[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016061721A1 - Procédé de préparation de matériau en tungstène à grains fins, renforcé par une dispersion d'oxyde de terres rares - Google Patents

Procédé de préparation de matériau en tungstène à grains fins, renforcé par une dispersion d'oxyde de terres rares Download PDF

Info

Publication number
WO2016061721A1
WO2016061721A1 PCT/CN2014/088882 CN2014088882W WO2016061721A1 WO 2016061721 A1 WO2016061721 A1 WO 2016061721A1 CN 2014088882 W CN2014088882 W CN 2014088882W WO 2016061721 A1 WO2016061721 A1 WO 2016061721A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
earth oxide
tungsten
rare
preparing
Prior art date
Application number
PCT/CN2014/088882
Other languages
English (en)
Chinese (zh)
Inventor
范景莲
韩勇
李鹏飞
刘涛
成会朝
田家敏
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Priority to CN201480034843.1A priority Critical patent/CN105518169B/zh
Priority to PCT/CN2014/088882 priority patent/WO2016061721A1/fr
Priority to US14/901,780 priority patent/US20170225234A1/en
Publication of WO2016061721A1 publication Critical patent/WO2016061721A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Definitions

  • the invention relates to the field of nano materials and powder metallurgy, in particular to a preparation method of rare earth oxide dispersion strengthened fine grain tungsten material prepared by nano composite technology.
  • Tungsten has high melting point, high hardness, good high temperature strength, thermal conductivity, electrical conductivity, low coefficient of thermal expansion, low sputtering with plasma, no chemical reaction with H, low H + retention, etc.
  • High-temperature structural materials and functional materials are widely used as materials for plasma materials and divertor components in the field of nuclear fusion.
  • pure tungsten materials are typical high temperature materials that are widely used at present.
  • high-purity powder and material grain boundary purification methods are used at home and abroad to prepare sintered pure tungsten materials, and then tungsten materials are strengthened by large deformation processing methods.
  • the grain size is about 100 ⁇ m
  • the ductile-brittle transition temperature (DBTT) is 300-350 °C.
  • the crystallization temperature is 1300 ⁇ 1350 °C
  • the tensile strength at room temperature is above 500MPa
  • the tensile strength at 1000 °C is 400MPa.
  • pure tungsten materials have defects such as very coarse structure, fibrous orientation, high DBTT, low recrystallization temperature, and high brittleness.
  • second phase particles to refine tungsten grains and to diffusely strengthen pure tungsten has become an important direction of current development. Based on this, domestic Zhou Zhangjian et al.
  • the above preparation method has some problems: the preparation of the powder by high-energy ball milling or mechanical alloying tends to produce uneven distribution of components and introduction of heterogeneous impurities, and the sintering method of SPS and hot pressing is not suitable for large-scale preparation of engineering. While Guo Zhimeng et al.'s method improves the uniformity of dispersion distribution of oxides in tungsten matrix, Ni element must be added as a sintering activator, while Ni element is strictly prohibited in many fields, such as nuclear fusion and nuclear fission. This will impose huge limitations on the scope of its application.
  • the inventor of the present patent has applied for and obtained a national invention patent 'Preparation method of ultrafine activated tungsten powder (patent number: ZL201010049432.3)', in which sol-spray drying-heat is applied.
  • the ultrafine or nano-activated tungsten powder is prepared by a reduction technique, and any one or more of Ni, Co, and Fe trace activation elements are added to the powder.
  • the powder composition of the invention is uniformly distributed and does not introduce an impurity element as compared with high energy ball milling or mechanical alloying.
  • the sol-spray drying method is used to directly prepare tungsten materials containing trace rare earth oxides.
  • the dispersion strengthening effect of rare earth oxide particles on tungsten is very limited, resulting in poor performance of materials. It is difficult to meet the requirements for the use of nuclear fusion tungsten materials.
  • the present invention employs heterogeneous precipitation - spray drying - Calcination - Thermal reduction - Preparation by conventional sintering technology
  • High performance rare earth oxide dispersion strengthened fine grain tungsten material The rare earth oxide dispersion-enhanced fine-grained tungsten material prepared by the method of the invention has a density close to full density ( ⁇ 98.5%), the rare earth oxide particles are uniformly distributed in the tungsten grains and the tungsten grain boundaries, the structure is uniform and fine, and the average grain size is 10 ⁇ m. Below, it has good room temperature, high temperature mechanical properties and high heat load impact resistance.
  • the present invention provides a rare earth oxide super-uniform dispersion-distributed fine-grained tungsten material, characterized in that the fine-grained tungsten material contains one or more of Y 2 O 3 , La 2 O 3 and CeO 2 And the mass percentage of the rare earth oxide ranges from 0.1 to 2%, and the remaining component is W.
  • the mass percentage of the rare earth oxide is 0.1 to 2%, and the remaining component is W.
  • the soluble rare earth salt and the tungstate are weighed and prepared into a rare earth salt solution of 50 to 100 g/L and a tungstate solution of 150 to 300 g/L, respectively.
  • the colloid is spray-dried at 350 ⁇ 450 °C to obtain a composite precursor powder of tungsten and rare earth oxide; the composite precursor powder is calcined at 300 ⁇ 600 °C, and the calcination time is 1 ⁇ 4h, and the solution is agglomerated and sieved.
  • the hydrogen is reduced at 600 ⁇ 850 °C for 2 ⁇ 6h to prepare ultrafine/nano tungsten powder containing trace rare earth oxides with a particle size of 50 ⁇ 500nm; the rare earth oxide is Y 2 O 3 One or more of La 2 O 3 or CeO 2 ;
  • the ultrafine/nano tungsten powder containing trace rare earth oxide in step (1) is 150 ⁇ 300MPa Forming or cold isostatic pressing;
  • the press-formed compact is subjected to conventional high-temperature sintering in a high-temperature sintering furnace at a sintering temperature of 1800 to 2000 °C.
  • the holding time is 1 ⁇ 5h, and the dense high-performance rare earth oxide super-diffused distribution enhanced fine-grained tungsten material is obtained.
  • the tungstate is ammonium metatungstate, ammonium paratungstate or ammonium tungstate.
  • the rare earth salt is a nitrate, oxalate, carbonate, chloride or sulfate of Y, La or Ce.
  • the stirring speed is 1000 ⁇ 5000 rpm.
  • the spray drying head rotates at a speed of 20,000 to 30,000 rpm.
  • the reaction dispersant is stearic acid, polyethylene glycol, urea, N, N-dimethylformamide, OP emulsifier, Tween-20 Or sodium dodecyl sulfate, the mass of the reaction dispersant is 0.1 ⁇ 1.5% of the mass of the rare earth salt solution or the tungstate solution.
  • the pH is controlled, the added acid is HCl, HNO 3 or oxalic acid; the added base is NaOH, KOH or ammonia.
  • the ultrafine tungsten composite powder containing trace rare earth oxide prepared by hydrogen reduction method has greater sintering activity; the powder prepared by the invention can reach 98.5% by conventional sintering at 1800-2000 °C.
  • the above density, sintered body grain size is 5 ⁇ 10 ⁇ m, and the structure is more uniform, with excellent room temperature, high temperature and toughness.
  • the invention adopts the conventional sintering method to prepare the rare earth oxide dispersion-strengthened fine-grained tungsten material, and the process is simple and suitable for engineering preparation.
  • a dispersion-strengthened fine-grained tungsten material having a composition of W-0.1 wt% Y 2 O 3 is prepared.
  • the soluble rare earth salt and the tungstate are weighed according to the mass ratio, that is, weighed 1.02 g of cerium nitrate, 411.27 g of ammonium metatungstate, respectively, was prepared into a 50 g/L rare earth salt solution and a 150 g/L tungsten salt solution.
  • Dispersing agent under the action of ultrasonic vibration and electric mixer stirring, the tungstate forms tungsten acid microparticles, and Y(OH) 3 colloidal particles are used as the core, and the precipitate is coated around the Y(OH) 3 colloidal particles to form a total Precipitating coated particle colloid;
  • the composite precursor powder was calcined at 350 °C for 2 h; after deagglomeration and sieving, it was kept at 78 ° C for 2 h under H 2 atmosphere; and an ultra-containing Y 2 O 3 was obtained . Fine tungsten powder.
  • a dispersion-strengthened fine-grained tungsten material having a composition of W-0.3 wt% La 2 O 3 is prepared.
  • the soluble rare earth salt and the tungstate are weighed according to the mass ratio, that is, weighed 1.53 g of bismuth oxalate, 410.45 g of ammonium paratungstate, respectively, were prepared into a 60 g/L rare earth salt solution and a 200 g/L tungsten salt solution.
  • the rare earth salt reacts with the base to form a uniform suspension of La(OH) 3 colloid; then the tungsten salt solution is added to the La(OH) 3 colloid, and the concentration of 10 wt% HCl is slowly added dropwise to adjust the pH to 6.8, and adding 1.5g PEG400 as a reaction dispersant, the tungstate is formed into tungstic acid microparticles under the action of ultrasonic vibration and electric mixer stirring, and La(OH) 3 colloidal particles are used as the core, and the precipitate is coated on La(OH). 3 ) around the colloidal particles, eventually forming a coprecipitated coated particle colloid;
  • the composite precursor powder was calcined at 350 °C for 2 h; after deagglomeration and sieving, it was kept at 78 ° C for 2 h under H 2 atmosphere; and an ultra-containing 0.3 wt% La 2 O 3 was obtained . Fine tungsten powder.
  • a dispersion-strengthened fine-grained tungsten material having a composition of W-0.5 wt% CeO 2 is prepared.
  • the soluble rare earth salt and the tungstate are weighed according to the mass ratio, that is, 2.10 g Barium carbonate, 409.6 g of ammonium tungstate, was prepared into a 70 g/L rare earth salt solution and a 220 g/L tungsten salt solution, respectively.
  • the tungstate is formed into tungstic acid microparticles under the action of ultrasonic vibration and electric mixer stirring, and Ce(OH) 3 colloidal particles are used as the core, and the precipitate is coated with Ce(OH) 3 colloid. Around the particles, a coprecipitated coated particle colloid is finally formed;
  • the composite precursor powder is calcined at 400 °C for 2 hours; after deagglomeration and sieving, it is reduced in two steps under H 2 atmosphere, the first step is kept at 60 ° C for 2 h, the second step is The steel was kept at 800 ° C for 2 h to obtain an ultrafine tungsten powder containing 0.5 wt% of CeO 2 .
  • the ultrafine W composite powder containing trace rare earth CeO 2 is cold isostatically pressed, and the compact is calcined and then sintered at 1950 ° C for 4 h to obtain W-0.5 wt% CeO 2 material.
  • the density of the material is 99.3.
  • the microstructure is fine and uniform, and the grain size is below 8 ⁇ m; the material does not crack on the surface of the sample under the impact of high heat flux density of 200 MW/m 2 .
  • a dispersion-strengthened fine-grained tungsten material having a composition of W-0.3 wt% Y 2 O 3 -0.3 wt% La 2 O 3 is prepared.
  • the soluble rare earth salt and the tungstate are weighed according to the mass ratio, that is, respectively weighed 1.52g bismuth nitrate, 2.18g lanthanum chloride, 409.2g ammonium metatungstate, lanthanum nitrate and lanthanum chloride are mixed to form 80g/L rare earth salt solution, 250g/L Tungsten salt solution.
  • the composite precursor powder was calcined at 400 °C for 3 h; after deagglomeration and sieving, it was kept at 80 ° C for 2 h under H 2 atmosphere; and 0.3 wt% La 2 O 3 -0.3 was obtained. Ultrafine tungsten powder of wt% La 2 O 3 .
  • the compact After molding the ultrafine WY 2 O 3 -La 2 O 3 composite tungsten powder, the compact is pre-fired at 1000 °C for 2 h and then sintered at 1920 °C for 3 h to obtain W-0.3 wt% Y 2 O 3 - 0.3wt% La 2 O 3 material, the density of the material is above 99.4%, the microstructure is fine and uniform, and the grain size is below 6 ⁇ m; the material does not crack on the surface of the sample under the impact of high heat flux density of 300MW/m 2 .
  • a dispersion-strengthened fine-grained tungsten material having a composition of W-0.3 wt% Y 2 O 3 - 0.3 wt% La 2 O 3 - 0.3 wt% CeO 2 is prepared.
  • the soluble rare earth salt and the tungstate are weighed according to the mass ratio, that is, respectively weighed 1.85g barium sulfate, 0.8g barium nitrate, 1.52g barium nitrate, 409g ammonium metatungstate, mixed with barium sulfate, barium nitrate and barium nitrate to prepare a 100g/L rare earth salt solution. 300 g / L of tungsten salt solution.
  • the tungstate is formed into a tungstic acid microparticle, and the Y(OH) 3 + La(OH) 3 + Ce(OH) 3 colloidal particle is used as a core, and the precipitate is coated on Y(OH) 3 + La(OH) 3 + Around the colloidal particles of Ce(OH) 3 , a coprecipitated coated particle colloid is finally formed;
  • the composite precursor powder is calcined at 500 °C for 3 hours; after deagglomeration and sieving, in the H 2 atmosphere, the first step is kept at 60 ° C for 2 h, and the second step is kept at 800 ° C. 4h, an ultrafine tungsten powder containing 0.3% by weight of La 2 O 3 -0.3% by weight of La 2 O 3 -0.3% by weight of CeO 2 was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Catalysts (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

L'invention concerne un procédé de préparation d'un matériau en tungstène à grains fins, renforcé par une dispersion d'oxyde de terres rares, qui comprend : selon une condition qu'un pourcentage en masse d'oxyde de terres rares est de 0,1 à 2 % et la composition restante est constituée de W, le pesage de sel de terres rares soluble et de sel d'acide tungstique et la préparation respectivement d'une solution de sel de terres rares de 50 à 100 g/l et d'une solution de sel d'acide tungstique de 150 à 300 g/l; l'ajout d'une petite quantité d'alcali dans le sel de terres rares pour régler le pH de 7 à 8, l'ajout d'un agent dispersant organique et l'agitation pour permettre au sel de terres rares de former des particules colloïdales de R(OH)3 uniformément en suspension (R représente un élément de terres rares); l'ajout de la solution de sel d'acide tungstique aux particules colloïdales de R(OH)3, l'ajout d'une petite quantité d'acide pour ajuster le pH de 6 à 7, l'ajout de l'agent dispersant organique, l'agitation pour permettre au sel d'acide tungstique de former des microparticules d'acide tungstique, la précipitation et l'enrobage des particules colloïdales de R(OH)3, les particules colloïdales de R(OH)3(OH) servant de noyau, et la formation de particules colloïdales co-précipitées enrobées; l'exécution d'un séchage par pulvérisation sur les particules colloïdales co-précipitées et enrobées pour obtenir une poudre de précurseur composite de tungstène et d'oxyde de terres rares; la calcination, l'exécution d'une réduction thermique par de l'hydrogène et la préparation de poudre de tungstène superfine nanométrique ayant une taille des particules de 50 à 500 nm; l'exécution d'un frittage à haute température normale après un formage par compression général. Le matériau en tungstène à grains fins et à efficacité élevée, dans lequel une quantité mineure d'oxyde de terres rares est dispersée, qui est renforcé par celle-ci et qui est préparé par le procédé ci-dessus, présente une densité proche d'une densité totale (≥ 98,5 %) et des petits grains uniformes de tungstène ayant une taille moyenne de 5 à 10 µm; de plus, des particules d'oxyde de terres rares ayant une taille de particule de 100 nm à 500 nm sont uniformément réparties dans un cristal de tungstène ou un contour cristallin.
PCT/CN2014/088882 2014-10-20 2014-10-20 Procédé de préparation de matériau en tungstène à grains fins, renforcé par une dispersion d'oxyde de terres rares WO2016061721A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480034843.1A CN105518169B (zh) 2014-10-20 2014-10-20 一种稀土氧化物弥散强化细晶钨材料的制备方法
PCT/CN2014/088882 WO2016061721A1 (fr) 2014-10-20 2014-10-20 Procédé de préparation de matériau en tungstène à grains fins, renforcé par une dispersion d'oxyde de terres rares
US14/901,780 US20170225234A1 (en) 2014-10-20 2014-10-20 A preparation method of rare earth oxide dispersion strengthened fine grain tungsten materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088882 WO2016061721A1 (fr) 2014-10-20 2014-10-20 Procédé de préparation de matériau en tungstène à grains fins, renforcé par une dispersion d'oxyde de terres rares

Publications (1)

Publication Number Publication Date
WO2016061721A1 true WO2016061721A1 (fr) 2016-04-28

Family

ID=55724979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088882 WO2016061721A1 (fr) 2014-10-20 2014-10-20 Procédé de préparation de matériau en tungstène à grains fins, renforcé par une dispersion d'oxyde de terres rares

Country Status (3)

Country Link
US (1) US20170225234A1 (fr)
CN (1) CN105518169B (fr)
WO (1) WO2016061721A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913665A (zh) * 2021-09-30 2022-01-11 中国科学院重庆绿色智能技术研究院 纳米氧化镧增强钨基复合材料及其制备方法
CN114959338A (zh) * 2022-05-16 2022-08-30 北京科技大学 一种机械合金化制备高强度高塑性钨合金的方法
CN115976388A (zh) * 2023-03-21 2023-04-18 新乡市东津机械有限公司 一种硬质合金、捣镐、磨耗板及其制造工艺
CN116103532A (zh) * 2023-02-28 2023-05-12 南昌大学 一种微量稀土氧化物强化无氧铜材及其制备方法
CN116253852A (zh) * 2022-12-22 2023-06-13 苏州羽燕新材料科技有限公司 一种改性热塑性聚氨酯弹性体的制备方法
CN118682140A (zh) * 2024-08-29 2024-09-24 长春黄金研究院有限公司 球型金粉及其制备方法

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106564927B (zh) * 2016-11-04 2017-12-08 天津大学 超细氧化钇掺杂钨复合前驱体粉末的制备方法
CN107052356B (zh) * 2017-01-18 2019-01-15 天津大学 一种核壳结构的钨-氧化钇超细复合前驱体粉末的制备方法
CN107190195A (zh) * 2017-05-04 2017-09-22 鹤山市沃得钨钼实业有限公司 一种稀土钨合金坩埚及其制造方法
CN107227423A (zh) * 2017-06-12 2017-10-03 合肥工业大学 一种具有优异高温力学性能的钨‑氧化钇复合材料及其制备方法
CN107322002B (zh) * 2017-06-28 2020-01-17 合肥工业大学 一种稀土氧化物掺杂钨基复合粉体及其制备方法
CN107326240A (zh) * 2017-07-07 2017-11-07 合肥工业大学 一种超细晶TiC和Y2O3掺杂W基复合材料及其制备方法
US10906105B2 (en) 2018-04-20 2021-02-02 Raytheon Technologies Corporation Uniformly controlled nanoscale oxide dispersion strengthened alloys
CN110407254B (zh) * 2018-04-26 2021-08-20 南昌大学 一种含钇的仲钨酸铵复合粉末的制备方法
CN109022883A (zh) * 2018-08-17 2018-12-18 佛山皖和新能源科技有限公司 一种风力发电机用合金材料的制备方法
CN109095471A (zh) * 2018-10-29 2018-12-28 合肥工业大学 一种具有核壳结构的wc包覆稀土氧化物无粘结相硬质合金的制备方法
CN109676124B (zh) * 2018-12-24 2020-02-28 北京科技大学 一种金属材料的烧结致密化及晶粒尺寸控制方法
US11673196B2 (en) 2018-12-24 2023-06-13 University Of Science And Technology Beijing Metal material sintering densification and grain size control method
CN109972018B (zh) * 2019-05-10 2020-07-07 赣州有色冶金研究所 一种WC-Co-RE复合粉及其制备方法与应用
CN110270692B (zh) * 2019-06-10 2020-08-25 北京科技大学 一种钨/稀土金属氧化物复合空心球形粉体的制备方法
CN111041318A (zh) * 2019-12-28 2020-04-21 泰州市华诚钨钼制品有限公司 一种钨铜合金及其制备方法
CN113102747A (zh) * 2020-01-13 2021-07-13 天津大学 一种在增材制造用金属粉末中掺杂稀土氧化物的制备方法
CN111644632A (zh) * 2020-04-20 2020-09-11 淮北师范大学 一种掺杂稀土氧化镧的tzm合金的制备方法
CN111547768A (zh) * 2020-04-26 2020-08-18 金堆城钼业股份有限公司 一种纳米掺杂制备稀土二钼酸铵的制备方法
CN111922330B (zh) * 2020-06-17 2022-04-22 广东省科学院新材料研究所 一种用于激光增材制造钨制品的金属钨粉和钨制品及其制备方法
CN111893339A (zh) * 2020-08-06 2020-11-06 合肥工业大学 一种湿化学法制备高性能WC-8Co-Y2O3硬质合金的方法
CN112030026B (zh) * 2020-08-31 2021-10-15 合肥工业大学 一种高硬度、高致密度复合稀土氧化物掺杂钨基复合材料的制备方法
CN112251622B (zh) * 2020-09-17 2022-03-18 洛阳科威钨钼有限公司 一种稀土掺杂冶炼金属用搅拌器的生产方法
CN112222420B (zh) * 2020-12-07 2021-03-16 西安稀有金属材料研究院有限公司 一种掺杂金属氧化物纳米颗粒的纳米钨粉及其制备方法
CN112570724B (zh) * 2020-12-11 2022-11-25 江西理工大学 一种稀土钨铜复合粉的制备方法
CN112872363A (zh) * 2021-01-12 2021-06-01 江西理工大学 一种稀土钴镍复合粉的制备方法
CN113186438B (zh) * 2021-01-20 2022-09-13 厦门虹鹭钨钼工业有限公司 一种合金线材及其制备方法与应用
CN112941386B (zh) * 2021-01-27 2022-10-14 北京控制工程研究所 一种用于磁等离子体动力推力器的阴极
CN112846173A (zh) * 2021-02-08 2021-05-28 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法
CN113106279A (zh) * 2021-03-01 2021-07-13 北京工业大学 一种多元掺杂氧化物弥散强化钨基合金及其制备方法与应用
CN113070482A (zh) * 2021-03-22 2021-07-06 中南大学 一种氧化物弥散强化铜基复合材料的制备方法
US20220411901A1 (en) * 2021-06-29 2022-12-29 General Electric Company Oxide dispersion strengthened refractory based alloy
CN113798504B (zh) * 2021-09-17 2023-08-22 郑州大学 3d打印用稀土氧化物弥散增强钨粉的制备方法
CN114480903B (zh) * 2022-01-26 2023-04-14 中南大学 一种高抗He等离子体辐照超细晶W-Y2O3复合材料及制备方法
CN114951639B (zh) * 2022-05-10 2023-11-14 厦门虹鹭钨钼工业有限公司 一种高密度细晶结构钼合金顶头及其制备方法
CN114752801B (zh) * 2022-05-12 2022-11-15 崇义章源钨业股份有限公司 一种板状晶强化网状结构硬质合金及其制备方法
CN114959339A (zh) * 2022-05-16 2022-08-30 北京科技大学 一种湿化学法制备高强度高塑性钨合金的方法
CN114951675B (zh) * 2022-05-30 2024-01-30 中国科学院合肥物质科学研究院 一种超细钨-钽纳米晶合金粉体及其制备方法
CN114990374A (zh) * 2022-06-08 2022-09-02 合肥工业大学 一种稀土氧化物颗粒增强钨钒固溶合金及其制备方法
CN115229181B (zh) * 2022-09-23 2022-12-09 西安稀有金属材料研究院有限公司 基于纳米级固液混合沉积制备超细二氧化钼和钼粉的方法
CN115415530B (zh) * 2022-10-13 2023-10-24 崇义章源钨业股份有限公司 一种含稀土的硬质合金及其制备方法
CN115533112B (zh) * 2022-10-17 2023-10-20 北京工业大学 一种复合稀土钨/钼酸盐共晶细化难熔金属的方法
CN115555572B (zh) * 2022-10-25 2024-08-09 北京科技大学 一种采用粉末冶金法制备含稀土元素高强铝合金的方法
CN115418616B (zh) * 2022-11-04 2023-02-10 广州市尤特新材料有限公司 一种电控变色玻璃用钨合金靶材及其制备方法
CN116275048A (zh) * 2023-03-22 2023-06-23 中钨稀有金属新材料(湖南)有限公司 一种含镧钨棒坯及其制备方法与应用
CN116275047A (zh) * 2023-03-22 2023-06-23 中钨稀有金属新材料(湖南)有限公司 一种含钇钨棒坯及其制备方法与应用
CN115992329B (zh) * 2023-03-22 2023-06-06 中钨稀有金属新材料(湖南)有限公司 一种钨棒坯及其应用
CN116119719B (zh) * 2023-04-18 2023-06-27 崇义章源钨业股份有限公司 一种超细板状氧化钨及其制备方法
CN116904821B (zh) * 2023-07-24 2023-12-08 湖南金博高新科技产业集团有限公司 一种含二元稀土复合氧化物的钨丝基材及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923673A (en) * 1988-10-17 1990-05-08 Gesellschaft Fur Wolfram-Industrie Mbh Method for producing alloyed tungsten rods
JP2002371301A (ja) * 2001-06-18 2002-12-26 Allied Material Corp タングステン焼結体およびその製造方法
JP2004083968A (ja) * 2002-08-26 2004-03-18 Mitsubishi Material Cmi Kk 高精度光学ガラスレンズの熱間プレス成形に用いるのに適したタングステン基焼結合金金型
CN1616185A (zh) * 2004-09-30 2005-05-18 北京工业大学 高含量多元复合稀土钨电极材料及其制备方法
CN101230427A (zh) * 2008-02-22 2008-07-30 中南大学 一种含稀土的细晶W-Ni-Fe合金的制备方法
CN103173641A (zh) * 2013-04-10 2013-06-26 北京科技大学 一种纳米氧化钇弥散强化钨合金的制备方法
CN103740994A (zh) * 2014-02-10 2014-04-23 中国科学院合肥物质科学研究院 纳米结构钨合金及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375944B1 (ko) * 2000-07-08 2003-03-10 한국과학기술원 기계적 합금화에 의한 산화물 분산강화 텅스텐 중합금의 제조방법
CN101805867B (zh) * 2009-12-01 2012-11-21 中南大学 Si3N4基金属陶瓷及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923673A (en) * 1988-10-17 1990-05-08 Gesellschaft Fur Wolfram-Industrie Mbh Method for producing alloyed tungsten rods
JP2002371301A (ja) * 2001-06-18 2002-12-26 Allied Material Corp タングステン焼結体およびその製造方法
JP2004083968A (ja) * 2002-08-26 2004-03-18 Mitsubishi Material Cmi Kk 高精度光学ガラスレンズの熱間プレス成形に用いるのに適したタングステン基焼結合金金型
CN1616185A (zh) * 2004-09-30 2005-05-18 北京工业大学 高含量多元复合稀土钨电极材料及其制备方法
CN101230427A (zh) * 2008-02-22 2008-07-30 中南大学 一种含稀土的细晶W-Ni-Fe合金的制备方法
CN103173641A (zh) * 2013-04-10 2013-06-26 北京科技大学 一种纳米氧化钇弥散强化钨合金的制备方法
CN103740994A (zh) * 2014-02-10 2014-04-23 中国科学院合肥物质科学研究院 纳米结构钨合金及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913665A (zh) * 2021-09-30 2022-01-11 中国科学院重庆绿色智能技术研究院 纳米氧化镧增强钨基复合材料及其制备方法
CN114959338A (zh) * 2022-05-16 2022-08-30 北京科技大学 一种机械合金化制备高强度高塑性钨合金的方法
CN116253852A (zh) * 2022-12-22 2023-06-13 苏州羽燕新材料科技有限公司 一种改性热塑性聚氨酯弹性体的制备方法
CN116253852B (zh) * 2022-12-22 2024-05-03 苏州羽燕特种材料科技有限公司 一种改性热塑性聚氨酯弹性体的制备方法
CN116103532A (zh) * 2023-02-28 2023-05-12 南昌大学 一种微量稀土氧化物强化无氧铜材及其制备方法
CN116103532B (zh) * 2023-02-28 2024-01-23 南昌大学 一种微量稀土氧化物强化无氧铜材及其制备方法
CN115976388A (zh) * 2023-03-21 2023-04-18 新乡市东津机械有限公司 一种硬质合金、捣镐、磨耗板及其制造工艺
CN115976388B (zh) * 2023-03-21 2023-07-04 新乡市东津机械有限公司 一种硬质合金、捣镐、磨耗板及其制造工艺
CN118682140A (zh) * 2024-08-29 2024-09-24 长春黄金研究院有限公司 球型金粉及其制备方法

Also Published As

Publication number Publication date
CN105518169B (zh) 2017-09-12
CN105518169A (zh) 2016-04-20
US20170225234A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
WO2016061721A1 (fr) Procédé de préparation de matériau en tungstène à grains fins, renforcé par une dispersion d'oxyde de terres rares
CN104630532B (zh) 一种碳化物和稀土氧化物复合强化细晶钨材料的制备方法
CN110330333B (zh) 一种制备纳米级钇稳定氧化锆复合粉体的方法
AU2013340802B2 (en) Thermal spraying of ceramic materials
CN110560700B (zh) 一种制备高致密度超细晶稀土氧化物掺杂钨合金的方法
CN108796265B (zh) 一种TiB纳米增强钛基复合材料的制备方法
CN106435446A (zh) 等离子热喷涂法制备的cysz热障涂层及制备方法
US9878370B2 (en) Bimodal metal matrix nanocomposites and methods of making
CN108570569B (zh) 一种氮化铝弥散强化铜复合材料的内氮化制备方法
CN111206164B (zh) 一种高性能超细晶钼镧合金的制备方法
US4622068A (en) Sintered molybdenum alloy process
Taha et al. Mechanical alloying and sintering of a Ni/10wt.% Al 2 O 3 nanocomposite and its characterization
CN108772569A (zh) 一种超细纳米钨粉的水热制备方法
CN108788173A (zh) 一种超细氧化钇掺杂钨复合粉末的水热制备方法
CN113652568B (zh) 一种稀土氧化物颗粒增强钨钼固溶合金的制备方法
Zhang et al. Effects of various rare earth oxides on morphology and size of oxide dispersion strengthening (ODS)-W and ODS-Mo alloy powders
Sekino et al. Reduction and Sintering of Alumina/Tungsten Nanocomposites Powder Processing, Reduction Behavior and Microstructural Characterization
CN115229198B (zh) 一种Ti600钛合金球形粉及其制备方法和用途
CN112222420B (zh) 一种掺杂金属氧化物纳米颗粒的纳米钨粉及其制备方法
CN111112641A (zh) 纳米钼铼合金粉末的制备方法
CN115007871A (zh) 一种制备高强高塑钼合金的方法
CN114804869A (zh) 一种溶胶凝胶法合成Hf6Ta2O17粉体的制备方法
Beygi et al. Synthesis of a NiTi 2-AlNi-Al 2 O 3 nanocomposite by mechanical alloying and heat treatment of Al-TiO 2-NiO
JP4196179B2 (ja) 窒化ケイ素材料の製造方法
CN110983087A (zh) 一种改善氧化钇弥散强化钨合金中氧化物分布的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904310

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14904310

Country of ref document: EP

Kind code of ref document: A1