[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016052331A1 - 偏光性積層フィルムまたは偏光板の製造方法 - Google Patents

偏光性積層フィルムまたは偏光板の製造方法 Download PDF

Info

Publication number
WO2016052331A1
WO2016052331A1 PCT/JP2015/077101 JP2015077101W WO2016052331A1 WO 2016052331 A1 WO2016052331 A1 WO 2016052331A1 JP 2015077101 W JP2015077101 W JP 2015077101W WO 2016052331 A1 WO2016052331 A1 WO 2016052331A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
laminated film
polyvinyl alcohol
drying
layer
Prior art date
Application number
PCT/JP2015/077101
Other languages
English (en)
French (fr)
Inventor
河村 真一
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020177009366A priority Critical patent/KR20170065531A/ko
Priority to JP2016551970A priority patent/JPWO2016052331A1/ja
Priority to CN201580053198.2A priority patent/CN107076912B/zh
Publication of WO2016052331A1 publication Critical patent/WO2016052331A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00634Production of filters
    • B29D11/00644Production of filters polarizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2508/00Polyesters

Definitions

  • the present invention relates to a method for producing a polarizing laminated film or a polarizing plate.
  • the polarizing plate is widely used as a polarization supplying element in a display device such as a liquid crystal display device.
  • a polarizing film made of a polyvinyl alcohol resin and a protective film made of triacetyl cellulose are conventionally used.
  • notebook personal computers and portables for liquid crystal display devices have been used. With the development of mobile devices such as telephones, there is a need to reduce the thickness and weight.
  • a polarizing film is produced by performing a dyeing treatment or a crosslinking treatment, and laminating this on a protective film or the like to form a polarizing plate. Although it was manufactured, it was possible to reduce the thickness only to the limit thickness of the polarizing film alone.
  • the polyvinyl alcohol-based resin layer is stretched together with the base film, and after passing through a dyeing / crosslinking step and a subsequent drying step, the polyvinyl alcohol
  • the total thickness of the substrate film and the polarizer layer can be reduced to the limit, and the thickness as the polarizer layer (polarizing film) is thinner than before.
  • Patent Document 1 Japanese Patent Document 1
  • the polyvinyl alcohol resin layer is stretched together with the base film, and the polyvinyl alcohol resin layer is passed through a dyeing / crosslinking step and a subsequent drying step.
  • the present invention includes the following.
  • a coating process in which an aqueous solution of a polyvinyl alcohol resin is applied to a base film to obtain a coating film, and the coating film is dried to form a polyvinyl alcohol resin layer on the base film.
  • a drying step for obtaining a laminated film a stretching step for obtaining a stretched laminated film by uniaxially stretching the laminated film, and a dyeing step for obtaining a polarizing laminated film by dyeing the polyvinyl alcohol-based resin layer to form a polarizer layer.
  • the stretching step is a method for producing a polarizing laminated film, wherein the uniaxial stretching is started in a state where the moisture content of the laminated film is 0.3% by mass or more.
  • the multilayer film conditioned in the humidity control step is The method for producing a polarizing laminated film according to [1] or [2], which is subjected to the stretching step while maintaining a moisture content.
  • a first coating step in which an aqueous solution of a polyvinyl alcohol-based resin is coated on one surface of the base film to obtain a coated film, and the coated film is dried to A first drying step for obtaining a laminated film having a polyvinyl alcohol-based resin layer formed on the surface; and a second-side coated film obtained by applying an aqueous solution of a polyvinyl alcohol-based resin to the other surface of the base film.
  • the change in average moisture content of the coated film and the change in average moisture content of the double-sided coated film are 5 to 65% by mass / min, respectively.
  • a polarizing laminate film having a polarizer layer having excellent optical performance can be obtained by controlling the moisture content of the laminate film subjected to the stretching step.
  • a laminate comprising a polyvinyl alcohol resin layer (a layer comprising a polyvinyl alcohol resin) on a base film
  • a laminated film a laminate comprising a polyvinyl alcohol resin layer (a layer comprising a polyvinyl alcohol resin) on a base film
  • a polyvinyl alcohol resin layer is formed on both sides of the base film.
  • the laminated film provided with is called “double-sided laminated film”.
  • polarizer layer a polyvinyl alcohol-based resin layer having a function as a polarizer
  • polarizing laminate film a laminate including a polarizer layer on a base film
  • polarizing plate A laminate having a protective film on one side is referred to as a “polarizing plate”.
  • thermoplastic resins excellent in transparency, mechanical strength, thermal stability, stretchability, etc. are used, and depending on their glass transition temperature (Tg) or melting point (Tm).
  • Tg glass transition temperature
  • Tm melting point
  • An appropriate resin can be selected.
  • thermoplastic resins include polyolefin resins, polyester resins, cyclic polyolefin resins (norbornene resins), (meth) acrylic resins, cellulose ester resins, polycarbonate resins, polyvinyl alcohol resins, vinyl acetate.
  • the base film may be a film made of only one kind of the above-mentioned resin, or may be a film made by blending two or more kinds of resins.
  • the base film may be a single layer film or a multilayer film.
  • polystyrene-based resin examples include polyethylene and polypropylene, which are preferable because they can be stably stretched at a high magnification.
  • a propylene-ethylene copolymer obtained by copolymerizing propylene with ethylene can also be used. Copolymerization is possible with monomers other than ethylene, and examples of other types of monomers copolymerizable with propylene include ⁇ -olefins.
  • ⁇ -olefin an ⁇ -olefin having 4 or more carbon atoms is preferably used, and more preferably an ⁇ -olefin having 4 to 10 carbon atoms.
  • ⁇ -olefin having 4 to 10 carbon atoms include, for example, linear monoolefins such as 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene and 1-decene; Branched monoolefins such as 3-methyl-1-butene, 3-methyl-1-pentene and 4-methyl-1-pentene; vinylcyclohexane and the like.
  • the copolymer of propylene and other monomers copolymerizable therewith may be a random copolymer or a block copolymer.
  • the content of the structural unit derived from the other monomer in the copolymer is determined by infrared (IR) spectrum according to the method described on page 616 of “Polymer Analysis Handbook” (1995, published by Kinokuniya). It can be obtained by measuring.
  • IR infrared
  • propylene resins constituting the propylene resin film propylene homopolymer, propylene-ethylene random copolymer, propylene-1-butene random copolymer, and propylene-ethylene-1-butene Random copolymers are preferably used.
  • the stereoregularity of the propylene resin constituting the propylene resin film is preferably substantially isotactic or syndiotactic.
  • a propylene-based resin film made of a propylene-based resin having substantially isotactic or syndiotactic stereoregularity has relatively good handleability and excellent mechanical strength in a high-temperature environment.
  • the polyester resin is a polymer having an ester bond, and is mainly a polycondensate of a polyvalent carboxylic acid and a polyhydric alcohol.
  • the polyvalent carboxylic acid used is mainly a dicarboxylic acid, that is, a divalent carboxylic acid, or a lower alkyl ester thereof, and examples thereof include terephthalic acid, isophthalic acid, dimethyl terephthalate, and dimethyl naphthalenedicarboxylate.
  • the polyhydric alcohol used is also mainly a diol, that is, a divalent alcohol, and examples thereof include propanediol, butanediol, neopentyl glycol, and cyclohexanedimethanol.
  • the resin examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polycyclohexane dimethyl terephthalate, polycyclohexane dimethyl naphthalate, and the like. . These blend resins and copolymers can also be suitably used.
  • cyclic polyolefin resin a norbornene resin is preferably used.
  • the cyclic polyolefin resin is a general term for resins that are polymerized using a cyclic olefin as a polymerization unit, and is described, for example, in JP-A-1-240517, JP-A-3-14882, JP-A-3-122137, and the like. Resin.
  • cyclic olefin ring-opening (co) polymers examples include cyclic olefin addition polymers, copolymers of cyclic olefins and ⁇ -olefins such as ethylene and propylene (typically random copolymers), And graft polymers obtained by modifying them with an unsaturated carboxylic acid or a derivative thereof, and hydrides thereof.
  • cyclic olefin include norbornene monomers.
  • cyclic polyolefin resins Various products are commercially available as cyclic polyolefin resins. Specific examples include TOPAS (registered trademark) (Topas Advanced Polymers GmbH), Arton (registered trademark) (manufactured by JSR Corporation), ZEONOR (registered trademark) (manufactured by Nippon Zeon Corporation), Zeonex ( ZEONEX (registered trademark) (manufactured by ZEON Corporation), Apel (registered trademark) (manufactured by Mitsui Chemicals, Inc.).
  • TOPAS registered trademark
  • Arton registered trademark
  • ZEONOR registered trademark
  • Zeonex ZEONEX
  • ZEON Corporation manufactured by ZEON Corporation
  • Apel registered trademark
  • any appropriate (meth) acrylic resin can be adopted as the (meth) acrylic resin.
  • polymethacrylate such as polymethylmethacrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl methacrylate- (meth) acrylic acid ester copolymer, methyl methacrylate-acrylic acid ester- (meta ) Acrylic acid copolymer, methyl methacrylate-styrene copolymer (MS resin, etc.), polymer having alicyclic hydrocarbon group (for example, methyl methacrylate- (meth) acrylic acid cyclohexyl copolymer, methacrylic acid) Methyl- (meth) acrylate norbornyl copolymer, etc.).
  • a polymer mainly composed of a C 1 -C 6 alkyl ester of methacrylic acid such as polymethyl methacrylate is used.
  • the (meth) acrylic resin a methyl methacrylate resin containing methyl methacrylate as a main component (50 to 100% by weight, preferably 70 to 100% by weight) is more preferably used.
  • Cellulose ester resin is an ester of cellulose and fatty acid.
  • a cellulose ester resin include cellulose triacetate, cellulose diacetate, cellulose tripropionate, and cellulose dipropionate.
  • these copolymers and those in which a part of the hydroxyl group is modified with other types of substituents are also included.
  • cellulose triacetate is particularly preferable.
  • Many products of cellulose triacetate are commercially available, which is advantageous in terms of availability and cost.
  • Examples of commercially available cellulose triacetate include Fujitac (registered trademark) TD80 (manufactured by Fuji Film Co., Ltd.), Fujitac (registered trademark) TD80UF (manufactured by Fuji Film Co., Ltd.), and Fujitac (registered trademark) TD80UZ (Fuji Film (manufactured by Fujifilm Corporation). Co., Ltd.), Fujitac (registered trademark) TD40UZ (Fuji Film Co., Ltd.), KC8UX2M (Konica Minolta Co., Ltd.), KC4UY (Konica Minolta Co., Ltd.), and the like.
  • Polycarbonate resin is an engineering plastic made of a polymer in which monomer units are bonded via a carbonate group, and is a resin having high impact resistance, heat resistance, and flame retardancy. Moreover, since it has high transparency, it is suitably used in optical applications. For optical applications, resins called modified polycarbonates in which the polymer skeleton is modified to lower the photoelastic coefficient, copolymerized polycarbonates with improved wavelength dependency, and the like are also commercially available and can be suitably used. Such polycarbonate resins are widely commercially available.
  • Panlite registered trademark
  • Iupilon registered trademark
  • SD Polyca registered trademark
  • Caliber registered trademark
  • any appropriate additive may be added to the base film in addition to the above thermoplastic resin.
  • additives include ultraviolet absorbers, antioxidants, lubricants, plasticizers, mold release agents, anti-coloring agents, flame retardants, nucleating agents, antistatic agents, pigments, and coloring agents.
  • the content of the thermoplastic resin exemplified above in the base film is preferably 50 to 100% by weight, more preferably 50 to 99% by weight, still more preferably 60 to 98% by weight, and particularly preferably 70 to 97%. % By weight. This is because, if the content of the thermoplastic resin in the base film is less than 50% by weight, the high transparency inherent in the thermoplastic resin may not be sufficiently exhibited.
  • the thickness of the base film before stretching can be determined as appropriate, from the viewpoint of workability such as strength and handleability, and in the present invention, a laminated film in which a polyvinyl alcohol resin layer is formed on the base film
  • the thickness of the base film is preferably 50 to 200 ⁇ m, and more preferably 70 to 130 ⁇ m.
  • a base film is a value whose melting
  • the base film may be subjected to corona treatment, plasma treatment, flame treatment or the like on at least the surface on which the polyvinyl alcohol resin layer is formed in order to improve the adhesion with the polyvinyl alcohol resin layer.
  • the primer layer is a material that exhibits a certain degree of strong adhesion to both the base film and the polyvinyl alcohol resin layer.
  • a thermoplastic resin excellent in transparency, thermal stability, stretchability, etc. is used.
  • Specific examples include acrylic resins and polyvinyl alcohol resins, but are not limited thereto.
  • a polyvinyl alcohol resin having good adhesion is preferably used.
  • polyvinyl alcohol resin used as the primer layer examples include polyvinyl alcohol resin and derivatives thereof.
  • Derivatives of polyvinyl alcohol resin include polyvinyl formal, polyvinyl acetal, etc., olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, and alkyl esters of unsaturated carboxylic acids. And those modified with acrylamide or the like.
  • a crosslinking agent may be added to the thermoplastic resin.
  • the cross-linking agent to be added to the thermoplastic resin known ones such as organic and inorganic can be used. What is necessary is just to select a more suitable thing suitably with respect to the thermoplastic resin to be used.
  • low molecular crosslinkers such as epoxy crosslinkers, isocyanate crosslinkers, dialdehyde crosslinkers, metal chelate crosslinkers, high molecular weight polymers such as methylolated melamine resins and polyamide epoxy resins.
  • a crosslinking agent or the like can also be used.
  • thermoplastic resin When a polyvinyl alcohol resin is used as the thermoplastic resin, it is particularly preferable to use a polyamide epoxy resin, a methylolated melamine, a dialdehyde, a metal chelate crosslinking agent, or the like as the crosslinking agent.
  • the thickness of the primer layer is preferably 0.05 to 1 ⁇ m, more preferably 0.1 to 0.4 ⁇ m. If the thickness is less than 0.05 ⁇ m, the adhesion between the base film and the polyvinyl alcohol-based resin layer is reduced, and if the thickness is more than 1 ⁇ m, the polarizing plate becomes thick.
  • the polarizer layer is obtained by adsorbing and orienting a dichroic dye on a stretched polyvinyl alcohol-based resin layer.
  • a saponified polyvinyl acetate resin can be used as the polyvinyl alcohol resin constituting the polyvinyl alcohol resin layer.
  • the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers with other monomers copolymerizable with vinyl acetate.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the polyvinyl alcohol resin constituting the polarizer layer is preferably a completely saponified product.
  • the range of the saponification degree is preferably 80.0 mol% to 100.0 mol%, more preferably 90.0 mol% to 99.5 mol%, and even more preferably 94.0 mol%. Most preferred is a range of from% to 99.0 mol%.
  • the degree of saponification is less than 80.0 mol%, there is a problem that the water resistance and heat-and-moisture resistance after making a polarizing plate are remarkably inferior.
  • the saponification degree as used herein is a unit ratio (mol%) representing the ratio of the acetate group contained in the polyvinyl acetate resin, which is a raw material for the polyvinyl alcohol resin, to a hydroxyl group by the saponification step. Is a numerical value defined by the following formula. It can be obtained by the method defined in JIS K 6726 (1994).
  • Saponification degree (mol%) (number of hydroxyl groups) ⁇ (number of hydroxyl groups + number of acetate groups) ⁇ 100 The higher the degree of saponification, the higher the proportion of hydroxyl groups, that is, the lower the proportion of acetate groups that inhibit crystallization.
  • the polyvinyl alcohol resin used in the present invention may be a modified polyvinyl alcohol partially modified.
  • polyvinyl alcohol resins modified with olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, alkyl esters of unsaturated carboxylic acids, acrylamide, and the like can be used.
  • the proportion of modification is preferably less than 30 mol%, and more preferably less than 10 mol%. When modification exceeding 30 mol% is performed, it becomes difficult to adsorb the dichroic dye, resulting in a problem that the polarization performance is lowered.
  • the average degree of polymerization of the polyvinyl alcohol-based resin is not particularly limited, but is preferably 100 to 10,000, more preferably 1500 to 8000, and most preferably 2000 to 5,000.
  • the average degree of polymerization here is also a numerical value obtained by a method defined by JIS K 6726 (1994).
  • polyvinyl alcohol resin having such characteristics examples include PVA124 (degree of saponification: 98.0 to 99.0 mol%) and PVA117 (degree of saponification: 98.0 to 99.0) manufactured by Kuraray Co., Ltd. Mol%), PVA624 (degree of saponification: 95.0 to 96.0 mol%) and PVA617 (degree of saponification: 94.5 to 95.5 mol%); for example, AH- manufactured by Nippon Synthetic Chemical Industry Co., Ltd.
  • JM-33 degree of saponification: 93.5-95.5 mol%)
  • JM-2 Serification degree: 95.5-97.5 mol%)
  • JP-45 Seraponification degree: 86.5-89.5 mol%)
  • JF-17 saponification degree: 98.0-99.0 Mol%)
  • JF-17L degree of saponification: 98.0 to 99.0 mol%)
  • JF-20 degree of saponification: 98.0 to 99.0 mol%).
  • Such a polyvinyl alcohol resin is used as an aqueous solution, which is coated on a base film and dried to form a polyvinyl alcohol resin layer.
  • Such a polyvinyl alcohol-based resin layer is stretched and oriented together with the base film, and further, a dichroic dye is adsorbed and oriented to form a polarizer layer.
  • the draw ratio is preferably more than 5 times, more preferably more than 5 times and not more than 17 times.
  • the thickness of the polarizer layer is 10 ⁇ m or less, preferably 7 ⁇ m or less. By setting the thickness of the polarizer layer to 10 ⁇ m or less, a thin polarizing plate can be configured.
  • dichroic dye used in the polarizer layer examples include iodine and organic dyes.
  • organic dyes include Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Spura Blue G, Spura Blue GL, Spura Orange GL, Direct Sky Blue, Direct First Orange S, First Black, etc. can be used.
  • One kind of these dichroic substances may be used, or two or more kinds may be used in combination.
  • the protective film may be a simple protective film having no optical function, or may be a protective film having both optical functions such as a retardation film and a brightness enhancement film.
  • the material of the protective film is not particularly limited, but for example, a cyclic polyolefin resin film, a cellulose acetate resin film made of a resin such as triacetyl cellulose or diacetyl cellulose, polyethylene terephthalate, polyethylene naphthalate, poly Examples of the film conventionally used in this field include polyester resin films made of a resin such as butylene terephthalate, polycarbonate resin films, acrylic resin films, and polypropylene resin films.
  • cyclic polyolefin-based resin As the cyclic polyolefin-based resin, appropriate commercial products such as TOPAS (registered trademark) (Topas Advanced Polymers GmbH), Arton (registered trademark) (manufactured by JSR Corporation), ZEONOR (registered trademark) (Japan) Zeon Co., Ltd.), Zeonex (registered trademark) (ZEONEX) (manufactured by Nippon Zeon Co., Ltd.), and Apel (registered trademark) (manufactured by Mitsui Chemicals, Inc.) can be suitably used.
  • TOPAS registered trademark
  • Arton registered trademark
  • ZEONOR registered trademark
  • Zeonex registered trademark
  • ZEONEX manufactured by Nippon Zeon Co., Ltd.
  • Apel registered trademark
  • Mitsui Chemicals, Inc. When such a cyclic polyolefin resin is formed into a film, a known method such as a solvent casting method or a melt extrusion method is appropriately
  • annular films such as Essina (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), SCA40 (manufactured by Sekisui Chemical Industry Co., Ltd.), ZEONOR (registered trademark) film (manufactured by Nippon Zeon Co., Ltd.), etc.
  • Essina registered trademark
  • SCA40 manufactured by Sekisui Chemical Industry Co., Ltd.
  • ZEONOR registered trademark
  • commercial products of polyolefin resin films may be used.
  • the cyclic polyolefin resin film may be uniaxially stretched or biaxially stretched.
  • An arbitrary retardation value can be imparted to the cyclic polyolefin-based resin film by stretching. Stretching is usually performed continuously while unwinding the film roll, and is stretched in the heating furnace in the roll traveling direction, the direction perpendicular to the traveling direction, or both.
  • the temperature of the heating furnace is usually in the range from the vicinity of the glass transition temperature of the cyclic polyolefin resin to the glass transition temperature + 100 ° C.
  • the stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times in one direction.
  • the cyclic polyolefin resin film generally has poor surface activity
  • surface treatment such as plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, saponification treatment is performed on the surface to be bonded to the polarizing film.
  • plasma treatment and corona treatment that can be performed relatively easily are preferable.
  • Examples of the cellulose acetate-based resin film include commercially available products such as FUJITAC (registered trademark) TD80 (manufactured by FUJIFILM Corporation), FUJITAC (registered trademark) TD80UF (manufactured by FUJIFILM Corporation), and FUJITAC (registered trademark).
  • FUJITAC registered trademark
  • TD80 manufactured by FUJIFILM Corporation
  • FUJITAC registered trademark
  • TD80UF manufactured by FUJIFILM Corporation
  • FUJITAC registered trademark
  • TD80UZ (manufactured by FUJIFILM Corporation), FUJITAC (registered trademark) TD40UZ (manufactured by FUJIFILM Corporation), KC8UX2M (manufactured by Konica Minolta Co., Ltd.), KC4UY (manufactured by Konica Minolta Co., Ltd.) can be suitably used. it can.
  • a liquid crystal layer or the like may be formed on the surface of the cellulose acetate-based resin film in order to improve viewing angle characteristics. Moreover, in order to provide a phase difference, what stretched the cellulose acetate type-resin film may be used.
  • the cellulose acetate-based resin film is usually subjected to a saponification treatment in order to improve the adhesiveness with the polarizing film.
  • a saponification treatment a method of immersing in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide can be employed.
  • An optical layer such as a hard coat layer, an antiglare layer, or an antireflection layer can be formed on the surface of the protective film as described above.
  • the method for forming these optical layers on the surface of the protective film is not particularly limited, and a known method can be used.
  • the thickness of the protective film is preferably as thin as possible from the demand for thinning, preferably 90 ⁇ m or less, more preferably 50 ⁇ m or less. On the other hand, if it is too thin, the strength is lowered and the processability is inferior.
  • FIG. 1 is a flowchart showing a method for producing a polarizing laminated film and a polarizing plate according to the first embodiment.
  • the manufacturing method of the light-polarizing laminated film of the first embodiment is as follows.
  • a dyeing step (S40) for obtaining a polarizing laminated film by dyeing the polyvinyl alcohol-based resin layer into a polarizer layer is included in this order.
  • the peeling process (S60) which peels the said base film from the said multilayer film and obtains the polarizing plate provided with the said polarizer layer and the said transparent protective film is included in this order.
  • the material suitable for the base film is as described in the description of the constituent elements of the polarizing laminated film.
  • a polyvinyl alcohol resin solution obtained by dissolving polyvinyl alcohol resin powder in a good solvent is applied onto the surface of the substrate film to obtain a coated film.
  • the polyvinyl alcohol-based resin layer By forming the polyvinyl alcohol-based resin layer through the coating process, the polyvinyl alcohol-based resin can be thinned.
  • a wire bar coating method, a reverse coating, a roll coating method such as gravure coating, a die coating method, a comma coating method, a lip coating method, a spin coating method, a screen
  • a known method such as a coating method, a fountain coating method, a dipping method, or a spray method can be appropriately selected and employed.
  • a comma coat method (knife coater), a die coat method and a lip coat method are preferred.
  • the thickness of the polyvinyl alcohol-based resin layer of the stretched laminated film after stretching in the stretching step (S30) is preferably 10 ⁇ m or less. Therefore, the thickness of the resin layer formed through the coating step (S10) and the drying step (S20) is preferably 3 to 50 ⁇ m, and more preferably 5 to 40 ⁇ m. If it is 3 ⁇ m or less, the film becomes too thin after stretching and the dyeability is remarkably deteriorated. On the other hand, if it exceeds 50 ⁇ m, the thickness of the finally obtained polarizer layer may exceed 10 ⁇ m, which is not preferable.
  • a primer layer may be provided between the base film and the polyvinyl alcohol resin layer.
  • the primer layer is preferably formed from a composition containing a polyvinyl alcohol-based resin and a crosslinking agent from the viewpoint of adhesion. Materials suitable for the primer layer are as described in the description of the components of the polarizing laminated film.
  • the drying step is preferably performed so that the average moisture content change of the coated film is 5 to 65% by mass / min, more preferably 7.5 to 50% by mass / min. More preferably, it is carried out at 5 to 30% by mass / min.
  • the average moisture content change in the drying process referred to in this specification is obtained by dividing the difference between the moisture content (%) of the coated film at the start of drying and the moisture content (%) of the laminated film at the end of drying by time. This is the value obtained.
  • multilayer film is mentioned later.
  • the average moisture content change is larger than 65% by mass / min, it is necessary to increase the drying temperature, which may cause problems such as dissolution of the base film and discoloration of the polyvinyl alcohol resin, which is not preferable.
  • the average moisture content change is less than 5% by mass / min, the productivity deteriorates, which is not preferable.
  • the drying temperature in the drying step is, for example, 50 ° C. to 200 ° C., preferably 60 ° C. to 150 ° C.
  • drying methods such as a method of blowing hot air, a method of contacting with a hot roll, and a method of heating with an IR heater, and any of them can be suitably used.
  • the drying temperature in the drying process means the atmospheric temperature in the drying furnace in the case of a drying facility provided with a drying furnace such as a method of blowing hot air or an IR heater, and is a contact type such as a hot roll. In the case of drying equipment, it means the surface temperature of the hot roll.
  • the drying time is, for example, 2 minutes to 20 minutes.
  • the laminated film obtained in the drying step (S20) is stretched.
  • the stretching step (S30) uniaxial stretching is started in a state where the moisture content of the laminated film in which the polyvinyl alcohol-based resin layer is formed on one surface of the base film is 0.3% by mass or more.
  • a polarizing laminated film or a polarizing plate provided with a polarizer layer having excellent optical performance can be produced.
  • the moisture content can be adjusted, for example, by adjusting the degree of drying in the drying step (S20) or by adjusting in the humidity adjusting step described later.
  • the degree of drying in the drying step (S20) is the thickness (or weight per unit area) of the polyvinyl alcohol-based resin coating layer formed on the base film, in addition to the drying temperature and drying time described above, and the drying step. Therefore, a simple preliminary experiment is conducted to determine a predetermined moisture content (0.3% by mass to 3% by mass, preferably 0.35% by mass to 1%). .8 mass% or less) and the conditions may be adjusted. In some cases, air adjusted to a predetermined water vapor pressure can be introduced into the drying furnace. In this way, the laminated film dried to a predetermined moisture content is preferably subjected to the stretching step (S30) while maintaining the moisture content, but is adjusted to the predetermined moisture content in the humidity conditioning step described later. Then, it can also be attached to the stretching step (S30).
  • the moisture content of a laminated film (or coating film) is a value calculated as follows. First, it samples from a laminated film (or coating film), calculates
  • the moisture content of the polyvinyl alcohol-based resin layer is a value calculated as follows. First, the laminated film is sampled, the mass (A) of the measurement sample is obtained, and then the measurement sample is put into an oven at 105 ° C. for 1 hour. And the mass (B) of the measurement sample after taking out from oven is calculated
  • uniaxial stretching is preferably performed so that the stretching ratio is preferably more than 5 times and not more than 17 times. More preferably, it is uniaxially stretched so that the stretch ratio is more than 5 times and not more than 8 times.
  • the draw ratio is 5 times or less, the polyvinyl alcohol-based resin layer is not sufficiently oriented, and as a result, the degree of polarization of the polarizer layer may not be sufficiently high.
  • the draw ratio exceeds 17 times, the laminated film is easily broken during stretching, and at the same time, the thickness of the stretched laminated film after stretching becomes unnecessarily thin, and the workability and handling properties in the subsequent process are reduced. There is a risk.
  • the stretching process in the stretching step (S30) is not limited to one-stage stretching, and can be performed in multiple stages. In the case of performing in multiple stages, the stretching process is performed so that the stretching ratio is more than 5 times by combining all stages of the stretching process.
  • a longitudinal stretching process performed in the longitudinal direction of the laminated film a lateral stretching process stretching in the width direction, and the like can be performed.
  • the longitudinal stretching method include an inter-roll stretching method and a compression stretching method
  • examples of the transverse stretching method include a tenter method.
  • the stretching treatment in the present invention is preferably performed using a dry stretching method.
  • a thinner polyvinyl alcohol resin film (polyvinyl alcohol resin layer) than before can be stretched at a high magnification without breaking. This is because the obtained polarizer layer and further the polarizing plate can be made thinner.
  • a humidity control step for adjusting the humidity so that the moisture content of the laminated film is 0.3% by mass or more and 3% by mass or less, preferably 0.35% by mass or more and 1.8% by mass or less. Furthermore, you may have.
  • the laminated film conditioned in the humidity adjustment step is subjected to the stretching step (S30) while maintaining a moisture content of 0.3% by mass to 3% by mass.
  • Humidity adjustment in the humidity control step may be performed by, for example, a method of placing a laminated film in a room adjusted to an appropriate humidity and temperature, or a method of passing the laminated film through a humidity adjusting furnace adjusted to an appropriate humidity and temperature. .
  • the moisture content can be increased (humidified) or the moisture content can be decreased (dried) according to the state of the previous laminated film, and the moisture content itself is not changed.
  • the polyvinyl alcohol resin layer may be homogenized.
  • the polyvinyl alcohol resin layer of the laminated film is dyed with a dichroic dye.
  • a dichroic dye As described above, iodine or an organic dye is used as the dichroic dye.
  • the dyeing step is performed, for example, by immersing the entire stretched laminated film in a solution containing the dichroic dye (dyeing solution).
  • a solution containing the dichroic dye a solution in which the above dichroic dye is dissolved in a solvent can be used.
  • a solvent for the dyeing solution water is generally used, but an organic solvent compatible with water may be further added.
  • the concentration of the dichroic dye is preferably 0.01 to 10% by weight, more preferably 0.02 to 7% by weight, and particularly preferably 0.025 to 5% by weight.
  • iodine When iodine is used as the dichroic dye, it is preferable to further add an iodide because the dyeing efficiency can be further improved.
  • the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and iodide.
  • examples include titanium.
  • the addition ratio of these iodides is preferably 0.01 to 20% by weight in the dyeing solution.
  • the ratio of iodine to potassium iodide is preferably in the range of 1: 5 to 1: 100, more preferably in the range of 1: 6 to 1:80 by weight. , Particularly preferably in the range of 1: 7 to 1:70.
  • the immersion time of the stretched laminated film in the dyeing solution is not particularly limited, but is usually preferably in the range of 15 seconds to 15 minutes, and more preferably 1 minute to 3 minutes.
  • the temperature of the dyeing solution is preferably in the range of 10 to 60 ° C., more preferably in the range of 20 to 40 ° C.
  • a crosslinking treatment can be performed after dyeing.
  • the crosslinking treatment is performed, for example, by immersing the laminated film in a solution containing a crosslinking agent (crosslinking solution).
  • crosslinking solution Conventionally known substances can be used as the crosslinking agent. Examples thereof include boron compounds such as boric acid and borax, glyoxal, and glutaraldehyde. One kind of these may be used, or two or more kinds may be used in combination.
  • crosslinking solution a solution in which a crosslinking agent is dissolved in a solvent can be used.
  • solvent for example, water can be used, but an organic solvent compatible with water may be further included.
  • concentration of the crosslinking agent in the crosslinking solution is not limited to this, but is preferably in the range of 1 to 20% by weight, and more preferably 6 to 15% by weight.
  • An iodide may be added to the crosslinking solution.
  • the in-plane polarization characteristics of the polyvinyl alcohol-based resin layer can be made more uniform.
  • the iodide include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Is mentioned.
  • the iodide content is 0.05 to 15% by weight, more preferably 0.5 to 8% by weight.
  • the immersion time of the stretched laminated film in the crosslinking solution is usually preferably from 15 seconds to 20 minutes, and more preferably from 30 seconds to 15 minutes.
  • the temperature of the crosslinking solution is preferably in the range of 10 to 80 ° C.
  • a polyvinyl alcohol-type resin layer will have a function as a polarizer layer, and a light-polarizing laminated film is obtained.
  • a water washing treatment can be performed.
  • the water washing treatment can usually be performed by immersing the stretched film in pure water such as ion exchange water or distilled water.
  • the water washing temperature is usually in the range of 3 to 50 ° C., preferably 4 to 20 ° C.
  • the immersion time is usually 2 to 300 seconds, preferably 3 to 240 seconds.
  • washing treatment with an iodide solution and water washing treatment may be combined, and a solution in which liquid alcohol such as methanol, ethanol, isopropyl alcohol, butanol, propanol or the like is appropriately blended may be used.
  • liquid alcohol such as methanol, ethanol, isopropyl alcohol, butanol, propanol or the like.
  • drying preferably includes a drying step at a temperature of 60 ° C. or higher, and more preferably includes a drying step at a temperature of 70 ° C. or higher.
  • a multi-step drying process with different temperatures may be included. In that case, any drying process should just be 60 degreeC or more among multistage drying processes.
  • the hot air circulation method such as the air volume and direction may be optimized, or an IR heater that can apply heat locally may be added. These aids further improve the efficiency of drying and contribute to productivity improvement.
  • the upper limit of the drying temperature is preferably lower than the boiling point of water, and preferably less than 100 ° C. Furthermore, it is preferably 95 ° C. or lower, and most preferably 90 ° C. or lower.
  • a protective film is bonded to the surface opposite to the base film of the polarizer layer in the polarizing laminated film that has undergone the above-described process to obtain a multilayer film.
  • a method of bonding a polarizer layer and a protective film the method of bonding a polarizer layer and a protective film through an adhesive layer or an adhesive layer is mentioned.
  • Materials suitable as the protective film are as described in the description of the constituent elements of the polarizing plate.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is usually a composition in which an acrylic resin, a styrene resin, a silicone resin, or the like is used as a base polymer and a crosslinking agent such as an isocyanate compound, an epoxy compound, or an aziridine compound is added thereto. Become. Furthermore, a pressure-sensitive adhesive layer exhibiting light scattering properties can be formed by mixing fine particles in the pressure-sensitive adhesive.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 to 40 ⁇ m, but it is preferably applied thinly, and more preferably 3 to 25 ⁇ m, as long as the processability and durability characteristics are not impaired. When the thickness is 3 to 25 ⁇ m, it has good processability and is also suitable for suppressing the dimensional change of the polarizing film. When the pressure-sensitive adhesive layer is less than 1 ⁇ m, the tackiness is lowered, and when it exceeds 40 ⁇ m, problems such as the pressure-sensitive adhesive protruding easily occur.
  • the method of forming the pressure-sensitive adhesive layer on the protective film or the polarizer is not particularly limited, and a solution containing each component including the above-mentioned base polymer is applied to the protective film surface or the polarizer layer surface, After forming the pressure-sensitive adhesive layer by drying, it may be bonded to a separator or other types of film, or after forming the pressure-sensitive adhesive layer on the separator, it is laminated on the protective film surface or the polarizer layer surface. Also good. Further, when forming the pressure-sensitive adhesive layer on the surface of the protective film or the polarizer layer, if necessary, the protective film or the polarizer layer surface, or one or both of the pressure-sensitive adhesive layers may be subjected to an adhesion treatment such as corona treatment. Good.
  • Adhesive layer examples of the adhesive constituting the adhesive layer include a water-based adhesive using a polyvinyl alcohol-based resin aqueous solution, a water-based two-component urethane-based emulsion adhesive, and the like. Among these, a polyvinyl alcohol resin aqueous solution is preferably used.
  • Polyvinyl alcohol resins used as adhesives include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, as well as other single quantities copolymerizable with vinyl acetate.
  • vinyl alcohol copolymers obtained by saponifying the copolymer with the polymer and modified polyvinyl alcohol polymers obtained by partially modifying the hydroxyl groups.
  • a polyhydric aldehyde, a water-soluble epoxy compound, a melamine compound, a zirconia compound, a zinc compound, or the like may be added as an additive to the water-based adhesive.
  • the adhesive layer obtained therefrom is usually much thinner than 1 ⁇ m, and even when the cross section is observed with a normal optical microscope, the adhesive layer is practically not observed.
  • the method of laminating the film using the water-based adhesive is not particularly limited, and the adhesive is evenly applied or poured on the surface of the film, and the other film is laminated on the coated surface and laminated with a roll or the like. And a drying method.
  • the adhesive is applied at a temperature of 15 to 40 ° C., and the laminating temperature is usually in the range of 15 to 30 ° C.
  • the film When using a water-based adhesive, the film is pasted and dried to remove water contained in the water-based adhesive.
  • the temperature of the drying furnace is preferably 30 ° C to 90 ° C. If it is less than 30 ° C., the adhesive surface tends to be peeled off. If it is 90 ° C. or higher, the optical performance of a polarizer or the like may be deteriorated by heat.
  • the drying time can be 10 to 1000 seconds.
  • the temperature at the time of curing is generally set lower than the temperature adopted at the time of drying.
  • a photo-curable adhesive can be used as the non-aqueous adhesive.
  • the photocurable adhesive include a mixture of a photocurable epoxy resin and a photocationic polymerization initiator.
  • a conventionally known method can be used as a method of laminating a film with a photocurable adhesive.
  • a conventionally known method can be used.
  • casting method Mayer bar coating method, gravure coating method, comma coater method, doctor blade method, die coating method
  • the method include applying an adhesive to the adhesive surface of the film by a dip coating method, a spraying method, and the like, and superimposing two films.
  • the casting method is a method in which two films as an object to be coated are moved in a substantially vertical direction, generally in a horizontal direction, or in an oblique direction between the two, and an adhesive is allowed to flow down and spread on the surface. is there.
  • the two films are bonded together by being sandwiched between nip rolls.
  • the method of pressing this laminated body with a roll etc. and spreading it uniformly can also be used suitably.
  • a metal, rubber, or the like can be used as the material of the roll.
  • a method in which this laminate is passed between rolls and pressed to spread is preferably employed. In this case, these rolls may be made of the same material or different materials.
  • the thickness of the adhesive layer after being bonded using the nip roll or the like before drying or curing is preferably 5 ⁇ m or less and 0.01 ⁇ m or more.
  • the surface of the film may be appropriately subjected to surface treatment such as plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, saponification treatment.
  • surface treatment such as plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, saponification treatment.
  • saponification treatment include a method of immersing in an aqueous alkali solution such as sodium hydroxide or potassium hydroxide.
  • the photocurable adhesive is cured by irradiating active energy rays after the films are laminated.
  • the light source of the active energy ray is not particularly limited, but an active energy ray having a light emission distribution at a wavelength of 400 nm or less is preferable.
  • the low-pressure mercury lamp, the medium-pressure mercury lamp, the high-pressure mercury lamp, the ultrahigh-pressure mercury lamp, the chemical lamp, and the black light lamp A microwave excitation mercury lamp, a metal halide lamp and the like are preferably used.
  • the light irradiation intensity to the photocurable adhesive is appropriately determined depending on the composition of the photocurable adhesive and is not particularly limited, but the irradiation intensity in the wavelength region effective for activating the polymerization initiator is 0.1 to 6000 mW / it is preferable that the cm 2.
  • the irradiation intensity is 0.1 mW / cm 2 or more, the reaction time does not become too long, and when it is 6000 mW / cm 2 or less, the epoxy is generated by the heat radiated from the light source and the heat generated when the photo-curable adhesive is cured. There is little risk of yellowing of the resin or deterioration of the polarizing film.
  • the light irradiation time to the photocurable adhesive is not particularly limited and is applied according to the photocurable adhesive to be cured, but the integrated light amount expressed as the product of the irradiation intensity and the irradiation time. Is preferably set to be 10 to 10,000 mJ / cm 2 . When the cumulative amount of light to the photocurable adhesive is 10 mJ / cm 2 or more, a sufficient amount of active species derived from the polymerization initiator can be generated to allow the curing reaction to proceed more reliably, and at 10,000 mJ / cm 2 or less. In some cases, irradiation time does not become too long and good productivity can be maintained.
  • the thickness of the adhesive layer after irradiation with active energy rays is usually about 0.001 to 5 ⁇ m, preferably 0.01 ⁇ m or more and 2 ⁇ m or less, more preferably 0.01 ⁇ m or more and 1 ⁇ m or less. .
  • the bonding step (S50) for bonding the polarizer layer and the protective film when a solution containing a solvent is used to form the adhesive layer or the pressure-sensitive adhesive layer, the multilayer film is dried.
  • the purpose of such drying is mainly to dry the adhesive layer or the pressure-sensitive adhesive layer, and the drying conditions and the like may be substantially the same as the drying after the washing step described above.
  • an aqueous polyvinyl alcohol resin solution or the like it is preferable to perform drying at a temperature of 60 ° C. or higher.
  • a peeling process (S60) which peels a base film from a multilayer film and obtains a polarizing plate provided with a polarizer layer and a protective film is performed after a pasting process (S50).
  • the method of peeling a base film from a multilayer film is not specifically limited, The method similar to the peeling film peeling process performed with a normal polarizing plate with an adhesive can be employ
  • the polarizing plate obtained by the present invention can be used as a polarizing plate in which other optical layers are laminated in practical use. Moreover, the said protective film may have a function of these optical layers.
  • optical layers examples include a reflective polarizing film that transmits certain types of polarized light and reflects polarized light that exhibits the opposite properties, a film with an antiglare function having an uneven shape on the surface, and a surface antireflection function.
  • examples thereof include an attached film, a reflective film having a reflective function on the surface, a transflective film having both a reflective function and a transmissive function, and a viewing angle compensation film.
  • the viewing angle compensation film examples include an optical compensation film coated with a liquid crystal compound on the surface of the substrate and oriented, a retardation film made of a polycarbonate resin, and a retardation film made of a cyclic polyolefin resin.
  • WV film manufactured by FUJIFILM Corporation
  • NH film manufactured by JX Nippon Mining & Energy Corporation
  • NV film manufactured by JX Nippon Mining & Energy Corporation
  • Commercial products corresponding to retardation films made of cyclic polyolefin resins include Arton (registered trademark) film (manufactured by JSR Corporation), Essina (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), Zeonor ( Registered trademark) film (manufactured by Nippon Zeon Co., Ltd.).
  • FIG. 2 is a flowchart showing a method for producing the polarizing laminated film and the polarizing plate of the second embodiment.
  • the manufacturing method of the light-polarizing laminated film of the second embodiment is as follows.
  • a second coating step (S12) for obtaining a double-sided coated film by coating an aqueous solution of a polyvinyl alcohol-based resin on the other surface of the substrate film;
  • the peeling process (S60) which peels the said base film from the said multilayer film and obtains the polarizing plate provided with the said polarizer layer and the said transparent protective film is included in this order.
  • two polarizer layers can be formed simultaneously by forming a polyvinyl alcohol-based resin layer on both sides of the base film.
  • the first coating step (S11) is the same step as the coating step (S10) in FIG.
  • the first drying step (S21) is performed such that the moisture content of the laminated film after drying is 0.3% by mass or more and 3% by mass or less, preferably 0.35% by mass or more and 1.8% by mass or less. It is preferable. By setting it as such a moisture content, it becomes easy to adjust the moisture content at the time of a uniaxial stretching start to a desired value in the extending process (S31) mentioned below.
  • a preferable numerical range of the average moisture content change of the coated film in the first drying step (S21), preferable drying conditions, and the like are as described in the drying step (S20) in the first embodiment.
  • the surface of the substrate film is coated with a polyvinyl alcohol resin on the surface opposite to the surface coated with the polyvinyl alcohol aqueous solution in the first coating step (S11).
  • This is a step of applying an aqueous solution to obtain a double-sided coated film.
  • the coating conditions of the aqueous solution of the polyvinyl alcohol resin in the second coating step (S12) are as described in the coating step (S10) of the first embodiment.
  • the second drying step (S22) is the same step as the drying step (S20) in the first embodiment.
  • a preferable numerical range of the average moisture content change of the coated film in the second drying step (S22), preferable drying conditions, and the like are also as described in the drying step (S20) in the first embodiment.
  • Stretching step (S31) Here, the double-sided laminated film obtained in the second drying step (S22) is stretched.
  • the stretching step (S31) uniaxial stretching is started in a state where the moisture content of the double-sided laminated film is 0.5% by mass or more.
  • a polarizing laminated film or a polarizing plate provided with a polarizer layer having excellent optical performance can be produced.
  • the moisture content is adjusted by adjusting the degree of drying in the first drying step (S21) and the second drying step (S22), or by adjusting in the humidity adjustment step described later. Can do.
  • the degree of drying in the first drying step (S21) and the second drying step (S22) is the temperature and time in each step described above, as well as the polyvinyl alcohol-based resin coating layer formed on the base film. Since it also changes depending on the thickness (or weight per unit area), the moisture concentration of the atmosphere in the drying process, the water vapor pressure, the humidity, etc., a simple preliminary experiment is performed and a predetermined value is obtained after the second drying process (S22).
  • the conditions may be adjusted so that the moisture content is (0.5 mass% to 4 mass%, preferably 0.6 mass% to 2.5 mass%). In some cases, air adjusted to a predetermined water vapor pressure can be introduced into the drying furnace.
  • the laminated film dried to the predetermined moisture content in the second drying step (S22) is preferably subjected to the stretching step (S31) while maintaining the moisture content. It can also attach
  • the moisture content of the double-sided laminated film is adjusted to 0.5% by mass or more and 4% by mass or less, preferably 0.6% by mass or more and 2.5% by mass or less.
  • the double-sided laminated film conditioned in this humidity conditioning step is stretched while maintaining a moisture content of 0.5% by mass or more and 4% by mass or less, preferably 0.6% by mass or more and 2.5% by mass or less.
  • S31 About the humidity control in this humidity control process, the description similar to what was described previously in the humidity control process of 1st Embodiment is applied.
  • Example 1 As shown in the flowchart of FIG. 2, a double-sided polarizing laminate film was produced by carrying out up to the dyeing step (S40), and a polarizing plate was produced by carrying out until the peeling step (S60).
  • Polyvinyl alcohol powder (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Z-200, average polymerization degree 1100, average saponification degree 99.5 mol%) is dissolved in hot water at 95 ° C. to a concentration of 3 wt% aqueous solution.
  • the resulting aqueous solution was mixed with 1 part by weight of a crosslinking agent (trade name: Sumire's Resin 650, manufactured by Taoka Chemical Industry Co., Ltd.) with respect to 2 parts by weight of the polyvinyl alcohol powder to obtain a primer solution.
  • a crosslinking agent trade name: Sumire's Resin 650, manufactured by Taoka Chemical Industry Co., Ltd.
  • Polyvinyl alcohol powder (manufactured by Kuraray Co., Ltd., trade name: PVA124, average polymerization degree 2400, average saponification degree 98.0 to 99.0 mol%) is dissolved in 95 ° C. hot water to give a polyvinyl alcohol concentration of 8% by weight. An aqueous alcohol solution was prepared.
  • first coating process First drying process
  • first PVA layer a 11.5 ⁇ m-thick polyvinyl alcohol-based resin layer
  • Second PVA layer was formed to obtain a double-sided laminated film.
  • the stretched laminated film was stretched 5.8 times in the longitudinal direction (film transport direction) at a stretching temperature of 160 ° C. by a stretching method between nip rolls. Obtained.
  • the thickness of the first PVA layer was 5.7 ⁇ m
  • the thickness of the second PVA layer was 5.4 ⁇ m.
  • the first PVA layer is immersed in a dyeing solution at 30 ° C. containing iodine and potassium iodide so that the residence time is 180 seconds while continuously transporting the stretched laminated film obtained as described above.
  • excess dyeing solution was washed away with pure water at 10 ° C.
  • a crosslinking treatment was performed by dipping in a crosslinking solution at 76 ° C. containing boric acid and potassium iodide so that the residence time was about 600 seconds. Thereafter, the film was washed with pure water at 10 ° C. for 4 seconds and dried at 80 ° C. for 300 seconds to obtain a polarizing laminated film.
  • the mixing ratio of the dyeing solution and the crosslinking solution is ⁇ Dyeing solution> Water: 100 parts by weight Iodine: 0.6 parts by weight Potassium iodide: 10 parts by weight ⁇ Crosslinking solution> Water: 100 parts by weight Boric acid: 9.5 parts by weight Potassium iodide: 5 parts by weight
  • the polarizer layer that is not the object of measurement is peeled off and removed.
  • the optical characteristics of the evaluation sample were measured with a spectrophotometer with an integrating sphere (manufactured by JASCO Corporation, V7100). Incident light is from the glass side, MD transmittance and TD transmittance are obtained in the wavelength range of 380 nm to 780 nm, and single transmittance and polarization degree at each wavelength are calculated based on Equation (3) and Equation (4). Furthermore, the visibility correction was performed using a JIS Z 8701 two-degree field of view (C light source), and the visibility correction single transmittance (Ty) and the visibility correction polarization degree (Py) were obtained.
  • MD transmittance is the transmittance when the direction of polarized light emitted from the Glan-Thompson prism is parallel to the transmission axis of the evaluation sample, and “MD” in Equation (3) and Equation (4). It expresses.
  • the “TD transmittance” is a transmittance when the direction of polarized light emitted from the Glan-Thompson prism and the transmission axis of the evaluation sample are orthogonal to each other. In Expressions (3) and (4), “TD” is To express.
  • Adhesive solution Polyvinyl alcohol powder (manufactured by Kuraray Co., Ltd., trade name: KL-318, average polymerization degree 1800) was dissolved in 95 ° C. hot water to prepare a 3% by weight polyvinyl alcohol aqueous solution. The resulting aqueous solution was mixed with 1 part by weight of a crosslinking agent (trade name: Sumire's Resin 650, manufactured by Taoka Chemical Industry Co., Ltd.) with respect to 2 parts by weight of polyvinyl alcohol powder to obtain an adhesive solution.
  • a crosslinking agent trade name: Sumire's Resin 650, manufactured by Taoka Chemical Industry Co., Ltd.
  • the multilayer film is peeled off between the base film and the primer layer to form two laminates of KC4UY / first polarizer layer / primer layer / base film and primer layer / second polarizer layer / KC4UY,
  • the base film was peeled and removed (peeling step).
  • a 23 ⁇ m-thick cyclic polyolefin resin film (manufactured by Nippon Zeon Co., Ltd., trade name: ZF-14) is bonded on the primer layer of each laminate through an adhesive layer, and KC4UY / polarizer layer
  • Two polarizing plates comprising / primer layer / adhesive layer / ZF-14 were obtained. There was no failure such as breakage in the peeling process.
  • Example 2 The drying conditions in the first drying step and the second drying step are changed to 90 ° C. for 3 minutes, and the thickness of the first PVA layer after the first drying step is 9.2 ⁇ m, the second drying step A polarizing laminated film and a polarizing plate were produced in the same manner as in Example 1 except that the thickness of the subsequent second PVA layer was 9.4 ⁇ m. There was no failure such as breakage in the peeling process.
  • Example 3 The drying conditions in the first drying step and the second drying step are both changed to 90 ° C. for 2 minutes and then at 80 ° C. for 1.5 minutes for a total of 3.5 minutes. Further, the first drying step Polarizing properties in the same manner as in Example 1 except that the thickness of the later first PVA layer was 9.3 ⁇ m and the thickness of the second PVA layer after the second drying step was 9.2 ⁇ m. A laminated film and a polarizing plate were produced. There was no failure such as breakage in the peeling process.
  • Example 4 The drying conditions in the first drying step and the second drying step are both changed at 75 ° C. for 2 minutes and then at 80 ° C. for 2 minutes, for a total of 4 minutes, and further after the first drying step
  • the polarizing laminated film and the polarizing film were the same as in Example 1 except that the thickness of the PVA layer was 9.0 ⁇ m and the thickness of the second PVA layer after the second drying step was 9.1 ⁇ m. A plate was made. There was no failure such as breakage in the peeling process.
  • Example 5 As shown in the flowchart of FIG. 1, a single-sided polarizing laminate film was produced by carrying out up to the dyeing step (S40), and a polarizing plate was produced by carrying out until the peeling step (S60). The same base film, primer solution and polyvinyl alcohol aqueous solution as in Examples 1 to 4 were used.
  • Second coating process First drying process
  • the substrate film is continuously conveyed, one surface thereof is subjected to corona treatment, and then the primer solution is continuously applied to the corona-treated surface using a small-diameter gravure coater, at 60 ° C. for 3 minutes.
  • a primer layer having a thickness of 0.2 ⁇ m was formed.
  • the polyvinyl alcohol aqueous solution was continuously applied onto the primer layer using a comma coater while transporting the film (first coating step), followed by 1 minute at 80 ° C. for 2 minutes at 90 ° C.
  • first PVA layer having a thickness of 9.2 ⁇ m was formed on the primer layer to obtain a one-area layer film.
  • Example 2 While continuously transporting the obtained single-sided polarizing laminate film, the same adhesive solution as in Example 1 was applied on the polarizer (first polarizer layer), and then the saponification treatment was performed on the coated surface.
  • a 40 ⁇ m thick protective film (Konica Minolta Co., Ltd., trade name: KC4UY, transparent protective film made of triacetyl cellulose (TAC)) is pasted and crimped by passing between a pair of pasting rolls. And the multilayer film which consists of KC4UY / 1st polarizer layer / primer layer / base film was obtained (bonding process).
  • the base film was peeled and removed from the base film and the primer layer from the multilayer film to obtain a laminate composed of KC4UY / first polarizer layer / primer layer (peeling step).
  • a cyclic polyolefin resin film (made by Nippon Zeon Co., Ltd., trade name: ZF-14) having a thickness of 23 ⁇ m was bonded onto the primer layer of the obtained laminate through an adhesive layer, and KC4UY / 1st
  • a polarizing plate comprising a polarizer layer / primer layer / adhesive layer / ZF-14 was obtained. There was no failure such as breakage in the peeling process.
  • Example 6 The drying condition in the first drying step was the same as in Example 4, and the single-sided polarizing laminate film and polarizing plate were the same as in Example 5 except that the thickness of the PVA layer after the first drying step was 9.0 ⁇ m. A plate was made. In the peeling process, there was no problem such as breakage.
  • Example 1 Example 1 except that the thickness of the first PVA layer after the first drying step is 9.0 ⁇ m and the thickness of the second PVA layer after the second drying step is 8.9 ⁇ m. In the same manner, a polarizing laminated film and a polarizing plate were produced.
  • Example 2 Example 1 except that the thickness of the first PVA layer after the first drying step is 9.2 ⁇ m and the thickness of the second PVA layer after the second drying step is 9.3 ⁇ m. In the same manner, a polarizing laminated film and a polarizing plate were produced.
  • Table 1 is a table in which drying conditions and measurement results in Examples 1 to 6 and Comparative Examples 1 and 2 are described.
  • Comparative Examples 1 and 2 As shown in Table 1, in Comparative Examples 1 and 2, the moisture content of the laminated film in the state subjected to the stretching process is less than 0.5% by mass, and the moisture content after the first drying process is 0. It was less than 3% by mass.
  • the polarizing laminated films of Comparative Examples 1 and 2 had a low visibility correction polarization degree Py as compared with the polarizing laminated films of Examples 1 to 6.
  • An acrylic pressure-sensitive adhesive layer is provided on the KC4UY surface of the polarizing plate made of KC4UY / polarizer layer / primer layer / adhesive layer / ZF-14 produced in Examples 1 to 6, and the adhesive layer is attached to the glass through the pressure-sensitive adhesive layer.
  • the combined sample was used as an evaluation sample, and the following heat and heat resistance test and heat resistance test were performed. As a result, all the evaluation samples had a ⁇ Py in the wet heat resistance test of around 0.001% and a ⁇ Py in the heat resistance test of around 0.005%, which was a satisfactory level.
  • the polarizing plates produced in Comparative Examples 1 and 2 were evaluated in the same manner. As a result, ⁇ Py was larger than the evaluation samples of Examples 1 to 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明の偏光性積層フィルムの製造方法は、基材フィルムに、ポリビニルアルコール系樹脂の水溶液を塗工して塗工フィルムを得る塗工工程(S10)と、塗工フィルムを乾燥させて基材フィルムにポリビニルアルコール系樹脂層が形成された積層フィルムを得る乾燥工程(S20)と、積層フィルムを一軸延伸して延伸積層フィルムを得る延伸工程(S30)と、ポリビニルアルコール系樹脂層を染色して偏光子層とし、偏光性積層フィルムを得る染色工程(S40)とをこの順に含み、延伸工程(S40)は、積層フィルムの水分率が0.3質量%以上の状態で前記一軸延伸を開始する。

Description

偏光性積層フィルムまたは偏光板の製造方法
 本発明は、偏光性積層フィルムまたは偏光板の製造方法に関する。
 偏光板は、液晶表示装置などの表示装置における偏光の供給素子等として広く用いられている。かかる偏光板として、従来ポリビニルアルコール系樹脂からなる偏光フィルム(偏光子層)にトリアセチルセルロースからなる保護フィルムを接着したものが使用されているが、近年、液晶表示装置のノート型パーソナルコンピュータや携帯電話などモバイル機器への展開などに伴い、薄肉軽量化が求められている。
 従来は、ポリビニルアルコール系樹脂からなるフィルムを単独で延伸してから、あるいは延伸しながら、染色処理や架橋処理を施して偏光フィルムを作製し、これを保護フィルム等に積層することで偏光板を製造していたが、偏光フィルム単独での限界の厚さまでしか薄型化することができなかった。一方で、基材フィルムの表面に偏光子層となるポリビニルアルコール系樹脂層を設けた後、基材フィルムごとポリビニルアルコール系樹脂層を延伸し、染色・架橋工程およびその後の乾燥工程を経てポリビニルアルコール系樹脂層を偏光子層とすることで、基材フィルムと偏光子層との合計の厚さを限界まで薄くすることができ、偏光子層(偏光フィルム)としての厚さを従来よりも薄くできる方法が知られている(例えば、特許文献1参照)。
特開2009-93074号公報
 本発明は、基材フィルムの表面にポリビニルアルコール系樹脂層を設けた後、基材フィルムごとポリビニルアルコール系樹脂層を延伸し、染色・架橋工程およびその後の乾燥工程を経てポリビニルアルコール系樹脂層を偏光子層とすることで、薄い偏光子層を備えた偏光性積層フィルムを製造することができる製造方法において、優れた光学性能を有する偏光子層を備えた偏光性積層フィルムを製造する方法を提供することを目的とする。
 本発明は、下記のものを含む。
 [1] 基材フィルムに、ポリビニルアルコール系樹脂の水溶液を塗工して塗工フィルムを得る塗工工程と、前記塗工フィルムを乾燥させて基材フィルムにポリビニルアルコール系樹脂層が形成された積層フィルムを得る乾燥工程と、前記積層フィルムを一軸延伸して延伸積層フィルムを得る延伸工程と、前記ポリビニルアルコール系樹脂層を染色して偏光子層とし、偏光性積層フィルムを得る染色工程とをこの順に含み、前記延伸工程は、前記積層フィルムの水分率が0.3質量%以上の状態で前記一軸延伸を開始する、偏光性積層フィルムの製造方法。
 [2] 前記乾燥工程は、前記塗工フィルムの平均水分率変化が5~65質量%/分となるように行なわれる、[1]に記載の偏光性積層フィルムの製造方法。
 [3] 前記乾燥工程の後に、前記積層フィルムの水分率が0.3質量%以上となるように調湿する調湿工程を含み、当該調湿工程で調湿された前記積層フィルムを、その水分率を保ったまま前記延伸工程に供する、[1]または[2]に記載の偏光性積層フィルムの製造方法。
 [4] 基材フィルムの一方の面に、ポリビニルアルコール系樹脂の水溶液を塗工して塗工フィルムを得る第1の塗工工程と、前記塗工フィルムを乾燥させて基材フィルムの一方の面にポリビニルアルコール系樹脂層が形成された積層フィルムを得る第1の乾燥工程と、前記基材フィルムの他方の面に、ポリビニルアルコール系樹脂の水溶液を塗工して両面塗工フィルムを得る第2の塗工工程と、前記両面塗工フィルムを乾燥させて基材フィルムの両面にポリビニルアルコール系樹脂層が形成された両面積層フィルムを得る第2の乾燥工程と、前記両面積層フィルムを一軸延伸し延伸積層フィルムを得る延伸工程と、前記ポリビニルアルコール系樹脂層を染色して偏光子層とし、偏光性積層フィルムを得る染色工程とをこの順に含み、前記延伸工程は、前記両面積層フィルムの水分率が0.5質量%以上の状態で前記一軸延伸を開始する、偏光性積層フィルムの製造方法。
 [5] 前記第1の乾燥工程は、乾燥後の前記積層フィルムの水分率が0.3質量%以上となるように行なわれる、[4]に記載の偏光性積層フィルムの製造方法。
 [6] 前記第1の乾燥工程および前記第2の乾燥工程は、前記塗工フィルムの平均水分率変化および前記両面塗工フィルムの平均水分率変化がそれぞれ5~65質量%/分となるように行なわれる、[4]または[5]に記載の偏光性積層フィルムの製造方法。
 [7] 前記第2の乾燥工程の後に、前記両面積層フィルムの水分率が0.5質量%以上となるように調湿する調湿工程を含み、当該調湿工程で調湿された前記両面積層フィルムを、その水分率を保ったまま前記延伸工程に供する、[4]~[6]のいずれかに記載の偏光性積層フィルムの製造方法。
 [8] [1]~[7]のいずれか記載の製造方法により偏光性積層フィルムを製造する工程と、前記偏光性積層フィルムにおける前記偏光子層の前記基材フィルムとは反対側の表面に保護フィルムを貼合して多層フィルムを得る貼合工程と、前記多層フィルムから前記基材フィルムを剥離して、前記偏光子層と前記保護フィルムとを備える偏光板を得る剥離工程とを含む、偏光板の製造方法。
 本発明においては、延伸工程に供される積層フィルムの水分率の値を制御することにより、優れた光学性能を有する偏光子層を備えた偏光性積層フィルムを得ることができる。
第1の実施形態の偏光性積層フィルムおよび偏光板の製造方法を示すフローチャートである。 第2の実施形態の偏光性積層フィルムおよび偏光板の製造方法を示すフローチャートである。
 本明細書においては、基材フィルムにポリビニルアルコール系樹脂層(ポリビニルアルコール系樹脂からなる層)を備えた積層体を「積層フィルム」といい、基材フィルムの両方の面にポリビニルアルコール系樹脂層を備えた積層フィルムを「両面積層フィルム」という。
 また、偏光子としての機能を有するポリビニルアルコール系樹脂層を「偏光子層」といい、基材フィルムに偏光子層を備えた積層体を「偏光性積層フィルム」といい、偏光子層の少なくとも一方の面に保護フィルムを備えた積層体を「偏光板」という。以下、偏光性積層フィルムおよび偏光板の各構成要素についてまず説明し、その後それらの製造方法の説明へと進んでいく。
 <偏光性積層フィルムおよび偏光板>
 [基材フィルム]
 基材フィルムに用いる樹脂としては、例えば、透明性、機械的強度、熱安定性、延伸性などに優れる熱可塑性樹脂が用いられ、それらのガラス転移温度(Tg)または融点(Tm)に応じて適切な樹脂を選択できる。熱可塑性樹脂の具体例としては、ポリオレフィン系樹脂、ポリエステル系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂)、(メタ)アクリル系樹脂、セルロースエステル系樹脂、ポリカーボネート系樹脂、ポリビニルアルコール系樹脂、酢酸ビニル系樹脂、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、およびこれらの混合物、共重合物などが挙げられる。
 基材フィルムは、上述の樹脂1種類のみからなるフィルムであっても構わないし、樹脂2種類以上をブレンドしてなるフィルムであっても構わない。該基材フィルムは、単層フィルムであってもよく、多層フィルムであってもよい。
 ポリオレフィン系樹脂としては、ポリエチレン、ポリプロピレンなどが挙げられ、安定的に高倍率に延伸しやすく好ましい。また、プロピレンにエチレンを共重合することで得られるプロピレン-エチレン共重合体なども用いることができる。共重合はエチレン以外のモノマーでも可能であり、プロピレンに共重合可能な他種のモノマーとしては、たとえば、α-オレフィンを挙げることができる。α-オレフィンとしては、炭素数4以上のα-オレフィンが好ましく用いられ、より好ましくは、炭素数4~10のα-オレフィンである。炭素数4~10のα-オレフィンの具体例を挙げれば、たとえば、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン等の直鎖状モノオレフィン類;3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン等の分岐状モノオレフィン類;ビニルシクロヘキサンなどである。プロピレンとこれに共重合可能な他のモノマーとの共重合体は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。共重合体中の当該他のモノマー由来の構成単位の含有率は、「高分子分析ハンドブック」(1995年、紀伊国屋書店発行)の第616頁に記載されている方法に従い、赤外線(IR)スペクトル測定を行なうことにより求めることができる。
 上記のなかでも、プロピレン系樹脂フィルムを構成するプロピレン系樹脂として、プロピレンの単独重合体、プロピレン-エチレンランダム共重合体、プロピレン-1-ブテンランダム共重合体、および、プロピレン-エチレン-1-ブテンランダム共重合体が好ましく用いられる。
 また、プロピレン系樹脂フィルムを構成するプロピレン系樹脂の立体規則性は、実質的にアイソタクチックまたはシンジオタクチックであることが好ましい。実質的にアイソタクチックまたはシンジオタクチックの立体規則性を有するプロピレン系樹脂からなるプロピレン系樹脂フィルムは、その取扱い性が比較的良好であるとともに、高温環境下における機械的強度に優れている。
 ポリエステル系樹脂は、エステル結合を有するポリマーであり、主に、多価カルボン酸と多価アルコールの重縮合体である。用いられる多価カルボン酸は、主にジカルボン酸、すなわち2価のカルボン酸、またはその低級アルキルエステルであり、たとえば、テレフタル酸、イソフタル酸、テレフタル酸ジメチル、ナフタレンジカルボン酸ジメチルなどがある。また、用いられる多価アルコールも、主にジオール、すなわち2価のアルコールであり、プロパンジオール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノールなどが挙げられる。具体的な樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリシクロへキサンジメチルテレフタレート、ポリシクロヘキサンジメチルナフタレート、などが挙げられる。これらのブレンド樹脂や、共重合体も好適に用いることができる。
 環状ポリオレフィン系樹脂としては、好ましくはノルボルネン系樹脂が用いられる。環状ポリオレフィン系樹脂は、環状オレフィンを重合単位として重合される樹脂の総称であり、たとえば、特開平1-240517号公報、特開平3-14882号公報、特開平3-122137号公報等に記載されている樹脂が挙げられる。具体例としては、環状オレフィンの開環(共)重合体、環状オレフィンの付加重合体、環状オレフィンとエチレン、プロピレン等のα-オレフィンとの共重合体(代表的にはランダム共重合体)、およびこれらを不飽和カルボン酸やその誘導体で変性したグラフト重合体、ならびにそれらの水素化物などが挙げられる。環状オレフィンの具体例としては、ノルボルネン系モノマーが挙げられる。
 環状ポリオレフィン系樹脂としては種々の製品が市販されている。具体例としては、TOPAS(登録商標)(Topas Advanced Plymers GmbH製)、アートン(登録商標)(JSR(株)製)、ゼオノア(ZEONOR)(登録商標)(日本ゼオン(株)製)、ゼオネックス(ZEONEX)(登録商標)(日本ゼオン(株)製)、アペル(登録商標)(三井化学(株)製)が挙げられる。
 (メタ)アクリル系樹脂としては、任意の適切な(メタ)アクリル系樹脂を採用し得る。たとえば、ポリメタクリル酸メチルなどのポリメタクリル酸エステル、メタクリル酸メチル-(メタ)アクリル酸共重合体、メタクリル酸メチル-(メタ)アクリル酸エステル共重合体、メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体、メタクリル酸メチル-スチレン共重合体(MS樹脂など)、脂環族炭化水素基を有する重合体(たとえば、メタクリル酸メチル-(メタ)アクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体など)が挙げられる。好ましくは、ポリメタクリル酸メチルなど、メタクリル酸のC-Cアルキルエステルを主成分とする重合体が挙げられる。(メタ)アクリル系樹脂として、より好ましくは、メタクリル酸メチルを主成分(50~100重量%、好ましくは70~100重量%)とするメタクリル酸メチル系樹脂が用いられる。
 セルロースエステル系樹脂は、セルロースと脂肪酸のエステルである。このようなセルロースエステル系樹脂の具体例としては、セルローストリアセテート、セルロースジアセテート、セルローストリプロピオネート、セルロースジプロピオネートなどが挙げられる。また、これらの共重合物や、水酸基の一部が他種の置換基などで修飾された物なども挙げられる。これらの中でも、セルローストリアセテートが特に好ましい。セルローストリアセテートは多くの製品が市販されており、入手容易性やコストの点でも有利である。セルローストリアセテートの市販品の例としては、フジタック(登録商標)TD80(富士フイルム(株)製)、フジタック(登録商標)TD80UF(富士フイルム(株)製)、フジタック(登録商標)TD80UZ(富士フイルム(株)製)、フジタック(登録商標)TD40UZ(富士フイルム(株)製)、KC8UX2M(コニカミノルタ(株)製)、KC4UY(コニカミノルタ(株)製)などが挙げられる。
 ポリカーボネート系樹脂は、カルボナート基を介してモノマー単位が結合されたポリマーからなるエンジニアリングプラスチックであり、高い耐衝撃性、耐熱性、難燃性を有する樹脂である。また、高い透明性を有することから光学用途でも好適に用いられる。光学用途では光弾性係数を下げるためにポリマー骨格を修飾したような変性ポリカーボネートと呼ばれる樹脂や、波長依存性を改良した共重合ポリカーボネートなども市販されており、好適に用いることができる。このようなポリカーボネート樹脂は広く市販されており、たとえば、パンライト(登録商標)(帝人化成(株))、ユーピロン(登録商標)(三菱エンジニアリングプラスチック(株))、SDポリカ(登録商標)(住友ダウ(株))、カリバー(登録商標)(ダウケミカル(株))などが挙げられる。
 基材フィルムには、上記の熱可塑性樹脂の他に、任意の適切な添加剤が添加されていてもよい。このような添加剤としては、たとえば、紫外線吸収剤、酸化防止剤、滑剤、可塑剤、離型剤、着色防止剤、難燃剤、核剤、帯電防止剤、顔料、および着色剤などが挙げられる。基材フィルム中の上記にて例示した熱可塑性樹脂の含有量は、好ましくは50~100重量%、より好ましくは50~99重量%、さらに好ましくは60~98重量%、特に好ましくは70~97重量%である。基材フィルム中の熱可塑性樹脂の含有量が50重量%未満の場合、熱可塑性樹脂が本来有する高透明性等が十分に発現されないおそれがあるからである。
 延伸前の基材フィルムの厚さは、適宜に決定しうるが、強度や取扱性等の作業性の点から、また本発明においては基材フィルムにポリビニルアルコール系樹脂層が形成された積層フィルムの水分率を調整する点から、基材フィルムの厚みは、50~200μmであることが好ましく、70~130μmであることがさらに好ましい。また、基材フィルムは後述する乾燥工程、延伸工程の温度範囲より、その融点またはガラス転移温度が高い値であることが好ましい。そのような基材フィルムを用いることにより、乾燥工程、延伸工程で基材が柔らかくなりすぎることを防ぎポリビニルアルコール系樹脂層の面内の膜厚分布が悪化するのを避けることができる。
 基材フィルムは、ポリビニルアルコール系樹脂層との密着性を向上させるために、少なくともポリビニルアルコール系樹脂層が形成される側の表面に、コロナ処理、プラズマ処理、火炎処理等を行ってもよい。また密着性を向上させるために、基材フィルムのポリビニルアルコール系樹脂層が形成される側の表面に、プライマー層、接着剤層等の薄層を形成してもよい。
 (プライマー層)
 基材フィルムの偏光子層が形成される側の表面にプライマー層が形成される場合、プライマー層としては、基材フィルムとポリビニルアルコール系樹脂層との両方にある程度強い密着力を発揮する材料であれば特に限定されない。たとえば、透明性、熱安定性、延伸性などに優れる熱可塑性樹脂が用いられる。具体的には、アクリル系樹脂、ポリビニルアルコール系樹脂が挙げられるが、これらに限定されるものではない。中でも、密着性がよいポリビニルアルコール系樹脂は好ましく用いられる。
 プライマー層として使用されるポリビニルアルコール系樹脂としては、たとえば、ポリビニルアルコール樹脂およびその誘導体が挙げられる。ポリビニルアルコール樹脂の誘導体としては、ポリビニルホルマール、ポリビニルアセタールなどの他、ポリビニルアルコール樹脂をエチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸、不飽和カルボン酸のアルキルエステル、アクリルアミドなどで変性したものが挙げられる。上述のポリビニルアルコール系樹脂材料の中でも、ポリビニルアルコール樹脂を用いるのが好ましい。
 プライマー層の強度を上げるために上記の熱可塑性樹脂に架橋剤を添加してもよい。熱可塑性樹脂に添加する架橋剤は、有機系、無機系など公知のものを使用することができる。使用する熱可塑性樹脂に対して、より適切なものを適宜選択すればよい。たとえば、エポキシ系架橋剤、イソシアネート系架橋剤、ジアルデヒド系の架橋剤、金属キレート系の架橋剤などの低分子架橋剤の他にも、メチロール化メラミン樹脂、ポリアミドエポキシ樹脂などの高分子系の架橋剤なども用いることができる。熱可塑性樹脂としてポリビニルアルコール系樹脂を使用する場合は、架橋剤として、ポリアミドエポキシ樹脂、メチロール化メラミン、ジアルデヒド、金属キレート架橋剤などを用いることが特に好ましい。
 プライマー層の厚さは、好ましくは0.05~1μmであり、さらに好ましくは0.1~0.4μmである。0.05μmより薄くなると基材フィルムとポリビニルアルコール系樹脂層との密着力が低下してしまい、1μmより厚くなると、偏光板が厚くなるため好ましくない。
 [偏光子層]
 偏光子層は、具体的には、延伸したポリビニルアルコール系樹脂層に二色性色素を吸着配向させたものである。
 ポリビニルアルコール系樹脂層を構成するポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルと共重合可能な他の単量体との共重合体などが例示される。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。
 偏光子層(ポリビニルアルコール系樹脂層)を構成するポリビニルアルコール系樹脂は、完全ケン化品であることが好ましい。ケン化度の範囲は、80.0モル%~100.0モル%であるものが好ましく、90.0モル%~99.5モル%の範囲であるものがより好ましく、さらには94.0モル%~99.0モル%の範囲であるものが最も好ましい。ケン化度が80.0モル%未満であると偏光板にした後の耐水性・耐湿熱性に著しく劣る不具合がある。また、ケン化度が99.5モル%を超えるポリビニルアルコール系樹脂を使用した場合には、著しく染色速度が遅くなり、十分な偏光性能を有する偏光性積層フィルムが得られない場合があり、また製造において通常の数倍もの染色時間を要する不具合を生じる場合がある。
 ここでいうケン化度とは、ポリビニルアルコール系樹脂の原料であるポリ酢酸ビニル系樹脂に含まれる酢酸基がケン化工程により水酸基に変化した割合をユニット比(モル%)で表したものであり、下記式で定義される数値である。JIS K 6726(1994)で規定されている方法で求めることができる。
 ケン化度(モル%)=(水酸基の数)÷(水酸基の数+酢酸基の数)×100
 ケン化度が高いほど、水酸基の割合が高いことを示しており、すなわち結晶化を阻害する酢酸基の割合が低いことを示している。
 また、本発明に用いるポリビニルアルコール系樹脂は、一部が変性されている変性ポリビニルアルコールでもよい。例えば、ポリビニルアルコール系樹脂をエチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸、不飽和カルボン酸のアルキルエステル、アクリルアミドなどで変性したものなどが挙げられる。変性の割合は30モル%未満であることが好ましく、10モル%未満であることがより好ましい。30モル%を超える変性を行った場合には、二色性色素を吸着しにくくなり、偏光性能が低くなってしまう不具合を生じる。
 ポリビニルアルコール系樹脂の平均重合度も特に限定されるものではないが、100~10000が好ましく、1500~8000がより好ましく、さらには2000~5000であることが最も好ましい。ここでいう平均重合度もJIS K 6726(1994)によって定められた方法によって求められる数値である。
 このような特性を有するポリビニルアルコール系樹脂としては、例えば(株)クラレ製のPVA124(ケン化度:98.0~99.0モル%)、PVA117(ケン化度:98.0~99.0モル%)、PVA624(ケン化度:95.0~96.0モル%)およびPVA617(ケン化度:94.5~95.5モル%);例えば日本合成化学工業(株)製のAH-26(ケン化度:97.0~98.8モル%)、AH-22(ケン化度:97.5~98.5モル%)、NH-18(ケン化度:98.0~99.0モル%)、およびN-300(ケン化度:98.0~99.0モル%);例えば日本酢ビ・ポバール(株)のJC-33(ケン化度:99.0モル%以上)、JM-33(ケン化度:93.5~95.5モル%)、JM-26(ケン化度:95.5~97.5モル%)、JP-45(ケン化度:86.5~89.5モル%)、JF-17(ケン化度:98.0~99.0モル%)、JF-17L(ケン化度:98.0~99.0モル%)、および、JF-20(ケン化度:98.0~99.0モル%)などが挙げられ、本発明において好適に用いることができる。
 かかるポリビニルアルコール系樹脂を水溶液とし、これを基材フィルム上に塗工し、乾燥することで、ポリビニルアルコール系樹脂層が形成される。
 かかるポリビニルアルコール系樹脂層が、基材フィルムとともに延伸されて配向し、さらに二色性色素が吸着配向されて、偏光子層となる。延伸倍率は、好ましくは5倍超、さらに好ましくは5倍超でかつ17倍以下である。
 偏光子層の厚さ(延伸後のポリビニルアルコール系樹脂層の厚さ)は10μm以下であり、好ましくは7μm以下である。偏光子層の厚さを10μm以下とすることにより、薄型の偏光板を構成することができる。
 偏光子層に用いる二色性色素としては、たとえば、ヨウ素や有機染料などが挙げられる。有機染料としては、たとえば、レッドBR、レッドLR、レッドR、ピンクLB、ルビンBL、ボルドーGS、スカイブルーLG、レモンイエロー、ブルーBR、ブルー2R、ネイビーRY、グリーンLG、バイオレットLB、バイオレットB、ブラックH、ブラックB、ブラックGSP、イエロー3G、イエローR、オレンジLR、オレンジ3R、スカーレットGL、スカーレットKGL、コンゴーレッド、ブリリアントバイオレットBK、スプラブルーG、スプラブルーGL、スプラオレンジGL、ダイレクトスカイブルー、ダイレクトファーストオレンジS、ファーストブラックなどが使用できる。これらの二色性物質は、一種類でもよいし、二種類以上を併用してもよい。
 [保護フィルム]
 保護フィルムは、光学機能を有さない単なる保護フィルムであってもよく、位相差フィルムや輝度向上フィルムといった光学機能を併せ持つ保護フィルムであってもよい。
 保護フィルムの材料としては、特に限定されるものではないが、例えば、環状ポリオレフィン系樹脂フィルム、トリアセチルセルロース、ジアセチルセルロースのような樹脂からなる酢酸セルロース系樹脂フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートのような樹脂からなるポリエステル系樹脂フィルム、ポリカーボネート系樹脂フィルム、アクリル系樹脂フィルム、ポリプロピレン系樹脂フィルムなど、当分野において従来広く用いられてきているフィルムを挙げることができる。
 環状ポリオレフィン系樹脂としては、適宜の市販品、例えば、TOPAS(登録商標)(Topas Advanced Polymers GmbH製)、アートン(登録商標)(JSR(株)製)、ゼオノア(ZEONOR)(登録商標)(日本ゼオン(株)製)、ゼオネックス(登録商標)(ZEONEX)(日本ゼオン(株)製)、アペル(登録商標)(三井化学(株)製)を好適に用いることができる。このような環状ポリオレフィン系樹脂を製膜してフィルムとする際には、溶剤キャスト法、溶融押出法などの公知の方法が適宜用いられる。また、エスシーナ(登録商標)(積水化学工業(株)製)、SCA40(積水化学工業(株)製)、ゼオノア(登録商標)フィルム(日本ゼオン(株)製)などの予め製膜された環状ポリオレフィン系樹脂製のフィルムの市販品を用いてもよい。
 環状ポリオレフィン系樹脂フィルムは、一軸延伸又は二軸延伸されたものであってもよい。延伸することで、環状ポリオレフィン系樹脂フィルムに任意の位相差値を付与することができる。延伸は、通常、フィルムロールを巻き出しながら連続的に行われ、加熱炉にて、ロールの進行方向、その進行方向と垂直の方向、またはその両方へ延伸される。加熱炉の温度は、通常、環状ポリオレフィン系樹脂のガラス転移温度近傍からガラス転移温度+100℃までの範囲である。延伸の倍率は、一つの方向につき通常1.1~6倍、好ましくは1.1~3.5倍である。
 環状ポリオレフィン系樹脂フィルムは、一般に表面活性が劣るため、偏光フィルムと接着させる表面には、プラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理などの表面処理を行うのが好ましい。中でも、比較的容易に実施可能なプラズマ処理、コロナ処理が好適である。
 酢酸セルロース系樹脂フィルムとしては、適宜の市販品、たとえば、フジタック(登録商標)TD80(富士フイルム(株)製)、フジタック(登録商標)TD80UF(富士フイルム(株)製)、フジタック(登録商標)TD80UZ(富士フイルム(株)製)、フジタック(登録商標)TD40UZ(富士フイルム(株)製)、KC8UX2M(コニカミノルタ(株)製)、KC4UY(コニカミノルタ(株)製)を好適に用いることができる。
 酢酸セルロース系樹脂フィルムの表面には、視野角特性を改良するために液晶層などを形成してもよい。また、位相差を付与するため酢酸セルロース系樹脂フィルムを延伸させたものでもよい。酢酸セルロース系樹脂フィルムは、偏光フィルムとの接着性を高めるため、通常はケン化処理が施される。ケン化処理としては、水酸化ナトリウムや水酸化カリウムのようなアルカリの水溶液に浸漬する方法が採用できる。
 上述したような保護フィルムの表面には、ハードコート層、防眩層、反射防止層などの光学層を形成することもできる。保護フィルム表面にこれらの光学層を形成する方法はとくに限定されず、公知の方法を用いることができる。
 保護フィルムの厚さは、薄型化の要求から、できるだけ薄いものが好ましく、90μm以下が好ましく、50μm以下がより好ましい。逆に薄すぎると強度が低下して加工性に劣るため、5μm以上であることが好ましい。
 <偏光性積層フィルムおよび偏光板の製造方法>
 [第1の実施形態]
 図1は、第1の実施形態の偏光性積層フィルムおよび偏光板の製造方法を示すフローチャートである。第1の実施形態の偏光性積層フィルムの製造方法は、
 基材フィルムの一方の面に、ポリビニルアルコール系樹脂の水溶液を塗工して塗工フィルムを得る塗工工程(S10)と、
 上記塗工フィルムを乾燥させて基材フィルムにポリビニルアルコール系樹脂層が形成された積層フィルムを得る乾燥工程(S20)と、
 上記積層フィルムを一軸延伸して延伸積層フィルムを得る延伸工程(S30)と、
 上記ポリビニルアルコール系樹脂層を染色して偏光子層とし、偏光性積層フィルムを得る染色工程(S40)とをこの順に含んでいる。
 偏光板を製造するためには、さらに、
 上記偏光性積層フィルムにおける上記偏光子層の上記基材フィルムとは反対側の面に透明保護フィルムを貼合して多層フィルムを得る貼合工程(S50)と、
 上記多層フィルムから上記基材フィルムを剥離して、上記偏光子層と上記透明保護フィルムとを備える偏光板を得る剥離工程(S60)とをこの順に含んでいる。
 <各製造工程>
 以下、図1におけるS10~S60の各工程について、詳しく説明する。
 [塗工工程(S10)]
 ここでは、基材フィルムの一方の面に、ポリビニルアルコール系樹脂の水溶液を塗工して塗工フィルムが得られる。
 基材フィルムに適した材料は、上述の偏光性積層フィルムの構成要素の説明で述べたとおりである。なお、基材フィルムは、ポリビニルアルコール系樹脂の延伸に適した温度範囲で延伸できるようなものを用いることが好ましい。
 塗工工程(S10)において、好ましくは、ポリビニルアルコール系樹脂の粉末を良溶媒に溶解させて得たポリビニルアルコール系樹脂溶液を基材フィルムの表面上に塗工して塗工フィルムを得る。塗工工程を経てポリビニルアルコール系樹脂層を形成することにより、ポリビニルアルコール系樹脂を薄くすることが可能となる。ポリビニルアルコール系樹脂溶液を基材フィルム上に塗工する方法としては、ワイヤーバーコーティング法、リバースコーティング、グラビアコーティング等のロールコーティング法、ダイコート法、カンマコート法、リップコート法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法などの公知の方法を適宜選択して採用できる。カンマコート法(ナイフコーター)、ダイコート法、リップコート法が好ましい。
 延伸工程(S30)における延伸後の延伸積層フィルムのポリビニルアルコール系樹脂層の厚みは10μm以下であることが好ましい。そこで、塗工工程(S10)および乾燥工程(S20)を経て形成される樹脂層の厚みは、3~50μmが好ましく、5~40μmがより好ましい。3μm以下であると、延伸後に薄くなりすぎて染色性が著しく悪化してしまい好ましくない。一方、50μmを超えると、最終的に得られる偏光子層の厚みが10μmを超えてしまうことがあり好ましくない。
 基材フィルムとポリビニルアルコール系樹脂層の密着性を向上させるために、基材フィルムとポリビニルアルコール系樹脂層との間にプライマー層を設けてもよい。プライマー層は、ポリビニルアルコール系樹脂および架橋剤などを含有する組成物で形成されることが、密着性の観点から好ましい。プライマー層に適した材料等は、上述の偏光性積層フィルムの構成要素の説明で述べたとおりである。
 [乾燥工程(S20)]
 塗工工程(S10)で得られた塗工フィルムを乾燥させて、ポリビニルアルコール系樹脂の水溶液の溶剤を蒸発させることにより、基材フィルムにポリビニルアルコール系樹脂層が形成された積層フィルムが得られる。
 乾燥工程は、塗工フィルムの平均水分率変化が5~65質量%/分となるように行なうことが好ましく、7.5~50質量%/分となるように行なうことがより好ましく、7.5~30質量%/分となるように行なうことがさらに好ましい。本明細書でいう乾燥工程の平均水分率変化とは、乾燥開始時の塗工フィルムの水分率(%)と、乾燥終了時の積層フィルムの水分率(%)の差を時間で除して得られる値である。なお、塗工フィルムまたは積層フィルムの水分率の算出方法については、後述する。平均水分率変化が65質量%/分より大きい場合は、乾燥温度を高くする必要があるため、基材フィルムの溶解、ポリビニルアルコール系樹脂の変色などの不具合が生じる可能性があり好ましくない。平均水分率変化が5質量%/分未満の場合は、生産性が悪くなり好ましくない。
 乾燥工程における乾燥温度は、例えば50℃~200℃であり、好ましくは60℃~150℃である。乾燥方法は、熱風を吹き付ける方法、熱ロールに接触させる方法、IRヒーターで加熱する方法など、種々の方法があり、いずれも好適に用いることができる。なお、乾燥工程でいう乾燥温度とは、熱風を吹き付ける方法やIRヒーターなどのように乾燥炉を設ける乾燥設備の場合には乾燥炉内の雰囲気温度を意味し、熱ロールのような接触型の乾燥設備の場合には、熱ロールの表面温度を意味する。以上の工程を経て、ポリビニルアルコール系樹脂層が形成された積層フィルムを製造する。乾燥時間は、例えば、2分~20分である。
 [延伸工程(S30)]
 ここでは、乾燥工程(S20)で得られた積層フィルムを延伸する。延伸工程(S30)は、基材フィルムの一方の面にポリビニルアルコール系樹脂層が形成された積層フィルムの水分率が0.3質量%以上の状態で一軸延伸を開始する。一軸延伸開始時の水分率が0.3質量%以上であることにより、優れた光学性能を有する偏光子層を備えた偏光性積層フィルムまたは偏光板を製造することができる。なお、上記水分率の調整は、例えば乾燥工程(S20)における乾燥の程度を調整することにより、または後述する調湿工程で調整することにより行なうことができる。
 乾燥工程(S20)における乾燥の程度は、上述した乾燥温度や乾燥時間のほか、基材フィルム上に形成されたポリビニルアルコール系樹脂塗工層の厚さ(または単位面積あたりの重量)、乾燥工程における雰囲気の水分濃度、水蒸気圧、湿度などによっても変化するので、簡単な予備実験を行なって、所定の水分率(0.3質量%以上3質量%以下、好ましくは0.35質量%以上1.8質量%以下)となるように条件を調節すればよい。場合によっては、所定の水蒸気圧に調節された空気を乾燥炉内に導入することもできる。このようにして、所定の水分率まで乾燥された積層フィルムは、その水分率を保ったまま、延伸工程(S30)に付すのが好ましいが、後述する調湿工程で所定の水分率に調整してから、延伸工程(S30)に付すこともできる。
 (積層フィルムの水分率の算出)
 本明細書において、積層フィルム(または塗工フィルム)の水分率は以下のようにして算出する値である。まず積層フィルム(または塗工フィルム)からサンプリングし、その測定サンプルの質量(A)を求め、その後その測定サンプルを105℃のオーブンに1時間投入する。そしてオーブンから取り出した後の測定サンプルの質量(B)を求める。積層フィルム(または塗工フィルム)の水分率は、次の式(1):
 積層フィルム(または塗工フィルム)の水分率=(A-B)/A×100(%)
により算出される。
 (ポリビニルアルコール系樹脂層の水分率の算出)
 本明細書において、ポリビニルアルコール系樹脂層の水分率は以下のようにして算出する値である。まず積層フィルムからサンプリングし、その測定サンプルの質量(A)を求め、その後その測定サンプルを105℃のオーブンに1時間投入する。そしてオーブンから取り出した後の測定サンプルの質量(B)を求める。さらに、その測定サンプルからポリビニルアルコール系樹脂層を除去し、基材フィルム単体の質量(C)を求める。ポリビニルアルコール系樹脂層の水分率は、次の式(2):
 ポリビニルアルコール系樹脂層の水分率=(A-B)/(A-C)×100(%)
により算出される。ポリビニルアルコール系樹脂層の水分率は、好ましくは2.5質量%以上である。ポリビニルアルコール系樹脂層の水分率の値が上記範囲であれば、延伸後のポリビニルアルコール系樹脂層に生じるひび割れを抑制できることから、好ましい。
 延伸工程(S30)においては、好ましくは5倍超かつ17倍以下の延伸倍率となるように一軸延伸する。さらに好ましくは5倍超かつ8倍以下の延伸倍率となるように一軸延伸する。延伸倍率が5倍以下だと、ポリビニルアルコール系樹脂層が十分に配向しないため、結果として、偏光子層の偏光度が十分に高くならない不具合を生じることがある。一方、延伸倍率が17倍を超える場合、延伸時の積層フィルムの破断が生じ易くなると同時に、延伸後の延伸積層フィルムの厚みが必要以上に薄くなり、後工程での加工性・ハンドリング性が低下するおそれがある。延伸工程(S30)における延伸処理は、一段での延伸に限定されることはなく多段で行うこともできる。多段で行う場合は、延伸処理の全段を合わせて5倍超の延伸倍率となるように延伸処理を行う。
 本実施形態における延伸工程(S30)においては、積層フィルムの長手方向に対して行なう縦延伸処理や、幅方向に対して延伸する横延伸処理などを実施することができる。縦延伸方式としては、ロール間延伸方法、圧縮延伸方法などが挙げられ、横延伸方式としてはテンター法などが挙げられる。
 また、本発明における延伸処理は、乾式延伸方法を用いて行われることが好ましい。ポリビニルアルコール系樹脂層を基材フィルムごと染色工程よりも前に乾式延伸することにより、従来よりも薄いポリビニルアルコール系樹脂フィルム(ポリビニルアルコール系樹脂層)を破断なく、高い倍率で延伸することができ、得られる偏光子層、さらには偏光板を薄型化することが可能となるからである。
 (調湿工程)
 乾燥工程(S20)の後に、積層フィルムの水分率が0.3質量%以上3質量%以下、好ましくは0.35質量%以上1.8質量%以下となるように調湿する調湿工程をさらに有してもよい。この場合、かかる調湿工程で調湿された積層フィルムを、水分率0.3質量%以上3質量%以下を保ったまま延伸工程(S30)に供するようにする。調湿工程における調湿は、たとえば、適度の湿度および温度に調節された部屋に積層フィルムを置く方法、適度の湿度および温度に調節された調湿炉に積層フィルムを通す方法などによって行なえばよい。調湿工程では、その前の積層フィルムの状態に応じて、水分率を増加させる(加湿する)こともできるし、水分率を減少させる(乾燥する)こともできるし、水分率自体は変えずにポリビニルアルコール系樹脂層を均質化させるような形態とすることもできる。
 [染色工程(S40)]
 ここでは、積層フィルムのポリビニルアルコール系樹脂層を、二色性色素で染色する。二色性色素としては、先に述べたとおり、ヨウ素や有機染料が用いられる。
 染色工程は、たとえば、上記二色性色素を含有する溶液(染色溶液)に、延伸積層フィルム全体を浸漬することにより行う。染色溶液としては、上記二色性色素を溶媒に溶解した溶液を使用できる。染色溶液の溶媒としては、一般的には水が使用されるが、水と相溶性のある有機溶媒がさらに添加されてもよい。二色性色素の濃度は、0.01~10重量%であることが好ましく、0.02~7重量%であることがより好ましく、0.025~5重量%であることが特に好ましい。
 二色性色素としてヨウ素を使用する場合、染色効率をより一層向上できることから、さらにヨウ化物を添加することが好ましい。このヨウ化物としては、たとえば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタンなどが挙げられる。これらヨウ化物の添加割合は、染色溶液において、0.01~20重量%であることが好ましい。ヨウ化物の中でも、ヨウ化カリウムを添加することが好ましい。ヨウ化カリウムを添加する場合、ヨウ素とヨウ化カリウムの割合は重量比で、1:5~1:100の範囲にあることが好ましく、1:6~1:80の範囲にあることがより好ましく、1:7~1:70の範囲にあることが特に好ましい。
 染色溶液への延伸積層フィルムの浸漬時間は、特に限定されないが、通常は15秒~15分間の範囲であることが好ましく、1分~3分間であることがより好ましい。また、染色溶液の温度は、10~60℃の範囲にあることが好ましく、20~40℃の範囲にあることがより好ましい。
 染色工程においては、染色に次いで架橋処理を行なうことができる。架橋処理は、たとえば、架橋剤を含む溶液(架橋溶液)中に積層フィルムを浸漬することにより行われる。架橋剤としては、従来公知の物質を使用することができる。たとえば、ホウ酸、ホウ砂等のホウ素化合物や、グリオキザール、グルタルアルデヒドなどが挙げられる。これらは一種類でもよいし、二種類以上を併用してもよい。
 架橋溶液として、架橋剤を溶媒に溶解した溶液を使用できる。溶媒としては、たとえば水が使用できるが、さらに、水と相溶性のある有機溶媒を含んでもよい。架橋溶液における架橋剤の濃度は、これに限定されるものではないが、1~20重量%の範囲にあることが好ましく、6~15重量%であることがより好ましい。
 架橋溶液中には、ヨウ化物を添加してもよい。ヨウ化物の添加により、ポリビニルアルコール系樹脂層の面内における偏光特性をより均一化させることができる。ヨウ化物としては、たとえば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタンが挙げられる。ヨウ化物の含有量は、0.05~15重量%、より好ましくは0.5~8重量%である。
 架橋溶液への延伸積層フィルムの浸漬時間は、通常、15秒~20分間であることが好ましく、30秒~15分間であることがより好ましい。また、架橋溶液の温度は、10~80℃の範囲にあることが好ましい。
 以上の染色工程(S40)により、ポリビニルアルコール系樹脂層が偏光子層としての機能を有することになり、偏光性積層フィルムが得られる。
 [洗浄工程]
 次に、偏光性積層フィルムを洗浄する洗浄工程を行なうことが好ましい。洗浄工程としては、水洗浄処理を施すことができる。水洗浄処理は、通常、イオン交換水、蒸留水などの純水に延伸フィルムを浸漬することにより行なうことができる。水洗浄温度は、通常3~50℃、好ましくは4℃~20℃の範囲である。浸漬時間は通常2~300秒間、好ましくは3秒~240秒間である。
 洗浄工程は、ヨウ化物溶液による洗浄処理と水洗浄処理を組み合わせてもよく、適宜にメタノール、エタノール、イソプロピルアルコール、ブタノール、プロパノール等の液体アルコールを配合した溶液を用いることもできる。また、洗浄工程の後に、ニップロールやエアナイフなどを用いた水切りの工程を設けてもよい。
 洗浄工程後に、偏光性積層フィルムを乾燥させることが好ましい。かかる乾燥においては、60℃以上の温度での乾燥工程を含むことが好ましく、70℃以上の温度での乾燥工程を含むことがより好ましい。もちろん、温度の異なる多段階の乾燥工程を含んでいてもよい。その場合は、多段階の乾燥工程のうち、いずれかの乾燥工程が60℃以上であればよい。
 温度以外にも乾燥力を強化するために、風量や風向など熱風の循環方法を最適化したり、局所的に熱をかけられるIRヒーターなどを併設したりしてもよい。これらの補助によって乾燥の効率はさらに向上し、生産性向上に寄与する。
 乾燥温度の上限は、水の沸点よりも低い温度であることが好ましく100℃未満であることが好ましい。さらには、95℃以下であることが好ましく、90℃以下であることが最も好ましい。
 [貼合工程(S50)]
 ここでは、上記の工程を経た偏光性積層フィルムにおける偏光子層の基材フィルムとは反対側の面に保護フィルムを貼合して、多層フィルムを得る。偏光子層と保護フィルムとを貼合する方法としては、粘着剤層や接着剤層を介して偏光子層と保護フィルムを貼合する方法が挙げられる。保護フィルムとして適した材料は、上述の偏光板の構成要素の説明で述べたとおりである。
 (粘着剤層)
 粘着剤層を構成する粘着剤は、通常、アクリル系樹脂、スチレン系樹脂、シリコーン系樹脂などをベースポリマーとし、そこに、イソシアネート化合物、エポキシ化合物、アジリジン化合物などの架橋剤を加えた組成物からなる。さらに、粘着剤中に微粒子を配合して、光散乱性を示す粘着剤層を形成することもできる。
 粘着剤層の厚さは1~40μmであることが好ましいが、加工性、耐久性の特性を損なわない範囲で、薄く塗るのが好ましく、より好ましくは3~25μmである。3~25μmであると良好な加工性を有し、かつ偏光フィルムの寸法変化を押さえる上でも好適な厚みである。粘着剤層が1μm未満であると粘着性が低下し、40μmを超えると粘着剤がはみ出すなどの不具合を生じ易くなる。
 保護フィルムや偏光子上に粘着剤層を形成する方法は特に限定されるものではなく、保護フィルム面、もしくは偏光子層面に、上記したベースポリマーをはじめとする各成分を含む溶液を塗布し、乾燥して粘着剤層を形成した後、セパレータや他種のフィルムと貼り合わせてもよいし、セパレータ上に粘着剤層を形成した後、保護フィルム面もしくは偏光子層面に貼り付けて積層してもよい。また、粘着剤層を保護フィルムもしくは偏光子層面に形成する際には必要に応じて保護フィルムもしくは偏光子層面、または粘着剤層の片方若しくは両方に密着処理、たとえば、コロナ処理等を施してもよい。
 (接着剤層)
 接着剤層を構成する接着剤としては、たとえば、ポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルジョン接着剤などを用いた水系接着剤が挙げられる。中でもポリビニルアルコール系樹脂水溶液が好適に用いられる。接着剤として用いるポリビニルアルコール系樹脂には、酢酸ビニルの単独重合体であるポリ酢酸ビニルをケン化処理して得られるビニルアルコールホモポリマーのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体をケン化処理して得られるビニルアルコール系共重合体、さらにはそれらの水酸基を部分的に変性した変性ポリビニルアルコール系重合体などがある。水系接着剤には、多価アルデヒド、水溶性エポキシ化合物、メラミン系化合物、ジルコニア化合物、亜鉛化合物などが添加剤として添加されてもよい。このような水系の接着剤を用いた場合、それから得られる接着剤層は、通常1μmよりもはるかに薄く、通常の光学顕微鏡で断面を観察しても、その接着剤層は事実上観察されない。
 水系接着剤を用いたフィルムの貼合方法は特に限定されるものではなく、フィルムの表面に接着剤を均一に塗布、または、流し込み、塗布面にもう一方のフィルムを重ねてロールなどにより貼合し、乾燥する方法などが挙げられる。通常、接着剤は、その調製後、15~40℃の温度下で塗布され、貼合温度は、通常15~30℃の範囲である。
 水系接着剤を使用する場合は、フィルムを貼合した後、水系接着剤中に含まれる水を除去するため、乾燥させる。乾燥炉の温度は、30℃~90℃が好ましい。30℃未満であると接着面が剥離しやすくなる傾向がある。90℃以上であると熱によって偏光子などの光学性能が劣化するおそれがある。乾燥時間は10~1000秒とすることができる。
 乾燥後はさらに、室温またはそれよりやや高い温度、たとえば、20~45℃程度の温度で12~600時間程度養生してもよい。養生のときの温度は、乾燥時に採用した温度よりも低く設定されるのが一般的である。
 また、非水系の接着剤として、光硬化性接着剤を用いることもできる。光硬化性接着剤としては、たとえば、光硬化性エポキシ樹脂と光カチオン重合開始剤との混合物などを挙げることができる。
 光硬化性接着剤にてフィルム貼合する方法としては、従来公知の方法を用いることができ、たとえば、流延法、マイヤーバーコート法、グラビアコート法、カンマコーター法、ドクターブレード法、ダイコート法、ディップコート法、噴霧法などにより、フィルムの接着面に接着剤を塗布し、2枚のフィルムを重ね合わせる方法が挙げられる。流延法とは、被塗布物である2枚のフィルムを、概ね垂直方向、概ね水平方向、または両者の間の斜め方向に移動させながら、その表面に接着剤を流下して拡布させる方法である。
 フィルムの表面に接着剤を塗布した後、ニップロールなどで挟んで2枚のフィルムを貼り合わせることにより接着される。また、この積層体をロール等で加圧して均一に押し広げる方法も好適に使用することができる。この場合、ロールの材質としては金属やゴム等を用いることが可能である。さらに、この積層体をロールとロールとの間に通し、加圧して押し広げる方法も好ましく採用される。この場合、これらロールは同じ材質であってもよく、異なる材質であってもよい。上記ニップロール等を用いて貼り合わされた後の接着剤層の、乾燥または硬化前の厚さは、5μm以下かつ0.01μm以上であることが好ましい。
 フィルムの接着表面には、接着性を向上させるために、プラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理などの表面処理を適宜施してもよい。ケン化処理としては、水酸化ナトリウムや水酸化カリウムのようなアルカリの水溶液に浸漬する方法が挙げられる。
 接着剤として光硬化性樹脂を用いた場合は、フィルムを積層後、活性エネルギー線を照射することによって光硬化性接着剤を硬化させる。活性エネルギー線の光源は特に限定されないが、波長400nm以下に発光分布を有する活性エネルギー線が好ましく、具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが好ましく用いられる。
 光硬化性接着剤への光照射強度は、光硬化性接着剤の組成によって適宜決定され、特に限定されないが、重合開始剤の活性化に有効な波長領域の照射強度が0.1~6000mW/cm2であることが好ましい。照射強度が0.1mW/cm2以上である場合、反応時間が長くなりすぎず、6000mW/cm2以下である場合、光源から輻射される熱および光硬化性接着剤の硬化時の発熱によるエポキシ樹脂の黄変や偏光フィルムの劣化を生じるおそれが少ない。光硬化性接着剤への光照射時間は、硬化させる光硬化性接着剤に応じて適用されるものであって特に限定されないが、上記の照射強度と照射時間との積として表される積算光量が10~10000mJ/cm2となるように設定されることが好ましい。光硬化性接着剤への積算光量が10mJ/cm2以上である場合、重合開始剤由来の活性種を十分量発生させて硬化反応をより確実に進行させることができ、10000mJ/cm2以下である場合、照射時間が長くなりすぎず、良好な生産性を維持できる。なお、活性エネルギー線照射後の接着剤層の厚さは、通常0.001~5μm程度であり、好ましくは0.01μm以上でかつ2μm以下、さらに好ましくは0.01μm以上でかつ1μm以下である。
 活性エネルギー線の照射によって偏光子層や保護フィルムを含むフィルムの光硬化性接着剤を硬化させる場合、偏光子層の偏光度、透過率および色相、ならびに保護フィルムの透明性など、偏光板の諸機能が低下しない条件で硬化を行うことが好ましい。
 偏光子層と保護フィルムを貼合する貼合工程(S50)にて、接着剤層または粘着剤層を形成するために溶剤を含む溶液を用いた場合には、多層フィルムの乾燥を実施する。かかる乾燥は主に、接着剤層または粘着剤層の乾燥を実施することが目的であり、乾燥条件等は、先に述べた洗浄工程後の乾燥と概ね同じでよい。特に接着剤層を形成するために、ポリビニルアルコール系樹脂水溶液などを用いる場合には60℃以上の温度での乾燥を実施することが好ましい。
 [剥離工程(S60)]
 貼合工程(S50)の後に、多層フィルムから基材フィルムを剥離して、偏光子層と保護フィルムとを備える偏光板を得る剥離工程(S60)が行われる。多層フィルムから基材フィルムを剥離する方法は特に限定されるものでなく、通常の粘着剤付偏光板で行われる剥離フィルム剥離工程と同様の方法を採用できる。貼合工程(S50)の後、そのまますぐに剥離してもよいし、一度ロール状に巻き取った後、別に剥離工程を設けて剥離してもよい。
 [他の光学層]
 本発明で得られる偏光板は、実用に際して他の光学層を積層した偏光板として用いることができる。また、上記保護フィルムがこれらの光学層の機能を有していてもよい。
 他の光学層の例としては、ある種の偏光光を透過し、それと逆の性質を示す偏光光を反射する反射型偏光フィルム、表面に凹凸形状を有する防眩機能付きフィルム、表面反射防止機能付きフィルム、表面に反射機能を有する反射フィルム、反射機能と透過機能とを併せ持つ半透過反射フィルム、視野角補償フィルムが挙げられる。
 ある種の偏光光を透過し、それと逆の性質を示す偏光光を反射する反射型偏光フィルムに相当する市販品としては、例えばDBEF(3M社製、住友スリーエム(株)から入手可能)、APF(3M社製、住友スリーエム(株)から入手可能)が挙げられる。視野角補償フィルムとしては基材表面に液晶性化合物が塗布され、配向されている光学補償フィルム、ポリカーボネート系樹脂からなる位相差フィルム、環状ポリオレフィン系樹脂からなる位相差フィルムが挙げられる。基材表面に液晶性化合物が塗布され、配向されている光学補償フィルムに相当する市販品としては、WVフィルム(富士フイルム(株)製)、NHフィルム(JX日鉱日石エネルギー(株)製)、NVフィルム(JX日鉱日石エネルギー(株)製)などが挙げられる。また、環状ポリオレフィン系樹脂からなる位相差フィルムに相当する市販品としては、アートン(登録商標)フィルム(JSR(株)製)、エスシーナ(登録商標)(積水化学工業(株)製)、ゼオノア(登録商標)フィルム(日本ゼオン(株)製)などが挙げられる。
 [第2の実施形態]
 図2は、第2の実施形態の偏光性積層フィルムおよび偏光板の製造方法を示すフローチャートである。第2の実施形態の偏光性積層フィルムの製造方法は、
 基材フィルムの一方の面に、ポリビニルアルコール系樹脂の水溶液を塗工して塗工フィルムを得る第1の塗工工程(S11)と、
 上記塗工フィルムを乾燥させて基材フィルムの一方の面にポリビニルアルコール系樹脂層が形成された積層フィルムを得る第1の乾燥工程(S21)と、
 上記基材フィルムの他方の面に、ポリビニルアルコール系樹脂の水溶液を塗工して両面塗工フィルムを得る第2の塗工工程(S12)と、
 上記両面塗工フィルムを乾燥させて基材フィルムの両面にポリビニルアルコール系樹脂層が形成された両面積層フィルムを得る第2の乾燥工程(S22)と、
 上記両面積層フィルムを一軸延伸し延伸積層フィルムを得る延伸工程(S31)と、
 上記ポリビニルアルコール系樹脂層を染色して偏光子層とし、偏光性積層フィルムを得る染色工程(S40)とをこの順に含んでいる。
 偏光板を製造するためには、さらに、
 上記偏光性積層フィルムにおける上記偏光子層の上記基材フィルムとは反対側の面に透明保護フィルムを貼合して多層フィルムを得る貼合工程(S50)と、
 上記多層フィルムから上記基材フィルムを剥離して、上記偏光子層と上記透明保護フィルムとを備える偏光板を得る剥離工程(S60)とをこの順に含んでいる。
 本実施形態においては、基材フィルムの両面にポリビニルアルコール系樹脂層を形成することにより、二つの偏光子層を同時に形成することができる。
 <各製造工程>
 以下、図2における第2の実施形態の各工程について、図1における第1の実施形態の対応する工程と対比して説明する。なお、特に説明しない点については、第1の実施形態の対応する工程と同様に行なう。また、同一の工程には同一の符号を付して説明を省略する。
 [第1の塗工工程(S11)]
 第1の塗工工程(S11)は、図1における塗工工程(S10)と同様の工程である。
 [第1の乾燥工程(S21)]
 第1の乾燥工程(S21)は、乾燥後の積層フィルムの水分率が0.3質量%以上3質量%以下、好ましくは0.35質量%以上1.8質量%以下となるように行なわれることが好ましい。このような水分率とすることにより、後述する延伸工程(S31)において、一軸延伸開始時の水分率を所望の値に調整することが容易となる。第1の乾燥工程(S21)における塗工フィルムの平均水分率変化の好ましい数値範囲、好ましい乾燥条件等は、第1の実施形態における乾燥工程(S20)で説明したとおりである。
 [第2の塗工工程(S12)]
 第2の塗工工程(S12)は、基材フィルムの面の内、第1の塗工工程(S11)でポリビニルアルコール系水溶液を塗工した面とは反対側の面にポリビニルアルコール系樹脂の水溶液を塗工して両面塗工フィルムを得る工程である。第2の塗工工程(S12)におけるポリビニルアルコール系樹脂の水溶液の塗工条件は、第1の実施形態の塗工工程(S10)で説明したとおりである。
 [第2の乾燥工程(S22)]
 第2の乾燥工程(S22)は、第1の実施形態における乾燥工程(S20)と同様の工程である。第2の乾燥工程(S22)における塗工フィルムの平均水分率変化の好ましい数値範囲、好ましい乾燥条件等も、第1の実施形態における乾燥工程(S20)で説明したとおりである。
 [延伸工程(S31)]
 ここでは、第2の乾燥工程(S22)で得られた両面積層フィルムを延伸する。延伸工程(S31)は、両面積層フィルムの水分率が0.5質量%以上の状態で一軸延伸を開始する。一軸延伸開始時の水分率が0.5質量%以上であることにより、優れた光学性能を有する偏光子層を備えた偏光性積層フィルムまたは偏光板を製造することができる。なお、上記水分率の調整は、例えば第1の乾燥工程(S21)および第2の乾燥工程(S22)における乾燥の程度を調整することにより、または後述する調湿工程で調整することにより行なうことができる。
 第1の乾燥工程(S21)および第2の乾燥工程(S22)における乾燥の程度は、上述した各工程における温度や時間のほか、基材フィルム上に形成されたポリビニルアルコール系樹脂塗工層の厚さ(または単位面積あたりの重量)、乾燥工程における雰囲気の水分濃度、水蒸気圧、湿度などによっても変化するので、簡単な予備実験を行なって、第2の乾燥工程(S22)を経た後に所定の水分率(0.5質量%以上4質量%以下、好ましくは0.6質量%以上2.5質量%以下)となるように条件を調節すればよい。場合によっては、所定の水蒸気圧に調節された空気を乾燥炉内に導入することもできる。このようにして、第2の乾燥工程(S22)で所定の水分率まで乾燥された積層フィルムは、その水分率を保ったまま、延伸工程(S31)に付すのが好ましいが、後述する調湿工程で所定の水分率に調整してから、延伸工程(S31)に付すこともできる。
 (調湿工程)
 第2の乾燥工程(S22)の後に、両面積層フィルムの水分率が0.5質量%以上4質量%以下、好ましくは0.6質量%以上2.5質量%以下となるように調湿する調湿工程をさらに有してもよい。この場合、かかる調湿工程で調湿された両面積層フィルムを、水分率0.5質量%以上4質量%以下、好ましくは0.6質量%以上2.5質量%以下を保ったまま延伸工程(S31)に供するようにする。この調湿工程における調湿については、先に第1の実施形態の調湿工程において述べたのと同様の説明があてはまる。
 [実施例1]
 図2に示すフローチャートのようにして、染色工程(S40)まで実施することにより両面偏光性積層フィルムを製造し、さらに剥離工程(S60)まで実施することにより偏光板を製造した。
 (基材フィルム)
 エチレンユニットを約5重量%含むプロピレン/エチレンのランダム共重合体(住友化学(株)製、商品名:住友ノーブレン W151、融点Tm=138℃)からなる樹脂層の両側にプロピレンの単独重合体であるホモポリプロピレン(住友化学(株)製、商品名:住友ノーブレンFLX80E4、融点Tm=163℃)からなる樹脂層を配置した3層構造の基材フィルムを、多層押出成形機を用いた共押出成形により作製した。得られた基材フィルムの合計の厚さは100μmであり、各層の厚み比(FLX80E4/W151/FLX80E4)は3/4/3であった。
 (プライマー溶液)
 ポリビニルアルコール粉末(日本合成化学工業(株)製、商品名:Z-200、平均重合度1100、平均ケン化度99.5モル%)を95℃の熱水に溶解させ濃度3重量%の水溶液を調製した。得られた水溶液にポリビニルアルコール粉末2重量部に対して1重量部の架橋剤(田岡化学工業(株)製、商品名:スミレーズレジン650)を混ぜて、プライマー溶液を得た。
 (ポリビニルアルコール系樹脂の水溶液)
 ポリビニルアルコール粉末((株)クラレ製、商品名:PVA124、平均重合度2400、平均ケン化度98.0~99.0モル%)を95℃の熱水中に溶解させ濃度8重量%のポリビニルアルコール水溶液を調製した。
 (第1の塗工工程、第1の乾燥工程)
 基材フィルムを連続的に搬送しながら、その一方の面にコロナ処理を施し、次いでコロナ処理された面に小径グラビアコーターを用いて上記プライマー溶液を連続的に塗工し、60℃で3分間乾燥させることにより、厚み0.2μmのプライマー層を形成した。引き続き、フィルムを搬送しながら、プライマー層上にカンマコーターを用いて上記ポリビニルアルコール水溶液を連続的に塗工し(第1の塗工工程)、90℃で4分間乾燥させることにより(第1の乾燥工程)、プライマー層上に厚み11.5μmのポリビニルアルコール系樹脂層(以下、「第1のPVA層」とする)を形成し、片面積層フィルムを得た。
 (水分率の測定)
 上記のようにして作製した片面積層フィルムの水分率を測定したところ0.39質量%であった。この水分率と、上記第1の乾燥工程に入る前の塗工フィルムの水分率から、第1の乾燥工程における乾燥スピードは、平均水分率変化で16.4質量%/分と計算された。また、片面積層フィルムの第1のPVA層単体の水分率を測定したところ2.76質量%であった。
 (第2の塗工工程、第2の乾燥工程)
 上記のようにして作製した片面積層フィルムについて、基材フィルムの第1のPVA層が形成されている面とは反対側の面に、上記と同様にして0.2μmのプライマー層を形成し、プライマー層上にポリビニルアルコール水溶液を塗工し(第2の塗工工程)、90℃で4分間乾燥させることにより(第2の乾燥工程)、プライマー層上に厚み10.6μmのポリビニルアルコール系樹脂層(以下、「第2のPVA層」)を形成し、両面積層フィルムを得た。
 (水分率の測定)
 上記のようにして作製した両面積層フィルムの水分率を測定したところ0.6質量%であった。この水分率と、上記第2の乾燥工程に入る前の両面塗工フィルムの水分率から、第2の乾燥工程における乾燥スピードは、平均水分率変化で15.9質量%/分と計算された。また、両面積層フィルムにおける第1のPVA層単体の水分率と、第2のPVA層単体の水分率を測定したところ、それぞれ4.66質量%と、3.79質量%であった。
 (延伸工程)
 上記のようにして得られた両面積層フィルムを連続的に搬送しながら、ニップロール間での延伸方法により延伸温度160℃で縦方向(フィルム搬送方向)に5.8倍延伸して延伸積層フィルムを得た。延伸積層フィルムにおいて、第1のPVA層の厚みは5.7μm、第2のPVA層の厚みは5.4μmとなった。
 (染色工程)
 上記のようにして得られた延伸積層フィルムを連続的に搬送しながら、ヨウ素とヨウ化カリウムとを含む30℃の染色溶液に滞留時間が180秒間となるように浸漬して第1のPVA層と第2のPVA層を染色した後、10℃の純水で余分な染色溶液を洗い流した。次いで、ホウ酸とヨウ化カリウムとを含む76℃の架橋溶液に滞留時間が600秒間程度となるように浸漬して架橋処理を行なった。その後、10℃の純水で4秒間洗浄し、80℃で300秒間間乾燥させることにより偏光性積層フィルムを得た。
 なお、染色溶液、架橋溶液の配合比率は、
 <染色溶液>
  水:100重量部
  ヨウ素:0.6重量部
  ヨウ化カリウム:10重量部
 <架橋溶液>
  水:100重量部
  ホウ酸:9.5重量部
  ヨウ化カリウム:5重量部
 とした。
 (光学性能の測定)
 得られた偏光性積層フィルムの第1のPVA層(第1の偏光子層)および第2のPVA層(第2の偏光子層)について、測定対象でない方の偏光子層を剥離除去して、測定対象の偏光子層と基材フィルムとからなる積層体を用意し、かかる積層体の偏光子層にアクリル系粘着剤層を積層し、そのアクリル系粘着剤層を介してガラスに貼合したものを評価サンプルとした。
 評価サンプルの光学特性を、積分球付き分光光度計(日本分光株式会社製、V7100)にて測定した。入射光はガラス側からとし、波長380nm~780nmの範囲においてMD透過率とTD透過率を求め、式(3)、式(4)に基づいて各波長における単体透過率、偏光度を算出し、さらにJIS Z 8701の2度視野(C光源)により視感度補正を行ない、視感度補正単体透過率(Ty)および視感度補正偏光度(Py)を求めた。
 上記において、「MD透過率」とは、グラントムソンプリズムから出る偏光の向きと評価サンプルの透過軸を平行にしたときの透過率であり、式(3)、式(4)においては「MD」と表す。また、「TD透過率」とは、グラントムソンプリズムから出る偏光の向きと評価サンプルの透過軸を直交にしたときの透過率であり、式(3)、式(4)においては「TD」と表す。
 単体透過率(%)=(MD+TD)/2   式(3)
 偏光度(%)={(MD-TD)/(MD+TD)}1/2×100   式(4)。
 (接着剤溶液)
 ポリビニルアルコール粉末((株)クラレ製、商品名:KL-318、平均重合度1800)を95℃の熱水に溶解し、濃度3重量%のポリビニルアルコール水溶液を調製した。得られた水溶液に架橋剤(田岡化学工業(株)製、商品名:スミレーズレジン650)をポリビニルアルコール粉末2重量部に対して1重量部混合し、接着剤溶液とした。
 (貼合工程)
 上記で得られた偏光性積層フィルムを連続的に搬送しながら、上記接着剤溶液を両面の偏光子層上に塗工した後、その塗工面に、ケン化処理を施した厚さ40μmの保護フィルム(コニカミノルタ(株)製、商品名:KC4UY、トリアセチルセルロース(TAC)からなる透明保護フィルム)を貼合し、一対の貼合ロール間に通すことにより圧着し、KC4UY/第1の偏光子層/プライマー層/基材フィルム/プライマー層/第2の偏光子層/KC4UYからなる多層フィルムを得た(貼合工程)。多層フィルムを、基材フィルムとプライマー層間で剥離し、KC4UY/第1の偏光子層/プライマー層/基材フィルム、プライマー層/第2の偏光子層/KC4UYの二つの積層体とし、さらに、基材フィルムを剥離除去した(剥離工程)。それぞれの積層体のプライマー層上に接着剤層を介して、厚さ23μmの環状ポリオレフィン系樹脂フィルム(日本ゼオン(株)製、商品名:ZF-14)を貼合し、KC4UY/偏光子層/プライマー層/接着剤層/ZF-14からなる二つの偏光板を得た。剥離工程で破断といった不具合は生じなかった。
 [実施例2]
 第1の乾燥工程および第2の乾燥工程における乾燥条件を90℃で3分間に変更し、さらに、第1の乾燥工程後の第1のPVA層の厚みが9.2μm、第2の乾燥工程後の第2のPVA層の厚みが9.4μmとなるようにした点以外は、実施例1と同様にして偏光性積層フィルムおよび偏光板を作製した。剥離工程で破断といった不具合は生じなかった。
 [実施例3]
 第1の乾燥工程および第2の乾燥工程における乾燥条件をいずれも、90℃で2分間の次に80℃で1.5分間、合計3.5分間に変更し、さらに、第1の乾燥工程後の第1のPVA層の厚みが9.3μm、第2の乾燥工程後の第2のPVA層の厚みが9.2μmとなるようにした点以外は、実施例1と同様にして偏光性積層フィルムおよび偏光板を作製した。剥離工程で破断といった不具合は生じなかった。
 [実施例4]
 第1の乾燥工程および第2の乾燥工程における乾燥条件をいずれも、75℃で2分間の次に80℃で2分間、合計4分間に変更し、さらに、第1の乾燥工程後の第1のPVA層の厚みが9.0μm、第2の乾燥工程後の第2のPVA層の厚みが9.1μmとなるようにした点以外は、実施例1と同様にして偏光性積層フィルムおよび偏光板を作製した。剥離工程で破断といった不具合は生じなかった。
 [実施例5]
 図1に示すフローチャートのようにして、染色工程(S40)まで実施することにより片面偏光性積層フィルムを製造し、さらに剥離工程(S60)まで実施することにより偏光板を製造した。基材フィルム、プライマー溶液およびポリビニルアルコール水溶液は、実施例1~4と同様のものを用いた。
 (第1の塗工工程、第1の乾燥工程)
 基材フィルムを連続的に搬送しながら、その一方の面にコロナ処理を施し、次いでコロナ処理された面に小径グラビアコーターを用いて上記プライマー溶液を連続的に塗工し、60℃で3分間乾燥させることにより、厚み0.2μmのプライマー層を形成した。引き続き、フィルムを搬送しながら、プライマー層上にカンマコーターを用いて上記ポリビニルアルコール水溶液を連続的に塗工し(第1の塗工工程)、90℃で2分間の次に80℃で1.5分間、合計3.5分間乾燥させることにより(第1の乾燥工程)、プライマー層上に厚み9.2μmの第1のPVA層を形成し、片面積層フィルムを得た。
 (延伸工程)
 上記のようにして得られた片面積層フィルムを連続的に搬送しながら、ニップロール間での延伸方法により延伸温度160℃で縦方向(フィルム搬送方向)に5.8倍延伸して片面延伸積層フィルムを得た。延伸積層フィルムにおいて、第1のPVA層の厚みは4.7μmとなった。
 (染色工程)
 上記のようにして得られた片面延伸積層フィルムを、実施例1と同様にして染色し片面偏光性積層フィルムを得た。
 (貼合工程)
 得られた片面偏光性積層フィルムを連続的に搬送しながら、実施例1と同じ接着剤溶液を偏光子上(第1の偏光子層)に塗工したのち、その塗工面に、ケン化処理を施した厚さ40μmの保護フィルム(コニカミノルタ(株)製、商品名:KC4UY、トリアセチルセルロース(TAC)からなる透明保護フィルム)を貼合し、一対の貼合ロール間に通すことにより圧着し、KC4UY/第1の偏光子層/プライマー層/基材フィルムからなる多層フィルムを得た(貼合工程)。
 多層フィルムから基材フィルムを基材フィルムとプライマー層間で剥離除去し、KC4UY/第1の偏光子層/プライマー層からなる積層体とした(剥離工程)。得られた積層体のプライマー層上に接着剤層を介して、厚さ23μmの環状ポリオレフィン系樹脂フィルム(日本ゼオン(株)製、商品名:ZF-14)を貼合し、KC4UY/第1の偏光子層/プライマー層/接着剤層/ZF-14からなる偏光板を得た。剥離工程で破断といった不具合は生じなかった。
 [実施例6]
 第1の乾燥工程における乾燥条件を実施例4と同様にし、第1の乾燥工程後のPVA層の厚みが9.0μmとした以外は、実施例5と同様にして片面偏光性積層フィルムおよび偏光板を作製した。剥離工程では、破断といった不具合は生じなかった。
 [比較例1]
 第1の乾燥工程後の第1のPVA層の厚みが9.0μm、第2の乾燥工程後の第2のPVA層の厚みが8.9μmとなるように変更した点以外は、実施例1と同様にして偏光性積層フィルムおよび偏光板を作製した。
 [比較例2]
 第1の乾燥工程後の第1のPVA層の厚みが9.2μm、第2の乾燥工程後の第2のPVA層の厚みが9.3μmとなるように変更した点以外は、実施例1と同様にして偏光性積層フィルムおよび偏光板を作製した。
 表1は、実施例1~6および比較例1,2における乾燥条件および各測定結果を記載した表である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1,2は、延伸工程に供される状態での積層フィルムの水分率が0.5質量%未満であり、さらに第1の乾燥工程後の水分率が0.3質量%未満であった。比較例1,2の偏光性積層フィルムは、実施例1~6の偏光性積層フィルムと比較すると視感度補正偏光度Pyが低い値であった。
 実施例1~6で作製したKC4UY/偏光子層/プライマー層/接着剤層/ZF-14からなる偏光板のKC4UY面にアクリル系粘着剤層を設け、その粘着剤層を介してガラスに貼合したものを評価サンプルとし、以下に示す耐湿熱性試験及び耐熱性試験を行なった。その結果、いずれの評価サンプルも、耐湿熱性試験におけるΔPyが0.001%前後、耐熱試験におけるΔPyが0.005%前後であり、問題ない水準であった。比較例1及び2で作製した偏光板を同様に評価した結果、実施例1~6の評価サンプルと比べてΔPyが大きかった。
 (1)耐湿熱性の評価
 温度65℃、相対湿度90%の環境下に500時間静置する耐湿熱性試験後の視感度補正偏光度Pyと試験前のPyとを、吸光光度計(日本分光(株)製、V7100)を用いて測定し、両者の差ΔPy(試験前のPy-試験後のPy)を求める。Pyの測定にあたっては、ガラス面に入射光が照射されるように評価サンプルをセットし、また試験後の視感度補正偏光度Pyは、上記の耐湿熱性試験後、温度23℃、相対湿度55%の環境下に約12時間静置してから測定する。ΔPyの絶対値が小さいほど耐湿熱性が高い。
 (2)耐熱性の評価
 温度85℃の乾燥環境下に500時間静置する耐熱性試験を行ない、その他は上記耐湿熱性試験に記載の方法と同様に試験前後の視感度補正偏光度Pyを求め、両者の差ΔPy(試験前のPy-試験後のPy)を求める。ΔPyの絶対値が小さいほど耐熱性が高い。

Claims (8)

  1.  基材フィルムに、ポリビニルアルコール系樹脂の水溶液を塗工して塗工フィルムを得る塗工工程と、
     前記塗工フィルムを乾燥させて基材フィルムにポリビニルアルコール系樹脂層が形成された積層フィルムを得る乾燥工程と、
     前記積層フィルムを一軸延伸して延伸積層フィルムを得る延伸工程と、
     前記ポリビニルアルコール系樹脂層を染色して偏光子層とし、偏光性積層フィルムを得る染色工程とをこの順に含み、
     前記延伸工程は、前記積層フィルムの水分率が0.3質量%以上の状態で前記一軸延伸を開始する、偏光性積層フィルムの製造方法。
  2.  前記乾燥工程は、前記塗工フィルムの平均水分率変化が5~65質量%/分となるように行なわれる、請求項1に記載の偏光性積層フィルムの製造方法。
  3.  前記乾燥工程の後に、前記積層フィルムの水分率が0.3質量%以上となるように調湿する調湿工程を含み、当該調湿工程で調湿された前記積層フィルムを、その水分率を保ったまま前記延伸工程に供する、請求項1または2に記載の偏光性積層フィルムの製造方法。
  4.  基材フィルムの一方の面に、ポリビニルアルコール系樹脂の水溶液を塗工して塗工フィルムを得る第1の塗工工程と、
     前記塗工フィルムを乾燥させて基材フィルムの一方の面にポリビニルアルコール系樹脂層が形成された積層フィルムを得る第1の乾燥工程と、
     前記基材フィルムの他方の面に、ポリビニルアルコール系樹脂の水溶液を塗工して両面塗工フィルムを得る第2の塗工工程と、
     前記両面塗工フィルムを乾燥させて基材フィルムの両面にポリビニルアルコール系樹脂層が形成された両面積層フィルムを得る第2の乾燥工程と、
     前記両面積層フィルムを一軸延伸し延伸積層フィルムを得る延伸工程と、
     前記ポリビニルアルコール系樹脂層を染色して偏光子層とし、偏光性積層フィルムを得る染色工程とをこの順に含み、
     前記延伸工程は、前記両面積層フィルムの水分率が0.5質量%以上の状態で前記一軸延伸を開始する、偏光性積層フィルムの製造方法。
  5.  前記第1の乾燥工程は、乾燥後の前記積層フィルムの水分率が0.3質量%以上となるように行なわれる、請求項4に記載の偏光性積層フィルムの製造方法。
  6.  前記第1の乾燥工程および前記第2の乾燥工程は、前記塗工フィルムの平均水分率変化および前記両面塗工フィルムの平均水分率変化がそれぞれ5~65質量%/分となるように行なわれる、請求項4または5に記載の偏光性積層フィルムの製造方法。
  7.  前記第2の乾燥工程の後に、前記両面積層フィルムの水分率が0.5質量%以上となるように調湿する調湿工程を含み、当該調湿工程で調湿された前記両面積層フィルムを、その水分率を保ったまま前記延伸工程に供する、請求項4~6のいずれか一項に記載の偏光性積層フィルムの製造方法。
  8.  請求項1~7のいずれか一項に記載の製造方法により偏光性積層フィルムを製造する工程と、
     前記偏光性積層フィルムにおける前記偏光子層の前記基材フィルムとは反対側の面に保護フィルムを貼合して多層フィルムを得る貼合工程と、
     前記多層フィルムから前記基材フィルムを剥離して、前記偏光子層と前記保護フィルムとを備える偏光板を得る剥離工程とを含む、偏光板の製造方法。
PCT/JP2015/077101 2014-10-01 2015-09-25 偏光性積層フィルムまたは偏光板の製造方法 WO2016052331A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177009366A KR20170065531A (ko) 2014-10-01 2015-09-25 편광성 적층 필름 또는 편광판의 제조 방법
JP2016551970A JPWO2016052331A1 (ja) 2014-10-01 2015-09-25 偏光性積層フィルムまたは偏光板の製造方法
CN201580053198.2A CN107076912B (zh) 2014-10-01 2015-09-25 偏振性层叠膜或偏振板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-203163 2014-10-01
JP2014203163 2014-10-01

Publications (1)

Publication Number Publication Date
WO2016052331A1 true WO2016052331A1 (ja) 2016-04-07

Family

ID=55630368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077101 WO2016052331A1 (ja) 2014-10-01 2015-09-25 偏光性積層フィルムまたは偏光板の製造方法

Country Status (5)

Country Link
JP (1) JPWO2016052331A1 (ja)
KR (1) KR20170065531A (ja)
CN (1) CN107076912B (ja)
TW (1) TW201618921A (ja)
WO (1) WO2016052331A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028662A (ja) * 2016-08-10 2018-02-22 住友化学株式会社 偏光フィルム
CN111033800A (zh) * 2017-08-02 2020-04-17 株式会社日本制钢所 多层膜的制造方法
JP2022022085A (ja) * 2020-07-22 2022-02-03 住友化学株式会社 偏光フィルムの製造方法及びポリビニルアルコール系フィルム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631439B (zh) * 2017-08-04 2018-08-01 元智大學 應用於偏光片的製造方法及其製造系統
JP7025166B2 (ja) * 2017-09-28 2022-02-24 住友化学株式会社 偏光板及びその製造方法、並びに表示装置
CN114126820A (zh) * 2019-09-20 2022-03-01 日东电工株式会社 偏光膜的制造方法、及偏振膜的制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093074A (ja) * 2007-10-11 2009-04-30 Nitto Denko Corp 偏光板の製造方法、偏光板、光学フィルムおよび画像表示装置
JP2012073581A (ja) * 2010-09-03 2012-04-12 Nitto Denko Corp 薄型偏光膜の製造方法
JP2013037115A (ja) * 2011-08-05 2013-02-21 Nitto Denko Corp 光学積層体、光学積層体のセットおよびそれらを用いた液晶パネル
JP2013156623A (ja) * 2012-10-26 2013-08-15 Sumitomo Chemical Co Ltd 偏光板の製造方法
JP2013238640A (ja) * 2012-05-11 2013-11-28 Nitto Denko Corp 偏光子の製造方法、偏光子、偏光板、光学フィルムおよび画像表示装置
JP2014157212A (ja) * 2013-02-15 2014-08-28 Nitto Denko Corp 偏光膜の製造方法
JP2014174267A (ja) * 2013-03-07 2014-09-22 Sumitomo Chemical Co Ltd 偏光性積層フィルムの製造方法及び偏光板の製造方法
JP2015121720A (ja) * 2013-12-25 2015-07-02 日東電工株式会社 偏光板および偏光板の製造方法
JP2015191224A (ja) * 2014-03-31 2015-11-02 日東電工株式会社 延伸積層体の製造方法および延伸積層体、ならびに偏光膜の製造方法および偏光膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365435A (ja) * 2001-04-03 2002-12-18 Nitto Denko Corp 配向フィルムの製造方法、偏光フィルム、偏光板および液晶表示装置
CN100500746C (zh) * 2001-05-30 2009-06-17 柯尼卡美能达精密光学株式会社 纤维素酯薄膜、其制造方法、相位差薄膜、光学补偿片、椭圆偏振片及显示装置
JP5722255B2 (ja) * 2012-02-28 2015-05-20 住友化学株式会社 偏光板の製造方法
JP6232921B2 (ja) * 2013-03-18 2017-11-22 住友化学株式会社 偏光性積層フィルム及び偏光板の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009093074A (ja) * 2007-10-11 2009-04-30 Nitto Denko Corp 偏光板の製造方法、偏光板、光学フィルムおよび画像表示装置
JP2012073581A (ja) * 2010-09-03 2012-04-12 Nitto Denko Corp 薄型偏光膜の製造方法
JP2013037115A (ja) * 2011-08-05 2013-02-21 Nitto Denko Corp 光学積層体、光学積層体のセットおよびそれらを用いた液晶パネル
JP2013238640A (ja) * 2012-05-11 2013-11-28 Nitto Denko Corp 偏光子の製造方法、偏光子、偏光板、光学フィルムおよび画像表示装置
JP2013156623A (ja) * 2012-10-26 2013-08-15 Sumitomo Chemical Co Ltd 偏光板の製造方法
JP2014157212A (ja) * 2013-02-15 2014-08-28 Nitto Denko Corp 偏光膜の製造方法
JP2014174267A (ja) * 2013-03-07 2014-09-22 Sumitomo Chemical Co Ltd 偏光性積層フィルムの製造方法及び偏光板の製造方法
JP2015121720A (ja) * 2013-12-25 2015-07-02 日東電工株式会社 偏光板および偏光板の製造方法
JP2015191224A (ja) * 2014-03-31 2015-11-02 日東電工株式会社 延伸積層体の製造方法および延伸積層体、ならびに偏光膜の製造方法および偏光膜

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018028662A (ja) * 2016-08-10 2018-02-22 住友化学株式会社 偏光フィルム
CN111033800A (zh) * 2017-08-02 2020-04-17 株式会社日本制钢所 多层膜的制造方法
JP2022022085A (ja) * 2020-07-22 2022-02-03 住友化学株式会社 偏光フィルムの製造方法及びポリビニルアルコール系フィルム
JP7061712B2 (ja) 2020-07-22 2022-04-28 住友化学株式会社 偏光フィルムの製造方法及びポリビニルアルコール系フィルム

Also Published As

Publication number Publication date
KR20170065531A (ko) 2017-06-13
CN107076912A (zh) 2017-08-18
TW201618921A (zh) 2016-06-01
JPWO2016052331A1 (ja) 2017-06-15
CN107076912B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
JP6339621B2 (ja) 偏光性積層フィルムおよび偏光板の製造方法
TWI459056B (zh) 偏光性積層膜、偏光板及該等之製造方法
JP5143918B2 (ja) 偏光性積層フィルム、偏光板または基材フィルム付き偏光板の製造方法
JP4901978B2 (ja) 延伸フィルム、偏光性延伸フィルムおよび偏光板の製造方法
WO2012077824A1 (ja) 偏光性積層フィルムおよび偏光板の製造方法
JP6232921B2 (ja) 偏光性積層フィルム及び偏光板の製造方法
JP5602823B2 (ja) 偏光性積層フィルムおよび偏光板の製造方法、偏光性積層フィルム
KR101435358B1 (ko) 편광성 적층 필름과 편광판의 제조 방법
WO2011125961A1 (ja) 偏光板およびその製造方法
JP5584259B2 (ja) 両面積層フィルム、両面偏光性積層フィルム、両面貼合フィルムおよび片面貼合フィルム
WO2016052331A1 (ja) 偏光性積層フィルムまたは偏光板の製造方法
KR20140138752A (ko) 편광판의 제조 방법
JP2012032834A (ja) 延伸フィルム、偏光性延伸フィルムおよびそれらの製造方法
JP6174298B2 (ja) 偏光性積層フィルムおよび積層フィルム
JP5514700B2 (ja) 偏光板の製造方法
JP2012103466A (ja) 偏光性積層フィルムおよび偏光板の製造方法
JP2011248294A (ja) 偏光性積層フィルムの製造方法および偏光板の製造方法
JP2012133295A (ja) 偏光性積層フィルムおよび偏光板の製造方法
JP2012133296A (ja) 偏光性積層フィルムおよび偏光板の製造方法
JP2016170438A (ja) 偏光性積層フィルムおよび積層フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177009366

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15846043

Country of ref document: EP

Kind code of ref document: A1