WO2016060248A1 - Steel sheet for drawn can, and method for manufacturing same - Google Patents
Steel sheet for drawn can, and method for manufacturing same Download PDFInfo
- Publication number
- WO2016060248A1 WO2016060248A1 PCT/JP2015/079313 JP2015079313W WO2016060248A1 WO 2016060248 A1 WO2016060248 A1 WO 2016060248A1 JP 2015079313 W JP2015079313 W JP 2015079313W WO 2016060248 A1 WO2016060248 A1 WO 2016060248A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- rolled steel
- cold
- less
- content
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Definitions
- the present invention relates to a steel plate for drawn cans and a method for producing the same, and more particularly to a high-strength cold-rolled steel plate for drawn cans and a method for producing the same.
- Battery cans such as single 1 to single 5 batteries (batteries of international standard size 20 to 1), button batteries, large hybrid batteries, and various containers are cold-rolled steel sheets and plated steel sheets that have been plated as required , Called cold-rolled steel sheet).
- cold-rolled steel sheets used for drawing have been required to have further improved strength in order to realize a thinner drawn can.
- the dimensions of the external shape of the battery are already determined according to the standard. Therefore, in order to increase the filling amount of the active material of the battery, it is necessary to increase the internal volume of the battery (the internal volume of the throttle can).
- the thickness (gauge down) of the cold-rolled steel sheet for the drawn can In order to increase the inner volume of the drawn can, it is necessary to reduce the thickness (gauge down) of the cold-rolled steel sheet for the drawn can.
- the strength of the drawn can may be insufficient.
- the can bottom of the drawn can cannot be expected to be hardened because the amount of processing strain during drawing is small. Therefore, it is necessary to increase the strength of the cold-rolled steel sheet in order to increase the strength of the drawn can, particularly the internal / external pressure resistance at the bottom of the can.
- cold-rolled steel sheets for drawn cans are required to have excellent press formability and high strength.
- increasing the press formability and increasing the strength are technical problems that are mutually contradictory.
- this cold-rolled steel sheet is expected to have a decrease in total elongation EL, that is, a decrease in press formability.
- the strength of the cold-rolled steel sheet is increased, when multi-stage processing is performed as drawing, the amount of processing strain becomes large at the upper part of the can of the drawn can. There is sex.
- it is not easy to achieve both high strength and excellent press formability.
- stretcher strain occurs due to the yield point elongation when the steel sheet is deformed (steady deformation that proceeds with a deformation resistance smaller than the yield point immediately after yielding).
- This stretcher strain can be suppressed by performing temper rolling (skin pass rolling) in which the steel sheet is rolled at a light reduction rate.
- temper rolling skin pass rolling
- the effect of suppressing the stretcher strain is reduced with the passage of time in a steel sheet that undergoes strain age hardening.
- Nb Nb-added ultra-low carbon steel
- B boron
- Nb-SULC Nb-added ultra-low carbon steel
- Nb-SULC Nb-added ultra-low carbon steel
- Nb-SULC Nb-added ultra-low carbon steel
- the steel components are limited, so it is difficult to increase the strength of the steel.
- B-added low carbon steel B is combined with nitrogen (N) in the steel, so that age hardening due to N is suppressed.
- This BAF-OA requires a processing time of about one week in order to perform the above-mentioned soaking and slow cooling. Therefore, when BAF-OA is performed, the productivity of cold-rolled steel sheets for drawn cans is significantly reduced. Therefore, if a cold-rolled steel sheet for a drawing can having high strength, excellent press formability, and excellent non-St-St properties can be produced without performing BAF-OA, it is very useful in the industry.
- Patent Document 1 discloses a steel plate for a drawing can.
- the steel plate for drawn cans disclosed in Patent Document 1 is a low-carbon aluminum killed steel containing B, and the C content is 0.045 to 0.100%.
- This Patent Document 1 describes that the upper limit of the C content is limited to 0.100% in order to prevent the steel sheet from becoming hard and reducing the drawing workability.
- Patent Document 1 discloses a steel plate for a drawing can, but the steel plate for a drawing can disclosed in Patent Document 1 is a soft cold-rolled steel plate. Therefore, when this steel plate is gauged down, the internal and external pressure strength of the drawn can may decrease. Further, in the steel plate for a drawn can disclosed in Patent Document 1, it is difficult to suppress stretcher strain when BAF-OA is omitted. As described above, Patent Document 1 increases the strength of a cold-rolled steel sheet in order to achieve gauge down, and simultaneously improves press formability and non-St-St properties in addition to this increase in strength. Is not disclosed or suggested.
- the present invention has been made in view of the above circumstances, and provides a cold-rolled steel sheet for a drawing can that has high strength, excellent press formability, and excellent non-St-St properties without performing BAF-OA.
- the task is to do.
- a steel plate for a drawing can according to one embodiment of the present invention has, as a chemical component, C: more than 0.150 to 0.260%, Sol. Al: 0.005 to 0.100%, B: 0.0005 to 0.02%, Si: 0.50% or less, Mn: 0.70% or less, P: 0.070% or less, S: 0.00.
- the content of the steel sheet satisfies 0.4 ⁇ B / N ⁇ 2.5 in terms of mass%, and the steel sheet has a microstructure with an average particle size of 2.7 to 4.0 ⁇ m, and granular cementite.
- the steel sheet has a thickness of 0.15 to 0.50 mm, and is obtained from a tensile test in which the tensile direction performed after the steel sheet is subjected to aging treatment at 100 ° C. for 1 hour is parallel to the rolling direction.
- Yield strength is YP in MPa
- total elongation is EL in%
- the YP is 360 to 430 MPa
- the EL is 25 to 32%
- the YP-EL is 0%.
- the YR is 80 to 87%.
- the EL may be 27 to 32% when the plate thickness is more than 0.20 to 0.50 mm.
- at least one of a Ni plating layer, a Ni diffusion plating layer, a Sn plating layer, and a TFS plating layer is formed on the surface of the steel plate. It may be arranged.
- a steelmaking step for obtaining a slab having the chemical component and heating the slab to 1000 ° C. or more, Finish rolling at 950 ° C., cooling after finish rolling, winding at 500 to 720 ° C. to obtain a hot-rolled steel sheet, and primary cold with a cumulative rolling reduction of over 80% with respect to the hot-rolled steel sheet
- a primary cold-rolling step of rolling to obtain a primary cold-rolled steel sheet, and the primary cold-rolled steel sheet are heated at an average temperature increase rate of 10 to 40 ° C./second, and averaged within a temperature range of 650 to 715 ° C.
- the temper rolled steel plate is subjected to Ni plating treatment, Ni diffusion plating treatment, Sn plating treatment, and TFS. You may further provide the plating process which implements at least 1 of a plating process.
- a steel plate for a drawing can having high strength, excellent press formability, and excellent non-St-St properties without performing BAF-OA.
- This steel sheet is excellent in press formability, can suppress the occurrence of stretcher strain, and can be gauged down.
- FIG. 5 is a tensile test result after accelerated aging treatment of a cold-rolled steel sheet for drawn cans according to an embodiment of the present invention, and is a stress-strain curve showing an enlarged vicinity of the yield point.
- the present inventors investigated and examined the characteristics of steel plates for drawn cans (hereinafter referred to as cold rolled steel plates), and obtained the following findings (i) to (iv). First, findings (i) and (ii) will be described.
- the average temperature increase rate of CAL continuous annealing
- the annealing temperature soaking If the temperature is higher than the recrystallization completion temperature and the ferrite single-phase region temperature (for example, 650 to 715 ° C.) and the subsequent average cooling rate between 500 to 400 ° C. is 5 to 80 ° C./second, Even if solid solution C is present in the steel, a cold-rolled steel sheet having excellent non-St-St properties can be obtained.
- Fig. 1 shows a stress-strain diagram near the yield point of a conventional cold-rolled steel sheet for drawn cans.
- FIG. 2 shows a stress-strain diagram in the vicinity of the yield point (0.2% proof stress) of the cold-rolled steel sheet for drawn cans according to this embodiment.
- the C content of the cold rolled steel sheet subjected to the tensile test of FIG. 1 is 0.056% by mass, and the C content of the cold rolled steel sheet subjected to the tensile test of FIG. 2 is 0.153% by mass. is there.
- the cold-rolled steel sheet shown in FIGS. 1 and 2 was manufactured under conditions that satisfy the method for manufacturing a cold-rolled steel sheet according to this embodiment, which will be described later.
- the cold-rolled steel sheets of FIGS. 1 and 2 were manufactured without performing BAF-OA.
- a JIS No. 5 tensile test piece having a parallel part parallel to the L direction (rolling direction) was produced.
- An accelerated aging treatment was performed on the produced tensile test piece.
- an aging treatment for 1 hour at 100 ° C. was performed on each tensile test piece.
- This accelerated aging treatment corresponds to an aging at which natural aging is almost saturated.
- a tensile test was carried out at room temperature (25 ° C.) and in the atmosphere, and the stress-strain diagrams of FIGS. 1 and 2 were obtained.
- the yield point elongation YP-EL occurs because the dislocation fixation and release due to the Cottrell effect are repeated even after yielding.
- FIG. 3 is a microstructure image of the L cross section of the cold rolled steel sheet subjected to the tensile test of FIG. 1
- FIG. 4 is a microstructure image of the L cross section of the cold rolled steel sheet subjected to the tensile test of FIG. is there.
- the white structure is ferrite 10 and the black structure is granular cementite 20.
- the microstructure of the cold-rolled steel sheet of FIGS. 3 and 4 was a structure mainly containing ferrite and granular cementite.
- the average ferrite grain size of the cold rolled steel sheet of FIG. 4 having a high C content was 4.0 ⁇ m or less, which is smaller than the average ferrite grain diameter of the cold rolled steel sheet of FIG.
- the ferrite structure of the cold-rolled steel sheet of FIG. 4 appears to be a mixed grain containing coarse grains and fine grains as compared with the cold-rolled steel sheet of FIG.
- FIG. 5 shows the relationship between the C content (mass%) of the cold rolled steel sheet and the yield point elongation YP-EL (%). This FIG. 5 was obtained by investigating a cold-rolled steel sheet controlled to have a microstructure mainly containing ferrite and granular cementite.
- the yield point elongation YP-EL decreases rapidly. Specifically, when the C content exceeds 0.150, the yield point elongation YP-EL becomes 0%. Further, as described above, the C content is more than 0.150, and the yield strength YP in the L direction after the accelerated aging treatment is 360 MPa or more. That is, when the C content exceeds 0.150 in addition to the control of the microstructure and the like, strength and non-St-St properties are satisfied among the properties required for cold-rolled steel sheets for drawn cans.
- the C content is more than 0.150
- the CAL average heating rate is 10 to 40 ° C./second
- the annealing temperature is equal to or higher than the recrystallization completion temperature
- the ferrite single-phase region temperature for example, 650
- the microstructure mainly includes ferrite and granular cementite, and the average grain size of the ferrite grains becomes 4.0 ⁇ m or less, yield strength.
- YP is 360 MPa or more and the yield point elongation YP-EL is 0%.
- the conventional steel sheet is characterized by a low C content.
- a steel sheet with a high C content such that the C content exceeds 0.150
- BAF-OA or the like it is difficult to sufficiently reduce the solid solution C in the steel.
- YP-EL can be controlled to 0% by forming the ferrite structure by controlling the manufacturing conditions.
- FIG. 6 shows the relationship between the C content (mass%) and the total elongation EL (%) of the cold-rolled steel sheet. This FIG. 6 was obtained by investigating a cold-rolled steel sheet controlled to have a microstructure mainly containing ferrite and granular cementite.
- the C content when the C content is more than 0.150 to 0.260%, the total elongation EL becomes substantially constant as the C content increases. However, when the C content exceeds 0.260%, the total elongation EL decreases rapidly. Therefore, if the C content is 0.260% or less, excellent total elongation EL is maintained. Specifically, if the C content is 0.260% or less, the total elongation EL is 25% or more. Further, as described above, in order to satisfy the strength and the non-St-St property, the lower limit of the C content is set to more than 0.150. That is, in the cold-rolled steel sheet for drawn cans according to this embodiment, the C content is set to more than 0.150 to 0.260%.
- CAL continuous annealing
- the average rate of temperature increase is set to 10 to 40 ° C./second
- the annealing temperature is set to the recrystallization completion temperature or higher and the ferrite single phase region temperature (for example, 650 to 715 ° C.), and the subsequent 500 to 400
- the average cooling rate during 5 ° C. is 5-80 ° C./sec.
- the strength and press formability of the cold-rolled steel sheet and the non-St-St property due to C are improved, and B is combined with N to form a nitride. As a result, the generation of stretcher strain due to N is also suppressed.
- the cold-rolled steel sheet for drawn cans according to the present embodiment has C, Sol. Al and B are included, and the balance consists of Fe and impurities.
- impurities refer to materials mixed from ore, scrap, or production environment as raw materials when industrially manufacturing steel.
- impurities Si, Mn, P, S, and N are preferably limited as follows in order to sufficiently exhibit the effects of the present embodiment.
- limit a lower limit and the lower limit of an impurity may be 0%.
- Carbon (C) is dissolved to increase the strength of the steel. If the strength of the steel increases, the cold rolled steel sheet can be gauged down. If the C content exceeds 0.150, the yield strength YP in the L direction after the accelerated aging treatment can be set to 360 MPa or more. Furthermore, by performing CAL under the conditions described later, the average grain size of the ferrite structure becomes 4.0 ⁇ m or less, and the ferrite grains tend to be mixed grains including coarse grains and fine grains. As a result, the yield point elongation YP-EL after the accelerated aging treatment can be reduced to 0%. If the C content is 0.15 or less, the above effect cannot be obtained.
- the C content is more than 0.150 to 0.260%.
- C is an austenite forming element.
- the lower limit of the C content is preferably 0.153%, 0.155%, or 0.160%.
- the upper limit with preferable C content is less than 0.260%, More preferably, it is 0.250%. Ferrite grains tend to be mixed.
- Si 0.50% or less Silicon (Si) is an unavoidable impurity. Si reduces the plating adhesion of the cold-rolled steel sheet and the coating adhesion of the cold-rolled steel sheet after canning. Therefore, the Si content is limited to 0.50% or less.
- the upper limit with preferable Si content is less than 0.50%.
- the Si content is preferably as low as possible. However, since it is difficult to make the Si content 0% stably industrially, the lower limit of the Si content may be 0.0001%.
- Mn 0.70% or less
- Manganese (Mn) is an unavoidable impurity. Mn hardens the cold-rolled steel sheet and lowers the total elongation EL of the cold-rolled steel sheet. Therefore, press formability (drawing workability) is lowered. Further, Mn is an austenite forming element and is not added to the steel in order to control the microstructure in the cold rolled steel sheet according to the present embodiment. When the Mn content is more than 0.70%, it is difficult to obtain the mechanical characteristics peculiar to the steel sheet according to the present embodiment. Therefore, the Mn content is limited to 0.70% or less. The upper limit with preferable Mn content is less than 0.70%. The Mn content is preferably as low as possible. However, since it is difficult to make the Mn content 0% stably industrially, the lower limit of the Mn content may be 0.0001%.
- Phosphorus (P) is an unavoidable impurity.
- P generally increases the strength of the cold-rolled steel sheet.
- the press formability decreases.
- the secondary work brittleness resistance after forming into a drawn can decreases.
- brittle fracture may occur due to impact at the time of dropping at a low temperature such as ⁇ 10 ° C., and end portions of the can side wall may brittle fracture due to bending strain. Such a break is referred to as a secondary work brittle crack.
- the P content is limited to 0.070% or less.
- the lower limit of the P content may be 0.0001%.
- S 0.05% or less Sulfur (S) is an unavoidable impurity. S causes brittle cracks in the surface layer of the steel sheet during hot rolling, and causes rough edges in the hot-rolled steel strip. Therefore, the S content is limited to 0.05% or less. The S content is preferably as low as possible. However, since it is difficult to make the S content 0% stably industrially, the lower limit of the S content may be 0.0001%.
- Al 0.005 to 0.100%
- Aluminum (Al) deoxidizes steel. Al further enhances the surface quality of the slab during continuous casting. If the Al content is too low, these effects cannot be obtained. On the other hand, if the Al content is too high, the above effect is saturated and the production cost is increased. Therefore, the Al content is 0.005 to 0.100%.
- the Al content in the cold-rolled steel sheet for drawn cans according to this embodiment is Sol. It means the content of Al (acid-soluble aluminum).
- N 0.0080% or less Nitrogen (N) is an unavoidable impurity. N is an element that age hardens the steel, and therefore reduces the press formability of the cold-rolled steel sheet and generates stretcher strain.
- the below-described B is contained in the steel, and N is combined with B to form a nitride, thereby suppressing age hardening due to solute N.
- the N content is limited to 0.0080% or less.
- the N content is preferably as low as possible. However, since it is difficult to make the N content 0% stably industrially, the lower limit of the N content may be 0.0005%.
- B 0.0005 to 0.02% Boron (B) combines with N to form BN (boron nitride), and reduces solid solution N. Thereby, age hardening by the solid solution N is suppressed. B further randomizes the texture of the cold-rolled steel sheet to bring the r value (Rankford value), which is the plastic strain ratio, closer to 1. This improves the earring characteristics (the degree of unevenness of the can height in the circumferential direction of the can that occurs after the drawing of the drawn can). B is a ferrite-forming element, and is added to control the microstructure in the cold-rolled steel sheet according to the present embodiment. If the B content is less than 0.0005%, these effects cannot be obtained. On the other hand, if the B content exceeds 0.02%, the above effect is saturated. Therefore, the B content is 0.0005 to 0.02%.
- the lower limit of the B content is preferably 0.0010% or 0.0015%.
- the contents of B and N are specified in relation to each other.
- the solute N is excessive in the steel, the steel is age hardened. Therefore, B is contained in steel to form BN.
- the solid solution B is excessive in the steel, the cold-rolled steel sheet is hardened or the earring properties are lowered. Therefore, it is necessary to define the contents of B and N in relation to each other. Specifically, the B content and the N content in the chemical component must satisfy 0.4 ⁇ B / N ⁇ 2.5 in mass%.
- the lower limit of the value of B / N is preferably 0.8.
- niobium (Nb), titanium (Ti), copper (Cu), nickel (Ni), chromium (Cr), and tin (Sn) are also limited. It is preferable. Specifically, in order to sufficiently exhibit the effects of the present embodiment, Nb: 0.003% or less, Ti: 0.003% or less, Cu: 0.5% or less, Ni: 0.5% or less, It is preferable to limit to Cr: 0.3% or less and Sn: 0.05% or less. In particular, Ti forms TiN and affects the formation of the microstructure, so it is preferable to limit as described above.
- the content of these impurities is preferably as low as possible. However, since it is difficult to make the content of these impurities 0% stably industrially, the lower limit of the content of these impurities may be 0.0001%.
- the above chemical components may be measured by a general analysis method for steel.
- the chemical components described above may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Specifically, it can be specified by collecting a granular test piece from the center position of the steel plate and performing chemical analysis under conditions based on a calibration curve prepared in advance.
- C and S may be measured using a combustion-infrared absorption method, and N may be measured using an inert gas melting-thermal conductivity method.
- the cold-rolled steel sheet according to the present embodiment mainly includes ferrite having an average particle diameter (average diameter) of 2.7 to 4.0 ⁇ m and granular cementite as a microstructure. Moreover, since BN mentioned above is a fine precipitate and cannot be observed in the case of a low magnification, this BN may be included as a microstructure. In the cold-rolled steel sheet according to the present embodiment, in addition to controlling the above-described chemical components, by controlling to the above-described microstructure, high strength, excellent press formability, and non-St-St properties are also excellent. A cold-rolled steel sheet can be obtained.
- the above-mentioned ferrite, granular cementite and BN are preferably 95 to 100 area% in total in the microstructure. That is, pearlite, martensite, retained austenite, etc., which are structures other than ferrite, granular cementite, and BN, are preferably limited to less than 5 area% in total. Or it is preferable not to include.
- the total area fraction of the structure other than ferrite, granular cementite, and BN is preferably as low as possible. Therefore, it is more preferable that the cold-rolled steel sheet according to the present embodiment includes only ferrite, granular cementite, and BN as a microstructure.
- the ferrite grains tend to be mixed grains including coarse grains and fine grains. Although it is difficult to quantitatively define this mixed grain, it is considered that this microstructure has an influence on the mechanical characteristics peculiar to the steel sheet according to the present embodiment.
- each constituent phase included in the microstructure is defined as follows.
- Ferrite and ferrite grains are defined as a region having a body-centered cubic structure (bcc) due to diffusion transformation and having a crystal orientation angle difference of 0 to less than 15 °.
- Martensite and martensite grains have a body-centered cubic structure (bcc) or body-centered tetragonal structure (bct) resulting from a non-diffusion transformation, and are defined as regions where the crystal orientation angle difference is 0 or more and less than 15 °.
- Cementite is defined as a compound of Fe and C having an orthorhombic structure (Fe 3 C).
- the pearlite and the pearlite block have a layered structure composed of ferrite and cementite, and are defined as a region in which the crystal orientation angle difference of ferrite in the pearlite is 0 or more and less than 9 °.
- Granular cementite is defined as cementite not contained in the pearlite block.
- BN is defined as a compound of B and N having a hexagonal structure or a cubic structure.
- the above microstructure may be obtained by observing the L cross section (cross section parallel to the rolling direction) of the cold-rolled steel sheet with an optical microscope. Moreover, what is necessary is just to obtain
- the area fraction of each constituent phase may be obtained by image analysis of a microstructural photograph.
- the cold-rolled steel sheet according to this embodiment has a thickness of 0.15 to 0.50 mm, and is obtained from a tensile test performed after the cold-rolled steel sheet is subjected to an aging treatment (accelerated aging treatment) at 100 ° C. for 1 hour.
- Yield strength is MP in MPa
- total elongation is EL in unit%
- yield point elongation is YP-EL in unit%
- yield ratio is YR in unit%.
- YP 360 to 430 MPa
- EL is 25-32%
- YP-EL is 0%
- YR 80 to 87%.
- a tensile test is implemented according to JISZ2241 (2011) in room temperature (25 degreeC) air
- the yield strength YP 360 to 430 MPa
- the upper limit of the yield strength YP is not particularly limited. However, if the yield strength YP is too high, press molding becomes difficult, so the yield strength YP may be 430 MPa or less.
- the yield strength YP means 0.2% proof stress.
- the upper limit of the total elongation EL is not particularly limited because a larger value is preferable. However, since it is difficult to make the total elongation EL more than 32% industrially stable, the upper limit of the total elongation EL may be 32%, and more preferably 30%.
- the total elongation EL means the sum of elastic elongation and permanent elongation.
- the thickness of the cold-rolled steel sheet according to this embodiment is 0.15 to 0.50 mm.
- the value of the total elongation EL increases as the plate thickness increases within this plate thickness range. Accordingly, when priority is given to improving press formability (drawing workability), the plate thickness may be more than 0.20 to 0.50 mm and the total elongation EL may be 27 to 32%.
- the yield point elongation YP-EL is 0%, steady deformation that proceeds with a deformation resistance smaller than the yield point immediately after yielding can be suppressed, so that the occurrence of stretcher strain can be suppressed.
- the yield point elongation YP-EL is 0%.
- the deformation (stress) is smaller than the yield point (0.2% proof stress) immediately after yielding (deformation (stress)). This means that (strain) does not progress.
- the yield point elongation YP-EL is 0% when stress-strain is observed immediately after yielding (after reaching 0.2% proof stress) without lowering the yield point. It means that the curve indicates work hardening.
- the yield ratio YR 80-87% If the yield ratio YR is 80% or more, it means that the yield strength YP is sufficiently higher than the tensile strength TS. Therefore, the cold-rolled steel sheet can be thinned (gauge down), and a drawn can excellent in internal and external pressure strength can be obtained. That is, when comparing the bottom of the can with a small amount of processing strain during drawing and the top of the barrel with a large amount of processing strain during drawing, the difference in strength between the bottom of the can and the top of the can is reduced in the drawn can after molding. It becomes possible to obtain a drawn can having uniform mechanical quality. On the other hand, the upper limit of the yield ratio YR is not particularly limited.
- the yield ratio YR means the percentage of the value obtained by dividing the yield strength YP in unit MPa by the tensile strength TS in unit MPa.
- the cold-rolled steel sheet according to this embodiment includes a Ni plating layer, a Ni diffusion plating layer, a Sn plating layer, and a tin-free steel (TFS) plating layer (with a metal Cr layer) on the surface (on the plate surface) of the cold-rolled steel sheet. At least one of two plating layers including a Cr hydrated oxide layer may be disposed.
- the manufacturing method of the cold-rolled steel sheet for drawn cans according to the present embodiment includes a step of obtaining a slab (steel making step), a step of obtaining a hot-rolled steel plate (hot-rolling step), and a step of obtaining a primary cold-rolled steel plate (primary cooling). Extending step), a step of obtaining an annealed steel plate (annealing step), and a step of obtaining a temper rolled steel plate (temper rolling).
- Step making process In the steelmaking process, C: more than 0.150 to 0.260%, Sol. Al: 0.005 to 0.100%, B: 0.0005 to 0.02%, Si: 0.50% or less, Mn: 0.70% or less, P: 0.070% or less, S: 0.00. Contains 0.5% or less, N: 0.0080% or less, Nb: 0.003% or less, Ti: 0.003% or less, with the balance consisting of Fe and impurities, boron content and nitrogen content in chemical components The amount of the molten steel satisfying 0.4 ⁇ B / N ⁇ 2.5 in mass% is manufactured. A slab is manufactured from the manufactured molten steel.
- the slab may be cast by a casting method such as a normal continuous casting method, an ingot method, or a thin slab casting method.
- a casting method such as a normal continuous casting method, an ingot method, or a thin slab casting method.
- the steel may be once cooled to a low temperature (for example, room temperature) and reheated, and then the steel may be hot-rolled, or the steel immediately after casting (cast slab) You may hot-roll continuously.
- the slab after the steel making process is heated to 1000 ° C. or higher (eg, 1000 to 1280 ° C.), finish-rolled at 840 to 950 ° C., cooled after finish rolling, and wound at 500 to 720 ° C.
- a hot-rolled steel sheet In the hot rolling process, the slab after the steel making process is heated to 1000 ° C. or higher (eg, 1000 to 1280 ° C.), finish-rolled at 840 to 950 ° C., cooled after finish rolling, and wound at 500 to 720 ° C. A hot-rolled steel sheet.
- a preferable winding temperature CT is 500 to 720 ° C.
- the lower limit of the coiling temperature CT is more preferably 600 ° C.
- the primary cold rolled steel sheet having a thickness of 0.15 to 0.50 mm is obtained by subjecting the hot rolled steel sheet after the hot rolling process to primary cold rolling with a cumulative reduction ratio exceeding 80%. Manufacturing.
- the optimum cold rolling rate of the cold-rolled steel sheet for drawn cans is examined by changing the cold rolling rate, and the in-plane anisotropy ⁇ r of the steel sheet is substantially 0 (specifically, ⁇ r is The cold rolling rate is set so that the range is +0.15 to -0.08. Further, the cold rolling rate is set so that the primary cold-rolled steel sheet has a microstructure (working structure) suitable for use in the subsequent process.
- the cumulative rolling reduction is set to more than 80%.
- the lower limit of the cumulative rolling reduction is preferably 84%.
- the upper limit of the cumulative rolling reduction is not particularly limited.
- the cumulative rolling reduction is a rolling reduction calculated from the difference between the inlet plate thickness immediately before the first pass and the outlet plate thickness immediately after the final pass in primary cold rolling.
- the plate thickness of the primary cold-rolled steel plate is preferably 0.151 to 0.526 mm. If the plate thickness exceeds 0.526 mm, it is difficult to obtain excellent earring properties. If the plate thickness is less than 0.151 mm, the plate thickness of the hot-rolled steel plate must be reduced, and in this case, the finishing temperature during the above hot rolling cannot be ensured. Therefore, the thickness of the primary cold-rolled steel sheet is preferably 0.151 to 0.526 mm.
- the primary cold-rolled steel sheet after the primary cold-rolling step is heated at an average rate of temperature increase of 10 to 40 ° C./second and is not less than the recrystallization completion temperature and the ferrite single-phase region temperature (eg, 650 to 715). ° C), and then subjected to continuous annealing in which the average cooling rate between 500 and 400 ° C is 5 to 80 ° C / second to produce an annealed steel sheet.
- an average rate of temperature increase of 10 to 40 ° C./second is not less than the recrystallization completion temperature and the ferrite single-phase region temperature (eg, 650 to 715). ° C)
- the average cooling rate between 500 and 400 ° C is 5 to 80 ° C / second to produce an annealed steel sheet.
- the microstructure is preferably controlled.
- HR average heating rate
- the work structure of the primary cold-rolled steel sheet is recovered, and recrystallization nuclei are generated in the work structure.
- the recrystallization process of the processed structure is preferably controlled, so that a microstructure specific to this embodiment can be preferably obtained.
- the primary cold-rolled steel sheet is heated at an average heating rate of 500 to 700 ° C. at 10 to 20 ° C./second.
- the annealing temperature (soaking temperature) ST is equal to or higher than the recrystallization completion temperature and the ferrite single phase temperature.
- the temperature range of 650 to 715 ° C. is equal to or higher than the recrystallization completion temperature and corresponds to the ferrite single phase temperature.
- the microstructure is preferably controlled.
- the upper limit of annealing temperature ST is 710 degreeC or 705 degreeC.
- the annealing temperature ST exceeds the ferrite single-phase region temperature (for example, more than 715 ° C.), annealing occurs at the two-phase region temperatures of ferrite and austenite, so that pearlite is formed during cooling after soaking. Therefore, the above microstructure cannot be obtained. In the case of a microstructure containing pearlite, the yield ratio YR decreases. Furthermore, the average particle diameter of ferrite becomes larger than 4.0 ⁇ m.
- the annealing temperature ST is 650 to 715 ° C.
- the microstructure is preferably controlled. Further, the holding time at the annealing temperature ST may be 15 to 30 seconds.
- the steel plate is cooled.
- the average cooling rate CR between 500 and 400 ° C. is set to 5 to 80 ° C./second. If the average cooling rate CR exceeds 80 ° C./second, the amount of solute C becomes too high. In this case, the yield point elongation YP-EL after the accelerated aging treatment becomes larger than 0%. On the other hand, if the average cooling rate CR is less than 5 ° C./second, the amount of solid solution C becomes too low. In this case, the yield strength YP is less than 360 MPa. If the average cooling rate CR between 500 and 400 ° C.
- the microstructure is preferably controlled.
- BAF-OA process [Overaging process by box annealing (BAF-OA process)]
- BAF-OA is not performed.
- the cold-rolled steel sheet of this embodiment has high strength, excellent press formability, and excellent non-St-St properties.
- BAF-OA is performed by the method for manufacturing a cold-rolled steel sheet according to this embodiment, the solid solution C in the steel is reduced and the yield strength YP is less than 360 MPa. Therefore, BAF-OA is not performed in the method for manufacturing a cold-rolled steel sheet according to the present embodiment. In this embodiment, since BAF-OA is not performed, the productivity of cold-rolled steel sheets for drawn cans is significantly increased.
- temper rolling process In the temper rolling process, an temper rolled steel sheet is manufactured by temper rolling (skin pass rolling) an annealed steel sheet that has not been over-aged after the annealing process at a cumulative reduction of 0.5 to 5.0%. . If the rolling reduction is less than 0.5%, the yield point elongation YP-EL may exceed 0% in the steel sheet after the accelerated aging treatment. If the rolling reduction exceeds 5.0%, the total elongation EL becomes less than 25%, and the press formability decreases. When the rolling reduction is 0.5 to 5.0%, excellent non-St-St properties and press formability can be obtained even after age hardening that occurs before processing such as drawing.
- the temper rolled steel sheet after the temper rolling process has a thickness of 0.15 to 0.50 mm.
- Ni plating treatment Ni diffusion plating treatment, Sn plating treatment, and TFS plating treatment are performed on the surface of the temper rolled steel plate (on the plate surface). At least one of the above may be implemented.
- a Ni plating layer, a Ni diffusion plating layer, a Sn plating layer, and a TFS plating layer are provided on the surface of the temper rolled steel sheet. At least one of which is formed.
- the Ni diffusion plating layer is formed by performing a diffusion heat treatment on a steel plate subjected to Ni plating.
- microstructure specific to the cold-rolled steel sheet according to the present embodiment by controlling each manufacturing condition in each step described above precisely and in combination. Specifically, the microstructure of the hot rolled steel sheet after the hot rolling process, the microstructure of the primary cold rolled steel sheet after the primary cold rolling process, the microstructure of the annealed steel sheet after the annealing process, and the tempering after the temper rolling process Only by controlling the microstructure of the rolled steel sheet for each process, a microstructure unique to this embodiment can be obtained. As a result, it is possible to obtain a cold-rolled steel sheet for a drawing can having high strength, excellent press formability, and excellent non-St-St properties.
- the conditions in the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention.
- the present invention is not limited to this one condition example.
- the present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
- the hot rolled steel sheet was pickled and then subjected to primary cold rolling.
- test numbers 1 to 19 primary cold-rolled steel sheets having a thickness of 0.25 mm were manufactured.
- test number 20 a primary cold-rolled steel sheet having a thickness of 0.45 mm was manufactured.
- the cumulative reduction rate of the primary cold rolling was as shown in Table 1.
- CAL continuous annealing
- Table 1 shows the average heating rate HR, the annealing temperature ST, and the average cooling rate CR between 500 and 400 ° C.
- HR the average heating rate
- ST the steel sheet was soaked for 25 seconds.
- gas cooling with nitrogen gas was performed.
- the steel plate was cooled without performing two-stage cooling from the annealing temperature ST to 50 ° C. (without holding the steel plate at an intermediate temperature).
- the average cooling rate CR from 500 ° C. to 400 ° C. is as shown in Table 1, and the average cooling rate from 400 ° C. to 50 ° C. was 25 ° C./second.
- test number 1 The steel plate of test number 1 was further subjected to BAF-OA (overaging treatment by box annealing) after CAL.
- BAF-OA average treatment by box annealing
- the steel sheet was soaked at 450 ° C. for 5 hours and then gradually cooled over 72 hours. Note that BAF-OA was not performed on steel sheets other than test number 1.
- temper rolling was performed on the steel sheet after the annealing process.
- the reduction ratio in temper rolling was 1.8% in all cases.
- Ni plating treatment was performed on the steel plate of test number 8 shown in Table 1. Specifically, after the temper rolling process, Ni plating layers were formed on the front and back surfaces of the steel sheet by electroplating. The film thicknesses of the front and back Ni plating layers were both 2 ⁇ m. The steel plate of this test number 8 became a cold-rolled steel plate having a double-sided Ni plating layer.
- the microstructure was observed with an optical microscope at the L cross section of the manufactured cold-rolled steel sheet.
- tissue observation was extract
- the microstructure photograph was taken of a portion between 1/4 thickness in the thickness direction of the L cross section of a sample that had been polished and subjected to nital etching. Using the microstructure photograph, the average particle diameter of the ferrite was determined by the cutting method of JIS G0551 (2013).
- F + C indicates that the microstructure mainly contains ferrite and granular cementite.
- F + P indicates that the microstructure mainly includes ferrite and pearlite.
- XX indicates that an unrecrystallized structure was observed. When an unrecrystallized structure was observed, the ferrite average particle size was not measured (because measurement was impossible).
- JIS No. 5 tensile test pieces were prepared from the cold-rolled steel sheets having the respective test numbers.
- the parallel part of the tensile test piece was parallel to the L direction (rolling direction) of the cold rolled steel sheet.
- An accelerated aging treatment was performed on the prepared tensile test piece. Specifically, an aging treatment for 1 hour at 100 ° C. was performed on each tensile test piece.
- the tensile test piece after the accelerated aging treatment is subjected to a tensile test at room temperature (25 ° C.) in accordance with JIS Z2241 (2011), yield strength YP, tensile strength TS, total elongation EL Yield point elongation YP-EL and yield ratio YR were determined.
- the cold rolled steel sheets of test numbers 5, 7, 8, 11, 13, and 15 as examples of the present invention all satisfied the scope of the present invention in terms of manufacturing conditions, chemical composition, microstructure, and mechanical properties. As a result, these cold-rolled steel sheets have high strength, excellent press formability, and excellent non-St-St properties.
- the cold rolled steel sheets 1 to 4, 6, 9, 10, 12, 14, and 16 to 20 that are comparative examples satisfy the scope of the present invention in terms of manufacturing conditions, chemical composition, microstructure, and mechanical properties. I didn't. As a result, these cold-rolled steel sheets could not simultaneously achieve strength, press formability, and non-St-St properties.
- Test No. 1 is a conventional example in which BAF-OA was performed after CAL, but the C content was too low. Furthermore, the coiling temperature CT was too high. Furthermore, the annealing temperature ST of CAL was too high, which was a two-phase region temperature. Therefore, the microstructure was composed of ferrite and pearlite, the average grain size of ferrite exceeded 4.0 ⁇ m, and the yield strength YP was less than 360 MPa. Furthermore, the yield ratio YR was less than 80%.
- test numbers 2 to 4 and 18 although the production conditions were appropriate, the C content was too low. Therefore, the average particle diameter of the ferrite exceeded 4.0 ⁇ m, and the yield strength YP was less than 360 MPa. Furthermore, the yield point elongation YP-EL was higher than 0%, and stretcher strain was generated.
- the annealing temperature ST in CAL was too high and was a two-phase region temperature. Therefore, the microstructure was composed of ferrite and pearlite, and the average grain size of ferrite exceeded 4.0 ⁇ m. Therefore, the total elongation EL and / or the yield ratio YR was low, and the press formability was low. Furthermore, the yield strength YP of test number 6 was less than 360 MPa.
- test number 10 Although the chemical composition was appropriate, the average cooling rate CR between 500 and 400 ° C. in CAL was too fast. Therefore, the yield point elongation YP-EL was higher than 0%. Furthermore, the total elongation EL was less than 25%.
- test number 12 Although the chemical composition was appropriate, the annealing temperature ST in CAL was too low. Therefore, an unrecrystallized structure remained in a part of the microstructure. As a result, the total elongation EL was as low as less than 25%, and the press formability was low.
- the C content was too high. Therefore, the total elongation EL was too low as less than 25%, and the press formability was low.
- a cold-rolled steel sheet for a drawing can having high strength, excellent press formability, and excellent non-St-St properties without performing BAF-OA.
- This cold-rolled steel sheet is excellent in press formability, can suppress the occurrence of stretcher strain, and can be gauged down. Therefore, industrial applicability is high.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
This steel sheet for a drawn can includes C, sol. Al, and B as chemical components, and includes particulate cementite and ferrite having an average particle diameter of 2.7-4.0 µm as the microstructure thereof. This steel has a yield strength of 360-430 MPa, a total elongation of 25-32%, an elongation at yield point of 0%, and a yield ratio of 80-87% when tensile-tested after the steel sheet is subjected to an aging treatment for one hour at 100°C.
Description
本発明は、絞り缶用鋼板及びその製造方法に関し、さらに詳しくは、絞り缶用の高強度冷延鋼板及びその製造方法に関する。
本願は、2014年10月17日に、日本に出願された特願2014-213239号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a steel plate for drawn cans and a method for producing the same, and more particularly to a high-strength cold-rolled steel plate for drawn cans and a method for producing the same.
This application claims priority based on Japanese Patent Application No. 2014-213239 filed in Japan on October 17, 2014, the contents of which are incorporated herein by reference.
本願は、2014年10月17日に、日本に出願された特願2014-213239号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a steel plate for drawn cans and a method for producing the same, and more particularly to a high-strength cold-rolled steel plate for drawn cans and a method for producing the same.
This application claims priority based on Japanese Patent Application No. 2014-213239 filed in Japan on October 17, 2014, the contents of which are incorporated herein by reference.
単1~単5電池(国際規格サイズ20~1の電池)、ボタン電池、大型ハイブリッド電池等の電池缶や、各種容器は、冷延鋼板や必要に応じてめっき処理を施しためっき鋼板(以降、冷延鋼板と呼ぶ)を絞り加工(プレス成形)して製造される。
Battery cans such as single 1 to single 5 batteries (batteries of international standard size 20 to 1), button batteries, large hybrid batteries, and various containers are cold-rolled steel sheets and plated steel sheets that have been plated as required , Called cold-rolled steel sheet).
この絞り加工では、寸法精度が高く、プレス金型の摩耗が抑制され、かつ、生産性が高いことが要求される。したがって、絞り加工に供される冷延鋼板としては、絞り加工性及び深絞り性といったプレス成形性に優れた、軟質の冷延鋼板が利用されてきた。
This drawing process requires high dimensional accuracy, suppression of press die wear, and high productivity. Therefore, as a cold-rolled steel sheet used for drawing, a soft cold-rolled steel sheet having excellent press formability such as drawability and deep drawability has been used.
一方、近年、絞り加工に供される冷延鋼板は、絞り缶の薄肉化を実現するために、強度のさらなる向上も求められている。例えば、近年、電子機器の発展に伴って、電池の容量をさらに増大させることが要求されている。しかし、電池の外形は、規格上、寸法が既に定められている。そのため、電池の活物質の充填量を増やすためには、電池内部の容積(絞り缶の内容積)を増やす必要がある。そして、絞り缶の内容積を増やすためには、絞り缶用の冷延鋼板を薄肉化(ゲージダウン)する必要がある。ただ、冷延鋼板がゲージダウンされた場合、絞り缶の強度が不足することがある。特に、絞り缶の缶底は、絞り加工時の加工ひずみ量が少ないので、加工硬化が期待できない。したがって、絞り缶の強度、特に缶底の耐内外圧強度を高めるためには、冷延鋼板の強度を高める必要がある。
On the other hand, in recent years, cold-rolled steel sheets used for drawing have been required to have further improved strength in order to realize a thinner drawn can. For example, in recent years, with the development of electronic devices, it has been required to further increase the capacity of batteries. However, the dimensions of the external shape of the battery are already determined according to the standard. Therefore, in order to increase the filling amount of the active material of the battery, it is necessary to increase the internal volume of the battery (the internal volume of the throttle can). In order to increase the inner volume of the drawn can, it is necessary to reduce the thickness (gauge down) of the cold-rolled steel sheet for the drawn can. However, when the cold-rolled steel sheet is gauged down, the strength of the drawn can may be insufficient. In particular, the can bottom of the drawn can cannot be expected to be hardened because the amount of processing strain during drawing is small. Therefore, it is necessary to increase the strength of the cold-rolled steel sheet in order to increase the strength of the drawn can, particularly the internal / external pressure resistance at the bottom of the can.
絞り缶用の冷延鋼板は、上述のように、プレス成形性に優れるとともに、高強度であることが要求される。しかし、プレス成形性を高めることと、強度を高めることとは、互いに相反する技術課題であると言える。冷延鋼板の強度を高めて冷延鋼板を薄肉化できたとしても、この冷延鋼板では、全伸びELの低下、すなわち、プレス成形性の低下が予想される。例えば、冷延鋼板の強度を高めたとしても、絞り加工として多段の加工を行う場合、絞り缶の胴上部では加工ひずみ量が多大となるため、この冷延鋼板ではプレス加工を好ましく行えない可能性がある。このように、絞り缶用冷延鋼板に関して、高強度と、優れたプレス成形性とを両立させることは容易でない。
As described above, cold-rolled steel sheets for drawn cans are required to have excellent press formability and high strength. However, it can be said that increasing the press formability and increasing the strength are technical problems that are mutually contradictory. Even if the cold-rolled steel sheet can be thinned by increasing the strength of the cold-rolled steel sheet, this cold-rolled steel sheet is expected to have a decrease in total elongation EL, that is, a decrease in press formability. For example, even if the strength of the cold-rolled steel sheet is increased, when multi-stage processing is performed as drawing, the amount of processing strain becomes large at the upper part of the can of the drawn can. There is sex. Thus, regarding cold-rolled steel sheets for drawn cans, it is not easy to achieve both high strength and excellent press formability.
上記に加えて、絞り缶用冷延鋼板では、絞り加工時にストレッチャーストレイン(縞模様の表面欠陥)が発生するのを抑制しなければならない。ストレッチャーストレインが発生すれば、缶周面及び缶底には、板厚の厚い部分(ストレッチャーストレインが発生していない部分)と薄い部分(ストレッチャーストレインが発生した部分)とが形成される。つまり、缶周面及び缶底に凹凸が形成される。電池缶(絞り缶)がこのような凹凸形状を有すれば、電池缶と電池活物質との接触電気抵抗が大きくなるので好ましくない。また、絞り缶がこのような凹凸形状を有すれば、絞り缶の張り剛性が低下し、絞り缶の耐内外圧強度も低下する恐れがある。そのため、絞り缶用冷延鋼板では、高強度でかつプレス成形性に優れることに加えて、絞り加工後にストレッチャーストレインが発生しないことも要求される。なお、以降の説明で、絞り加工後にストレッチャーストレインが発生しないことを、「非St-St性に優れる」と称する。
In addition to the above, in cold-rolled steel sheets for drawn cans, the occurrence of stretcher strain (striped surface defects) must be suppressed during drawing. If stretcher strain occurs, a thick part (part where stretcher strain is not generated) and a thin part (part where stretcher strain is generated) are formed on the peripheral surface and bottom of the can. . That is, irregularities are formed on the peripheral surface and the bottom of the can. If the battery can (squeezed can) has such an uneven shape, the contact electrical resistance between the battery can and the battery active material is increased, which is not preferable. Further, if the squeezed can has such a concavo-convex shape, the tension rigidity of the squeezed can may be reduced, and the internal and external pressure strength of the squeezed can may be reduced. Therefore, in the cold-rolled steel sheet for drawn cans, in addition to having high strength and excellent press formability, it is also required that stretcher strain does not occur after drawing. In the following description, the fact that no stretcher strain occurs after drawing is referred to as “excellent non-St-St property”.
なお、ストレッチャーストレインは、鋼板が変形する際の降伏点伸び(降伏直後に降伏点よりも小さい変形抵抗で進行する定常変形)に起因して発生する。このストレッチャーストレインは、鋼板を軽圧下率で圧延する調質圧延(スキンパス圧延)を行うことによって抑制できる。しかし、鋼板に調質圧延を施したとしても、ひずみ時効硬化が生じる鋼板では、時間の経過と共にストレッチャーストレインの抑制効果が低減する。
It should be noted that stretcher strain occurs due to the yield point elongation when the steel sheet is deformed (steady deformation that proceeds with a deformation resistance smaller than the yield point immediately after yielding). This stretcher strain can be suppressed by performing temper rolling (skin pass rolling) in which the steel sheet is rolled at a light reduction rate. However, even if the steel sheet is subjected to temper rolling, the effect of suppressing the stretcher strain is reduced with the passage of time in a steel sheet that undergoes strain age hardening.
従来、ストレッチャーストレインを抑制するために、絞り缶用冷延鋼板として、ニオブ(Nb)添加極低炭素鋼や、ホウ素(B)添加低炭素鋼が用いられてきた。例えば、Nb添加極低炭素鋼(Nb-SULC)等に代表されるIF(Interstitial Free)鋼では、時効硬化が生じ難いので、ストレッチャーストレインの発生を防止できる。しかし、Nb添加極低炭素鋼では、その鋼成分が制限されるので、鋼の強度を高めることが困難である。一方、B添加低炭素鋼では、鋼中でBが窒素(N)と結合するので、Nに起因する時効硬化が抑制される。ただ、このB添加低炭素鋼では、鋼中の固溶炭素(C)に起因する時効硬化も抑制する必要がある。そのため、B添加低炭素鋼では、鋼板を連続焼鈍した後、箱焼鈍による過時効処理を実施し、鋼中の固溶Cを低減することによって、ストレッチャーストレインの発生を防止する。例えば、上記の箱焼鈍による過時効処理では、鋼板を400℃程度の低温で均熱した後、鋼板を徐冷する必要がある。なお、以降の説明で、連続焼鈍ラインによる焼鈍を「CAL(Continuous Annealing Line)」と称する。また、箱焼鈍による過時効処理を「BAF-OA(Box Annealing Furnace-Over Aging)」と称する。
Conventionally, niobium (Nb) -added ultra-low carbon steel and boron (B) -added low-carbon steel have been used as cold-rolled steel sheets for drawing cans in order to suppress stretcher strain. For example, IF (Interstitial Free) steel typified by Nb-added ultra-low carbon steel (Nb-SULC) or the like is less likely to age harden, so that the occurrence of stretcher strain can be prevented. However, in the Nb-added ultra-low carbon steel, the steel components are limited, so it is difficult to increase the strength of the steel. On the other hand, in the B-added low carbon steel, B is combined with nitrogen (N) in the steel, so that age hardening due to N is suppressed. However, in this B-added low carbon steel, it is necessary to suppress age hardening due to solute carbon (C) in the steel. Therefore, in the B-added low carbon steel, after the steel sheet is continuously annealed, an overaging treatment by box annealing is performed to reduce the solid solution C in the steel, thereby preventing the occurrence of stretcher strain. For example, in the overaging treatment by box annealing described above, it is necessary to anneal the steel plate at a low temperature of about 400 ° C. and then gradually cool the steel plate. In the following description, annealing by a continuous annealing line is referred to as “CAL (Continuous Annealing Line)”. Further, the overaging treatment by box annealing is referred to as “BAF-OA (Box Annealing Furnace-Over Aging)”.
このBAF-OAでは、上記の均熱及び徐冷を行うために、1週間程度の処理時間が必要となる。そのため、BAF-OAを行うと、絞り缶用冷延鋼板の生産性が著しく低下する。したがって、BAF-OAを実施することなしに、高強度で、プレス成形性に優れ、非St-St性にも優れる絞り缶用冷延鋼板が製造できれば、産業上で非常に有益である。
This BAF-OA requires a processing time of about one week in order to perform the above-mentioned soaking and slow cooling. Therefore, when BAF-OA is performed, the productivity of cold-rolled steel sheets for drawn cans is significantly reduced. Therefore, if a cold-rolled steel sheet for a drawing can having high strength, excellent press formability, and excellent non-St-St properties can be produced without performing BAF-OA, it is very useful in the industry.
例えば、特許文献1は、絞り缶用鋼板を開示している。特許文献1に開示された絞り缶用鋼板は、Bを含有する低炭素のアルミキルド鋼であって、C含有量が0.045~0.100%である。この特許文献1には、鋼板が硬質化して絞り加工性が低下するのを抑制するため、C含有量の上限を0.100%に制限する、と記載されている。
For example, Patent Document 1 discloses a steel plate for a drawing can. The steel plate for drawn cans disclosed in Patent Document 1 is a low-carbon aluminum killed steel containing B, and the C content is 0.045 to 0.100%. This Patent Document 1 describes that the upper limit of the C content is limited to 0.100% in order to prevent the steel sheet from becoming hard and reducing the drawing workability.
特許文献1は絞り缶用鋼板を開示しているが、特許文献1に開示された絞り缶用鋼板は、軟質な冷延鋼板である。そのため、この鋼板をゲージダウンした場合、絞り缶の耐内外圧強度が低下する可能性がある。また、特許文献1に開示された絞り缶用鋼板では、BAF-OAを省略した場合、ストレッチャーストレインを抑制することが困難になる。このように、特許文献1は、ゲージダウンを達成するために冷延鋼板を高強度化すること、並びに、この高強度化に加えてプレス成形性及び非St-St性を同時に向上させること、について開示も示唆もしていない。即ち、従来技術では、0.15%超の高いC含有量を有する事で強度を確保しつつ、箱焼鈍をせずに、絞り缶用鋼板において時効処理後にストレッチャーストレインを抑制することは出来なかった。尚、JIS G3303で規定されたブリキ成分は、C含有量が0.13%以下である。
Patent Document 1 discloses a steel plate for a drawing can, but the steel plate for a drawing can disclosed in Patent Document 1 is a soft cold-rolled steel plate. Therefore, when this steel plate is gauged down, the internal and external pressure strength of the drawn can may decrease. Further, in the steel plate for a drawn can disclosed in Patent Document 1, it is difficult to suppress stretcher strain when BAF-OA is omitted. As described above, Patent Document 1 increases the strength of a cold-rolled steel sheet in order to achieve gauge down, and simultaneously improves press formability and non-St-St properties in addition to this increase in strength. Is not disclosed or suggested. That is, in the prior art, it is possible to suppress stretcher strain after aging treatment in a steel sheet for a drawn can without securing box strength by having a high C content of more than 0.15%, and without box annealing. There wasn't. In addition, the tin content specified in JIS G3303 has a C content of 0.13% or less.
本発明は上記事情に鑑みてなされたものであり、BAF-OAを実施することなしに、高強度で、プレス成形性に優れ、非St-St性にも優れる絞り缶用冷延鋼板を提供することを課題とする。
The present invention has been made in view of the above circumstances, and provides a cold-rolled steel sheet for a drawing can that has high strength, excellent press formability, and excellent non-St-St properties without performing BAF-OA. The task is to do.
本発明の要旨は以下の通りである。
(1)本発明の一態様にかかる絞り缶用の鋼板は、化学成分として、質量%で、C:0.150超~0.260%、Sol.Al:0.005~0.100%、B:0.0005~0.02%、Si:0.50%以下、Mn:0.70%以下、P:0.070%以下、S:0.05%以下、N:0.0080%以下、Nb:0.003%以下、Ti:0.003%以下、を含有し、残部がFe及び不純物からなり、前記化学成分中のホウ素含有量と窒素含有量とが、質量%で、0.4≦B/N≦2.5を満足し、前記鋼板が、ミクロ組織として、平均粒径が2.7~4.0μmであるフェライトと、粒状セメンタイトとを含み、前記鋼板の板厚が0.15~0.50mmであり、前記鋼板を100℃で1時間の時効処理を実施した後に行う引張方向が圧延方向と平行となる引張試験から得られる降伏強度を単位MPaでYPとし、全伸びを単位%でELとし、降伏点伸びを単位%でYP-ELとし、及び降伏比を単位%でYRとしたとき、前記YPが360~430MPaであり、前記ELが25~32%であり、前記YP-ELが0%であり、前記YRが80~87%である。
(2)上記(1)に記載の絞り缶用鋼板では、前記板厚が0.20超~0.50mmのときの前記ELが27~32%であってもよい。
(3)上記(1)または(2)に記載の絞り缶用鋼板では、前記鋼板の表面上に、Niめっき層、Ni拡散めっき層、Snめっき層、及びTFSめっき層のうちの少なくとも1つが配されてもよい。
(4)上記(1)または(2)に記載の絞り缶用鋼板の製造方法では、前記化学成分を有する鋳片を得る製鋼工程と、前記鋳片を、1000℃以上に加熱し、840~950℃で仕上げ圧延し、仕上げ圧延後冷却し、500~720℃で巻取って、熱延鋼板を得る熱延工程と、前記熱延鋼板に対して累積圧下率が80%超の一次冷間圧延を実施して、一次冷延鋼板を得る一次冷延工程と、前記一次冷延鋼板を、平均昇温速度10~40℃/秒で昇温し、650~715℃の温度範囲内で均熱し、その後、500~400℃の間を平均冷却速度5~80℃/秒で冷却する連続焼鈍を実施して、焼鈍鋼板を得る焼鈍工程と、前記焼鈍工程後に、過時効処理を施していない前記焼鈍鋼板を0.5~5.0%の累積圧下率で調質圧延して、調質圧延鋼板を得る調質圧延工程と、を備える。
(5)上記(4)に記載の絞り缶用鋼板の製造方法では、前記調質圧延工程後に、前記調質圧延鋼板に対して、Niめっき処理、Ni拡散めっき処理、Snめっき処理、及びTFSめっき処理のうちの少なくとも1つを実施するめっき工程をさらに備えてもよい。 The gist of the present invention is as follows.
(1) A steel plate for a drawing can according to one embodiment of the present invention has, as a chemical component, C: more than 0.150 to 0.260%, Sol. Al: 0.005 to 0.100%, B: 0.0005 to 0.02%, Si: 0.50% or less, Mn: 0.70% or less, P: 0.070% or less, S: 0.00. Containing 0.5% or less, N: 0.0080% or less, Nb: 0.003% or less, Ti: 0.003% or less, with the balance being Fe and impurities, the boron content and nitrogen in the chemical components The content of the steel sheet satisfies 0.4 ≦ B / N ≦ 2.5 in terms of mass%, and the steel sheet has a microstructure with an average particle size of 2.7 to 4.0 μm, and granular cementite. The steel sheet has a thickness of 0.15 to 0.50 mm, and is obtained from a tensile test in which the tensile direction performed after the steel sheet is subjected to aging treatment at 100 ° C. for 1 hour is parallel to the rolling direction. Yield strength is YP in MPa, total elongation is EL in%, yield point YP-EL in unit% and yield ratio YR in unit%, the YP is 360 to 430 MPa, the EL is 25 to 32%, and the YP-EL is 0%. The YR is 80 to 87%.
(2) In the steel plate for a drawing can described in (1), the EL may be 27 to 32% when the plate thickness is more than 0.20 to 0.50 mm.
(3) In the steel plate for drawing cans according to (1) or (2) above, at least one of a Ni plating layer, a Ni diffusion plating layer, a Sn plating layer, and a TFS plating layer is formed on the surface of the steel plate. It may be arranged.
(4) In the method for producing a steel plate for a drawn can according to the above (1) or (2), a steelmaking step for obtaining a slab having the chemical component, and heating the slab to 1000 ° C. or more, Finish rolling at 950 ° C., cooling after finish rolling, winding at 500 to 720 ° C. to obtain a hot-rolled steel sheet, and primary cold with a cumulative rolling reduction of over 80% with respect to the hot-rolled steel sheet A primary cold-rolling step of rolling to obtain a primary cold-rolled steel sheet, and the primary cold-rolled steel sheet are heated at an average temperature increase rate of 10 to 40 ° C./second, and averaged within a temperature range of 650 to 715 ° C. Heating and then performing continuous annealing to cool between 500 to 400 ° C. at an average cooling rate of 5 to 80 ° C./second to obtain an annealed steel sheet, and no overaging treatment is performed after the annealing step The annealed steel sheet is temper-rolled at a cumulative reduction of 0.5 to 5.0%, and temper-rolled steel And a temper rolling to obtain a.
(5) In the manufacturing method of the steel plate for drawn cans described in (4) above, after the temper rolling step, the temper rolled steel plate is subjected to Ni plating treatment, Ni diffusion plating treatment, Sn plating treatment, and TFS. You may further provide the plating process which implements at least 1 of a plating process.
(1)本発明の一態様にかかる絞り缶用の鋼板は、化学成分として、質量%で、C:0.150超~0.260%、Sol.Al:0.005~0.100%、B:0.0005~0.02%、Si:0.50%以下、Mn:0.70%以下、P:0.070%以下、S:0.05%以下、N:0.0080%以下、Nb:0.003%以下、Ti:0.003%以下、を含有し、残部がFe及び不純物からなり、前記化学成分中のホウ素含有量と窒素含有量とが、質量%で、0.4≦B/N≦2.5を満足し、前記鋼板が、ミクロ組織として、平均粒径が2.7~4.0μmであるフェライトと、粒状セメンタイトとを含み、前記鋼板の板厚が0.15~0.50mmであり、前記鋼板を100℃で1時間の時効処理を実施した後に行う引張方向が圧延方向と平行となる引張試験から得られる降伏強度を単位MPaでYPとし、全伸びを単位%でELとし、降伏点伸びを単位%でYP-ELとし、及び降伏比を単位%でYRとしたとき、前記YPが360~430MPaであり、前記ELが25~32%であり、前記YP-ELが0%であり、前記YRが80~87%である。
(2)上記(1)に記載の絞り缶用鋼板では、前記板厚が0.20超~0.50mmのときの前記ELが27~32%であってもよい。
(3)上記(1)または(2)に記載の絞り缶用鋼板では、前記鋼板の表面上に、Niめっき層、Ni拡散めっき層、Snめっき層、及びTFSめっき層のうちの少なくとも1つが配されてもよい。
(4)上記(1)または(2)に記載の絞り缶用鋼板の製造方法では、前記化学成分を有する鋳片を得る製鋼工程と、前記鋳片を、1000℃以上に加熱し、840~950℃で仕上げ圧延し、仕上げ圧延後冷却し、500~720℃で巻取って、熱延鋼板を得る熱延工程と、前記熱延鋼板に対して累積圧下率が80%超の一次冷間圧延を実施して、一次冷延鋼板を得る一次冷延工程と、前記一次冷延鋼板を、平均昇温速度10~40℃/秒で昇温し、650~715℃の温度範囲内で均熱し、その後、500~400℃の間を平均冷却速度5~80℃/秒で冷却する連続焼鈍を実施して、焼鈍鋼板を得る焼鈍工程と、前記焼鈍工程後に、過時効処理を施していない前記焼鈍鋼板を0.5~5.0%の累積圧下率で調質圧延して、調質圧延鋼板を得る調質圧延工程と、を備える。
(5)上記(4)に記載の絞り缶用鋼板の製造方法では、前記調質圧延工程後に、前記調質圧延鋼板に対して、Niめっき処理、Ni拡散めっき処理、Snめっき処理、及びTFSめっき処理のうちの少なくとも1つを実施するめっき工程をさらに備えてもよい。 The gist of the present invention is as follows.
(1) A steel plate for a drawing can according to one embodiment of the present invention has, as a chemical component, C: more than 0.150 to 0.260%, Sol. Al: 0.005 to 0.100%, B: 0.0005 to 0.02%, Si: 0.50% or less, Mn: 0.70% or less, P: 0.070% or less, S: 0.00. Containing 0.5% or less, N: 0.0080% or less, Nb: 0.003% or less, Ti: 0.003% or less, with the balance being Fe and impurities, the boron content and nitrogen in the chemical components The content of the steel sheet satisfies 0.4 ≦ B / N ≦ 2.5 in terms of mass%, and the steel sheet has a microstructure with an average particle size of 2.7 to 4.0 μm, and granular cementite. The steel sheet has a thickness of 0.15 to 0.50 mm, and is obtained from a tensile test in which the tensile direction performed after the steel sheet is subjected to aging treatment at 100 ° C. for 1 hour is parallel to the rolling direction. Yield strength is YP in MPa, total elongation is EL in%, yield point YP-EL in unit% and yield ratio YR in unit%, the YP is 360 to 430 MPa, the EL is 25 to 32%, and the YP-EL is 0%. The YR is 80 to 87%.
(2) In the steel plate for a drawing can described in (1), the EL may be 27 to 32% when the plate thickness is more than 0.20 to 0.50 mm.
(3) In the steel plate for drawing cans according to (1) or (2) above, at least one of a Ni plating layer, a Ni diffusion plating layer, a Sn plating layer, and a TFS plating layer is formed on the surface of the steel plate. It may be arranged.
(4) In the method for producing a steel plate for a drawn can according to the above (1) or (2), a steelmaking step for obtaining a slab having the chemical component, and heating the slab to 1000 ° C. or more, Finish rolling at 950 ° C., cooling after finish rolling, winding at 500 to 720 ° C. to obtain a hot-rolled steel sheet, and primary cold with a cumulative rolling reduction of over 80% with respect to the hot-rolled steel sheet A primary cold-rolling step of rolling to obtain a primary cold-rolled steel sheet, and the primary cold-rolled steel sheet are heated at an average temperature increase rate of 10 to 40 ° C./second, and averaged within a temperature range of 650 to 715 ° C. Heating and then performing continuous annealing to cool between 500 to 400 ° C. at an average cooling rate of 5 to 80 ° C./second to obtain an annealed steel sheet, and no overaging treatment is performed after the annealing step The annealed steel sheet is temper-rolled at a cumulative reduction of 0.5 to 5.0%, and temper-rolled steel And a temper rolling to obtain a.
(5) In the manufacturing method of the steel plate for drawn cans described in (4) above, after the temper rolling step, the temper rolled steel plate is subjected to Ni plating treatment, Ni diffusion plating treatment, Sn plating treatment, and TFS. You may further provide the plating process which implements at least 1 of a plating process.
本発明の上記態様によれば、BAF-OAを実施することなしに、高強度で、プレス成形性に優れ、非St-St性にも優れる絞り缶用鋼板を提供できる。この鋼板は、プレス成形性に優れ、ストレッチャーストレインの発生を抑制でき、ゲージダウンが可能である。
According to the above aspect of the present invention, it is possible to provide a steel plate for a drawing can having high strength, excellent press formability, and excellent non-St-St properties without performing BAF-OA. This steel sheet is excellent in press formability, can suppress the occurrence of stretcher strain, and can be gauged down.
以下、本発明の好適な実施形態について詳しく説明する。ただ、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。各元素の含有量に関する「%」は、「質量%」を意味する。
Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the configuration disclosed in the present embodiment, and various modifications can be made without departing from the spirit of the present invention. Moreover, a lower limit value and an upper limit value are included in the numerical limit range described below. Numerical values indicating “over” or “less than” are not included in the numerical range. “%” Regarding the content of each element means “mass%”.
本発明者らは、絞り缶用の鋼板(以降、冷延鋼板と呼ぶ)の特性について調査及び検討を行い、次の知見(i)~(iv)を得た。まず、知見(i)及び(ii)について説明する。
The present inventors investigated and examined the characteristics of steel plates for drawn cans (hereinafter referred to as cold rolled steel plates), and obtained the following findings (i) to (iv). First, findings (i) and (ii) will be described.
(i)本実施形態に係る冷延鋼板では、C含有量を0.150超とすれば、鋼中の固溶Cによって鋼が固溶強化し、冷延鋼板の降伏強度YPが高まる。自然時効後の圧延方向(L方向)の降伏強度YPは、従来の絞り缶用冷延鋼板の降伏強度よりも高い360MPa以上になる。したがって、この冷延鋼板を用いれば、ゲージダウンしても耐内外圧強度に優れた絞り缶が得られる。
(I) In the cold-rolled steel sheet according to the present embodiment, if the C content exceeds 0.150, the steel is solid-solution strengthened by the solid solution C in the steel, and the yield strength YP of the cold-rolled steel sheet increases. The yield strength YP in the rolling direction (L direction) after natural aging is 360 MPa or higher, which is higher than the yield strength of the conventional cold rolled steel sheet for drawn cans. Therefore, if this cold-rolled steel sheet is used, a drawn can excellent in internal and external pressure strength can be obtained even if the gauge is down.
(ii)本実施形態に係る冷延鋼板では、C含有量を0.150超に高めても、CAL(連続焼鈍)の平均昇温速度を10~40℃/秒とし、焼鈍温度(均熱温度)を再結晶完了温度以上でかつフェライト単相域温度(例えば、650~715℃)とし、その後の500~400℃の間の平均冷却速度を5~80℃/秒とすれば、鋼中に固溶Cが存在しても、非St-St性に優れた冷延鋼板が得られる。
(Ii) In the cold-rolled steel sheet according to this embodiment, even if the C content is increased to more than 0.150, the average temperature increase rate of CAL (continuous annealing) is set to 10 to 40 ° C./second, and the annealing temperature (soaking) If the temperature is higher than the recrystallization completion temperature and the ferrite single-phase region temperature (for example, 650 to 715 ° C.) and the subsequent average cooling rate between 500 to 400 ° C. is 5 to 80 ° C./second, Even if solid solution C is present in the steel, a cold-rolled steel sheet having excellent non-St-St properties can be obtained.
図1に、従来の絞り缶用冷延鋼板の降伏点近傍の応力-ひずみ線図を示す。図2に、本実施形態に係る絞り缶用冷延鋼板の降伏点(0.2%耐力)近傍の応力-ひずみ線図を示す。図1の引張試験に供された冷延鋼板のC含有量は、0.056質量%であり、図2の引張試験に供された冷延鋼板のC含有量は、0.153質量%である。図1及び図2の冷延鋼板は、後述する本実施形態に係る冷延鋼板の製造方法を満足する条件で製造された。具体的には、上記条件でCALを実施後、BAF-OAを実施せずに、図1及び図2の冷延鋼板を製造した。製造された冷延鋼板から、L方向(圧延方向)に平行な平行部を有するJIS5号引張試験片を作製した。作製された引張試験片に対して、促進時効処理を実施した。具体的には、促進時効処理として、各引張試験片に対して、100℃で1時間の時効処理を実施した。この促進時効処理は、自然時効がほぼ飽和する時効に相当する。促進時効処理後の引張試験片を用いて、室温(25℃)かつ大気中で引張試験を実施して、図1及び図2の応力-ひずみ線図を得た。
Fig. 1 shows a stress-strain diagram near the yield point of a conventional cold-rolled steel sheet for drawn cans. FIG. 2 shows a stress-strain diagram in the vicinity of the yield point (0.2% proof stress) of the cold-rolled steel sheet for drawn cans according to this embodiment. The C content of the cold rolled steel sheet subjected to the tensile test of FIG. 1 is 0.056% by mass, and the C content of the cold rolled steel sheet subjected to the tensile test of FIG. 2 is 0.153% by mass. is there. The cold-rolled steel sheet shown in FIGS. 1 and 2 was manufactured under conditions that satisfy the method for manufacturing a cold-rolled steel sheet according to this embodiment, which will be described later. Specifically, after performing CAL under the above conditions, the cold-rolled steel sheets of FIGS. 1 and 2 were manufactured without performing BAF-OA. From the manufactured cold-rolled steel sheet, a JIS No. 5 tensile test piece having a parallel part parallel to the L direction (rolling direction) was produced. An accelerated aging treatment was performed on the produced tensile test piece. Specifically, as an accelerated aging treatment, an aging treatment for 1 hour at 100 ° C. was performed on each tensile test piece. This accelerated aging treatment corresponds to an aging at which natural aging is almost saturated. Using the tensile test piece after the accelerated aging treatment, a tensile test was carried out at room temperature (25 ° C.) and in the atmosphere, and the stress-strain diagrams of FIGS. 1 and 2 were obtained.
C含有量が低い従来の冷延鋼板(図1)では、降伏点降下が起き、降伏点伸びYP-ELが発生した。これは、外部から応力が付加されても、固溶Cによるコットレル効果により、降伏点までは転位が移動せず(固着され)、降伏点で転位が一気に固溶Cから解放されて移動することに起因する。そして、従来の冷延鋼板(図1)では、降伏後もコットレル効果による転位の固着と解放とが繰り返されるため、降伏点伸びYP-ELが発生する。
In the conventional cold-rolled steel sheet having a low C content (FIG. 1), the yield point drop occurred and the yield point elongation YP-EL occurred. This is because even if stress is applied from the outside, the dislocation does not move (fixed) to the yield point due to the Cottrell effect due to the solid solution C, and the dislocation is released from the solid solution C and moves at the yield point all at once. caused by. In the conventional cold-rolled steel sheet (FIG. 1), the yield point elongation YP-EL occurs because the dislocation fixation and release due to the Cottrell effect are repeated even after yielding.
これに対して、C含有量が高い本実施形態に係る冷延鋼板(図2)では、降伏点降下が確認されず、降伏点伸びYP-ELが生じなかった。図2の応力-ひずみ線図を観察すると、図1の応力-ひずみ線図とは異なり、降伏点到達前にプロット間隔が顕著に短くなっている(単位時間当たりの応力変化とひずみ変化とが小さくなっている)。すなわち、本実施形態に係る冷延鋼板(図2)では、外部から応力が付加されると、降伏点前でも局所的に塑性変形が開始し、図1に示されるような降伏点伸びYP-ELが観察されないという特異な現象が生じた。
In contrast, in the cold-rolled steel sheet according to the present embodiment having a high C content (FIG. 2), no yield point drop was confirmed, and no yield point elongation YP-EL occurred. When the stress-strain diagram in FIG. 2 is observed, unlike the stress-strain diagram in FIG. 1, the plot interval is remarkably shortened before the yield point is reached (the stress change and strain change per unit time are Small). That is, in the cold-rolled steel sheet according to the present embodiment (FIG. 2), when a stress is applied from the outside, plastic deformation starts locally even before the yield point, and the yield point elongation YP− as shown in FIG. A unique phenomenon occurred in which EL was not observed.
そこで、図1及び図2の冷延鋼板について、L断面(圧延方向に平行な断面)でのミクロ組織を光学顕微鏡により観察した。図3は、図1の引張試験に供された冷延鋼板のL断面のミクロ組織画像であり、図4は、図2の引張試験に供された冷延鋼板のL断面のミクロ組織画像である。
Therefore, the microstructure in the L cross section (cross section parallel to the rolling direction) of the cold-rolled steel sheet of FIGS. 1 and 2 was observed with an optical microscope. 3 is a microstructure image of the L cross section of the cold rolled steel sheet subjected to the tensile test of FIG. 1, and FIG. 4 is a microstructure image of the L cross section of the cold rolled steel sheet subjected to the tensile test of FIG. is there.
図3及び図4中、白色の組織はフェライト10であり、黒色の組織は粒状セメンタイト20である。図3及び図4から観察されるように、図3及び図4の冷延鋼板のミクロ組織は、フェライト及び粒状セメンタイトを主に含む組織であった。しかしながら、C含有量が高い図4の冷延鋼板のフェライト平均粒径は、図3の冷延鋼板のフェライト平均粒径よりも小さい4.0μm以下であった。また、図4の冷延鋼板のフェライト組織は、図3の冷延鋼板と比較して、粗大粒及び微細粒を含む混粒であるように見受けられる。
3 and 4, the white structure is ferrite 10 and the black structure is granular cementite 20. As observed from FIGS. 3 and 4, the microstructure of the cold-rolled steel sheet of FIGS. 3 and 4 was a structure mainly containing ferrite and granular cementite. However, the average ferrite grain size of the cold rolled steel sheet of FIG. 4 having a high C content was 4.0 μm or less, which is smaller than the average ferrite grain diameter of the cold rolled steel sheet of FIG. Further, the ferrite structure of the cold-rolled steel sheet of FIG. 4 appears to be a mixed grain containing coarse grains and fine grains as compared with the cold-rolled steel sheet of FIG.
以上の引張試験及び組織観察の結果を考慮すると、本実施形態に係る冷延鋼板(C含有量が高い冷延鋼板)が示す降伏点近傍での特異な現象は、次のように推察される。本実施形態に係る冷延鋼板(C含有量が高い冷延鋼板)では、C含有量が低い冷延鋼板と比較して、フェライト粒の平均粒径が小さくなり、フェライト粒が混粒となりやすい。すなわち、本実施形態に特有のミクロ組織を有する冷延鋼板が変形する場合、混粒であるフェライト粒のうち、粗大なフェライト粒から先行して降伏点前に変形が開始し、粗大なフェライト粒に遅れて、微細なフェライト粒の変形が開始する。このように、本実施形態に係る冷延鋼板では、外部から応力を受けたときに、粒径の大きいフェライトから順次変形が開始するため、鋼中に固溶Cが存在したとしても、降伏点伸びYP-ELが応力-ひずみ線図に現れないと考えられる。その結果、ストレッチャーストレインの発生が抑制されると考えられる。
Considering the results of the above tensile test and structure observation, a unique phenomenon in the vicinity of the yield point indicated by the cold-rolled steel sheet (cold-rolled steel sheet having a high C content) according to this embodiment is inferred as follows. . In the cold-rolled steel sheet according to the present embodiment (cold-rolled steel sheet having a high C content), the average grain size of the ferrite grains becomes smaller and the ferrite grains are likely to be mixed grains compared to a cold-rolled steel sheet having a low C content. . That is, when a cold-rolled steel sheet having a microstructure unique to this embodiment is deformed, among the ferrite grains that are mixed grains, the deformation starts before the yield point before the coarse ferrite grains, and the coarse ferrite grains After that, the deformation of fine ferrite grains starts. Thus, in the cold-rolled steel sheet according to the present embodiment, when stress is applied from the outside, deformation starts sequentially from the ferrite having a large grain size, so even if solute C exists in the steel, the yield point It is considered that the elongation YP-EL does not appear in the stress-strain diagram. As a result, it is considered that the generation of stretcher strain is suppressed.
以上の知見に基づいて、本発明者らは、C含有量と降伏点伸びYP-ELとの関係についてさらに調査した。図5に、冷延鋼板のC含有量(質量%)と降伏点伸びYP-EL(%)との関係を示す。なお、この図5は、フェライト及び粒状セメンタイトを主に含むミクロ組織に制御された冷延鋼板を調査して得た。
Based on the above findings, the present inventors further investigated the relationship between C content and yield point elongation YP-EL. FIG. 5 shows the relationship between the C content (mass%) of the cold rolled steel sheet and the yield point elongation YP-EL (%). This FIG. 5 was obtained by investigating a cold-rolled steel sheet controlled to have a microstructure mainly containing ferrite and granular cementite.
図5に示すとおり、C含有量の増加に伴い、降伏点伸びYP-ELは急速に減少する。具体的には、C含有量が0.150超になると、降伏点伸びYP-ELは0%になる。また、上述のように、C含有量が0.150超で、促進時効処理後のL方向の降伏強度YPが360MPa以上となる。すなわち、ミクロ組織等の制御に加えてC含有量を0.150超とすれば、絞り缶用冷延鋼板として要求される特性のうち、強度と非St-St性とが満足される。
As shown in FIG. 5, as the C content increases, the yield point elongation YP-EL decreases rapidly. Specifically, when the C content exceeds 0.150, the yield point elongation YP-EL becomes 0%. Further, as described above, the C content is more than 0.150, and the yield strength YP in the L direction after the accelerated aging treatment is 360 MPa or more. That is, when the C content exceeds 0.150 in addition to the control of the microstructure and the like, strength and non-St-St properties are satisfied among the properties required for cold-rolled steel sheets for drawn cans.
具体的には、C含有量が0.150超であって、CALの平均昇温速度が10~40℃/秒、焼鈍温度が再結晶完了温度以上でかつフェライト単相域温度(例えば、650~715℃)、500~400℃の間の平均冷却速度が5~80℃/秒である場合、上記のとおり本実施形態に特有のフェライト組織が形成される。したがって、C含有量が0.150超であり、かつ上記条件のCALを実施すれば、ミクロ組織がフェライト及び粒状セメンタイトを主に含み、フェライト粒の平均粒径が4.0μm以下となり、降伏強度YPが360MPa以上となり、かつ、降伏点伸びYP-ELが0%となる。
Specifically, the C content is more than 0.150, the CAL average heating rate is 10 to 40 ° C./second, the annealing temperature is equal to or higher than the recrystallization completion temperature, and the ferrite single-phase region temperature (for example, 650 When the average cooling rate between 500 and 400 ° C. is 5 to 80 ° C./second, a ferrite structure peculiar to this embodiment is formed as described above. Therefore, if the C content is more than 0.150 and CAL is performed under the above conditions, the microstructure mainly includes ferrite and granular cementite, and the average grain size of the ferrite grains becomes 4.0 μm or less, yield strength. YP is 360 MPa or more and the yield point elongation YP-EL is 0%.
なお、上述したように、ストレッチャーストレインの発生を防止するために、従来の鋼板では、BAF-OA等を実施していた。しかし、従来の鋼板では、C含有量が低いことを技術特徴としている。C含有量が0.150超であるような高C含有量の鋼板の場合、たとえBAF-OA等を実施したとしても、鋼中の固溶Cを十分に低減することが困難であるので、YP-ELを0%に制御することが実質的に困難であった。本実施形態に係る鋼板では、C含有量を0.150超としても、製造条件を制御して上記のフェライト組織を形成することによって、YP-ELを0%に制御することが可能となる。
In addition, as described above, in order to prevent the occurrence of stretcher strain, BAF-OA or the like has been performed on conventional steel plates. However, the conventional steel sheet is characterized by a low C content. In the case of a steel sheet with a high C content such that the C content exceeds 0.150, even if BAF-OA or the like is performed, it is difficult to sufficiently reduce the solid solution C in the steel. It was substantially difficult to control YP-EL to 0%. In the steel sheet according to the present embodiment, even if the C content exceeds 0.150, YP-EL can be controlled to 0% by forming the ferrite structure by controlling the manufacturing conditions.
一方で、C含有量が高すぎれば、冷延鋼板が過剰に硬化して、全伸びEL(%)が低下し、その結果、プレス成形性が低下する。本発明者らは、C含有量と全伸びELとの関係について調査した。そして、知見(iii)を得た。
On the other hand, if the C content is too high, the cold-rolled steel sheet is excessively hardened, and the total elongation EL (%) is lowered. As a result, the press formability is lowered. The inventors investigated the relationship between C content and total elongation EL. And knowledge (iii) was obtained.
(iii)本実施形態に係る冷延鋼板では、C含有量を0.260%以下とし、かつ組織制御すれば、自然時効後のL方向(圧延方向)の全伸びELが、従来の絞り缶用冷延鋼板の全伸びと同程度以上である25%以上となる。したがって、プレス成形性に優れた冷延鋼板が得られる。
(Iii) In the cold-rolled steel sheet according to the present embodiment, if the C content is 0.260% or less and the structure is controlled, the total elongation EL in the L direction (rolling direction) after natural aging becomes a conventional drawn can. It becomes 25% or more which is about the same or more as the total elongation of the cold-rolled steel sheet. Therefore, a cold-rolled steel sheet excellent in press formability can be obtained.
図6に、冷延鋼板のC含有量(質量%)と全伸びEL(%)との関係を示す。なお、この図6は、フェライト及び粒状セメンタイトを主に含むミクロ組織に制御された冷延鋼板を調査して得た。
FIG. 6 shows the relationship between the C content (mass%) and the total elongation EL (%) of the cold-rolled steel sheet. This FIG. 6 was obtained by investigating a cold-rolled steel sheet controlled to have a microstructure mainly containing ferrite and granular cementite.
図6に示すとおり、C含有量が0.150超~0.260%のとき、C含有量の増加に対して全伸びELが略一定となる。しかしながら、C含有量が0.260%を超えると、全伸びELが急速に低下する。したがって、C含有量が0.260%以下であれば、優れた全伸びELが維持される。具体的には、C含有量が0.260%以下であれば、全伸びELが25%以上となる。また、上述のとおり、強度と非St-St性とを満足させるためには、C含有量の下限を0.150超とする。すなわち、本実施形態に係る絞り缶用冷延鋼板では、C含有量を0.150超~0.260%とする。
As shown in FIG. 6, when the C content is more than 0.150 to 0.260%, the total elongation EL becomes substantially constant as the C content increases. However, when the C content exceeds 0.260%, the total elongation EL decreases rapidly. Therefore, if the C content is 0.260% or less, excellent total elongation EL is maintained. Specifically, if the C content is 0.260% or less, the total elongation EL is 25% or more. Further, as described above, in order to satisfy the strength and the non-St-St property, the lower limit of the C content is set to more than 0.150. That is, in the cold-rolled steel sheet for drawn cans according to this embodiment, the C content is set to more than 0.150 to 0.260%.
さらに、本発明者らは、上記したCに起因するストレッチャーストレインの抑制に加えて、Nに起因するストレッチャーストレインの抑制についても調査した。そして、知見(iv)を得た。
Furthermore, the present inventors also investigated the suppression of stretcher strain caused by N in addition to the suppression of stretcher strain caused by C described above. And knowledge (iv) was obtained.
(iv)C含有量を0.150超~0.260%とした上で、B含有量とN含有量とを0.4≦B/N≦2.5に制御すれば、Cに起因するストレッチャーストレインの発生と、Nに起因するストレッチャーストレインの発生との両方を抑制できる。
(Iv) If the C content is set to more than 0.150 to 0.260% and the B content and the N content are controlled to be 0.4 ≦ B / N ≦ 2.5, it is caused by C. Both the occurrence of stretcher strain and the occurrence of stretcher strain due to N can be suppressed.
C含有量が0.150超~0.260%であり、B/Nが0.4~2.5を満たすアルミキルド鋼の冷延鋼板に対して、CAL(連続焼鈍)を実施する。このとき、上述のとおり、平均昇温速度を10~40℃/秒とし、焼鈍温度を再結晶完了温度以上でかつフェライト単相域温度(例えば、650~715℃)とし、その後の500~400℃の間の平均冷却速度を5~80℃/秒にする。この場合、冷延鋼板の強度とプレス成形性とCに起因する非St-St性とが向上することに加えて、BがNと結合して窒化物を形成するので、固溶Nに起因する時効硬化が抑制され、その結果、Nに起因するストレッチャーストレインの発生も抑制される。
CAL (continuous annealing) is performed on cold-rolled steel sheets of aluminum killed steel having a C content of over 0.150 to 0.260% and a B / N ratio of 0.4 to 2.5. At this time, as described above, the average rate of temperature increase is set to 10 to 40 ° C./second, the annealing temperature is set to the recrystallization completion temperature or higher and the ferrite single phase region temperature (for example, 650 to 715 ° C.), and the subsequent 500 to 400 The average cooling rate during 5 ° C. is 5-80 ° C./sec. In this case, the strength and press formability of the cold-rolled steel sheet and the non-St-St property due to C are improved, and B is combined with N to form a nitride. As a result, the generation of stretcher strain due to N is also suppressed.
以下、本実施形態に係る絞り缶用冷延鋼板について詳述する。
Hereinafter, the cold-rolled steel sheet for drawn cans according to the present embodiment will be described in detail.
[化学組成]
本実施形態に係る絞り缶用冷延鋼板は、化学成分として、基本元素であるC、Sol.Al、及びBを含み、残部がFe及び不純物からなる。 [Chemical composition]
The cold-rolled steel sheet for drawn cans according to the present embodiment has C, Sol. Al and B are included, and the balance consists of Fe and impurities.
本実施形態に係る絞り缶用冷延鋼板は、化学成分として、基本元素であるC、Sol.Al、及びBを含み、残部がFe及び不純物からなる。 [Chemical composition]
The cold-rolled steel sheet for drawn cans according to the present embodiment has C, Sol. Al and B are included, and the balance consists of Fe and impurities.
なお、「不純物」とは、鋼を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境等から混入するものを指す。これら不純物のうち、Si、Mn、P、S、及びNは、本実施形態の効果を十分に発揮させるために、以下のように制限することが好ましい。また、不純物の含有量は少ないことが好ましいので、下限値を制限する必要がなく、不純物の下限値が0%でもよい。
In addition, “impurities” refer to materials mixed from ore, scrap, or production environment as raw materials when industrially manufacturing steel. Among these impurities, Si, Mn, P, S, and N are preferably limited as follows in order to sufficiently exhibit the effects of the present embodiment. Moreover, since it is preferable that there is little content of an impurity, it is not necessary to restrict | limit a lower limit and the lower limit of an impurity may be 0%.
C:0.150超~0.260%
炭素(C)は固溶して鋼の強度を高める。鋼の強度が高まれば、冷延鋼板をゲージダウンすることができる。C含有量が0.150超であれば、促進時効処理後のL方向の降伏強度YPを360MPa以上にすることができる。さらに、後述の条件のCALを実施することにより、フェライト組織の平均粒径が4.0μm以下となり、フェライト粒が粗大粒と微細粒とを含む混粒となりやすい。その結果、促進時効処理後の降伏点伸びYP-ELを0%にすることができる。C含有量が0.15以下であれば、上記効果が得られない。一方、C含有量が0.260%超であれば、冷延鋼板の硬度が高くなりすぎ、図6に示すとおり、自然時効が飽和した後(促進時効処理後)の全伸びELが低下する。この場合、冷延鋼板のプレス成形性が低くなる。したがって、C含有量は0.150超~0.260%である。なお、Cは、オーステナイト形成元素である。本実施形態に係る冷延鋼板ではミクロ組織を制御するために、C含有量の下限が、0.153%、0.155%、または0.160%であることが好ましい。C含有量の好ましい上限は0.260%未満であり、さらに好ましくは0.250%である。フェライト粒が混粒となりやすい。 C: Over 0.150 to 0.260%
Carbon (C) is dissolved to increase the strength of the steel. If the strength of the steel increases, the cold rolled steel sheet can be gauged down. If the C content exceeds 0.150, the yield strength YP in the L direction after the accelerated aging treatment can be set to 360 MPa or more. Furthermore, by performing CAL under the conditions described later, the average grain size of the ferrite structure becomes 4.0 μm or less, and the ferrite grains tend to be mixed grains including coarse grains and fine grains. As a result, the yield point elongation YP-EL after the accelerated aging treatment can be reduced to 0%. If the C content is 0.15 or less, the above effect cannot be obtained. On the other hand, if the C content exceeds 0.260%, the hardness of the cold-rolled steel sheet becomes too high, and the total elongation EL after natural aging is saturated (after accelerated aging treatment) decreases as shown in FIG. . In this case, the press formability of the cold rolled steel sheet is lowered. Therefore, the C content is more than 0.150 to 0.260%. C is an austenite forming element. In the cold rolled steel sheet according to this embodiment, in order to control the microstructure, the lower limit of the C content is preferably 0.153%, 0.155%, or 0.160%. The upper limit with preferable C content is less than 0.260%, More preferably, it is 0.250%. Ferrite grains tend to be mixed.
炭素(C)は固溶して鋼の強度を高める。鋼の強度が高まれば、冷延鋼板をゲージダウンすることができる。C含有量が0.150超であれば、促進時効処理後のL方向の降伏強度YPを360MPa以上にすることができる。さらに、後述の条件のCALを実施することにより、フェライト組織の平均粒径が4.0μm以下となり、フェライト粒が粗大粒と微細粒とを含む混粒となりやすい。その結果、促進時効処理後の降伏点伸びYP-ELを0%にすることができる。C含有量が0.15以下であれば、上記効果が得られない。一方、C含有量が0.260%超であれば、冷延鋼板の硬度が高くなりすぎ、図6に示すとおり、自然時効が飽和した後(促進時効処理後)の全伸びELが低下する。この場合、冷延鋼板のプレス成形性が低くなる。したがって、C含有量は0.150超~0.260%である。なお、Cは、オーステナイト形成元素である。本実施形態に係る冷延鋼板ではミクロ組織を制御するために、C含有量の下限が、0.153%、0.155%、または0.160%であることが好ましい。C含有量の好ましい上限は0.260%未満であり、さらに好ましくは0.250%である。フェライト粒が混粒となりやすい。 C: Over 0.150 to 0.260%
Carbon (C) is dissolved to increase the strength of the steel. If the strength of the steel increases, the cold rolled steel sheet can be gauged down. If the C content exceeds 0.150, the yield strength YP in the L direction after the accelerated aging treatment can be set to 360 MPa or more. Furthermore, by performing CAL under the conditions described later, the average grain size of the ferrite structure becomes 4.0 μm or less, and the ferrite grains tend to be mixed grains including coarse grains and fine grains. As a result, the yield point elongation YP-EL after the accelerated aging treatment can be reduced to 0%. If the C content is 0.15 or less, the above effect cannot be obtained. On the other hand, if the C content exceeds 0.260%, the hardness of the cold-rolled steel sheet becomes too high, and the total elongation EL after natural aging is saturated (after accelerated aging treatment) decreases as shown in FIG. . In this case, the press formability of the cold rolled steel sheet is lowered. Therefore, the C content is more than 0.150 to 0.260%. C is an austenite forming element. In the cold rolled steel sheet according to this embodiment, in order to control the microstructure, the lower limit of the C content is preferably 0.153%, 0.155%, or 0.160%. The upper limit with preferable C content is less than 0.260%, More preferably, it is 0.250%. Ferrite grains tend to be mixed.
Si:0.50%以下
シリコン(Si)は、不可避的に含有される不純物である。Siは、冷延鋼板のめっき密着性、及び、製缶後の冷延鋼板の塗装密着性を低下させる。したがって、Si含有量は0.50%以下に制限する。Si含有量の好ましい上限は0.50%未満である。Si含有量はなるべく低い値が好ましい。ただ、工業的に安定してSi含有量を0%にすることは難しいので、Si含有量の下限を0.0001%としてもよい。 Si: 0.50% or less Silicon (Si) is an unavoidable impurity. Si reduces the plating adhesion of the cold-rolled steel sheet and the coating adhesion of the cold-rolled steel sheet after canning. Therefore, the Si content is limited to 0.50% or less. The upper limit with preferable Si content is less than 0.50%. The Si content is preferably as low as possible. However, since it is difficult to make theSi content 0% stably industrially, the lower limit of the Si content may be 0.0001%.
シリコン(Si)は、不可避的に含有される不純物である。Siは、冷延鋼板のめっき密着性、及び、製缶後の冷延鋼板の塗装密着性を低下させる。したがって、Si含有量は0.50%以下に制限する。Si含有量の好ましい上限は0.50%未満である。Si含有量はなるべく低い値が好ましい。ただ、工業的に安定してSi含有量を0%にすることは難しいので、Si含有量の下限を0.0001%としてもよい。 Si: 0.50% or less Silicon (Si) is an unavoidable impurity. Si reduces the plating adhesion of the cold-rolled steel sheet and the coating adhesion of the cold-rolled steel sheet after canning. Therefore, the Si content is limited to 0.50% or less. The upper limit with preferable Si content is less than 0.50%. The Si content is preferably as low as possible. However, since it is difficult to make the
Mn:0.70%以下
マンガン(Mn)は、不可避的に含有される不純物である。Mnは、冷延鋼板を硬質化し、冷延鋼板の全伸びELを低下させる。そのため、プレス成形性(絞り加工性)が低下する。また、Mnは、オーステナイト形成元素であり、本実施形態に係る冷延鋼板ではミクロ組織を制御するために鋼に添加しない。Mn含有量が0.70%超の場合、本実施形態に係る鋼板に特有の機械特性を得にくくなる。したがって、Mn含有量は0.70%以下に制限する。Mn含有量の好ましい上限は0.70%未満である。Mn含有量はなるべく低い値が好ましい。ただ、工業的に安定してMn含有量を0%にすることは難しいので、Mn含有量の下限を0.0001%としてもよい。 Mn: 0.70% or less Manganese (Mn) is an unavoidable impurity. Mn hardens the cold-rolled steel sheet and lowers the total elongation EL of the cold-rolled steel sheet. Therefore, press formability (drawing workability) is lowered. Further, Mn is an austenite forming element and is not added to the steel in order to control the microstructure in the cold rolled steel sheet according to the present embodiment. When the Mn content is more than 0.70%, it is difficult to obtain the mechanical characteristics peculiar to the steel sheet according to the present embodiment. Therefore, the Mn content is limited to 0.70% or less. The upper limit with preferable Mn content is less than 0.70%. The Mn content is preferably as low as possible. However, since it is difficult to make theMn content 0% stably industrially, the lower limit of the Mn content may be 0.0001%.
マンガン(Mn)は、不可避的に含有される不純物である。Mnは、冷延鋼板を硬質化し、冷延鋼板の全伸びELを低下させる。そのため、プレス成形性(絞り加工性)が低下する。また、Mnは、オーステナイト形成元素であり、本実施形態に係る冷延鋼板ではミクロ組織を制御するために鋼に添加しない。Mn含有量が0.70%超の場合、本実施形態に係る鋼板に特有の機械特性を得にくくなる。したがって、Mn含有量は0.70%以下に制限する。Mn含有量の好ましい上限は0.70%未満である。Mn含有量はなるべく低い値が好ましい。ただ、工業的に安定してMn含有量を0%にすることは難しいので、Mn含有量の下限を0.0001%としてもよい。 Mn: 0.70% or less Manganese (Mn) is an unavoidable impurity. Mn hardens the cold-rolled steel sheet and lowers the total elongation EL of the cold-rolled steel sheet. Therefore, press formability (drawing workability) is lowered. Further, Mn is an austenite forming element and is not added to the steel in order to control the microstructure in the cold rolled steel sheet according to the present embodiment. When the Mn content is more than 0.70%, it is difficult to obtain the mechanical characteristics peculiar to the steel sheet according to the present embodiment. Therefore, the Mn content is limited to 0.70% or less. The upper limit with preferable Mn content is less than 0.70%. The Mn content is preferably as low as possible. However, since it is difficult to make the
P:0.070%以下
燐(P)は、不可避的に含有される不純物である。Pは、一般的に、冷延鋼板の強度を高める。しかしながら、P含有量が高すぎれば、プレス成形性が低下する。具体的には、絞り缶に成形した後の耐二次加工脆性が低下する。深絞り加工された絞り缶では、たとえば、-10℃のような低温で、落下時の衝撃により脆性破断する場合があり、また曲げ加工歪みにより缶側壁端部が脆性破断する場合がある。このような破断を二次加工脆性割れと称する。P含有量が過剰な場合、二次加工脆性割れが生じやすくなる。したがって、P含有量は0.070%以下に制限する。ただ、工業的に安定してP含有量を0%にすることは難しいので、P含有量の下限を0.0001%としてもよい。 P: 0.070% or less Phosphorus (P) is an unavoidable impurity. P generally increases the strength of the cold-rolled steel sheet. However, if the P content is too high, the press formability decreases. Specifically, the secondary work brittleness resistance after forming into a drawn can decreases. For deep drawn cans, for example, brittle fracture may occur due to impact at the time of dropping at a low temperature such as −10 ° C., and end portions of the can side wall may brittle fracture due to bending strain. Such a break is referred to as a secondary work brittle crack. When the P content is excessive, secondary work brittle cracks are likely to occur. Therefore, the P content is limited to 0.070% or less. However, since it is difficult to make theP content 0% stably industrially, the lower limit of the P content may be 0.0001%.
燐(P)は、不可避的に含有される不純物である。Pは、一般的に、冷延鋼板の強度を高める。しかしながら、P含有量が高すぎれば、プレス成形性が低下する。具体的には、絞り缶に成形した後の耐二次加工脆性が低下する。深絞り加工された絞り缶では、たとえば、-10℃のような低温で、落下時の衝撃により脆性破断する場合があり、また曲げ加工歪みにより缶側壁端部が脆性破断する場合がある。このような破断を二次加工脆性割れと称する。P含有量が過剰な場合、二次加工脆性割れが生じやすくなる。したがって、P含有量は0.070%以下に制限する。ただ、工業的に安定してP含有量を0%にすることは難しいので、P含有量の下限を0.0001%としてもよい。 P: 0.070% or less Phosphorus (P) is an unavoidable impurity. P generally increases the strength of the cold-rolled steel sheet. However, if the P content is too high, the press formability decreases. Specifically, the secondary work brittleness resistance after forming into a drawn can decreases. For deep drawn cans, for example, brittle fracture may occur due to impact at the time of dropping at a low temperature such as −10 ° C., and end portions of the can side wall may brittle fracture due to bending strain. Such a break is referred to as a secondary work brittle crack. When the P content is excessive, secondary work brittle cracks are likely to occur. Therefore, the P content is limited to 0.070% or less. However, since it is difficult to make the
S:0.05%以下
硫黄(S)は、不可避的に含有される不純物である。Sは、熱間圧延時の鋼板表層で脆性割れを発生させ、熱延鋼帯に耳荒れを生じさせる。したがって、S含有量は0.05%以下に制限する。S含有量はなるべく低い値が好ましい。ただ、工業的に安定してS含有量を0%にすることは難しいので、S含有量の下限を0.0001%としてもよい。 S: 0.05% or less Sulfur (S) is an unavoidable impurity. S causes brittle cracks in the surface layer of the steel sheet during hot rolling, and causes rough edges in the hot-rolled steel strip. Therefore, the S content is limited to 0.05% or less. The S content is preferably as low as possible. However, since it is difficult to make theS content 0% stably industrially, the lower limit of the S content may be 0.0001%.
硫黄(S)は、不可避的に含有される不純物である。Sは、熱間圧延時の鋼板表層で脆性割れを発生させ、熱延鋼帯に耳荒れを生じさせる。したがって、S含有量は0.05%以下に制限する。S含有量はなるべく低い値が好ましい。ただ、工業的に安定してS含有量を0%にすることは難しいので、S含有量の下限を0.0001%としてもよい。 S: 0.05% or less Sulfur (S) is an unavoidable impurity. S causes brittle cracks in the surface layer of the steel sheet during hot rolling, and causes rough edges in the hot-rolled steel strip. Therefore, the S content is limited to 0.05% or less. The S content is preferably as low as possible. However, since it is difficult to make the
Sol.Al:0.005~0.100%
アルミニウム(Al)は、鋼を脱酸する。Alはさらに、連続鋳造時に鋳片の表面品質を高める。Al含有量が低すぎれば、これらの効果が得られない。一方、Al含有量が高すぎれば、上記効果が飽和して製造コストが高くなる。したがって、Al含有量は0.005~0.100%である。本実施形態に係る絞り缶用冷延鋼板でのAl含有量は、Sol.Al(酸可溶性アルミニウム)の含有量を意味する。 Sol. Al: 0.005 to 0.100%
Aluminum (Al) deoxidizes steel. Al further enhances the surface quality of the slab during continuous casting. If the Al content is too low, these effects cannot be obtained. On the other hand, if the Al content is too high, the above effect is saturated and the production cost is increased. Therefore, the Al content is 0.005 to 0.100%. The Al content in the cold-rolled steel sheet for drawn cans according to this embodiment is Sol. It means the content of Al (acid-soluble aluminum).
アルミニウム(Al)は、鋼を脱酸する。Alはさらに、連続鋳造時に鋳片の表面品質を高める。Al含有量が低すぎれば、これらの効果が得られない。一方、Al含有量が高すぎれば、上記効果が飽和して製造コストが高くなる。したがって、Al含有量は0.005~0.100%である。本実施形態に係る絞り缶用冷延鋼板でのAl含有量は、Sol.Al(酸可溶性アルミニウム)の含有量を意味する。 Sol. Al: 0.005 to 0.100%
Aluminum (Al) deoxidizes steel. Al further enhances the surface quality of the slab during continuous casting. If the Al content is too low, these effects cannot be obtained. On the other hand, if the Al content is too high, the above effect is saturated and the production cost is increased. Therefore, the Al content is 0.005 to 0.100%. The Al content in the cold-rolled steel sheet for drawn cans according to this embodiment is Sol. It means the content of Al (acid-soluble aluminum).
N:0.0080%以下
窒素(N)は、不可避的に含有される不純物である。Nは、鋼を時効硬化させる元素であり、そのため、冷延鋼板のプレス成形性を低下させ、ストレッチャーストレインを発生させる。本実施形態に係る冷延鋼板では、鋼中に後述のBを含有させ、NをBと結合させて窒化物を形成させることにより、固溶Nによる時効硬化を抑制する。しかしながら、N含有量が高すぎれば、固溶Nによる時効硬化が生じやすくなる。したがって、N含有量は0.0080%以下に制限する。N含有量はなるべく低い値が好ましい。ただ、工業的に安定してN含有量を0%にすることは難しいので、N含有量の下限を0.0005%としてもよい。 N: 0.0080% or less Nitrogen (N) is an unavoidable impurity. N is an element that age hardens the steel, and therefore reduces the press formability of the cold-rolled steel sheet and generates stretcher strain. In the cold-rolled steel sheet according to the present embodiment, the below-described B is contained in the steel, and N is combined with B to form a nitride, thereby suppressing age hardening due to solute N. However, if the N content is too high, age hardening due to solute N tends to occur. Therefore, the N content is limited to 0.0080% or less. The N content is preferably as low as possible. However, since it is difficult to make theN content 0% stably industrially, the lower limit of the N content may be 0.0005%.
窒素(N)は、不可避的に含有される不純物である。Nは、鋼を時効硬化させる元素であり、そのため、冷延鋼板のプレス成形性を低下させ、ストレッチャーストレインを発生させる。本実施形態に係る冷延鋼板では、鋼中に後述のBを含有させ、NをBと結合させて窒化物を形成させることにより、固溶Nによる時効硬化を抑制する。しかしながら、N含有量が高すぎれば、固溶Nによる時効硬化が生じやすくなる。したがって、N含有量は0.0080%以下に制限する。N含有量はなるべく低い値が好ましい。ただ、工業的に安定してN含有量を0%にすることは難しいので、N含有量の下限を0.0005%としてもよい。 N: 0.0080% or less Nitrogen (N) is an unavoidable impurity. N is an element that age hardens the steel, and therefore reduces the press formability of the cold-rolled steel sheet and generates stretcher strain. In the cold-rolled steel sheet according to the present embodiment, the below-described B is contained in the steel, and N is combined with B to form a nitride, thereby suppressing age hardening due to solute N. However, if the N content is too high, age hardening due to solute N tends to occur. Therefore, the N content is limited to 0.0080% or less. The N content is preferably as low as possible. However, since it is difficult to make the
B:0.0005~0.02%
ボロン(B)は、Nと結合してBN(窒化ホウ素)を形成し、固溶Nを低減する。これにより、固溶Nによる時効硬化が抑制される。Bはさらに、冷延鋼板の集合組織をランダム化して、塑性ひずみ比であるr値(ランクフォード値)を1に近づける。これにより、イヤリング特性(絞り缶の成形後に発生する缶円周方向の缶高さの不均一の程度)が向上する。また、Bは、フェライト形成元素であり、本実施形態に係る冷延鋼板ではミクロ組織を制御するために添加する。B含有量が0.0005%未満であれば、これらの効果が得られない。一方、B含有量が0.02%超であれば、上記効果が飽和する。したがって、B含有量は0.0005~0.02%である。B含有量の下限は、0.0010%、または0.0015%であることが好ましい。 B: 0.0005 to 0.02%
Boron (B) combines with N to form BN (boron nitride), and reduces solid solution N. Thereby, age hardening by the solid solution N is suppressed. B further randomizes the texture of the cold-rolled steel sheet to bring the r value (Rankford value), which is the plastic strain ratio, closer to 1. This improves the earring characteristics (the degree of unevenness of the can height in the circumferential direction of the can that occurs after the drawing of the drawn can). B is a ferrite-forming element, and is added to control the microstructure in the cold-rolled steel sheet according to the present embodiment. If the B content is less than 0.0005%, these effects cannot be obtained. On the other hand, if the B content exceeds 0.02%, the above effect is saturated. Therefore, the B content is 0.0005 to 0.02%. The lower limit of the B content is preferably 0.0010% or 0.0015%.
ボロン(B)は、Nと結合してBN(窒化ホウ素)を形成し、固溶Nを低減する。これにより、固溶Nによる時効硬化が抑制される。Bはさらに、冷延鋼板の集合組織をランダム化して、塑性ひずみ比であるr値(ランクフォード値)を1に近づける。これにより、イヤリング特性(絞り缶の成形後に発生する缶円周方向の缶高さの不均一の程度)が向上する。また、Bは、フェライト形成元素であり、本実施形態に係る冷延鋼板ではミクロ組織を制御するために添加する。B含有量が0.0005%未満であれば、これらの効果が得られない。一方、B含有量が0.02%超であれば、上記効果が飽和する。したがって、B含有量は0.0005~0.02%である。B含有量の下限は、0.0010%、または0.0015%であることが好ましい。 B: 0.0005 to 0.02%
Boron (B) combines with N to form BN (boron nitride), and reduces solid solution N. Thereby, age hardening by the solid solution N is suppressed. B further randomizes the texture of the cold-rolled steel sheet to bring the r value (Rankford value), which is the plastic strain ratio, closer to 1. This improves the earring characteristics (the degree of unevenness of the can height in the circumferential direction of the can that occurs after the drawing of the drawn can). B is a ferrite-forming element, and is added to control the microstructure in the cold-rolled steel sheet according to the present embodiment. If the B content is less than 0.0005%, these effects cannot be obtained. On the other hand, if the B content exceeds 0.02%, the above effect is saturated. Therefore, the B content is 0.0005 to 0.02%. The lower limit of the B content is preferably 0.0010% or 0.0015%.
さらに、本実施形態に係る冷延鋼板では、B及びNの含有量を、互いに関連させて規定する。上述のように、鋼中で固溶Nが過剰であると、鋼が時効硬化する。そのため、鋼中にBを含有させてBNを形成させる。一方、鋼中で固溶Bが過剰であると、冷延鋼板が硬質化したり、イヤリング性が低下したりする。そのため、B及びNの含有量を互いに関連させて規定する必要がある。具体的には、化学成分中のB含有量とN含有量とが、質量%で、0.4≦B/N≦2.5を満足する必要がある。B及びNの含有量が上記条件を満足するとき、固溶Bに起因する上記特性の低下を抑制すると同時に、固溶Nに起因するストレッチャーストレインの発生を好ましく抑制することができる。B/Nの値の下限は、0.8であることが好ましい。
Furthermore, in the cold-rolled steel sheet according to this embodiment, the contents of B and N are specified in relation to each other. As described above, when the solute N is excessive in the steel, the steel is age hardened. Therefore, B is contained in steel to form BN. On the other hand, if the solid solution B is excessive in the steel, the cold-rolled steel sheet is hardened or the earring properties are lowered. Therefore, it is necessary to define the contents of B and N in relation to each other. Specifically, the B content and the N content in the chemical component must satisfy 0.4 ≦ B / N ≦ 2.5 in mass%. When the contents of B and N satisfy the above conditions, it is possible to preferably suppress the occurrence of stretcher strain due to the solid solution N while simultaneously suppressing the deterioration of the characteristics due to the solid solution B. The lower limit of the value of B / N is preferably 0.8.
本実施形態に係る冷延鋼板では、上記した不純物に加えて、ニオブ(Nb)、チタニウム(Ti)、銅(Cu)、ニッケル(Ni)、クロム(Cr)、及びスズ(Sn)も制限することが好ましい。具体的には、本実施形態の効果を十分に発揮させるために、Nb:0.003%以下、Ti:0.003%以下、Cu:0.5%以下、Ni:0.5%以下、Cr:0.3%以下、及びSn:0.05%以下に制限することが好ましい。特に、Tiは、TiNを形成してミクロ組織の形成に影響を与えるので、上記のように制限することが好ましい。これら不純物の含有量はなるべく低い値が好ましい。ただ、工業的に安定してこれら不純物の含有量を0%にすることは難しいので、これら不純物の含有量の下限をそれぞれ0.0001%としてもよい。
In the cold-rolled steel sheet according to the present embodiment, in addition to the impurities described above, niobium (Nb), titanium (Ti), copper (Cu), nickel (Ni), chromium (Cr), and tin (Sn) are also limited. It is preferable. Specifically, in order to sufficiently exhibit the effects of the present embodiment, Nb: 0.003% or less, Ti: 0.003% or less, Cu: 0.5% or less, Ni: 0.5% or less, It is preferable to limit to Cr: 0.3% or less and Sn: 0.05% or less. In particular, Ti forms TiN and affects the formation of the microstructure, so it is preferable to limit as described above. The content of these impurities is preferably as low as possible. However, since it is difficult to make the content of these impurities 0% stably industrially, the lower limit of the content of these impurities may be 0.0001%.
上記した化学成分は、鋼の一般的な分析方法によって測定すればよい。例えば、上記した化学成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。具体的には、鋼板の中央の位置から粒状の試験片を採取し、予め作成した検量線に基づいた条件で化学分析することにより特定できる。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
The above chemical components may be measured by a general analysis method for steel. For example, the chemical components described above may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Specifically, it can be specified by collecting a granular test piece from the center position of the steel plate and performing chemical analysis under conditions based on a calibration curve prepared in advance. C and S may be measured using a combustion-infrared absorption method, and N may be measured using an inert gas melting-thermal conductivity method.
[ミクロ組織]
本実施形態に係る冷延鋼板は、ミクロ組織として、平均粒径(平均直径)が2.7~4.0μmであるフェライトと、粒状セメンタイトと、を主に含む。また、上述したBNは微細析出物であるので低倍率の場合には観察できないが、ミクロ組織として、このBNを含んでもよい。本実施形態に係る冷延鋼板では、上記した化学成分に制御することに加えて、上記のミクロ組織に制御することによって、高強度で、プレス成形性に優れ、非St-St性にも優れる冷延鋼板を得ることが可能となる。 [Microstructure]
The cold-rolled steel sheet according to the present embodiment mainly includes ferrite having an average particle diameter (average diameter) of 2.7 to 4.0 μm and granular cementite as a microstructure. Moreover, since BN mentioned above is a fine precipitate and cannot be observed in the case of a low magnification, this BN may be included as a microstructure. In the cold-rolled steel sheet according to the present embodiment, in addition to controlling the above-described chemical components, by controlling to the above-described microstructure, high strength, excellent press formability, and non-St-St properties are also excellent. A cold-rolled steel sheet can be obtained.
本実施形態に係る冷延鋼板は、ミクロ組織として、平均粒径(平均直径)が2.7~4.0μmであるフェライトと、粒状セメンタイトと、を主に含む。また、上述したBNは微細析出物であるので低倍率の場合には観察できないが、ミクロ組織として、このBNを含んでもよい。本実施形態に係る冷延鋼板では、上記した化学成分に制御することに加えて、上記のミクロ組織に制御することによって、高強度で、プレス成形性に優れ、非St-St性にも優れる冷延鋼板を得ることが可能となる。 [Microstructure]
The cold-rolled steel sheet according to the present embodiment mainly includes ferrite having an average particle diameter (average diameter) of 2.7 to 4.0 μm and granular cementite as a microstructure. Moreover, since BN mentioned above is a fine precipitate and cannot be observed in the case of a low magnification, this BN may be included as a microstructure. In the cold-rolled steel sheet according to the present embodiment, in addition to controlling the above-described chemical components, by controlling to the above-described microstructure, high strength, excellent press formability, and non-St-St properties are also excellent. A cold-rolled steel sheet can be obtained.
上記したフェライト、粒状セメンタイト、及びBNは、ミクロ組織中、合計で、95~100面積%であることが好ましい。すなわち、フェライト、粒状セメンタイト、及びBN以外の組織であるパーライト、マルテンサイト、残留オーステナイトなどは、合計で、5面積%未満に制限されることが好ましい。または、含まない事が好ましい。フェライト、粒状セメンタイト、及びBN以外の組織の合計の面積分率は、なるべく低い値が好ましい。したがって、本実施形態に係る冷延鋼板は、ミクロ組織として、フェライト、粒状セメンタイト、及びBNのみからなることがさらに好ましい。
The above-mentioned ferrite, granular cementite and BN are preferably 95 to 100 area% in total in the microstructure. That is, pearlite, martensite, retained austenite, etc., which are structures other than ferrite, granular cementite, and BN, are preferably limited to less than 5 area% in total. Or it is preferable not to include. The total area fraction of the structure other than ferrite, granular cementite, and BN is preferably as low as possible. Therefore, it is more preferable that the cold-rolled steel sheet according to the present embodiment includes only ferrite, granular cementite, and BN as a microstructure.
また、上記したように、本実施形態に係る冷延鋼板では、フェライト粒が粗大粒及び微細粒を含む混粒となる傾向にある。この混粒を定量的に規定することは困難であるが、このミクロ組織が、本実施形態に係る鋼板に特有の機械特性に影響を及ぼしていると考えられる。
Moreover, as described above, in the cold-rolled steel sheet according to this embodiment, the ferrite grains tend to be mixed grains including coarse grains and fine grains. Although it is difficult to quantitatively define this mixed grain, it is considered that this microstructure has an influence on the mechanical characteristics peculiar to the steel sheet according to the present embodiment.
なお、本実施形態に係る冷延鋼板では、ミクロ組織に含まれる各構成相を次のように定義する。フェライト及びフェライト粒は、拡散変態に起因する体心立方構造(bcc)を有し、結晶方位角度差が0以上15°未満となる領域と定義する。マルテンサイト及びマルテンサイト粒は、無拡散変態に起因する体心立方構造(bcc)または体心正方構造(bct)を有し、結晶方位角度差が0以上15°未満となる領域と定義する。セメンタイトは、斜方晶構造を有するFeとCとの化合物(Fe3C)と定義する。パーライト及びパーライトブロックは、フェライトとセメンタイトとからなる層状組織を有し、このパーライト中のフェライトの結晶方位角度差が0以上9°未満となる領域と定義する。粒状セメンタイトは、パーライトブロック中に含まれないセメンタイトと定義する。BNは、六方晶構造または立方晶構造を有するBとNとの化合物と定義する。
In the cold-rolled steel sheet according to this embodiment, each constituent phase included in the microstructure is defined as follows. Ferrite and ferrite grains are defined as a region having a body-centered cubic structure (bcc) due to diffusion transformation and having a crystal orientation angle difference of 0 to less than 15 °. Martensite and martensite grains have a body-centered cubic structure (bcc) or body-centered tetragonal structure (bct) resulting from a non-diffusion transformation, and are defined as regions where the crystal orientation angle difference is 0 or more and less than 15 °. Cementite is defined as a compound of Fe and C having an orthorhombic structure (Fe 3 C). The pearlite and the pearlite block have a layered structure composed of ferrite and cementite, and are defined as a region in which the crystal orientation angle difference of ferrite in the pearlite is 0 or more and less than 9 °. Granular cementite is defined as cementite not contained in the pearlite block. BN is defined as a compound of B and N having a hexagonal structure or a cubic structure.
上記のミクロ組織は、冷延鋼板のL断面(圧延方向に平行な断面)を光学顕微鏡にて観察すればよい。また、フェライトの平均粒径は、JIS G0551(2013)の切断法に基づいて求めればよい。また、各構成相の面積分率などは、ミクロ組織写真を画像解析することで求めればよい。
The above microstructure may be obtained by observing the L cross section (cross section parallel to the rolling direction) of the cold-rolled steel sheet with an optical microscope. Moreover, what is necessary is just to obtain | require the average particle diameter of a ferrite based on the cutting method of JIS G0551 (2013). The area fraction of each constituent phase may be obtained by image analysis of a microstructural photograph.
[機械特性]
本実施形態に係る冷延鋼板は、板厚が0.15~0.50mmであり、冷延鋼板を100℃で1時間の時効処理(促進時効処理)を実施した後に行う引張試験から得られる降伏強度を単位MPaでYPとし、全伸びを単位%でELとし、降伏点伸びを単位%でYP-ELとし、及び、降伏比を単位%でYRとしたとき、
YPが360~430MPaであり、
ELが25~32%であり、
YP-ELが0%であり、
YRが80~87%である。
ここで、引張試験は、平行部がL方向(圧延方向)に平行な引張試験片を用いて室温(25℃)大気中でJIS Z2241(2011)に準拠して実施する。 [Mechanical properties]
The cold-rolled steel sheet according to this embodiment has a thickness of 0.15 to 0.50 mm, and is obtained from a tensile test performed after the cold-rolled steel sheet is subjected to an aging treatment (accelerated aging treatment) at 100 ° C. for 1 hour. Yield strength is MP in MPa, total elongation is EL in unit%, yield point elongation is YP-EL in unit%, and yield ratio is YR in unit%.
YP is 360 to 430 MPa,
EL is 25-32%,
YP-EL is 0%,
YR is 80 to 87%.
Here, a tensile test is implemented according to JISZ2241 (2011) in room temperature (25 degreeC) air | atmosphere using the tensile test piece whose parallel part is parallel to the L direction (rolling direction).
本実施形態に係る冷延鋼板は、板厚が0.15~0.50mmであり、冷延鋼板を100℃で1時間の時効処理(促進時効処理)を実施した後に行う引張試験から得られる降伏強度を単位MPaでYPとし、全伸びを単位%でELとし、降伏点伸びを単位%でYP-ELとし、及び、降伏比を単位%でYRとしたとき、
YPが360~430MPaであり、
ELが25~32%であり、
YP-ELが0%であり、
YRが80~87%である。
ここで、引張試験は、平行部がL方向(圧延方向)に平行な引張試験片を用いて室温(25℃)大気中でJIS Z2241(2011)に準拠して実施する。 [Mechanical properties]
The cold-rolled steel sheet according to this embodiment has a thickness of 0.15 to 0.50 mm, and is obtained from a tensile test performed after the cold-rolled steel sheet is subjected to an aging treatment (accelerated aging treatment) at 100 ° C. for 1 hour. Yield strength is MP in MPa, total elongation is EL in unit%, yield point elongation is YP-EL in unit%, and yield ratio is YR in unit%.
YP is 360 to 430 MPa,
EL is 25-32%,
YP-EL is 0%,
YR is 80 to 87%.
Here, a tensile test is implemented according to JISZ2241 (2011) in room temperature (25 degreeC) air | atmosphere using the tensile test piece whose parallel part is parallel to the L direction (rolling direction).
YP:360~430MPa
降伏強度YPが360MPa以上であれば、冷延鋼板を薄肉化(ゲージダウン)しても、耐内外圧強度に優れた絞り缶が得られる。一方、降伏強度YPの上限は、特に制限されない。ただ、降伏強度YPが高すぎると、プレス成形が困難となるので、降伏強度YPを430MPa以下としてもよい。なお、本実施形態に係る冷延鋼板では、上述のように明確な降伏点を示さないことを技術特徴とするので、降伏強度YPは0.2%耐力のことを意味する。 YP: 360 to 430 MPa
When the yield strength YP is 360 MPa or more, even if the cold-rolled steel sheet is thinned (gauge down), a drawn can having excellent internal and external pressure strength can be obtained. On the other hand, the upper limit of the yield strength YP is not particularly limited. However, if the yield strength YP is too high, press molding becomes difficult, so the yield strength YP may be 430 MPa or less. In addition, since the cold rolled steel sheet according to the present embodiment is technically characterized in that it does not show a clear yield point as described above, the yield strength YP means 0.2% proof stress.
降伏強度YPが360MPa以上であれば、冷延鋼板を薄肉化(ゲージダウン)しても、耐内外圧強度に優れた絞り缶が得られる。一方、降伏強度YPの上限は、特に制限されない。ただ、降伏強度YPが高すぎると、プレス成形が困難となるので、降伏強度YPを430MPa以下としてもよい。なお、本実施形態に係る冷延鋼板では、上述のように明確な降伏点を示さないことを技術特徴とするので、降伏強度YPは0.2%耐力のことを意味する。 YP: 360 to 430 MPa
When the yield strength YP is 360 MPa or more, even if the cold-rolled steel sheet is thinned (gauge down), a drawn can having excellent internal and external pressure strength can be obtained. On the other hand, the upper limit of the yield strength YP is not particularly limited. However, if the yield strength YP is too high, press molding becomes difficult, so the yield strength YP may be 430 MPa or less. In addition, since the cold rolled steel sheet according to the present embodiment is technically characterized in that it does not show a clear yield point as described above, the yield strength YP means 0.2% proof stress.
EL:25~32%
全伸びELが25%以上であれば、絞り缶用冷延鋼板としてのプレス成形性(絞り加工性)を満足できる。一方、全伸びELの上限は、値が大きいほど好ましいので、特に制限されない。ただ、工業的に安定して全伸びELを32%超とすることは難しいので、全伸びELの上限を32%とし、より好ましくは30%としてもよい。なお、全伸びELとは、弾性伸びと永久伸びとの和のことを意味する。 EL: 25-32%
If the total elongation EL is 25% or more, press formability (drawing workability) as a cold-rolled steel sheet for drawn cans can be satisfied. On the other hand, the upper limit of the total elongation EL is not particularly limited because a larger value is preferable. However, since it is difficult to make the total elongation EL more than 32% industrially stable, the upper limit of the total elongation EL may be 32%, and more preferably 30%. The total elongation EL means the sum of elastic elongation and permanent elongation.
全伸びELが25%以上であれば、絞り缶用冷延鋼板としてのプレス成形性(絞り加工性)を満足できる。一方、全伸びELの上限は、値が大きいほど好ましいので、特に制限されない。ただ、工業的に安定して全伸びELを32%超とすることは難しいので、全伸びELの上限を32%とし、より好ましくは30%としてもよい。なお、全伸びELとは、弾性伸びと永久伸びとの和のことを意味する。 EL: 25-32%
If the total elongation EL is 25% or more, press formability (drawing workability) as a cold-rolled steel sheet for drawn cans can be satisfied. On the other hand, the upper limit of the total elongation EL is not particularly limited because a larger value is preferable. However, since it is difficult to make the total elongation EL more than 32% industrially stable, the upper limit of the total elongation EL may be 32%, and more preferably 30%. The total elongation EL means the sum of elastic elongation and permanent elongation.
なお、前述のように、冷延鋼板は薄肉化することが好ましい。そのため、本実施形態に係る冷延鋼板では、板厚を0.15~0.50mmとする。しかし、この板厚の範囲内で板厚が厚くなるほど、全伸びELの値が大きくなる。したがって、プレス成形性(絞り加工性)の向上を優先させる場合には、板厚を0.20超~0.50mmとして、全伸びELを27~32%としてもよい。
As described above, it is preferable that the cold-rolled steel sheet is thinned. Therefore, the thickness of the cold-rolled steel sheet according to this embodiment is 0.15 to 0.50 mm. However, the value of the total elongation EL increases as the plate thickness increases within this plate thickness range. Accordingly, when priority is given to improving press formability (drawing workability), the plate thickness may be more than 0.20 to 0.50 mm and the total elongation EL may be 27 to 32%.
YP-EL:0%
降伏点伸びYP-ELが0%であれば、降伏直後に降伏点よりも小さい変形抵抗で進行する定常変形を抑制できるので、ストレッチャーストレインの発生を抑制できる。なお、本実施形態に係る冷延鋼板にて、降伏点伸びYP-ELが0%であるとは、降伏直後に降伏点(0.2%耐力)よりも小さい変形抵抗(応力)で変形(ひずみ)が進行しないことを意味する。すなわち、本実施形態に係る冷延鋼板にて、降伏点伸びYP-ELが0%であるとは、降伏点降下することなく、降伏直後から(0.2%耐力到達直後から)応力-ひずみ曲線が加工硬化を示すことを意味する。 YP-EL: 0%
If the yield point elongation YP-EL is 0%, steady deformation that proceeds with a deformation resistance smaller than the yield point immediately after yielding can be suppressed, so that the occurrence of stretcher strain can be suppressed. In the cold-rolled steel sheet according to the present embodiment, the yield point elongation YP-EL is 0%. The deformation (stress) is smaller than the yield point (0.2% proof stress) immediately after yielding (deformation (stress)). This means that (strain) does not progress. That is, in the cold-rolled steel sheet according to the present embodiment, the yield point elongation YP-EL is 0% when stress-strain is observed immediately after yielding (after reaching 0.2% proof stress) without lowering the yield point. It means that the curve indicates work hardening.
降伏点伸びYP-ELが0%であれば、降伏直後に降伏点よりも小さい変形抵抗で進行する定常変形を抑制できるので、ストレッチャーストレインの発生を抑制できる。なお、本実施形態に係る冷延鋼板にて、降伏点伸びYP-ELが0%であるとは、降伏直後に降伏点(0.2%耐力)よりも小さい変形抵抗(応力)で変形(ひずみ)が進行しないことを意味する。すなわち、本実施形態に係る冷延鋼板にて、降伏点伸びYP-ELが0%であるとは、降伏点降下することなく、降伏直後から(0.2%耐力到達直後から)応力-ひずみ曲線が加工硬化を示すことを意味する。 YP-EL: 0%
If the yield point elongation YP-EL is 0%, steady deformation that proceeds with a deformation resistance smaller than the yield point immediately after yielding can be suppressed, so that the occurrence of stretcher strain can be suppressed. In the cold-rolled steel sheet according to the present embodiment, the yield point elongation YP-EL is 0%. The deformation (stress) is smaller than the yield point (0.2% proof stress) immediately after yielding (deformation (stress)). This means that (strain) does not progress. That is, in the cold-rolled steel sheet according to the present embodiment, the yield point elongation YP-EL is 0% when stress-strain is observed immediately after yielding (after reaching 0.2% proof stress) without lowering the yield point. It means that the curve indicates work hardening.
YR:80~87%
降伏比YRが80%以上であれば、引張強度TSに対して降伏強度YPが十分に高い値であることを意味する。そのため、冷延鋼板を薄肉化(ゲージダウン)することが可能となり、耐内外圧強度に優れた絞り缶が得られる。すなわち、絞り加工時の加工ひずみ量が小さい缶底と絞り加工時の加工ひずみ量が大きい胴上部とを比較したとき、成形後の絞り缶にて缶底と胴上部との強度差が小さくなり、機械的品質が均一な絞り缶を得ることが可能となる。一方、降伏比YRの上限は、特に制限されない。ただ、降伏比YRが高すぎると、プレス成形が困難となるので、降伏比YRを87%以下としてもよい。なお、降伏比YRは、単位MPaでの降伏強度YPを、単位MPaでの引張強度TSで割った値の百分率を意味する。 YR: 80-87%
If the yield ratio YR is 80% or more, it means that the yield strength YP is sufficiently higher than the tensile strength TS. Therefore, the cold-rolled steel sheet can be thinned (gauge down), and a drawn can excellent in internal and external pressure strength can be obtained. That is, when comparing the bottom of the can with a small amount of processing strain during drawing and the top of the barrel with a large amount of processing strain during drawing, the difference in strength between the bottom of the can and the top of the can is reduced in the drawn can after molding. It becomes possible to obtain a drawn can having uniform mechanical quality. On the other hand, the upper limit of the yield ratio YR is not particularly limited. However, if the yield ratio YR is too high, press forming becomes difficult, so the yield ratio YR may be 87% or less. The yield ratio YR means the percentage of the value obtained by dividing the yield strength YP in unit MPa by the tensile strength TS in unit MPa.
降伏比YRが80%以上であれば、引張強度TSに対して降伏強度YPが十分に高い値であることを意味する。そのため、冷延鋼板を薄肉化(ゲージダウン)することが可能となり、耐内外圧強度に優れた絞り缶が得られる。すなわち、絞り加工時の加工ひずみ量が小さい缶底と絞り加工時の加工ひずみ量が大きい胴上部とを比較したとき、成形後の絞り缶にて缶底と胴上部との強度差が小さくなり、機械的品質が均一な絞り缶を得ることが可能となる。一方、降伏比YRの上限は、特に制限されない。ただ、降伏比YRが高すぎると、プレス成形が困難となるので、降伏比YRを87%以下としてもよい。なお、降伏比YRは、単位MPaでの降伏強度YPを、単位MPaでの引張強度TSで割った値の百分率を意味する。 YR: 80-87%
If the yield ratio YR is 80% or more, it means that the yield strength YP is sufficiently higher than the tensile strength TS. Therefore, the cold-rolled steel sheet can be thinned (gauge down), and a drawn can excellent in internal and external pressure strength can be obtained. That is, when comparing the bottom of the can with a small amount of processing strain during drawing and the top of the barrel with a large amount of processing strain during drawing, the difference in strength between the bottom of the can and the top of the can is reduced in the drawn can after molding. It becomes possible to obtain a drawn can having uniform mechanical quality. On the other hand, the upper limit of the yield ratio YR is not particularly limited. However, if the yield ratio YR is too high, press forming becomes difficult, so the yield ratio YR may be 87% or less. The yield ratio YR means the percentage of the value obtained by dividing the yield strength YP in unit MPa by the tensile strength TS in unit MPa.
[めっき層]
本実施形態に係る冷延鋼板は、冷延鋼板の表面上(板面上)に、Niめっき層、Ni拡散めっき層、Snめっき層、及びティンフリースチール(TFS)めっき層(金属Cr層とCr水和酸化物層との2層からなるめっき層)のうちの少なくとも1つが配されてもよい。冷延鋼板の板面上に、上記のめっき層が配されることにより、表面外観が向上し、耐食性、耐薬品性、耐応力割れ性などが向上する。 [Plating layer]
The cold-rolled steel sheet according to this embodiment includes a Ni plating layer, a Ni diffusion plating layer, a Sn plating layer, and a tin-free steel (TFS) plating layer (with a metal Cr layer) on the surface (on the plate surface) of the cold-rolled steel sheet. At least one of two plating layers including a Cr hydrated oxide layer may be disposed. By arranging the plating layer on the surface of the cold-rolled steel sheet, the surface appearance is improved, and the corrosion resistance, chemical resistance, stress crack resistance, and the like are improved.
本実施形態に係る冷延鋼板は、冷延鋼板の表面上(板面上)に、Niめっき層、Ni拡散めっき層、Snめっき層、及びティンフリースチール(TFS)めっき層(金属Cr層とCr水和酸化物層との2層からなるめっき層)のうちの少なくとも1つが配されてもよい。冷延鋼板の板面上に、上記のめっき層が配されることにより、表面外観が向上し、耐食性、耐薬品性、耐応力割れ性などが向上する。 [Plating layer]
The cold-rolled steel sheet according to this embodiment includes a Ni plating layer, a Ni diffusion plating layer, a Sn plating layer, and a tin-free steel (TFS) plating layer (with a metal Cr layer) on the surface (on the plate surface) of the cold-rolled steel sheet. At least one of two plating layers including a Cr hydrated oxide layer may be disposed. By arranging the plating layer on the surface of the cold-rolled steel sheet, the surface appearance is improved, and the corrosion resistance, chemical resistance, stress crack resistance, and the like are improved.
以下、本実施形態に係る絞り缶用冷延鋼板の製造方法について詳述する。
Hereinafter, a method for producing a cold-rolled steel sheet for a drawn can according to the present embodiment will be described in detail.
本実施形態に係る絞り缶用冷延鋼板の製造方法の一例を説明する。本実施形態に係る絞り缶用冷延鋼板の製造方法は、鋳片を得る工程(製鋼工程)と、熱延鋼板を得る工程(熱延工程)と、一次冷延鋼板を得る工程(一次冷延工程)と、焼鈍鋼板を得る工程(焼鈍工程)と、調質圧延鋼板を得る工程(調質圧延工程)とを備える。
An example of a method for manufacturing a cold rolled steel sheet for a drawn can according to the present embodiment will be described. The manufacturing method of the cold-rolled steel sheet for drawn cans according to the present embodiment includes a step of obtaining a slab (steel making step), a step of obtaining a hot-rolled steel plate (hot-rolling step), and a step of obtaining a primary cold-rolled steel plate (primary cooling). Extending step), a step of obtaining an annealed steel plate (annealing step), and a step of obtaining a temper rolled steel plate (temper rolling).
[製鋼工程]
製鋼工程では、C:0.150超~0.260%、Sol.Al:0.005~0.100%、B:0.0005~0.02%、Si:0.50%以下、Mn:0.70%以下、P:0.070%以下、S:0.05%以下、N:0.0080%以下、Nb:0.003%以下、Ti:0.003%以下、を含有し、残部がFe及び不純物からなり、化学成分中のホウ素含有量と窒素含有量とが、質量%で、0.4≦B/N≦2.5を満足する溶鋼を製造する。製造された溶鋼から鋳片(スラブ)を製造する。例えば、通常の連続鋳造法、インゴット法、薄スラブ鋳造法などの鋳造方法でスラブを鋳造すればよい。なお、連続鋳造の場合には、鋼を一度低温(例えば、室温)まで冷却し、再加熱した後、この鋼を熱間圧延してもよいし、鋳造された直後の鋼(鋳造スラブ)を連続的に熱間圧延してもよい。 [Steel making process]
In the steelmaking process, C: more than 0.150 to 0.260%, Sol. Al: 0.005 to 0.100%, B: 0.0005 to 0.02%, Si: 0.50% or less, Mn: 0.70% or less, P: 0.070% or less, S: 0.00. Contains 0.5% or less, N: 0.0080% or less, Nb: 0.003% or less, Ti: 0.003% or less, with the balance consisting of Fe and impurities, boron content and nitrogen content in chemical components The amount of the molten steel satisfying 0.4 ≦ B / N ≦ 2.5 in mass% is manufactured. A slab is manufactured from the manufactured molten steel. For example, the slab may be cast by a casting method such as a normal continuous casting method, an ingot method, or a thin slab casting method. In the case of continuous casting, the steel may be once cooled to a low temperature (for example, room temperature) and reheated, and then the steel may be hot-rolled, or the steel immediately after casting (cast slab) You may hot-roll continuously.
製鋼工程では、C:0.150超~0.260%、Sol.Al:0.005~0.100%、B:0.0005~0.02%、Si:0.50%以下、Mn:0.70%以下、P:0.070%以下、S:0.05%以下、N:0.0080%以下、Nb:0.003%以下、Ti:0.003%以下、を含有し、残部がFe及び不純物からなり、化学成分中のホウ素含有量と窒素含有量とが、質量%で、0.4≦B/N≦2.5を満足する溶鋼を製造する。製造された溶鋼から鋳片(スラブ)を製造する。例えば、通常の連続鋳造法、インゴット法、薄スラブ鋳造法などの鋳造方法でスラブを鋳造すればよい。なお、連続鋳造の場合には、鋼を一度低温(例えば、室温)まで冷却し、再加熱した後、この鋼を熱間圧延してもよいし、鋳造された直後の鋼(鋳造スラブ)を連続的に熱間圧延してもよい。 [Steel making process]
In the steelmaking process, C: more than 0.150 to 0.260%, Sol. Al: 0.005 to 0.100%, B: 0.0005 to 0.02%, Si: 0.50% or less, Mn: 0.70% or less, P: 0.070% or less, S: 0.00. Contains 0.5% or less, N: 0.0080% or less, Nb: 0.003% or less, Ti: 0.003% or less, with the balance consisting of Fe and impurities, boron content and nitrogen content in chemical components The amount of the molten steel satisfying 0.4 ≦ B / N ≦ 2.5 in mass% is manufactured. A slab is manufactured from the manufactured molten steel. For example, the slab may be cast by a casting method such as a normal continuous casting method, an ingot method, or a thin slab casting method. In the case of continuous casting, the steel may be once cooled to a low temperature (for example, room temperature) and reheated, and then the steel may be hot-rolled, or the steel immediately after casting (cast slab) You may hot-roll continuously.
[熱延工程]
熱延工程では、製鋼工程後の鋳片を、1000℃以上(例えば、1000~1280℃)に加熱し、840~950℃で仕上げ圧延し、仕上げ圧延後冷却し、500~720℃で巻取って、熱延鋼板を製造する。 [Hot rolling process]
In the hot rolling process, the slab after the steel making process is heated to 1000 ° C. or higher (eg, 1000 to 1280 ° C.), finish-rolled at 840 to 950 ° C., cooled after finish rolling, and wound at 500 to 720 ° C. A hot-rolled steel sheet.
熱延工程では、製鋼工程後の鋳片を、1000℃以上(例えば、1000~1280℃)に加熱し、840~950℃で仕上げ圧延し、仕上げ圧延後冷却し、500~720℃で巻取って、熱延鋼板を製造する。 [Hot rolling process]
In the hot rolling process, the slab after the steel making process is heated to 1000 ° C. or higher (eg, 1000 to 1280 ° C.), finish-rolled at 840 to 950 ° C., cooled after finish rolling, and wound at 500 to 720 ° C. A hot-rolled steel sheet.
巻取り温度CTが720℃を超えると、熱延鋼板中のセメンタイト(Fe3C)が塊状に粗大化する。この場合、冷延鋼板の全伸びELが低下し得る。巻取り温度CTが500℃未満であれば、熱延鋼板中のセメンタイトが硬質な組織になる。そのため、冷延鋼板の全伸びELが低下し得る。従って、好ましい巻取り温度CTは500~720℃である。なお、ミクロ組織を好ましく制御するために、巻取り温度CTの下限が600℃であることがさらに好ましい。
When the coiling temperature CT exceeds 720 ° C., cementite in the hot-rolled steel sheet (Fe 3 C) becomes coarse agglomerate. In this case, the total elongation EL of the cold rolled steel sheet can be reduced. If coiling temperature CT is less than 500 degreeC, the cementite in a hot-rolled steel plate will become a hard structure | tissue. Therefore, the total elongation EL of the cold rolled steel sheet can be reduced. Therefore, a preferable winding temperature CT is 500 to 720 ° C. In order to preferably control the microstructure, the lower limit of the coiling temperature CT is more preferably 600 ° C.
[一次冷延工程]
一次冷延工程では、熱延工程後の熱延鋼板に対して累積圧下率が80%超の一次冷間圧延を実施して、0.15~0.50mmの板厚を有する一次冷延鋼板を製造する。 [Primary cold rolling process]
In the primary cold rolling process, the primary cold rolled steel sheet having a thickness of 0.15 to 0.50 mm is obtained by subjecting the hot rolled steel sheet after the hot rolling process to primary cold rolling with a cumulative reduction ratio exceeding 80%. Manufacturing.
一次冷延工程では、熱延工程後の熱延鋼板に対して累積圧下率が80%超の一次冷間圧延を実施して、0.15~0.50mmの板厚を有する一次冷延鋼板を製造する。 [Primary cold rolling process]
In the primary cold rolling process, the primary cold rolled steel sheet having a thickness of 0.15 to 0.50 mm is obtained by subjecting the hot rolled steel sheet after the hot rolling process to primary cold rolling with a cumulative reduction ratio exceeding 80%. Manufacturing.
一次冷間圧延では、冷間圧延率を変化させて絞り缶用冷延鋼板の最適な冷間圧延率を検討し、鋼板の面内異方性Δrが略0(具体的には、Δrが+0.15~-0.08の範囲)となるように、冷間圧延率を設定する。また、一次冷延鋼板が後工程に供することが適したミクロ組織(加工組織)となるように、冷間圧延率を設定する。一次冷間圧延では、累積圧下率を80%超とする。累積圧下率の下限は84%であることが好ましい。一方、累積圧下率の上限は、特に制限されない。ただ、工業的に安定して累積圧下率を90%超とすることは難しいので、累積圧下率の上限を90%としてもよい。なお、累積圧下率とは、一次冷間圧延における第1パス直前の入口板厚と最終パス直後の出口板厚との差から計算される圧下率である。
In primary cold rolling, the optimum cold rolling rate of the cold-rolled steel sheet for drawn cans is examined by changing the cold rolling rate, and the in-plane anisotropy Δr of the steel sheet is substantially 0 (specifically, Δr is The cold rolling rate is set so that the range is +0.15 to -0.08. Further, the cold rolling rate is set so that the primary cold-rolled steel sheet has a microstructure (working structure) suitable for use in the subsequent process. In the primary cold rolling, the cumulative rolling reduction is set to more than 80%. The lower limit of the cumulative rolling reduction is preferably 84%. On the other hand, the upper limit of the cumulative rolling reduction is not particularly limited. However, since it is difficult to make the cumulative rolling reduction more than 90% industrially stable, the upper limit of the cumulative rolling reduction may be set to 90%. The cumulative rolling reduction is a rolling reduction calculated from the difference between the inlet plate thickness immediately before the first pass and the outlet plate thickness immediately after the final pass in primary cold rolling.
一次冷延鋼板の板厚は0.151~0.526mmであることが好ましい。板厚が0.526mmを超えれば、優れたイヤリング性が得られにくくなる。板厚が0.151mm未満であれば、熱延鋼板の板厚を薄くしなければならず、この場合、上述の熱間圧延時の仕上げ温度を確保できない。したがって、一次冷延鋼板の板厚は0.151~0.526mmであることが好ましい。
The plate thickness of the primary cold-rolled steel plate is preferably 0.151 to 0.526 mm. If the plate thickness exceeds 0.526 mm, it is difficult to obtain excellent earring properties. If the plate thickness is less than 0.151 mm, the plate thickness of the hot-rolled steel plate must be reduced, and in this case, the finishing temperature during the above hot rolling cannot be ensured. Therefore, the thickness of the primary cold-rolled steel sheet is preferably 0.151 to 0.526 mm.
[焼鈍工程(CAL工程)]
焼鈍工程では、一次冷延工程後の一次冷延鋼板を、平均昇温速度:10~40℃/秒で昇温し、再結晶完了温度以上でかつフェライト単相域温度(例えば、650~715℃)で均熱し、その後、500~400℃の間の平均冷却速度が5~80℃/秒となる条件で冷却する連続焼鈍を実施して、焼鈍鋼板を製造する。 [Annealing process (CAL process)]
In the annealing step, the primary cold-rolled steel sheet after the primary cold-rolling step is heated at an average rate of temperature increase of 10 to 40 ° C./second and is not less than the recrystallization completion temperature and the ferrite single-phase region temperature (eg, 650 to 715). ° C), and then subjected to continuous annealing in which the average cooling rate between 500 and 400 ° C is 5 to 80 ° C / second to produce an annealed steel sheet.
焼鈍工程では、一次冷延工程後の一次冷延鋼板を、平均昇温速度:10~40℃/秒で昇温し、再結晶完了温度以上でかつフェライト単相域温度(例えば、650~715℃)で均熱し、その後、500~400℃の間の平均冷却速度が5~80℃/秒となる条件で冷却する連続焼鈍を実施して、焼鈍鋼板を製造する。 [Annealing process (CAL process)]
In the annealing step, the primary cold-rolled steel sheet after the primary cold-rolling step is heated at an average rate of temperature increase of 10 to 40 ° C./second and is not less than the recrystallization completion temperature and the ferrite single-phase region temperature (eg, 650 to 715). ° C), and then subjected to continuous annealing in which the average cooling rate between 500 and 400 ° C is 5 to 80 ° C / second to produce an annealed steel sheet.
焼鈍工程の昇温過程で、一次冷延鋼板を、平均昇温速度HR:10~40℃/秒で昇温すれば、ミクロ組織が好ましく制御される。焼鈍工程の昇温過程では、一次冷延鋼板の加工組織が回復し、加工組織中に再結晶核が生成される。一次冷延鋼板を上記条件で昇温することにより、加工組織の再結晶過程が好ましく制御されるので、本実施形態に特有のミクロ組織を好ましく得ることが可能となる。なお、この昇温過程では、一次冷延鋼板を、500~700℃の間の平均昇温速度を10~20℃/秒で昇温することがさらに好ましい。
If the temperature of the primary cold-rolled steel sheet is raised at an average heating rate HR: 10 to 40 ° C./sec in the annealing process, the microstructure is preferably controlled. In the temperature raising process of the annealing process, the work structure of the primary cold-rolled steel sheet is recovered, and recrystallization nuclei are generated in the work structure. By raising the temperature of the primary cold-rolled steel sheet under the above conditions, the recrystallization process of the processed structure is preferably controlled, so that a microstructure specific to this embodiment can be preferably obtained. In this heating process, it is more preferable that the primary cold-rolled steel sheet is heated at an average heating rate of 500 to 700 ° C. at 10 to 20 ° C./second.
焼鈍温度(均熱温度)STは、再結晶完了温度以上でかつフェライト単相域温度とする。本実施形態に係る絞り缶用鋼板の上記した化学成分の場合、650~715℃の温度範囲が、再結晶完了温度以上でかつフェライト単相域温度に相当する。この温度範囲内で均熱することにより、ミクロ組織が好ましく制御される。なお、焼鈍温度STの上限は、710℃、または705℃であることが好ましい。
The annealing temperature (soaking temperature) ST is equal to or higher than the recrystallization completion temperature and the ferrite single phase temperature. In the case of the above-described chemical components of the steel plate for a can according to the present embodiment, the temperature range of 650 to 715 ° C. is equal to or higher than the recrystallization completion temperature and corresponds to the ferrite single phase temperature. By soaking in this temperature range, the microstructure is preferably controlled. In addition, it is preferable that the upper limit of annealing temperature ST is 710 degreeC or 705 degreeC.
焼鈍温度STがフェライト単相域温度超(例えば、715℃超)になると、フェライト及びオーステナイトの2相域温度での焼鈍となるため、均熱後の冷却時にパーライトが形成される。そのため、上述のミクロ組織が得られない。パーライトを含むミクロ組織の場合、降伏比YRが低下する。さらに、フェライトの平均粒径が4.0μmよりも大きくなる。焼鈍温度STが650~715℃であれば、ミクロ組織が好ましく制御される。また、焼鈍温度STでの保持時間は、15~30秒とすればよい。
When the annealing temperature ST exceeds the ferrite single-phase region temperature (for example, more than 715 ° C.), annealing occurs at the two-phase region temperatures of ferrite and austenite, so that pearlite is formed during cooling after soaking. Therefore, the above microstructure cannot be obtained. In the case of a microstructure containing pearlite, the yield ratio YR decreases. Furthermore, the average particle diameter of ferrite becomes larger than 4.0 μm. When the annealing temperature ST is 650 to 715 ° C., the microstructure is preferably controlled. Further, the holding time at the annealing temperature ST may be 15 to 30 seconds.
上記焼鈍温度STで均熱後、鋼板を冷却する。このとき、500~400℃の間の平均冷却速度CRを5~80℃/秒にする。平均冷却速度CRが80℃/秒を超えれば、固溶C量が高くなりすぎる。この場合、促進時効処理後の降伏点伸びYP-ELが0%よりも大きくなる。一方、平均冷却速度CRが5℃/秒未満であれば、固溶C量が低くなりすぎる。この場合、降伏強度YPが360MPa未満になる。500~400℃の間の平均冷却速度CRが5~80℃/秒であれば、固溶C量が5~50ppm程度確保される。そのため、促進時効処理後の降伏強度YPが360MPa以上になり、降伏点伸びYP-ELが0%になる。さらに、優れた全伸びEL及び高い降伏比YRが得られる。また、500~400℃の間の平均冷却速度CRが5~80℃/秒であれば、ミクロ組織が好ましく制御される。
¡After soaking at the annealing temperature ST, the steel plate is cooled. At this time, the average cooling rate CR between 500 and 400 ° C. is set to 5 to 80 ° C./second. If the average cooling rate CR exceeds 80 ° C./second, the amount of solute C becomes too high. In this case, the yield point elongation YP-EL after the accelerated aging treatment becomes larger than 0%. On the other hand, if the average cooling rate CR is less than 5 ° C./second, the amount of solid solution C becomes too low. In this case, the yield strength YP is less than 360 MPa. If the average cooling rate CR between 500 and 400 ° C. is 5 to 80 ° C./second, a solid solution C amount of about 5 to 50 ppm is secured. Therefore, the yield strength YP after the accelerated aging treatment is 360 MPa or more, and the yield point elongation YP-EL is 0%. Furthermore, an excellent total elongation EL and a high yield ratio YR are obtained. If the average cooling rate CR between 500 and 400 ° C. is 5 to 80 ° C./second, the microstructure is preferably controlled.
[箱焼鈍による過時効処理工程(BAF-OA工程)]
本実施形態に係る冷延鋼板の製造方法では、BAF-OAを実施しない。上述のとおり、BAF-OAを実施しなくても、本実施形態の冷延鋼板は、高強度で、プレス成形性に優れ、非St-St性にも優れる。本実施形態に係る冷延鋼板の製造方法でBAF-OAを実施すれば、鋼中の固溶Cが低減して、降伏強度YPが360MPa未満になる。したがって、本実施形態に係る冷延鋼板の製造方法では、BAF-OAを実施しない。本実施形態ではBAF-OAを実施しないため、絞り缶用冷延鋼板の生産性が著しく高まる。 [Overaging process by box annealing (BAF-OA process)]
In the method for manufacturing a cold-rolled steel sheet according to this embodiment, BAF-OA is not performed. As described above, even if BAF-OA is not performed, the cold-rolled steel sheet of this embodiment has high strength, excellent press formability, and excellent non-St-St properties. If BAF-OA is performed by the method for manufacturing a cold-rolled steel sheet according to this embodiment, the solid solution C in the steel is reduced and the yield strength YP is less than 360 MPa. Therefore, BAF-OA is not performed in the method for manufacturing a cold-rolled steel sheet according to the present embodiment. In this embodiment, since BAF-OA is not performed, the productivity of cold-rolled steel sheets for drawn cans is significantly increased.
本実施形態に係る冷延鋼板の製造方法では、BAF-OAを実施しない。上述のとおり、BAF-OAを実施しなくても、本実施形態の冷延鋼板は、高強度で、プレス成形性に優れ、非St-St性にも優れる。本実施形態に係る冷延鋼板の製造方法でBAF-OAを実施すれば、鋼中の固溶Cが低減して、降伏強度YPが360MPa未満になる。したがって、本実施形態に係る冷延鋼板の製造方法では、BAF-OAを実施しない。本実施形態ではBAF-OAを実施しないため、絞り缶用冷延鋼板の生産性が著しく高まる。 [Overaging process by box annealing (BAF-OA process)]
In the method for manufacturing a cold-rolled steel sheet according to this embodiment, BAF-OA is not performed. As described above, even if BAF-OA is not performed, the cold-rolled steel sheet of this embodiment has high strength, excellent press formability, and excellent non-St-St properties. If BAF-OA is performed by the method for manufacturing a cold-rolled steel sheet according to this embodiment, the solid solution C in the steel is reduced and the yield strength YP is less than 360 MPa. Therefore, BAF-OA is not performed in the method for manufacturing a cold-rolled steel sheet according to the present embodiment. In this embodiment, since BAF-OA is not performed, the productivity of cold-rolled steel sheets for drawn cans is significantly increased.
[調質圧延工程]
調質圧延工程では、焼鈍工程後に過時効処理を施していない焼鈍鋼板を、0.5~5.0%の累積圧下率で調質圧延(スキンパス圧延)して、調質圧延鋼板を製造する。圧下率が0.5%未満であれば、促進時効処理後の鋼板において、降伏点伸びYP-ELが0%超となる場合がある。圧下率が5.0%を超えれば、全伸びELが25%未満となり、プレス成形性が低下する。圧下率が0.5~5.0%であれば、絞り等の加工までに発生する時効硬化後においても優れた非St-St性及びプレス成形性が得られる。調質圧延工程後の調質圧延鋼板は、板厚が0.15~0.50mmとなる。 [Temper rolling process]
In the temper rolling process, an temper rolled steel sheet is manufactured by temper rolling (skin pass rolling) an annealed steel sheet that has not been over-aged after the annealing process at a cumulative reduction of 0.5 to 5.0%. . If the rolling reduction is less than 0.5%, the yield point elongation YP-EL may exceed 0% in the steel sheet after the accelerated aging treatment. If the rolling reduction exceeds 5.0%, the total elongation EL becomes less than 25%, and the press formability decreases. When the rolling reduction is 0.5 to 5.0%, excellent non-St-St properties and press formability can be obtained even after age hardening that occurs before processing such as drawing. The temper rolled steel sheet after the temper rolling process has a thickness of 0.15 to 0.50 mm.
調質圧延工程では、焼鈍工程後に過時効処理を施していない焼鈍鋼板を、0.5~5.0%の累積圧下率で調質圧延(スキンパス圧延)して、調質圧延鋼板を製造する。圧下率が0.5%未満であれば、促進時効処理後の鋼板において、降伏点伸びYP-ELが0%超となる場合がある。圧下率が5.0%を超えれば、全伸びELが25%未満となり、プレス成形性が低下する。圧下率が0.5~5.0%であれば、絞り等の加工までに発生する時効硬化後においても優れた非St-St性及びプレス成形性が得られる。調質圧延工程後の調質圧延鋼板は、板厚が0.15~0.50mmとなる。 [Temper rolling process]
In the temper rolling process, an temper rolled steel sheet is manufactured by temper rolling (skin pass rolling) an annealed steel sheet that has not been over-aged after the annealing process at a cumulative reduction of 0.5 to 5.0%. . If the rolling reduction is less than 0.5%, the yield point elongation YP-EL may exceed 0% in the steel sheet after the accelerated aging treatment. If the rolling reduction exceeds 5.0%, the total elongation EL becomes less than 25%, and the press formability decreases. When the rolling reduction is 0.5 to 5.0%, excellent non-St-St properties and press formability can be obtained even after age hardening that occurs before processing such as drawing. The temper rolled steel sheet after the temper rolling process has a thickness of 0.15 to 0.50 mm.
[めっき工程]
本実施形態に係る冷延鋼板の製造方法では、調質圧延工程後に、調質圧延鋼板の表面上(板面上)に、Niめっき処理、Ni拡散めっき処理、Snめっき処理、及びTFSめっき処理のうちの少なくとも1つを実施してもよい。この場合、調質圧延鋼板の板面上に、Niめっき層、Ni拡散めっき層、Snめっき層、及びTFSめっき層(金属Cr層とCr水和酸化物層との2層からなるめっき層)のうちの少なくとも1つが形成される。なお、Ni拡散めっき層は、Niめっき処理を施した鋼板に拡散熱処理を施すことによって形成される。 [Plating process]
In the manufacturing method of the cold-rolled steel sheet according to the present embodiment, after the temper rolling process, Ni plating treatment, Ni diffusion plating treatment, Sn plating treatment, and TFS plating treatment are performed on the surface of the temper rolled steel plate (on the plate surface). At least one of the above may be implemented. In this case, a Ni plating layer, a Ni diffusion plating layer, a Sn plating layer, and a TFS plating layer (a plating layer composed of two layers of a metal Cr layer and a Cr hydrated oxide layer) are provided on the surface of the temper rolled steel sheet. At least one of which is formed. The Ni diffusion plating layer is formed by performing a diffusion heat treatment on a steel plate subjected to Ni plating.
本実施形態に係る冷延鋼板の製造方法では、調質圧延工程後に、調質圧延鋼板の表面上(板面上)に、Niめっき処理、Ni拡散めっき処理、Snめっき処理、及びTFSめっき処理のうちの少なくとも1つを実施してもよい。この場合、調質圧延鋼板の板面上に、Niめっき層、Ni拡散めっき層、Snめっき層、及びTFSめっき層(金属Cr層とCr水和酸化物層との2層からなるめっき層)のうちの少なくとも1つが形成される。なお、Ni拡散めっき層は、Niめっき処理を施した鋼板に拡散熱処理を施すことによって形成される。 [Plating process]
In the manufacturing method of the cold-rolled steel sheet according to the present embodiment, after the temper rolling process, Ni plating treatment, Ni diffusion plating treatment, Sn plating treatment, and TFS plating treatment are performed on the surface of the temper rolled steel plate (on the plate surface). At least one of the above may be implemented. In this case, a Ni plating layer, a Ni diffusion plating layer, a Sn plating layer, and a TFS plating layer (a plating layer composed of two layers of a metal Cr layer and a Cr hydrated oxide layer) are provided on the surface of the temper rolled steel sheet. At least one of which is formed. The Ni diffusion plating layer is formed by performing a diffusion heat treatment on a steel plate subjected to Ni plating.
上記した各工程での各製造条件を緻密にかつ複合的に制御することによって、本実施形態に係る冷延鋼板に特有のミクロ組織を得ることが可能となる。具体的には、熱延工程後の熱延鋼板のミクロ組織、一次冷延工程後の一次冷延鋼板のミクロ組織、焼鈍工程後の焼鈍鋼板のミクロ組織、および調質圧延工程後の調質圧延鋼板のミクロ組織を工程毎に制御することによってのみ、本実施形態に特有のミクロ組織を得ることができる。その結果、高強度で、プレス成形性に優れ、非St-St性にも優れる絞り缶用冷延鋼板を得ることが可能となる。
It is possible to obtain a microstructure specific to the cold-rolled steel sheet according to the present embodiment by controlling each manufacturing condition in each step described above precisely and in combination. Specifically, the microstructure of the hot rolled steel sheet after the hot rolling process, the microstructure of the primary cold rolled steel sheet after the primary cold rolling process, the microstructure of the annealed steel sheet after the annealing process, and the tempering after the temper rolling process Only by controlling the microstructure of the rolled steel sheet for each process, a microstructure unique to this embodiment can be obtained. As a result, it is possible to obtain a cold-rolled steel sheet for a drawing can having high strength, excellent press formability, and excellent non-St-St properties.
次に、実施例により本発明の一態様の効果を更に具体的に詳細に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。
Next, the effects of one aspect of the present invention will be described in more detail with reference to examples. However, the conditions in the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention. The present invention is not limited to this one condition example. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
製鋼工程として、鋼種A~Mのスラブを製造した。
As a steelmaking process, slabs of steel types A to M were manufactured.
熱延工程として、これらのスラブを1200℃に加熱して、熱間圧延を実施し、2.1mmの板厚の熱延鋼板を製造した。熱延の仕上げ温度はいずれも925℃であった。熱延鋼板の巻取り温度CTは、表1に示すとおりであった。
As a hot rolling process, these slabs were heated to 1200 ° C. and hot rolled to produce a 2.1 mm thick hot rolled steel sheet. The finishing temperature for hot rolling was 925 ° C. The coiling temperature CT of the hot-rolled steel sheet was as shown in Table 1.
一次冷延工程として、熱延鋼板を酸洗した後、一次冷間圧延を実施した。試験番号1~19では、板厚0.25mmの一次冷延鋼板を製造した。試験番号20では、板厚0.45mmの一次冷延鋼板を製造した。一次冷間圧延の累積圧下率は、表1に示すとおりであった。
As the primary cold rolling process, the hot rolled steel sheet was pickled and then subjected to primary cold rolling. In test numbers 1 to 19, primary cold-rolled steel sheets having a thickness of 0.25 mm were manufactured. In test number 20, a primary cold-rolled steel sheet having a thickness of 0.45 mm was manufactured. The cumulative reduction rate of the primary cold rolling was as shown in Table 1.
焼鈍工程として、一次冷延工程後の鋼板に対して、CAL(連続焼鈍)を実施した。平均昇温速度HR、焼鈍温度ST、500~400℃の間の平均冷却速度CRは、表1に示すとおりであった。焼鈍温度STでは鋼板を25秒間均熱した。均熱後、窒素ガスによるガス冷却を実施した。この際、焼鈍温度STから50℃に至るまで2段階冷却を行うことなく(中間温度で鋼板を保持することなく)鋼板を冷却した。ガス冷却において、500℃から400℃に至るまでの平均冷却速度CRは表1に示すとおりであり、400℃から50℃に至るまでの平均冷却速度は25℃/秒であった。
As an annealing process, CAL (continuous annealing) was performed on the steel sheet after the primary cold rolling process. Table 1 shows the average heating rate HR, the annealing temperature ST, and the average cooling rate CR between 500 and 400 ° C. At the annealing temperature ST, the steel sheet was soaked for 25 seconds. After soaking, gas cooling with nitrogen gas was performed. At this time, the steel plate was cooled without performing two-stage cooling from the annealing temperature ST to 50 ° C. (without holding the steel plate at an intermediate temperature). In gas cooling, the average cooling rate CR from 500 ° C. to 400 ° C. is as shown in Table 1, and the average cooling rate from 400 ° C. to 50 ° C. was 25 ° C./second.
試験番号1の鋼板ではさらに、CAL後、BAF-OA(箱焼鈍による過時効処理)を実施した。BAF-OAでは、鋼板を450℃で5時間均熱した後、72時間かけて徐冷した。なお、試験番号1以外の鋼板では、BAF-OAを実施しなかった。
The steel plate of test number 1 was further subjected to BAF-OA (overaging treatment by box annealing) after CAL. In BAF-OA, the steel sheet was soaked at 450 ° C. for 5 hours and then gradually cooled over 72 hours. Note that BAF-OA was not performed on steel sheets other than test number 1.
調質圧延工程として、焼鈍工程後の鋼板に対して、調質圧延を実施した。調質圧延での圧下率は、いずれも、1.8%であった。
As the temper rolling process, temper rolling was performed on the steel sheet after the annealing process. The reduction ratio in temper rolling was 1.8% in all cases.
めっき工程として、表1に示す試験番号8の鋼板に対して、Niめっき処理を実施した。具体的には、調質圧延工程後に、鋼板の表裏面に電気メッキ法によりNiめっき層を形成した。表面及び裏面のNiめっき層の膜厚は、いずれも2μmであった。この試験番号8の鋼板は、両面Niめっき層を有する冷延鋼板となった。
As the plating step, Ni plating treatment was performed on the steel plate of test number 8 shown in Table 1. Specifically, after the temper rolling process, Ni plating layers were formed on the front and back surfaces of the steel sheet by electroplating. The film thicknesses of the front and back Ni plating layers were both 2 μm. The steel plate of this test number 8 became a cold-rolled steel plate having a double-sided Ni plating layer.
上記のように製造した冷延鋼板に関して、化学成分の測定結果を表2に示し、ミクロ組織の観察結果および機械特性の測定結果を表3に示す。
Regarding the cold-rolled steel sheet produced as described above, the measurement results of the chemical components are shown in Table 2, and the observation results of the microstructure and the measurement results of the mechanical properties are shown in Table 3.
ミクロ組織は、製造した冷延鋼板のL断面にて、光学顕微鏡で観察を行った。組織観察用の試料は、製造した冷延鋼板の幅方向の中央部から採取した。ミクロ組織写真は、研磨してナイタールエッチングを行った試料のL断面の厚み方向の1/4厚み間の部位を撮影した。ミクロ組織写真を用いて、JIS G0551(2013)の切断法によりフェライトの平均粒径を求めた。
The microstructure was observed with an optical microscope at the L cross section of the manufactured cold-rolled steel sheet. The sample for structure | tissue observation was extract | collected from the center part of the width direction of the manufactured cold-rolled steel plate. The microstructure photograph was taken of a portion between 1/4 thickness in the thickness direction of the L cross section of a sample that had been polished and subjected to nital etching. Using the microstructure photograph, the average particle diameter of the ferrite was determined by the cutting method of JIS G0551 (2013).
表2中で、「F+C」は、ミクロ組織が主にフェライト及び粒状セメンタイトを含むことを示す。「F+P」は、ミクロ組織が主にフェライト及びパーライトを含むことを示す。「××」は未再結晶組織が観察されたことを示す。未再結晶組織が観察された場合、フェライト平均粒径は測定しなかった(測定不能なため)。
In Table 2, “F + C” indicates that the microstructure mainly contains ferrite and granular cementite. “F + P” indicates that the microstructure mainly includes ferrite and pearlite. “XX” indicates that an unrecrystallized structure was observed. When an unrecrystallized structure was observed, the ferrite average particle size was not measured (because measurement was impossible).
機械特性は、製造した冷延鋼板を用いて引張試験を行って測定した。各試験番号の冷延鋼板から、JIS5号引張試験片を作製した。引張試験片の平行部は、冷延鋼板のL方向(圧延方向)と平行であった。作成された引張試験片に対して、促進時効処理を実施した。具体的には、各引張試験片に対して、100℃で1時間の時効処理を実施した。
Mechanical properties were measured by performing a tensile test using the manufactured cold-rolled steel sheet. JIS No. 5 tensile test pieces were prepared from the cold-rolled steel sheets having the respective test numbers. The parallel part of the tensile test piece was parallel to the L direction (rolling direction) of the cold rolled steel sheet. An accelerated aging treatment was performed on the prepared tensile test piece. Specifically, an aging treatment for 1 hour at 100 ° C. was performed on each tensile test piece.
促進時効処理後の引張試験片に対して、JIS Z2241(2011)に準拠して、室温(25℃)大気中にて、引張試験を実施して、降伏強度YP、引張強度TS、全伸びEL、降伏点伸びYP-EL、降伏比YRを求めた。
The tensile test piece after the accelerated aging treatment is subjected to a tensile test at room temperature (25 ° C.) in accordance with JIS Z2241 (2011), yield strength YP, tensile strength TS, total elongation EL Yield point elongation YP-EL and yield ratio YR were determined.
本発明例である試験番号5、7、8、11、13、及び15の冷延鋼板は、製造条件、化学成分、ミクロ組織、機械特性の何れもが本発明の範囲を満足していた。その結果、これらの冷延鋼板は、高強度で、プレス成形性に優れ、非St-St性にも優れる。
The cold rolled steel sheets of test numbers 5, 7, 8, 11, 13, and 15 as examples of the present invention all satisfied the scope of the present invention in terms of manufacturing conditions, chemical composition, microstructure, and mechanical properties. As a result, these cold-rolled steel sheets have high strength, excellent press formability, and excellent non-St-St properties.
一方、比較例である1~4、6、9、10、12、14、16~20の冷延鋼板は、製造条件、化学成分、ミクロ組織、機械特性の何れかが本発明の範囲を満足しなかった。その結果、これらの冷延鋼板は、強度、プレス成形性、及び非St-St性を同時に達成できなかった。
On the other hand, the cold rolled steel sheets 1 to 4, 6, 9, 10, 12, 14, and 16 to 20 that are comparative examples satisfy the scope of the present invention in terms of manufacturing conditions, chemical composition, microstructure, and mechanical properties. I didn't. As a result, these cold-rolled steel sheets could not simultaneously achieve strength, press formability, and non-St-St properties.
試験番号1はCAL後にBAF-OAを実施した従来例であるが、C含有量が低すぎた。さらに、巻取り温度CTが高すぎた。さらに、CALの焼鈍温度STが高すぎ、2相域温度であった。そのため、ミクロ組織はフェライトとパーライトとからなり、フェライトの平均粒径が4.0μmを超え、降伏強度YPが360MPa未満であった。さらに降伏比YRが80%未満であった。
Test No. 1 is a conventional example in which BAF-OA was performed after CAL, but the C content was too low. Furthermore, the coiling temperature CT was too high. Furthermore, the annealing temperature ST of CAL was too high, which was a two-phase region temperature. Therefore, the microstructure was composed of ferrite and pearlite, the average grain size of ferrite exceeded 4.0 μm, and the yield strength YP was less than 360 MPa. Furthermore, the yield ratio YR was less than 80%.
試験番号2~4、及び18では、製造条件は適切であったものの、C含有量が低すぎた。そのため、フェライトの平均粒径が4.0μmを超え、降伏強度YPが360MPa未満であった。さらに、降伏点伸びYP-ELが0%よりも高く、ストレッチャーストレインが発生した。
In test numbers 2 to 4 and 18, although the production conditions were appropriate, the C content was too low. Therefore, the average particle diameter of the ferrite exceeded 4.0 μm, and the yield strength YP was less than 360 MPa. Furthermore, the yield point elongation YP-EL was higher than 0%, and stretcher strain was generated.
試験番号6及び14では、化学組成は適切であったものの、CALでの焼鈍温度STが高すぎ、2相域温度であった。そのため、ミクロ組織がフェライトとパーライトとからなり、フェライトの平均粒径が4.0μmを超えた。そのため、全伸びEL及び/又は降伏比YRが低く、プレス成形性が低かった。さらに、試験番号6の降伏強度YPは360MPa未満であった。
In Test Nos. 6 and 14, although the chemical composition was appropriate, the annealing temperature ST in CAL was too high and was a two-phase region temperature. Therefore, the microstructure was composed of ferrite and pearlite, and the average grain size of ferrite exceeded 4.0 μm. Therefore, the total elongation EL and / or the yield ratio YR was low, and the press formability was low. Furthermore, the yield strength YP of test number 6 was less than 360 MPa.
試験番号9では、化学組成は適切であったものの、CALにおける500~400℃の間の平均冷却速度CRが遅すぎた。そのため、降伏強度YPが360MPa未満であり、降伏比YRが80%未満であった。冷却速度が遅すぎ、固溶C量が低下しすぎたためと考えられる。
In Test No. 9, although the chemical composition was appropriate, the average cooling rate CR between 500 and 400 ° C. in CAL was too slow. Therefore, the yield strength YP was less than 360 MPa, and the yield ratio YR was less than 80%. This is probably because the cooling rate was too slow and the amount of dissolved C was too low.
試験番号10では、化学組成は適切であったものの、CALにおける500~400℃の間の平均冷却速度CRが速すぎた。そのため、降伏点伸びYP-ELが0%よりも高かった。さらに、全伸びELが25%未満であった。
In test number 10, although the chemical composition was appropriate, the average cooling rate CR between 500 and 400 ° C. in CAL was too fast. Therefore, the yield point elongation YP-EL was higher than 0%. Furthermore, the total elongation EL was less than 25%.
試験番号12では、化学組成は適切であったものの、CALでの焼鈍温度STが低すぎた。そのため、ミクロ組織の一部に未再結晶組織が残存した。その結果、全伸びELが25%未満と低く、プレス成形性が低かった。
In test number 12, although the chemical composition was appropriate, the annealing temperature ST in CAL was too low. Therefore, an unrecrystallized structure remained in a part of the microstructure. As a result, the total elongation EL was as low as less than 25%, and the press formability was low.
試験番号16、17、及び19では、C含有量が高すぎた。そのため、全伸びELが25%未満と低すぎ、プレス成形性が低かった。
In the test numbers 16, 17, and 19, the C content was too high. Therefore, the total elongation EL was too low as less than 25%, and the press formability was low.
試験番号20では、化学組成は適切であったものの、一次冷延での累積圧下率が低すぎた。そのため、フェライトの平均粒径が4.0μmを超え、降伏強度YPが360MPa未満であった。さらに、降伏点伸びYP-ELが0%よりも高く、ストレッチャーストレインが発生した。
In Test No. 20, the chemical composition was appropriate, but the cumulative rolling reduction in the primary cold rolling was too low. Therefore, the average particle diameter of the ferrite exceeded 4.0 μm, and the yield strength YP was less than 360 MPa. Furthermore, the yield point elongation YP-EL was higher than 0%, and stretcher strain was generated.
本発明の上記態様によれば、BAF-OAを実施することなしに、高強度で、プレス成形性に優れ、非St-St性にも優れる絞り缶用冷延鋼板を提供できる。この冷延鋼板は、プレス成形性に優れ、ストレッチャーストレインの発生を抑制でき、ゲージダウンが可能である。そのため、産業上の利用可能性が高い。
According to the above aspect of the present invention, it is possible to provide a cold-rolled steel sheet for a drawing can having high strength, excellent press formability, and excellent non-St-St properties without performing BAF-OA. This cold-rolled steel sheet is excellent in press formability, can suppress the occurrence of stretcher strain, and can be gauged down. Therefore, industrial applicability is high.
10: フェライト
20: 粒状セメンタイト 10: Ferrite 20: Granular cementite
20: 粒状セメンタイト 10: Ferrite 20: Granular cementite
Claims (5)
- 絞り缶用の鋼板であって、
前記鋼板が、化学成分として、質量%で、
C:0.150超~0.260%、
Sol.Al:0.005~0.100%、
B:0.0005~0.02%、
Si:0.50%以下、
Mn:0.70%以下、
P:0.070%以下、
S:0.05%以下、
N:0.0080%以下、
Nb:0.003%以下、
Ti:0.003%以下、
を含有し、残部がFe及び不純物からなり、
前記化学成分中のホウ素含有量と窒素含有量とが、質量%で、0.4≦B/N≦2.5を満足し、
前記鋼板が、ミクロ組織として、
平均粒径が2.7~4.0μmであるフェライトと、
粒状セメンタイトと
を含み、
前記鋼板を100℃で1時間の時効処理を実施した後に行う引張方向が圧延方向と平行となる引張試験から得られる降伏強度を単位MPaでYPとし、全伸びを単位%でELとし、降伏点伸びを単位%でYP-ELとし、及び降伏比を単位%でYRとしたとき、
前記YPが360~430MPaであり、
前記ELが25~32%であり、
前記YP-ELが0%であり、
前記YRが80~87%である
ことを特徴とする絞り缶用鋼板。 A steel plate for a drawing can,
The steel sheet is in mass% as a chemical component,
C: more than 0.150 to 0.260%,
Sol. Al: 0.005 to 0.100%,
B: 0.0005 to 0.02%,
Si: 0.50% or less,
Mn: 0.70% or less,
P: 0.070% or less,
S: 0.05% or less,
N: 0.0080% or less,
Nb: 0.003% or less,
Ti: 0.003% or less,
And the balance consists of Fe and impurities,
The boron content and the nitrogen content in the chemical component are in mass% and satisfy 0.4 ≦ B / N ≦ 2.5,
The steel sheet has a microstructure,
A ferrite having an average particle size of 2.7 to 4.0 μm;
Including granular cementite and
The yield strength obtained from a tensile test in which the steel sheet is subjected to an aging treatment at 100 ° C. for 1 hour is parallel to the rolling direction is YP in unit MPa, the total elongation is EL in unit%, and the yield point. When the elongation is YP-EL in unit% and the yield ratio is YR in unit%,
YP is 360 to 430 MPa,
The EL is 25-32%,
The YP-EL is 0%;
A steel plate for a drawing can, wherein the YR is 80 to 87%. - 前記ELが27~32%であることを特徴とする請求項1に記載の絞り缶用鋼板。 The steel plate for a drawing can according to claim 1, wherein the EL is 27 to 32%.
- 前記鋼板の表面上に、Niめっき層、Ni拡散めっき層、Snめっき層、及びTFSめっき層のうちの少なくとも1つが配される
ことを特徴とする請求項1または2に記載の絞り缶用鋼板。 The steel plate for a drawn can according to claim 1 or 2, wherein at least one of a Ni plating layer, a Ni diffusion plating layer, a Sn plating layer, and a TFS plating layer is disposed on the surface of the steel plate. . - 請求項1または2に記載の絞り缶用鋼板の製造方法であって、
前記化学成分を有する鋳片を得る製鋼工程と、
前記鋳片を、1000℃以上に加熱し、840~950℃で仕上げ圧延し、仕上げ圧延後冷却し、500~720℃で巻取って、熱延鋼板を得る熱延工程と、
前記熱延鋼板に対して累積圧下率が80%超の一次冷間圧延を実施して、一次冷延鋼板を得る一次冷延工程と、
前記一次冷延鋼板を、平均昇温速度10~40℃/秒で昇温し、650~715℃の温度範囲内で均熱し、その後、500~400℃の間を平均冷却速度5~80℃/秒で冷却する連続焼鈍を実施して、焼鈍鋼板を得る焼鈍工程と、
前記焼鈍工程後に、過時効処理を施していない前記焼鈍鋼板を0.5~5.0%の累積圧下率で調質圧延して、調質圧延鋼板を得る調質圧延工程と、を備える
ことを特徴とする絞り缶用鋼板の製造方法。 It is a manufacturing method of the steel plate for drawn cans according to claim 1 or 2,
A steel making process for obtaining a slab having the chemical component;
The slab is heated to 1000 ° C. or higher, finish-rolled at 840 to 950 ° C., cooled after finish rolling, and wound at 500 to 720 ° C. to obtain a hot-rolled steel sheet,
A primary cold rolling step of obtaining a primary cold-rolled steel sheet by performing primary cold rolling with a cumulative rolling reduction of more than 80% on the hot-rolled steel sheet;
The primary cold-rolled steel sheet is heated at an average heating rate of 10 to 40 ° C./second, soaked within a temperature range of 650 to 715 ° C., and then an average cooling rate of 5 to 80 ° C. is applied between 500 and 400 ° C. An annealing process for obtaining an annealed steel sheet by carrying out continuous annealing cooled at a rate of 1 second / second,
A temper rolling step of temper-rolling the annealed steel plate that has not been over-aged after the annealing step at a cumulative reduction of 0.5 to 5.0% to obtain a temper-rolled steel plate. The manufacturing method of the steel plate for drawn cans characterized by these. - 前記調質圧延工程後に、前記調質圧延鋼板に対して、Niめっき処理、Ni拡散めっき処理、Snめっき処理、及びTFSめっき処理のうちの少なくとも1つを実施するめっき工程をさらに備える
ことを特徴とする請求項4に記載の絞り缶用鋼板の製造方法。 After the temper rolling step, the temper rolled steel sheet further includes a plating step of performing at least one of Ni plating treatment, Ni diffusion plating treatment, Sn plating treatment, and TFS plating treatment. The manufacturing method of the steel plate for drawn cans of Claim 4.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580055679.7A CN106795609B (en) | 2014-10-17 | 2015-10-16 | Drawing steel plate for tanks and its manufacturing method |
JP2016507711A JP5930144B1 (en) | 2014-10-17 | 2015-10-16 | Steel plate for squeezed can and method for manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014213239 | 2014-10-17 | ||
JP2014-213239 | 2014-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016060248A1 true WO2016060248A1 (en) | 2016-04-21 |
Family
ID=55746780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/079313 WO2016060248A1 (en) | 2014-10-17 | 2015-10-16 | Steel sheet for drawn can, and method for manufacturing same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5930144B1 (en) |
CN (1) | CN106795609B (en) |
TW (1) | TWI560280B (en) |
WO (1) | WO2016060248A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020164938A (en) * | 2019-03-29 | 2020-10-08 | 日鉄日新製鋼株式会社 | Medium carbon steel sheet and method for producing the same |
EP3705594A4 (en) * | 2017-08-30 | 2021-07-07 | Baoshan Iron & Steel Co., Ltd. | High-strength multiphase tinned steel raw plate and manufacturing method therefor |
EP3901300A4 (en) * | 2018-12-20 | 2022-04-27 | JFE Steel Corporation | Steel plate for can and method for producing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3885457A4 (en) * | 2018-11-21 | 2022-01-19 | JFE Steel Corporation | Steel sheet for cans and method for manufacturing same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004225132A (en) * | 2003-01-24 | 2004-08-12 | Nippon Steel Corp | High strength cold rolled steel sheet and plated steel sheet having excellent deep drawability, steel tube having excellent workability, and production method therefor |
JP2014043631A (en) * | 2012-08-28 | 2014-03-13 | Nippon Steel & Sumitomo Metal | Method of manufacturing fine grain steel sheet |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2353804B (en) * | 1998-05-29 | 2003-04-02 | Toyo Kohan Co Ltd | Steel sheet coated with a resin layer suitable for a can thinned, deep drawn and ironed and steel sheet therefor |
JP3931455B2 (en) * | 1998-11-25 | 2007-06-13 | Jfeスチール株式会社 | Steel plate for can and manufacturing method thereof |
JP4374126B2 (en) * | 2000-08-15 | 2009-12-02 | 新日本製鐵株式会社 | Steel plate for squeeze cans with excellent earring properties and manufacturing method |
US20050199322A1 (en) * | 2004-03-10 | 2005-09-15 | Jfe Steel Corporation | High carbon hot-rolled steel sheet and method for manufacturing the same |
JP5355905B2 (en) * | 2007-04-10 | 2013-11-27 | 新日鐵住金ステンレス株式会社 | Structural member for automobile, two-wheeled vehicle or railway vehicle having excellent shock absorption characteristics, shape freezing property and flange section cutting ability, and method for producing the same |
JP4235247B1 (en) * | 2007-09-10 | 2009-03-11 | 新日本製鐵株式会社 | High-strength steel sheet for can manufacturing and its manufacturing method |
JP2013224476A (en) * | 2012-03-22 | 2013-10-31 | Jfe Steel Corp | High-strength thin steel sheet excellent in workability and method for manufacturing the same |
CN103572159B (en) * | 2012-07-18 | 2017-06-09 | 株式会社神户制钢所 | The manufacture method of the superior super high tensile cold-rolled steel plate of hydrogen embrittlement resistance |
CN107148488B (en) * | 2015-01-07 | 2020-02-07 | Posco公司 | Ultra-high strength plated steel sheet having tensile strength of 1300MPa or more and method for producing same |
-
2015
- 2015-10-16 WO PCT/JP2015/079313 patent/WO2016060248A1/en active Application Filing
- 2015-10-16 CN CN201580055679.7A patent/CN106795609B/en active Active
- 2015-10-16 JP JP2016507711A patent/JP5930144B1/en active Active
- 2015-10-16 TW TW104134061A patent/TWI560280B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004225132A (en) * | 2003-01-24 | 2004-08-12 | Nippon Steel Corp | High strength cold rolled steel sheet and plated steel sheet having excellent deep drawability, steel tube having excellent workability, and production method therefor |
JP2014043631A (en) * | 2012-08-28 | 2014-03-13 | Nippon Steel & Sumitomo Metal | Method of manufacturing fine grain steel sheet |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3705594A4 (en) * | 2017-08-30 | 2021-07-07 | Baoshan Iron & Steel Co., Ltd. | High-strength multiphase tinned steel raw plate and manufacturing method therefor |
EP3901300A4 (en) * | 2018-12-20 | 2022-04-27 | JFE Steel Corporation | Steel plate for can and method for producing same |
CN115821158A (en) * | 2018-12-20 | 2023-03-21 | 杰富意钢铁株式会社 | Steel sheet for can and method for producing same |
US12129535B2 (en) | 2018-12-20 | 2024-10-29 | Jfe Steel Corporation | Steel sheet for cans and method of producing same |
JP2020164938A (en) * | 2019-03-29 | 2020-10-08 | 日鉄日新製鋼株式会社 | Medium carbon steel sheet and method for producing the same |
WO2020203445A1 (en) * | 2019-03-29 | 2020-10-08 | 日本製鉄株式会社 | Medium-carbon steel sheet and method for manufacturing same |
JP7368692B2 (en) | 2019-03-29 | 2023-10-25 | 日本製鉄株式会社 | Manufacturing method of medium carbon steel plate |
Also Published As
Publication number | Publication date |
---|---|
CN106795609A (en) | 2017-05-31 |
CN106795609B (en) | 2018-12-04 |
JP5930144B1 (en) | 2016-06-08 |
TWI560280B (en) | 2016-12-01 |
TW201623653A (en) | 2016-07-01 |
JPWO2016060248A1 (en) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2554699B1 (en) | Steel sheet with high tensile strength and superior ductility and method for producing same | |
KR101479391B1 (en) | Cold rolled steel sheet having excellent shape fixability and method for manufacturing the same | |
JP6428986B1 (en) | Cold-rolled steel sheet for drawn cans and manufacturing method thereof | |
JP5569657B2 (en) | Steel sheet with excellent aging resistance and method for producing the same | |
KR102428145B1 (en) | Method for manufacturing Ni diffusion plated steel sheet and Ni diffusion plated steel sheet | |
US10550454B2 (en) | Cold-rolled ferritic stainless steel sheet | |
JP6037084B2 (en) | Steel plate for squeezed can and method for manufacturing the same | |
US10633730B2 (en) | Material for cold-rolled stainless steel sheet | |
TW201335386A (en) | Galvanized steel sheet and method for manufacturing the same | |
WO2020209276A1 (en) | Steel sheet and method for producing same | |
KR101994914B1 (en) | Steel sheet for can and method for manufacturing the same | |
JP2007284783A (en) | High strength cold rolled steel sheet and its production method | |
JP5930144B1 (en) | Steel plate for squeezed can and method for manufacturing the same | |
JP5145315B2 (en) | Aging-resistant cold-rolled steel sheet with excellent workability and method for producing the same | |
JP6699310B2 (en) | Cold rolled steel sheet for squeezer and method for manufacturing the same | |
KR102485003B1 (en) | High strength plated steel sheet having excellent formability and surface property, and manufacturing method for the same | |
RU2604081C1 (en) | Method for production of continuously annealed ageless cold-rolled stock of ultra deep drawing | |
TWI665312B (en) | Steel sheet | |
JP5534112B2 (en) | Hot-rolled steel sheet for cold rolling material and manufacturing method thereof | |
JP2007239035A (en) | Cold rolled steel sheet with excellent strain aging resistance, excellent surface roughing resistance and small in-plane anisotropy, and its manufacturing method | |
JP6897878B1 (en) | Steel sheet for cans and its manufacturing method | |
WO2022070840A1 (en) | High-strength steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016507711 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15850024 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15850024 Country of ref document: EP Kind code of ref document: A1 |