WO2016060418A1 - Method for separating high heat dissipative nuclide in chloride lithium salt using zone refining method - Google Patents
Method for separating high heat dissipative nuclide in chloride lithium salt using zone refining method Download PDFInfo
- Publication number
- WO2016060418A1 WO2016060418A1 PCT/KR2015/010715 KR2015010715W WO2016060418A1 WO 2016060418 A1 WO2016060418 A1 WO 2016060418A1 KR 2015010715 W KR2015010715 W KR 2015010715W WO 2016060418 A1 WO2016060418 A1 WO 2016060418A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- high heat
- salt
- heat radiation
- waste
- heater
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D59/00—Separation of different isotopes of the same chemical element
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
Definitions
- the present invention relates to a method for isolating high heat radiation nuclides in lithium chloride salts using a zone purification method. Specifically, the heat radiation nuclides in lithium chloride molten salts are separated and removed, and the lithium chloride salts from which the nuclides are removed are subjected to a pyroprocessing process. The present invention relates to a method for separating high-heat radiation nuclides that can be recycled.
- Pyroprocessing a recycling technology of spent fuel generated after nuclear power generation, is a dry treatment process that can reduce the half-life to 1/1000 and reduce the volume to 1/20.
- Korea Atomic Energy Research Institute (KAERI) It is a technology under study.
- Pyroprocessing consists of deladding, voloxidation, electroreduction, electrorefining and electrowinning.
- Pyroprocessing generates a large amount of waste molten salt because it undergoes processes of electroreduction, electrorefining and electrorefining. Such waste molten salt is solidified and disposed of in a stable state. Therefore, there is a need to minimize radioactive waste in terms of economic and environmental aspects of the process.
- LiCl-KCl LiCl-KCl
- molten salt research has been conducted worldwide, it is concentrated on eutectic salt wastes, and the use of oxide fuels involves an electrolytic reduction process, and studies on the used LiCl wastes are insufficient.
- eutectic salts unlike eutectic salts, conventional techniques such as ion exchange method using zeolite, oxygen dispersion method, and precipitant addition method are applicable to LiCl waste because of the high working condition of 610 ° C or higher. There is no limit. Therefore, the development of alternative technology for the treatment of radioactive LiCl waste is very urgent situation.
- An object of the present invention for solving the above problems is to provide a method that can effectively recycle salt waste by removing Cs and Sr present in the radioactive waste waste generated in the pyroprocessing process of spent nuclear fuel. It is to provide a method of minimizing energy consumption and effectively separating high heat radiation nuclides.
- the high heat radiation nuclide separation method according to the present invention is characterized by zone refining salt wastes of lithium chloride containing high heat radiation nuclides including Cs and Sr to segregate and remove radionuclides contained in salt wastes. have.
- the impurity separation process using zone refining is based on the difference in solubility between solids of impurities. This is also the same principle of casting segregation. In other words, pure crystals and impurities remain in the remaining liquid phase. In the liquid coagulation process, there are changes in the temperature at which the crystals are formed according to the impurity concentration and the temperature in the liquid phase, and there may be a compound between the known material (object to be purified) and impurities. Knowledge is needed.
- LiCl-Cs-Sr which is a salt waste (base material).
- the impurity concentrations such as Cs and Sr increase, it can be seen that the melting temperature of the salt waste is continuously lowered, and the impurities are moved to the liquid phase through solid-phase transformation. .
- the separation efficiency is very excellent because there is no compound, it can be seen that the removal of highly heat-resistant nuclides by the zone purification at 40 mol% in the case of Cs, 38 mol% or less in the case of Sr.
- the salt waste may be a lithium chloride salt containing a high heat radiation nuclide
- the high heat radiation nuclide may include Cs and Sr.
- a zone refining method segregation of high heat radiation nuclides from salt wastes, and separation and removal of regions with high heat radiation nuclides segregated, thereby recycling molten salts, which are radioactive wastes generated in a pyroprocessing process.
- This makes it possible to suppress the generation of radioactive nuclear waste that is disposed of.
- the zone refining method the area in which the salt waste is melted can be minimized, thereby minimizing the energy required to remove the highly heat-resistant nuclide.
- the high heat radiation nuclide separation method comprises the steps of charging the salt waste into the tubular container; And refining the salt waste using a heater that wraps around the circumferential surface of the tubular vessel and moves in the longitudinal direction of the tubular vessel.
- the tubular container may be a hermetically sealed container, and the inside thereof may be an inert gas atmosphere.
- Inert gases include argon, nitrogen, helium and mixed gas thereof.
- the length and diameter of the tubular vessel may be appropriately modified depending on the treatment capacity of the salt waste to be treated. As a specific and non-limiting example, the diameter of the tubular container may be 1 to 10 cm, the length of the tubular container may be 60 to 500 cm.
- the cross section of the tubular container may be circular in terms of uniform heating.
- the heater may be in the form of a ring surrounding the tubular vessel, and may be moved by means of a moving means in the longitudinal direction of the tubular vessel, specifically from one end of the tubular vessel to the other.
- a moving means in the longitudinal direction of the tubular vessel, specifically from one end of the tubular vessel to the other.
- the width (length) of the salt waste melted by the heater forms a stable solid / liquid interface, and can accommodate impurities (radionuclides) that are pushed into the liquid phase as the heater moves, and is different from one end of the tubular container.
- impurities radioactive idide
- the concentration of impurities concentrated in the liquid phase can be maintained at 40 mol% or less for Cs and / or 38 mol% or less for Sr, melting as small as possible in terms of minimizing energy consumption is preferable.
- the width (length) of the salt waste melted by the heater may be 5 to 15 cm.
- zone refining may be performed while simultaneously moving two or more heaters spaced apart from each other. Can be.
- the salt waste is partially melted by the heater, but as the heater moves, the salt solidifies at the work / liquid interface, and the salt melts at the other solid-liquid interface, and the melting region also moves.
- the two or more heaters spaced apart from each other in the longitudinal direction of the tubular container as the melting and solidification of the salt waste is repeated, the purity of the solidified salt can be increased, and also the melting and solidification is repeated by two or more rarers Even if the impurity concentration is slightly higher than the equilibrium concentration at the solid / liquid interface due to the rapid movement of the heater, the purity of the salt finally obtained can be increased.
- the number of heaters to be provided may be appropriately changed in consideration of the amount of salt waste to be treated or the length of the tubular container, and as a specific example, two to four heaters may be provided at the same time.
- the moving speed of the heater is preferably a speed that can increase the treatment efficiency without excessively increasing the impurity concentration at the solid / liquid interface beyond the equilibrium concentration.
- the moving speed of the heater may be 1 mm / minute to 7 mm / minute.
- the heater may be repeatedly moved 1 to 20 times from one end of the tubular vessel to the other end. Through such repeated movements, the purity of the salt finally obtained can be increased, and the process speed (moving speed of the heater) can be improved.
- the salt zone containing impurities segregated, including high heat radiation nuclides can be separated off and then the remaining purified salt can be recycled to the spent fuel pyroprocessing process.
- the separation removal is of course to remove the separation region having a concentration higher than the concentration of the high heat radiation nuclides contained in the salt waste.
- the tubular container into which the salt waste is loaded may be a quartz tube, and the salt waste may be contained in a boat made of SUS material located in the quartz tube.
- the high heat radiation nuclide separation method according to the present invention is capable of separating and removing the high heat radiation nuclides present in the molten salt, and recycling the recovered molten salt, thereby suppressing radioactive nuclear waste generation.
- FIG. 2 is a diagram illustrating one conceptual diagram of a zone refining performed by three heaters
- 3 is a view showing the measurement of the concentration of impurities by position of the purified salt according to an embodiment of the present invention.
- a mixed salt was prepared by mixing LiCl, CsCl, and SrCl 2 to contain 15000 ppm (ppm by mass) of Sr.
- the boat was charged into a quartz tube having a length of 2000 mm and a diameter of 40 mm.
- a quartz tube having a length of 2000 mm and a diameter of 40 mm.
- the inside of the quartz tube was made into an argon gas atmosphere and both ends of the tube were sealed with silicon, three ring-shaped heaters surrounding the quartz tube were moved from one end of the tube to the other end.
- all the heaters maintained a temperature of 700 °C
- the melt width by each heater was 10cm
- the movement speed of the heater was 5mm / min.
- the spacing between heaters was kept 5 cm so that the melting areas by adjacent heaters did not overlap.
- the salt in the boat is divided into 5 parts by 1cm according to the position, and the Cs and Sr concentrations are used by ICP-OES And analyzed.
- 3 is a view showing the measurement of the concentration of Cs and Sr according to the number of times of repeated movement of the heater, the position of the salt in the boat.
- the unit of location is cm, and a portion including one end of the boat at which the movement of the heater starts is 1, and a portion including one end at which the movement of the heater is finished is 5.
- the Cs concentration was confirmed that the impurities reduced to about 1/40 from the initial concentration of 41000ppm to 1320ppm. Sr was reduced to about 1/10 from the initial concentration of 15000ppm to 1220ppm. In this case, the yield was about 20% (vol%), and the removal efficiency of the impurities can be further increased by controlling the moving speed of the heater, the length of the melting section, the internal stirring of the liquid phase, and the length of the solid section.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Processing Of Solid Wastes (AREA)
- Extraction Or Liquid Replacement (AREA)
Abstract
The present invention relates to a method for separating high heat dissipative nuclides in chloride lithium salt using a zone refining method. Specifically, the method for separating high heat dissipative nuclides according to the present invention subjects salt waste containing high heat dissipative nuclides comprising Cs and Sr to zone refinement, thereby segregating and eliminating radioactive nuclides contained in the salt waste.
Description
본 발명은 구역 정제법을 이용한 염화리튬염 내 고방열성 핵종 분리방법에 관한 것으로, 상세하게, 염화리튬 용융염 내의 고방열성 핵종을 분리 제거하여, 핵종이 제거된 염화리튬염을 파이로프로세싱 공정에 재활용 할 수 있는 고방열성 핵종의 분리방법에 관한 것이다. The present invention relates to a method for isolating high heat radiation nuclides in lithium chloride salts using a zone purification method. Specifically, the heat radiation nuclides in lithium chloride molten salts are separated and removed, and the lithium chloride salts from which the nuclides are removed are subjected to a pyroprocessing process. The present invention relates to a method for separating high-heat radiation nuclides that can be recycled.
원자력발전 후 발생되는 사용후핵연료의 재활용 기술인 파이로프로세싱(pyroprocessing)은, 반감기를 1/1000으로 줄이고 부피를 1/20으로 줄일 수 있는 건식처리공정으로 현재,한국원자력연구원(KAERI)을 중심으로 연구중인 기술이다. Pyroprocessing, a recycling technology of spent fuel generated after nuclear power generation, is a dry treatment process that can reduce the half-life to 1/1000 and reduce the volume to 1/20. Currently, the Korea Atomic Energy Research Institute (KAERI) It is a technology under study.
파이로프로세싱은 탈피복(decladding), 산화(voloxidation), 전해환원(electroreduction),전해정련(electrorefining) 및 전해제련(electrowinning)의 공정으로 구성되어 있다.Pyroprocessing consists of deladding, voloxidation, electroreduction, electrorefining and electrowinning.
파이로프로세싱은 전해환원, 전해정련 및 전해제련의 공정을 거치기 때문에 폐용융염이 다량으로 발생한다. 이러한 폐용융염은 안정한 상태로 고화처리하여 처분하게 된다. 따라서 공정의 경제적, 친환경적 측면에서 방사성 염폐기물을 최소화 시킬 필요가 있다.Pyroprocessing generates a large amount of waste molten salt because it undergoes processes of electroreduction, electrorefining and electrorefining. Such waste molten salt is solidified and disposed of in a stable state. Therefore, there is a need to minimize radioactive waste in terms of economic and environmental aspects of the process.
파이로프로세싱 중 발생하는 LiCl 및 공융염(LiCl-KCl) 폐기물 발생량을 감소시키기 위하여 염폐기물내의 핵종만을 분리시켜 처분하고 나머지 염을 재활용하는 방안이 필요하다. 전세계적으로 폐용융염 연구가 수행되어 오고 있지만 공융염폐기물에 편중되어 있으며, 산화물핵연료를 사용하는 경우 전해환원공정이 수반되는데, 이때 사용되는 LiCl염폐기물에 관한 연구는 미흡한 실정이다. 또한, 공융염과 달리, LiCl염폐기물의 경우 610℃ 이상의 고온의 작업조건 때문에 대한민국 등록특허 제0861262호와 같이, 제올라이트를 이용한 이온교환법, 산소분산법, 침전제 첨가법등과 같은 종래의 기술을 적용할 수 없는 한계가 있다. 따라서 방사성 LiCl염폐기물 처리를 위한 대체기술 개발은 매우 시급한 실정이다.In order to reduce the amount of LiCl and eutectic salt (LiCl-KCl) wastes generated during pyroprocessing, it is necessary to separate and dispose only the nuclides in the salt waste and recycle the remaining salts. Although molten salt research has been conducted worldwide, it is concentrated on eutectic salt wastes, and the use of oxide fuels involves an electrolytic reduction process, and studies on the used LiCl wastes are insufficient. In addition, unlike eutectic salts, conventional techniques such as ion exchange method using zeolite, oxygen dispersion method, and precipitant addition method are applicable to LiCl waste because of the high working condition of 610 ° C or higher. There is no limit. Therefore, the development of alternative technology for the treatment of radioactive LiCl waste is very urgent situation.
상술한 문제점들을 해결하기 위한 본 발명의 목적은 사용후 핵연료의 파이로프로세싱(pyroprocessing) 공정에서 발생하는 방사성 염폐기물 내에 존재하는 Cs 및 Sr을 효과적으로 제거하여 염폐기물을 재활용할 수 있는 방법을 제공하는 것이며, 에너지 소모를 최소화하며 효과적으로 고방열성 핵종을 분리하는 방법을 제공하는 것이다. SUMMARY OF THE INVENTION An object of the present invention for solving the above problems is to provide a method that can effectively recycle salt waste by removing Cs and Sr present in the radioactive waste waste generated in the pyroprocessing process of spent nuclear fuel. It is to provide a method of minimizing energy consumption and effectively separating high heat radiation nuclides.
이하 첨부한 도면들을 참조하여 본 발명의 제조방법을 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면들은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. Hereinafter, a manufacturing method of the present invention will be described in detail with reference to the accompanying drawings. The drawings introduced below are provided by way of example so that the spirit of the invention to those skilled in the art can fully convey. Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other forms, and the drawings presented below may be exaggerated to clarify the spirit of the present invention. At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art to which the present invention belongs, the gist of the present invention in the following description and the accompanying drawings Descriptions of well-known functions and configurations that may be unnecessarily blurred are omitted.
본 발명에 따른 고방열성 핵종 분리방법은 Cs 및 Sr을 포함하는 고방열성 핵종을 함유하는 염화리튬의 염폐기물을 구역 정제(zone refining)하여, 염폐기물에 함유된 방사성 핵종을 편석시켜 제거하는 특징이 있다. The high heat radiation nuclide separation method according to the present invention is characterized by zone refining salt wastes of lithium chloride containing high heat radiation nuclides including Cs and Sr to segregate and remove radionuclides contained in salt wastes. have.
구역 정제(zone refining)를 이용한 불순물 분리공정은 불순물의 고액간 용해도차이를 이용한 것이다. 이는 주조편석의 원리와도 동일하다. 즉, 응고가 진행하면서 생기는 결정에는 순수한 물질이, 남은 액상에는 불순물들이 존재하게 된다. 액상의 응고과정속에서 불순물농도에 따른 결정이 형성되는 온도, 액상구간의 온도의 변화가 존재하며 또한 기지재료(정제 대상)와 불순물간의 화합물이 존재할 수 있기 때문에 구역 정제를 이용하는 경우 재료에 대한 사전지식이 필요하다. The impurity separation process using zone refining is based on the difference in solubility between solids of impurities. This is also the same principle of casting segregation. In other words, pure crystals and impurities remain in the remaining liquid phase. In the liquid coagulation process, there are changes in the temperature at which the crystals are formed according to the impurity concentration and the temperature in the liquid phase, and there may be a compound between the known material (object to be purified) and impurities. Knowledge is needed.
도 1은 염폐기물(기지재료)인 LiCl-Cs-Sr간의 상태도이다. 도 1의 상태도에서 알 수 있듯이, Cs, Sr과 같은 불순물 농도가 증가함에 따라, 염폐기물의 용융온도는 계속적으로 하강하는 것을 알 수 있으며, 고액 상변태를 통해 액상으로 불순물이 이동되는 것을 알 수 있다. 또한 화합물이 존재하지 않아 분리효율이 매우 우수하며, Cs의 경우 40몰%, Sr의 경우 38몰%정도 이하에서 구역 정제에 의한 고방열성 핵종의 제거가 가능한 것을 알 수 있다. 1 is a state diagram between LiCl-Cs-Sr which is a salt waste (base material). As can be seen in the state diagram of FIG. 1, as the impurity concentrations such as Cs and Sr increase, it can be seen that the melting temperature of the salt waste is continuously lowered, and the impurities are moved to the liquid phase through solid-phase transformation. . In addition, the separation efficiency is very excellent because there is no compound, it can be seen that the removal of highly heat-resistant nuclides by the zone purification at 40 mol% in the case of Cs, 38 mol% or less in the case of Sr.
즉, 본 발명의 일 실시예에 따른 방법에 있어, 염폐기물은 고방열성 핵종을 함유하는 염화리튬염일 수 있으며, 고방열성 핵종은 Cs 및 Sr을 포함할 수 있다. That is, in the method according to an embodiment of the present invention, the salt waste may be a lithium chloride salt containing a high heat radiation nuclide, and the high heat radiation nuclide may include Cs and Sr.
본 발명의 일 실시예에 따라, 구역 정제법을 이용하여 염폐기물로부터 고방열성 핵종을 편석시키고, 고방열성 핵종이 편석된 영역을 분리 제거함으로써, 파이로프로세싱 공정에서 발생하는 방사성 폐기물인 용융염의 재활용이 가능해지며, 폐기 처리되는 방사성 핵폐기물의 발생을 억제할 수 있다. 또한, 구역 정제법을 이용함에 따라, 염폐기물이 용융되는 영역이 최소화되어 고방열성 핵종 분리 제거에 소요되는 에너지를 최소화할 수 있다.According to one embodiment of the present invention, by using a zone refining method, segregation of high heat radiation nuclides from salt wastes, and separation and removal of regions with high heat radiation nuclides segregated, thereby recycling molten salts, which are radioactive wastes generated in a pyroprocessing process. This makes it possible to suppress the generation of radioactive nuclear waste that is disposed of. In addition, by using the zone refining method, the area in which the salt waste is melted can be minimized, thereby minimizing the energy required to remove the highly heat-resistant nuclide.
상세하게, 본 발명의 일 실시예에 따른 고방열성 핵종 분리방법은 염폐기물을 관형 용기에 장입하는 단계; 및 관형 용기의 둘레면을 감싸며 관형 용기의 길이 방향으로 이동하는 히터를 이용하여 염폐기물을 구역 정제하는 단계;를 포함할 수 있다.Specifically, the high heat radiation nuclide separation method according to an embodiment of the present invention comprises the steps of charging the salt waste into the tubular container; And refining the salt waste using a heater that wraps around the circumferential surface of the tubular vessel and moves in the longitudinal direction of the tubular vessel.
이때, 관형 용기는 밀폐 가능한 밀폐형 용기일 수 있으며, 그 내부는 불활성 가스 분위기일 수 있다. 불활성 가스는 아르곤, 질소, 헬륨 및 이들의 혼합 가스를 들 수 있다. 관형 용기의 길이 및 직경은 처리하고자 하는 염폐기물의 처리 용량에 따라 적절히 설계 변경될 수 있다. 구체적이며 비 한정적인 일 예로, 관형 용기의 직경은 1 내지 10cm일 수 있으며, 관형 용기의 길이는 60 내지 500cm일 수 있다. 관형 용기의 단면은 균일한 가온 측면에서 원형일 수 있다.In this case, the tubular container may be a hermetically sealed container, and the inside thereof may be an inert gas atmosphere. Inert gases include argon, nitrogen, helium and mixed gas thereof. The length and diameter of the tubular vessel may be appropriately modified depending on the treatment capacity of the salt waste to be treated. As a specific and non-limiting example, the diameter of the tubular container may be 1 to 10 cm, the length of the tubular container may be 60 to 500 cm. The cross section of the tubular container may be circular in terms of uniform heating.
히터는 관형 용기의 둘레를 감싸는 링 형태일 수 있으며, 이동 수단에 의해 관형 용기의 길이 방향, 구체적으로 관형 용기의 일 단에서 다른 일 단으로 이동될 수 있다. 히터에 의해, 적어도 히터가 위치하는 영역의 염폐기물은 모두 용융될 수 있으며, 구체적인 일 예로 히터에 의해 650 내지 720℃의 온도로 가열될 수 있다. The heater may be in the form of a ring surrounding the tubular vessel, and may be moved by means of a moving means in the longitudinal direction of the tubular vessel, specifically from one end of the tubular vessel to the other. By the heater, at least the salt wastes in the region where the heater is located may be melted, and in particular, may be heated to a temperature of 650 to 720 ℃ by the heater.
이때, 히터에 의해 용융되는 염폐기물의 폭(길이)은 안정적인 고/액 계면이 형성되며, 히터의 이동에 따라 액상으로 밀리는 불순물(방사성 핵종)을 수용할 수 있고, 관형 용기의 일 단에서 다른 단으로 이동하며 액상내에 농축되는 불순물의 농도가 Cs의 경우 40몰% 이하 및/또는 Sr의 경우 38몰% 이하로 유지될 수 있는 한, 에너지 소모 최소화 측면에서 가능한 작은 폭이 용융되는 것이 좋다. 구체적인 일 예로, 히터에 의해 용융되는 염폐기물의 폭(길이)은 5 내지 15cm일 수 있다. At this time, the width (length) of the salt waste melted by the heater forms a stable solid / liquid interface, and can accommodate impurities (radionuclides) that are pushed into the liquid phase as the heater moves, and is different from one end of the tubular container. As long as the concentration of impurities concentrated in the liquid phase can be maintained at 40 mol% or less for Cs and / or 38 mol% or less for Sr, melting as small as possible in terms of minimizing energy consumption is preferable. As a specific example, the width (length) of the salt waste melted by the heater may be 5 to 15 cm.
본 발명의 일 실시예에 따른 고방열성 핵종 분리방법에 있어, 도 2의 도면에 도시한 바와 같이, 염폐기물의 처리 효율 향상을 위해, 구역 정제는 서로 이격된 둘 이상의 히터가 동시 이동하며 수행될 수 있다. 히터에 의해 염폐기물이 부분적으로 용융되되, 히터의 이동에 따라 일 고/액 계면에서는 염의 고화가, 다른 일 고액 계면에서는 염의 용융이 발생하며, 용융 영역 또한 이동하게 된다. 이때, 관형 용기의 길이 방향으로 서로 이격된 둘 이상의 히터에 의해, 염폐기물의 용융과 고화가 반복됨에 따라, 고화된 염의 순도를 높아질 수 있으며, 또한 둘 이상의 희터에 의해 용융과 고화가 반복되는 경우, 빠른 히터의 이동에 의해 고/액 계면에서 불순물 농도가 평형 농도 보다 좀 높아지더라도, 최종적으로 수득되는 염의 순도를 높일 수 있다. 구비되는 히터의 수는 처리되는 염폐기물의 양이나 관형 용기의 길이등을 고려하여 적절히 설계변경될 수 있으며, 구체적인 일 예로, 2 내지 4개의 히터가 동시 구비될 수 있다.In the method of separating high heat radiation nuclides according to an embodiment of the present invention, as shown in FIG. 2, in order to improve treatment efficiency of salt waste, zone refining may be performed while simultaneously moving two or more heaters spaced apart from each other. Can be. The salt waste is partially melted by the heater, but as the heater moves, the salt solidifies at the work / liquid interface, and the salt melts at the other solid-liquid interface, and the melting region also moves. At this time, by the two or more heaters spaced apart from each other in the longitudinal direction of the tubular container, as the melting and solidification of the salt waste is repeated, the purity of the solidified salt can be increased, and also the melting and solidification is repeated by two or more rarers Even if the impurity concentration is slightly higher than the equilibrium concentration at the solid / liquid interface due to the rapid movement of the heater, the purity of the salt finally obtained can be increased. The number of heaters to be provided may be appropriately changed in consideration of the amount of salt waste to be treated or the length of the tubular container, and as a specific example, two to four heaters may be provided at the same time.
히터의 이동 속도는 고/액 계면에서 불순물 농도가 평형 농도 이상으로 과도하게 높아지지 않으면서도 처리 효율을 높일 수 있는 속도인 것이 좋다. 구체적인 일 예로, 히터의 이동 속도는 1mm/분 내지 7mm/분일 수 있다. The moving speed of the heater is preferably a speed that can increase the treatment efficiency without excessively increasing the impurity concentration at the solid / liquid interface beyond the equilibrium concentration. As a specific example, the moving speed of the heater may be 1 mm / minute to 7 mm / minute.
용기에 구비되는 히터의 수와 독립적으로, 히터는 관형 용기의 일 단에서 다른 일 단으로 1 내지 20 회 반복 이동할 수 있다. 이러한 반복 이동을 통해서도 최종적으로 수득되는 염의 순도를 높일 수 있으며, 공정 속도(히터의 이동속도)를 향상시킬 수 있다.Independently of the number of heaters provided in the vessel, the heater may be repeatedly moved 1 to 20 times from one end of the tubular vessel to the other end. Through such repeated movements, the purity of the salt finally obtained can be increased, and the process speed (moving speed of the heater) can be improved.
구역 정제가 수행된 후, 고방열성 핵종을 포함하는 불순물이 편석된 염 영역을 분리 제거한 후, 정제된 나머지 염을 사용후 핵연료 파이로프로세싱 공정에 재활용할 수 있다. 이때, 분리제거는 염폐기물에 함유되는 고방열성 핵종의 농도 이상의 농도를 갖는 영역을 분리제거함은 물론이다. After zone purification has been performed, the salt zone containing impurities segregated, including high heat radiation nuclides, can be separated off and then the remaining purified salt can be recycled to the spent fuel pyroprocessing process. At this time, the separation removal is of course to remove the separation region having a concentration higher than the concentration of the high heat radiation nuclides contained in the salt waste.
본 발명의 일 실시예에 따른 방법에 있어, 염폐기물이 장입되는 관형 용기는 쿼츠 튜브일 수 있고, 염폐기물은 쿼츠 튜브 내에 위치하는 서스(SUS) 재질의 보트(boat)에 담길 수 있다. In the method according to an embodiment of the present invention, the tubular container into which the salt waste is loaded may be a quartz tube, and the salt waste may be contained in a boat made of SUS material located in the quartz tube.
본 발명에 따른 고방열성 핵종 분리방법은 용융염내에 존재하는 고 방열성 핵종의 분리 제거가 가능하고, 회수된 용융염의 재활용이 가능하여, 방사성 핵폐기물 생성을 억제 할 수 있다.The high heat radiation nuclide separation method according to the present invention is capable of separating and removing the high heat radiation nuclides present in the molten salt, and recycling the recovered molten salt, thereby suppressing radioactive nuclear waste generation.
도 1은 LiCl-Cs-Sr간의 상태도이며,1 is a state diagram between LiCl-Cs-Sr,
도 2는 3개의 히터에 의해 수행되는 구역 정제의 일 개념도를 도시한 도면이며,2 is a diagram illustrating one conceptual diagram of a zone refining performed by three heaters,
도 3은 본 발명의 일 실시예에 따라 정제된 염의 위치별 불순물 농도를 측정 도시한 도면이다.3 is a view showing the measurement of the concentration of impurities by position of the purified salt according to an embodiment of the present invention.
(실시예)(Example)
시약으로 LiCl(98.2%, (주)삼전화학), CsCl(99.0%, (주)삼전화학) 및 SrCl2(98.5% (주)삼전화학)을 이용하여, 41000ppm(질량기준 ppm)의 Cs 및 15000ppm(질량기준 ppm)의 Sr을 함유하도록 LiCl, CsCl 및 SrCl2을 혼합하여, 혼합염을 제조하였다. 41000 ppm (ppm by mass) of Lis (98.2%, Samjeon Chemical Co., Ltd.), CsCl (99.0%, Samjeon Chemical Co., Ltd.) and SrCl 2 (98.5% Samjeon Chemical Co., Ltd.) A mixed salt was prepared by mixing LiCl, CsCl, and SrCl 2 to contain 15000 ppm (ppm by mass) of Sr.
이후, 600mm 길이의 SUS304 재질의 보트에 제조된 혼합염을 채운 후, 보트를 길이 2000mm 및 직경 40mm의 쿼츠 튜브에 장입하였다. 쿼츠 튜브 내부를 아르곤 가스 분위기로 만들고 튜브의 양단을 실리콘으로 밀폐시킨 후, 쿼츠 튜브를 감싸는 링 형태의 히터 3개를 튜브의 일 단에서 다른 단 방향으로 이동시켰다. 이때, 모든 히터는 700℃의 온도를 유지하였으며, 각 히터에 의한 용융 폭은 10cm이었고, 히터의 이동속도는 5mm/min이었다. 인접하는 히터에 의한 용융영역이 겹치지 않도록, 히터간 이격거리는 5cm를 유지하였다.Subsequently, after the mixed salt prepared in a 600 mm long SUS304 boat was filled, the boat was charged into a quartz tube having a length of 2000 mm and a diameter of 40 mm. After the inside of the quartz tube was made into an argon gas atmosphere and both ends of the tube were sealed with silicon, three ring-shaped heaters surrounding the quartz tube were moved from one end of the tube to the other end. At this time, all the heaters maintained a temperature of 700 ℃, the melt width by each heater was 10cm, the movement speed of the heater was 5mm / min. The spacing between heaters was kept 5 cm so that the melting areas by adjacent heaters did not overlap.
3개의 히터를 3회, 6회, 9회, 12회, 15회 또는 18회 반복 이동시킨 후, 보트 내 염을 위치에 따라 1cm씩 5개 부위로 나눠 Cs 및 Sr 농도를 ICP-OES를 이용하여 분석하였다. 도 3은 히터의 반복 이동 횟수 별, 보트 내 염의 위치에 따른 Cs 및 Sr의 농도를 측정 도시한 도면이다. 도 3에서 location의 단위는 cm이며, 히터의 이동이 시작되는 보트의 일 단을 포함하는 부위가 1이며, 히터의 이동이 끝나는 일 단을 포함하는 부위가 5이다. After moving 3 heaters 3 times, 6 times, 9 times, 12 times, 15 times, or 18 times, the salt in the boat is divided into 5 parts by 1cm according to the position, and the Cs and Sr concentrations are used by ICP-OES And analyzed. 3 is a view showing the measurement of the concentration of Cs and Sr according to the number of times of repeated movement of the heater, the position of the salt in the boat. In FIG. 3, the unit of location is cm, and a portion including one end of the boat at which the movement of the heater starts is 1, and a portion including one end at which the movement of the heater is finished is 5.
도 3을 통해 알 수 있듯이, Cs농도는 초기농도 41000ppm에서 1320ppm으로 약 1/40으로 불순물이 감소한 것을 확인하였다. Sr은 초기농도 15000ppm에서 1220ppm으로 약 1/10으로 감소되었다. 이 때 수율은 약 20%(부피%)였으며, 공정조건인 히터의 이동속도와 용융구간의 길이, 액상의 내부교반 및 고액구간의 길이의 제어를 통해 추가적으로 불순물의 제거효율을 높일 수 있다.As can be seen from Figure 3, the Cs concentration was confirmed that the impurities reduced to about 1/40 from the initial concentration of 41000ppm to 1320ppm. Sr was reduced to about 1/10 from the initial concentration of 15000ppm to 1220ppm. In this case, the yield was about 20% (vol%), and the removal efficiency of the impurities can be further increased by controlling the moving speed of the heater, the length of the melting section, the internal stirring of the liquid phase, and the length of the solid section.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. In the present invention as described above has been described by specific embodiments and limited embodiments and drawings, but this is only provided to help a more general understanding of the present invention, the present invention is not limited to the above embodiments, the present invention Those skilled in the art can make various modifications and variations from this description.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and all the things that are equivalent to or equivalent to the claims as well as the following claims will belong to the scope of the present invention. .
Claims (5)
- Cs 및 Sr을 포함하는 고방열성 핵종을 함유하는 염화리튬의 염폐기물을 구역 정제(zone refining)하여, 염폐기물에 함유된 방사성 핵종을 편석시켜 제거하는, 고방열성 핵종 분리방법.A method of separating high heat radiation nuclides by zone refining salt wastes of lithium chloride containing high heat radiation nuclides including Cs and Sr to segregate and remove radionuclides contained in salt wastes.
- 제 1항에 있어서, The method of claim 1,상기 염폐기물을 관형 용기에 장입하는 단계; 및Charging the salt waste into a tubular container; And상기 관형 용기의 둘레면을 감싸며 상기 관형 용기의 길이 방향으로 이동하는 히터를 이용하여 염폐기물을 구역 정제하는 단계;Zone purification of the waste waste using a heater that wraps around the circumferential surface of the tubular vessel and moves in the longitudinal direction of the tubular vessel;를 포함하는 고방열성 핵종 분리방법.High heat radiation nuclide separation method comprising a.
- 제 2항에 있어서,The method of claim 2,상기 구역 정제는 서로 이격된 둘 이상의 히터가 동시 이동하며 수행되는 고방열성 핵종 분리방법.The zone refining is a high heat radiation nuclide separation method is performed while moving at least two heaters spaced apart from each other at the same time.
- 제 2항에 있어서,The method of claim 2,상기 히터는 상기 관형 용기의 일 단에서 다른 일 단으로 2 내지 20 회 반복 이동하는 고방열성 핵종 분리방법. The heater is a high heat dissipation nuclide separation method to move repeatedly from 2 to 20 times from one end of the tubular vessel to the other end.
- 제 2항에 있어서,The method of claim 2,상기 관형 용기는 쿼츠 튜브이며, 상기 염폐기물은 쿼츠 튜브 내에 위치하는 서스(SUS) 재질의 보트(boat)인 고방열성 핵종 분리방법.The tubular container is a quartz tube, the salt waste is a high heat radiation nuclide separation method (SUS) boat is located in the quartz tube (SUS).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0139603 | 2014-10-16 | ||
KR1020140139603A KR20160044748A (en) | 2014-10-16 | 2014-10-16 | Separation Method of Radionuclides in LiCl salts Using Zone Refining |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016060418A1 true WO2016060418A1 (en) | 2016-04-21 |
Family
ID=55746908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/010715 WO2016060418A1 (en) | 2014-10-16 | 2015-10-12 | Method for separating high heat dissipative nuclide in chloride lithium salt using zone refining method |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20160044748A (en) |
WO (1) | WO2016060418A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3342968B2 (en) * | 1994-10-20 | 2002-11-11 | 株式会社東芝 | Reprocessing of spent fuel |
KR100969587B1 (en) * | 2008-04-25 | 2010-07-12 | 한국원자력연구원 | Concentration method of Cesium and Strontium elements involved in LiCl molten salts and LiCl-KCl eutectic molten salt by using melt crystallization and the Apparatus thereof |
KR101003955B1 (en) * | 2008-09-24 | 2010-12-24 | 한국수력원자력 주식회사 | Recycling method of LiCl salt wastes by using layer crystallization and the Apparatus thereof |
KR101122477B1 (en) * | 2010-01-27 | 2012-04-18 | 서울대학교산학협력단 | Method for decontaminating high level wastes arising from high energy radiation facilities such as spent nuclear fuels to low-and-intermediate level radioactive wastes |
US20130289329A1 (en) * | 2012-04-25 | 2013-10-31 | Korea Atomic Energy Research Institute | Decontamination method of cladding hull wastes generated from spent nuclear fuel and apparatus thereof |
-
2014
- 2014-10-16 KR KR1020140139603A patent/KR20160044748A/en not_active Application Discontinuation
-
2015
- 2015-10-12 WO PCT/KR2015/010715 patent/WO2016060418A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3342968B2 (en) * | 1994-10-20 | 2002-11-11 | 株式会社東芝 | Reprocessing of spent fuel |
KR100969587B1 (en) * | 2008-04-25 | 2010-07-12 | 한국원자력연구원 | Concentration method of Cesium and Strontium elements involved in LiCl molten salts and LiCl-KCl eutectic molten salt by using melt crystallization and the Apparatus thereof |
KR101003955B1 (en) * | 2008-09-24 | 2010-12-24 | 한국수력원자력 주식회사 | Recycling method of LiCl salt wastes by using layer crystallization and the Apparatus thereof |
KR101122477B1 (en) * | 2010-01-27 | 2012-04-18 | 서울대학교산학협력단 | Method for decontaminating high level wastes arising from high energy radiation facilities such as spent nuclear fuels to low-and-intermediate level radioactive wastes |
US20130289329A1 (en) * | 2012-04-25 | 2013-10-31 | Korea Atomic Energy Research Institute | Decontamination method of cladding hull wastes generated from spent nuclear fuel and apparatus thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20160044748A (en) | 2016-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101410557B1 (en) | Method for recovering valuable metals | |
US4222830A (en) | Production of extreme purity aluminum | |
FI3884076T3 (en) | Process for the recovery of lithium | |
RU2468104C2 (en) | Method to produce metal zirconium | |
KR101513173B1 (en) | Method for Recycling of LiCl Salt Wastes and the Recycling Apparatus thereof | |
JP2006308442A (en) | Minor actinide recycling method for | |
KR20070114805A (en) | Method for producing high purity silicon | |
KR20150033675A (en) | Flux composition useful in directional solidification for purifying silicon | |
WO2016060418A1 (en) | Method for separating high heat dissipative nuclide in chloride lithium salt using zone refining method | |
Shim et al. | Separation of Cs and Sr from LiCl-KCl eutectic salt via a zone-refining process for pyroprocessing waste salt minimization | |
Cho et al. | Eutectic (LiCl-KCl) waste salt treatment by sequencial separation process | |
RU2537969C1 (en) | Method of recovering nuclear fuel material | |
US4246035A (en) | High purity mortar suitable for bonding refractory brick | |
JP2007314389A (en) | Silicon refining method | |
CN102137958A (en) | Thallium and potassium nitrate recovery method and recovery apparatus | |
Williams et al. | Separation of strontium and cesium from ternary and quaternary lithium chloride-potassium chloride salts via melt crystallization | |
KR100969587B1 (en) | Concentration method of Cesium and Strontium elements involved in LiCl molten salts and LiCl-KCl eutectic molten salt by using melt crystallization and the Apparatus thereof | |
NO863742L (en) | ZIRCONIUM AND HAVNIUM WITH LOW OXYGEN AND IRON CONTENT. | |
Nakahara et al. | Removal of liquid and solid impurities from uranyl nitrate hexahydrate crystalline particles in crystal purification process | |
JP5017069B2 (en) | Reprocessing of spent fuel | |
US20150376017A1 (en) | Method for purifying silicon | |
KR101598851B1 (en) | Separation method of dissolvable material from spent nuclear fuel and pyroprocessing having the method | |
JP6055100B2 (en) | Reactive cover glass on molten silicon during directional solidification. | |
JP2003521583A (en) | Americium electrolytic refining | |
JP2012254894A (en) | Method for purifying silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15850408 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15850408 Country of ref document: EP Kind code of ref document: A1 |