[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016052725A1 - Additive for high-purity copper electrolytic refining and method for producing high-purity copper - Google Patents

Additive for high-purity copper electrolytic refining and method for producing high-purity copper Download PDF

Info

Publication number
WO2016052725A1
WO2016052725A1 PCT/JP2015/078047 JP2015078047W WO2016052725A1 WO 2016052725 A1 WO2016052725 A1 WO 2016052725A1 JP 2015078047 W JP2015078047 W JP 2015078047W WO 2016052725 A1 WO2016052725 A1 WO 2016052725A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
additive
concentration
component
purity
Prior art date
Application number
PCT/JP2015/078047
Other languages
French (fr)
Japanese (ja)
Inventor
圭栄 樽谷
賢治 久保田
中矢 清隆
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015169882A external-priority patent/JP6548020B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US15/509,495 priority Critical patent/US10358730B2/en
Priority to CN201580050220.8A priority patent/CN107075704B/en
Publication of WO2016052725A1 publication Critical patent/WO2016052725A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to an additive for high-purity copper electrolytic refining for producing high-purity copper with greatly reduced impurities such as sulfur and silver concentration, and a production method using the additive.
  • Patent Document 1 As described in Patent Document 1, as a method for producing high-purity copper, a copper sulfate aqueous solution is electrolyzed, copper deposited on the cathode is used as an anode, and further, a low current density of 100 A / m 2 or less in the copper nitrate aqueous solution. There is known a method of performing two-stage electrolysis with re-electrolysis.
  • Patent Document 2 by using a polyoxyethylene-based surfactant such as PEG (polyethylene glycol) in combination with a copper sulfate electrolyte containing chlorine ions, glue and the like, and an active sulfur component, A method for producing an electrolytic copper foil with improved mechanical properties and cathode adhesion is known. Furthermore, as described in Patent Document 3, by using a smoothing agent such as PVA (polyvinyl alcohol) and a slime accelerator such as PEG, the copper surface is smooth and the amount of impurities of silver and sulfur is small. A method for producing high purity electrolytic copper is known.
  • PVA polyvinyl alcohol
  • the two-stage manufacturing method in which the copper sulfate bath is electrolyzed and the copper nitrate bath is electrolyzed has a problem that the electrolysis is troublesome.
  • the use of nitric acid has a problem that the environmental load is high and the wastewater treatment becomes complicated.
  • water-soluble polymer additives such as PEG and PVA are extremely hydrophilic, have poor UV absorption, are difficult to perform quantitative analysis by high performance liquid chromatography (HPLC), and have a high decomposition rate. Accurate concentration management is difficult.
  • PEG polymer additives
  • HPLC high performance liquid chromatography
  • PVA dendrites on the surface of the electrolytic copper are likely to occur.
  • PVA is used to solve the problem, the surface of the electrolytic copper becomes smooth, but the impurity silver is not sufficiently reduced.
  • the manufacturing method using surfactants, such as PEG, described in Patent Document 2 has a high content of sulfur and the like in electrolytic copper, and it is difficult to obtain high-purity electrolytic copper.
  • the present invention eliminates the above-mentioned problems in conventional production methods for the production of high-purity copper.
  • an additive comprising a surfactant having a specific hydrophobic group and hydrophilic group, generation of slime is achieved.
  • the above-mentioned additive and a production method using the additive are provided, in which high-purity copper in which the concentration of impurities such as sulfur is significantly reduced can be suppressed.
  • the present invention relates to an additive for high-purity copper electrolytic refining having the following configuration and a method for producing high-purity copper.
  • An additive added to a copper electrolyte in electrolytic refining of high-purity copper comprising a nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group High purity, wherein the dispersive component dD of the Hansen solubility parameter is 10 ⁇ dD ⁇ 20, the polar component dP is 6 ⁇ dP ⁇ 9, and the hydrogen bonding component dH is 9 ⁇ dH ⁇ 11 Additive for copper electrolytic refining.
  • the disperse component dD of the Hansen solubility parameter of the additive is 12 ⁇ dD ⁇ 17, the polar component dP is 7 ⁇ dP ⁇ 9, and the hydrogen bond component dH is 9 ⁇ dH ⁇ 11
  • the additive for high purity copper electrolytic refining according to [1].
  • [5] The method for producing high-purity copper as described in [3] or [4] above, wherein the copper electrolyte is a copper sulfate solution, a copper nitrate solution, or a copper chloride solution.
  • a copper sulfate solution having a copper concentration of 5 to 90 g / L, a sulfuric acid concentration of 10 to 300 g / L, a nitric acid concentration of 0.1 to 100 g / L, or a hydrochloric acid concentration of 10 to 300 g / L The method for producing high-purity copper as described in [5] above, wherein a copper chloride solution is used as the copper electrolyte.
  • [7] The method for producing high-purity copper as described in any one of [3] to [6] above, wherein high-purity copper having a sulfur and silver concentration of 1 ppm or less is produced.
  • the additive of the present invention Since the additive of the present invention has a hydrophobic group of an aromatic ring and a hydrophilic group of a polyoxyalkylene group, it suppresses silver ions and sulfur ions in the electrolytic solution from being deposited on the cathode, Significantly reduce sulfur concentration. Further, the additive of the present invention has a Hansen solubility parameter dispersion component dD of 10 ⁇ dD ⁇ 20, a polar component dP of 6 ⁇ dP ⁇ 9, and a hydrogen bonding component dH of 9 ⁇ dH ⁇ 11. As a result, anode slime is remarkably suppressed. Specifically, for example, according to a preferred embodiment of the present invention, the generation rate of anode slime is suppressed to 20% or less.
  • a conventional surfactant for example, PEG having a Hansen solubility parameter dispersion component dD of 3.6, a polar component dP of 14.3 and a hydrogen bonding component dH of 16.9 is added to the copper sulfate electrolyte.
  • PEG having a Hansen solubility parameter dispersion component dD of 3.6, a polar component dP of 14.3 and a hydrogen bonding component dH of 16.9
  • the slime generation rate is about 30% or more, which is remarkably high. If there is much slime, this will be taken in to the surface of electrolytic copper and will cause a sulfur content to increase.
  • the additive of the present invention has a hydrophobic group containing an aromatic ring and a hydrophilic group of a polyoxyalkylene group, thereby suppressing the deposition of silver ions and sulfate ions in the electrolyte on the cathode.
  • the hydrophobic group and the hydrophilic group maintain an appropriate balance, and thus have the effect of suppressing the generation of anode slime. It becomes difficult for copper to be taken in, and these synergistic effects can greatly reduce the amount of sulfur and silver contained in electrolytic copper. Furthermore, the carbon concentration of electrolytic copper is low. Further, since the additive of the present invention does not contain sulfur in the molecular skeleton, the sulfur content of the cathode is extremely low.
  • high-purity electrolytic copper having a sulfur concentration and a silver concentration of 1 mass ppm or less can be obtained.
  • the anode is moderately dissolved and anode slime is hardly generated. Therefore, according to a preferred embodiment of the present invention, the cathode yield can be 80% or more.
  • the additive of the present embodiment is an additive added to the copper electrolyte in the electrolytic refining of high-purity copper, and has a nonionic property having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group
  • the dispersion component dD of the Hansen solubility parameter is 10 ⁇ dD ⁇ 20
  • the polar component dP is 6 ⁇ dP ⁇ 9
  • the hydrogen bond component dH is 9 ⁇ dH ⁇ 11. It is a featured additive for high purity copper electrolytic refining.
  • the additive of the present embodiment is composed of a nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group.
  • the hydrophobic group containing an aromatic ring of the additive is, for example, a phenyl group or a naphthyl group, and examples thereof include monophenyl, naphthyl, cumyl, alkylphenyl, styrenated phenyl, distyrenated phenyl, and tristyrenated phenyl.
  • the hydrophilic group containing a polyoxyalkylene group of the additive is, for example, a polyoxyethylene group or a polyoxypropylene group, and may contain both a polyoxyethylene group and a polyoxypropylene group.
  • Specific compounds of the additive of the present embodiment include, for example, polyoxyethylene monophenyl ether, polyoxyethylene naphthyl ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene distyrenated phenyl ether, polyoxyethylene tristyrene Phenyl ether, polyoxyethylene cumyl phenyl ether, polyoxypropylene monophenyl ether, polyoxypropylene naphthyl ether, polyoxypropylene styrenated phenyl ether, polyoxypropylene distyrenated phenyl ether, polyoxypropylene tristyrenated phenyl ether And polyoxypropylene cumyl phenyl ether.
  • the additive of this embodiment has the hydrophobic group and the hydrophilic group, and silver ions and sulfate ions in the electrolytic solution are deposited on the cathode by having the hydrophobic group and the hydrophilic group. And the silver concentration and sulfur concentration of electrolytic copper are greatly reduced.
  • the additive of the present embodiment maintains an appropriate balance between the hydrophobic group and the hydrophilic group as indicated by the Hansen solubility parameter.
  • the additive has a Hansen solubility parameter dispersion component dD of 10 ⁇ dD ⁇ 20, a polar component dP of 6 ⁇ dP ⁇ 9, and a hydrogen bonding component dH of 9 ⁇ dH ⁇ 11. is there.
  • the liquid Hansen solubility parameter is used as an index of the balance between hydrophobic groups and hydrophilic groups.
  • the HSP is an index indicating the degree to which a certain substance is dissolved in another substance.
  • HSP can show the solubility of a substance in various solvent compositions, and its phase solubility can be expressed by the HSPdistance (Ra) formula shown in the following formula (1).
  • the HSPdistance (Ra) of the two substances A and B can be expressed by the following formula (1).
  • dD A , dP A , and dH A are a dispersion component dD, a polar component dP, and a hydrogen bonding component dH of the substance A, respectively.
  • DD B , dP B , and dH B are a dispersion component dD, a polar component dP, and a hydrogen bond component dH of the substance B, respectively.
  • HSPdistance (Ra) ⁇ 4 ⁇ (dD A ⁇ dD B ) 2 + (dP A ⁇ dP B ) 2 + (dH A ⁇ dH B ) 2 ⁇ 0.5 (1)
  • Hansen solubility parameters of common solvents are described in known literature (Hansen Solubility Parameters: A User's Handbook, Charles Hansen, 2007, 2nd edition, etc.), and the Hansen solubility parameters of specific solvents are Can be determined by measuring the solubility by dissolving it in another solvent in which the Hansen solubility parameter has been determined. It can also be calculated using HSPiP (Hansen SolubilityluParameters in Practice) software. Specifically, the dispersion component dD, the polar component dP, and the hydrogen bond component dH can be calculated by automatically dividing the molecule from the structural formula of the substance using the Y-MB tool in HSPiP. In this specification, the dispersion component dD, the polar component dP, and the hydrogen bonding component dH of each additive were calculated from the structural formula of the additive using a Y-MB tool of HSPiP software.
  • Hansen solubility parameters (dD, dP, dH) of the additive used in this embodiment do not indicate compatibility between the additive and an electrolytic solution composed of a mineral acid, a copper compound, and water.
  • the inherent solubility parameter of the additive indicates the relationship between the additive and the electrodeposition effect from the newly found knowledge that it has a correlation with the electrodeposition suppressing effect.
  • HLB Hydrophilic / lipophilic balance of the surfactant.
  • HLB represents only the action on water and oil, but HSP shows the solubility of substances in various solvent compositions, and HLB and HSP have no correlation and are different indexes.
  • the additive of this embodiment is a nonionic ion whose Hansen solubility parameter dispersion component dD is 10 ⁇ dD ⁇ 20, polar component dP is 6 ⁇ dP ⁇ 9, and hydrogen bond component dH is 9 ⁇ dH ⁇ 11.
  • the additive dispersion component dD is 12 ⁇ dD ⁇ 17, the polar component dP is 7 ⁇ dP ⁇ 9, and the hydrogen bonding component dH is 9 ⁇ dH ⁇ 11.
  • the values of the dispersion component dD, the polar component dP, and the hydrogen bonding component dH reflect the balance between the hydrophilic group and the hydrophobic group and the molecular weight of these functional groups.
  • the above ranges of the values of the component dP and the hydrogen bonding component dH are the optimum ranges in which the generation of anode slime is suppressed, the electrolytic copper surface is smooth, and high-purity copper with a very small amount of impurities such as sulfur is electrolytically deposited. Show.
  • the dispersion component dD of the Hansen solubility parameter of the additive is 10 ⁇ dD ⁇ 20
  • the polar component dP is 6 ⁇ dP ⁇ 9
  • the hydrogen bonding component dH is 9 ⁇ dH ⁇ 11.
  • the hydrophilic group of the additive is too large, the effect of suppressing the cathode deposition by the hydrophilic group becomes too strong, and the deposited surface becomes rough.
  • the hydrophobic group is too large, the oiliness becomes stronger and the adsorptivity increases, the above-mentioned suppression effect by the hydrophobic group becomes too strong, the precipitation state deteriorates similarly, and the surfactant itself is difficult to dissolve in the electrolyte. .
  • the dispersion component dD of the additive exceeds 20
  • the polar component dP is less than 6, and the hydrogen bonding component dH is less than 9, the solubility of the additive in the copper electrolyte is remarkably reduced.
  • the dispersion component dD of the additive is less than 10
  • the polar component dP exceeds 9, and the hydrogen bonding component dH exceeds 11, the additive has an excessively high anodic dissolution inhibiting effect, and the precipitation surface becomes rough. As the anode slime increases.
  • the additive of the present embodiment is used by being added to a copper electrolyte in electrolytic refining of high purity copper.
  • the concentration of the additive is preferably in the range of 2 to 500 mg / L, and more preferably in the range of 10 to 300 mg / L.
  • concentration of the additive is less than 2 mg / L, the effect of addition is poor, so the smoothness of the surface of the electrolytic copper is lowered, and the sulfur in the electrolytic solution adheres to the surface of the electrolytic copper and is easily taken in. Increases sulfur concentration.
  • the concentration of the additive exceeds 500 mg / L, the adhesion of the additive to the anode surface is too strong and the amount of slime generated increases, and this is taken into the cathode copper with an excessive amount of additive.
  • the sulfur concentration and silver concentration in copper increase.
  • the copper electrolyte in which the additive of this embodiment is used is a copper compound solution of a mineral acid such as a copper sulfate solution, a copper nitrate solution, or a copper chloride solution.
  • a copper sulfate solution is used as the copper electrolyte
  • the sulfuric acid concentration is preferably 10 to 300 g / L. If the sulfuric acid concentration is less than 10 g / L, copper hydroxide is generated in the electrolytic copper and the precipitation state deteriorates. On the other hand, when the sulfuric acid concentration exceeds 300 g / L, the sulfuric acid uptake amount in the electrolytic copper increases, and the sulfur concentration increases.
  • the sulfuric acid concentration is more preferably 20 to 100 g / L.
  • the nitric acid concentration is preferably 0.1 to 100 g / L, more preferably 1 to 50 g / L.
  • the hydrochloric acid concentration is preferably 10 to 300 g / L, more preferably 15 to 75 g / L.
  • the copper concentration of the electrolyte solution is preferably 5 to 90 g / L (the copper sulfate pentahydrate concentration is 20 to 350 g / L, nitric acid (The copper trihydrate concentration is 19 to 342 g / L, and the copper chloride dihydrate concentration is 13 to 241 g / L).
  • the copper concentration is less than 5 g / L, electrolytic copper is precipitated in a powder form, so that the purity is lowered.
  • the copper concentration exceeds 90 g / L the electrolytic solution is easily taken into the electrolytic copper, so that the purity is lowered.
  • the copper concentration in the copper electrolyte is more preferably 40 to 80 g / L.
  • the chloride ion concentration of the electrolytic solution is preferably 200 mg / L or less.
  • the chloride ion concentration exceeds 200 mg / L, chloride is easily taken into electrolytic copper, and the purity of electrolytic copper is lowered.
  • the lower limit of the chloride ion concentration is preferably 1 mg / L, and the chloride ion concentration is more preferably 10 to 100 mg / L.
  • the additive of the present embodiment is composed of a nonionic surfactant having a hydrophilic group such as a polyoxyethylene group and a hydrophobic group such as a phenyl group or a naphthyl group, and has strong ultraviolet absorption and hydrophobicity. Therefore, quantitative analysis by high performance liquid chromatography (HPLC) is possible. Therefore, the concentration of the additive is measured by HPLC, and the reduced amount of the additive is supplemented so that the concentration of the additive is maintained in the range of 2 to 500 mg / L, more preferably in the range of 10 to 300 mg / L. Then, it is good to perform copper electrolytic refining.
  • HPLC high performance liquid chromatography
  • Examples of the present invention are shown below together with comparative examples.
  • the sulfur concentration and silver concentration of electrolytic copper were measured for the central portion of electrolytic copper that was electrolytically purified by GD-MS (glow discharge mass spectrometry).
  • the slime generation rate was obtained by the following equation.
  • Slime generation rate (%) 100 ⁇ (weight of deposited copper) / (dissolution amount of anode (weight)) ⁇ 100
  • the Hansen solubility parameters dD, dP and dH of the additives (A to C) were calculated by inputting the structural formula of the additive in the SMILES format using the formula of HSPiP (Hansen Solubility Parameters in Practice) software.
  • dD, dP, and dH were changed by changing the number of added moles of polyoxyethylene groups that are hydrophilic groups.
  • nH polyoxyethylene dodecyl ether
  • the smoothness was indicated by ⁇ mark when there was no dendride (dendritic protrusion) or powdery precipitation, ⁇ mark when it was slight, and x mark when there was a lot.
  • the samples where 2-5 dendriides were observed per 10 cm 2 were marked with ⁇ .
  • x was attached
  • the other samples were judged as having no dendride generation or powdery precipitation and marked with ⁇ .
  • Example 1 A copper sulfate solution having a sulfuric acid concentration of 100 g / L, a copper sulfate pentahydrate concentration of 200 g / L, and a chloride ion concentration of 100 mg / L is used as an electrolyte, and additives A, B, and C are used. A, B, and C were added at 30 mg / L.
  • electrolytic copper having a sulfur concentration of 5 ppm by mass and a silver concentration of 8 ppm by mass was used.
  • Electrolysis was performed at a current density of 200 A / m 2 and a bath temperature of 30 ° C., and the additive concentration was measured by HPLC using an ODS column every 12 hours, and decreased so that the additive concentration was maintained at 30 mg / L.
  • the copper content was replenished and electrolytic copper was refined.
  • the results are shown in Table 1.
  • the additives A, B, and C used are as follows.
  • Additive A Polyoxyethylene monophenyl ether additive
  • B Polyoxyethylene naphthyl ether additive
  • C Polyoxyethylene distyrenated phenyl ether
  • the slime generation rate No. 1 to No. 6 were obtained with a smooth surface of 20% or less, a sulfur concentration of about 0.5 mass ppm or less, and a silver concentration of 1.0 mass ppm or less. Therefore, it is preferable that the additive has a dispersion component dD of 12 ⁇ dD ⁇ 17, a polar component dP of 7 ⁇ dP ⁇ 9, and a hydrogen bonding component dH of 9 ⁇ d ⁇ 11.
  • Example 2 Under the same conditions as in Example 1, electrolytic copper was electrolytically refined using the additives A, B, and C of the Hansen solubility parameters dD, dP, and dH shown in Table 2. The results are shown in Table 2. As shown in Table 2, the dD value, dP value, and dH value of the additives A, B, and C are the same as the sample No. of Example 1. 1 to No. Compared to 6, No. 10 has a high dD value. No. 11 has a high dD value and a low dP value. No. 12 had a low dD value, but the silver and sulfur concentrations were about 1 ppm by mass or less.
  • the dispersion component dD of the Hansen solubility parameter is 12 ⁇ dD ⁇ 17
  • the polar component dP is 7 ⁇ dP ⁇ 9
  • the hydrogen bond component dH is 9 ⁇ d ⁇ 11
  • the sulfur concentration It was confirmed that low-purity, high-purity electrolytic copper was obtained.
  • Example 3 Additives shown in Table 3 under the same conditions as in Example 1 except that a copper nitrate solution having a nitric acid concentration of 5 g / L, a copper nitrate trihydrate of 200 g / L, and a chloride ion concentration of 100 mg / L was used as the electrolyte.
  • Electrolytic copper was electrolytically refined using A, B, and C. The results are shown in Table 3.
  • the values of the polarization component dD, the polar component dP, and the hydrogen bonding component dH of the Hansen solubility parameter are 12 ⁇ dD ⁇ 17 and 7 ⁇ dP ⁇ 9, respectively. 9 ⁇ d ⁇ 11, the slime generation rate was low, and the sulfur and silver contents of electrolytic copper were both as low as 1 mass ppm or less, and the smoothness of the electrolytic copper surface was excellent.
  • Example 4 The electrolytic copper was subjected to electrolytic refining in the same manner as in Example 1 except that the amount of the additive A in the concentration shown in Table 4 was used (Sample Nos. 30 to 35). The results are shown in Table 4. Further, electrolytic copper was electrolytically refined in the same manner as in Example 3 except that the additive B was used in an amount corresponding to the concentration shown in Table 4 (Sample Nos. 36 to 41). The results are shown in Table 4. As shown in Table 4, sample Nos. With additive concentrations of 2 to 500 mg / L. Nos. 31 to 34 and 37 to 40 are sample Nos. With additive concentrations of 0.1 mg / L and 800 mg / L. There were fewer impurities than 30, 35, 36, and 41, and the smoothness of the surface of the electrolytic copper was good. Accordingly, the concentration of the additives A and B is preferably 2 to 500 mg / L.
  • Example 5 A copper sulfate solution was used as an electrolytic solution, the sulfuric acid concentration and the copper concentration were adjusted as shown in Table 5, and additive A was added to this electrolytic solution to a concentration of 30 mg / L, as in Example 1. Then, electrolytic copper was electrolytically refined (Sample Nos. 50 to 54). The results are shown in Table 5.
  • Example 3 except that a copper nitrate solution was used as the electrolytic solution, the nitric acid concentration and the copper concentration were adjusted as shown in Table 5, and additive B was added to this electrolytic solution to a concentration of 30 mg / L.
  • electrolytic copper was electrolytically refined (Sample Nos. 55 to 59). The results are shown in Table 5. As shown in Table 5, sample Nos.
  • the sulfuric acid solution used as the electrolyte preferably has a sulfuric acid concentration of 10 to 300 g / L and a copper concentration of 5 to 90 g / L, and the copper nitrate solution has a nitric acid concentration of 0.1 to 100 g / L and a copper concentration of 5 to 90 g / L.
  • the range of is preferable.
  • high-purity copper electrolytic refining and the method for producing high-purity copper using the same according to the present invention, high-purity copper that significantly reduces impurities such as sulfur and silver concentration while suppressing generation of slime Can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

This additive for high-purity copper electrolytic refining is an additive that is added into a copper electrolyte solution in electrolytic refining for high-purity copper, and is composed of a nonionic surfactant which has a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group. This additive for high-purity copper electrolytic refining has a dispersion term dD of the Hansen solubility parameters satisfying 10 ≤ dD ≤ 20, a polarity term dP of the Hansen solubility parameters satisfying 6 ≤ dP ≤ 9, and a hydrogen bonding term dH of the Hansen solubility parameters satisfying 9 ≤ dH ≤ 11.

Description

高純度銅電解精錬用添加剤と高純度銅の製造方法High purity copper electrolytic refining additive and method for producing high purity copper
 本発明は、硫黄や銀濃度などの不純物を大幅に低減した高純度銅を製造する高純度銅電解精錬用の添加剤と該添加剤を用いた製造方法に関する。
 本願は、2014年10月4日に日本に出願された特願2014-205310号、及び2015年8月29日に日本に出願された特願2015-169882号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an additive for high-purity copper electrolytic refining for producing high-purity copper with greatly reduced impurities such as sulfur and silver concentration, and a production method using the additive.
This application claims priority based on Japanese Patent Application No. 2014-205310 filed in Japan on October 4, 2014 and Japanese Patent Application No. 2015-169882 filed in Japan on August 29, 2015. The contents are incorporated herein.
 高純度銅の製造方法として、特許文献1に記載されているように、硫酸銅水溶液を電解し、陰極に析出した銅を陽極にしてさらに硝酸銅水溶液中において100A/m以下の低電流密度で再電解する二段階の電解を行う方法が知られている。 As described in Patent Document 1, as a method for producing high-purity copper, a copper sulfate aqueous solution is electrolyzed, copper deposited on the cathode is used as an anode, and further, a low current density of 100 A / m 2 or less in the copper nitrate aqueous solution. There is known a method of performing two-stage electrolysis with re-electrolysis.
 また、特許文献2に記載されているように、塩素イオン、ニカワ等、および活性硫黄成分を含む硫酸銅電解液にPEG(ポリエチレングリコール)等のポリオキシエチレン系界面活性剤を併用することによって、機械的特性とカソード密着性とを高めた電解銅箔の製造方法が知られている。さらに、特許文献3に記載されているように、PVA(ポリビニルアルコール)等の平滑化剤とPEGなどのスライム促進剤とを併用することによって、銅表面が平滑で銀や硫黄の不純物量が少ない高純度電気銅を製造する方法が知られている。 In addition, as described in Patent Document 2, by using a polyoxyethylene-based surfactant such as PEG (polyethylene glycol) in combination with a copper sulfate electrolyte containing chlorine ions, glue and the like, and an active sulfur component, A method for producing an electrolytic copper foil with improved mechanical properties and cathode adhesion is known. Furthermore, as described in Patent Document 3, by using a smoothing agent such as PVA (polyvinyl alcohol) and a slime accelerator such as PEG, the copper surface is smooth and the amount of impurities of silver and sulfur is small. A method for producing high purity electrolytic copper is known.
特公平08-990号公報Japanese Patent Publication No. 08-990 特開2001-123289号公報JP 2001-123289 A 特開2005-307343号公報JP 2005-307343 A
 特許文献1の製造方法のように、硫酸銅浴の電解と硝酸銅浴の電解とを行う二段階の製造方法では、電解に手間がかかる問題がある。また、硝酸の使用は環境負荷が高く、排水処理が煩雑になる問題がある。 As in the manufacturing method disclosed in Patent Document 1, the two-stage manufacturing method in which the copper sulfate bath is electrolyzed and the copper nitrate bath is electrolyzed has a problem that the electrolysis is troublesome. In addition, the use of nitric acid has a problem that the environmental load is high and the wastewater treatment becomes complicated.
 従来の添加剤(PVA,PEG等)を用いると電流密度を上げることが難しく、電流密度を上げるために液撹拌を行うとスライムが舞い上がり、これがカソードに付着して電気銅の純度が低下する。しかも、添加剤がアノードの溶解を強く抑制するため、アノード溶解過電圧が上昇してアノード溶解の際にスライムが大量に発生し、カソードの歩留まりが低下すると共にカソードに付着するスライム量が多くなる。また、従来の添加剤はカソードの析出反応を抑制するため、電解液が硫酸根を含んでいると電着銅の硫黄濃度が上昇して純度が低下する問題があった。 When conventional additives (PVA, PEG, etc.) are used, it is difficult to increase the current density, and when liquid agitation is performed to increase the current density, slime rises, which adheres to the cathode and lowers the purity of electrolytic copper. In addition, since the additive strongly suppresses dissolution of the anode, the anode dissolution overvoltage is increased, so that a large amount of slime is generated during anode dissolution, the yield of the cathode is reduced, and the amount of slime attached to the cathode is increased. Further, since the conventional additive suppresses the deposition reaction of the cathode, there is a problem that the purity of the electrodeposited copper is increased and the purity is lowered when the electrolytic solution contains a sulfate group.
 また、PEGやPVA等の水溶性高分子の添加剤は親水性が極めて高く、さらに紫外線吸収性が乏しく、高速液体クロマトグラフィー(HPLC)による定量分析が困難であり、また分解速度が速いことから、正確な濃度管理が難しい。さらに、PEGを用いると電気銅表面の樹枝状突起が生じやすいと云う問題があり、その問題を解決するためにPVAを用いると電気銅の表面は平滑になるが不純物の銀が十分に低減されない。また、特許文献2に記載されているPEG等の界面活性剤を用いる製造方法は電気銅の硫黄等の含有量が高く、高純度の電気銅を得ることが難しい。 Also, water-soluble polymer additives such as PEG and PVA are extremely hydrophilic, have poor UV absorption, are difficult to perform quantitative analysis by high performance liquid chromatography (HPLC), and have a high decomposition rate. Accurate concentration management is difficult. Furthermore, when PEG is used, there is a problem that dendrites on the surface of the electrolytic copper are likely to occur. When PVA is used to solve the problem, the surface of the electrolytic copper becomes smooth, but the impurity silver is not sufficiently reduced. . Moreover, the manufacturing method using surfactants, such as PEG, described in Patent Document 2 has a high content of sulfur and the like in electrolytic copper, and it is difficult to obtain high-purity electrolytic copper.
 本発明は、高純度銅の製造について、従来の製造方法における上記問題を解消したものであり、特定の疎水基と親水基とを有する界面活性剤からなる添加剤を用いることによって、スライムの発生を抑制して硫黄等の不純物濃度を大幅に低減した高純度銅を製造できるようにしたものであって、上記添加剤と該添加剤を用いた製造方法を提供する。 The present invention eliminates the above-mentioned problems in conventional production methods for the production of high-purity copper. By using an additive comprising a surfactant having a specific hydrophobic group and hydrophilic group, generation of slime is achieved. The above-mentioned additive and a production method using the additive are provided, in which high-purity copper in which the concentration of impurities such as sulfur is significantly reduced can be suppressed.
 本発明は、以下の構成を有する高純度銅電解精錬用添加剤と高純度銅の製造方法に関する。
〔1〕高純度銅の電解精錬における銅電解液に添加される添加剤であって、芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基とを有する非イオン性界面活性剤からなり、ハンセン溶解度パラメータの分散成分dDが10≦dD≦20であって、極性成分dPが6≦dP≦9であって、水素結合成分dHが9≦dH≦11であることを特徴とする高純度銅電解精錬用添加剤。
〔2〕上記添加剤のハンセン溶解度パラメータの分散成分dDが12≦dD≦17であって、極性成分dPが7≦dP≦9であって、水素結合成分dHが9≦dH≦11である上記[1]に記載する高純度銅電解精錬用添加剤。
〔3〕芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基とを有する非イオン性界面活性剤からなり、ハンセン溶解度パラメータの分散成分dDが10≦dD≦20であって、極性成分dPが6≦dP≦9であって、水素結合成分dHが9≦dH≦11である添加剤を銅電解液に添加して電解を行う高純度銅の製造方法。
〔4〕上記銅電解液中の上記添加剤の濃度が2~500mg/Lである上記[3]に記載する高純度銅の製造方法。
〔5〕上記銅電解液が硫酸銅溶液、硝酸銅溶液、または塩化銅溶液である上記[3]または上記[4]に記載する高純度銅の製造方法。
〔6〕銅濃度5~90g/Lであって、硫酸濃度10~300g/Lの硫酸銅溶液、または硝酸濃度0.1~100g/Lの硝酸銅溶液、または塩酸濃度10~300g/Lの塩化銅溶液を上記銅電解液として使用する上記[5]に記載する高純度銅の製造方法。
〔7〕硫黄および銀濃度が何れも1ppm以下の高純度銅を製造する上記[3]~上記[6]の何れかに記載する高純度銅の製造方法。
The present invention relates to an additive for high-purity copper electrolytic refining having the following configuration and a method for producing high-purity copper.
[1] An additive added to a copper electrolyte in electrolytic refining of high-purity copper, comprising a nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group High purity, wherein the dispersive component dD of the Hansen solubility parameter is 10 ≦ dD ≦ 20, the polar component dP is 6 ≦ dP ≦ 9, and the hydrogen bonding component dH is 9 ≦ dH ≦ 11 Additive for copper electrolytic refining.
[2] The disperse component dD of the Hansen solubility parameter of the additive is 12 ≦ dD ≦ 17, the polar component dP is 7 ≦ dP ≦ 9, and the hydrogen bond component dH is 9 ≦ dH ≦ 11 The additive for high purity copper electrolytic refining according to [1].
[3] A nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group, the dispersion component dD of the Hansen solubility parameter is 10 ≦ dD ≦ 20, and the polar component A method for producing high-purity copper, in which dP is 6 ≦ dP ≦ 9 and an additive having a hydrogen bonding component dH of 9 ≦ dH ≦ 11 is added to a copper electrolyte to perform electrolysis.
[4] The method for producing high-purity copper as described in [3] above, wherein the concentration of the additive in the copper electrolyte is 2 to 500 mg / L.
[5] The method for producing high-purity copper as described in [3] or [4] above, wherein the copper electrolyte is a copper sulfate solution, a copper nitrate solution, or a copper chloride solution.
[6] A copper sulfate solution having a copper concentration of 5 to 90 g / L, a sulfuric acid concentration of 10 to 300 g / L, a nitric acid concentration of 0.1 to 100 g / L, or a hydrochloric acid concentration of 10 to 300 g / L The method for producing high-purity copper as described in [5] above, wherein a copper chloride solution is used as the copper electrolyte.
[7] The method for producing high-purity copper as described in any one of [3] to [6] above, wherein high-purity copper having a sulfur and silver concentration of 1 ppm or less is produced.
 本発明の添加剤は、芳香族環の疎水基とポリオキシアルキレン基の親水基とを有するので電解液中の銀イオンおよび硫黄イオンがカソードに析出するのを抑制し、電気銅の銀濃度および硫黄濃度を大幅に低減する。
 さらに、本発明の添加剤は、ハンセン溶解度パラメータの分散成分dDが10≦dD≦20であって、極性成分dPが6≦dP≦9であって、水素結合成分dHが9≦dH≦11であることによって、アノードスライムが格段に抑制される。具体的には、例えば、本発明の好ましい態様によれば、アノードスライムの発生率が20%以下に抑制される。
Since the additive of the present invention has a hydrophobic group of an aromatic ring and a hydrophilic group of a polyoxyalkylene group, it suppresses silver ions and sulfur ions in the electrolytic solution from being deposited on the cathode, Significantly reduce sulfur concentration.
Further, the additive of the present invention has a Hansen solubility parameter dispersion component dD of 10 ≦ dD ≦ 20, a polar component dP of 6 ≦ dP ≦ 9, and a hydrogen bonding component dH of 9 ≦ dH ≦ 11. As a result, anode slime is remarkably suppressed. Specifically, for example, according to a preferred embodiment of the present invention, the generation rate of anode slime is suppressed to 20% or less.
 因みに、従来の界面活性剤、例えば、ハンセン溶解度パラメータの分散成分dDが3.6、極性成分dPが14.3であって水素結合成分dHが16.9であるPEGを硫酸銅電解液に添加して銅電解したときのスライム発生率は概ね30%以上であって格段に高い。スライムが多いと、これが電気銅表面に取り込まれて硫黄含有量を増加する原因になる。 Incidentally, a conventional surfactant, for example, PEG having a Hansen solubility parameter dispersion component dD of 3.6, a polar component dP of 14.3 and a hydrogen bonding component dH of 16.9 is added to the copper sulfate electrolyte. When the copper electrolysis is performed, the slime generation rate is about 30% or more, which is remarkably high. If there is much slime, this will be taken in to the surface of electrolytic copper and will cause a sulfur content to increase.
 本発明の添加剤は、芳香族環を含む疎水基とポリオキシアルキレン基の親水基とを有することによって、電解液中の銀イオンおよび硫酸イオンがカソードに析出するのを抑制して電気銅の銀濃度および硫黄濃度を大幅に低減する効果と共に、上記疎水基と上記親水基とが適度なバランスを保っているのでアノードスライムの発生を抑制する効果を有しており、このため該スライムが電気銅に取り込まれ難くなり、これらの相乗的な効果によって電気銅に含まれる硫黄量および銀含有量を大幅に低減することができる。さらに、電気銅の炭素濃度も低い。また、本発明の添加剤は分子骨格に硫黄を含有しないためカソードの硫黄含有量が極めて低い。 The additive of the present invention has a hydrophobic group containing an aromatic ring and a hydrophilic group of a polyoxyalkylene group, thereby suppressing the deposition of silver ions and sulfate ions in the electrolyte on the cathode. In addition to greatly reducing the silver concentration and sulfur concentration, the hydrophobic group and the hydrophilic group maintain an appropriate balance, and thus have the effect of suppressing the generation of anode slime. It becomes difficult for copper to be taken in, and these synergistic effects can greatly reduce the amount of sulfur and silver contained in electrolytic copper. Furthermore, the carbon concentration of electrolytic copper is low. Further, since the additive of the present invention does not contain sulfur in the molecular skeleton, the sulfur content of the cathode is extremely low.
 具体的には、本発明の好ましい態様に係る添加剤によれば、硫黄濃度および銀濃度が何れも1質量ppm以下の高純度電気銅を得ることができる。 Specifically, according to the additive according to a preferred embodiment of the present invention, high-purity electrolytic copper having a sulfur concentration and a silver concentration of 1 mass ppm or less can be obtained.
 本発明の添加剤は、アノードの溶解が適度であり、アノードスライムが発生し難い。そのため、本発明の好ましい態様によれば、カソード歩留まりが80%以上とすることもできる。 In the additive of the present invention, the anode is moderately dissolved and anode slime is hardly generated. Therefore, according to a preferred embodiment of the present invention, the cathode yield can be 80% or more.
〔具体的な説明〕
 以下、本発明の一実施形態(以下、本実施形態という)を具体的に説明する。
 本実施形態の添加剤は、高純度銅の電解精錬における銅電解液に添加される添加剤であって、芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基とを有する非イオン性界面活性剤からなり、ハンセン溶解度パラメータの分散成分dDが10≦dD≦20であって、極性成分dPが6≦dP≦9であって、水素結合成分dHが9≦dH≦11であることを特徴とする高純度銅電解精錬用添加剤である。
[Specific description]
Hereinafter, an embodiment of the present invention (hereinafter referred to as the present embodiment) will be specifically described.
The additive of the present embodiment is an additive added to the copper electrolyte in the electrolytic refining of high-purity copper, and has a nonionic property having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group The dispersion component dD of the Hansen solubility parameter is 10 ≦ dD ≦ 20, the polar component dP is 6 ≦ dP ≦ 9, and the hydrogen bond component dH is 9 ≦ dH ≦ 11. It is a featured additive for high purity copper electrolytic refining.
 本実施形態の添加剤は、芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基とを有する非イオン性界面活性剤からなる。該添加剤の芳香族環を含む疎水基は、例えば、フェニル基またはナフチル基などであり、モノフェニル、ナフチル、クミル、アルキルフェニル、スチレン化フェニル、ジスチレン化フェニル、トリスチレン化フェニルなどが挙げられる。該添加剤のポリオキシアルキレン基を含む親水基は、例えば、ポリオキシエチレン基またはポリオキシプロピレン基などであり、ポリオキシエチレン基とポリオキシプロピレン基の両方を含むものでも良い。 The additive of the present embodiment is composed of a nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group. The hydrophobic group containing an aromatic ring of the additive is, for example, a phenyl group or a naphthyl group, and examples thereof include monophenyl, naphthyl, cumyl, alkylphenyl, styrenated phenyl, distyrenated phenyl, and tristyrenated phenyl. . The hydrophilic group containing a polyoxyalkylene group of the additive is, for example, a polyoxyethylene group or a polyoxypropylene group, and may contain both a polyoxyethylene group and a polyoxypropylene group.
 本実施形態の添加剤の具体的な化合物は、例えば、ポリオキシエチレンモノフェニルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレントリスチレン化フェニルエーテル、ポリオキシエチレンクミルフェニルエーテル、ポリオキシプロピレンモノフェニルエーテル、ポリオキシプロピレンナフチルエーテル、ポリオキシプロピレンスチレン化フェニルエーテル、ポリオキシプロピレンジスチレン化フェニルエーテル、ポリオキシプロピレントリスチレン化フェニルエーテル、ポリオキシプロピレンクミルフェニルエーテルなどである。 Specific compounds of the additive of the present embodiment include, for example, polyoxyethylene monophenyl ether, polyoxyethylene naphthyl ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene distyrenated phenyl ether, polyoxyethylene tristyrene Phenyl ether, polyoxyethylene cumyl phenyl ether, polyoxypropylene monophenyl ether, polyoxypropylene naphthyl ether, polyoxypropylene styrenated phenyl ether, polyoxypropylene distyrenated phenyl ether, polyoxypropylene tristyrenated phenyl ether And polyoxypropylene cumyl phenyl ether.
 このように本実施形態の添加剤は、上記疎水基と上記親水基とを有しており、この疎水基と親水基とを有することによって、電解液中の銀イオンおよび硫酸イオンがカソードに析出するのが抑制され、電気銅の銀濃度および硫黄濃度が大幅に低減される。 Thus, the additive of this embodiment has the hydrophobic group and the hydrophilic group, and silver ions and sulfate ions in the electrolytic solution are deposited on the cathode by having the hydrophobic group and the hydrophilic group. And the silver concentration and sulfur concentration of electrolytic copper are greatly reduced.
 さらに、本実施形態の添加剤は、上記疎水基と上記親水基とがハンセン溶解度パラメータによって示される適度なバランスを保っている。具体的には、上記添加剤はハンセン溶解度パラメータの分散成分dDが10≦dD≦20であって、極性成分dPが6≦dP≦9であって、水素結合成分dHが9≦dH≦11である。 Furthermore, the additive of the present embodiment maintains an appropriate balance between the hydrophobic group and the hydrophilic group as indicated by the Hansen solubility parameter. Specifically, the additive has a Hansen solubility parameter dispersion component dD of 10 ≦ dD ≦ 20, a polar component dP of 6 ≦ dP ≦ 9, and a hydrogen bonding component dH of 9 ≦ dH ≦ 11. is there.
 一般に、疎水基と親水基とのバランスの指標として液体のハンセン溶解度パラメータ(HSP)が用いられている。該HSPはある物質が他の物質に溶解する程度を示す指標である。その溶解度パラメータδは分散成分dD、極性成分dP、水素結合成分dHを座標軸とした3次元空間の座標点の位置によってその溶解性が示され、δ=(dD+dP+dH0.5の式で表すことができる。 In general, the liquid Hansen solubility parameter (HSP) is used as an index of the balance between hydrophobic groups and hydrophilic groups. The HSP is an index indicating the degree to which a certain substance is dissolved in another substance. The solubility parameter δ is indicated by the position of a coordinate point in a three-dimensional space with the dispersion component dD, polar component dP, and hydrogen bond component dH as coordinate axes, and δ = (dD 2 + dP 2 + dH 2 ) 0.5. It can be expressed by the following formula.
 HSPは様々な溶媒の組成に対する物質の溶解性を示すことができ、その相溶解性は、次式(1)に示すHSPdistance(Ra)式によって表すことができる。このHSPdistance(Ra)が小さいほど相溶性が高い。2つの物質Aおよび物質BのHSPdistance(Ra)は下記の式(1)で表すことができる。式(1)において、dD、dP、dHはそれぞれ物質Aの分散成分dD、極性成分dP、水素結合成分dHである。また、dD、dP、dHはそれぞれ物質Bの分散成分dD、極性成分dP、水素結合成分dHである。
 HSPdistance(Ra)={4×(dD-dD)+(dP-dP)+(dH-dH)0.5・・・(1)
HSP can show the solubility of a substance in various solvent compositions, and its phase solubility can be expressed by the HSPdistance (Ra) formula shown in the following formula (1). The smaller the HSPdistance (Ra), the higher the compatibility. The HSPdistance (Ra) of the two substances A and B can be expressed by the following formula (1). In the formula (1), dD A , dP A , and dH A are a dispersion component dD, a polar component dP, and a hydrogen bonding component dH of the substance A, respectively. DD B , dP B , and dH B are a dispersion component dD, a polar component dP, and a hydrogen bond component dH of the substance B, respectively.
HSPdistance (Ra) = {4 × (dD A −dD B ) 2 + (dP A −dP B ) 2 + (dH A −dH B ) 2 } 0.5 (1)
 一般的な溶媒のハンセン溶解度パラメータは既知の文献(Hansen Solubility Parameters: A User’s Handbook, Charles Hansen、2007、第2版等)に記載されており、また、特定の溶媒のハンセン溶解度パラメータは、その試料をハンセン溶解度パラメータが確定している他の溶媒に溶解させて溶解度を測定することによって決定することができる。また、HSPiP(Hansen Solubility Parameters in Practice)ソフトフェアを用いて算出することができる。具体的には、HSPiPにあるY-MBツールによって物質の構造式から分子を自動分割して分散成分dD、極性成分dP、水素結合成分dHを算出することができる。本明細書ではHSPiPソフトのY-MBツールを用いて各添加剤の分散成分dD、極性成分dP、水素結合成分dHを添加剤の構造式から算出した。 The Hansen solubility parameters of common solvents are described in known literature (Hansen Solubility Parameters: A User's Handbook, Charles Hansen, 2007, 2nd edition, etc.), and the Hansen solubility parameters of specific solvents are Can be determined by measuring the solubility by dissolving it in another solvent in which the Hansen solubility parameter has been determined. It can also be calculated using HSPiP (Hansen SolubilityluParameters in Practice) software. Specifically, the dispersion component dD, the polar component dP, and the hydrogen bond component dH can be calculated by automatically dividing the molecule from the structural formula of the substance using the Y-MB tool in HSPiP. In this specification, the dispersion component dD, the polar component dP, and the hydrogen bonding component dH of each additive were calculated from the structural formula of the additive using a Y-MB tool of HSPiP software.
 なお、本実施形態で用いている添加剤のハンセン溶解度パラメータ(dD、dP、dH)は、添加剤と鉱酸および銅化合物および水から成り立つ電解液との相溶性を示しているのではない。添加剤が持つ固有の溶解度パラメータは、電析抑制効果と相関があるという新規に見出された知見から、添加剤と電析効果との関係を示すものである。 It should be noted that the Hansen solubility parameters (dD, dP, dH) of the additive used in this embodiment do not indicate compatibility between the additive and an electrolytic solution composed of a mineral acid, a copper compound, and water. The inherent solubility parameter of the additive indicates the relationship between the additive and the electrodeposition effect from the newly found knowledge that it has a correlation with the electrodeposition suppressing effect.
 また、界面活性剤の親水性・親油性のバランスを表すパラメータとして、HLB(Hydrophile-Lipophile Balance:親水親油バランス)が知られている。HLBは水と油に対する作用のみを表しているが、HSPは様々な溶媒の組成に対する物質の溶解性を示しており、HLBとHSPには相関が無く、互いに異なる指標である。 Further, HLB (Hydrophile-Lipophile Balance) is known as a parameter representing the hydrophilic / lipophilic balance of the surfactant. HLB represents only the action on water and oil, but HSP shows the solubility of substances in various solvent compositions, and HLB and HSP have no correlation and are different indexes.
 本実施形態の添加剤は、ハンセン溶解度パラメータの分散成分dDが10≦dD≦20であり、極性成分dPが6≦dP≦9であり、水素結合成分dHが9≦dH≦11である非イオン性界面活性剤である。好ましくは、添加剤の分散成分dDは12≦dD≦17であって、極性成分dPは7≦dP≦9であって、水素結合成分dHは9≦dH≦11である。 The additive of this embodiment is a nonionic ion whose Hansen solubility parameter dispersion component dD is 10 ≦ dD ≦ 20, polar component dP is 6 ≦ dP ≦ 9, and hydrogen bond component dH is 9 ≦ dH ≦ 11. Surfactant. Preferably, the additive dispersion component dD is 12 ≦ dD ≦ 17, the polar component dP is 7 ≦ dP ≦ 9, and the hydrogen bonding component dH is 9 ≦ dH ≦ 11.
 本実施形態の添加剤において、分散成分dDおよび極性成分dPおよび水素結合成分dHの値は、親水基と疎水基のバランスとこれらの官能基の分子量とを反映しており、分散成分dD、極性成分dPおよび水素結合成分dHの値の上記範囲は、アノードスライムの発生が抑制され、電気銅表面が平滑であって硫黄等の不純物量が大幅に少ない高純度銅が電解析出する最適範囲を示している。 In the additive of the present embodiment, the values of the dispersion component dD, the polar component dP, and the hydrogen bonding component dH reflect the balance between the hydrophilic group and the hydrophobic group and the molecular weight of these functional groups. The above ranges of the values of the component dP and the hydrogen bonding component dH are the optimum ranges in which the generation of anode slime is suppressed, the electrolytic copper surface is smooth, and high-purity copper with a very small amount of impurities such as sulfur is electrolytically deposited. Show.
 具体的には、添加剤のハンセン溶解度パラメータの分散成分dDが10≦dD≦20であって、極性成分dPが6≦dP≦9であって、水素結合成分dHが9≦dH≦11であることによって、アノードスライムの発生が大幅に抑制される。例えば、アノードスライムの発生率が20%以下に抑制される。 Specifically, the dispersion component dD of the Hansen solubility parameter of the additive is 10 ≦ dD ≦ 20, the polar component dP is 6 ≦ dP ≦ 9, and the hydrogen bonding component dH is 9 ≦ dH ≦ 11. As a result, generation of anode slime is greatly suppressed. For example, the generation rate of anode slime is suppressed to 20% or less.
 一方、添加剤の親水基が大きすぎると親水基によるカソード析出に対する抑制効果が強くなりすぎて、析出面が粗雑になる。また、疎水基が大きすぎると油性が強くなって吸着性が増し、疎水基による上記抑制効果が強くなりすぎて同様に析出状態が劣化し、さらに界面活性剤そのものが電解液に溶解し難くなる。 On the other hand, if the hydrophilic group of the additive is too large, the effect of suppressing the cathode deposition by the hydrophilic group becomes too strong, and the deposited surface becomes rough. On the other hand, if the hydrophobic group is too large, the oiliness becomes stronger and the adsorptivity increases, the above-mentioned suppression effect by the hydrophobic group becomes too strong, the precipitation state deteriorates similarly, and the surfactant itself is difficult to dissolve in the electrolyte. .
 具体的には、上記添加剤の分散成分dDが20を上回り、極性成分dPが6未満であり、水素結合成分dHが9未満であると、銅電解液に対する本添加剤の溶解性が著しく低下する。また、上記添加剤の分散成分dDが10未満であり、極性成分dPが9を上回り、水素結合成分dHが11を上回ると、添加剤のアノード溶解抑制効果が高まりすぎて、析出面が粗雑になると共にアノードスライムが増加する。 Specifically, when the dispersion component dD of the additive exceeds 20, the polar component dP is less than 6, and the hydrogen bonding component dH is less than 9, the solubility of the additive in the copper electrolyte is remarkably reduced. To do. Further, when the dispersion component dD of the additive is less than 10, the polar component dP exceeds 9, and the hydrogen bonding component dH exceeds 11, the additive has an excessively high anodic dissolution inhibiting effect, and the precipitation surface becomes rough. As the anode slime increases.
 本実施形態の添加剤は高純度銅の電解精錬における銅電解液に添加して使用される。添加剤の濃度は2~500mg/Lの範囲が好ましく、10~300mg/Lの範囲がより好ましい。添加剤の濃度が2mg/Lを下回ると、添加効果が乏しいため電気銅表面の平滑性が低下し、電気銅表面に電解液中の硫黄が付着して取り込まれ易くなるので、電気銅中の硫黄濃度が上昇する。一方、添加剤の濃度が500mg/Lを上回ると、アノード表面に対する添加剤の付着が強すぎてスライムの発生量が増え、これが余剰な量の添加剤と共にカソードの電気銅に取り込まれるので、電気銅中の硫黄濃度および銀濃度が高くなる。 The additive of the present embodiment is used by being added to a copper electrolyte in electrolytic refining of high purity copper. The concentration of the additive is preferably in the range of 2 to 500 mg / L, and more preferably in the range of 10 to 300 mg / L. When the concentration of the additive is less than 2 mg / L, the effect of addition is poor, so the smoothness of the surface of the electrolytic copper is lowered, and the sulfur in the electrolytic solution adheres to the surface of the electrolytic copper and is easily taken in. Increases sulfur concentration. On the other hand, when the concentration of the additive exceeds 500 mg / L, the adhesion of the additive to the anode surface is too strong and the amount of slime generated increases, and this is taken into the cathode copper with an excessive amount of additive. The sulfur concentration and silver concentration in copper increase.
 本実施形態の添加剤が使用される銅電解液は、硫酸銅溶液、硝酸銅溶液、または塩化銅溶液などの鉱酸の銅化合物溶液である。
 銅電解液として硫酸銅溶液を使用する場合、硫酸濃度は10~300g/Lが好ましい。硫酸濃度が10g/L未満では電気銅中に水酸化銅が発生して析出状態が劣化する。一方、硫酸濃度が300g/Lを上回ると、電気銅中の硫酸取り込み量が増え、硫黄濃度が上昇する。なお、硫酸濃度は20~100g/Lがより好ましい。銅電解液が硝酸銅溶液である場合には、硝酸濃度は0.1~100g/Lが好ましく、より好ましくは1~50g/Lである。銅電解液が塩化銅溶液である場合には塩酸濃度は10~300g/Lが好ましく、より好ましくは15~75g/Lである。
The copper electrolyte in which the additive of this embodiment is used is a copper compound solution of a mineral acid such as a copper sulfate solution, a copper nitrate solution, or a copper chloride solution.
When a copper sulfate solution is used as the copper electrolyte, the sulfuric acid concentration is preferably 10 to 300 g / L. If the sulfuric acid concentration is less than 10 g / L, copper hydroxide is generated in the electrolytic copper and the precipitation state deteriorates. On the other hand, when the sulfuric acid concentration exceeds 300 g / L, the sulfuric acid uptake amount in the electrolytic copper increases, and the sulfur concentration increases. The sulfuric acid concentration is more preferably 20 to 100 g / L. When the copper electrolyte is a copper nitrate solution, the nitric acid concentration is preferably 0.1 to 100 g / L, more preferably 1 to 50 g / L. When the copper electrolyte is a copper chloride solution, the hydrochloric acid concentration is preferably 10 to 300 g / L, more preferably 15 to 75 g / L.
 硫酸銅溶液、硝酸銅溶液、および塩化銅溶液の何れの銅電解液においても、電解液の銅濃度は5~90g/Lが好ましい(硫酸銅5水和物濃度では20~350g/L、硝酸銅3水和物濃度では19~342g/L、塩化銅2水和物濃度13~241g/L)。銅濃度が5g/L未満では電気銅が粉状に析出するようになるため純度が低下する。一方、銅濃度が90g/Lを上回ると電気銅中に電解液が取り込まれやすくなるので純度が低下する。なお、銅電解液中の銅濃度は40~80g/Lがより好ましい。 In any of the copper electrolytes of the copper sulfate solution, the copper nitrate solution, and the copper chloride solution, the copper concentration of the electrolyte solution is preferably 5 to 90 g / L (the copper sulfate pentahydrate concentration is 20 to 350 g / L, nitric acid (The copper trihydrate concentration is 19 to 342 g / L, and the copper chloride dihydrate concentration is 13 to 241 g / L). When the copper concentration is less than 5 g / L, electrolytic copper is precipitated in a powder form, so that the purity is lowered. On the other hand, when the copper concentration exceeds 90 g / L, the electrolytic solution is easily taken into the electrolytic copper, so that the purity is lowered. The copper concentration in the copper electrolyte is more preferably 40 to 80 g / L.
 電解液が硫酸銅溶液、または硝酸銅溶液の場合、電解液の塩化物イオン濃度は200mg/L以下が好ましい。塩化物イオン濃度が200mg/Lを上回ると、電気銅に塩化物が取り込まれやすくなり、電気銅の純度が低下する。なお、塩化物イオン濃度の下限値を1mg/Lとすることが好ましく、塩化物イオン濃度を10~100mg/Lとすることがより好ましい。 When the electrolytic solution is a copper sulfate solution or a copper nitrate solution, the chloride ion concentration of the electrolytic solution is preferably 200 mg / L or less. When the chloride ion concentration exceeds 200 mg / L, chloride is easily taken into electrolytic copper, and the purity of electrolytic copper is lowered. The lower limit of the chloride ion concentration is preferably 1 mg / L, and the chloride ion concentration is more preferably 10 to 100 mg / L.
 本実施形態の添加剤は、ポリオキシエチレン基などの親水基とフェニル基またはナフチル基などの疎水基とを有している非イオン性界面活性剤からなり、強い紫外線吸収性と疎水性を持つため、高速液体クロマトグラフィー(HPLC)による定量分析が可能である。そこで、HPLCによって該添加剤の濃度を測定し、該添加剤の濃度が2~500mg/Lの範囲、より好ましくは10~300mg/Lの範囲を維持するように該添加剤の減少分を補給して銅電解精錬を行うと良い。 The additive of the present embodiment is composed of a nonionic surfactant having a hydrophilic group such as a polyoxyethylene group and a hydrophobic group such as a phenyl group or a naphthyl group, and has strong ultraviolet absorption and hydrophobicity. Therefore, quantitative analysis by high performance liquid chromatography (HPLC) is possible. Therefore, the concentration of the additive is measured by HPLC, and the reduced amount of the additive is supplemented so that the concentration of the additive is maintained in the range of 2 to 500 mg / L, more preferably in the range of 10 to 300 mg / L. Then, it is good to perform copper electrolytic refining.
 本発明の実施例を比較例と共に以下に示す。電気銅の硫黄濃度および銀濃度を、GD-MS(グロー放電質量分析法)によって、電解精製された電気銅の中央部について測定した。
 スライム発生率は次式によって求めた。
 スライム発生率(%)=100-(析出した電気銅の重量)/(アノードの溶解量(重量))×100
 添加剤(A~C)のハンセン溶解度パラメータのdD、dPおよびdHは、HSPiP(Hansen Solubility Parameters in Practice)ソフトフェアの式を用い、上記添加剤の構造式をSMILES形式で入力して算出した。なお、各実施例では、親水基であるポリオキシエチレン基の付加モル数を変更することによりdD、dPおよびdHを変更した。例えば、ポリオキシエチレンドデシルエーテルCH3(CH211O(C2H4O)nH(nは付加モル数)では、n=9の場合は、dD=13.9、dP=6.3、dH:9.4であり、n=20の場合は、dD=10.0、dP:9.0、dH=12.5である。
 平滑性については、デンドライド(樹枝状突起)の発生や粉状析出の無いものを○印、僅かであるものを△印、多いものを×印で示した。詳細には、デンドライドが10cmあたり2~5個見られた試料には△を付した。また、デンドライドが10cmあたり6個以上みられた試料、もしくは粉状析出が見られた試料には×を付した。それ以外の試料をデンドライドの発生や粉状析出がないと判断して○を付した。
Examples of the present invention are shown below together with comparative examples. The sulfur concentration and silver concentration of electrolytic copper were measured for the central portion of electrolytic copper that was electrolytically purified by GD-MS (glow discharge mass spectrometry).
The slime generation rate was obtained by the following equation.
Slime generation rate (%) = 100− (weight of deposited copper) / (dissolution amount of anode (weight)) × 100
The Hansen solubility parameters dD, dP and dH of the additives (A to C) were calculated by inputting the structural formula of the additive in the SMILES format using the formula of HSPiP (Hansen Solubility Parameters in Practice) software. In each example, dD, dP, and dH were changed by changing the number of added moles of polyoxyethylene groups that are hydrophilic groups. For example, in polyoxyethylene dodecyl ether CH 3 (CH 2 ) 11 O (C 2 H 4 O) nH (n is the number of added moles), when n = 9, dD = 13.9, dP = 6.3 , DH: 9.4, and when n = 20, dD = 10.0, dP: 9.0, dH = 12.5.
The smoothness was indicated by ○ mark when there was no dendride (dendritic protrusion) or powdery precipitation, Δ mark when it was slight, and x mark when there was a lot. Specifically, the samples where 2-5 dendriides were observed per 10 cm 2 were marked with Δ. Moreover, x was attached | subjected to the sample by which 6 or more dendride was seen per 10 cm < 2 >, or the sample by which powdery precipitation was seen. The other samples were judged as having no dendride generation or powdery precipitation and marked with ○.
〔実施例1〕
 硫酸濃度100g/L、硫酸銅5水和物濃度200g/L、塩化物イオン濃度100mg/Lの硫酸銅溶液を電解液として用い、添加剤A,B,Cを用い、該電解液に添加剤A,B,Cを30mg/Lを加えた。アノードには硫黄濃度5質量ppmおよび銀濃度8質量ppmの電気銅を用いた。電流密度を200A/m、浴温30℃にて電解を行ない、12時間ごとにODSカラムを用いたHPLCによって添加剤濃度を測定し、添加剤濃度が30mg/Lに維持されるように減少分を補給して電気銅を電解精錬した。この結果を表1に示した。
 使用した添加剤A,B,Cは次のとおりである。
添加剤A:ポリオキシエチレンモノフェニルエーテル
添加剤B:ポリオキシエチレンナフチルエーテル
添加剤C:ポリオキシエチレンジスチレン化フェニルエーテル
[Example 1]
A copper sulfate solution having a sulfuric acid concentration of 100 g / L, a copper sulfate pentahydrate concentration of 200 g / L, and a chloride ion concentration of 100 mg / L is used as an electrolyte, and additives A, B, and C are used. A, B, and C were added at 30 mg / L. For the anode, electrolytic copper having a sulfur concentration of 5 ppm by mass and a silver concentration of 8 ppm by mass was used. Electrolysis was performed at a current density of 200 A / m 2 and a bath temperature of 30 ° C., and the additive concentration was measured by HPLC using an ODS column every 12 hours, and decreased so that the additive concentration was maintained at 30 mg / L. The copper content was replenished and electrolytic copper was refined. The results are shown in Table 1.
The additives A, B, and C used are as follows.
Additive A: Polyoxyethylene monophenyl ether additive B: Polyoxyethylene naphthyl ether additive C: Polyoxyethylene distyrenated phenyl ether
 表1に示すように、分散成分dDが12≦dD≦17であって、極性成分dPが7≦dP≦9であって、水素結合成分dHが9≦d≦11である場合、スライム発生率は20%以下、硫黄濃度約0.5質量ppm以下、銀濃度1.0質量ppm以下の表面が平滑な電気銅が得られた(No.1~No.6)。従って、添加剤は、分散成分dDが12≦dD≦17であって、極性成分dPが7≦dP≦9であって、水素結合成分dHが9≦d≦11であるものが好ましい。 As shown in Table 1, when the dispersion component dD is 12 ≦ dD ≦ 17, the polar component dP is 7 ≦ dP ≦ 9, and the hydrogen bonding component dH is 9 ≦ d ≦ 11, the slime generation rate No. 1 to No. 6 were obtained with a smooth surface of 20% or less, a sulfur concentration of about 0.5 mass ppm or less, and a silver concentration of 1.0 mass ppm or less. Therefore, it is preferable that the additive has a dispersion component dD of 12 ≦ dD ≦ 17, a polar component dP of 7 ≦ dP ≦ 9, and a hydrogen bonding component dH of 9 ≦ d ≦ 11.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
〔実施例2〕
 実施例1と同様の条件で、表2に示すハンセン溶解度パラメータdD、dP、dHの添加剤A、B、Cを用いて電気銅を電解精錬した。この結果を表2に示した。表2に示すように、添加剤A、B、CのdD値、dP値およびdH値は実施例1の試料No.1~No.6に比べて、No.10はdD値が高く、No.11はdD値が高くdP値が低く、No.12はdD値が低いが、銀および硫黄濃度は約1質量ppm以下であった。このように、ハンセン溶解度パラメータの分散成分dDが12≦dD≦17であって、極性成分dPが7≦dP≦9であって、水素結合成分dHが9≦d≦11である場合、硫黄濃度の低い高純度電気銅が得られることが確認された。
[Example 2]
Under the same conditions as in Example 1, electrolytic copper was electrolytically refined using the additives A, B, and C of the Hansen solubility parameters dD, dP, and dH shown in Table 2. The results are shown in Table 2. As shown in Table 2, the dD value, dP value, and dH value of the additives A, B, and C are the same as the sample No. of Example 1. 1 to No. Compared to 6, No. 10 has a high dD value. No. 11 has a high dD value and a low dP value. No. 12 had a low dD value, but the silver and sulfur concentrations were about 1 ppm by mass or less. Thus, when the dispersion component dD of the Hansen solubility parameter is 12 ≦ dD ≦ 17, the polar component dP is 7 ≦ dP ≦ 9, and the hydrogen bond component dH is 9 ≦ d ≦ 11, the sulfur concentration It was confirmed that low-purity, high-purity electrolytic copper was obtained.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
〔実施例3〕
 硝酸濃度5g/L、硝酸銅3水和物200g/L、塩化物イオン濃度100mg/Lの硝酸銅溶液を電解液として用いた以外は実施例1と同様の条件で、表3に示す添加剤A、B、Cを用い、電気銅を電解精錬した。結果を表3に示す。
 表3に示すように、硝酸銅溶液を電解液に用いた場合でも、ハンセン溶解度パラメータの分極成分dDおよび極性成分dPおよび水素結合成分dHの値がそれぞれ12≦dD≦17、7≦dP≦9、9≦d≦11であるものはスライム発生率が低く、電気銅の硫黄および銀の含有量は何れも1質量ppm以下と低く、電気銅表面の平滑性に優れていた。
Example 3
Additives shown in Table 3 under the same conditions as in Example 1 except that a copper nitrate solution having a nitric acid concentration of 5 g / L, a copper nitrate trihydrate of 200 g / L, and a chloride ion concentration of 100 mg / L was used as the electrolyte. Electrolytic copper was electrolytically refined using A, B, and C. The results are shown in Table 3.
As shown in Table 3, even when a copper nitrate solution is used as the electrolyte, the values of the polarization component dD, the polar component dP, and the hydrogen bonding component dH of the Hansen solubility parameter are 12 ≦ dD ≦ 17 and 7 ≦ dP ≦ 9, respectively. 9 ≦ d ≦ 11, the slime generation rate was low, and the sulfur and silver contents of electrolytic copper were both as low as 1 mass ppm or less, and the smoothness of the electrolytic copper surface was excellent.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
〔実施例4〕
 添加剤Aを表4に示す濃度になる量を用いた以外は実施例1と同様にして電気銅を電解精錬した(試料No.30~35)。この結果を表4に示した。また、添加剤Bを表4に示す濃度になる量を用いた以外は実施例3と同様にして電気銅を電解精錬した(試料No.36~41)。この結果を表4に示した。
 表4に示すように、添加剤の濃度2~500mg/Lの試料No.31~34、37~40は、添加剤の濃度0.1mg/L、800mg/Lの試料No.30、35、36、41よりも不純物が少なく、電気銅表面の平滑性が良好であった。従って、添加剤A、Bの濃度は2~500mg/Lが好ましい。
Example 4
The electrolytic copper was subjected to electrolytic refining in the same manner as in Example 1 except that the amount of the additive A in the concentration shown in Table 4 was used (Sample Nos. 30 to 35). The results are shown in Table 4. Further, electrolytic copper was electrolytically refined in the same manner as in Example 3 except that the additive B was used in an amount corresponding to the concentration shown in Table 4 (Sample Nos. 36 to 41). The results are shown in Table 4.
As shown in Table 4, sample Nos. With additive concentrations of 2 to 500 mg / L. Nos. 31 to 34 and 37 to 40 are sample Nos. With additive concentrations of 0.1 mg / L and 800 mg / L. There were fewer impurities than 30, 35, 36, and 41, and the smoothness of the surface of the electrolytic copper was good. Accordingly, the concentration of the additives A and B is preferably 2 to 500 mg / L.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
〔実施例5〕
 硫酸銅溶液を電解液として用い、硫酸濃度および銅濃度を表5に示すように調整し、この電解液に、添加剤Aを濃度30mg/Lになるように添加した以外は実施例1と同様にして電気銅を電解精錬した(試料No.50~54)。この結果を表5に示した。
 また、硝酸銅溶液を電解液として用い、硝酸濃度および銅濃度を表5に示すように調整し、この電解液に、添加剤Bを濃度30mg/Lになるように添加した以外は実施例3と同様にして電気銅を電解精錬した(試料No.55~59)。この結果を表5に示した。
 表5に示すように、硫酸濃度10~300g/Lおよび銅濃度5~90g/Lの試料No.51~53は電気銅の不純物が少なく、電気銅表面の平滑性が良好であった。また、硝酸濃度0.1~100g/Lおよび銅濃度5~90g/Lの試料No.56~58は電気銅の不純物が少なく、電気銅表面の平滑性が良好であった。一方、硫酸濃度や硝酸濃度および銅濃度が上記範囲を外れる試料No.50、54、55、59は電析銅の表面が粗雑であり、且つ/またはスライム発生量が多かった。従って、電解液として用いる硫酸溶液は硫酸濃度10~300g/Lおよび銅濃度5~90g/Lの範囲が好ましく、硝酸銅溶液は硝酸濃度0.1~100g/Lおよび銅濃度5~90g/Lの範囲が好ましい。
Example 5
A copper sulfate solution was used as an electrolytic solution, the sulfuric acid concentration and the copper concentration were adjusted as shown in Table 5, and additive A was added to this electrolytic solution to a concentration of 30 mg / L, as in Example 1. Then, electrolytic copper was electrolytically refined (Sample Nos. 50 to 54). The results are shown in Table 5.
Example 3 except that a copper nitrate solution was used as the electrolytic solution, the nitric acid concentration and the copper concentration were adjusted as shown in Table 5, and additive B was added to this electrolytic solution to a concentration of 30 mg / L. In the same manner as above, electrolytic copper was electrolytically refined (Sample Nos. 55 to 59). The results are shown in Table 5.
As shown in Table 5, sample Nos. With sulfuric acid concentration of 10 to 300 g / L and copper concentration of 5 to 90 g / L. Nos. 51 to 53 had few electrolytic copper impurities, and the smoothness of the electrolytic copper surface was good. Sample Nos. With nitric acid concentrations of 0.1 to 100 g / L and copper concentrations of 5 to 90 g / L. Nos. 56 to 58 had few electrolytic copper impurities, and the smoothness of the electrolytic copper surface was good. On the other hand, sample Nos. With sulfuric acid concentration, nitric acid concentration and copper concentration deviating from the above ranges. In Nos. 50, 54, 55, and 59, the surface of the electrodeposited copper was rough and / or the amount of slime generated was large. Therefore, the sulfuric acid solution used as the electrolyte preferably has a sulfuric acid concentration of 10 to 300 g / L and a copper concentration of 5 to 90 g / L, and the copper nitrate solution has a nitric acid concentration of 0.1 to 100 g / L and a copper concentration of 5 to 90 g / L. The range of is preferable.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 本発明に係る高純度銅電解精錬用添加剤及びこれを用いた高純度銅の製造方法によれば、スライムの発生を抑制しながら、硫黄や銀濃度などの不純物を大幅に低減した高純度銅を製造できる。 According to the additive for high-purity copper electrolytic refining and the method for producing high-purity copper using the same according to the present invention, high-purity copper that significantly reduces impurities such as sulfur and silver concentration while suppressing generation of slime Can be manufactured.

Claims (7)

  1.  高純度銅の電解精錬における銅電解液に添加される添加剤であって、芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基とを有する非イオン性界面活性剤からなり、ハンセン溶解度パラメータの分散成分dDが10≦dD≦20であって、極性成分dPが6≦dP≦9であって、水素結合成分dHが9≦dH≦11であることを特徴とする高純度銅電解精錬用添加剤。 An additive added to copper electrolyte in electrolytic refining of high-purity copper, comprising a nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group. High-purity copper electrolytic refining characterized in that the parameter dispersion component dD is 10 ≦ dD ≦ 20, the polar component dP is 6 ≦ dP ≦ 9, and the hydrogen bond component dH is 9 ≦ dH ≦ 11 Additives.
  2.  添加剤のハンセン溶解度パラメータの分散成分dDが12≦dD≦17であって、極性成分dPが7≦dP≦9であって、水素結合成分dHが9≦dH≦11である請求項1に記載する高純度銅電解精錬用添加剤。 The dispersion component dD of the Hansen solubility parameter of the additive is 12 ≦ dD ≦ 17, the polar component dP is 7 ≦ dP ≦ 9, and the hydrogen bonding component dH is 9 ≦ dH ≦ 11. High purity copper electrolytic refining additive.
  3.  芳香族環を含む疎水基とポリオキシアルキレン基を含む親水基とを有する非イオン性界面活性剤からなり、ハンセン溶解度パラメータの分散成分dDが10≦dD≦20であって、極性成分dPが6≦dP≦9であって、水素結合成分dHが9≦dH≦11である添加剤を銅電解液に添加して電解を行う高純度銅の製造方法。 It is made of a nonionic surfactant having a hydrophobic group containing an aromatic ring and a hydrophilic group containing a polyoxyalkylene group, the dispersion component dD of the Hansen solubility parameter is 10 ≦ dD ≦ 20, and the polar component dP is 6 ≦ dP ≦ 9, a method for producing high-purity copper in which electrolysis is performed by adding an additive having a hydrogen bond component dH of 9 ≦ dH ≦ 11 to a copper electrolyte.
  4.  上記銅電解液中の上記添加剤の濃度が2~500mg/Lである請求項3に記載する高純度銅の製造方法。 The method for producing high-purity copper according to claim 3, wherein the concentration of the additive in the copper electrolyte is 2 to 500 mg / L.
  5.  上記銅電解液が硫酸銅溶液、硝酸銅溶液、または塩化銅溶液である請求項3または請求項4に記載する高純度銅の製造方法。 The method for producing high-purity copper according to claim 3 or 4, wherein the copper electrolyte is a copper sulfate solution, a copper nitrate solution, or a copper chloride solution.
  6.  銅濃度5~90g/Lであって、硫酸濃度10~300g/Lの硫酸銅溶液、または硝酸濃度0.1~100g/Lの硝酸銅溶液、または塩酸濃度10~300g/Lの塩化銅溶液を上記銅電解液として使用する請求項5に記載する高純度銅の製造方法。 A copper sulfate solution having a copper concentration of 5 to 90 g / L, a sulfuric acid concentration of 10 to 300 g / L, a nitric acid concentration of 0.1 to 100 g / L, or a hydrochloric acid concentration of 10 to 300 g / L. The method for producing high-purity copper according to claim 5, wherein:
  7.  硫黄および銀濃度が何れも1ppm以下の高純度銅を製造する請求項3~請求項6の何れかに記載する高純度銅の製造方法。 The method for producing high-purity copper according to any one of claims 3 to 6, wherein high-purity copper having a sulfur and silver concentration of 1 ppm or less is produced.
PCT/JP2015/078047 2014-10-04 2015-10-02 Additive for high-purity copper electrolytic refining and method for producing high-purity copper WO2016052725A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/509,495 US10358730B2 (en) 2014-10-04 2015-10-02 Additive for high-purity copper electrolytic refining and method of producing high-purity copper
CN201580050220.8A CN107075704B (en) 2014-10-04 2015-10-02 The manufacturing method of high-purity copper electrorefining additive and high-purity copper

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014205310 2014-10-04
JP2014-205310 2014-10-04
JP2015-169882 2015-08-29
JP2015169882A JP6548020B2 (en) 2014-10-04 2015-08-29 Additive for high purity copper electrolytic refining and high purity copper production method

Publications (1)

Publication Number Publication Date
WO2016052725A1 true WO2016052725A1 (en) 2016-04-07

Family

ID=55630745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078047 WO2016052725A1 (en) 2014-10-04 2015-10-02 Additive for high-purity copper electrolytic refining and method for producing high-purity copper

Country Status (1)

Country Link
WO (1) WO2016052725A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307343A (en) * 2004-03-23 2005-11-04 Mitsubishi Materials Corp High-purity electrolytic copper and its production method
JP2008530367A (en) * 2005-02-15 2008-08-07 ビーエーエスエフ ソシエタス・ヨーロピア Use of nonionic surfactants in obtaining metals by electrolysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307343A (en) * 2004-03-23 2005-11-04 Mitsubishi Materials Corp High-purity electrolytic copper and its production method
JP2008530367A (en) * 2005-02-15 2008-08-07 ビーエーエスエフ ソシエタス・ヨーロピア Use of nonionic surfactants in obtaining metals by electrolysis

Similar Documents

Publication Publication Date Title
JP6733313B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
JP4518262B2 (en) High purity electrolytic copper and its manufacturing method
US10428434B2 (en) Additive for high-purity copper electrolytic refining, method of producing high-purity copper, and high-purity electrolytic copper
JP6548020B2 (en) Additive for high purity copper electrolytic refining and high purity copper production method
US10407785B2 (en) Additive for high-purity copper electrolytic refining and method of producing high-purity copper
JP6733314B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
WO2016052725A1 (en) Additive for high-purity copper electrolytic refining and method for producing high-purity copper
WO2016052727A1 (en) Additive for high-purity copper electrolytic refining and method for producing high-purity copper
JP2017077993A (en) Method for producing calcium fluoride
JP6740801B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
JP2004315849A (en) Method for manufacturing high-purity electrolytic copper
US10793956B2 (en) Additive for high-purity copper electrolytic refining and method of producing high-purity copper
KR101570795B1 (en) Manufacturing method of pure nickel from fluorine containing nickel slime
KR20160042436A (en) High purity cobalt chloride and manufacturing method therefor
WO2020175352A1 (en) High-concentration aqueous tin sulfonate solution and method for producing same
JP2017179506A (en) High purity copper electrolytic refining additive and high purity copper producing method
JP2009032815A (en) Sodium hydroxide aqueous solution for silicon wafer etching
JP2017179505A (en) High purity copper electrolytic refining additive and high purity copper producing method
KR20180135742A (en) Method of preparing potassium sulfate
JP2017179504A (en) High purity copper electrolytic refining additive and high purity copper producing method
JP2009029649A (en) Aqueous solution of caustic soda for etching silicon wafer
ATE470355T1 (en) BORDEAUX MIXTURE SUSPENSION AND METHOD FOR THE PRODUCTION THEREOF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15509495

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847627

Country of ref document: EP

Kind code of ref document: A1