WO2016052161A1 - Abrasive grains for polishing hard metal material, polishing composition and method for manufacturing hard metal product - Google Patents
Abrasive grains for polishing hard metal material, polishing composition and method for manufacturing hard metal product Download PDFInfo
- Publication number
- WO2016052161A1 WO2016052161A1 PCT/JP2015/076036 JP2015076036W WO2016052161A1 WO 2016052161 A1 WO2016052161 A1 WO 2016052161A1 JP 2015076036 W JP2015076036 W JP 2015076036W WO 2016052161 A1 WO2016052161 A1 WO 2016052161A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polishing
- abrasive grains
- hard metal
- surface plate
- polishing composition
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B37/00—Lapping machines or devices; Accessories
- B24B37/11—Lapping tools
- B24B37/12—Lapping plates for working plane surfaces
- B24B37/14—Lapping plates for working plane surfaces characterised by the composition or properties of the plate materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
Definitions
- the present invention relates to abrasive grains for polishing a hard metal material and use thereof. Specifically, the present invention relates to the above abrasive grains, a polishing composition containing the abrasive grains, and a method for producing a hard metal product using the polishing composition containing the abrasive grains.
- This application claims priority based on Japanese Patent Application No. 2014-198273 filed on Sep. 29, 2014, the entire contents of which are incorporated herein by reference.
- Patent Document 1 describes polishing stainless steel using diamond abrasive grains.
- Patent Document 2 is a technical document relating to polishing of a silicon carbide single crystal rather than a hard metal material.
- This invention is made
- Another object of the present invention is to provide a polishing composition containing the above abrasive grains.
- Another related object is to provide a method of manufacturing a hard metal product using the abrasive grains.
- an abrasive for polishing a hard metal material supplied to a polishing surface plate is provided.
- the abrasive grains have an average particle diameter of 2 to 10 ⁇ m.
- the abrasive grains have a retention rate of 5 to 60% with respect to the polishing surface plate.
- Such abrasive grains have an average particle diameter suitable for polishing (particularly lapping) of the hard metal having the above-mentioned retention rate in an appropriate range, and thereby processing force by the abrasive grains is applied to the hard metal material as an object to be polished. It can be made to act efficiently. Therefore, according to the said abrasive grain, practical polishing efficiency can be achieved, suppressing raw material cost.
- a polishing composition containing any of the abrasive grains disclosed herein. According to the polishing composition, practical polishing efficiency can be achieved while reducing raw material costs in polishing hard metal materials.
- the polishing composition typically further includes a solvent for dispersing the abrasive grains.
- the concentration of the abrasive grains in the composition is 0.3 to 10% by weight.
- the polishing composition having an abrasive grain concentration in the above range it is possible to more suitably achieve both a reduction in raw material costs and a good polishing efficiency.
- a method for manufacturing a hard metal product typically includes setting a hard metal material as an object to be polished in a polishing apparatus equipped with a polishing platen.
- the method also includes supplying a polishing composition to the polishing surface plate.
- a polishing composition containing any of the abrasive grains disclosed herein can be used.
- the method further includes polishing the polishing object by moving the polishing platen relative to the polishing object. According to this method, a hard metal product having a polished surface can be efficiently produced while suppressing raw material costs.
- a method for polishing a hard metal material typically includes setting a hard metal material as an object to be polished in a polishing apparatus equipped with a polishing platen.
- the method also includes supplying a polishing composition to the polishing surface plate.
- a polishing composition containing any of the abrasive grains disclosed herein can be used.
- the method further includes polishing the polishing object by moving the polishing platen relative to the polishing object. According to this method, the hard metal material can be efficiently polished while suppressing the raw material cost.
- the polishing platen may be one whose surface is adjusted with green silicon carbide abrasive grains (hereinafter also referred to as “GC abrasive grains”) having an average particle diameter of 25 to 120 ⁇ m. According to such a polishing surface plate, the processing force by the abrasive grains disclosed herein can be efficiently applied to the hard metal material that is an object to be polished.
- GC abrasive grains green silicon carbide abrasive grains
- polishing surface plate in any of the techniques disclosed herein, one having a cast iron surface can be preferably employed. In the polishing using such a polishing surface plate (cast iron surface plate), the effects of the present invention can be suitably exhibited.
- a preferred example of the abrasive grains in any of the techniques disclosed herein is an abrasive grain substantially composed of titanium diboride. According to such abrasive grains, it is possible to particularly suitably achieve both a reduction in raw material costs and a good polishing efficiency.
- stainless steel can be cited. That is, the technique disclosed herein can be preferably applied to the polishing of stainless steel. Among these, application to stainless steel wrapping is particularly significant.
- the hard metal material means a material having a relatively high hardness among metal materials, and specifically refers to a metal material having a Vickers hardness exceeding 100 HV.
- the Vickers hardness indicates the fastness to the indentation pressure, and specifically is a hardness measured by the method described in JIS Z2244: 2009.
- the hard metal material may be a simple substance or an alloy. Typical examples of the hard metal material include alloy materials such as titanium alloy, nickel alloy, and stainless steel.
- the titanium alloy is an alloy mainly composed of titanium, and may include at least one selected from the group consisting of aluminum, iron, vanadium, and the like as a metal species other than the main component.
- the content of metal species other than the main component may be, for example, 3.5 to 30% by weight of the entire titanium alloy.
- Examples of the titanium alloy include 11-23 types, 50 types, 60 types, 61 types, and 80 types in the types described in JIS H4600: 2012.
- the nickel alloy is an alloy containing nickel as a main component, and may include at least one selected from the group consisting of iron, chromium, molybdenum and cobalt as a metal species other than the main component.
- the content of metal species other than the main component may be, for example, 20 to 75% by weight of the entire nickel alloy.
- the nickel alloy include NCF600, 601, 625, 750, 800, 800H, 825, NW0276, 4400, 6002, 6022 and the like in the alloy number described in JIS H4551: 2000.
- Stainless steel is an alloy containing iron as a main component, and may include at least one selected from the group consisting of chromium, nickel, molybdenum, and manganese as a metal species other than the main component.
- the content of metal species other than the main component may be, for example, 10 to 50% by weight of the entire stainless steel.
- Examples of stainless steel include SUS201, 303, 303Se, 304, 304L, 304NI, 305, 305JI, 309S, 310S, 316, 316L, 321, 347, 384, in the symbols of the type described in JIS G4303: 2005. XM7, 303F, 303C, 430, 430F, 434, 410, 416, 420J1, 420J2, 420F, 420C, 631J1 and the like.
- the material of the abrasive grains is not particularly limited.
- diamond such as titanium diboride, zirconium boride, tantalum boride, chromium boride, molybdenum boride, tungsten boride, lanthanum boride
- carbide such as boron carbide, silicon carbide
- aluminum oxide oxidation Abrasive grains substantially composed of any of oxides such as silicon, zirconium oxide, titanium oxide, and cerium oxide
- nitrides such as boron nitride (typically cubic boron nitride); and the like.
- abrasive grains having high hardness From the viewpoint of polishing efficiency, it is preferable to use abrasive grains having high hardness.
- abrasive grain substantially composed of either titanium diboride or diamond is exemplified.
- composition of the abrasive grains “substantially consisting of X” or “substantially consisting of X” means that the proportion of X in the abrasive grains (the purity of X) is the weight. It is 90% or more on a standard basis, preferably 95% or more, more preferably 97% or more, still more preferably 98% or more, for example 99% or more.
- abrasive grains in the technology disclosed herein include abrasive grains substantially composed of titanium diboride (hereinafter also referred to as “titanium diboride abrasive grains”). Titanium diboride used as an abrasive is typically a high hardness material having a Vickers hardness (Hv) of 2000 or more. In addition to such high hardness, titanium diboride abrasive grains are also preferable in that they have higher heat resistance (difficult to cause surface alteration due to heat) than diamond abrasive grains.
- titanium diboride abrasive grains are also preferable in that they have higher heat resistance (difficult to cause surface alteration due to heat) than diamond abrasive grains.
- titanium diboride abrasive grains include a method in which titanium and boron are directly reacted, a method in which titanium oxide and boron oxide are reduced, and a method in which a titanium and boron halide is vapor-phase reacted. (For example, see Japanese Patent Application Publication No. 5-139725).
- titanium diboride abrasive grains titanium diboride powder that can be generally obtained or manufactured can be used without particular limitation without being limited by the manufacturing method and form.
- Titanium diboride is a crystalline component that typically has a hexagonal crystal structure.
- the size of crystals is not limited, and an amorphous component may be included.
- an element other than titanium and boron for example, impurities such as carbon, iron, oxygen, nitrogen, silicon, aluminum, and zirconium, may be included as long as the performance of the abrasive grains is not significantly impaired.
- impurities such as carbon, iron, oxygen, nitrogen, silicon, aluminum, and zirconium, may be included as long as the performance of the abrasive grains is not significantly impaired.
- the purity of titanium diboride in the titanium diboride abrasive grains is higher.
- the purity of titanium diboride is preferably 90% by weight or more, preferably 95% by weight or more, and more preferably 99% by weight or more.
- the purity of titanium diboride can be measured by, for example, the measured value of titanium diboride using a fluorescent X-ray apparatus, or by the intensity of a diffraction peak by a powder X-ray diffraction method.
- the purity measured by the fluorescent X-ray apparatus and the purity measured based on the powder X-ray diffraction method are different, the measurement result with higher purity is adopted as the purity of the titanium diboride.
- the average particle diameter of the abrasive grains is typically 1 ⁇ m or more, and usually 2 ⁇ m or more. As the average particle size of the abrasive grains increases, the polishing efficiency tends to improve. From this viewpoint, the average particle diameter of the abrasive grains is preferably 2.2 ⁇ m or more, more preferably 2.5 ⁇ m or more, and further preferably 3 ⁇ m or more. In the present specification, unless otherwise specified, the average particle size of abrasive grains is a particle size (50%) at an integrated value of 50% in a volume-based particle size distribution determined by a laser diffraction / scattering particle size distribution measuring apparatus. Volume average particle diameter). As a laser diffraction / scattering particle size distribution measuring apparatus, for example, “LA-950” manufactured by Horiba, Ltd. can be used.
- the average particle diameter of the abrasive grains is typically 20 ⁇ m or less, and it is usually preferably 10 ⁇ m or less because the preferable retention disclosed herein is easily obtained.
- the average particle size of the abrasive grains decreases, the dispersion stability of the abrasive grains in the polishing composition tends to improve.
- the surface accuracy of the hard metal material after polishing tends to be improved. For example, the generation of scratches on the hard metal material due to polishing is suppressed, and the roughness of the hard material surface after polishing (arithmetic average roughness (Ra)) also tends to decrease. From these circumstances, the average particle diameter of the abrasive grains is preferably 8 ⁇ m or less, and more preferably 5 ⁇ m or less.
- the technique disclosed herein can be preferably implemented in a mode in which the retention rate of the abrasive grains with respect to the polishing surface plate is 5% or more.
- the retention rate is more preferably 10% or more, and further preferably 15% or more. Note that how to obtain the retention rate will be described later. Further, the polishing efficiency tends to decrease even if the retention rate of the abrasive grains with respect to the polishing surface plate is too high. Therefore, the retention is suitably 60% or less, preferably 55% or less, more preferably 40% or less, and even more preferably 35% or less.
- abrasive grains having the above-mentioned retention in the range of 5 to 60% can be mentioned.
- the processing force by the abrasive grains can be efficiently applied to the hard metal material.
- practical polishing efficiency can be achieved not only in the polishing mode using diamond abrasive grains but also in the polishing mode using other abrasive grains such as titanium diboride abrasive grains. Therefore, it is possible to suitably achieve both a reduction in raw material cost and a practical polishing efficiency. Better results can be achieved with abrasive grains having a retention rate in the range of 15-35%.
- the polishing composition disclosed herein contains at least abrasive grains, and typically contains abrasive grains and a solvent for dispersing the abrasive grains.
- abrasive grain 1 type can be used individually or in combination of 2 or more types among the abrasive grains mentioned above.
- a polishing composition containing at least titanium diboride abrasive grains as abrasive grains is preferable. In such a polishing composition, it is possible to suitably achieve both a reduction in raw material costs and a good polishing efficiency.
- the polishing composition disclosed herein may contain a combination of titanium diboride and other abrasive grains.
- the other abrasive grains include diamond; borides such as zirconium boride, tantalum boride, chromium boride, molybdenum boride, tungsten boride, and lanthanum boride; carbides such as boron carbide and silicon carbide; Abrasive grains substantially composed of any of oxides such as aluminum, silicon oxide, zirconium oxide, titanium oxide, and cerium oxide; nitrides such as boron nitride (typically cubic boron nitride); Can be mentioned. Quartz etc.
- the abrasive grain which consists of silicon oxide substantially is mentioned as an example of the abrasive grain which consists of silicon oxide substantially. From the viewpoint of polishing efficiency, it is generally advantageous that the proportion of titanium diboride abrasive grains in the entire abrasive grains contained in the polishing composition is high.
- the proportion of titanium diboride abrasive grains in the entire abrasive grains contained in the polishing composition is preferably 70% by weight or more, and more preferably 90% by weight or more.
- the solvent used in the polishing composition is not particularly limited as long as it can disperse the abrasive grains.
- water, and organic solvents such as alcohols, ethers, glycols, and various oils can be used.
- the oils include mineral oil, synthetic oil, vegetable oil and the like.
- Such a solvent can be used individually by 1 type or in combination of 2 or more types.
- water or a mixed solvent containing water as a main component can be preferably employed.
- 90% by volume or more of the solvent contained in the polishing composition is preferably water, and more preferably 95% by volume or more (typically 99 to 100% by volume) is water.
- ion exchange water deionized water
- pure water, or the like can be used.
- the abrasive grain concentration in the polishing composition is not particularly limited.
- the abrasive concentration can be 0.05% by weight or more, and usually 0.1% by weight or more is appropriate. As the abrasive concentration increases, a higher polishing efficiency tends to be obtained. From this viewpoint, the abrasive concentration is preferably 0.3% by weight or more, and more preferably 0.5% by weight or more. From the viewpoint of raw material cost, the abrasive concentration in the polishing composition is usually 20% by weight or less, preferably 10% by weight or less. In a preferred embodiment, the abrasive concentration can be 5% by weight or less, and may be 3% by weight or less.
- the abrasive concentration of the polishing composition is preferably 0.5 to 5% by weight, more preferably 0.5 to 3% by weight.
- the processing force by the abrasive grains can be efficiently applied to the hard metal material.
- the abrasive concentration can be 2% by weight or less (eg 0.5 to 2% by weight), further 1% by weight or less (eg 0.5 to 1% by weight). In this case, a practical polishing efficiency can be achieved. According to this aspect, it is possible to achieve both high cost reduction and raw material cost reduction.
- a polishing agent may be added to the polishing composition as necessary for the purpose of improving dispersion stability.
- the dispersant include polyphosphates such as sodium hexametaphosphate and sodium pyrophosphate.
- Other examples of the dispersant include water-soluble polymers and salts thereof.
- water-soluble polymers that can be used as dispersants include polycarboxylic acids, polycarboxylic acid salts, polysulfonic acid, polysulfonic acid salts, polyamines, polyamides, polyols, polysaccharides, and their derivatives and copolymers. Etc.
- polystyrenesulfonic acid and its salt polyisoprenesulfonic acid and its salt, polyacrylic acid and its salt, polymaleic acid, polyitaconic acid, polyvinyl acetate, polyvinyl alcohol, polyglycerin, polyvinylpyrrolidone, isoprenesulfonic acid And acrylic acid copolymer, polyvinylpyrrolidone-polyacrylic acid copolymer, polyvinylpyrrolidone-vinyl acetate copolymer, salt of naphthalenesulfonic acid formalin condensate, copolymer of diallylamine hydrochloride and sulfur dioxide, carboxymethylcellulose Carboxymethylcellulose salts, hydroxyethylcellulose, hydroxypropylcellulose, pullulan, chitosan, chitosan salts and the like.
- the weight average molecular weight (Mw) of the water-soluble polymer is not particularly limited. From the viewpoint of sufficiently exerting the effect of improving dispersion stability, it is usually appropriate that Mw is about 10,000 or more (for example, more than 50,000).
- the upper limit of Mw is not particularly limited, but it is usually about 800,000 or less (eg, 600,000 or less, typically 300,000 or less) from the viewpoints of filterability and detergency.
- Mw of the water-soluble polymer a value based on gel permeation chromatography (GPC) (aqueous, converted to polyethylene oxide) can be adopted.
- GPC gel permeation chromatography
- the content of the dispersant is, for example, 0.001% by weight or more, preferably 0.005% by weight. Above, more preferably 0.01% by weight or more, still more preferably 0.02% by weight or more.
- the content is usually suitably 10% by weight or less, preferably 5% by weight or less, for example 1% by weight or less.
- the surfactant here is typically a compound having a lower molecular weight than that of the dispersant, and preferably a compound having a molecular weight of less than 10,000.
- the surfactant in the polishing composition is adsorbed on the surface of abrasive grains and hard metal materials to change their surface state, change the dispersibility of abrasive grains, and form a protective film on the surface of hard metal materials You can make it. By this, the effect of suppressing generation
- any of anionic, nonionic, and cationic surfactants can be used. Usually, either one or both of an anionic surfactant and a nonionic surfactant can be preferably used.
- the nonionic surfactant include a polymer having a plurality of the same or different types of oxyalkylene units, and a compound in which an alcohol, hydrocarbon or aromatic ring is bonded to the polymer.
- polyoxyethylene alkyl ether polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene polyoxybutylene alkyl ether, polyoxyethylene polyoxypropylene polyoxybutylene alkyl ether, polyoxyethylene carboxylic acid ester, polyoxyethylene Oxyethylene carboxylic acid diester, polyoxyethylene polyoxypropylene carboxylic acid ester, polyoxyethylene polyoxybutylene carboxylic acid ester, polyoxyethylene polyoxypropylene polyoxybutylene carboxylic acid ester, polyoxyethylene polyoxypropylene copolymer, polyoxyethylene Polyoxybutylene copolymer, polyoxyethylene polyoxypropylene polyoxybutylene copolymer , Polyoxyethylene sorbitan fatty acid ester and polyoxyethylene sorbite fatty acid ester, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate, polyoleic
- anionic surfactants include sulfonic acid surfactants, and more specifically alkyl sulfonic acids, alkyl ether sulfonic acids, polyoxyethylene alkyl ether sulfonic acids, alkyl aromatic sulfonic acids, alkyl ether aromatics. Examples thereof include sulfonic acid and polyoxyethylene alkyl ether aromatic sulfonic acid.
- the content of the surfactant is, for example, 0.001% by weight or more, preferably 0.005. % By weight or more, more preferably 0.01% by weight or more, still more preferably 0.02% by weight or more.
- the content is usually suitably 10% by weight or less, preferably 5% by weight or less, for example 1% by weight or less.
- the pH of the polishing composition is not particularly limited. Usually, it is appropriate to adjust the pH of the polishing composition to 1 or more and 14 or less. When the pH of the polishing composition is within the above range, practical polishing efficiency is easily achieved. It is preferable to use a polishing composition having an appropriate pH in consideration of the vulnerability of the polishing object to pH.
- the pH of the polishing composition can be 1 or more and 8 or less, and more preferably 1 or more and 5 or less (for example, 2 or more and 4 or less).
- various acids, bases or salts thereof can be used.
- organic acids such as citric acid and other organic carboxylic acids, organic phosphonic acids and organic sulfonic acids, inorganic acids such as phosphoric acid, phosphorous acid, sulfuric acid, nitric acid, hydrochloric acid, boric acid and carbonic acid, tetramethoxyammonium
- organic bases such as oxide, trimethanolamine and monoethanolamine
- inorganic bases such as potassium hydroxide, sodium hydroxide and ammonia, and salts thereof can be used.
- acids and bases in particular, when a weak acid and a strong base, a strong acid and a weak base, or a combination of a weak acid and a weak base, a buffering action of pH can be expected. Moreover, when it is set as the combination of a strong acid and a strong base among said acids and bases, not only pH but electrical conductivity can be adjusted with a small amount.
- the polishing composition can contain components other than those described above, if necessary.
- such components include anticorrosives, chelating agents, preservatives, antifungal agents and the like.
- corrosion inhibitor include amines, pyridines, tetraphenylphosphonium salts, benzotriazoles, triazoles, tetrazoles, benzoic acid and the like.
- chelating agents include carboxylic acid chelating agents such as gluconic acid, amine chelating agents such as ethylenediamine, diethylenetriamine, and trimethyltetraamine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, triethylenetetraminehexaacetic acid.
- Polyaminopolycarboxylic chelating agents such as diethylenetriaminepentaacetic acid, 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta ( Methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, methanehydroxyphosphonic acid, 1-phosphonobutane-2,3,4-to Organic phosphonic acid chelating agents such as carboxylic acid, phenol derivatives, 1,3-diketones and the like.
- preservatives include sodium hypochlorite and the like.
- antifungal agents include oxazolines such as oxazolidine-2,5-dione.
- the method for producing the polishing composition disclosed herein is not particularly limited, and a known method can be appropriately employed.
- a polishing composition can be produced by mixing abrasive grains, a solvent, and other components used as necessary.
- the polishing composition as described above is typically used in the polishing of a hard metal material as an object to be polished in the form of a polishing liquid containing the polishing composition.
- the polishing liquid may be prepared, for example, by diluting a polishing composition. Or you may use polishing composition as polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein includes both the polishing liquid (working slurry) supplied to the object to be polished and the concentrated liquid diluted and used as the polishing liquid. .
- the polishing composition disclosed herein may be in a concentrated form (in the form of a concentrated liquid) before being supplied to the object to be polished.
- a polishing composition in the form of a concentrated solution is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like.
- the concentration factor can be, for example, about 1.5 to 50 times. From the viewpoint of storage stability of the concentrate, a concentration ratio of about 2 to 20 times (typically 2 to 10 times) is usually appropriate.
- the polishing composition in the form of a concentrated liquid can be suitably used in a mode in which a polishing liquid is prepared by diluting at a desired timing and the polishing liquid is supplied to a polishing object.
- the abrasive grains disclosed herein or the polishing composition containing the abrasive grains can be used for polishing an object to be polished (here, a hard metal material) using a general polishing apparatus.
- the present invention can be applied to both polishing using a single-side polishing apparatus and polishing using a double-side polishing apparatus.
- a single-side polishing apparatus a polishing object is held by using a holder called a carrier, and the surface plate is rotated by pressing the surface plate against one side of the polishing object while supplying the polishing composition. Polish one side.
- a polishing object is held using a holder called a carrier, a surface plate is pressed against the opposite surface of the polishing object while supplying the polishing composition from above, and they are rotated in a relative direction.
- lapping the method of directly polishing the polishing object using the surface of the surface plate.
- a polishing pad is attached to the surface of the surface plate, and polishing is performed between the attached polishing pad surface and the polishing object. This method is called policing.
- the abrasive grains disclosed herein or a polishing composition containing the abrasive grains are typically supplied to a metal polishing platen for polishing a hard metal material, that is, used for wrapping a hard metal material. It is done.
- the polishing surface plate used for lapping is required to have a property that can be easily processed in order to maintain the accuracy of the surface surface (surface facing the object to be polished). For this reason, a polishing surface plate in which at least the surface plate surface is made of a metal such as cast iron, tin, copper, or a copper alloy is preferably used.
- a plate having a groove on the surface of the platen may be used for the purpose of stably supplying the polishing composition and adjusting the processing pressure.
- the shape and depth of the groove are arbitrary, and for example, a groove in which a groove is engraved in a lattice shape or a radial shape can be used.
- the surface of the polishing surface plate (surface plate surface) preferably has a surface state in which the retention rate of abrasive grains applied to the polishing of the hard metal material by the polishing surface plate is in the above-described preferable range.
- the retention rate is a guideline for determining how much of the fine grooves on the surface plate have a shape and size suitable for holding abrasive grains (hereinafter also referred to as “effective grooves”) on the surface plate surface.
- effective grooves As a useful index.
- the shape of the minute groove is not particularly limited.
- the aspect ratio of the fine groove is not particularly limited.
- the concept of the microgroove here may include a shape generally called a dent or a dent.
- the width is a value of “average particle diameter + 0.1 ⁇ m” or more and the depth is a value of 1/2 or more of the average particle diameter in relation to the average particle diameter of the abrasive grains.
- a minute groove is recognized as an “effective groove” for the abrasive grains. If the width of the minute groove is a value of “average particle diameter + 0.1 ⁇ m” or more, it is considered that the opening has a sufficient opening size to fit the abrasive grains. Further, if the depth of the minute groove is a value of 1/2 or more of the average particle diameter, the fitted abrasive grains can be held to a certain degree of stability, and the polishing power of the abrasive grains is effective for the object to be polished. It is thought that it can act. Specifically, the retention rate is determined according to “retention rate measurement” described in Examples described later.
- the width of the micro-grooves recognized as effective grooves may be a value equal to or greater than “average particle diameter + 0.1 ⁇ m” (that is, a value larger than the average particle diameter by 0.1 ⁇ m or more), and the upper limit of the width is not particularly limited. . From the viewpoint of the stability of holding the abrasive grains, a micro-groove whose width is 7 times or less (preferably 5 times or less, for example, 3 times or less) of “average particle diameter +0.1 ⁇ m” is preferable.
- the depth of the fine groove to be recognized as an effective groove may be a value that is 1/2 or more of the average particle diameter (that is, 0.5 times or more of the average particle diameter), and the upper limit of the depth is not particularly limited.
- the value of the depth of the fine groove is preferably 0.5 times or more and 1.5 times or less of the average particle diameter, and more than 0.5 times and less than 1 time. More preferably, it is 0.5 times or more and less than 0.9 times.
- the technology disclosed herein is a value that is 1 to 5 times the width of “average particle size + 0.1 ⁇ m”, and the depth is a value that is 0.5 to 1 time less than the average particle size.
- the micro groove is recognized as a groove particularly suitable for holding abrasive grains (hereinafter also referred to as “high effective groove”), and can be preferably implemented in a mode in which the retention calculated for the high effective groove is within the above-described preferable range. .
- the retention rate can be adjusted to be within a preferable range disclosed herein, for example, by changing one or both of the average particle diameter of the abrasive grains used and the surface condition of the polishing surface plate.
- a method of changing the average particle diameter of the abrasive grains a method of changing the abrasive grains used to one having a different average particle diameter or a method of blending two or more kinds of abrasive grains having different particle diameters at an appropriate ratio Etc. can be adopted.
- the surface state of the polishing surface plate can be changed by adjusting the surface state of the polishing surface plate (that is, performing surface adjustment).
- the surface adjustment of the polishing surface plate can be performed, for example, by polishing the surface of the polishing surface plate using a surface adjustment slurry containing abrasive grains having an appropriate average particle diameter and roughening the surface to a certain roughness. it can. Therefore, it is desirable to use a material that easily roughens the polishing surface plate as the abrasive.
- abrasive grains that can be preferably used for surface adjustment of the polishing surface plate include high-hardness abrasive grains such as GC abrasive grains, titanium diboride abrasive grains, and boron carbide abrasive grains. Among these, GC abrasive grains are preferable.
- the size of the abrasive grains used for the surface adjustment of the polishing surface plate can be selected according to the average particle diameter of the abrasive grains used for polishing the hard metal material and the target retention value.
- abrasive grains for example, GC abrasive grains
- it can employ
- the surface-adjusting abrasive grains two or more kinds of abrasive grains having different one or both of size and material may be blended and used.
- the abrasive concentration in the surface adjustment slurry and the polishing conditions in the surface adjustment of the polishing surface plate using the slurry are not particularly limited, and can be appropriately set so as to obtain a desired surface state.
- the abrasive concentration in the surface conditioning slurry can be about 5 to 20% by weight (for example, 10 to 15% by weight).
- the matters disclosed by the present specification include abrasive grains used for surface adjustment of the polishing surface plate in any of the techniques disclosed herein. . Moreover, the slurry for surface adjustment containing this abrasive grain is contained.
- the surface adjusting abrasive an abrasive having an average particle diameter of 25 to 120 ⁇ m (more preferably 45 to 75 ⁇ m) can be preferably used.
- the abrasive grains may include at least one of GC abrasive grains, titanium diboride abrasive grains, and boron carbide abrasive grains. Among these, GC abrasive grains are preferable.
- the method for producing a hard metal product disclosed herein may further include a step of adjusting the surface of the polishing surface plate using the surface adjustment slurry.
- a hard metal material polishing comprising any of the hard metal material polishing compositions disclosed herein and any of the surface conditioning slurries disclosed herein.
- a composition set is included. This polishing composition set may be an embodiment containing abrasive grains constituting the composition instead of the hard metal material polishing composition. Further, the hard metal material polishing composition set may include an abrasive grain constituting the slurry instead of the surface conditioning slurry.
- the polishing conditions of the object to be polished are not particularly limited.
- the polishing pressure per 1 cm 2 of the processing area of the object to be polished is preferably 50 g or more, more preferably 100 g or more.
- the polishing pressure per 1 cm 2 of processing area is 1000 g or less.
- the linear velocity can generally vary due to the influence of the platen rotation speed, the carrier rotation speed, the size of the polishing object, the number of polishing objects, and the like.
- the linear velocity is preferably 10 m / min or more, and more preferably 30 m / min or more. Higher polishing efficiency tends to be obtained by increasing the linear velocity.
- the linear velocity is usually preferably 300 m / min or less, and more preferably 200 m / min or less.
- the supply amount of the polishing composition at the time of polishing is not particularly limited.
- the supply amount is preferably set so that the polishing composition is sufficiently supplied between the object to be polished and the polishing surface plate so as to be supplied to the entire surface without unevenness.
- a suitable supply amount may vary depending on the material of the object to be polished, the configuration of the polishing apparatus, and other polishing conditions. A person skilled in the art can find an appropriate supply amount without undue burden based on the description in the present specification and common general technical knowledge.
- the polishing composition disclosed herein may be recovered after use and reused (circulated). More specifically, the used polishing composition discharged from the polishing apparatus may be once collected in a tank and supplied from the tank to the polishing apparatus again. In this case, the amount of the used polishing composition as a waste liquid can be reduced. This is preferable from the viewpoint of reducing environmental burden and cost.
- the replenishing components may be added individually to the used polishing composition, or may be added to the used polishing composition in the form of a mixture containing two or more components in any concentration. .
- any of the abrasive grains disclosed herein or the abrasive grains it is preferable to perform further polishing after polishing (lapping) with a polishing surface plate using a polishing composition containing.
- the abrasive grains of the polishing composition used for the polishing are preferably those having an average particle diameter of 0.30 ⁇ m or less, more preferably from the viewpoint of reducing waviness, roughness, defects, etc. of the surface of the object to be polished. It is 0.25 ⁇ m or less, more preferably 0.20 ⁇ m or less.
- the average particle size of the abrasive grains contained in the polishing composition is preferably 0.01 ⁇ m or more, more preferably 0.02 ⁇ m or more.
- Abrasive grains suitably used in the polishing composition can be colloidal oxide particles such as colloidal silica.
- the average particle diameter of the abrasive grains in the polishing composition can be measured by a dynamic light scattering method using, for example, “Nanotrac UPA-UT151” manufactured by Nikkiso Co., Ltd.
- the pH of the polishing composition is not particularly limited, but is preferably 1 to 4 or 8 to 11.
- the pH of the polishing composition can be adjusted using various acids, bases or salts thereof as in the polishing composition used for polishing (lapping) with a polishing platen.
- the polishing composition may contain additives such as a chelating agent, a water-soluble polymer, a surfactant, an antiseptic, an antifungal agent, and an antirust agent as necessary.
- the polishing composition may be prepared by diluting a stock solution of the composition with water.
- Adjustment condition A As a polishing machine for adjusting the surface of the polishing surface plate, a lens polishing machine “AL-2” manufactured by Udagawa Seiko Co., Ltd. was used. The polishing surface plate as a processing object was set on the cast iron surface plate of the polishing machine, and the surface plate was rotated while supplying the surface adjustment slurry to adjust the surface. As the slurry for surface adjustment, a slurry containing GC abrasive grains having an average particle diameter of 48 ⁇ m and GC abrasive grains having an average particle diameter of 74 ⁇ m at a weight ratio of 1: 1 at a total concentration of 13% by weight was used.
- the slurry supply rate was 14 mL / min, and the platen speed was 130 rpm.
- the surface adjustment time was set in the range of 1.5 to 2 hours so that the in-plane flatness of the polishing platen was within ⁇ 5 ⁇ m.
- In-plane flatness of the polishing surface plate is measured along four lines intersecting at an angle of 45 degrees through the center of the object to be processed using a micro gauge “HYPREZ DIVISION” manufactured by Nippon Engis Co., Ltd. It was evaluated by performing.
- Adjustment conditions B to E The surface adjustment of the polishing surface plate was performed in the same manner as in the adjustment condition A, except that the average particle diameter of the abrasive grains contained in the surface adjustment slurry was changed as follows. All the abrasive grains used were GC abrasive grains manufactured by Fujimi Incorporated Co., Ltd., and the concentration of the abrasive grains in the surface adjustment slurry was 13 wt%. Adjustment condition B: average particle size 74 ⁇ m Adjustment condition C: average particle size 100 ⁇ m Condition D: Average particle size 48 ⁇ m Condition E: Average particle size 15 ⁇ m
- the surface of the polishing surface plate adjusted under the above conditions was observed with a shape measurement laser microscope “VK-X200” manufactured by Keyence Corporation.
- the observation locations were selected so that the portions other than the central portion of the polishing surface plate were increased along the radial direction of the polishing surface plate by 5 points and the distance from the center increased at substantially equal intervals.
- the width and depth of the microgrooves existing on the surface of the polishing surface plate were measured for a range on a line segment having a length of 100 ⁇ m along the radial direction of the polishing surface plate.
- the width of the fine groove is not less than “average particle diameter + 0.1 ⁇ m” and the depth is 1 of the average particle diameter.
- the minute groove having a value of / 2 or more is detected as an effective groove, and the retention ratio is calculated by calculating the ratio of the total width of the effective grooves to the total measurement length (that is, 500 ⁇ m) in the above five observation fields. Asked.
- variety of each microgroove was measured along the said line segment.
- abrasive grains As abrasive grains, four types of titanium diboride (TiB 2 ) powders having an average particle diameter of 2.1 ⁇ m, 2.6 ⁇ m, 3.7 ⁇ m, and 7.7 ⁇ m were prepared. After adding a certain amount of 20 g / L citric acid and 5 g / L polyacrylic acid as additives to these abrasive grains, the above-mentioned abrasive grains were added at a concentration of 0.2 to 20% by weight (the respective concentrations shown in Table 1). It was prepared so that it might become the polishing liquid contained in. The pH of the polishing liquid thus prepared was about 3.3 to 3.5.
- the average particle size of the titanium diboride powder is a value measured by a laser diffraction / scattering particle size distribution measuring apparatus “LA-950” manufactured by Horiba, Ltd.
- Examples 1 to 23 A polishing platen whose surface was adjusted under the conditions shown in Table 1 was attached to a polishing machine “Fact 200” manufactured by Nanofactor. Three stainless steel plates (disks made of SUS304 and having a diameter of 25.4 mm) as an object to be polished were set in this polishing machine. The polishing liquid having the composition shown in Table 1 was supplied to the polishing machine, and lapping was performed under the following conditions. [Wrapping conditions] Polishing load: 170 g / cm 2 Surface plate rotation speed: 75 rpm (linear speed 47 m / min) Polishing liquid supply rate: 7 mL / min
- Examples 24-26 A polishing pad was attached to a polishing surface plate whose surface was not adjusted, and polishing liquids having the compositions shown in Table 1 were supplied from the polishing liquids prepared above, and lapping was performed under the above conditions.
- a polishing pad a hard urethane pad “NP-3100N / Perforation” manufactured by Toyo Advanced Technology Co., Ltd. was used.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Provided are abrasive grains that are to be supplied to a polishing table for polishing a hard metal material at a higher efficiency. The abrasive grains have an average grain size of 2-10 μm and show a holding rate to the polishing table of 5-60%. Also provided are a polishing composition comprising the abrasive grains and a method for manufacturing a hard metal material using the composition.
Description
本発明は、硬質金属材料を研磨するための砥粒およびその利用に関する。詳しくは、上記砥粒、該砥粒を含む研磨用組成物、および該砥粒を含む研磨用組成物を用いた硬質金属製品製造方法に関する。本出願は、2014年9月29日に出願された日本国特許出願2014-198273号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to abrasive grains for polishing a hard metal material and use thereof. Specifically, the present invention relates to the above abrasive grains, a polishing composition containing the abrasive grains, and a method for producing a hard metal product using the polishing composition containing the abrasive grains. This application claims priority based on Japanese Patent Application No. 2014-198273 filed on Sep. 29, 2014, the entire contents of which are incorporated herein by reference.
ステンレス鋼やチタン合金等のような硬質金属材料は、一般に研磨加工が困難である。そのため、通常このような硬質金属材料のラッピングには、ダイヤモンドやCBN(立方晶窒化ホウ素)、炭化ホウ素などのような高硬度の砥粒が用いられている。例えば特許文献1には、ダイヤモンド砥粒を用いてステンレス鋼を研磨することが記載されている。特許文献2は、硬質金属材料ではなく炭化ケイ素単結晶の研磨に関する技術文献である。
Hard metal materials such as stainless steel and titanium alloys are generally difficult to polish. For this reason, high-hardness abrasive grains such as diamond, CBN (cubic boron nitride), boron carbide and the like are usually used for lapping of such hard metal materials. For example, Patent Document 1 describes polishing stainless steel using diamond abrasive grains. Patent Document 2 is a technical document relating to polishing of a silicon carbide single crystal rather than a hard metal material.
しかし、ダイヤモンドを始めとする高硬度の砥粒は概して高価である。このため、硬質金属材料の研磨加工において、実用的な研磨能率(研磨レート)を確保しつつ原料コストを低減することは容易ではない。
However, high-hardness abrasive grains such as diamond are generally expensive. For this reason, it is not easy to reduce the raw material cost while securing a practical polishing efficiency (polishing rate) in the polishing process of the hard metal material.
本発明は、かかる状況に鑑みてなされたものであって、硬質金属材料を効率よく研磨することのできる砥粒を提供することを目的とする。本発明の他の目的は、上記砥粒を含む研磨用組成物を提供することである。関連する他の目的は、上記砥粒を利用して硬質金属製品を製造する方法を提供することである。
This invention is made | formed in view of this condition, Comprising: It aims at providing the abrasive grain which can grind | polish a hard metal material efficiently. Another object of the present invention is to provide a polishing composition containing the above abrasive grains. Another related object is to provide a method of manufacturing a hard metal product using the abrasive grains.
本発明によると、研磨定盤に供給されて硬質金属材料を研磨するための砥粒が提供される。上記砥粒は、平均粒子径が2~10μmである。上記砥粒は、上記研磨定盤に対する保持率が5~60%である。
かかる砥粒は、上記保持率が適正な範囲にあり、かつ硬質金属の研磨(特にラッピング)に適した平均粒子径を有することにより、該砥粒による加工力を研磨対象物たる硬質金属材料に対して効率よく作用させることができる。したがって、上記砥粒によると、原料コストを抑えつつ実用的な研磨能率を達成することができる。 According to the present invention, an abrasive for polishing a hard metal material supplied to a polishing surface plate is provided. The abrasive grains have an average particle diameter of 2 to 10 μm. The abrasive grains have a retention rate of 5 to 60% with respect to the polishing surface plate.
Such abrasive grains have an average particle diameter suitable for polishing (particularly lapping) of the hard metal having the above-mentioned retention rate in an appropriate range, and thereby processing force by the abrasive grains is applied to the hard metal material as an object to be polished. It can be made to act efficiently. Therefore, according to the said abrasive grain, practical polishing efficiency can be achieved, suppressing raw material cost.
かかる砥粒は、上記保持率が適正な範囲にあり、かつ硬質金属の研磨(特にラッピング)に適した平均粒子径を有することにより、該砥粒による加工力を研磨対象物たる硬質金属材料に対して効率よく作用させることができる。したがって、上記砥粒によると、原料コストを抑えつつ実用的な研磨能率を達成することができる。 According to the present invention, an abrasive for polishing a hard metal material supplied to a polishing surface plate is provided. The abrasive grains have an average particle diameter of 2 to 10 μm. The abrasive grains have a retention rate of 5 to 60% with respect to the polishing surface plate.
Such abrasive grains have an average particle diameter suitable for polishing (particularly lapping) of the hard metal having the above-mentioned retention rate in an appropriate range, and thereby processing force by the abrasive grains is applied to the hard metal material as an object to be polished. It can be made to act efficiently. Therefore, according to the said abrasive grain, practical polishing efficiency can be achieved, suppressing raw material cost.
本発明によると、また、ここに開示されるいずれかの砥粒を含む研磨用組成物が提供される。上記研磨用組成物によると、硬質金属材料の研磨において、原料コストを抑えつつ実用的な研磨能率を達成することができる。上記研磨用組成物は、典型的には、上記砥粒を分散させる溶媒をさらに含む。
According to the present invention, there is also provided a polishing composition containing any of the abrasive grains disclosed herein. According to the polishing composition, practical polishing efficiency can be achieved while reducing raw material costs in polishing hard metal materials. The polishing composition typically further includes a solvent for dispersing the abrasive grains.
ここに開示される研磨用組成物の好ましい一態様では、該組成物における上記砥粒の濃度が0.3~10重量%である。砥粒濃度が上記範囲にある研磨用組成物において、原料コストの抑制と良好な研磨能率とがより好適に両立され得る。
In a preferred embodiment of the polishing composition disclosed herein, the concentration of the abrasive grains in the composition is 0.3 to 10% by weight. In the polishing composition having an abrasive grain concentration in the above range, it is possible to more suitably achieve both a reduction in raw material costs and a good polishing efficiency.
本発明によると、また、硬質金属製品を製造する方法が提供される。その方法は、典型的には、研磨定盤を備えた研磨装置に研磨対象物としての硬質金属材料をセットすることを含む。また、上記研磨定盤に研磨用組成物を供給することを含む。上記研磨用組成物としては、ここに開示されるいずれかの砥粒を含む研磨用組成物を用いることができる。上記方法は、さらに、上記研磨対象物に対して上記研磨定盤を相対的に移動させることにより上記研磨対象物を研磨することを含む。かかる方法によると、原料コストを抑えつつ、研磨された表面を有する硬質金属製品を効率よく製造することができる。
According to the present invention, a method for manufacturing a hard metal product is also provided. The method typically includes setting a hard metal material as an object to be polished in a polishing apparatus equipped with a polishing platen. The method also includes supplying a polishing composition to the polishing surface plate. As the polishing composition, a polishing composition containing any of the abrasive grains disclosed herein can be used. The method further includes polishing the polishing object by moving the polishing platen relative to the polishing object. According to this method, a hard metal product having a polished surface can be efficiently produced while suppressing raw material costs.
また、本発明の他の側面として、硬質金属材料の研磨方法が提供される。その方法は、典型的には、研磨定盤を備えた研磨装置に研磨対象物としての硬質金属材料をセットすることを含む。また、上記研磨定盤に研磨用組成物を供給することを含む。上記研磨用組成物としては、ここに開示されるいずれかの砥粒を含む研磨用組成物を用いることができる。上記方法は、さらに、上記研磨対象物に対して上記研磨定盤を相対的に移動させることにより上記研磨対象物を研磨することを含む。かかる方法によると、原料コストを抑えつつ、硬質金属材料を効率よく研磨することができる。
Also, as another aspect of the present invention, a method for polishing a hard metal material is provided. The method typically includes setting a hard metal material as an object to be polished in a polishing apparatus equipped with a polishing platen. The method also includes supplying a polishing composition to the polishing surface plate. As the polishing composition, a polishing composition containing any of the abrasive grains disclosed herein can be used. The method further includes polishing the polishing object by moving the polishing platen relative to the polishing object. According to this method, the hard metal material can be efficiently polished while suppressing the raw material cost.
ここに開示されるいずれかの技術における研磨定盤は、平均粒子径が25~120μmの緑色炭化ケイ素砥粒(以下「GC砥粒」ともいう。)により表面調整されたものであり得る。かかる研磨定盤によると、ここに開示される砥粒による加工力を研磨対象物たる硬質金属材料に対して効率よく作用させることができる。
The polishing platen according to any of the techniques disclosed herein may be one whose surface is adjusted with green silicon carbide abrasive grains (hereinafter also referred to as “GC abrasive grains”) having an average particle diameter of 25 to 120 μm. According to such a polishing surface plate, the processing force by the abrasive grains disclosed herein can be efficiently applied to the hard metal material that is an object to be polished.
ここに開示されるいずれかの技術における研磨定盤としては、鋳鉄製の表面を備えるものを好ましく採用し得る。このような研磨定盤(鋳鉄定盤)を用いる研磨において、本発明の効果が好適に発揮され得る。
As the polishing surface plate in any of the techniques disclosed herein, one having a cast iron surface can be preferably employed. In the polishing using such a polishing surface plate (cast iron surface plate), the effects of the present invention can be suitably exhibited.
ここに開示されるいずれかの技術における砥粒の好適例として、実質的に二ホウ化チタンからなる砥粒が挙げられる。このような砥粒によると、原料コストの抑制と良好な研磨能率とが特に好適に両立され得る。
A preferred example of the abrasive grains in any of the techniques disclosed herein is an abrasive grain substantially composed of titanium diboride. According to such abrasive grains, it is possible to particularly suitably achieve both a reduction in raw material costs and a good polishing efficiency.
ここに開示されるいずれかの技術における硬質金属材料の好適例として、ステンレス鋼が挙げられる。すなわち、ここに開示される技術は、ステンレス鋼の研磨に好ましく適用され得る。なかでも、ステンレス鋼のラッピングへの適用が特に有意義である。
As a suitable example of the hard metal material in any of the techniques disclosed herein, stainless steel can be cited. That is, the technique disclosed herein can be preferably applied to the polishing of stainless steel. Among these, application to stainless steel wrapping is particularly significant.
以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
<研磨対象物>
ここに開示される技術は、各種の硬質金属材料の研磨に好ましく適用され得る。ここで硬質金属材料とは、金属材料のなかでも比較的硬度の高い材料を意味し、具体的にはビッカース硬度が100HVを超える金属材料を指す。ビッカース硬度は、押込み圧力に対する堅牢さを示すものであり、具体的には、JIS Z2244:2009に記載の方法により測定される硬度である。
上記硬質金属材料は、単体であってもよく合金であってもよい。硬質金属材料の代表例としては、チタン合金、ニッケル合金、ステンレス鋼のような合金材料が挙げられる。 <Polishing object>
The technique disclosed here can be preferably applied to polishing of various hard metal materials. Here, the hard metal material means a material having a relatively high hardness among metal materials, and specifically refers to a metal material having a Vickers hardness exceeding 100 HV. The Vickers hardness indicates the fastness to the indentation pressure, and specifically is a hardness measured by the method described in JIS Z2244: 2009.
The hard metal material may be a simple substance or an alloy. Typical examples of the hard metal material include alloy materials such as titanium alloy, nickel alloy, and stainless steel.
ここに開示される技術は、各種の硬質金属材料の研磨に好ましく適用され得る。ここで硬質金属材料とは、金属材料のなかでも比較的硬度の高い材料を意味し、具体的にはビッカース硬度が100HVを超える金属材料を指す。ビッカース硬度は、押込み圧力に対する堅牢さを示すものであり、具体的には、JIS Z2244:2009に記載の方法により測定される硬度である。
上記硬質金属材料は、単体であってもよく合金であってもよい。硬質金属材料の代表例としては、チタン合金、ニッケル合金、ステンレス鋼のような合金材料が挙げられる。 <Polishing object>
The technique disclosed here can be preferably applied to polishing of various hard metal materials. Here, the hard metal material means a material having a relatively high hardness among metal materials, and specifically refers to a metal material having a Vickers hardness exceeding 100 HV. The Vickers hardness indicates the fastness to the indentation pressure, and specifically is a hardness measured by the method described in JIS Z2244: 2009.
The hard metal material may be a simple substance or an alloy. Typical examples of the hard metal material include alloy materials such as titanium alloy, nickel alloy, and stainless steel.
チタン合金は、チタンを主成分とする合金であって、主成分以外の金属種として例えばアルミニウム、鉄およびバナジウム等からなる群から選択される少なくとも1種を含み得る。主成分以外の金属種の含有量は、チタン合金全体の例えば3.5~30重量%であり得る。チタン合金としては、例えば、JIS H4600:2012に記載される種類において、11~23種、50種、60種、61種、および80種のものが挙げられる。
The titanium alloy is an alloy mainly composed of titanium, and may include at least one selected from the group consisting of aluminum, iron, vanadium, and the like as a metal species other than the main component. The content of metal species other than the main component may be, for example, 3.5 to 30% by weight of the entire titanium alloy. Examples of the titanium alloy include 11-23 types, 50 types, 60 types, 61 types, and 80 types in the types described in JIS H4600: 2012.
ニッケル合金は、ニッケルを主成分とする合金であって、主成分以外の金属種として例えば鉄、クロム、モリブデンおよびコバルトからなる群から選択される少なくとも1種を含み得る。主成分以外の金属種の含有量は、ニッケル合金全体の例えば20~75重量%であり得る。ニッケル合金としては、例えば、JIS H4551:2000に記載される合金番号において、NCF600、601、625、750、800、800H、825、NW0276、4400、6002、6022等が挙げられる。
The nickel alloy is an alloy containing nickel as a main component, and may include at least one selected from the group consisting of iron, chromium, molybdenum and cobalt as a metal species other than the main component. The content of metal species other than the main component may be, for example, 20 to 75% by weight of the entire nickel alloy. Examples of the nickel alloy include NCF600, 601, 625, 750, 800, 800H, 825, NW0276, 4400, 6002, 6022 and the like in the alloy number described in JIS H4551: 2000.
ここに開示される技術は、ステンレス鋼の研磨に特に好ましく適用され得る。ステンレス鋼は、鉄を主成分とする合金であって、主成分以外の金属種として例えばクロム、ニッケル、モリブデンおよびマンガンからなる群から選択される少なくとも1種を含み得る。主成分以外の金属種の含有量は、ステンレス鋼全体の例えば10~50重量%であり得る。ステンレス鋼としては、例えば、JIS G4303:2005に記載される種類の記号において、SUS201、303、303Se、304、304L、304NI、305、305JI、309S、310S、316、316L、321、347、384、XM7、303F、303C、430、430F、434、410、416、420J1、420J2、420F、420C、631J1等が挙げられる。
The technique disclosed herein can be particularly preferably applied to the polishing of stainless steel. Stainless steel is an alloy containing iron as a main component, and may include at least one selected from the group consisting of chromium, nickel, molybdenum, and manganese as a metal species other than the main component. The content of metal species other than the main component may be, for example, 10 to 50% by weight of the entire stainless steel. Examples of stainless steel include SUS201, 303, 303Se, 304, 304L, 304NI, 305, 305JI, 309S, 310S, 316, 316L, 321, 347, 384, in the symbols of the type described in JIS G4303: 2005. XM7, 303F, 303C, 430, 430F, 434, 410, 416, 420J1, 420J2, 420F, 420C, 631J1 and the like.
<砥粒>
ここに開示される技術において、砥粒の材質は特に限定されない。例えば、ダイヤモンド;二ホウ化チタン、ホウ化ジルコニウム、ホウ化タンタル、ホウ化クロム、ホウ化モリブデン、ホウ化タングステン、ホウ化ランタンなどのホウ化物;炭化ホウ素、炭化ケイ素などの炭化物;酸化アルミニウム、酸化ケイ素、酸化ジルコニウム、酸化チタン、酸化セリウムなどの酸化物;窒化ホウ素(典型的には、立方晶窒化ホウ素)などの窒化物;などのいずれかから実質的に構成される砥粒が挙げられる。研磨能率の観点から、硬度の高い砥粒の使用が好ましい。かかる観点から特に好ましい砥粒として、二ホウ化チタンおよびダイヤモンドのいずれかから実質的に構成される砥粒が例示される。 <Abrasive>
In the technique disclosed here, the material of the abrasive grains is not particularly limited. For example, diamond; boride such as titanium diboride, zirconium boride, tantalum boride, chromium boride, molybdenum boride, tungsten boride, lanthanum boride; carbide such as boron carbide, silicon carbide; aluminum oxide, oxidation Abrasive grains substantially composed of any of oxides such as silicon, zirconium oxide, titanium oxide, and cerium oxide; nitrides such as boron nitride (typically cubic boron nitride); and the like. From the viewpoint of polishing efficiency, it is preferable to use abrasive grains having high hardness. As a particularly preferable abrasive grain from such a viewpoint, an abrasive grain substantially composed of either titanium diboride or diamond is exemplified.
ここに開示される技術において、砥粒の材質は特に限定されない。例えば、ダイヤモンド;二ホウ化チタン、ホウ化ジルコニウム、ホウ化タンタル、ホウ化クロム、ホウ化モリブデン、ホウ化タングステン、ホウ化ランタンなどのホウ化物;炭化ホウ素、炭化ケイ素などの炭化物;酸化アルミニウム、酸化ケイ素、酸化ジルコニウム、酸化チタン、酸化セリウムなどの酸化物;窒化ホウ素(典型的には、立方晶窒化ホウ素)などの窒化物;などのいずれかから実質的に構成される砥粒が挙げられる。研磨能率の観点から、硬度の高い砥粒の使用が好ましい。かかる観点から特に好ましい砥粒として、二ホウ化チタンおよびダイヤモンドのいずれかから実質的に構成される砥粒が例示される。 <Abrasive>
In the technique disclosed here, the material of the abrasive grains is not particularly limited. For example, diamond; boride such as titanium diboride, zirconium boride, tantalum boride, chromium boride, molybdenum boride, tungsten boride, lanthanum boride; carbide such as boron carbide, silicon carbide; aluminum oxide, oxidation Abrasive grains substantially composed of any of oxides such as silicon, zirconium oxide, titanium oxide, and cerium oxide; nitrides such as boron nitride (typically cubic boron nitride); and the like. From the viewpoint of polishing efficiency, it is preferable to use abrasive grains having high hardness. As a particularly preferable abrasive grain from such a viewpoint, an abrasive grain substantially composed of either titanium diboride or diamond is exemplified.
なお、本明細書において、砥粒の組成について「実質的にXからなる」または「実質的にXから構成される」とは、当該砥粒に占めるXの割合(Xの純度)が、重量基準で90%以上、好ましくは95%以上、より好ましくは97%以上、さらに好ましくは98%以上、例えば99%以上であることをいう。
In the present specification, regarding the composition of the abrasive grains, “substantially consisting of X” or “substantially consisting of X” means that the proportion of X in the abrasive grains (the purity of X) is the weight. It is 90% or more on a standard basis, preferably 95% or more, more preferably 97% or more, still more preferably 98% or more, for example 99% or more.
ここに開示される技術における砥粒の好適例として、実質的に二ホウ化チタンからなる砥粒(以下「二ホウ化チタン砥粒」ともいう。)が挙げられる。砥粒として用いられる二ホウ化チタンは、典型的には2000以上のビッカース硬度(Hv)を有する高硬度な材料である。二ホウ化チタン砥粒は、このように高硬度であることに加えて、ダイヤモンド砥粒に比べて耐熱性が高い(熱による表面変質が生じにくい)点でも好ましい。
二ホウ化チタン砥粒を得る方法としては、チタンとホウ素とを直接反応させる方法のほか、酸化チタンと酸化ホウ素を還元する方法や、チタンとホウ素のハロゲン化物を気相反応させる方法などが知られている(例えば、日本国特許出願公開平5-139725号公報を参照)。ここに開示される技術において、二ホウ化チタン砥粒としては、製造方法や形態にとらわれず、一般に入手または製造可能な二ホウ化チタン粉末を特に制限なく使用することができる。 Preferable examples of the abrasive grains in the technology disclosed herein include abrasive grains substantially composed of titanium diboride (hereinafter also referred to as “titanium diboride abrasive grains”). Titanium diboride used as an abrasive is typically a high hardness material having a Vickers hardness (Hv) of 2000 or more. In addition to such high hardness, titanium diboride abrasive grains are also preferable in that they have higher heat resistance (difficult to cause surface alteration due to heat) than diamond abrasive grains.
Known methods for obtaining titanium diboride abrasive grains include a method in which titanium and boron are directly reacted, a method in which titanium oxide and boron oxide are reduced, and a method in which a titanium and boron halide is vapor-phase reacted. (For example, see Japanese Patent Application Publication No. 5-139725). In the technology disclosed herein, as the titanium diboride abrasive grains, titanium diboride powder that can be generally obtained or manufactured can be used without particular limitation without being limited by the manufacturing method and form.
二ホウ化チタン砥粒を得る方法としては、チタンとホウ素とを直接反応させる方法のほか、酸化チタンと酸化ホウ素を還元する方法や、チタンとホウ素のハロゲン化物を気相反応させる方法などが知られている(例えば、日本国特許出願公開平5-139725号公報を参照)。ここに開示される技術において、二ホウ化チタン砥粒としては、製造方法や形態にとらわれず、一般に入手または製造可能な二ホウ化チタン粉末を特に制限なく使用することができる。 Preferable examples of the abrasive grains in the technology disclosed herein include abrasive grains substantially composed of titanium diboride (hereinafter also referred to as “titanium diboride abrasive grains”). Titanium diboride used as an abrasive is typically a high hardness material having a Vickers hardness (Hv) of 2000 or more. In addition to such high hardness, titanium diboride abrasive grains are also preferable in that they have higher heat resistance (difficult to cause surface alteration due to heat) than diamond abrasive grains.
Known methods for obtaining titanium diboride abrasive grains include a method in which titanium and boron are directly reacted, a method in which titanium oxide and boron oxide are reduced, and a method in which a titanium and boron halide is vapor-phase reacted. (For example, see Japanese Patent Application Publication No. 5-139725). In the technology disclosed herein, as the titanium diboride abrasive grains, titanium diboride powder that can be generally obtained or manufactured can be used without particular limitation without being limited by the manufacturing method and form.
二ホウ化チタンは、典型的には六方晶の結晶構造を持つ結晶性成分である。ここに開示される二ホウ化チタン砥粒において、結晶のサイズに制限はなく、また非晶質成分が含まれていてもよい。また、砥粒の性能を顕著に損なわない限度において、チタンおよびホウ素以外の元素、例えば炭素、鉄、酸素、窒素、ケイ素、アルミニウム、ジルコニウム等の不純物が含まれていてもよい。
通常、二ホウ化チタン砥粒における二ホウ化チタンの純度は高いほうが有利である。二ホウ化チタンの純度は、具体的には90重量%以上であることが好ましく、95重量%以上であることが好ましく、99重量%以上であることがより好ましい。
二ホウ化チタンの純度は、例えば蛍光X線装置による二ホウ化チタンの測定値により測定可能であるほか、粉末X線回折法による回折ピークの強度によっても測定することが可能である。なお、蛍光X線装置により測定される純度と粉末X線回折法に基づいて測定される純度とが相違する場合には、より高純度となる測定結果を当該二ホウ化チタンの純度として採用するものとする。 Titanium diboride is a crystalline component that typically has a hexagonal crystal structure. In the titanium diboride abrasive grains disclosed herein, the size of crystals is not limited, and an amorphous component may be included. Further, an element other than titanium and boron, for example, impurities such as carbon, iron, oxygen, nitrogen, silicon, aluminum, and zirconium, may be included as long as the performance of the abrasive grains is not significantly impaired.
Usually, it is advantageous that the purity of titanium diboride in the titanium diboride abrasive grains is higher. Specifically, the purity of titanium diboride is preferably 90% by weight or more, preferably 95% by weight or more, and more preferably 99% by weight or more.
The purity of titanium diboride can be measured by, for example, the measured value of titanium diboride using a fluorescent X-ray apparatus, or by the intensity of a diffraction peak by a powder X-ray diffraction method. In addition, when the purity measured by the fluorescent X-ray apparatus and the purity measured based on the powder X-ray diffraction method are different, the measurement result with higher purity is adopted as the purity of the titanium diboride. Shall.
通常、二ホウ化チタン砥粒における二ホウ化チタンの純度は高いほうが有利である。二ホウ化チタンの純度は、具体的には90重量%以上であることが好ましく、95重量%以上であることが好ましく、99重量%以上であることがより好ましい。
二ホウ化チタンの純度は、例えば蛍光X線装置による二ホウ化チタンの測定値により測定可能であるほか、粉末X線回折法による回折ピークの強度によっても測定することが可能である。なお、蛍光X線装置により測定される純度と粉末X線回折法に基づいて測定される純度とが相違する場合には、より高純度となる測定結果を当該二ホウ化チタンの純度として採用するものとする。 Titanium diboride is a crystalline component that typically has a hexagonal crystal structure. In the titanium diboride abrasive grains disclosed herein, the size of crystals is not limited, and an amorphous component may be included. Further, an element other than titanium and boron, for example, impurities such as carbon, iron, oxygen, nitrogen, silicon, aluminum, and zirconium, may be included as long as the performance of the abrasive grains is not significantly impaired.
Usually, it is advantageous that the purity of titanium diboride in the titanium diboride abrasive grains is higher. Specifically, the purity of titanium diboride is preferably 90% by weight or more, preferably 95% by weight or more, and more preferably 99% by weight or more.
The purity of titanium diboride can be measured by, for example, the measured value of titanium diboride using a fluorescent X-ray apparatus, or by the intensity of a diffraction peak by a powder X-ray diffraction method. In addition, when the purity measured by the fluorescent X-ray apparatus and the purity measured based on the powder X-ray diffraction method are different, the measurement result with higher purity is adopted as the purity of the titanium diboride. Shall.
砥粒の平均粒子径は、典型的には1μm以上であり、通常は2μm以上であることが適当である。砥粒の平均粒子径が大きくなるにつれて、研磨能率は向上する傾向にある。かかる観点から、砥粒の平均粒子径としては、2.2μm以上が好ましく、2.5μm以上がより好ましく、3μm以上がさらに好ましい。
なお、本明細書中において砥粒の平均粒子径とは、特記しない限り、レーザ回折/散乱式粒子径分布測定装置によって求められる体積基準の粒度分布における積算値50%での粒径(50%体積平均粒子径)を指すものとする。レーザ回折/散乱式粒子径分布測定装置としては、例えば、株式会社堀場製作所製「LA-950」を用いることができる。 The average particle diameter of the abrasive grains is typically 1 μm or more, and usually 2 μm or more. As the average particle size of the abrasive grains increases, the polishing efficiency tends to improve. From this viewpoint, the average particle diameter of the abrasive grains is preferably 2.2 μm or more, more preferably 2.5 μm or more, and further preferably 3 μm or more.
In the present specification, unless otherwise specified, the average particle size of abrasive grains is a particle size (50%) at an integrated value of 50% in a volume-based particle size distribution determined by a laser diffraction / scattering particle size distribution measuring apparatus. Volume average particle diameter). As a laser diffraction / scattering particle size distribution measuring apparatus, for example, “LA-950” manufactured by Horiba, Ltd. can be used.
なお、本明細書中において砥粒の平均粒子径とは、特記しない限り、レーザ回折/散乱式粒子径分布測定装置によって求められる体積基準の粒度分布における積算値50%での粒径(50%体積平均粒子径)を指すものとする。レーザ回折/散乱式粒子径分布測定装置としては、例えば、株式会社堀場製作所製「LA-950」を用いることができる。 The average particle diameter of the abrasive grains is typically 1 μm or more, and usually 2 μm or more. As the average particle size of the abrasive grains increases, the polishing efficiency tends to improve. From this viewpoint, the average particle diameter of the abrasive grains is preferably 2.2 μm or more, more preferably 2.5 μm or more, and further preferably 3 μm or more.
In the present specification, unless otherwise specified, the average particle size of abrasive grains is a particle size (50%) at an integrated value of 50% in a volume-based particle size distribution determined by a laser diffraction / scattering particle size distribution measuring apparatus. Volume average particle diameter). As a laser diffraction / scattering particle size distribution measuring apparatus, for example, “LA-950” manufactured by Horiba, Ltd. can be used.
また、砥粒の平均粒子径は、典型的には20μm以下であり、ここに開示される好ましい保持率が得られやすいことから、通常は10μm以下であることが好ましい。砥粒の平均粒子径が小さくなるにつれて、研磨用組成物中における砥粒の分散安定性が向上する傾向にある。また、研磨後の硬質金属材料の表面精度も向上する傾向にある。例えば、研磨による硬質金属材料へのスクラッチ発生が抑制され、研磨後の硬質材料表面の粗さ(算術平均粗さ(Ra))も低下する傾向にある。これらの事情から、砥粒の平均粒子径としては、8μm以下が好ましく、5μm以下がより好ましい。
Further, the average particle diameter of the abrasive grains is typically 20 μm or less, and it is usually preferably 10 μm or less because the preferable retention disclosed herein is easily obtained. As the average particle size of the abrasive grains decreases, the dispersion stability of the abrasive grains in the polishing composition tends to improve. In addition, the surface accuracy of the hard metal material after polishing tends to be improved. For example, the generation of scratches on the hard metal material due to polishing is suppressed, and the roughness of the hard material surface after polishing (arithmetic average roughness (Ra)) also tends to decrease. From these circumstances, the average particle diameter of the abrasive grains is preferably 8 μm or less, and more preferably 5 μm or less.
ここに開示される技術は、上記砥粒の研磨定盤に対する保持率が5%以上である態様で好ましく実施され得る。より高い研磨能率を得る観点から、上記保持率は、10%以上であることがより好ましく、15%以上であることがさらに好ましい。なお、保持率の求めかたについては後述する。
また、上記砥粒の研磨定盤に対する保持率が高すぎても研磨能率は低下する傾向にある。そのため、上記保持率としては、60%以下が適当であり、55%以下が好ましく、40%以下がより好ましく、35%以下がさらに好ましい。 The technique disclosed herein can be preferably implemented in a mode in which the retention rate of the abrasive grains with respect to the polishing surface plate is 5% or more. From the viewpoint of obtaining higher polishing efficiency, the retention rate is more preferably 10% or more, and further preferably 15% or more. Note that how to obtain the retention rate will be described later.
Further, the polishing efficiency tends to decrease even if the retention rate of the abrasive grains with respect to the polishing surface plate is too high. Therefore, the retention is suitably 60% or less, preferably 55% or less, more preferably 40% or less, and even more preferably 35% or less.
また、上記砥粒の研磨定盤に対する保持率が高すぎても研磨能率は低下する傾向にある。そのため、上記保持率としては、60%以下が適当であり、55%以下が好ましく、40%以下がより好ましく、35%以下がさらに好ましい。 The technique disclosed herein can be preferably implemented in a mode in which the retention rate of the abrasive grains with respect to the polishing surface plate is 5% or more. From the viewpoint of obtaining higher polishing efficiency, the retention rate is more preferably 10% or more, and further preferably 15% or more. Note that how to obtain the retention rate will be described later.
Further, the polishing efficiency tends to decrease even if the retention rate of the abrasive grains with respect to the polishing surface plate is too high. Therefore, the retention is suitably 60% or less, preferably 55% or less, more preferably 40% or less, and even more preferably 35% or less.
ここに開示される砥粒の一好適例として、上記保持率が5~60%の範囲にある砥粒が挙げられる。このような砥粒を上記研磨定盤に供給して行われる研磨によると、該砥粒による加工力を硬質金属材料に対して効率よく作用させることができる。このため、ダイヤモンド砥粒を用いる研磨態様のほか、他の砥粒、例えば二ホウ化チタン砥粒を用いる研磨態様においても、実用的な研磨能率が達成され得る。したがって、原料コストの抑制と実用的な研磨能率とを好適に両立することができる。上記保持率が15~35%の範囲にある砥粒によると、より良好な結果が実現され得る。
As a preferred example of the abrasive grains disclosed herein, abrasive grains having the above-mentioned retention in the range of 5 to 60% can be mentioned. According to the polishing performed by supplying such abrasive grains to the polishing surface plate, the processing force by the abrasive grains can be efficiently applied to the hard metal material. For this reason, practical polishing efficiency can be achieved not only in the polishing mode using diamond abrasive grains but also in the polishing mode using other abrasive grains such as titanium diboride abrasive grains. Therefore, it is possible to suitably achieve both a reduction in raw material cost and a practical polishing efficiency. Better results can be achieved with abrasive grains having a retention rate in the range of 15-35%.
<研磨用組成物>
ここに開示される研磨用組成物は、少なくとも砥粒を含み、典型的には砥粒と該砥粒を分散させる溶媒とを含む。上記砥粒としては、上述した砥粒のうち1種を単独でまたは2種以上を組み合わせて用いることができる。例えば、砥粒として少なくとも二ホウ化チタン砥粒を含む研磨用組成物が好ましい。かかる研磨用組成物において、原料コストの抑制と良好な研磨能率とが好適に両立され得る。 <Polishing composition>
The polishing composition disclosed herein contains at least abrasive grains, and typically contains abrasive grains and a solvent for dispersing the abrasive grains. As said abrasive grain, 1 type can be used individually or in combination of 2 or more types among the abrasive grains mentioned above. For example, a polishing composition containing at least titanium diboride abrasive grains as abrasive grains is preferable. In such a polishing composition, it is possible to suitably achieve both a reduction in raw material costs and a good polishing efficiency.
ここに開示される研磨用組成物は、少なくとも砥粒を含み、典型的には砥粒と該砥粒を分散させる溶媒とを含む。上記砥粒としては、上述した砥粒のうち1種を単独でまたは2種以上を組み合わせて用いることができる。例えば、砥粒として少なくとも二ホウ化チタン砥粒を含む研磨用組成物が好ましい。かかる研磨用組成物において、原料コストの抑制と良好な研磨能率とが好適に両立され得る。 <Polishing composition>
The polishing composition disclosed herein contains at least abrasive grains, and typically contains abrasive grains and a solvent for dispersing the abrasive grains. As said abrasive grain, 1 type can be used individually or in combination of 2 or more types among the abrasive grains mentioned above. For example, a polishing composition containing at least titanium diboride abrasive grains as abrasive grains is preferable. In such a polishing composition, it is possible to suitably achieve both a reduction in raw material costs and a good polishing efficiency.
ここに開示される研磨用組成物は、二ホウ化チタンと他の砥粒とを組み合わせて含有していてもよい。上記他の砥粒の例としては、ダイヤモンド;ホウ化ジルコニウム、ホウ化タンタル、ホウ化クロム、ホウ化モリブデン、ホウ化タングステン、ホウ化ランタンなどのホウ化物;炭化ホウ素、炭化ケイ素などの炭化物;酸化アルミニウム、酸化ケイ素、酸化ジルコニウム、酸化チタン、酸化セリウムなどの酸化物;窒化ホウ素(典型的には、立方晶窒化ホウ素)などの窒化物;などのいずれかから実質的に構成される砥粒が挙げられる。実質的に酸化ケイ素からなる砥粒の例としては石英などが挙げられる。
研磨能率の観点から、研磨用組成物に含まれる砥粒全体に占める二ホウ化チタン砥粒の割合は、概して高いほうが有利である。例えば、研磨用組成物に含まれる砥粒全体に占める二ホウ化チタン砥粒の割合は、70重量%以上であることが好ましく、90重量%以上であることがより好ましい。 The polishing composition disclosed herein may contain a combination of titanium diboride and other abrasive grains. Examples of the other abrasive grains include diamond; borides such as zirconium boride, tantalum boride, chromium boride, molybdenum boride, tungsten boride, and lanthanum boride; carbides such as boron carbide and silicon carbide; Abrasive grains substantially composed of any of oxides such as aluminum, silicon oxide, zirconium oxide, titanium oxide, and cerium oxide; nitrides such as boron nitride (typically cubic boron nitride); Can be mentioned. Quartz etc. are mentioned as an example of the abrasive grain which consists of silicon oxide substantially.
From the viewpoint of polishing efficiency, it is generally advantageous that the proportion of titanium diboride abrasive grains in the entire abrasive grains contained in the polishing composition is high. For example, the proportion of titanium diboride abrasive grains in the entire abrasive grains contained in the polishing composition is preferably 70% by weight or more, and more preferably 90% by weight or more.
研磨能率の観点から、研磨用組成物に含まれる砥粒全体に占める二ホウ化チタン砥粒の割合は、概して高いほうが有利である。例えば、研磨用組成物に含まれる砥粒全体に占める二ホウ化チタン砥粒の割合は、70重量%以上であることが好ましく、90重量%以上であることがより好ましい。 The polishing composition disclosed herein may contain a combination of titanium diboride and other abrasive grains. Examples of the other abrasive grains include diamond; borides such as zirconium boride, tantalum boride, chromium boride, molybdenum boride, tungsten boride, and lanthanum boride; carbides such as boron carbide and silicon carbide; Abrasive grains substantially composed of any of oxides such as aluminum, silicon oxide, zirconium oxide, titanium oxide, and cerium oxide; nitrides such as boron nitride (typically cubic boron nitride); Can be mentioned. Quartz etc. are mentioned as an example of the abrasive grain which consists of silicon oxide substantially.
From the viewpoint of polishing efficiency, it is generally advantageous that the proportion of titanium diboride abrasive grains in the entire abrasive grains contained in the polishing composition is high. For example, the proportion of titanium diboride abrasive grains in the entire abrasive grains contained in the polishing composition is preferably 70% by weight or more, and more preferably 90% by weight or more.
研磨用組成物に用いられる溶媒は、砥粒を分散させることができるものであればよく、特に制限されない。溶媒としては、水のほか、アルコール類、エーテル類、グリコール類、各種油類などの有機溶媒を用いることができる。上記油類の例には、鉱油、合成油、植物油などが含まれる。このような溶媒は、1種を単独でまたは2種以上を組み合わせて用いることができる。揮発性や洗浄性、さらには研磨廃液の処理容易性などの観点から、水または水を主成分とする混合溶媒を好ましく採用し得る。通常は、研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(典型的には99~100体積%)が水であることがより好ましい。水としては、イオン交換水(脱イオン水)、蒸留水、純水等を用いることができる。
The solvent used in the polishing composition is not particularly limited as long as it can disperse the abrasive grains. As the solvent, water, and organic solvents such as alcohols, ethers, glycols, and various oils can be used. Examples of the oils include mineral oil, synthetic oil, vegetable oil and the like. Such a solvent can be used individually by 1 type or in combination of 2 or more types. From the viewpoints of volatility, detergency, and ease of processing of the polishing waste liquid, water or a mixed solvent containing water as a main component can be preferably employed. Usually, 90% by volume or more of the solvent contained in the polishing composition is preferably water, and more preferably 95% by volume or more (typically 99 to 100% by volume) is water. As water, ion exchange water (deionized water), distilled water, pure water, or the like can be used.
研磨用組成物における砥粒濃度は特に限定されない。例えば、砥粒濃度を0.05重量%以上とすることができ、通常は0.1重量%以上とすることが適当である。砥粒濃度が高くなるにつれて、より高い研磨能率が得られやすくなる傾向にある。かかる観点から、砥粒濃度としては、0.3重量%以上が好ましく、0.5重量%以上がより好ましい。
また、原料コストの観点から、研磨用組成物における砥粒濃度は、通常、20重量%以下とすることが適当であり、10重量%以下とすることが好ましい。好ましい一態様において、砥粒濃度を5重量%以下とすることができ、3重量%以下としてもよい。例えば、研磨用組成物の砥粒濃度を0.5~5重量%とすることが好適であり、0.5~3重量%とすることがより好ましい。
ここに開示される技術によると、上述のように、砥粒による加工力を硬質金属材料に対して効率よく作用させることができる。好ましい一態様において、砥粒濃度を2重量%以下(例えば0.5~2重量%)、さらには1重量%以下(例えば0.5~1重量%)とすることができ、このような態様においても実用的な研磨能率が達成され得る。かかる態様によると、原料コストの抑制と研磨能率とを高レベルで両立させることができる。 The abrasive grain concentration in the polishing composition is not particularly limited. For example, the abrasive concentration can be 0.05% by weight or more, and usually 0.1% by weight or more is appropriate. As the abrasive concentration increases, a higher polishing efficiency tends to be obtained. From this viewpoint, the abrasive concentration is preferably 0.3% by weight or more, and more preferably 0.5% by weight or more.
From the viewpoint of raw material cost, the abrasive concentration in the polishing composition is usually 20% by weight or less, preferably 10% by weight or less. In a preferred embodiment, the abrasive concentration can be 5% by weight or less, and may be 3% by weight or less. For example, the abrasive concentration of the polishing composition is preferably 0.5 to 5% by weight, more preferably 0.5 to 3% by weight.
According to the technique disclosed here, as described above, the processing force by the abrasive grains can be efficiently applied to the hard metal material. In a preferred embodiment, the abrasive concentration can be 2% by weight or less (eg 0.5 to 2% by weight), further 1% by weight or less (eg 0.5 to 1% by weight). In this case, a practical polishing efficiency can be achieved. According to this aspect, it is possible to achieve both high cost reduction and raw material cost reduction.
また、原料コストの観点から、研磨用組成物における砥粒濃度は、通常、20重量%以下とすることが適当であり、10重量%以下とすることが好ましい。好ましい一態様において、砥粒濃度を5重量%以下とすることができ、3重量%以下としてもよい。例えば、研磨用組成物の砥粒濃度を0.5~5重量%とすることが好適であり、0.5~3重量%とすることがより好ましい。
ここに開示される技術によると、上述のように、砥粒による加工力を硬質金属材料に対して効率よく作用させることができる。好ましい一態様において、砥粒濃度を2重量%以下(例えば0.5~2重量%)、さらには1重量%以下(例えば0.5~1重量%)とすることができ、このような態様においても実用的な研磨能率が達成され得る。かかる態様によると、原料コストの抑制と研磨能率とを高レベルで両立させることができる。 The abrasive grain concentration in the polishing composition is not particularly limited. For example, the abrasive concentration can be 0.05% by weight or more, and usually 0.1% by weight or more is appropriate. As the abrasive concentration increases, a higher polishing efficiency tends to be obtained. From this viewpoint, the abrasive concentration is preferably 0.3% by weight or more, and more preferably 0.5% by weight or more.
From the viewpoint of raw material cost, the abrasive concentration in the polishing composition is usually 20% by weight or less, preferably 10% by weight or less. In a preferred embodiment, the abrasive concentration can be 5% by weight or less, and may be 3% by weight or less. For example, the abrasive concentration of the polishing composition is preferably 0.5 to 5% by weight, more preferably 0.5 to 3% by weight.
According to the technique disclosed here, as described above, the processing force by the abrasive grains can be efficiently applied to the hard metal material. In a preferred embodiment, the abrasive concentration can be 2% by weight or less (eg 0.5 to 2% by weight), further 1% by weight or less (eg 0.5 to 1% by weight). In this case, a practical polishing efficiency can be achieved. According to this aspect, it is possible to achieve both high cost reduction and raw material cost reduction.
研磨用組成物には、分散安定性向上等の目的から、必要に応じて分散剤が添加されていてもよい。分散剤の例としては、例えばヘキサメタリン酸ナトリウムや、ピロリン酸ナトリウムなどのポリリン酸塩が挙げられる。分散剤の他の例として、水溶性高分子やその塩が挙げられる。
A polishing agent may be added to the polishing composition as necessary for the purpose of improving dispersion stability. Examples of the dispersant include polyphosphates such as sodium hexametaphosphate and sodium pyrophosphate. Other examples of the dispersant include water-soluble polymers and salts thereof.
分散剤として使用し得る水溶性高分子の例としては、ポリカルボン酸、ポリカルボン酸塩、ポリスルホン酸、ポリスルホン酸塩、ポリアミン、ポリアミド、ポリオール、多糖類などのほか、それらの誘導体や共重合体などが挙げられる。より具体的には、ポリスチレンスルホン酸およびその塩、ポリイソプレンスルホン酸およびその塩、ポリアクリル酸およびその塩、ポリマレイン酸、ポリイタコン酸、ポリ酢酸ビニル、ポリビニルアルコール、ポリグリセリン、ポリビニルピロリドン、イソプレンスルホン酸とアクリル酸の共重合体、ポリビニルピロリドン-ポリアクリル酸共重合体、ポリビニルピロリドン-酢酸ビニル共重合体、ナフタレンスルホン酸ホルマリン縮合物の塩、ジアリルアミン塩酸塩と二酸化硫黄との共重合体、カルボキシメチルセルロース、カルボキシメチルセルロースの塩、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、プルラン、キトサン、キトサン塩類などが挙げられる。
Examples of water-soluble polymers that can be used as dispersants include polycarboxylic acids, polycarboxylic acid salts, polysulfonic acid, polysulfonic acid salts, polyamines, polyamides, polyols, polysaccharides, and their derivatives and copolymers. Etc. More specifically, polystyrenesulfonic acid and its salt, polyisoprenesulfonic acid and its salt, polyacrylic acid and its salt, polymaleic acid, polyitaconic acid, polyvinyl acetate, polyvinyl alcohol, polyglycerin, polyvinylpyrrolidone, isoprenesulfonic acid And acrylic acid copolymer, polyvinylpyrrolidone-polyacrylic acid copolymer, polyvinylpyrrolidone-vinyl acetate copolymer, salt of naphthalenesulfonic acid formalin condensate, copolymer of diallylamine hydrochloride and sulfur dioxide, carboxymethylcellulose Carboxymethylcellulose salts, hydroxyethylcellulose, hydroxypropylcellulose, pullulan, chitosan, chitosan salts and the like.
上記水溶性高分子の重量平均分子量(Mw)は特に限定されない。分散安定性向上効果を十分に発揮する観点から、通常、Mwは、凡そ1万以上(例えば5万超)であることが適当である。Mwの上限は特に限定されないが、濾過性や洗浄性などの観点から、通常は凡そ80万以下(例えば60万以下、典型的には30万以下)程度であることが適当である。なお、水溶性高分子のMwとしては、ゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキサイド換算)を採用することができる。
The weight average molecular weight (Mw) of the water-soluble polymer is not particularly limited. From the viewpoint of sufficiently exerting the effect of improving dispersion stability, it is usually appropriate that Mw is about 10,000 or more (for example, more than 50,000). The upper limit of Mw is not particularly limited, but it is usually about 800,000 or less (eg, 600,000 or less, typically 300,000 or less) from the viewpoints of filterability and detergency. In addition, as the Mw of the water-soluble polymer, a value based on gel permeation chromatography (GPC) (aqueous, converted to polyethylene oxide) can be adopted.
特に限定するものではないが、分散剤を含む態様の研磨用組成物では、該分散剤の含有量を、例えば0.001重量%以上とすることが適当であり、好ましくは0.005重量%以上、より好ましくは0.01重量%以上、さらに好ましくは0.02重量%以上である。上記含有量は、通常、10重量%以下とすることが適当であり、好ましくは5重量%以下、例えば1重量%以下である。
Although not particularly limited, in a polishing composition containing a dispersant, it is appropriate that the content of the dispersant is, for example, 0.001% by weight or more, preferably 0.005% by weight. Above, more preferably 0.01% by weight or more, still more preferably 0.02% by weight or more. The content is usually suitably 10% by weight or less, preferably 5% by weight or less, for example 1% by weight or less.
研磨用組成物には、必要に応じて、各種の界面活性剤が添加されていてもよい。ここでいう界面活性剤は、典型的には分散剤と比べて低分子量の化合物であり、好ましくは分子量が1万より小さい化合物である。研磨用組成物中の界面活性剤は、砥粒や硬質金属材料の表面に吸着してそれらの表面状態を変え、砥粒の分散性を変化させたり、硬質金属材料の表面に保護膜を形成させたりすることができる。このことによって、硬質金属材料の表面における欠陥の発生を抑制したり、欠陥の拡大を防いだりする効果が発揮され得る。
Various kinds of surfactants may be added to the polishing composition as necessary. The surfactant here is typically a compound having a lower molecular weight than that of the dispersant, and preferably a compound having a molecular weight of less than 10,000. The surfactant in the polishing composition is adsorbed on the surface of abrasive grains and hard metal materials to change their surface state, change the dispersibility of abrasive grains, and form a protective film on the surface of hard metal materials You can make it. By this, the effect of suppressing generation | occurrence | production of the defect in the surface of a hard metal material or preventing the expansion of a defect may be exhibited.
界面活性剤としては、アニオン性、ノニオン性、カチオン性のいずれの界面活性剤も使用可能である。通常は、アニオン系界面活性剤およびノニオン系界面活性剤のいずれか一方または両方が好ましく使用され得る。
ノニオン系界面活性剤の例としては、同一または異なる種類のオキシアルキレン単位を複数個有する重合体、その重合体にアルコール、炭化水素または芳香環を結合させた化合物が挙げられる。より具体的には、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンポリオキシブチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンポリオキシブチレンアルキルエーテル、ポリオキシエチレンカルボン酸エステル、ポリオキシエチレンカルボン酸ジエステル、ポリオキシエチレンポリオキシプロピレンカルボン酸エステル、ポリオキシエチレンポリオキシブチレンカルボン酸エステル、ポリオキシエチレンポリオキシプロピレンポリオキシブチレンカルボン酸エステル、ポリオキシエチレンポリオキシプロピレンコポリマー、ポリオキシエチレンポリオキシブチレンコポリマー、ポリオキシエチレンポリオキシプロピレンポリオキシブチレンコポリマー、ポリオキシエチレンソルビタン脂肪酸エステルおよびポリオキシエチレンソルビット脂肪酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルミチン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、モノカプリル酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット等が挙げられる。 As the surfactant, any of anionic, nonionic, and cationic surfactants can be used. Usually, either one or both of an anionic surfactant and a nonionic surfactant can be preferably used.
Examples of the nonionic surfactant include a polymer having a plurality of the same or different types of oxyalkylene units, and a compound in which an alcohol, hydrocarbon or aromatic ring is bonded to the polymer. More specifically, polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene polyoxybutylene alkyl ether, polyoxyethylene polyoxypropylene polyoxybutylene alkyl ether, polyoxyethylene carboxylic acid ester, polyoxyethylene Oxyethylene carboxylic acid diester, polyoxyethylene polyoxypropylene carboxylic acid ester, polyoxyethylene polyoxybutylene carboxylic acid ester, polyoxyethylene polyoxypropylene polyoxybutylene carboxylic acid ester, polyoxyethylene polyoxypropylene copolymer, polyoxyethylene Polyoxybutylene copolymer, polyoxyethylene polyoxypropylene polyoxybutylene copolymer , Polyoxyethylene sorbitan fatty acid ester and polyoxyethylene sorbite fatty acid ester, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate, polyoleic trioleate Examples thereof include oxyethylene sorbitan, polyoxyethylene sorbitan monocaprylate, polyoxyethylene sorbitol tetraoleate and the like.
ノニオン系界面活性剤の例としては、同一または異なる種類のオキシアルキレン単位を複数個有する重合体、その重合体にアルコール、炭化水素または芳香環を結合させた化合物が挙げられる。より具体的には、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンポリオキシブチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレンポリオキシブチレンアルキルエーテル、ポリオキシエチレンカルボン酸エステル、ポリオキシエチレンカルボン酸ジエステル、ポリオキシエチレンポリオキシプロピレンカルボン酸エステル、ポリオキシエチレンポリオキシブチレンカルボン酸エステル、ポリオキシエチレンポリオキシプロピレンポリオキシブチレンカルボン酸エステル、ポリオキシエチレンポリオキシプロピレンコポリマー、ポリオキシエチレンポリオキシブチレンコポリマー、ポリオキシエチレンポリオキシプロピレンポリオキシブチレンコポリマー、ポリオキシエチレンソルビタン脂肪酸エステルおよびポリオキシエチレンソルビット脂肪酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルミチン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、モノカプリル酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット等が挙げられる。 As the surfactant, any of anionic, nonionic, and cationic surfactants can be used. Usually, either one or both of an anionic surfactant and a nonionic surfactant can be preferably used.
Examples of the nonionic surfactant include a polymer having a plurality of the same or different types of oxyalkylene units, and a compound in which an alcohol, hydrocarbon or aromatic ring is bonded to the polymer. More specifically, polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene alkyl ether, polyoxyethylene polyoxybutylene alkyl ether, polyoxyethylene polyoxypropylene polyoxybutylene alkyl ether, polyoxyethylene carboxylic acid ester, polyoxyethylene Oxyethylene carboxylic acid diester, polyoxyethylene polyoxypropylene carboxylic acid ester, polyoxyethylene polyoxybutylene carboxylic acid ester, polyoxyethylene polyoxypropylene polyoxybutylene carboxylic acid ester, polyoxyethylene polyoxypropylene copolymer, polyoxyethylene Polyoxybutylene copolymer, polyoxyethylene polyoxypropylene polyoxybutylene copolymer , Polyoxyethylene sorbitan fatty acid ester and polyoxyethylene sorbite fatty acid ester, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monooleate, polyoleic trioleate Examples thereof include oxyethylene sorbitan, polyoxyethylene sorbitan monocaprylate, polyoxyethylene sorbitol tetraoleate and the like.
アニオン系界面活性剤の例としてはスルホン酸系活性剤が挙げられ、より具体的にはアルキルスルホン酸、アルキルエーテルスルホン酸、ポリオキシエチレンアルキルエーテルスルホン酸、アルキル芳香族スルホン酸、アルキルエーテル芳香族スルホン酸、ポリオキシエチレンアルキルエーテル芳香族スルホン酸などが挙げられる。
Examples of anionic surfactants include sulfonic acid surfactants, and more specifically alkyl sulfonic acids, alkyl ether sulfonic acids, polyoxyethylene alkyl ether sulfonic acids, alkyl aromatic sulfonic acids, alkyl ether aromatics. Examples thereof include sulfonic acid and polyoxyethylene alkyl ether aromatic sulfonic acid.
特に限定するものではないが、界面活性剤を含む態様の研磨用組成物では、該界面活性剤の含有量を、例えば0.001重量%以上とすることが適当であり、好ましくは0.005重量%以上、より好ましくは0.01重量%以上、さらに好ましくは0.02重量%以上である。また、上記含有量は通常、10重量%以下とすることが適当であり、好ましくは5重量%以下、例えば1重量%以下である。
Although not particularly limited, in a polishing composition containing a surfactant, it is appropriate that the content of the surfactant is, for example, 0.001% by weight or more, preferably 0.005. % By weight or more, more preferably 0.01% by weight or more, still more preferably 0.02% by weight or more. In addition, the content is usually suitably 10% by weight or less, preferably 5% by weight or less, for example 1% by weight or less.
研磨用組成物のpHは特に限定されない。通常は、研磨用組成物のpHを1以上14以下とすることが適当である。研磨用組成物のpHが上記範囲内であると、実用的な研磨能率が達成されやすい。研磨対象物のpHに対する脆弱性等を考慮して、適切なpHの研磨用組成物を用いることが好ましい。例えば、ステンレス鋼の場合には、研磨用組成物のpHを1以上8以下とすることができ、1以上5以下(例えば2以上4以下)とすることがより好ましい。
The pH of the polishing composition is not particularly limited. Usually, it is appropriate to adjust the pH of the polishing composition to 1 or more and 14 or less. When the pH of the polishing composition is within the above range, practical polishing efficiency is easily achieved. It is preferable to use a polishing composition having an appropriate pH in consideration of the vulnerability of the polishing object to pH. For example, in the case of stainless steel, the pH of the polishing composition can be 1 or more and 8 or less, and more preferably 1 or more and 5 or less (for example, 2 or more and 4 or less).
研磨用組成物のpH調整には、種々の酸、塩基またはそれらの塩を用いることができる。具体的には、例えばクエン酸その他の有機カルボン酸、有機ホスホン酸、有機スルホン酸などの有機酸や、燐酸、亜燐酸、硫酸、硝酸、塩酸、ホウ酸、炭酸などの無機酸、テトラメトキシアンモニウムオキサイド、トリメタノールアミン、モノエタノールアミンなどの有機塩基、水酸化カリウム、水酸化ナトリウム、アンモニアなどの無機塩基およびそれらの塩等から選択される1種または2種以上を用いることができる。
For adjusting the pH of the polishing composition, various acids, bases or salts thereof can be used. Specifically, for example, organic acids such as citric acid and other organic carboxylic acids, organic phosphonic acids and organic sulfonic acids, inorganic acids such as phosphoric acid, phosphorous acid, sulfuric acid, nitric acid, hydrochloric acid, boric acid and carbonic acid, tetramethoxyammonium One or more selected from organic bases such as oxide, trimethanolamine and monoethanolamine, inorganic bases such as potassium hydroxide, sodium hydroxide and ammonia, and salts thereof can be used.
上記の酸および塩基のうち、特に、弱酸と強塩基、強酸と弱塩基、または弱酸と弱塩基の組み合わせとした場合には、pHの緩衝作用を期待することができる。また、上記の酸および塩基のうち、強酸と強塩基との組み合わせとした場合には、少量で、pHだけでなく電導度の調整が可能である。
Among the above acids and bases, in particular, when a weak acid and a strong base, a strong acid and a weak base, or a combination of a weak acid and a weak base, a buffering action of pH can be expected. Moreover, when it is set as the combination of a strong acid and a strong base among said acids and bases, not only pH but electrical conductivity can be adjusted with a small amount.
研磨用組成物には、必要に応じて、上述した以外の成分を含有させることができる。かかる成分の例としては、防蝕剤、キレート剤、防腐剤、防黴剤等が挙げられる。
防蝕剤の例としては、アミン類、ピリジン類、テトラフェニルホスホニウム塩、ベンゾトリアゾール類、トリアゾール類、テトラゾール類、安息香酸等が挙げられる。
キレート剤の例としては、グルコン酸等のカルボン酸系キレート剤、エチレンジアミン、ジエチレントリアミン、トリメチルテトラアミンなどのアミン系キレート剤、エチレンジアミン四酢酸、ニトリロ三酢酸、ヒドロキシエチルエチレンジアミン三酢酸、トリエチレンテトラミン六酢酸、ジエチレントリアミン五酢酸などのポリアミノポリカルボン系キレート剤、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、メタンヒドロキシホスホン酸、1-ホスホノブタン-2,3,4-トリカルボン酸などの有機ホスホン酸系キレート剤、フェノール誘導体、1,3-ジケトン等が挙げられる。
防腐剤の例としては、次亜塩素酸ナトリウム等が挙げられる。防黴剤の例としてはオキサゾリジン-2,5-ジオンなどのオキサゾリン等が挙げられる。 The polishing composition can contain components other than those described above, if necessary. Examples of such components include anticorrosives, chelating agents, preservatives, antifungal agents and the like.
Examples of the corrosion inhibitor include amines, pyridines, tetraphenylphosphonium salts, benzotriazoles, triazoles, tetrazoles, benzoic acid and the like.
Examples of chelating agents include carboxylic acid chelating agents such as gluconic acid, amine chelating agents such as ethylenediamine, diethylenetriamine, and trimethyltetraamine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, triethylenetetraminehexaacetic acid. , Polyaminopolycarboxylic chelating agents such as diethylenetriaminepentaacetic acid, 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta ( Methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, methanehydroxyphosphonic acid, 1-phosphonobutane-2,3,4-to Organic phosphonic acid chelating agents such as carboxylic acid, phenol derivatives, 1,3-diketones and the like.
Examples of preservatives include sodium hypochlorite and the like. Examples of antifungal agents include oxazolines such as oxazolidine-2,5-dione.
防蝕剤の例としては、アミン類、ピリジン類、テトラフェニルホスホニウム塩、ベンゾトリアゾール類、トリアゾール類、テトラゾール類、安息香酸等が挙げられる。
キレート剤の例としては、グルコン酸等のカルボン酸系キレート剤、エチレンジアミン、ジエチレントリアミン、トリメチルテトラアミンなどのアミン系キレート剤、エチレンジアミン四酢酸、ニトリロ三酢酸、ヒドロキシエチルエチレンジアミン三酢酸、トリエチレンテトラミン六酢酸、ジエチレントリアミン五酢酸などのポリアミノポリカルボン系キレート剤、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン-1,1-ジホスホン酸、エタン-1,1,2-トリホスホン酸、メタンヒドロキシホスホン酸、1-ホスホノブタン-2,3,4-トリカルボン酸などの有機ホスホン酸系キレート剤、フェノール誘導体、1,3-ジケトン等が挙げられる。
防腐剤の例としては、次亜塩素酸ナトリウム等が挙げられる。防黴剤の例としてはオキサゾリジン-2,5-ジオンなどのオキサゾリン等が挙げられる。 The polishing composition can contain components other than those described above, if necessary. Examples of such components include anticorrosives, chelating agents, preservatives, antifungal agents and the like.
Examples of the corrosion inhibitor include amines, pyridines, tetraphenylphosphonium salts, benzotriazoles, triazoles, tetrazoles, benzoic acid and the like.
Examples of chelating agents include carboxylic acid chelating agents such as gluconic acid, amine chelating agents such as ethylenediamine, diethylenetriamine, and trimethyltetraamine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, triethylenetetraminehexaacetic acid. , Polyaminopolycarboxylic chelating agents such as diethylenetriaminepentaacetic acid, 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta ( Methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, methanehydroxyphosphonic acid, 1-phosphonobutane-2,3,4-to Organic phosphonic acid chelating agents such as carboxylic acid, phenol derivatives, 1,3-diketones and the like.
Examples of preservatives include sodium hypochlorite and the like. Examples of antifungal agents include oxazolines such as oxazolidine-2,5-dione.
ここに開示される研磨用組成物の製造方法は特に限定されず、公知の方法を適宜採用することができる。例えば、砥粒と溶媒および必要に応じて用いられる他の成分とを混合することにより研磨用組成物を製造することができる。
The method for producing the polishing composition disclosed herein is not particularly limited, and a known method can be appropriately employed. For example, a polishing composition can be produced by mixing abrasive grains, a solvent, and other components used as necessary.
上述のような研磨用組成物は、典型的には該研磨用組成物を含む研磨液の形態で、研磨対象物たる硬質金属材料の研磨に用いられる。上記研磨液は、例えば、研磨用組成物を希釈して調製されたものであり得る。あるいは、研磨用組成物をそのまま研磨液として使用してもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給される研磨液(ワーキングスラリー)と、希釈して研磨液として用いられる濃縮液との双方が包含される。
The polishing composition as described above is typically used in the polishing of a hard metal material as an object to be polished in the form of a polishing liquid containing the polishing composition. The polishing liquid may be prepared, for example, by diluting a polishing composition. Or you may use polishing composition as polishing liquid as it is. That is, the concept of the polishing composition in the technology disclosed herein includes both the polishing liquid (working slurry) supplied to the object to be polished and the concentrated liquid diluted and used as the polishing liquid. .
ここに開示される研磨用組成物は、研磨対象物に供給される前には濃縮された形態(濃縮液の形態)であってもよい。かかる濃縮液の形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は、例えば1.5倍~50倍程度とすることができる。濃縮液の貯蔵安定性等の観点から、通常は、2倍~20倍(典型的には2倍~10倍)程度の濃縮倍率が適当である。
このように濃縮液の形態にある研磨用組成物は、所望のタイミングで希釈して研磨液を調製し、その研磨液を研磨対象物に供給する態様で好適に使用することができる。 The polishing composition disclosed herein may be in a concentrated form (in the form of a concentrated liquid) before being supplied to the object to be polished. Such a polishing composition in the form of a concentrated solution is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like. The concentration factor can be, for example, about 1.5 to 50 times. From the viewpoint of storage stability of the concentrate, a concentration ratio of about 2 to 20 times (typically 2 to 10 times) is usually appropriate.
Thus, the polishing composition in the form of a concentrated liquid can be suitably used in a mode in which a polishing liquid is prepared by diluting at a desired timing and the polishing liquid is supplied to a polishing object.
このように濃縮液の形態にある研磨用組成物は、所望のタイミングで希釈して研磨液を調製し、その研磨液を研磨対象物に供給する態様で好適に使用することができる。 The polishing composition disclosed herein may be in a concentrated form (in the form of a concentrated liquid) before being supplied to the object to be polished. Such a polishing composition in the form of a concentrated solution is advantageous from the viewpoints of convenience, cost reduction, etc. during production, distribution, storage and the like. The concentration factor can be, for example, about 1.5 to 50 times. From the viewpoint of storage stability of the concentrate, a concentration ratio of about 2 to 20 times (typically 2 to 10 times) is usually appropriate.
Thus, the polishing composition in the form of a concentrated liquid can be suitably used in a mode in which a polishing liquid is prepared by diluting at a desired timing and the polishing liquid is supplied to a polishing object.
ここに開示される砥粒または該砥粒を含む研磨用組成物は、一般的な研磨装置を用いた研磨対象物(ここでは硬質金属材料)の研磨に用いることができる。片面研磨装置による研磨、両面研磨装置による研磨のいずれにも適用可能である。片面研磨装置では、キャリアと呼ばれる保持具を用いて研磨対象物を保持し、研磨用組成物を供給しながら研磨対象物の片面に定盤を押しつけて定盤を回転させることにより研磨対象物の片面を研磨する。両面研磨装置では、キャリアと呼ばれる保持具を用いて研磨対象物を保持し、上方より研磨用組成物を供給しながら、研磨対象物の対向面に定盤を押しつけ、それらを相対方向に回転させることにより研磨対象物の両面を同時に研磨する。このとき、定盤表面を用いて直接研磨対象物を研磨する方法をラッピングといい、定盤表面に研磨パッドを貼り付け、貼り付けられた研磨パッド表面と研磨対象物との間で研磨が行われる方法をポリシングという。
The abrasive grains disclosed herein or the polishing composition containing the abrasive grains can be used for polishing an object to be polished (here, a hard metal material) using a general polishing apparatus. The present invention can be applied to both polishing using a single-side polishing apparatus and polishing using a double-side polishing apparatus. In a single-side polishing apparatus, a polishing object is held by using a holder called a carrier, and the surface plate is rotated by pressing the surface plate against one side of the polishing object while supplying the polishing composition. Polish one side. In a double-side polishing apparatus, a polishing object is held using a holder called a carrier, a surface plate is pressed against the opposite surface of the polishing object while supplying the polishing composition from above, and they are rotated in a relative direction. Thus, both surfaces of the object to be polished are polished simultaneously. At this time, the method of directly polishing the polishing object using the surface of the surface plate is called lapping. A polishing pad is attached to the surface of the surface plate, and polishing is performed between the attached polishing pad surface and the polishing object. This method is called policing.
<研磨定盤>
ここに開示される砥粒または該砥粒を含む研磨用組成物は、典型的には、金属製の研磨定盤に供給されて硬質金属材料を研磨する用途、すなわち硬質金属材料のラッピングに用いられる。ラッピングに使用される研磨定盤には、定盤面(研磨対象物に対向する表面)の精度維持のため、加工がされやすい性質が求められる。このため、少なくとも上記定盤面が例えば鋳鉄、錫、銅または銅合金などの金属からなる研磨定盤が好適に使用される。研磨定盤としては、研磨用組成物の安定供給や加工圧の調整を目的に、定盤面に溝が付けられたものが用いられることがある。溝の形状や深さは任意であり、例えば格子状や放射状に溝が刻まれたものを使用し得る。 <Polishing surface plate>
The abrasive grains disclosed herein or a polishing composition containing the abrasive grains are typically supplied to a metal polishing platen for polishing a hard metal material, that is, used for wrapping a hard metal material. It is done. The polishing surface plate used for lapping is required to have a property that can be easily processed in order to maintain the accuracy of the surface surface (surface facing the object to be polished). For this reason, a polishing surface plate in which at least the surface plate surface is made of a metal such as cast iron, tin, copper, or a copper alloy is preferably used. As the polishing platen, a plate having a groove on the surface of the platen may be used for the purpose of stably supplying the polishing composition and adjusting the processing pressure. The shape and depth of the groove are arbitrary, and for example, a groove in which a groove is engraved in a lattice shape or a radial shape can be used.
ここに開示される砥粒または該砥粒を含む研磨用組成物は、典型的には、金属製の研磨定盤に供給されて硬質金属材料を研磨する用途、すなわち硬質金属材料のラッピングに用いられる。ラッピングに使用される研磨定盤には、定盤面(研磨対象物に対向する表面)の精度維持のため、加工がされやすい性質が求められる。このため、少なくとも上記定盤面が例えば鋳鉄、錫、銅または銅合金などの金属からなる研磨定盤が好適に使用される。研磨定盤としては、研磨用組成物の安定供給や加工圧の調整を目的に、定盤面に溝が付けられたものが用いられることがある。溝の形状や深さは任意であり、例えば格子状や放射状に溝が刻まれたものを使用し得る。 <Polishing surface plate>
The abrasive grains disclosed herein or a polishing composition containing the abrasive grains are typically supplied to a metal polishing platen for polishing a hard metal material, that is, used for wrapping a hard metal material. It is done. The polishing surface plate used for lapping is required to have a property that can be easily processed in order to maintain the accuracy of the surface surface (surface facing the object to be polished). For this reason, a polishing surface plate in which at least the surface plate surface is made of a metal such as cast iron, tin, copper, or a copper alloy is preferably used. As the polishing platen, a plate having a groove on the surface of the platen may be used for the purpose of stably supplying the polishing composition and adjusting the processing pressure. The shape and depth of the groove are arbitrary, and for example, a groove in which a groove is engraved in a lattice shape or a radial shape can be used.
上記研磨定盤の表面(定盤面)は、該研磨定盤による硬質金属材料の研磨に適用される砥粒の保持率が上述した好ましい範囲となる表面状態を有することが好ましい。上記保持率は、定盤面にある微小溝のうち砥粒の保持に適した形状およびサイズの溝(以下「有効溝」ともいう。)が、上記定盤面にどの程度存在するかを把握する目安として有用な指標である。上記微小溝の形は特に限定されない。例えば、上記微小溝のアスペクト比に特に制限はない。ここでいう微小溝の概念には、一般に窪みまたは凹みと称される形状のものが含まれ得る。
ここに開示される技術では、砥粒の平均粒子径との関係で、幅が「平均粒子径+0.1μm」以上の値であってかつ深さが平均粒子径の1/2以上の値である微小溝を、上記砥粒にとっての「有効溝」と認定する。微小溝の幅が「平均粒子径+0.1μm」以上の値であれば、砥粒が嵌まるに十分な開口サイズを有すると考えられる。また、微小溝の深さが平均粒子径の1/2以上の値であれば、嵌まった砥粒をある程度安定して保持することができ、該砥粒の研磨力を研磨対象物に効果的に作用させ得ると考えられる。上記保持率は、具体的には、後述する実施例に記載の「保持率測定」に従って求められる。 The surface of the polishing surface plate (surface plate surface) preferably has a surface state in which the retention rate of abrasive grains applied to the polishing of the hard metal material by the polishing surface plate is in the above-described preferable range. The retention rate is a guideline for determining how much of the fine grooves on the surface plate have a shape and size suitable for holding abrasive grains (hereinafter also referred to as “effective grooves”) on the surface plate surface. As a useful index. The shape of the minute groove is not particularly limited. For example, the aspect ratio of the fine groove is not particularly limited. The concept of the microgroove here may include a shape generally called a dent or a dent.
In the technique disclosed herein, the width is a value of “average particle diameter + 0.1 μm” or more and the depth is a value of 1/2 or more of the average particle diameter in relation to the average particle diameter of the abrasive grains. A minute groove is recognized as an “effective groove” for the abrasive grains. If the width of the minute groove is a value of “average particle diameter + 0.1 μm” or more, it is considered that the opening has a sufficient opening size to fit the abrasive grains. Further, if the depth of the minute groove is a value of 1/2 or more of the average particle diameter, the fitted abrasive grains can be held to a certain degree of stability, and the polishing power of the abrasive grains is effective for the object to be polished. It is thought that it can act. Specifically, the retention rate is determined according to “retention rate measurement” described in Examples described later.
ここに開示される技術では、砥粒の平均粒子径との関係で、幅が「平均粒子径+0.1μm」以上の値であってかつ深さが平均粒子径の1/2以上の値である微小溝を、上記砥粒にとっての「有効溝」と認定する。微小溝の幅が「平均粒子径+0.1μm」以上の値であれば、砥粒が嵌まるに十分な開口サイズを有すると考えられる。また、微小溝の深さが平均粒子径の1/2以上の値であれば、嵌まった砥粒をある程度安定して保持することができ、該砥粒の研磨力を研磨対象物に効果的に作用させ得ると考えられる。上記保持率は、具体的には、後述する実施例に記載の「保持率測定」に従って求められる。 The surface of the polishing surface plate (surface plate surface) preferably has a surface state in which the retention rate of abrasive grains applied to the polishing of the hard metal material by the polishing surface plate is in the above-described preferable range. The retention rate is a guideline for determining how much of the fine grooves on the surface plate have a shape and size suitable for holding abrasive grains (hereinafter also referred to as “effective grooves”) on the surface plate surface. As a useful index. The shape of the minute groove is not particularly limited. For example, the aspect ratio of the fine groove is not particularly limited. The concept of the microgroove here may include a shape generally called a dent or a dent.
In the technique disclosed herein, the width is a value of “average particle diameter + 0.1 μm” or more and the depth is a value of 1/2 or more of the average particle diameter in relation to the average particle diameter of the abrasive grains. A minute groove is recognized as an “effective groove” for the abrasive grains. If the width of the minute groove is a value of “average particle diameter + 0.1 μm” or more, it is considered that the opening has a sufficient opening size to fit the abrasive grains. Further, if the depth of the minute groove is a value of 1/2 or more of the average particle diameter, the fitted abrasive grains can be held to a certain degree of stability, and the polishing power of the abrasive grains is effective for the object to be polished. It is thought that it can act. Specifically, the retention rate is determined according to “retention rate measurement” described in Examples described later.
なお、有効溝として認定する微小溝の幅は、「平均粒子径+0.1μm」以上の値(すなわち、平均粒子径より0.1μm以上大きな値)であればよく、幅の上限は特に制限されない。砥粒保持の安定性の観点からは、幅が「平均粒子径+0.1μm」の7倍以下(好ましくは5倍以下、例えば3倍以下)の値である微小溝が好ましい。
また、有効溝として認定する微小溝の深さは、平均粒子径の1/2以上(すなわち、平均粒子径の0.5倍以上)の値であればよく、深さの上限は特に限定されない。砥粒保持の安定性および研磨能率の観点から、微小溝の深さの値は、平均粒子径の0.5倍以上1.5倍以下であることが好ましく、0.5倍以上1倍未満であることがより好ましく、0.5倍以上0.9倍未満であることがさらに好ましい。
ここに開示される技術は、幅が「平均粒子径+0.1μm」の1倍以上5倍以下の値であり、かつ深さが平均粒子径の0.5倍以上1倍未満の値である微小溝を特に砥粒の保持に適した溝(以下「高有効溝」ともいう。)と認定し、該高有効溝について算出される保持率が上述した好ましい範囲にある態様で好ましく実施され得る。 The width of the micro-grooves recognized as effective grooves may be a value equal to or greater than “average particle diameter + 0.1 μm” (that is, a value larger than the average particle diameter by 0.1 μm or more), and the upper limit of the width is not particularly limited. . From the viewpoint of the stability of holding the abrasive grains, a micro-groove whose width is 7 times or less (preferably 5 times or less, for example, 3 times or less) of “average particle diameter +0.1 μm” is preferable.
In addition, the depth of the fine groove to be recognized as an effective groove may be a value that is 1/2 or more of the average particle diameter (that is, 0.5 times or more of the average particle diameter), and the upper limit of the depth is not particularly limited. . From the viewpoint of the stability of holding the abrasive grains and the polishing efficiency, the value of the depth of the fine groove is preferably 0.5 times or more and 1.5 times or less of the average particle diameter, and more than 0.5 times and less than 1 time. More preferably, it is 0.5 times or more and less than 0.9 times.
The technology disclosed herein is a value that is 1 to 5 times the width of “average particle size + 0.1 μm”, and the depth is a value that is 0.5 to 1 time less than the average particle size. The micro groove is recognized as a groove particularly suitable for holding abrasive grains (hereinafter also referred to as “high effective groove”), and can be preferably implemented in a mode in which the retention calculated for the high effective groove is within the above-described preferable range. .
また、有効溝として認定する微小溝の深さは、平均粒子径の1/2以上(すなわち、平均粒子径の0.5倍以上)の値であればよく、深さの上限は特に限定されない。砥粒保持の安定性および研磨能率の観点から、微小溝の深さの値は、平均粒子径の0.5倍以上1.5倍以下であることが好ましく、0.5倍以上1倍未満であることがより好ましく、0.5倍以上0.9倍未満であることがさらに好ましい。
ここに開示される技術は、幅が「平均粒子径+0.1μm」の1倍以上5倍以下の値であり、かつ深さが平均粒子径の0.5倍以上1倍未満の値である微小溝を特に砥粒の保持に適した溝(以下「高有効溝」ともいう。)と認定し、該高有効溝について算出される保持率が上述した好ましい範囲にある態様で好ましく実施され得る。 The width of the micro-grooves recognized as effective grooves may be a value equal to or greater than “average particle diameter + 0.1 μm” (that is, a value larger than the average particle diameter by 0.1 μm or more), and the upper limit of the width is not particularly limited. . From the viewpoint of the stability of holding the abrasive grains, a micro-groove whose width is 7 times or less (preferably 5 times or less, for example, 3 times or less) of “average particle diameter +0.1 μm” is preferable.
In addition, the depth of the fine groove to be recognized as an effective groove may be a value that is 1/2 or more of the average particle diameter (that is, 0.5 times or more of the average particle diameter), and the upper limit of the depth is not particularly limited. . From the viewpoint of the stability of holding the abrasive grains and the polishing efficiency, the value of the depth of the fine groove is preferably 0.5 times or more and 1.5 times or less of the average particle diameter, and more than 0.5 times and less than 1 time. More preferably, it is 0.5 times or more and less than 0.9 times.
The technology disclosed herein is a value that is 1 to 5 times the width of “average particle size + 0.1 μm”, and the depth is a value that is 0.5 to 1 time less than the average particle size. The micro groove is recognized as a groove particularly suitable for holding abrasive grains (hereinafter also referred to as “high effective groove”), and can be preferably implemented in a mode in which the retention calculated for the high effective groove is within the above-described preferable range. .
上記保持率は、例えば、使用する砥粒の平均粒子径および研磨定盤の表面状態の一方または両方を変更することにより、ここに開示される好ましい範囲となるように調節することができる。砥粒の平均粒子径を変更する方法としては、使用する砥粒を平均粒子径の異なるものに変更する方法や、2種以上の粒径の異なる砥粒を適切な割合でブレンドして用いる方法等を採用することができる。研磨定盤の表面状態は、該研磨定盤の表面状態を調整する(すなわち、表面調整を行う)ことにより変更することができる。
The retention rate can be adjusted to be within a preferable range disclosed herein, for example, by changing one or both of the average particle diameter of the abrasive grains used and the surface condition of the polishing surface plate. As a method of changing the average particle diameter of the abrasive grains, a method of changing the abrasive grains used to one having a different average particle diameter or a method of blending two or more kinds of abrasive grains having different particle diameters at an appropriate ratio Etc. can be adopted. The surface state of the polishing surface plate can be changed by adjusting the surface state of the polishing surface plate (that is, performing surface adjustment).
研磨定盤の表面調整は、例えば、適切な平均粒子径の砥粒を含む表面調整用スラリーを用いて研磨定盤の表面を研磨し、該表面を一定の粗さに荒らすことにより行うことができる。したがって、上記砥粒としては、研磨定盤を荒らしやすい材質のものを使用することが望ましい。研磨定盤の表面調整に好ましく使用し得る砥粒として、例えば、GC砥粒、二ホウ化チタン砥粒、炭化ホウ素砥粒などの高硬度砥粒が例示される。なかでもGC砥粒が好ましい。
The surface adjustment of the polishing surface plate can be performed, for example, by polishing the surface of the polishing surface plate using a surface adjustment slurry containing abrasive grains having an appropriate average particle diameter and roughening the surface to a certain roughness. it can. Therefore, it is desirable to use a material that easily roughens the polishing surface plate as the abrasive. Examples of abrasive grains that can be preferably used for surface adjustment of the polishing surface plate include high-hardness abrasive grains such as GC abrasive grains, titanium diboride abrasive grains, and boron carbide abrasive grains. Among these, GC abrasive grains are preferable.
研磨定盤の表面調整に使用する砥粒のサイズは、硬質金属材料の研磨に使用する砥粒の平均粒子径や目標とする保持率の値に応じて選択し得る。特に限定するものではないが、ここに開示される技術の一態様において、平均粒子径が25~120μm、より好ましくは45~75μmの砥粒(例えばGC砥粒)を、上記表面調整用の砥粒として好ましく採用することができる。上記表面調整用の砥粒としては、サイズおよび材質の一方または両方が異なる2種以上の砥粒をブレンドして用いてもよい。
The size of the abrasive grains used for the surface adjustment of the polishing surface plate can be selected according to the average particle diameter of the abrasive grains used for polishing the hard metal material and the target retention value. Although not particularly limited, in one embodiment of the technology disclosed herein, abrasive grains (for example, GC abrasive grains) having an average particle diameter of 25 to 120 μm, more preferably 45 to 75 μm are used. It can employ | adopt preferably as a grain. As the surface-adjusting abrasive grains, two or more kinds of abrasive grains having different one or both of size and material may be blended and used.
上記表面調整用スラリーにおける砥粒濃度や該スラリーを用いた研磨定盤の表面調整における研磨条件は特に限定されず、所望の表面状態が得られるように適宜設定することができる。例えば、上記表面調整用スラリーにおける砥粒濃度を5~20重量%(例えば10~15重量%)程度とすることができる。
The abrasive concentration in the surface adjustment slurry and the polishing conditions in the surface adjustment of the polishing surface plate using the slurry are not particularly limited, and can be appropriately set so as to obtain a desired surface state. For example, the abrasive concentration in the surface conditioning slurry can be about 5 to 20% by weight (for example, 10 to 15% by weight).
上記の説明および後述する実施例から理解されるように、本明細書により開示される事項には、ここに開示されるいずれかの技術における研磨定盤の表面調整に用いられる砥粒が含まれる。また、該砥粒を含む表面調整用スラリーが含まれる。上記表面調整用砥粒としては、平均粒子径が25~120μm(より好ましくは45~75μm)の砥粒を好ましく採用し得る。上記砥粒は、GC砥粒、二ホウ化チタン砥粒および炭化ホウ素砥粒の少なくとも1種を含み得る。なかでもGC砥粒が好ましい。ここに開示される硬質金属製品製造方法は、上記表面調整用スラリーを用いて研磨定盤の表面調整を行う工程をさらに含み得る。本明細書により開示される事項には、また、ここに開示されるいずれかの硬質金属材料研磨用組成物と、ここに開示されるいずれかの表面調整用スラリーとを含む、硬質金属材料研磨用組成物セットが含まれる。この研磨用組成物セットは、上記硬質金属材料研磨用組成物に代えて、該組成物を構成する砥粒を含む態様であってもよい。また、上記硬質金属材料研磨用組成物セットは、上記表面調整用スラリーに代えて、該スラリーを構成する砥粒を含む態様であってもよい。
As will be understood from the above description and examples described later, the matters disclosed by the present specification include abrasive grains used for surface adjustment of the polishing surface plate in any of the techniques disclosed herein. . Moreover, the slurry for surface adjustment containing this abrasive grain is contained. As the surface adjusting abrasive, an abrasive having an average particle diameter of 25 to 120 μm (more preferably 45 to 75 μm) can be preferably used. The abrasive grains may include at least one of GC abrasive grains, titanium diboride abrasive grains, and boron carbide abrasive grains. Among these, GC abrasive grains are preferable. The method for producing a hard metal product disclosed herein may further include a step of adjusting the surface of the polishing surface plate using the surface adjustment slurry. Also disclosed in the present specification is a hard metal material polishing comprising any of the hard metal material polishing compositions disclosed herein and any of the surface conditioning slurries disclosed herein. A composition set is included. This polishing composition set may be an embodiment containing abrasive grains constituting the composition instead of the hard metal material polishing composition. Further, the hard metal material polishing composition set may include an abrasive grain constituting the slurry instead of the surface conditioning slurry.
<研磨方法>
ここに開示される技術において、研磨対象物(硬質金属材料)の研磨条件は特に限定されない。例えば、研磨能率の観点から、研磨対象物の加工面積1cm2あたりの研磨圧力は、好ましくは50g以上であり、より好ましくは100g以上である。また、負荷増大に伴う過度な発熱による研磨対象物表面の変質や砥粒の劣化を防ぐ観点から、通常、加工面積1cm2あたりの研磨圧力は、1000g以下であることが適当である。 <Polishing method>
In the technique disclosed here, the polishing conditions of the object to be polished (hard metal material) are not particularly limited. For example, from the viewpoint of polishing efficiency, the polishing pressure per 1 cm 2 of the processing area of the object to be polished is preferably 50 g or more, more preferably 100 g or more. In addition, from the viewpoint of preventing deterioration of the surface of the polishing object and deterioration of abrasive grains due to excessive heat generation accompanying an increase in load, it is usually appropriate that the polishing pressure per 1 cm 2 of processing area is 1000 g or less.
ここに開示される技術において、研磨対象物(硬質金属材料)の研磨条件は特に限定されない。例えば、研磨能率の観点から、研磨対象物の加工面積1cm2あたりの研磨圧力は、好ましくは50g以上であり、より好ましくは100g以上である。また、負荷増大に伴う過度な発熱による研磨対象物表面の変質や砥粒の劣化を防ぐ観点から、通常、加工面積1cm2あたりの研磨圧力は、1000g以下であることが適当である。 <Polishing method>
In the technique disclosed here, the polishing conditions of the object to be polished (hard metal material) are not particularly limited. For example, from the viewpoint of polishing efficiency, the polishing pressure per 1 cm 2 of the processing area of the object to be polished is preferably 50 g or more, more preferably 100 g or more. In addition, from the viewpoint of preventing deterioration of the surface of the polishing object and deterioration of abrasive grains due to excessive heat generation accompanying an increase in load, it is usually appropriate that the polishing pressure per 1 cm 2 of processing area is 1000 g or less.
線速度は、一般に、定盤回転数、キャリアの回転数、研磨対象物の大きさ、研磨対象物の数等の影響により変化し得る。ここに開示される技術において、上記線速度は10m/分以上とすることが好ましく、30m/分以上とすることがより好ましい。線速度の増大によって、より高い研磨能率が得られる傾向にある。また、研磨対象物の破損や過度な発熱を防ぐ観点から、通常、線速度は300m/分以下とすることが好ましく、200m/分以下とすることがより好ましい。
The linear velocity can generally vary due to the influence of the platen rotation speed, the carrier rotation speed, the size of the polishing object, the number of polishing objects, and the like. In the technique disclosed herein, the linear velocity is preferably 10 m / min or more, and more preferably 30 m / min or more. Higher polishing efficiency tends to be obtained by increasing the linear velocity. Further, from the viewpoint of preventing damage to the polishing object and excessive heat generation, the linear velocity is usually preferably 300 m / min or less, and more preferably 200 m / min or less.
研磨時における研磨用組成物の供給量は特に限定されない。上記供給量は、研磨対象物と研磨定盤との間に研磨用組成物がムラなく全面に供給されるのに十分な量となるように設定することが望ましい。好適な供給量は、研磨対象物の材質や、研磨装置の構成その他の研磨条件等によっても異なり得る。当業者であれば、本願明細書の記載および技術常識に基づいて、過度な負担なく適切な供給量を見出すことができる。
The supply amount of the polishing composition at the time of polishing is not particularly limited. The supply amount is preferably set so that the polishing composition is sufficiently supplied between the object to be polished and the polishing surface plate so as to be supplied to the entire surface without unevenness. A suitable supply amount may vary depending on the material of the object to be polished, the configuration of the polishing apparatus, and other polishing conditions. A person skilled in the art can find an appropriate supply amount without undue burden based on the description in the present specification and common general technical knowledge.
ここに開示される研磨用組成物は、使用後回収して再利用(循環使用)してもよい。より具体的には、研磨装置から排出される使用済みの研磨用組成物をタンク内にいったん回収し、タンク内から再び研磨装置へと供給するようにしてもよい。この場合、使用済みの研磨用組成物を廃液として処理する量を減らすことができる。このことは、環境負荷低減およびコスト低減の観点から好ましい。
The polishing composition disclosed herein may be recovered after use and reused (circulated). More specifically, the used polishing composition discharged from the polishing apparatus may be once collected in a tank and supplied from the tank to the polishing apparatus again. In this case, the amount of the used polishing composition as a waste liquid can be reduced. This is preferable from the viewpoint of reducing environmental burden and cost.
研磨用組成物の循環使用にあたっては、該研磨用組成物に当初含まれていた成分のうち研磨に使用されることにより消費されたり損失したりした成分(例えば砥粒)のうち少なくともいずれかの成分について、その減少分の一部または全部を補充するようにしてもよい。補充する成分は、使用済みの研磨用組成物に個別に添加してもよいし、二以上の成分を任意の濃度で含んだ混合物のかたちで使用済みの研磨用組成物に添加してもよい。
In circulating use of the polishing composition, at least one of the components (for example, abrasive grains) consumed or lost by being used for polishing among the components originally contained in the polishing composition You may make it supplement a part or all of the reduction | decrease about an ingredient. The replenishing components may be added individually to the used polishing composition, or may be added to the used polishing composition in the form of a mixture containing two or more components in any concentration. .
硬質金属材料のなかでも電子材料基板や結晶材料製造用基板などのように特に高い面精度が要求される材料を研磨対象物とする場合、ここに開示されるいずれかの砥粒または該砥粒を含む研磨用組成物を用いて研磨定盤による研磨(ラッピング)を行った後に、さらにポリシングを行うことが好ましい。上記ポリシングに用いられる研磨用組成物の砥粒としては、研磨対象物表面のうねり、粗さ、欠陥等を低減する観点から、0.30μm以下の平均粒子径を有するものが好ましく、より好ましくは0.25μm以下、さらに好ましくは0.20μm以下である。また、研磨能率(研磨レート)向上の観点から、ポリシング用組成物に含まれる砥粒の平均粒子径は0.01μm以上であることが好ましく、より好ましくは0.02μm以上である。ポリシング用組成物に好適に用いられる砥粒は、コロイダルシリカなどのコロイド状酸化物粒子であり得る。ポリシング用組成物中の砥粒の平均粒子径は、例えば日機装株式会社製の「Nanotrac UPA-UT151」を用いて、動的光散乱法により測定することができる。
Among the hard metal materials, when a material requiring particularly high surface accuracy such as an electronic material substrate or a crystal material manufacturing substrate is used as an object to be polished, any of the abrasive grains disclosed herein or the abrasive grains It is preferable to perform further polishing after polishing (lapping) with a polishing surface plate using a polishing composition containing. The abrasive grains of the polishing composition used for the polishing are preferably those having an average particle diameter of 0.30 μm or less, more preferably from the viewpoint of reducing waviness, roughness, defects, etc. of the surface of the object to be polished. It is 0.25 μm or less, more preferably 0.20 μm or less. From the viewpoint of improving the polishing efficiency (polishing rate), the average particle size of the abrasive grains contained in the polishing composition is preferably 0.01 μm or more, more preferably 0.02 μm or more. Abrasive grains suitably used in the polishing composition can be colloidal oxide particles such as colloidal silica. The average particle diameter of the abrasive grains in the polishing composition can be measured by a dynamic light scattering method using, for example, “Nanotrac UPA-UT151” manufactured by Nikkiso Co., Ltd.
ポリシング用組成物のpHは、特に限定されないが、1~4または8~11であることが好ましい。ポリシング用組成物のpHの調整は、研磨定盤による研磨(ラッピング)に用いられる研磨用組成物の場合と同様、種々の酸、塩基またはそれらの塩を用いて行うことができる。ポリシング用組成物は、必要に応じて、キレート剤や水溶性高分子、界面活性剤、防腐剤、防黴剤、防錆剤などの添加剤を含んでいてもよい。ポリシング用組成物は、該組成物の原液を水で希釈することによって調製されてもよい。
The pH of the polishing composition is not particularly limited, but is preferably 1 to 4 or 8 to 11. The pH of the polishing composition can be adjusted using various acids, bases or salts thereof as in the polishing composition used for polishing (lapping) with a polishing platen. The polishing composition may contain additives such as a chelating agent, a water-soluble polymer, a surfactant, an antiseptic, an antifungal agent, and an antirust agent as necessary. The polishing composition may be prepared by diluting a stock solution of the composition with water.
以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
Hereinafter, some examples relating to the present invention will be described. However, the present invention is not intended to be limited to the examples shown in the examples.
<研磨定盤の表面調整>
以下の条件A~Eにより、後述する研磨実験に使用する鋳鉄製の研磨定盤(溝なし)の表面調整を行った。上記研磨定盤の各部のサイズは、直径20cm、中心部の直径2.8cm、半径(中心部を除く)8.6cmであり、有効面積は307.8456cm2である。 <Surface adjustment of polishing surface plate>
Under the following conditions A to E, the surface adjustment of a cast iron polishing surface plate (without grooves) used in a polishing experiment described later was performed. The size of each part of the polishing surface plate is 20 cm in diameter, 2.8 cm in diameter at the center, 8.6 cm in radius (excluding the center), and the effective area is 307.8456 cm 2 .
以下の条件A~Eにより、後述する研磨実験に使用する鋳鉄製の研磨定盤(溝なし)の表面調整を行った。上記研磨定盤の各部のサイズは、直径20cm、中心部の直径2.8cm、半径(中心部を除く)8.6cmであり、有効面積は307.8456cm2である。 <Surface adjustment of polishing surface plate>
Under the following conditions A to E, the surface adjustment of a cast iron polishing surface plate (without grooves) used in a polishing experiment described later was performed. The size of each part of the polishing surface plate is 20 cm in diameter, 2.8 cm in diameter at the center, 8.6 cm in radius (excluding the center), and the effective area is 307.8456 cm 2 .
(調整条件A)
研磨定盤の表面調整用の研磨機として、宇田川鐵工株式会社製のレンズ研磨機「AL-2」を使用した。この研磨機の鋳鉄製定盤上に処理対象物としての上記研磨定盤をセットし、表面調整用スラリーを供給しながら上記定盤を回転させて表面調整を行った。表面調整用スラリーとしては、平均粒子径が48μmのGC砥粒と平均粒子径が74μmのGC砥粒とを、1:1の重量比で、合計13重量%の濃度で含むものを使用した。上記スラリーの供給レートは14mL/minとし、定盤回転数は130rpmとした。表面調整時間は、1.5時間~2時間の範囲で、上記研磨定盤の面内平坦性が±5μm以内になるように設定した。研磨定盤の面内平坦性は、日本エンギス株式会社製のマイクロゲージ「HYPREZ DIVISION」を用いて、上記処理対象物の中心を通って45度の角度で交差する4本のラインに沿って測定を行うことにより評価した。 (Adjustment condition A)
As a polishing machine for adjusting the surface of the polishing surface plate, a lens polishing machine “AL-2” manufactured by Udagawa Seiko Co., Ltd. was used. The polishing surface plate as a processing object was set on the cast iron surface plate of the polishing machine, and the surface plate was rotated while supplying the surface adjustment slurry to adjust the surface. As the slurry for surface adjustment, a slurry containing GC abrasive grains having an average particle diameter of 48 μm and GC abrasive grains having an average particle diameter of 74 μm at a weight ratio of 1: 1 at a total concentration of 13% by weight was used. The slurry supply rate was 14 mL / min, and the platen speed was 130 rpm. The surface adjustment time was set in the range of 1.5 to 2 hours so that the in-plane flatness of the polishing platen was within ± 5 μm. In-plane flatness of the polishing surface plate is measured along four lines intersecting at an angle of 45 degrees through the center of the object to be processed using a micro gauge “HYPREZ DIVISION” manufactured by Nippon Engis Co., Ltd. It was evaluated by performing.
研磨定盤の表面調整用の研磨機として、宇田川鐵工株式会社製のレンズ研磨機「AL-2」を使用した。この研磨機の鋳鉄製定盤上に処理対象物としての上記研磨定盤をセットし、表面調整用スラリーを供給しながら上記定盤を回転させて表面調整を行った。表面調整用スラリーとしては、平均粒子径が48μmのGC砥粒と平均粒子径が74μmのGC砥粒とを、1:1の重量比で、合計13重量%の濃度で含むものを使用した。上記スラリーの供給レートは14mL/minとし、定盤回転数は130rpmとした。表面調整時間は、1.5時間~2時間の範囲で、上記研磨定盤の面内平坦性が±5μm以内になるように設定した。研磨定盤の面内平坦性は、日本エンギス株式会社製のマイクロゲージ「HYPREZ DIVISION」を用いて、上記処理対象物の中心を通って45度の角度で交差する4本のラインに沿って測定を行うことにより評価した。 (Adjustment condition A)
As a polishing machine for adjusting the surface of the polishing surface plate, a lens polishing machine “AL-2” manufactured by Udagawa Seiko Co., Ltd. was used. The polishing surface plate as a processing object was set on the cast iron surface plate of the polishing machine, and the surface plate was rotated while supplying the surface adjustment slurry to adjust the surface. As the slurry for surface adjustment, a slurry containing GC abrasive grains having an average particle diameter of 48 μm and GC abrasive grains having an average particle diameter of 74 μm at a weight ratio of 1: 1 at a total concentration of 13% by weight was used. The slurry supply rate was 14 mL / min, and the platen speed was 130 rpm. The surface adjustment time was set in the range of 1.5 to 2 hours so that the in-plane flatness of the polishing platen was within ± 5 μm. In-plane flatness of the polishing surface plate is measured along four lines intersecting at an angle of 45 degrees through the center of the object to be processed using a micro gauge “HYPREZ DIVISION” manufactured by Nippon Engis Co., Ltd. It was evaluated by performing.
(調整条件B~E)
表面調整用スラリーに含まれる砥粒の平均粒子径をそれぞれ以下のように変更した他は調整条件Aと同様にして、研磨定盤の表面調整を行った。使用した砥粒はいずれも株式会社フジミインコーポレーテッド社製のGC砥粒であり、表面調整用スラリー中における該砥粒の濃度はいずれも13重量%である。
調整条件B:平均粒子径 74μm
調整条件C:平均粒子径 100μm
調整条件D:平均粒子径 48μm
調整条件E:平均粒子径 15μm (Adjustment conditions B to E)
The surface adjustment of the polishing surface plate was performed in the same manner as in the adjustment condition A, except that the average particle diameter of the abrasive grains contained in the surface adjustment slurry was changed as follows. All the abrasive grains used were GC abrasive grains manufactured by Fujimi Incorporated Co., Ltd., and the concentration of the abrasive grains in the surface adjustment slurry was 13 wt%.
Adjustment condition B: average particle size 74 μm
Adjustment condition C: average particle size 100 μm
Condition D: Average particle size 48 μm
Condition E: Average particle size 15 μm
表面調整用スラリーに含まれる砥粒の平均粒子径をそれぞれ以下のように変更した他は調整条件Aと同様にして、研磨定盤の表面調整を行った。使用した砥粒はいずれも株式会社フジミインコーポレーテッド社製のGC砥粒であり、表面調整用スラリー中における該砥粒の濃度はいずれも13重量%である。
調整条件B:平均粒子径 74μm
調整条件C:平均粒子径 100μm
調整条件D:平均粒子径 48μm
調整条件E:平均粒子径 15μm (Adjustment conditions B to E)
The surface adjustment of the polishing surface plate was performed in the same manner as in the adjustment condition A, except that the average particle diameter of the abrasive grains contained in the surface adjustment slurry was changed as follows. All the abrasive grains used were GC abrasive grains manufactured by Fujimi Incorporated Co., Ltd., and the concentration of the abrasive grains in the surface adjustment slurry was 13 wt%.
Adjustment condition B: average particle size 74 μm
Adjustment condition C: average particle size 100 μm
Condition D: Average particle size 48 μm
Condition E: Average particle size 15 μm
(保持率測定)
上記の条件で調整した研磨定盤の表面を、株式会社キーエンス製の形状測定レーザーマイクロスコープ「VK-X200」で観察した。観察箇所は、研磨定盤の中心部を除く部分について、該研磨定盤の径方向に沿って5点、中心からの距離がほぼ等間隔で大きくなるように選定した。これら5点の観察視野内において、研磨定盤の径方向に沿う100μmの長さの線分上の範囲について、該研磨定盤の表面に存在する微小溝の幅および深さを測定した。下記例1~23に使用される各砥粒の平均粒子径に対して、上記微小溝のうち幅が「平均粒子径+0.1μm」以上の値であってかつ深さが平均粒子径の1/2以上の値である微小溝を有効溝として検出し、それらの有効溝の合計幅が上記5点の観察視野における合計測定長さ(すなわち500μm)に占める割合を算出することにより保持率を求めた。なお、各微小溝の幅は上記線分に沿って測定した。 (Retention rate measurement)
The surface of the polishing surface plate adjusted under the above conditions was observed with a shape measurement laser microscope “VK-X200” manufactured by Keyence Corporation. The observation locations were selected so that the portions other than the central portion of the polishing surface plate were increased along the radial direction of the polishing surface plate by 5 points and the distance from the center increased at substantially equal intervals. Within these five observation fields, the width and depth of the microgrooves existing on the surface of the polishing surface plate were measured for a range on a line segment having a length of 100 μm along the radial direction of the polishing surface plate. With respect to the average particle diameter of each of the abrasive grains used in Examples 1 to 23 below, the width of the fine groove is not less than “average particle diameter + 0.1 μm” and the depth is 1 of the average particle diameter. The minute groove having a value of / 2 or more is detected as an effective groove, and the retention ratio is calculated by calculating the ratio of the total width of the effective grooves to the total measurement length (that is, 500 μm) in the above five observation fields. Asked. In addition, the width | variety of each microgroove was measured along the said line segment.
上記の条件で調整した研磨定盤の表面を、株式会社キーエンス製の形状測定レーザーマイクロスコープ「VK-X200」で観察した。観察箇所は、研磨定盤の中心部を除く部分について、該研磨定盤の径方向に沿って5点、中心からの距離がほぼ等間隔で大きくなるように選定した。これら5点の観察視野内において、研磨定盤の径方向に沿う100μmの長さの線分上の範囲について、該研磨定盤の表面に存在する微小溝の幅および深さを測定した。下記例1~23に使用される各砥粒の平均粒子径に対して、上記微小溝のうち幅が「平均粒子径+0.1μm」以上の値であってかつ深さが平均粒子径の1/2以上の値である微小溝を有効溝として検出し、それらの有効溝の合計幅が上記5点の観察視野における合計測定長さ(すなわち500μm)に占める割合を算出することにより保持率を求めた。なお、各微小溝の幅は上記線分に沿って測定した。 (Retention rate measurement)
The surface of the polishing surface plate adjusted under the above conditions was observed with a shape measurement laser microscope “VK-X200” manufactured by Keyence Corporation. The observation locations were selected so that the portions other than the central portion of the polishing surface plate were increased along the radial direction of the polishing surface plate by 5 points and the distance from the center increased at substantially equal intervals. Within these five observation fields, the width and depth of the microgrooves existing on the surface of the polishing surface plate were measured for a range on a line segment having a length of 100 μm along the radial direction of the polishing surface plate. With respect to the average particle diameter of each of the abrasive grains used in Examples 1 to 23 below, the width of the fine groove is not less than “average particle diameter + 0.1 μm” and the depth is 1 of the average particle diameter. The minute groove having a value of / 2 or more is detected as an effective groove, and the retention ratio is calculated by calculating the ratio of the total width of the effective grooves to the total measurement length (that is, 500 μm) in the above five observation fields. Asked. In addition, the width | variety of each microgroove was measured along the said line segment.
<研磨実験>
(研磨液の調製)
砥粒として、平均粒子径が2.1μm、2.6μm、3.7μmおよび7.7μmの4種類の二ホウ化チタン(TiB2)粉末を用意した。これらの砥粒に添加剤として20g/Lのクエン酸および5g/Lのポリアクリル酸を一定量添加した上で、上記砥粒を0.2~20重量%の濃度(表1に示す各濃度)で含む研磨液になるように調製した。このようにして調製した研磨液のpHは約3.3~3.5であった。なお、上記二ホウ化チタン粉末の各平均粒子径は、株式会社堀場製作所製のレーザ回折/散乱式粒子径分布測定装置「LA-950」による測定値である。 <Polishing experiment>
(Preparation of polishing liquid)
As abrasive grains, four types of titanium diboride (TiB 2 ) powders having an average particle diameter of 2.1 μm, 2.6 μm, 3.7 μm, and 7.7 μm were prepared. After adding a certain amount of 20 g / L citric acid and 5 g / L polyacrylic acid as additives to these abrasive grains, the above-mentioned abrasive grains were added at a concentration of 0.2 to 20% by weight (the respective concentrations shown in Table 1). It was prepared so that it might become the polishing liquid contained in. The pH of the polishing liquid thus prepared was about 3.3 to 3.5. The average particle size of the titanium diboride powder is a value measured by a laser diffraction / scattering particle size distribution measuring apparatus “LA-950” manufactured by Horiba, Ltd.
(研磨液の調製)
砥粒として、平均粒子径が2.1μm、2.6μm、3.7μmおよび7.7μmの4種類の二ホウ化チタン(TiB2)粉末を用意した。これらの砥粒に添加剤として20g/Lのクエン酸および5g/Lのポリアクリル酸を一定量添加した上で、上記砥粒を0.2~20重量%の濃度(表1に示す各濃度)で含む研磨液になるように調製した。このようにして調製した研磨液のpHは約3.3~3.5であった。なお、上記二ホウ化チタン粉末の各平均粒子径は、株式会社堀場製作所製のレーザ回折/散乱式粒子径分布測定装置「LA-950」による測定値である。 <Polishing experiment>
(Preparation of polishing liquid)
As abrasive grains, four types of titanium diboride (TiB 2 ) powders having an average particle diameter of 2.1 μm, 2.6 μm, 3.7 μm, and 7.7 μm were prepared. After adding a certain amount of 20 g / L citric acid and 5 g / L polyacrylic acid as additives to these abrasive grains, the above-mentioned abrasive grains were added at a concentration of 0.2 to 20% by weight (the respective concentrations shown in Table 1). It was prepared so that it might become the polishing liquid contained in. The pH of the polishing liquid thus prepared was about 3.3 to 3.5. The average particle size of the titanium diboride powder is a value measured by a laser diffraction / scattering particle size distribution measuring apparatus “LA-950” manufactured by Horiba, Ltd.
(例1~23)
表1に示す各条件で表面調整された研磨定盤をNano factor社製の研磨機「Fact 200」に取り付けた。この研磨機に、研磨対象物としてのステンレス鋼板(SUS304からなる直径25.4mmの円盤)を3枚セットした。この研磨機に、上記で調製した研磨液のうちそれぞれ表1に示す組成の研磨液を供給して、以下の条件でラッピングを行った。
[ラッピング条件]
研磨荷重:170g/cm2
定盤回転数:75rpm(線速度47m/min)
研磨液の供給レート:7mL/min (Examples 1 to 23)
A polishing platen whose surface was adjusted under the conditions shown in Table 1 was attached to a polishing machine “Fact 200” manufactured by Nanofactor. Three stainless steel plates (disks made of SUS304 and having a diameter of 25.4 mm) as an object to be polished were set in this polishing machine. The polishing liquid having the composition shown in Table 1 was supplied to the polishing machine, and lapping was performed under the following conditions.
[Wrapping conditions]
Polishing load: 170 g / cm 2
Surface plate rotation speed: 75 rpm (linear speed 47 m / min)
Polishing liquid supply rate: 7 mL / min
表1に示す各条件で表面調整された研磨定盤をNano factor社製の研磨機「Fact 200」に取り付けた。この研磨機に、研磨対象物としてのステンレス鋼板(SUS304からなる直径25.4mmの円盤)を3枚セットした。この研磨機に、上記で調製した研磨液のうちそれぞれ表1に示す組成の研磨液を供給して、以下の条件でラッピングを行った。
[ラッピング条件]
研磨荷重:170g/cm2
定盤回転数:75rpm(線速度47m/min)
研磨液の供給レート:7mL/min (Examples 1 to 23)
A polishing platen whose surface was adjusted under the conditions shown in Table 1 was attached to a polishing machine “Fact 200” manufactured by Nanofactor. Three stainless steel plates (disks made of SUS304 and having a diameter of 25.4 mm) as an object to be polished were set in this polishing machine. The polishing liquid having the composition shown in Table 1 was supplied to the polishing machine, and lapping was performed under the following conditions.
[Wrapping conditions]
Polishing load: 170 g / cm 2
Surface plate rotation speed: 75 rpm (linear speed 47 m / min)
Polishing liquid supply rate: 7 mL / min
(例24~26)
表面調整を行っていない研磨定盤に研磨パッドを取り付け、上記で調製した研磨液のうちそれぞれ表1に示す組成の研磨液を供給して、上記の条件でラッピングを行った。研磨パッドとしては、トーヨー・アドバンスト・テクノロジー株式会社製の硬質ウレタンパッド「NP-3100N/パーフォレーション」を使用した。 (Examples 24-26)
A polishing pad was attached to a polishing surface plate whose surface was not adjusted, and polishing liquids having the compositions shown in Table 1 were supplied from the polishing liquids prepared above, and lapping was performed under the above conditions. As a polishing pad, a hard urethane pad “NP-3100N / Perforation” manufactured by Toyo Advanced Technology Co., Ltd. was used.
表面調整を行っていない研磨定盤に研磨パッドを取り付け、上記で調製した研磨液のうちそれぞれ表1に示す組成の研磨液を供給して、上記の条件でラッピングを行った。研磨パッドとしては、トーヨー・アドバンスト・テクノロジー株式会社製の硬質ウレタンパッド「NP-3100N/パーフォレーション」を使用した。 (Examples 24-26)
A polishing pad was attached to a polishing surface plate whose surface was not adjusted, and polishing liquids having the compositions shown in Table 1 were supplied from the polishing liquids prepared above, and lapping was performed under the above conditions. As a polishing pad, a hard urethane pad “NP-3100N / Perforation” manufactured by Toyo Advanced Technology Co., Ltd. was used.
(性能評価)
上記ラッピングの前後に研磨対象物の重量を測定し、それらの重量差から研磨能率を算出した。また、ラッピング後の表面について株式会社キーエンス社製の形状測定レーザーマイクロスコープ「VK-X200」を用いて表面粗さ(算術平均粗さ(Ra))を測定した。結果を表1に示す。 (Performance evaluation)
The weight of the object to be polished was measured before and after the lapping, and the polishing efficiency was calculated from the difference in weight. Further, the surface roughness (arithmetic average roughness (Ra)) of the lapped surface was measured using a shape measurement laser microscope “VK-X200” manufactured by Keyence Corporation. The results are shown in Table 1.
上記ラッピングの前後に研磨対象物の重量を測定し、それらの重量差から研磨能率を算出した。また、ラッピング後の表面について株式会社キーエンス社製の形状測定レーザーマイクロスコープ「VK-X200」を用いて表面粗さ(算術平均粗さ(Ra))を測定した。結果を表1に示す。 (Performance evaluation)
The weight of the object to be polished was measured before and after the lapping, and the polishing efficiency was calculated from the difference in weight. Further, the surface roughness (arithmetic average roughness (Ra)) of the lapped surface was measured using a shape measurement laser microscope “VK-X200” manufactured by Keyence Corporation. The results are shown in Table 1.
表1に示されるように、保持率が5%より小さい例18~20および保持率が60%より大きい例21~23に比べて、例1~17では明らかに高い研磨能率が得られた。また、表1から、他の条件が同程度の場合、保持率が15~35%の範囲にあると、より良好な研磨能率が得られる傾向にあることがわかる。
一方、研磨パッドを用いた例24~26では、例10と同組成の研磨液を用いた例24において研磨能率が半減し、砥粒の濃度を20重量%まで高くしてもなお例1~17の研磨能率には及ばなかった。 As shown in Table 1, clearly higher polishing efficiency was obtained in Examples 1 to 17 than Examples 18 to 20 having a retention rate of less than 5% and Examples 21 to 23 having a retention rate of more than 60%. Further, it can be seen from Table 1 that when the other conditions are the same, a better polishing efficiency tends to be obtained when the retention rate is in the range of 15 to 35%.
On the other hand, in Examples 24 to 26 using the polishing pad, the polishing efficiency is reduced by half in Example 24 using the polishing liquid having the same composition as Example 10, and even if the abrasive concentration is increased to 20% by weight, Examples 1 to The polishing efficiency of 17 was not reached.
一方、研磨パッドを用いた例24~26では、例10と同組成の研磨液を用いた例24において研磨能率が半減し、砥粒の濃度を20重量%まで高くしてもなお例1~17の研磨能率には及ばなかった。 As shown in Table 1, clearly higher polishing efficiency was obtained in Examples 1 to 17 than Examples 18 to 20 having a retention rate of less than 5% and Examples 21 to 23 having a retention rate of more than 60%. Further, it can be seen from Table 1 that when the other conditions are the same, a better polishing efficiency tends to be obtained when the retention rate is in the range of 15 to 35%.
On the other hand, in Examples 24 to 26 using the polishing pad, the polishing efficiency is reduced by half in Example 24 using the polishing liquid having the same composition as Example 10, and even if the abrasive concentration is increased to 20% by weight, Examples 1 to The polishing efficiency of 17 was not reached.
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
Claims (9)
- 研磨定盤に供給されて硬質金属材料を研磨するための砥粒であって、
平均粒子径が2~10μmであり、
前記研磨定盤に対する保持率が5~60%である、硬質金属材料研磨用砥粒。 Abrasive grains for polishing a hard metal material supplied to a polishing surface plate,
The average particle size is 2-10 μm,
Abrasive grains for polishing hard metal materials having a retention of 5 to 60% with respect to the polishing surface plate. - 実質的に二ホウ化チタンからなる、請求項1に記載の砥粒。 The abrasive grain according to claim 1, substantially consisting of titanium diboride.
- 請求項1または2に記載の砥粒と、該砥粒を分散させる溶媒とを含む、研磨用組成物。 A polishing composition comprising the abrasive grain according to claim 1 or 2 and a solvent for dispersing the abrasive grain.
- 前記砥粒の濃度が0.3~10重量%である、請求項3に記載の研磨用組成物。 The polishing composition according to claim 3, wherein the concentration of the abrasive grains is 0.3 to 10% by weight.
- 硬質金属製品を製造する方法であって:
研磨定盤を備えた研磨装置に研磨対象物としての硬質金属材料をセットすること;
前記研磨定盤に研磨用組成物を供給すること;および
前記研磨対象物に対して前記研磨定盤を相対的に移動させることにより前記研磨対象物を研磨すること;
を包含し、
ここで、前記研磨用組成物として請求項3または4に記載の研磨用組成物を使用する、硬質金属製品製造方法。 A method of manufacturing a hard metal product comprising:
Setting a hard metal material as an object to be polished in a polishing apparatus equipped with a polishing surface plate;
Supplying a polishing composition to the polishing surface plate; and polishing the polishing object by moving the polishing surface plate relative to the polishing object;
Including
Here, the manufacturing method of a hard metal product which uses the polishing composition of Claim 3 or 4 as the said polishing composition. - 前記研磨定盤は、平均粒子径25~120μmの緑色炭化ケイ素砥粒により表面調整されたものである、請求項5に記載の方法。 The method according to claim 5, wherein the polishing surface plate is surface-adjusted with green silicon carbide abrasive grains having an average particle diameter of 25 to 120 μm.
- 前記研磨定盤は鋳鉄製の表面を備える、請求項5または6に記載の方法。 The method according to claim 5 or 6, wherein the polishing surface plate comprises a cast iron surface.
- 前記砥粒は実質的に二ホウ化チタンからなる、請求項5から7のいずれか一項に記載の方法。 The method according to any one of claims 5 to 7, wherein the abrasive grains are substantially composed of titanium diboride.
- 前記硬質金属材料はステンレス鋼である、請求項5から8のいずれか一項に記載の方法。 The method according to any one of claims 5 to 8, wherein the hard metal material is stainless steel.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-198273 | 2014-09-29 | ||
JP2014198273A JP2016069450A (en) | 2014-09-29 | 2014-09-29 | Hard metallic material polishing abrasive grain, polishing composition, and hard metallic product production method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016052161A1 true WO2016052161A1 (en) | 2016-04-07 |
Family
ID=55630203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/076036 WO2016052161A1 (en) | 2014-09-29 | 2015-09-14 | Abrasive grains for polishing hard metal material, polishing composition and method for manufacturing hard metal product |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2016069450A (en) |
TW (1) | TW201627223A (en) |
WO (1) | WO2016052161A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112538623A (en) * | 2020-12-01 | 2021-03-23 | 上海易慧机电科技有限公司 | Stainless steel surface passivation process |
CN113646126A (en) * | 2019-04-04 | 2021-11-12 | 马自达汽车株式会社 | Method for manufacturing hypoid gear |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060777A (en) * | 2000-08-22 | 2002-02-26 | Ishii Hyoki Corp | Aqueous slurry for wire saw |
JP2002283218A (en) * | 2001-03-23 | 2002-10-03 | Noritake Super Abrasive:Kk | Abrasive cloth dresser |
JP2004508947A (en) * | 2000-09-08 | 2004-03-25 | スリーエム イノベイティブ プロパティズ カンパニー | Abrasive articles and methods of making and using same |
JP2005518091A (en) * | 2002-02-11 | 2005-06-16 | キャボット マイクロエレクトロニクス コーポレイション | Anionic abrasive particles treated with positively charged polyelectrolyte for CMP |
WO2009034924A1 (en) * | 2007-09-10 | 2009-03-19 | Bando Chemical Industries, Ltd. | Magnetorheological polishing slurry composition |
JP2010522093A (en) * | 2007-03-21 | 2010-07-01 | スリーエム イノベイティブ プロパティズ カンパニー | How to remove surface defects |
JP2012166326A (en) * | 2011-02-16 | 2012-09-06 | Nihon Micro Coating Co Ltd | Grinding machine for grinding object composed of crystal material, method for manufacturing grinding machine and grinding method |
JP2014117794A (en) * | 2012-12-19 | 2014-06-30 | Fujibo Holdings Inc | Resin stool for diamond wrapping and wrapping method using the same |
-
2014
- 2014-09-29 JP JP2014198273A patent/JP2016069450A/en active Pending
-
2015
- 2015-09-14 WO PCT/JP2015/076036 patent/WO2016052161A1/en active Application Filing
- 2015-09-25 TW TW104131832A patent/TW201627223A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002060777A (en) * | 2000-08-22 | 2002-02-26 | Ishii Hyoki Corp | Aqueous slurry for wire saw |
JP2004508947A (en) * | 2000-09-08 | 2004-03-25 | スリーエム イノベイティブ プロパティズ カンパニー | Abrasive articles and methods of making and using same |
JP2002283218A (en) * | 2001-03-23 | 2002-10-03 | Noritake Super Abrasive:Kk | Abrasive cloth dresser |
JP2005518091A (en) * | 2002-02-11 | 2005-06-16 | キャボット マイクロエレクトロニクス コーポレイション | Anionic abrasive particles treated with positively charged polyelectrolyte for CMP |
JP2010522093A (en) * | 2007-03-21 | 2010-07-01 | スリーエム イノベイティブ プロパティズ カンパニー | How to remove surface defects |
WO2009034924A1 (en) * | 2007-09-10 | 2009-03-19 | Bando Chemical Industries, Ltd. | Magnetorheological polishing slurry composition |
JP2012166326A (en) * | 2011-02-16 | 2012-09-06 | Nihon Micro Coating Co Ltd | Grinding machine for grinding object composed of crystal material, method for manufacturing grinding machine and grinding method |
JP2014117794A (en) * | 2012-12-19 | 2014-06-30 | Fujibo Holdings Inc | Resin stool for diamond wrapping and wrapping method using the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113646126A (en) * | 2019-04-04 | 2021-11-12 | 马自达汽车株式会社 | Method for manufacturing hypoid gear |
CN113646126B (en) * | 2019-04-04 | 2023-10-20 | 马自达汽车株式会社 | Manufacturing method of hyperboloid gear |
CN112538623A (en) * | 2020-12-01 | 2021-03-23 | 上海易慧机电科技有限公司 | Stainless steel surface passivation process |
Also Published As
Publication number | Publication date |
---|---|
TW201627223A (en) | 2016-08-01 |
JP2016069450A (en) | 2016-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015152383A1 (en) | Polishing composition for hard materials | |
JP6068647B2 (en) | Polished polishing object manufacturing method and polishing composition kit | |
TW201542792A (en) | Polishing composition | |
JPWO2012102180A1 (en) | Abrasive material and polishing composition | |
KR102594932B1 (en) | polishing composition | |
SG190703A1 (en) | Composition and method for polishing polysilicon | |
KR102350734B1 (en) | Chemical mechanical polishing composition for polishing a sapphire surface and methods of using same | |
TWI624535B (en) | Grinding composition | |
KR20140091571A (en) | Polishing composition | |
KR20180101331A (en) | Polishing composition and polishing method of silicon substrate | |
JPWO2012169515A1 (en) | Abrasive material and polishing composition | |
JP2018174009A (en) | Polishing composition, manufacturing method for magnetic disk substrate, and polishing method for magnetic disk | |
WO2016052161A1 (en) | Abrasive grains for polishing hard metal material, polishing composition and method for manufacturing hard metal product | |
TWI808935B (en) | Abrasive, abrasive composition, and abrasive method | |
JP6637816B2 (en) | Polishing composition, substrate polishing method and substrate manufacturing method | |
JP2019172853A (en) | Abrasive grain dispersion, polishing composition kit, and method for polishing magnetic disk substrate | |
US20150251293A1 (en) | Polishing method and method for producing alloy material | |
JP6559410B2 (en) | Polishing composition | |
JP2014024157A (en) | Abrasive composition, polishing method of crustaceous material, and manufacturing method of crustaceous material substrate | |
JP6480139B2 (en) | Polishing composition | |
JP6637817B2 (en) | Composition for polishing magnetic disk substrate, method for manufacturing magnetic disk substrate and polishing method | |
TW201715012A (en) | Polishing composition, polishing method, and production method | |
TW201821582A (en) | Polishing composition and silicon wafer polishing method | |
JP2022152749A (en) | Polishing composition and polishing method | |
TW202300602A (en) | Polishing composition and polishing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15845910 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15845910 Country of ref document: EP Kind code of ref document: A1 |