定温度,并根据比较结果控制所述电机功率输出控制单元动态调节各电机的功率。因此,本发明的无人机电机驱动智能功率控制系统,能够实现电机的高功率密度和高可靠性这两个相互矛盾的统一,完成智能化的电机控制策略。
图1是本发明实施实施例提供的无人机的立体图;
图2是本发明实施实施例提供的无人机的连接框架图;
图3是本发明实施实施例提供的无人机电机驱动智能功率控制系统的功能模块;
图4是本发明实施例提供的无人机电机驱动智能功率控制方法的流程图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本实用新型的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1-2,本实用新型第一实施例提供的无人机电机驱动智能功率控制系统100,其设置于一无人机200。所述无人机200可以作为摄影、照相、监测、采样的辅助装置,可搭载于空基(例如旋翼飞行器或固定翼飞机)、水基(例如潜艇或船只)、路基(例如机动车辆)或天基(例如卫星,空间站,或飞船)等领域。
所述无人机200包括一云台201和搭载在所述云台201上的负载202。所述云台201用以实现所述负载202的固定、随意调节所述负载的姿态(例如:改变所述负载的高度、倾角和/或方向)和使所述负载202稳定保持在确定的姿态上。所述负载202可以为照相机和摄像机等成像装置。
所述无人机200还包括中空的壳体211、四个均与壳体211相连的机臂212、设置在所述机臂212的用于驱动飞行器飞行的动力装置213、以及一处理器225。所述机臂212可呈中空的臂状等合适形状,其可以与壳体11的内腔相连通。所述处理器225作为所述无人机200的关键部件,可实现对各相关部件进行控制等功能。
所述动力装置213包括一第一电机2131、一第二电机2132、一第三电机2133、一第四电机2134、以及四个分别安装于所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的旋翼2139。所述旋翼2139可以是两桨、三桨等,其用于在所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的驱动下,带动所述无人机200飞行。本实施例中,所述第一电机2131、第二电机2132、第三电机2133、第四电机2134均为无刷电机。
所述处理器225包括一设置于其中一机臂212内且与所述第一电机2131电性连接的第一驱动器2135、一设置于其中一机臂212内且与所述第二电机2132电性连接的第二驱动器2136、一设置于其中一机臂内212且与所述第三电机2133电性连接的第三驱动器2137、一设置于其中一机臂内212且与所述第四电机2134电性连接的第四驱动器2138、以及一主控制器214。
所述第一驱动器2135、第二驱动器2136、第三驱动器2137和第四驱动器2138用于分别控制所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的转速。所述第一、第三、第三、第四驱动器2135、2136、2137、2138均与所述主控制器214电性连接,用于接收所述主控制器214的控制信号,以对应调节所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的转速。
由于所述第一驱动器2135、第二驱动器2136、第三驱动器2137和第四驱动器2138无需暴露在外,可以于工厂内将所述第一驱动器2135、第二驱动器2136、第三驱动器2137和第四驱动器2138配至所述机臂212内。所述壳体211、机臂212对所述第一驱动器2135、第二驱动器2136、第三驱动器2137和第四驱动器2138具有保护作用,所述无人机200具有良好的强度和刚性,可很好地适应于运输和存储。用户无需自行组装、调试所述无人机200,可达到“到手即用”的效果,方便了用户的使用,大大降低了对用户专业程度的要求,避免用户安装出现错误的情况,从而避免了炸机等损害情况,提高了所述无人机200可靠性。
本实施例中,所述机臂212与所述壳体211一体成型或固定连接。所述机臂212与壳体211一体成型指所述机臂212与壳体211可采用注塑等合适方式一体制造成型。当然,所述机臂212与所述壳体211也可以分别成型,并通过锁紧件锁紧或焊接等方式固定连接。锁紧件可为螺丝等。
可以理解的是,所述机臂212、驱动器与电机的数量相同,并不限于本实施例的四个。
除了上述结构的描述,在其他实施例中,所述机臂212与所述壳体211之间也可以活动连接。具体应用中,所述机臂212可整体转动连接于所述壳体211上,所述机臂212可相对壳体211折叠。在不使用时,可将所述机臂212折叠,以便于存放和携带。在使用时,可将所述机臂212展开并固定。
在其他实施例中,所述第一驱动器2135、第二驱动器2136、第三驱动器2137、第四驱动器2138可以设置于所述壳体211内。
本实施例中,四个所述机臂212以“X”形或“十”字形排布并连接于所述壳体211。具体应用中,所述机臂212可以以所述壳体11的中心轴为圆心,周向均布于所述壳体211的周围机臂212的数量根据需要可以调整。
本实施例中,每个所述机臂212上设置有一飞行指示灯215,所述飞行指示灯215可为LED,所述飞行指示灯215可以根据所述无人机200的设置的指示灯215可以方便了解所述无人机200的飞行状态,如,黄灯快闪表明所述无人机200;红灯慢闪表明低电量报警;红灯快闪表明严重低电量报警;红黄灯交替闪烁表明指南针数据错误,需要校准;绿灯慢闪表明可安全飞行等。
所述壳体211的下端连接有一脚架216,所述脚架216可通过紧固件固定连接于所述壳体211的下端,紧固件可为螺丝等。所述脚架216用于支撑所述壳体211、云台201、负载202等。
所述无人机200还包括四个温度检测装置,如第一温度检测装置221、第二温度检测装置222、第三温度检测装置223和第四温度检测装置224。本实施例中,所述第一温度检测装置221、第二温度检测装置222、第三温度检测装置223和第四温度检测装置224均为温度传感器,其分别设置于所述第一电机2131、第二电机2132、第三电机2133、第四电机2134内,用于分别感测所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的温度。
可以理解的是,在其他实施例中,也可以在其中一个电机内设置温度检测装置,或者以二个或三个电机内设置温度检测装置。
可以理解的是,所述无人机200也可以通过其他方式来获取述第一电机2131、第二电机2132、第三电机2133、第四电机2134的温度,如所述温度检测装置可以通过实时的检测所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的绕组的电阻,根据导线材料的温度-电阻曲线来计算温度。
请一并参阅图3,本发明实施例提供的无人机电机驱动智能功率控制系统100,其包括一电机温度读取单元101、一处理单元102以及一电机功率输出控制单元103。
所述电机温度读取单元101用于读取所述第一温度检测装置221所采集的所述第一电机2131的温度、所述第二温度检测装置222所采集的第二电机2132的温度、所述第三温度检测装置223所采集的第三电机2133的温度、以及所述第四温度检测装置224所采集的第四电机2134的温度。本实施例中,由于设置了四个温度检测装置221、222、223和224,所述电机温度读取单元101分别读取该四个温度检测装置221、222、223和224的所采集的各电机2131、2132、2133和2134的实时温度。在其他实施方式中,也可在四个电机2131、2132、2133、和2134中的一个设置一个温度检测装置,因此,所述电机温度读取单元101只读取该一个温度检测装置的温度。当四个电机2131、2132、2133、和2134中只有两个或三个电机内均设置温度检测装置时,所述电机温度读取单元101读取每个温度检测装置感测的温度。
所述处理单元102用于根据所述电机温度读取单元101读取的至少一所述电机2131、2132、2133、和2134的温度而动态调节各电机允许输出的最大功率。具体地,所述处理单元102将所述电机2131、2132、2133、和2134的温度与一第一特定温度(如60摄氏度,但并不限于60摄氏度)比较,当读取的各电机2131、2132、2133、和2134的温度中的任意一个或多个超过所述第一特定温度时,所述处理单元102控制所述电机功率输出控制单元103对应降低该温度超过第一特定温度的所述电机的允许输出的最大功率。
具体地,由于所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的输出功率是实时变化的,所述处理单元102控制所述电机功率输出控制单元103降低所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的电流上限的方式来动态调节各电机的允许输出的最大功率,如由原来的电流上限0.5安培降低为0.3安培,从而有效控制所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的发热功率,保证了各电机2131、2132、2133、和2134的安全。可以理解的是,也可通过控制所述电机的电压上限的方式来动态调节各电机允许输出的最大功率。
而当任意一个或多个所述电机的温度降到小于或等于所述第二特定温度时,所述处理单元102控制所述电机功率输出控制单元103适度提高该温度超过第一特定温度的所述电机的电流上限,如恢复到原来的电流上限0.5安培。所述第二特定温度小于所述第一特定温度,本实施例中,所述第二特定温度为但并不限于为40摄氏度,从而使所述第一电机2131、第二电机2132、第三电机2133、第四电机2134获得更高的功率密度。
可以理解的是,在其他实施例中,也可以是,当所述无人机200具有多个电机和一个温度检测装置,所述温度检测装置安装于其中之一的电机内,所述温度检测装置感测所述电机的温度,所述电机温度读取单元101读取其中之一电机的温度,当所述读取的温度超过所述第一特定温度时,所述处理单元102控制所述电机功率输出控制单元103同时降低各个所述电机2131、2132、2133、和2134允许输出的最大功率。
可以理解的是,在其他实施例中,也可以是,所述无人机200具有四个电机和四个温度检测装置用于分别感测多个电机的温度,只要当其中一个电机温度达到第一特定温度时,所述处理单元102控制所述电机功率输出控制单元103同时降低输出给所述电机2131、2132、2133、和2134的允许输出的最大功率。而当其中两个或三个电机均设置一个温度检测装置时,只要当其中一个电机温度达到第一特定温度时,所述处理单元102控制所述电机功率输出控制单元103降低所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的允许输出的最大功率。
可以理解的是,所述第一、第二特定温度可以根据实际需求而设计,并不限于本实施例。
请参阅图4,一种无人机电机驱动智能功率控制方法,其包括以下步骤:
S101:读取至少一电机的温度;
所述无人机200包括四个温度检测装置,如第一温度检测装置221、第二温度检测装置222、第三温度检测装置223和第四温度检测装置224。本实施例中,所述第一温度检测装置221、第二温度检测装置222、第三温度检测装置223和第四温度检测装置224均为温度传感器,其分别设置于所述第一电机2131、第二电机2132、第三电机2133、第四电机2134内,用于分别实时感测所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的温度。所述电机温度读取单元101用于读取所述第一温度检测装置221所实时感测的所述第一电机2131的温度、所述第二温度检测装置222所实时感测的第二电机2132的温度、所述第三温度检测装置223所实时感测的第三电机2133的温度、以及所述第四温度检测装置224所实时感测的第四电机2134的温度。
S102:比较至少一电机的温度是否超过第一特定温度;
所述处理单元102将所述电机2131、2132、2133、和2134的温度与一第一特定温度(如60摄氏度,但并不限于60摄氏度)比较。
S103:根据比较结果动态调节各电机的功率。
具体地,所述处理单元102将所述电机2131、2132、2133、和2134的温度与一第一特定温度(如60摄氏度,但并不限于60摄氏度)比较,当读取的各电机2131、2132、2133、和2134的温度中的任意一个或多个超过所述第一特定温度时,所述处理单元102控制所述电机功率输出控制单元103对应降低该温度超过第一特定温度的所述电机的允许输出的最大功率。
具体地,所述处理单元102控制所述电机功率输出控制单元103降低所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的电流上限的方式来动态调节各电机的允许输出的最大功率,如由原来的电流上限0.5安培降低为0.3安培,从而有效控制所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的发热功率,保证了各电机2131、2132、2133、和2134的安全。可以理解的是,也可通过控制所述电机的电压上限的方式来动态调节各电机允许输出的最大功率。
可以理解的是,在其他实施例中,也可以是,当所述无人机200具有多个电机和一个温度检测装置,所述温度检测装置安装于其中之一的电机内,所述温度检测装置感测所述电机的温度,所述电机温度读取单元101读取其中之一电机的温度,当所述读取的温度超过所述第一特定温度时,所述处理单元102控制所述电机功率输出控制单元103同时降低各个所述电机2131、2132、2133、和2134允许输出的最大功率。
可以理解的是,在其他实施例中,也可以是,所述无人机200具有四个电机和四个温度检测装置用于人别感测多个电机的温度,只要当其中一个电机温度达到第一特定温度时,所述处理单元102控制所述电机功率输出控制单元103同时降低输出给所述电机2131、2132、2133、和2134的允许输出的最大功率。而当其中两个或三个电机均设置一个温度检测装置时,只要当其中一个电机温度达到第一特定温度时,所述处理单元102控制所述电机功率输出控制单元103降低所述第一电机2131、第二电机2132、第三电机2133、第四电机2134的允许输出的最大功率。
而当任意一个或多个所述电机的温度降到小于或等于所述第二特定温度时,所述处理单元102控制所述电机功率输出控制单元103适度提高该温度超过第一特定温度的所述电机的电流上限,如恢复到原来的电流上限0.5安培。所述第二特定温度小于所述第一特定温度,本实施例中,所述第二特定温度为但并不限于为40摄氏度,从而使所述第一电机2131、第二电机2132、第三电机2133、第四电机2134获得更高的功率密度。
通过上述实施例的详细阐述,可以理解,本发明的无人机电机驱动智能功率控制系统的所述处理单元用于比较所述读取的温度是否超过第一特定温度,并根据比较结果控制所述电机功率输出控制单元动态调节各电机的功率。因此,本发明的无人机电机驱动智能功率控制系统,能够实现电机的高功率密度和高可靠性这两个相互矛盾的统一,完成智能化的电机控制策略。
在本发明所提供的几个实施例中,应该理解到,所揭露的无人机电机驱动智能功率控制系统和方法,可以通过其它的方式实现。例如,以上所描述的无人机电机驱动智能功率控制系统实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得所述处理器(processor)225的主控制器214或各驱动器2135、2136、2137、2137执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围。
Claims (37)
- 一种无人机电机驱动智能功率控制系统,其特征在于:所述无人机电机驱动智能功率控制系统包括一电机温度读取单元、一处理单元以及一电机功率输出控制单元,所述电机温度读取单元用于读取安装于所述无人机的中的至少一电机的温度,所述处理单元用于比较所述读取的温度是否超过第一特定温度,并根据比较结果控制所述电机功率输出控制单元动态调节各电机允许输出的最大功率。
- 如权利要求1所述的无人机电机驱动智能功率控制系统,其特征在于:当所述无人机具有多个电机时,所述电机温度读取单元分别读取所述多个电机的温度,当所述读取的温度中的至少其中之一超过所述第一特定温度时,所述处理单元控制所述电机功率输出控制单元对应降低该温度超过第一特定温度的所述电机的允许输出的最大功率。
- 如权利要求1所述的无人机电机驱动智能功率控制系统,其特征在于:当所述无人机具有多个电机时,所述电机温度读取单元读取其中之一电机的温度,当所述读取的温度超过所述第一特定温度时,所述处理单元控制所述电机功率输出控制单元同时降低所述多个电机允许输出的最大功率。
- 如权利要求1所述的无人机电机驱动智能功率控制系统,其特征在于:当所述无人机具有多个电机时,所述电机温度读取单元读取所述多个电机的温度,当所述读取的温度中的其中之一超过所述第一特定温度时,所述处理单元控制所述电机功率输出控制单元同时降低所述多个电机允许输出的最大功率。
- 如权利要求1所述的无人机电机驱动智能功率控制系统,其特征在于:当任一所述电机的温度降到小于或等于一第二特定温度时,所述处理单元控制所述电机功率输出控制单元提高各电机允许输出的最大功率。
- 如权利要求5所述的无人机电机驱动智能功率控制系统,其特征在于:所述第二特定温度小于所述第一特定温度。
- 如权利要求1所述的无人机电机驱动智能功率控制系统,其特征在于:所述处理单元通过控制所述电机的电流上限的方式来动态调节各电机允许输出的最大功率。
- 如权利要求1所述的无人机电机驱动智能功率控制系统,其特征在于:所述处理单元通过控制所述电机的电压上限的方式来动态调节各电机的允许输出的最大功率。
- 一种无人机电机驱动智能功率控制方法,其特征在于:所述方法包括以下步骤:读取至少一电机的温度;比较至少一电机的温度是否超过第一特定温度;根据比较结果动态调节各电机的功率。
- 如权利要求9所述的无人机电机驱动智能功率控制方法,其特征在于:当所述无人机具有多个电机时,分别读取所述多个电机的温度,当所述读取的温度中的至少其中之一超过所述第一特定温度时,对应降低该温度超过第一特定温度的所述电机的允许输出的最大功率。
- 如权利要求9所述的无人机电机驱动智能功率控制方法,其特征在于:当所述无人机具有多个电机时,当所述读取的温度超过所述第一特定温度时,同时降低所述多个电机的允许输出的最大功率。
- 如权利要求9所述的无人机电机驱动智能功率控制方法,其特征在于:当所述无人机具有多个电机时,所述电机温度读取单元读取所述多个电机的温度,当所述读取的温度中的其中之一超过所述第一特定温度时,所述处理单元控制所述电机功率输出控制单元同时降低所述多个电机的允许输出的最大功率。
- 如权利要求9所述的无人机电机驱动智能功率控制方法,其特征在于:当任一所述电机的温度降到小于或等于一第二特定温度时,提高各电机的允许输出的最大功率。
- 如权利要求13所述的无人机电机驱动智能功率控制方法,其特征在于:所述第二特定温度小于所述第一特定温度。
- 如权利要求9所述的无人机电机驱动智能功率控制方法,其特征在于:通过控制所述电机的电流上限的方式来动态调节各电机的功率。
- 如权利要求9所述的无人机电机驱动智能功率控制方法,其特征在于:通过控制所述电机的电压上限的方式来动态调节各电机的功率。
- 如权利要求9所述的无人机电机驱动智能功率控制方法,其特征在于:通过实时的检测所述至少一电机的绕组的电阻,根据导线材料的温度-电阻曲线的方式来计算所述至少一电机的温度。
- 如权利要求9所述的无人机电机驱动智能功率控制方法,其特征在于:通过在电机内设置温度感测器的方式来获取所述至少一电机的温度。
- 一种无人机,其包括一壳体、多个均与壳体相连的机臂、设置于所述机臂且用于驱动飞行器飞行的动力装置、以及一处理器,所述处理器电性连接于所述动力装置,所述动力装置包括至少一电机,其特征在于,所述无人机还包括至少一温度检测装置,其用于实时检测所述电机的温度,所述处理器用于读取所述至少一温度检测装置的感测的所述至少一电机的温度,并比较所述读取的温度是否超过第一特定温度,以及根据比较结果控制所述电机功率输出控制单元动态调节各电机允许输出的最大功率。
- 如权利要求19所述的无人机,其特征在于:所述无人机具有多个电机和多个温度检测装置,所述电机的数量与所述温度检测装置的数量相同,各个温度检测装置分别实时感测各所述电机的温度,当所述处理器读取的温度中的至少其中之一超过所述第一特定温度时,所述处理器对应降低该温度超过第一特定温度的所述电机的允许输出的最大功率。
- 如权利要求19所述的无人机,其特征在于,所述无人机具有多个电机和一个温度检测装置,所述温度检测装置安装于其中之一的电机内,所述温度检测装置感测所述电机的温度,所述处理器读取所述电机的温度,当所述读取的温度超过所述第一特定温度时,所述处理器控制同时降低所述多个电机的允许输出的最大功率。
- 如权利要求19所述的无人机,其特征在于:所述无人机具有多个电机和多个温度检测装置,所述电机的数量与所述温度检测装置的数量相同,各个温度检测装置分别感测各所述电机的温度,当所述读取的温度中的其中之一超过所述第一特定温度时,所述处理器控制同时降低所述多个电机的允许输出的最大功率。
- 如权利要求19所述的无人机,其特征在于:当所述电机的温度降到小于或等于一第二特定温度时,所述处理器控制提高各电机允许输出的最大功率。
- 如权利要求23所述的无人机,其特征在于:所述第二特定温度小于所述第一特定温度。
- 如权利要求19所述的无人机,其特征在于:所述处理器通过控制所述电机的电流上限或电压上限的方式来动态调节各电机的功率。
- 如权利要求19所述的无人机,其特征在于:所述温度检测装置为温度感测器。
- 如权利要求19所述的无人机,其特征在于:所述温度检测装置可通过实时的检测所述电机的绕组的电阻,并根据导线材料的温度-电阻曲线来计算温度。
- 如权利要求19所述的无人机,其特征在于:所述无人机还包括一云台和搭载在所述云台上的负载,所述云台用以实现所述负载的固定、随意调节所述负载的姿态和使所述负载稳定保持在确定的姿态上。
- 如权利要求28所述的无人机,其特征在于:所述负载为成像装置。
- 如权利要求29所述的无人机,其特征在于:所述机臂呈中空的臂状,其与所述壳体的内腔相连通,所述处理器还包括至少一设置于机臂内且与所述至少一电机电性连接的驱动器和一主控制器,所述驱动器用于接收所述处理器的控制信号以调节所述电机的转速。
- 如权利要求19所述的无人机,其特征在于:所述动力装置还包括安装于所述电机的旋翼,所述旋翼用于在所述电机的驱动下,带动所述无人机飞行。
- 如权利要求19所述的无人机,其特征在于:所述机臂与所述壳体分别成型,并通过锁紧件锁紧或焊接方式固定连接。
- 如权利要求19所述的无人机,其特征在于:所述机臂能够相对壳体折叠。
- 如权利要求19所述的无人机,其特征在于:每个所述机臂上设置有一飞行指示灯,所述飞行指示灯用于指示所述无人机的飞行状态。
- 如权利要求34所述的无人机,其特征在于:所述飞行指示灯为黄灯快闪表明所述无人机;所述飞行指示灯为红灯慢闪表明低电量报警;所述飞行指示灯为红灯快闪表明严重低电量报警;所述飞行指示灯为红黄灯交替闪烁表明指南针数据错误,需要校准;所述飞行指示灯为绿灯慢闪表明可安全飞行。
- 如权利要求34所述的无人机,其特征在于:所述飞行指示灯为LED。
- 如权利要求19所述的无人机,其特征在于:所述壳体的下端连接有脚架,所述脚架通过紧固件固定连接于所述壳体的下端。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480020547.6A CN105517902B (zh) | 2014-10-20 | 2014-10-20 | 无人机电机驱动智能功率控制系统和方法以及无人机 |
PCT/CN2014/088914 WO2016061726A1 (zh) | 2014-10-20 | 2014-10-20 | 无人机电机驱动智能功率控制系统和方法以及无人机 |
US15/487,577 US10270381B2 (en) | 2014-10-20 | 2017-04-14 | Intelligent power control system and method for electric motors, and unmanned aerial vehicle (UAV) having the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/088914 WO2016061726A1 (zh) | 2014-10-20 | 2014-10-20 | 无人机电机驱动智能功率控制系统和方法以及无人机 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/487,577 Continuation US10270381B2 (en) | 2014-10-20 | 2017-04-14 | Intelligent power control system and method for electric motors, and unmanned aerial vehicle (UAV) having the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016061726A1 true WO2016061726A1 (zh) | 2016-04-28 |
Family
ID=55724967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/088914 WO2016061726A1 (zh) | 2014-10-20 | 2014-10-20 | 无人机电机驱动智能功率控制系统和方法以及无人机 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10270381B2 (zh) |
CN (1) | CN105517902B (zh) |
WO (1) | WO2016061726A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10268210B2 (en) * | 2016-09-16 | 2019-04-23 | Gopro, Inc. | Synchronized pipeline flight controller |
RU2706025C1 (ru) * | 2016-11-01 | 2019-11-13 | Ниссан Мотор Ко., Лтд. | Способ управления двигателем и устройство управления двигателем |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD843266S1 (en) * | 2016-01-26 | 2019-03-19 | SZ DJI Technology Co., Ltd. | Aerial vehicle |
CN107438807B (zh) | 2016-06-17 | 2021-05-18 | 深圳市大疆灵眸科技有限公司 | 固持装置控制方法、固持装置、手持云台及无人机 |
EP3443421A4 (en) * | 2016-06-23 | 2019-03-13 | SZ DJI Technology Co., Ltd. | SYSTEMS AND METHOD FOR CONTROLLING THE BEHAVIOR OF MOVABLE OBJECTS |
CN106143935A (zh) * | 2016-07-26 | 2016-11-23 | 广东容祺智能科技有限公司 | 一种高兼容性低电量报警无人机航向指示灯及指示方法 |
US10737798B2 (en) * | 2016-09-12 | 2020-08-11 | Ansel Misfeldt | Integrated feedback to flight controller |
CN108781026B (zh) * | 2016-12-08 | 2020-10-30 | 深圳市大疆灵眸科技有限公司 | 电机、云台、拍摄装置、飞行器及电机、云台的控制方法 |
US20180186472A1 (en) * | 2016-12-30 | 2018-07-05 | Airmada Technology Inc. | Method and apparatus for an unmanned aerial vehicle with a 360-degree camera system |
CN109283949B (zh) * | 2017-07-19 | 2021-09-10 | 广州极飞科技股份有限公司 | 电子调速器过温保护方法、调整方法和装置、无人机 |
CN107592058B (zh) * | 2017-08-31 | 2024-04-09 | 杭州骑客智能科技有限公司 | 人机互动体感车的轮毂电机控制系统及其控制方法 |
WO2019084721A1 (zh) * | 2017-10-30 | 2019-05-09 | 深圳市大疆创新科技有限公司 | 一种电机、电机控制系统、电机测温方法及无人飞行器 |
CN109328325B (zh) * | 2017-12-18 | 2021-10-22 | 深圳市大疆灵眸科技有限公司 | 云台控制方法、可移动物体、存储装置、云台控制系统和云台 |
US10737774B2 (en) | 2018-01-05 | 2020-08-11 | Gopro, Inc. | Unmanned aerial vehicle propeller assembly |
US10899465B2 (en) * | 2018-01-05 | 2021-01-26 | Gopro, Inc. | Motor control optimizations for unmanned aerial vehicles |
CN113775887A (zh) * | 2018-02-11 | 2021-12-10 | 深圳市大疆创新科技有限公司 | 云台及其控制方法、无人机 |
CN108332867A (zh) * | 2018-03-09 | 2018-07-27 | 广东翔龙航空技术有限公司 | 一种无人机电机温度检测方法 |
US20220006418A1 (en) * | 2018-11-21 | 2022-01-06 | Panasonic Intellectual Property Management Co., Ltd. | Motor control system, unmanned aerial vehicle, moving vehicle, and motor control method |
IT201900009522A1 (it) * | 2019-06-19 | 2020-12-19 | E Novia S P A | Drone e metodo di controllo del suo assetto |
IT201900009534A1 (it) * | 2019-06-19 | 2020-12-19 | E Novia S P A | Drone e metodo di controllo del suo assetto |
WO2020252781A1 (zh) * | 2019-06-21 | 2020-12-24 | 深圳市大疆创新科技有限公司 | 存储介质、图传模块、无人飞行器及其控制终端和套件 |
USD883141S1 (en) * | 2019-11-11 | 2020-05-05 | Qi Lin | Unmanned remote control aircraft |
US11772807B2 (en) | 2020-06-18 | 2023-10-03 | Textron Innovations Inc. | Electric distributed anti-torque architecture |
CN111987866B (zh) * | 2020-08-14 | 2021-08-24 | 浙江大学 | 永磁电机的温度监测方法及装置、存储介质及风电机组 |
US20220363404A1 (en) * | 2021-05-14 | 2022-11-17 | Beta Air, Llc | Systems and methods for monitoring health of an electric vertical take-off and landing vehicle |
US20240069507A1 (en) * | 2022-08-31 | 2024-02-29 | Exlar Corporation | Systems and methods for dynamic current limit adjustment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102135453A (zh) * | 2010-12-10 | 2011-07-27 | 奇瑞汽车股份有限公司 | 电机温度监测方法及系统、功率控制方法及系统 |
CN102541113A (zh) * | 2012-02-03 | 2012-07-04 | 重庆长安汽车股份有限公司 | 一种控制电动机温度的方法及系统 |
CN202295294U (zh) * | 2011-09-15 | 2012-07-04 | 深圳市大疆创新科技有限公司 | 无人飞行器用云台 |
CN202647108U (zh) * | 2012-06-04 | 2013-01-02 | 深圳市大疆创新科技有限公司 | 云台及具有该云台的飞行器 |
CN103095213A (zh) * | 2013-01-18 | 2013-05-08 | 重庆长安汽车股份有限公司 | 一种电机温度保护方法、电机控制设备及电机系统 |
US20140179535A1 (en) * | 2011-06-14 | 2014-06-26 | Eads Deutschland Gmbh | Electric drive device for an aircraft |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5174997B1 (ja) * | 2012-03-30 | 2013-04-03 | 三菱電機株式会社 | モータ駆動装置 |
JP6231481B2 (ja) * | 2012-09-14 | 2017-11-15 | 出光興産株式会社 | 多層不織布及びその製造方法 |
CN103359284A (zh) * | 2013-06-29 | 2013-10-23 | 天津大学 | 一种油电混合动力四旋翼无人飞行器 |
CN203827230U (zh) * | 2014-03-20 | 2014-09-10 | 温州大学 | 用于多旋翼无人飞行器的无感无刷直流电机调速器 |
US9272784B2 (en) * | 2014-05-19 | 2016-03-01 | Brian Dale Nelson | Vertical takeoff winged multicopter |
-
2014
- 2014-10-20 CN CN201480020547.6A patent/CN105517902B/zh not_active Expired - Fee Related
- 2014-10-20 WO PCT/CN2014/088914 patent/WO2016061726A1/zh active Application Filing
-
2017
- 2017-04-14 US US15/487,577 patent/US10270381B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102135453A (zh) * | 2010-12-10 | 2011-07-27 | 奇瑞汽车股份有限公司 | 电机温度监测方法及系统、功率控制方法及系统 |
US20140179535A1 (en) * | 2011-06-14 | 2014-06-26 | Eads Deutschland Gmbh | Electric drive device for an aircraft |
CN202295294U (zh) * | 2011-09-15 | 2012-07-04 | 深圳市大疆创新科技有限公司 | 无人飞行器用云台 |
CN102541113A (zh) * | 2012-02-03 | 2012-07-04 | 重庆长安汽车股份有限公司 | 一种控制电动机温度的方法及系统 |
CN202647108U (zh) * | 2012-06-04 | 2013-01-02 | 深圳市大疆创新科技有限公司 | 云台及具有该云台的飞行器 |
CN103095213A (zh) * | 2013-01-18 | 2013-05-08 | 重庆长安汽车股份有限公司 | 一种电机温度保护方法、电机控制设备及电机系统 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10268210B2 (en) * | 2016-09-16 | 2019-04-23 | Gopro, Inc. | Synchronized pipeline flight controller |
US10953983B2 (en) | 2016-09-16 | 2021-03-23 | Gopro, Inc. | Synchronized pipeline flight controller |
US12116125B2 (en) | 2016-09-16 | 2024-10-15 | Gopro, Inc. | Synchronized pipeline flight controller |
RU2706025C1 (ru) * | 2016-11-01 | 2019-11-13 | Ниссан Мотор Ко., Лтд. | Способ управления двигателем и устройство управления двигателем |
Also Published As
Publication number | Publication date |
---|---|
US10270381B2 (en) | 2019-04-23 |
CN105517902B (zh) | 2017-09-08 |
US20170222594A1 (en) | 2017-08-03 |
CN105517902A (zh) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016061726A1 (zh) | 无人机电机驱动智能功率控制系统和方法以及无人机 | |
WO2018119767A1 (zh) | 无人机及其控制系统与控制方法、电调及其控制方法 | |
WO2016095095A1 (zh) | 一种飞行器控制方法、装置及飞行器 | |
JP7072307B2 (ja) | 2足ロボットのモータドライブシステム及びインテリジェント温度保護方法 | |
WO2020228782A1 (zh) | 一种电池均衡控制方法、装置及均衡控制系统 | |
JP2019071787A (ja) | バッテリー及びバッテリー付き無人機 | |
WO2014075609A1 (en) | A multi-rotor unmanned aerial vehicle | |
BR112014005378B1 (pt) | panorâmica/inclinada/zoom (ptz) de plataforma de eixo duplo para uso em veículo aéreo não tripulado e veículo aéreo de múltiplos rotores | |
WO2016154996A1 (zh) | 稳定平台及其跟随控制系统及方法 | |
WO2020119722A1 (zh) | 一种保护电路、电池及飞行器 | |
CN109546612A (zh) | 一种保护电路、电池及飞行器 | |
WO2017128316A1 (zh) | 充放电装置、管理系统以及无人飞行器供电系统 | |
WO2018076254A1 (zh) | 舵机及其控制方法、无人机 | |
CN107357318B (zh) | 稳定云台转动的控制方法及控制系统及稳定云台 | |
WO2018053693A1 (zh) | 电机控制系统和无人飞行器 | |
WO2017206070A1 (zh) | 无人飞行器的机架及无人飞行器 | |
CN107147341A (zh) | 用于控制电机转动的矢量控制方法及控制系统及稳定云台 | |
CN103856120A (zh) | 一种多个四旋翼无人飞行器三相无刷电机调速集成电路设计 | |
WO2017096598A1 (zh) | 无人机及其状态监控方法、状态监控系统、状态监控装置 | |
CN108491001A (zh) | 增稳云台、增稳云台实现方法及无人机系统 | |
WO2020011013A1 (zh) | 防水无人机 | |
CN215764295U (zh) | 一种水平闭环控制系统及云台摄像机 | |
CN107219863B (zh) | 稳定云台转动的控制方法及控制系统及稳定云台 | |
CN107203223B (zh) | 驱动控制系统及具有该控制系统的稳定云台 | |
CN108781026B (zh) | 电机、云台、拍摄装置、飞行器及电机、云台的控制方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14904314 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14904314 Country of ref document: EP Kind code of ref document: A1 |