[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016051743A1 - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
WO2016051743A1
WO2016051743A1 PCT/JP2015/004871 JP2015004871W WO2016051743A1 WO 2016051743 A1 WO2016051743 A1 WO 2016051743A1 JP 2015004871 W JP2015004871 W JP 2015004871W WO 2016051743 A1 WO2016051743 A1 WO 2016051743A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
stop signal
value
current
signal
Prior art date
Application number
PCT/JP2015/004871
Other languages
French (fr)
Japanese (ja)
Inventor
隆宏 増田
太郎 岸部
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016551528A priority Critical patent/JP6454881B2/en
Priority to CN201580040152.7A priority patent/CN106575940B/en
Publication of WO2016051743A1 publication Critical patent/WO2016051743A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a motor control device that freely controls a motor by applying a drive voltage generated by PWM control to the winding of the motor and controlling a flowing current, and more particularly, generated by applying a drive voltage to the winding.
  • the present invention relates to a motor control device having a function of detecting a current value to be detected.
  • a servo motor used in FA (Factory Automation)
  • the position, speed, and torque of a motor are controlled so as to follow a drive command (position command) from a host device (host controller).
  • Digital control using a microprocessor is widely used as the control arithmetic unit. Since the torque output by the synchronous motor (Surface Permanent Magnet Synchronous Motor) used in servo motors is proportional to the motor current, the motor output can be controlled freely by controlling the motor current. can do.
  • PWM Pulse Width Modulation
  • a motor current that flows in a motor winding.
  • the motor current is detected at regular intervals, and control is performed using PID control (proportional + integral + derivative control) or the like so as to coincide with the current command value.
  • FIG. 5 is a configuration diagram of a motor control device 90 including an inverter as a conventional example.
  • This conventional motor control device 90 is provided with a current detection resistor 91 between the power converter 98 that is an inverter and the winding of the motor 30 in order to detect the current value of the motor current.
  • the voltage generated between the two terminals of the current detection resistor 91 when the motor current flows is digitally converted by an AD (Analog-Digital) converter 95, and the digital data Di is supplied to the digital controller 97.
  • AD Analog-Digital
  • the motor current is generally detected by such a configuration.
  • a ⁇ (delta sigma) AD converter 92 is used in the AD conversion unit 95 as shown in FIG. 1).
  • Such an AD conversion unit 95 includes, for example, a photocoupler, a digital filter, and the like in addition to the ⁇ AD converter 92.
  • this ⁇ AD converter has a problem that it is easily affected by leakage current based on PWM control.
  • the voltage applied to the motor is controlled by turning on / off (hereinafter referred to as switching) a power conversion element (high-speed power switching element using a semiconductor). For this reason, a leakage current is generated at the moment of switching.
  • the leakage current flows to a grounded location through a housing or wiring.
  • the ⁇ AD converter converts the voltage into a 1-bit digital signal. For this reason, the current detection value after the AD conversion thinning filter includes an unnecessary current component that does not originally flow to the motor.
  • the motor control device of the present invention is a motor control device that has a motor current detection unit that detects a current flowing through a winding for a motor including a stator wound with a three-phase winding, and controls the operation of the motor. is there.
  • the motor control device includes a digital control unit, a PWM unit, a power conversion unit, a motor current detection unit, a ⁇ AD conversion unit, and a stop signal generation unit.
  • the digital control unit uses the operation command from the host device, the position information from the position detection sensor, and the motor current detection value, which is the current value flowing in the winding, to calculate the voltage for driving the motor by performing position, speed or torque calculation. Calculate the command value.
  • the PWM unit performs pulse width modulation by comparing the voltage command value with a triangular wave, and outputs a PWM switching signal.
  • the power converter applies a driving voltage to the winding by turning on / off the switching element according to the PWM switching signal.
  • the motor current detector converts the current flowing through the winding by the drive voltage into an analog voltage.
  • the ⁇ AD converter converts the analog voltage into a digital signal.
  • the stop signal generation unit outputs a stop signal for stopping the operation of the ⁇ AD conversion unit.
  • the stop signal generation unit outputs a stop signal while a leakage current is generated due to ON / OFF of the switching element when the difference between the maximum value and the minimum value of the voltage command is equal to or less than a predetermined threshold. It is.
  • this stop signal can reduce the adverse effect of leakage current caused by switching elements on / off, so that unnecessary torque generated in the motor is reduced and fine vibration is suppressed. Can do.
  • FIG. 1 is a configuration diagram of a motor control system including a motor control device according to an embodiment of the present invention.
  • FIG. 2 is an operation waveform diagram for explaining the operation of the ⁇ AD converter used for detecting the motor current in the motor control device.
  • FIG. 3 is a configuration diagram of a ⁇ AD converter in the motor control device.
  • FIG. 4 is a configuration diagram of a stop signal generation unit in the motor control device.
  • FIG. 5 is a block diagram of a conventional motor control device.
  • FIG. 1 is a configuration diagram of a motor control system including a motor control device according to an embodiment of the present invention
  • FIG. 2 is an operation waveform diagram for explaining the operation of a ⁇ AD converter used for detecting a motor current.
  • FIG. 3 is a configuration diagram of the ⁇ AD converter for detecting the motor current.
  • the motor control system 100 is configured such that the motor control device 10 controls the operation of the motor 30 according to the command control of the host device 35.
  • the host device 35 is configured by using, for example, a personal computer and controls the motor control device 10 by a command or the like.
  • the host device 35 and the motor control device 10 are communicatively connected via a control bus line or the like.
  • a command from the host device 35 is transmitted to the motor control device 10, and information from the motor control device 10 is transmitted to the host device. 35.
  • the motor 30 which is a three-phase brushless motor, includes a stator in which windings of phases U, V, and W are wound around a stator core, and a rotor having permanent magnets.
  • the drive voltage Vd generated by the motor control device 10 is applied as the drive voltage VdU for the U-phase winding, as the drive voltage VdV for the V-phase winding, and as the drive voltage VdW for the W-phase winding. As a result, the rotor rotates.
  • a position detection sensor 31 such as a rotary encoder, a linear scale, or a hall CT is disposed in the vicinity of the rotor.
  • the position detection sensor 31 outputs the detected position information of the rotor to the motor control device 10 as position information Sen.
  • a method for estimating the position of the motor from the detected current value without using a device such as a rotary encoder may be used.
  • the motor control device 10 includes a digital control unit 17 for controlling the rotation operation of the motor 30, a PWM unit 16 for generating a PWM signal, and a power conversion unit 18 for energizing and driving the windings of the motor 30.
  • the motor current detector 11, the AD converter 15, and the stop signal generator 19 are provided to detect and process the motor current.
  • the digital control unit 17 is composed of a DSP (Digital Signal Processor), microcomputer software, ASIC (Application Specific Integrated Circuit), or FPGA (Field Programmable Gate Array) logic circuit. That is, the digital control unit (hereinafter simply referred to as a control unit as appropriate) 17 is configured to execute each process according to software indicating a processing procedure such as a program.
  • the control unit 17 mainly processes a digital signal composed of a data string in which data of a predetermined number of bits are arranged as a signal to be processed.
  • the control unit 17 receives information on operation commands for commanding position, speed, torque, and the like from the host device 35. In addition, the control unit 17 transmits information of the motor control device 10 and the like to the host device 35. The control unit 17 controls the rotation operation of the motor 30 together with a communication function for transmitting such information, and performs operation control so that the motor 30 performs a predetermined movement such as speed and position.
  • control unit 17 executes the following control processing based on feedback control.
  • the control unit 17 generates a speed command by performing position control calculation based on the operation command for instructing the position from the host device 35 and the position information Sen of the position detection sensor 31.
  • the control unit 17 calculates a motor speed value corresponding to the actual speed of the motor 30 by differentiating the position information Sen, and calculates a current command by speed control calculation from the motor speed and the speed command.
  • the control unit 17 calculates a current from the U-phase motor current detection value DiU and the W-phase motor current detection value DiW obtained via the motor current detection unit 11 and the AD conversion unit 15 and the calculated current command.
  • the voltage command for each phase is calculated by control calculation.
  • control unit 17 uses the U-phase voltage command value SwU, the V-phase voltage command value SwV, and the W-phase voltage command as voltage command values Sw indicating the U-phase, V-phase, and W-phase voltage commands for driving the motor.
  • the value SwW is output.
  • the PWM unit 16 includes a microcomputer built-in peripheral circuit (peripheral), an ASIC or FPGA logic circuit, and, as shown in FIG. 2, for example, a triangular wave carrier signal formed by an up / down counter and each phase
  • the voltage command value Sw is compared with each other to perform pulse width modulation (PWM) to generate a PWM switching signal (hereinafter simply referred to as a PWM signal, as appropriate) Pw of each phase.
  • PWM pulse width modulation
  • the PWM unit 16 By repeating such an operation, the PWM unit 16 generates a PWM signal Pw composed of a pulse width or a pulse train having a duty ratio corresponding to the level of the voltage command value Sw for each phase. The PWM signal Pw generated in this way is supplied to the power converter 18.
  • the power converter 18 receives the PWM signal Pw of each phase from the PWM unit 16 to generate a drive voltage Vd, and uses the U-phase drive voltage VdU, the V-phase drive voltage VdV, and the W-phase drive voltage VdW as a motor. These voltages are applied to the respective windings of the motor 30 via lines.
  • the power conversion unit 18 is a so-called inverter, and includes a high-speed power switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a power MOSFET and a power conversion element such as a diode.
  • the power conversion unit 18 uses a switching element such as an IGBT to generate a drive voltage Vd by switching, that is, turning on / off the voltage supplied from the power source in accordance with the PWM signal Pw.
  • a switching element such as an IGBT
  • IPM Intelligent Power Module
  • the motor current detection unit 11 detects the amount of motor current flowing through the winding and outputs it as a current detection signal Si. Specifically, motor currents flowing through the U-phase motor line and the W-phase motor line are converted into voltages, respectively, and output as a U-phase current detection signal SiU and a W-phase current detection signal SiW.
  • a shunt resistor is generally used when the motor current is small, and a CT (Current Transfer) is generally used when the motor current is large.
  • the current detection signal Si output from the motor current detection unit 11 is supplied to the AD conversion unit 15.
  • a ⁇ AD converter (hereinafter simply referred to as an AD converter) 15 includes a first AD converter 15U to which a U-phase current detection signal SiU is supplied, and a W-phase current. And a second AD converter 15W to which the detection signal SiW is supplied.
  • Each of the AD converters 15 includes a ⁇ AD converter 12, an AD conversion thinning filter 14, and a clock generator 13. The supplied analog signal is converted into a digital signal and output.
  • a ⁇ AD converter (hereinafter simply referred to as an AD converter) 12 which is a ⁇ analog-digital converter as described above is used.
  • FIG. 3 is a block diagram of such an AD converter 15, and details of the stop signal generator 19 of FIG. 3 will be described below.
  • the clock generation unit 13 includes a clock generator 130 and an AND gate 131.
  • the clock generator 130 generates an original clock Cka that determines the conversion cycle of the AD converter 12.
  • the logical product 131 calculates the logical product of the original clock Cka and a stop signal Stp, which will be described later, and outputs it as an AD conversion clock Ckc.
  • the frequency of the original clock Cka may be determined by the AD conversion resolution required for the current control of the digital control unit 17 and the allowable delay due to the thinning of the filter, and a frequency of several tens of MHz is usually used.
  • the AD converter 12 includes, for example, a comparator that compares with a threshold value, and compares the supplied current detection signal Si with the threshold value.
  • the AD converter 12 converts the comparison result to a binary value to convert it into a 1-bit digital signal.
  • the AD converter 12 outputs the converted 1-bit digital signal as an AD conversion signal dSi for each AD conversion clock Ckc. That is, the AD conversion signal dSi output from the AD converter 12 is a signal composed of pulses.
  • the high and low levels of the signal correspond to the values 1 and 0 of the 1-bit digital signal.
  • the ⁇ AD converter 12 converts the input analog voltage into a 1-bit digital signal.
  • the AD conversion decimation filter 14 (hereinafter referred to as a decimation filter as appropriate) is a digital filter having a sinc function in frequency characteristics called a sinc filter, and includes an adder 140 including an adder and a subtractor. And a subtracting unit 141.
  • the adder 140 generates the multi-bit addition data Dsi by integrating the AD conversion signal dSi, which is a 1-bit digital signal output from the AD converter 12, with an adder for each AD conversion clock Ckc. .
  • the number of bits of the addition data Dsi corresponds to the AD conversion resolution of the AD converter 15.
  • the AD conversion clock frequency divider 142 generates a thinned clock Ckn obtained by dividing the AD conversion clock by 1 / N (N is a power of 2 and n is an integer). That is, the frequency is divided from a high clock rate of the AD conversion clock Ckk called a so-called oversampling clock to a thinned-out clock Ckn at a desired low clock rate.
  • the subtraction unit 141 operates for each thinning clock Ckn, and obtains a frequency characteristic that becomes a sinc function by calculating a difference between the previous value and the current value of the addition data Dsi.
  • a low-pass characteristic filter is realized by the thinning filter 14 composed of the adder 140 and the subtractor 141, and the motor after the filter that cuts the high-frequency noise and converts it into the number of bits of a desired resolution.
  • a current detection value Di is generated.
  • the motor current detection value DiU generated by the first AD conversion unit 15U and the motor current detection value DiW generated by the second AD conversion unit 15W are supplied to the digital control unit 17.
  • the digital control unit 17 performs a current control calculation using the supplied motor current detection values DiU and DiW, and calculates a voltage command value Sw for generating each drive voltage Vd.
  • the motor control device 10 generates the drive voltage Vd in which the drive waveform for driving the winding is formed in a pseudo manner by the PWM pulse by switching the switching element connected to the power source. .
  • a leakage current is generated at the moment of switching, and this leakage current affects the AD converter 15 as noise or the like, and as a result, the accuracy of the motor current detection values DiU and DiW may deteriorate. Therefore, in this embodiment, in order to suppress the influence of the leakage current, a stop signal generation unit 19 is further provided as shown in FIG.
  • the stop signal generation unit 19 uses the stop signal Stp described below to stop the operation of the AD conversion unit 15 for a predetermined period, thereby suppressing the influence of the leakage current. Yes.
  • the influence of the leakage current becomes relatively large when the motor 30 is in a low driving state such as a servo lock where the motor 30 is stopped or a low speed rotation.
  • the voltage command value Sw of each phase corresponding to the driving state is used, for example, it is determined that the stop valid mode is in only low driving, and the stop signal Stp is output. Is also controlling.
  • the stop signal generator 19 is supplied with the voltage command value Sw for each phase and the PWM signal Pw for each phase. Then, the stop signal generation unit 19 first determines whether or not it is the stop effective mode based on the voltage command value Sw of each phase. Further, the stop signal generation unit 19 generates a stop signal Stp having a predetermined timing and a predetermined pulse width by using an edge where the level of the supplied PWM signal Pw changes. This stop signal Stp is supplied to each AD converter 15 in the stop valid mode, and further supplied to one input of the AND gate 131 of the clock generator 13.
  • the clock generator 13 outputs the original clock Cka as the AD conversion clock Ckc.
  • FIG. 4 is a block diagram showing an example of such a stop signal generator 19.
  • the stop signal generator 19 includes a U-phase voltage command value SwU, a V-phase voltage command value SwV, a W-phase voltage command value SwW, PWM signal PwU, V-phase PWM signal PwV, and W-phase PWM signal PwW are supplied.
  • the area between the upper and lower vertices in the level direction of the triangular wave is defined as one area, and the following operation is performed for each area.
  • the stop signal generator 19 extracts the maximum value and the minimum value among the U-phase voltage command value SwU, the V-phase voltage command value SwV, and the W-phase voltage command value SwV. Next, the stop signal generator 19 calculates a difference ⁇ Vcmd between the extracted maximum value and minimum value. Then, the stop signal generator 19 compares with a predetermined threshold value Vth. Based on the comparison result, the stop signal generation unit 19 sets the stop valid mode in which the output of the stop signal is valid according to the stop signal output determination in the region where the difference ⁇ Vcmd is smaller than the threshold value Vth (for example, the region of FIG. 2). 1), if it is equal to or higher than the threshold value Vth, a stop signal is not output as a stop invalid mode in which output determination is not performed (for example, in the case of region 2 in FIG. 2).
  • the maximum / minimum value extraction unit 191 includes a U-phase voltage command value SwU, a V-phase voltage command value SwV, and a W-phase voltage command value SwV.
  • the maximum value MxS and the minimum value Mxn are extracted.
  • the difference calculator 192 calculates a difference ⁇ Vcmd between the extracted maximum value MxS and minimum value Mxn.
  • the comparator 193 compares the difference ⁇ Vcmd with the threshold value Vth, and the comparison result is output as the stop mode signal STmd.
  • an OR gate 197 is provided as an output switch for the stop signal Stp.
  • the stop valid mode is set when the stop mode signal STmd is at a low level and the stop invalid mode is set when the stop mode signal STmd is at a high level. That is, the stop signal Stp indicating the clock stop at a low level is output from the stop signal generation unit 19 via the OR gate 197 in the stop valid mode. Conversely, in the stop invalid mode, the output of the stop signal generator 19 is always at a high level, and the stop signal Stp is not output.
  • the voltage command values Sw of the U-phase, V-phase, and W-phase are sine wave voltage commands, and are each in a state of being shifted by 120 electrical degrees.
  • the difference ⁇ Vcmd between the maximum value and the minimum value of the three-phase voltage command value Sw is almost equal to the voltage command value in which two phases of the three-phase voltage command values Sw are the maximum value or the minimum value. It becomes. That is, at the timing when the waveforms of the two phases overlap, two of the three phases have the same voltage command value, and the two phases have a voltage command value of either the maximum value or the minimum value.
  • the difference ⁇ Vcmd here is a value obtained by subtracting them.
  • the stop signal generation unit 19 detects a case where the timing of the change of the fall and the rise of each PWM signal Pw coincides or approximates between the phases by such a stop mode determination operation. Is in stop effective mode. That is, for example, when the timing of change of the PWM signal Pw coincides or approximates, such as during servo lock, the leakage current increases and the influence increases. On the other hand, in the present embodiment, the case where the influence of the leakage current is large is detected by the operation using the level of the voltage command value Sw.
  • the stop signal generator 19 uses the U-phase PWM signal PwU, the V-phase PWM signal PwV, and the W-phase PWM signal PwW to determine the output timing of the stop signal Stp.
  • the stop signal generation unit 19 sets the stop signal Stp to a low level when any of the PWM signals Pw first changes in the region.
  • a timer is used to operate the timer only while the stop signal Stp is at the low level. Then, the stop signal generator 19 sets the stop signal to high level after the time Tstp has elapsed.
  • the change detector 194 first selects one of the input PWM signal PwU, PWM signal PwV, and PWM signal PwW within the region.
  • the timing generation unit 196 and the timer 195 are notified of the timing.
  • the timing generation unit 196 sets the stop signal Stp to a low level and outputs it.
  • the timer 195 also starts the timer operation and counts until the timer counter reaches a predetermined value.
  • the timer 195 notifies the timing generation unit 196 of a reset signal when a predetermined time Tstp elapses. Based on the timing of this notification, the timing generation unit 196 sets the stop signal Stp to high level and outputs it. As described above, the stop signal Stp is output to the OR gate 197.
  • the threshold value Vth and the time Tstp may be set to values at which the influence of the leakage current is minimized by measuring the motor current detection value Di when the servo is locked.
  • the threshold value Vth is about 10% of the maximum value of the voltage command value Sw
  • the time Tstp is a time obtained by adding the duration of leakage current due to switching (generally several ⁇ s) to the time when the triangular wave changes by the threshold value Vth. You can make it longer.
  • the leakage current may be monitored using the motor current detection value Di, and the stop signal Stp may be set to a low level when the leakage current occurs.
  • the AD conversion clock Ckk and the thinning clock Ckn are stopped, and the operations of the AD converter 12 and the thinning filter 14 are also stopped.
  • the motor current detection value Di is not used in the digital control unit 17 in accordance with the stop signal Stp.
  • the stop effective mode can be determined using the motor current detection value Di and the motor speed.
  • the stop signal generation unit 19 monitors the motor current detection value Di from the AD conversion unit 15 of FIG. When the motor current detection value Di is greater than or equal to a predetermined current value (current threshold value), the stop signal Stp is not output. When the motor current detection value Di is less than the current threshold value, the stop signal Stp is determined according to the output determination described above. Output.
  • the current threshold value may be a current value that reduces the influence of erroneous detection of leakage current on the motor current, and is about 10% of the motor rated current.
  • the stop signal generator 19 monitors the motor speed from the digital controller 17. When the motor speed is equal to or higher than a predetermined speed (speed threshold value), the stop signal Stp is not output. When the motor speed is less than the speed threshold value, the stop signal Stp is output by the above-described output determination.
  • the speed threshold may be a speed at which the influence of the leakage current on the motor current is reduced, and is several hundreds r / min.
  • the motor control device can reduce erroneous detection of leakage current due to switching of the power conversion element by stopping the operation of the ⁇ AD conversion unit when the voltage command is small. For this reason, unnecessary torque generated in the motor is reduced and fine vibrations can be suppressed. Therefore, the present invention is particularly effective as a control device that detects motor current and performs motor control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

This motor control device controls the operation of a motor and comprises a motor current detection unit for detecting current that flows through a winding in a motor provided with a stator having a three-phase winding wound therearound. The motor control device is provided with: a digital control unit that calculates a voltage command value for driving the motor; a PWM unit that outputs a PWM switching signal by pulse width modulation; a power conversion unit that applies drive voltage to the winding in accordance with the PWM switching signal; a current detection unit that uses the drive voltage to detect current that flows through the winding; a ΔΣ A/D conversion unit that converts the detected current amount into a digital signal; and a stop signal generation unit that outputs a stop signal for stopping operation of the ΔΣ A/D conversion unit. In addition, when the difference between the maximum value and the minimum value of the voltage command is equal to or less than a predetermined threshold value, the stop signal generation unit outputs the stop signal for a predetermined length of time.

Description

モータ制御装置Motor control device
 本発明は、PWM制御により生成した駆動電圧をモータの巻線に印加し、流れる電流を制御することでモータを自在にコントロールするモータ制御装置に関し、特に、巻線への駆動電圧の印加により発生する電流値を検出する機能を備えたモータ制御装置に関する。 The present invention relates to a motor control device that freely controls a motor by applying a drive voltage generated by PWM control to the winding of the motor and controlling a flowing current, and more particularly, generated by applying a drive voltage to the winding. The present invention relates to a motor control device having a function of detecting a current value to be detected.
 FA(Factory Automation)で用いられるサーボモータでは、上位装置(上位コントローラ)からの駆動指令(位置指令)に追従するようにモータの位置、速度、トルクが制御される。そして、その制御演算装置としてマイクロプロセッサを用いたディジタル制御が広く使われている。サーボモータで使用される表面磁石構造の同期モータ(Surface Permanent Magnet Synchronous Motor)が出力するトルクはモータ電流と比例関係にあるので、モータ電流を制御することでモータから出力されるトルクを自在にコントロールすることができる。モータ電流を制御するため一般的に用いられるPWM(Pulse Width Modulation)制御方式では、モータの巻線に流れる電流(以下、モータ電流と呼ぶ)の電流値を検出する必要がある。そして、ディジタル制御の場合は、一定の周期毎にモータ電流を検出し、電流指令値と一致するようにPID制御(比例+積分+微分制御)などを用いて制御が行われる。 In a servo motor used in FA (Factory Automation), the position, speed, and torque of a motor are controlled so as to follow a drive command (position command) from a host device (host controller). Digital control using a microprocessor is widely used as the control arithmetic unit. Since the torque output by the synchronous motor (Surface Permanent Magnet Synchronous Motor) used in servo motors is proportional to the motor current, the motor output can be controlled freely by controlling the motor current. can do. In a PWM (Pulse Width Modulation) control method that is generally used to control a motor current, it is necessary to detect a current value of a current (hereinafter referred to as a motor current) that flows in a motor winding. In the case of digital control, the motor current is detected at regular intervals, and control is performed using PID control (proportional + integral + derivative control) or the like so as to coincide with the current command value.
 図5は、従来例としてのインバータを含むモータ制御装置90の構成図である。この従来のモータ制御装置90は、モータ電流の電流値を検出するために、インバータである電力変換部98とモータ30の巻線との間に、電流検出抵抗91を設けている。そして、モータ電流が流れることで電流検出抵抗91の両端子間に生じる電圧を、AD(Analog-Digital)変換部95でディジタル変換し、そのディジタルデータDiをディジタル制御部97に供給する。従来、このような構成により、モータ電流を検出することが一般的に行われている。最近では、ゲイン誤差やオフセットが発生しにくいという面からAD変換部95には、図5に示すように、ΔΣ(デルタシグマ)AD変換器92を用いることが提案されている(例えば、特許文献1)。このようなAD変換部95は、例えば、ΔΣAD変換器92に加えて、ホトカップラ、ディジタルフィルタなども含む。 FIG. 5 is a configuration diagram of a motor control device 90 including an inverter as a conventional example. This conventional motor control device 90 is provided with a current detection resistor 91 between the power converter 98 that is an inverter and the winding of the motor 30 in order to detect the current value of the motor current. The voltage generated between the two terminals of the current detection resistor 91 when the motor current flows is digitally converted by an AD (Analog-Digital) converter 95, and the digital data Di is supplied to the digital controller 97. Conventionally, the motor current is generally detected by such a configuration. Recently, it has been proposed that a ΔΣ (delta sigma) AD converter 92 is used in the AD conversion unit 95 as shown in FIG. 1). Such an AD conversion unit 95 includes, for example, a photocoupler, a digital filter, and the like in addition to the ΔΣ AD converter 92.
 しかしながら、PWM制御を利用してモータを駆動するような構成において、このΔΣAD変換器は、PWM制御に基づく漏れ電流の影響を受けやすいという問題がある。 However, in a configuration in which a motor is driven using PWM control, this ΔΣ AD converter has a problem that it is easily affected by leakage current based on PWM control.
 すなわち、従来の構成では、モータに印加する電圧を電力変換素子(半導体による高速パワースイッチング素子)のオン/オフ(以下スイッチング)により制御する。このため、スイッチングの瞬間に漏れ電流が発生する。通常、漏れ電流は、筐体や配線などを通して接地している箇所へ流れる。ところが、その際にシャント抵抗を経由する漏れ電流が存在し、シャント抵抗の両端の電圧が漏れ電流によって変化する。そして、その電圧をΔΣ型AD変換器が1ビットディジタル信号に変換する。このため、AD変換間引きフィルタ後の電流検出値には、本来モータに流れていない不要な電流成分が含まれることになる。 That is, in the conventional configuration, the voltage applied to the motor is controlled by turning on / off (hereinafter referred to as switching) a power conversion element (high-speed power switching element using a semiconductor). For this reason, a leakage current is generated at the moment of switching. Usually, the leakage current flows to a grounded location through a housing or wiring. However, there is a leakage current that passes through the shunt resistor at that time, and the voltage across the shunt resistor changes depending on the leakage current. Then, the ΔΣ AD converter converts the voltage into a 1-bit digital signal. For this reason, the current detection value after the AD conversion thinning filter includes an unnecessary current component that does not originally flow to the motor.
 そして、ディジタル制御では、不要な電流成分が外乱として処理され、外乱を打ち消すような電圧がモータに印加されるため、モータに不要なトルクが発生する。特に、モータに流れる電流が小さく、各相のスイッチングタイミングが重なりやすいサーボロック時や低速動作時には、漏れ電流の影響が相対的に大きくなる。このため、例えば本来はモータ出力軸が静止状態となるサーボロック時であっても、不要なトルクによるモータ出力軸の微振動が発生するという問題を有していた。 In digital control, unnecessary current components are processed as disturbances, and a voltage that cancels the disturbances is applied to the motor, so unnecessary torque is generated in the motor. In particular, the influence of leakage current becomes relatively large during servo lock or low speed operation where the current flowing through the motor is small and the switching timing of each phase tends to overlap. For this reason, there has been a problem that, for example, slight vibration of the motor output shaft due to unnecessary torque occurs even during the servo lock when the motor output shaft is stationary.
特開平7-15972号公報JP-A-7-15972
 本発明のモータ制御装置は、3相の巻線を巻回したステータを備えるモータに対し、巻線に流れる電流を検出するモータ電流検出部を有し、モータの動作を制御するモータ制御装置である。本モータ制御装置は、ディジタル制御部と、PWM部と、電力変換部と、モータ電流検出部と、ΔΣAD変換部と、停止信号生成部とを備える。ディジタル制御部は、上位装置からの動作指令と位置検出センサからの位置情報と巻線に流れる電流値であるモータ電流検出値とにより、位置、速度またはトルク演算を行いモータを駆動するための電圧指令値を算出する。PWM部は、電圧指令値を三角波と比較することでパルス幅変調し、PWMスイッチング信号を出力する。電力変換部は、PWMスイッチング信号に従いスイッチング素子をオン/オフすることで巻線に駆動電圧を印加する。モータ電流検出部は、駆動電圧により巻線に流れる電流を、アナログ電圧に変換する。ΔΣAD変換部は、アナログ電圧をディジタル信号に変換する。停止信号生成部は、ΔΣAD変換部の動作を停止させる停止信号を出力する。そして、停止信号生成部は、電圧指令の最大値と最小値の差分があらかじめ決められた閾値以下の場合、スイッチング素子のオン/オフによる漏れ電流が発生している間、停止信号を出力する構成である。 The motor control device of the present invention is a motor control device that has a motor current detection unit that detects a current flowing through a winding for a motor including a stator wound with a three-phase winding, and controls the operation of the motor. is there. The motor control device includes a digital control unit, a PWM unit, a power conversion unit, a motor current detection unit, a ΔΣ AD conversion unit, and a stop signal generation unit. The digital control unit uses the operation command from the host device, the position information from the position detection sensor, and the motor current detection value, which is the current value flowing in the winding, to calculate the voltage for driving the motor by performing position, speed or torque calculation. Calculate the command value. The PWM unit performs pulse width modulation by comparing the voltage command value with a triangular wave, and outputs a PWM switching signal. The power converter applies a driving voltage to the winding by turning on / off the switching element according to the PWM switching signal. The motor current detector converts the current flowing through the winding by the drive voltage into an analog voltage. The ΔΣ AD converter converts the analog voltage into a digital signal. The stop signal generation unit outputs a stop signal for stopping the operation of the ΔΣ AD conversion unit. The stop signal generation unit outputs a stop signal while a leakage current is generated due to ON / OFF of the switching element when the difference between the maximum value and the minimum value of the voltage command is equal to or less than a predetermined threshold. It is.
 本発明のモータ制御装置によれば、この停止信号によって、スイッチング素子のオン/オフによる漏れ電流の悪影響を低減することができるので、モータに発生する不要なトルクが小さくなり、微振動を抑えることができる。 According to the motor control device of the present invention, this stop signal can reduce the adverse effect of leakage current caused by switching elements on / off, so that unnecessary torque generated in the motor is reduced and fine vibration is suppressed. Can do.
図1は、本発明の実施の形態におけるモータ制御装置を含むモータ制御システムの構成図である。FIG. 1 is a configuration diagram of a motor control system including a motor control device according to an embodiment of the present invention. 図2は、同モータ制御装置におけるモータ電流の検出に使用するΔΣAD変換部の動作を説明するための動作波形図である。FIG. 2 is an operation waveform diagram for explaining the operation of the ΔΣ AD converter used for detecting the motor current in the motor control device. 図3は、同モータ制御装置におけるΔΣAD変換部の構成図である。FIG. 3 is a configuration diagram of a ΔΣ AD converter in the motor control device. 図4は、同モータ制御装置における停止信号生成部の構成図である。FIG. 4 is a configuration diagram of a stop signal generation unit in the motor control device. 図5は、従来例のモータ制御装置の構成図である。FIG. 5 is a block diagram of a conventional motor control device.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、これらの実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to these embodiments.
 (実施の形態)
 図1は、本発明の実施の形態におけるモータ制御装置を含むモータ制御システムの構成図であり、図2は、モータ電流の検出に使用するΔΣAD変換部の動作を説明するための動作波形図であり、図3は、モータ電流を検出するΔΣAD変換部の構成図である。
(Embodiment)
FIG. 1 is a configuration diagram of a motor control system including a motor control device according to an embodiment of the present invention, and FIG. 2 is an operation waveform diagram for explaining the operation of a ΔΣ AD converter used for detecting a motor current. FIG. 3 is a configuration diagram of the ΔΣ AD converter for detecting the motor current.
 図1に示すように、本モータ制御システム100は、上位装置35の指令制御に従ってモータ制御装置10がモータ30の動作を制御するように構成されている。 As shown in FIG. 1, the motor control system 100 is configured such that the motor control device 10 controls the operation of the motor 30 according to the command control of the host device 35.
 上位装置35は、例えばパーソナルコンピュータなどを利用して構成され、モータ制御装置10に対して指令などにより制御する。上位装置35とモータ制御装置10とは制御バスラインなどを介して通信接続されており、上位装置35からの指令がモータ制御装置10に伝送されるとともに、モータ制御装置10からの情報が上位装置35へと伝送される。 The host device 35 is configured by using, for example, a personal computer and controls the motor control device 10 by a command or the like. The host device 35 and the motor control device 10 are communicatively connected via a control bus line or the like. A command from the host device 35 is transmitted to the motor control device 10, and information from the motor control device 10 is transmitted to the host device. 35.
 図1のモータ30は、効率や制御性の点から広く利用されている3相のブラシレスモータが好適である。この3相のブラシレスモータであるモータ30は、U相、V相、W相とする各相の巻線をステータコアに巻回したステータと、永久磁石を有したロータとを備えている。そして、モータ制御装置10で生成した駆動電圧Vdを、U相の巻線には駆動電圧VdUとし、V相の巻線には駆動電圧VdVとし、W相の巻線には駆動電圧VdWとして印加することで、ロータが回転する。また、ロータの位置を検出するため、ロータの近辺には、ロータリエンコーダ、リニアスケールあるいはホールCTなどの位置検出センサ31が配置されている。位置検出センサ31は、検出したロータの位置の情報を位置情報Senとしてモータ制御装置10へ出力する。なお、ロータリエンコーダ等の装置を用いずに電流検出値からモータの位置を推定する方法を用いてもよい。 1 is preferably a three-phase brushless motor that is widely used in terms of efficiency and controllability. The motor 30, which is a three-phase brushless motor, includes a stator in which windings of phases U, V, and W are wound around a stator core, and a rotor having permanent magnets. The drive voltage Vd generated by the motor control device 10 is applied as the drive voltage VdU for the U-phase winding, as the drive voltage VdV for the V-phase winding, and as the drive voltage VdW for the W-phase winding. As a result, the rotor rotates. In order to detect the position of the rotor, a position detection sensor 31 such as a rotary encoder, a linear scale, or a hall CT is disposed in the vicinity of the rotor. The position detection sensor 31 outputs the detected position information of the rotor to the motor control device 10 as position information Sen. A method for estimating the position of the motor from the detected current value without using a device such as a rotary encoder may be used.
 次に、モータ制御装置10は、モータ30の回転動作を制御するためのディジタル制御部17と、PWM信号を生成するPWM部16と、モータ30の巻線を通電駆動するための電力変換部18とに加えて、モータ電流を検出して処理するために、モータ電流検出部11とAD変換部15と停止信号生成部19とを備えている。 Next, the motor control device 10 includes a digital control unit 17 for controlling the rotation operation of the motor 30, a PWM unit 16 for generating a PWM signal, and a power conversion unit 18 for energizing and driving the windings of the motor 30. In addition, the motor current detector 11, the AD converter 15, and the stop signal generator 19 are provided to detect and process the motor current.
 ディジタル制御部17は、DSP(Digital Signal Processor)やマイクロコンピュータのソフトウェアあるいはASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)のロジック回路で構成されている。すなわち、ディジタル制御部(以下、適宜、単に制御部と呼ぶ)17は、プログラムなどの処理手順を示すソフトウェアに従って各処理を実行するように構成されている。また、制御部17は、処理する信号として、所定のビット数のデータを並べたデータ列で構成されるディジタル信号を主体にして処理している。 The digital control unit 17 is composed of a DSP (Digital Signal Processor), microcomputer software, ASIC (Application Specific Integrated Circuit), or FPGA (Field Programmable Gate Array) logic circuit. That is, the digital control unit (hereinafter simply referred to as a control unit as appropriate) 17 is configured to execute each process according to software indicating a processing procedure such as a program. The control unit 17 mainly processes a digital signal composed of a data string in which data of a predetermined number of bits are arranged as a signal to be processed.
 制御部17には、上位装置35から、位置、速度、トルクなどを指令する動作指令の情報などが伝送される。また、制御部17は、モータ制御装置10の情報などを上位装置35へ伝送する。制御部17は、このような情報を伝送する通信機能とともに、モータ30の回転動作を制御し、モータ30が例えば速度や位置など所定の動きをするように動作制御を行う。 The control unit 17 receives information on operation commands for commanding position, speed, torque, and the like from the host device 35. In addition, the control unit 17 transmits information of the motor control device 10 and the like to the host device 35. The control unit 17 controls the rotation operation of the motor 30 together with a communication function for transmitting such information, and performs operation control so that the motor 30 performs a predetermined movement such as speed and position.
 制御部17のより具体的な処理の一例として、制御部17は、フィードバック制御に基づき、次のような制御処理を実行する。制御部17は、上位装置35からの位置を指令する動作指令と位置検出センサ31の位置情報Senとで位置制御演算して速度指令を生成する。次に、制御部17は、位置情報Senの微分により、モータ30の実速度に対応するモータ速度値を算出し、モータ速度と速度指令とから速度制御演算で電流指令を算出する。次に、制御部17は、モータ電流検出部11およびAD変換部15を介して得られたU相のモータ電流検出値DiUとW相のモータ電流検出値DiWと、算出した電流指令とから電流制御演算により各相の電圧指令を算出する。そして、制御部17は、モータを駆動するためのU相、V相、W相の電圧指令を示す電圧指令値Swとして、U相電圧指令値SwU、V相電圧指令値SwV、W相電圧指令値SwWを出力する。 As an example of more specific processing of the control unit 17, the control unit 17 executes the following control processing based on feedback control. The control unit 17 generates a speed command by performing position control calculation based on the operation command for instructing the position from the host device 35 and the position information Sen of the position detection sensor 31. Next, the control unit 17 calculates a motor speed value corresponding to the actual speed of the motor 30 by differentiating the position information Sen, and calculates a current command by speed control calculation from the motor speed and the speed command. Next, the control unit 17 calculates a current from the U-phase motor current detection value DiU and the W-phase motor current detection value DiW obtained via the motor current detection unit 11 and the AD conversion unit 15 and the calculated current command. The voltage command for each phase is calculated by control calculation. Then, the control unit 17 uses the U-phase voltage command value SwU, the V-phase voltage command value SwV, and the W-phase voltage command as voltage command values Sw indicating the U-phase, V-phase, and W-phase voltage commands for driving the motor. The value SwW is output.
 次に、PWM部16は、マイクロコンピュータ内蔵の周辺回路(ペリフェラル)やASICやFPGAのロジック回路で構成され、図2に示すように、例えばアップダウンカウンタにより形成される三角波のキャリア信号と各相の電圧指令値Swとを比較することでパルス幅変調(PWM)を行い、各相のPWMスイッチング信号(以下、適宜、単に、PWM信号と呼ぶ)Pwを生成している。 Next, the PWM unit 16 includes a microcomputer built-in peripheral circuit (peripheral), an ASIC or FPGA logic circuit, and, as shown in FIG. 2, for example, a triangular wave carrier signal formed by an up / down counter and each phase The voltage command value Sw is compared with each other to perform pulse width modulation (PWM) to generate a PWM switching signal (hereinafter simply referred to as a PWM signal, as appropriate) Pw of each phase.
 図2の上段において、これら三角波のキャリア信号、電圧指令値SwおよびPWM信号Pwを示している。図2に示すように、三角波のレベルが順次増加する期間である領域1において、三角波のレベルが電圧指令値Swのレベル以上となった時点で、PWM信号Pwはハイレベルからローレベルへと立下がる。そして、三角波のレベルが順次減少する期間である領域2において、三角波のレベルが電圧指令のレベル以下となった時点で、PWM信号Pwはローレベルからハイレベルへと立上がる。PWM部16では、このような動作を繰り返すことにより、電圧指令値Swのレベルに応じたパルス幅、あるいはデューティ比のパルス列で構成されるPWM信号Pwを相ごとに生成している。このようにして生成されたPWM信号Pwが電力変換部18に供給される。 2 shows the triangular wave carrier signal, the voltage command value Sw, and the PWM signal Pw. As shown in FIG. 2, in the region 1 in which the triangular wave level sequentially increases, the PWM signal Pw rises from the high level to the low level when the triangular wave level becomes equal to or higher than the voltage command value Sw level. Go down. Then, in the region 2 in which the triangular wave level gradually decreases, the PWM signal Pw rises from the low level to the high level when the triangular wave level becomes equal to or lower than the voltage command level. By repeating such an operation, the PWM unit 16 generates a PWM signal Pw composed of a pulse width or a pulse train having a duty ratio corresponding to the level of the voltage command value Sw for each phase. The PWM signal Pw generated in this way is supplied to the power converter 18.
 電力変換部18は、PWM部16からの各相のPWM信号Pwを受けて駆動電圧Vdを生成し、U相の駆動電圧VdU、V相の駆動電圧VdV、W相の駆動電圧VdWとして、モータ線を介してモータ30のそれぞれの巻線にこれらの電圧を印加する。電力変換部18は、いわゆるインバータであり、IGBT(Insulated Gate Bipolar Transistor)またはパワーMOSFETといった高速パワースイッチング素子およびダイオードなどの電力変換素子で構成される。電力変換部18は、IGBTのようなスイッチング素子を用いて、電源から供給された電圧をPWM信号Pwに応じてスイッチング、すなわちオン/オフすることにより駆動電圧Vdを生成している。最近では、電力変換素子を駆動するためのプリドライブ回路を内蔵したIPM(Intelligent Power Module)により、一体成型されたものがよく用いられる。 The power converter 18 receives the PWM signal Pw of each phase from the PWM unit 16 to generate a drive voltage Vd, and uses the U-phase drive voltage VdU, the V-phase drive voltage VdV, and the W-phase drive voltage VdW as a motor. These voltages are applied to the respective windings of the motor 30 via lines. The power conversion unit 18 is a so-called inverter, and includes a high-speed power switching element such as an IGBT (Insulated Gate Bipolar Transistor) or a power MOSFET and a power conversion element such as a diode. The power conversion unit 18 uses a switching element such as an IGBT to generate a drive voltage Vd by switching, that is, turning on / off the voltage supplied from the power source in accordance with the PWM signal Pw. Recently, an integrated power module using an IPM (Intelligent Power Module) incorporating a pre-drive circuit for driving a power conversion element is often used.
 モータ電流検出部11は、駆動電圧Vdを巻線に印加したとき、その巻線に流れるモータ電流の電流量を検出し、電流検出信号Siとして出力する。具体的には、U相モータ線とW相モータ線とに流れるモータ電流をそれぞれ電圧に変換して、U相の電流検出信号SiUとW相の電流検出信号SiWとして出力する。モータ電流検出部11は、モータ電流が小電流の場合はシャント抵抗、大電流の場合はCT(Current Transfer)が一般的に用いられる。モータ電流検出部11が出力する電流検出信号Siは、AD変換部15に供給される。 When the drive voltage Vd is applied to the winding, the motor current detection unit 11 detects the amount of motor current flowing through the winding and outputs it as a current detection signal Si. Specifically, motor currents flowing through the U-phase motor line and the W-phase motor line are converted into voltages, respectively, and output as a U-phase current detection signal SiU and a W-phase current detection signal SiW. As the motor current detection unit 11, a shunt resistor is generally used when the motor current is small, and a CT (Current Transfer) is generally used when the motor current is large. The current detection signal Si output from the motor current detection unit 11 is supplied to the AD conversion unit 15.
 ΔΣAD変換部(以下、適宜、単にAD変換部と呼ぶ)15としては、図1に示すように、U相の電流検出信号SiUが供給される第1のAD変換部15Uと、W相の電流検出信号SiWが供給される第2のAD変換部15Wとで構成される。また、AD変換部15のそれぞれは、ΔΣ型ADコンバータ12とAD変換間引きフィルタ14とクロック生成部13で構成され、供給されたアナログ信号をディジタル信号に変換して出力する。特に、本実施の形態では、上述したようなΔΣ型のアナログ-ディジタル変換器であるΔΣ型ADコンバータ(以下、適宜、単にADコンバータと呼ぶ)12を用いている。 As shown in FIG. 1, a ΔΣ AD converter (hereinafter simply referred to as an AD converter) 15 includes a first AD converter 15U to which a U-phase current detection signal SiU is supplied, and a W-phase current. And a second AD converter 15W to which the detection signal SiW is supplied. Each of the AD converters 15 includes a ΔΣ AD converter 12, an AD conversion thinning filter 14, and a clock generator 13. The supplied analog signal is converted into a digital signal and output. In particular, in this embodiment, a ΔΣ AD converter (hereinafter simply referred to as an AD converter) 12 which is a ΔΣ analog-digital converter as described above is used.
 図3は、このようなAD変換部15の構成図であり、図3の停止信号生成部19の詳細については以下で説明する。 FIG. 3 is a block diagram of such an AD converter 15, and details of the stop signal generator 19 of FIG. 3 will be described below.
 図3のAD変換部15において、まず、クロック生成部13は、クロック発生器130と論理積ゲート131とを有している。クロック発生器130は、ADコンバータ12の変換周期を決める原クロックCkaを生成する。また、論理積ゲート131により、原クロックCkaと後述する停止信号Stpとの論理積を取り、AD変換クロックCkcとして出力する。また、原クロックCkaの周波数はディジタル制御部17の電流制御で必要なAD変換分解能とフィルタの間引きによる遅延の許容量で決めればよく、通常数十MHzの周波数を使用する。 3, first, the clock generation unit 13 includes a clock generator 130 and an AND gate 131. The clock generator 130 generates an original clock Cka that determines the conversion cycle of the AD converter 12. Further, the logical product 131 calculates the logical product of the original clock Cka and a stop signal Stp, which will be described later, and outputs it as an AD conversion clock Ckc. Further, the frequency of the original clock Cka may be determined by the AD conversion resolution required for the current control of the digital control unit 17 and the allowable delay due to the thinning of the filter, and a frequency of several tens of MHz is usually used.
 次に、ADコンバータ12は、例えば閾値と比較する比較器を有しており、供給された電流検出信号Siをその閾値と大小比較する。次に、ADコンバータ12は、その比較結果を二値に対応させることで、1ビットのディジタル信号に変換する。そして、ADコンバータ12は、その変換した1ビットディジタル信号を、AD変換クロックCkc毎にAD変換信号dSiとして出力する。すなわち、ADコンバータ12から出力されるAD変換信号dSiは、パルスで構成された信号であり、例えばその信号のハイとローのレベルが1ビットディジタル信号の1と0の値に対応している。このように、ΔΣ型ADコンバータ12は、入力されたアナログ電圧を1ビットのディジタル信号に変換する。 Next, the AD converter 12 includes, for example, a comparator that compares with a threshold value, and compares the supplied current detection signal Si with the threshold value. Next, the AD converter 12 converts the comparison result to a binary value to convert it into a 1-bit digital signal. The AD converter 12 outputs the converted 1-bit digital signal as an AD conversion signal dSi for each AD conversion clock Ckc. That is, the AD conversion signal dSi output from the AD converter 12 is a signal composed of pulses. For example, the high and low levels of the signal correspond to the values 1 and 0 of the 1-bit digital signal. Thus, the ΔΣ AD converter 12 converts the input analog voltage into a 1-bit digital signal.
 次に、AD変換間引きフィルタ14(以下、適宜、間引きフィルタと呼ぶ)は、sincフィルタと呼ばれる周波数特性がsinc関数のディジタルフィルタを構成しており、加算器を含む加算部140と減算器を含む減算部141とで構成される。加算部140は、ADコンバータ12から出力された1ビットのディジタル信号であるAD変換信号dSiをAD変換クロックCkc毎に加算器で積分することで、多ビットとなる加算データDsiを生成している。この加算データDsiのビット数が、AD変換部15のAD変換分解能に対応している。次に、AD変換クロック分周器142は、AD変換クロックを1/N(Nは2のn乗、nは整数)に分周した間引きクロックCknを生成する。すなわち、いわゆるオーバサンプリングクロックと呼ばれるAD変換クロックCkcの高クロックレートから所望の低クロックレートの間引きクロックCknに分周している。減算部141は、この間引きクロックCkn毎に動作し、加算データDsiの前回値と今回値の差分を演算することで、sinc関数となる周波数特性を得ている。このような加算部140と減算部141とで構成される間引きフィルタ14により、ローパス特性のフィルタを実現しており、高周波ノイズをカットするとともに、所望の分解能のビット数に変換したフィルタ後のモータ電流検出値Diを生成する。 Next, the AD conversion decimation filter 14 (hereinafter referred to as a decimation filter as appropriate) is a digital filter having a sinc function in frequency characteristics called a sinc filter, and includes an adder 140 including an adder and a subtractor. And a subtracting unit 141. The adder 140 generates the multi-bit addition data Dsi by integrating the AD conversion signal dSi, which is a 1-bit digital signal output from the AD converter 12, with an adder for each AD conversion clock Ckc. . The number of bits of the addition data Dsi corresponds to the AD conversion resolution of the AD converter 15. Next, the AD conversion clock frequency divider 142 generates a thinned clock Ckn obtained by dividing the AD conversion clock by 1 / N (N is a power of 2 and n is an integer). That is, the frequency is divided from a high clock rate of the AD conversion clock Ckk called a so-called oversampling clock to a thinned-out clock Ckn at a desired low clock rate. The subtraction unit 141 operates for each thinning clock Ckn, and obtains a frequency characteristic that becomes a sinc function by calculating a difference between the previous value and the current value of the addition data Dsi. A low-pass characteristic filter is realized by the thinning filter 14 composed of the adder 140 and the subtractor 141, and the motor after the filter that cuts the high-frequency noise and converts it into the number of bits of a desired resolution. A current detection value Di is generated.
 このように第1のAD変換部15Uで生成されたモータ電流検出値DiUと、第2のAD変換部15Wで生成されたモータ電流検出値DiWとは、ディジタル制御部17に供給される。ディジタル制御部17は、供給されたモータ電流検出値DiU、DiWを用いて電流制御演算を行い、それぞれの駆動電圧Vdを生成するための電圧指令値Swを算出している。 Thus, the motor current detection value DiU generated by the first AD conversion unit 15U and the motor current detection value DiW generated by the second AD conversion unit 15W are supplied to the digital control unit 17. The digital control unit 17 performs a current control calculation using the supplied motor current detection values DiU and DiW, and calculates a voltage command value Sw for generating each drive voltage Vd.
 ところで、上述したように、モータ制御装置10は、電源に接続されたスイッチング素子をスイッチングすることにより、巻線を駆動する駆動波形をPWMパルスで擬似的に形成した駆動電圧Vdを生成している。このため、スイッチングの瞬間に漏れ電流が発生し、この漏れ電流がAD変換部15にノイズなどとして影響し、その結果、モータ電流検出値DiU、DiWの精度が劣化する可能性がある。そこで、本実施の形態では、漏れ電流の影響を抑制するため、図1で示すように、停止信号生成部19をさらに備えている。本実施の形態では、この停止信号生成部19が、次に説明する停止信号Stpを利用して、所定の期間だけAD変換部15の動作を停止させることで、漏れ電流の影響を抑制している。 By the way, as described above, the motor control device 10 generates the drive voltage Vd in which the drive waveform for driving the winding is formed in a pseudo manner by the PWM pulse by switching the switching element connected to the power source. . For this reason, a leakage current is generated at the moment of switching, and this leakage current affects the AD converter 15 as noise or the like, and as a result, the accuracy of the motor current detection values DiU and DiW may deteriorate. Therefore, in this embodiment, in order to suppress the influence of the leakage current, a stop signal generation unit 19 is further provided as shown in FIG. In the present embodiment, the stop signal generation unit 19 uses the stop signal Stp described below to stop the operation of the AD conversion unit 15 for a predetermined period, thereby suppressing the influence of the leakage current. Yes.
 さらに、背景技術で説明したように、モータ30が停止状態となるサーボロック時や低速回転時のような低駆動のときには、漏れ電流の影響が相対的に大きくなる。このため、本実施の形態では、駆動状態に対応した各相の電圧指令値Swを利用して、例えば低駆動のときにのみ停止有効モードであると判定して、停止信号Stpを出力するような制御も行っている。 Furthermore, as described in the background art, the influence of the leakage current becomes relatively large when the motor 30 is in a low driving state such as a servo lock where the motor 30 is stopped or a low speed rotation. For this reason, in the present embodiment, the voltage command value Sw of each phase corresponding to the driving state is used, for example, it is determined that the stop valid mode is in only low driving, and the stop signal Stp is output. Is also controlling.
 図1および図3に示すように、停止信号生成部19には、各相の電圧指令値Swおよび各相のPWM信号Pwが供給される。そして、停止信号生成部19は、まず、各相の電圧指令値Swに基づき停止有効モードであるかどうかの判定を行う。さらに、停止信号生成部19は、供給されたPWM信号Pwのレベルが変化するエッジを利用して、所定のタイミングおよび所定のパルス幅の停止信号Stpを生成している。この停止信号Stpは、停止有効モードである場合、AD変換部15それぞれに供給され、さらに、クロック生成部13の論理積ゲート131の一方の入力に供給される。このような構成により、停止信号Stpがクロック停止を示すとき、論理積ゲート131を利用してクロック生成部13からは原クロックCkaが出力されず、逆に、停止信号Stpがクロック停止を示さないとき、クロック生成部13からは原クロックCkaがAD変換クロックCkcとして出力される。 As shown in FIGS. 1 and 3, the stop signal generator 19 is supplied with the voltage command value Sw for each phase and the PWM signal Pw for each phase. Then, the stop signal generation unit 19 first determines whether or not it is the stop effective mode based on the voltage command value Sw of each phase. Further, the stop signal generation unit 19 generates a stop signal Stp having a predetermined timing and a predetermined pulse width by using an edge where the level of the supplied PWM signal Pw changes. This stop signal Stp is supplied to each AD converter 15 in the stop valid mode, and further supplied to one input of the AND gate 131 of the clock generator 13. With this configuration, when the stop signal Stp indicates a clock stop, the original clock Cka is not output from the clock generation unit 13 using the AND gate 131, and conversely, the stop signal Stp does not indicate a clock stop. At this time, the clock generator 13 outputs the original clock Cka as the AD conversion clock Ckc.
 図4は、このような停止信号生成部19の一例を示す構成図である。 FIG. 4 is a block diagram showing an example of such a stop signal generator 19.
 図1~図4において、具体的には、停止信号Stpがローレベルのとき、クロック停止を示す一例を挙げている。まず、図1、図3および図4に示すように、停止信号生成部19には、U相の電圧指令値SwU、V相の電圧指令値SwV、W相の電圧指令値SwWと、U相のPWM信号PwU、V相のPWM信号PwV、W相のPWM信号PwWが供給される。そして、本実施の形態では、図2に示すように、三角波のレベル方向である上下頂点の間を1つの領域としており、この領域単位に次のような動作を行っている。 1 to 4, specifically, an example is shown in which the clock is stopped when the stop signal Stp is at a low level. First, as shown in FIG. 1, FIG. 3 and FIG. 4, the stop signal generator 19 includes a U-phase voltage command value SwU, a V-phase voltage command value SwV, a W-phase voltage command value SwW, PWM signal PwU, V-phase PWM signal PwV, and W-phase PWM signal PwW are supplied. In this embodiment, as shown in FIG. 2, the area between the upper and lower vertices in the level direction of the triangular wave is defined as one area, and the following operation is performed for each area.
 まず、停止信号生成部19は、U相の電圧指令値SwU、V相の電圧指令値SwV、W相の電圧指令値SwVのうちの最大値と最小値を抽出する。次に、停止信号生成部19は、抽出した最大値と最小値との差分ΔVcmdを算出する。そして、停止信号生成部19は、あらかじめ決められた閾値Vthと比較する。この比較結果に基づき、停止信号生成部19は、差分ΔVcmdが閾値Vthより小さい領域では、停止信号の出力判定に従った停止信号の出力を有効とする停止有効モードとし(例えば、図2の領域1の場合)、閾値Vth以上の場合は出力判定をしない停止無効モードとして停止信号を出力しない(例えば、図2の領域2の場合)。 First, the stop signal generator 19 extracts the maximum value and the minimum value among the U-phase voltage command value SwU, the V-phase voltage command value SwV, and the W-phase voltage command value SwV. Next, the stop signal generator 19 calculates a difference ΔVcmd between the extracted maximum value and minimum value. Then, the stop signal generator 19 compares with a predetermined threshold value Vth. Based on the comparison result, the stop signal generation unit 19 sets the stop valid mode in which the output of the stop signal is valid according to the stop signal output determination in the region where the difference ΔVcmd is smaller than the threshold value Vth (for example, the region of FIG. 2). 1), if it is equal to or higher than the threshold value Vth, a stop signal is not output as a stop invalid mode in which output determination is not performed (for example, in the case of region 2 in FIG. 2).
 図4に示す停止信号生成部19の構成例では、まず、最大/最小値抽出部191が、U相の電圧指令値SwU、V相の電圧指令値SwV、W相の電圧指令値SwVのうちの最大値MxSと最小値Mxnを抽出する。次に、差分演算器192が、抽出した最大値MxSと最小値Mxnとの差分ΔVcmdを算出する。次に、比較器193が、差分ΔVcmdと閾値Vthと比較し、その比較結果が停止モード信号STmdとして出力される。図4では、停止信号Stpの出力スイッチとして論理和ゲート197を設けている。そして、停止モード信号STmdがローレベルのとき停止有効モード、ハイレベルのとき停止無効モードとした場合を示している。すなわち、クロック停止をローレベルで示す停止信号Stpは、停止有効モードである場合、論理和ゲート197を介して、停止信号生成部19から出力される。逆に、停止無効モードである場合は、停止信号生成部19の出力は常にハイレベルとなり、停止信号Stpは出力されないことになる。 In the configuration example of the stop signal generation unit 19 illustrated in FIG. 4, first, the maximum / minimum value extraction unit 191 includes a U-phase voltage command value SwU, a V-phase voltage command value SwV, and a W-phase voltage command value SwV. The maximum value MxS and the minimum value Mxn are extracted. Next, the difference calculator 192 calculates a difference ΔVcmd between the extracted maximum value MxS and minimum value Mxn. Next, the comparator 193 compares the difference ΔVcmd with the threshold value Vth, and the comparison result is output as the stop mode signal STmd. In FIG. 4, an OR gate 197 is provided as an output switch for the stop signal Stp. Further, a case is shown in which the stop valid mode is set when the stop mode signal STmd is at a low level and the stop invalid mode is set when the stop mode signal STmd is at a high level. That is, the stop signal Stp indicating the clock stop at a low level is output from the stop signal generation unit 19 via the OR gate 197 in the stop valid mode. Conversely, in the stop invalid mode, the output of the stop signal generator 19 is always at a high level, and the stop signal Stp is not output.
 ここで、通常の3相のブラシレスモータの場合、U相、V相、W相の電圧指令値Swが正弦波電圧指令であって、それぞれ電気角120度ずれた状態である。この場合、3相の電圧指令値Swの最大値と最小値の差分ΔVcmdは、ほとんどのタイミングにおいて、3相の電圧指令値Swのうち2相が最大値または最小値のどちらかの電圧指令値となる。すなわち、2相の波形が重なるタイミングでは、3相のうち2相が同じ電圧指令値であり、その2相は最大値または最小値のどちらかの電圧指令値となる。ここでの差分ΔVcmdは、それらを差分した値である。 Here, in the case of a normal three-phase brushless motor, the voltage command values Sw of the U-phase, V-phase, and W-phase are sine wave voltage commands, and are each in a state of being shifted by 120 electrical degrees. In this case, the difference ΔVcmd between the maximum value and the minimum value of the three-phase voltage command value Sw is almost equal to the voltage command value in which two phases of the three-phase voltage command values Sw are the maximum value or the minimum value. It becomes. That is, at the timing when the waveforms of the two phases overlap, two of the three phases have the same voltage command value, and the two phases have a voltage command value of either the maximum value or the minimum value. The difference ΔVcmd here is a value obtained by subtracting them.
 停止信号生成部19は、このような停止モード判定の動作により、PWM信号Pwそれぞれの立下りおよび立上りである変化のタイミングが、相間で一致や近似するような場合を検出し、そのような場合を停止有効モードとしている。すなわち、例えばサーボロック時のように、PWM信号Pwの変化のタイミングが一致や近似する場合、漏れ電流が増強しあい、影響が大きくなる。これに対し、本実施の形態では、このような電圧指令値Swのレベルを利用した動作によって、漏れ電流の影響が大きい場合を検出している。 The stop signal generation unit 19 detects a case where the timing of the change of the fall and the rise of each PWM signal Pw coincides or approximates between the phases by such a stop mode determination operation. Is in stop effective mode. That is, for example, when the timing of change of the PWM signal Pw coincides or approximates, such as during servo lock, the leakage current increases and the influence increases. On the other hand, in the present embodiment, the case where the influence of the leakage current is large is detected by the operation using the level of the voltage command value Sw.
 次に、停止信号生成部19は、停止信号Stpの出力タイミングを判定するため、U相のPWM信号PwU、V相のPWM信号PwV、W相のPWM信号PwWを使用している。まず、停止信号生成部19は、いずれかのPWM信号Pwが領域内で最初に変化したときに、停止信号Stpをローレベルにする。次に、停止信号Stpをハイレベルに戻すタイミングを判定するため、タイマを用いて、停止信号Stpがローレベルの間だけタイマ動作させる。そして、停止信号生成部19は、時間Tstp経過後に停止信号をハイレベルにする。 Next, the stop signal generator 19 uses the U-phase PWM signal PwU, the V-phase PWM signal PwV, and the W-phase PWM signal PwW to determine the output timing of the stop signal Stp. First, the stop signal generation unit 19 sets the stop signal Stp to a low level when any of the PWM signals Pw first changes in the region. Next, in order to determine the timing for returning the stop signal Stp to the high level, a timer is used to operate the timer only while the stop signal Stp is at the low level. Then, the stop signal generator 19 sets the stop signal to high level after the time Tstp has elapsed.
 図4に示す停止信号生成部19の構成例では、まず、変化検出器194が、入力されたPWM信号PwU、PWM信号PwVおよびPWM信号PwWうちのいずれかのPWM信号Pwが領域内で最初に変化したときに、そのタイミングをタイミング生成部196およびタイマ195に通知する。これにより、タイミング生成部196は、停止信号Stpをローレベルにして出力する。また、タイマ195もタイマの動作を開始し、タイマカウンタがあらかじめ決められた値になるまでカウントする。そして、タイマ195は、所定の時間である時間Tstpを経過すると、リセット信号をタイミング生成部196に通知する。この通知のタイミングにより、タイミング生成部196は、停止信号Stpをハイレベルにして出力する。以上のようにして、停止信号Stpが論理和ゲート197に出力される。 In the configuration example of the stop signal generation unit 19 shown in FIG. 4, first, the change detector 194 first selects one of the input PWM signal PwU, PWM signal PwV, and PWM signal PwW within the region. When the change occurs, the timing generation unit 196 and the timer 195 are notified of the timing. Thereby, the timing generation unit 196 sets the stop signal Stp to a low level and outputs it. The timer 195 also starts the timer operation and counts until the timer counter reaches a predetermined value. The timer 195 notifies the timing generation unit 196 of a reset signal when a predetermined time Tstp elapses. Based on the timing of this notification, the timing generation unit 196 sets the stop signal Stp to high level and outputs it. As described above, the stop signal Stp is output to the OR gate 197.
 ここで、閾値Vthと時間Tstpについては、サーボロック時のモータ電流検出値Diを測定し、漏れ電流による影響が最小となる値に設定すればよい。例えば、閾値Vthは電圧指令値Swの値の最大値の10%程度、時間Tstpは、三角波が閾値Vthだけ変化する時間に、スイッチングによる漏れ電流の持続時間(一般に数μs)を加えた時間より長くすればよい。 Here, the threshold value Vth and the time Tstp may be set to values at which the influence of the leakage current is minimized by measuring the motor current detection value Di when the servo is locked. For example, the threshold value Vth is about 10% of the maximum value of the voltage command value Sw, and the time Tstp is a time obtained by adding the duration of leakage current due to switching (generally several μs) to the time when the triangular wave changes by the threshold value Vth. You can make it longer.
 なお、停止信号Stpの出力判定をするために、モータ電流検出値Diを用いて漏れ電流を監視し、漏れ電流が発生した場合に、停止信号Stpをローレベルにしてもよい。 In addition, in order to determine the output of the stop signal Stp, the leakage current may be monitored using the motor current detection value Di, and the stop signal Stp may be set to a low level when the leakage current occurs.
 次に、AD変換部15のクロック生成部13では、停止信号生成部19からの停止信号Stpにより原クロックCkaの出力の有無が制御され、クロック停止期間を含むAD変換クロックCkcとして出力される。 Next, in the clock generation unit 13 of the AD conversion unit 15, whether or not the original clock Cka is output is controlled by the stop signal Stp from the stop signal generation unit 19, and is output as an AD conversion clock Ckc including a clock stop period.
 具体的な一例として、図2に示すように、停止信号Stpがローレベルの場合は、AD変換クロックCkcと間引きクロックCknが停止し、ADコンバータ12と間引きフィルタ14の動作も停止する。なお、停止させる方法として、間引きクロックCknのみ停止させる。または、停止信号Stpに従いモータ電流検出値Diをディジタル制御部17で使用しない、などの手法がある。 As a specific example, as shown in FIG. 2, when the stop signal Stp is at a low level, the AD conversion clock Ckk and the thinning clock Ckn are stopped, and the operations of the AD converter 12 and the thinning filter 14 are also stopped. As a method of stopping, only the thinning clock Ckn is stopped. Alternatively, there is a method in which the motor current detection value Di is not used in the digital control unit 17 in accordance with the stop signal Stp.
 以上、電力変換素子のスイッチングから一定時間AD変換部15の動作を停止させるような構成とすることで、その期間に発生する漏れ電流による電流検出信号Siの検出精度劣化を低減することができる。そして、不要な成分の混入が抑制された電流検出信号Siが得られるので、モータに発生する不要なトルクが小さくなり、微振動を抑えることができる。 As described above, by adopting a configuration in which the operation of the AD conversion unit 15 is stopped for a certain period of time after switching of the power conversion element, it is possible to reduce deterioration in detection accuracy of the current detection signal Si due to leakage current generated during that period. And since the electric current detection signal Si with which mixing of the unnecessary component was suppressed is obtained, the unnecessary torque which generate | occur | produces in a motor becomes small and it can suppress a fine vibration.
 ところで、上述したように、モータ30が停止状態となるサーボロック時や低速回転時のような低駆動のときには、漏れ電流の影響が相対的に大きくなる。このため、各相の電圧指令値Swの利用に加えてモータ電流検出値Diやモータ速度も利用して停止有効モードを判定できる。 By the way, as described above, the influence of the leakage current becomes relatively large when the motor 30 is in a low driving state such as a servo lock where the motor 30 is stopped or a low speed rotation. For this reason, in addition to using the voltage command value Sw of each phase, the stop effective mode can be determined using the motor current detection value Di and the motor speed.
 例えば、モータ電流検出値Diを利用する場合、次のようにすればよい。すなわち、停止信号生成部19は、図1のAD変換部15からのモータ電流検出値Diを監視する。そして、モータ電流検出値Diが、あらかじめ決められた電流値(電流閾値)以上になった場合は、停止信号Stpを出力せず、電流閾値未満の場合は、上述した出力判定により停止信号Stpを出力する。なお、電流閾値は、モータ電流に対する漏れ電流の誤検出の影響が小さくなる電流値とすればよく、モータ定格電流の10%程度とする。 For example, when the motor current detection value Di is used, the following may be performed. That is, the stop signal generation unit 19 monitors the motor current detection value Di from the AD conversion unit 15 of FIG. When the motor current detection value Di is greater than or equal to a predetermined current value (current threshold value), the stop signal Stp is not output. When the motor current detection value Di is less than the current threshold value, the stop signal Stp is determined according to the output determination described above. Output. The current threshold value may be a current value that reduces the influence of erroneous detection of leakage current on the motor current, and is about 10% of the motor rated current.
 また、モータ速度を利用する場合、次のようにすればよい。すなわち、停止信号生成部19は、ディジタル制御部17からモータ速度を監視する。そして、モータ速度が、あらかじめ決められた速度(速度閾値)以上になった場合は、停止信号Stpを出力せず、速度閾値未満の場合は、上述した出力判定により停止信号Stpを出力する。なお、速度閾値はモータ電流に対する漏れ電流の影響が小さくなる速度とすればよく、数百r/minとする。 Also, when using the motor speed, the following should be done. That is, the stop signal generator 19 monitors the motor speed from the digital controller 17. When the motor speed is equal to or higher than a predetermined speed (speed threshold value), the stop signal Stp is not output. When the motor speed is less than the speed threshold value, the stop signal Stp is output by the above-described output determination. The speed threshold may be a speed at which the influence of the leakage current on the motor current is reduced, and is several hundreds r / min.
 以上のような構成とすることにより、漏れ電流の影響が大きくなるサーボロック時や低速動作時にのみ絞って、漏れ電流による検出精度劣化への対策することが可能となる。 By adopting the configuration as described above, it becomes possible to take measures against deterioration in detection accuracy due to leakage current by focusing only at the time of servo lock or low-speed operation where the influence of leakage current becomes large.
 以上のように、本発明にかかるモータ制御装置は、電圧指令が小さい場合にΔΣAD変換部の動作を停止することで、電力変換素子のスイッチングによる漏れ電流の誤検出を低減することができる。このため、モータに発生する不要なトルクが小さくなり、微振動を抑えることができるので、モータ電流を検出してモータ制御を行う制御装置として特に有効である。 As described above, the motor control device according to the present invention can reduce erroneous detection of leakage current due to switching of the power conversion element by stopping the operation of the ΔΣ AD conversion unit when the voltage command is small. For this reason, unnecessary torque generated in the motor is reduced and fine vibrations can be suppressed. Therefore, the present invention is particularly effective as a control device that detects motor current and performs motor control.
 10,90  モータ制御装置
 11  モータ電流検出部
 12  ΔΣ型ADコンバータ
 13  クロック生成部
 14  AD変換間引きフィルタ
 15,15U,15W,95  AD変換部
 16  PWM部
 17,97  ディジタル制御部
 18,98  電力変換部
 19  停止信号生成部
 30  モータ
 31  位置検出センサ
 35  上位装置
 100  モータ制御システム
 130  クロック発生器
 131  論理積ゲート
 140  加算部
 141  減算部
 142  AD変換クロック分周器
DESCRIPTION OF SYMBOLS 10,90 Motor control apparatus 11 Motor current detection part 12 ΔΣ type AD converter 13 Clock generation part 14 AD conversion thinning filter 15, 15U, 15W, 95 AD conversion part 16 PWM part 17, 97 Digital control part 18, 98 Power conversion part 19 Stop signal generator 30 Motor 31 Position detection sensor 35 Host device 100 Motor control system 130 Clock generator 131 AND gate 140 Adder 141 Subtractor 142 AD conversion clock divider

Claims (6)

  1. 3相の巻線を巻回したステータを備えるモータに対し、前記巻線に流れる電流を検出するモータ電流検出部を有し、前記モータの動作を制御するモータ制御装置であって、
    上位装置からの動作指令と位置検出センサからのモータの位置情報と前記巻線に流れる電流値であるモータ電流検出値とによりトルク演算を行い、モータを駆動するための電圧指令値を算出するディジタル制御部と、
    前記電圧指令値を三角波と比較することでパルス幅変調し、PWMスイッチング信号を出力するPWM部と、
    前記PWMスイッチング信号に従いスイッチング素子をオン/オフすることで前記巻線に駆動電圧を印加する電力変換部と、
    前記駆動電圧により前記巻線に流れる電流を、アナログ電圧に変換する前記モータ電流検出部と、
    前記アナログ電圧をディジタル信号に変換するΔΣAD変換部と、
    前記ΔΣAD変換部の動作を停止させる停止信号を出力する停止信号生成部とを備え、
    前記停止信号生成部は、前記電圧指令の最大値と最小値の差分があらかじめ決められた閾値以下の場合、スイッチング素子のオン/オフによる漏れ電流が発生している間、前記停止信号を出力することを特徴とするモータ制御装置。
    A motor control device that has a motor current detection unit that detects a current flowing through the winding with respect to a motor including a stator wound with a three-phase winding, and controls the operation of the motor,
    Digital that calculates the voltage command value for driving the motor by calculating the torque based on the operation command from the host device, the motor position information from the position detection sensor, and the motor current detection value that is the current value flowing through the winding. A control unit;
    A PWM unit that performs pulse width modulation by comparing the voltage command value with a triangular wave, and outputs a PWM switching signal;
    A power converter that applies a drive voltage to the winding by turning on / off a switching element according to the PWM switching signal;
    The motor current detection unit that converts the current flowing through the winding by the drive voltage into an analog voltage;
    A ΔΣ AD converter for converting the analog voltage into a digital signal;
    A stop signal generator for outputting a stop signal for stopping the operation of the ΔΣ AD converter,
    When the difference between the maximum value and the minimum value of the voltage command is equal to or less than a predetermined threshold, the stop signal generation unit outputs the stop signal while a leakage current is generated due to ON / OFF of the switching element. The motor control apparatus characterized by the above-mentioned.
  2. 前記停止信号生成部は、タイマを備え、前記漏れ電流の発生を検出した時に、前記停止信号の出力とタイマ動作を開始し、タイマカウンタがあらかじめ決められた値になるまで停止信号を出力することを特徴とする請求項1に記載のモータ制御装置。 The stop signal generation unit includes a timer, and when the occurrence of the leakage current is detected, starts the output of the stop signal and the timer operation, and outputs the stop signal until the timer counter reaches a predetermined value. The motor control device according to claim 1.
  3. 前記停止信号生成部は、前記三角波の上下頂点間で前記PWMスイッチング信号のいずれかが最初に変化した時に前記停止信号の出力を開始することを特徴とする請求項1または請求項2に記載のモータ制御装置。 The said stop signal production | generation part starts the output of the said stop signal when either of the said PWM switching signals changes between the upper and lower vertices of the said triangular wave for the first time, The Claim 1 or Claim 2 characterized by the above-mentioned. Motor control device.
  4. 前記ΔΣAD変換部は、
    前記アナログ電圧を1ビットのディジタル信号に変換するΔΣ型ADコンバータと、
    前記1ビットのディジタル信号を多ビットのディジタル信号に変換し、前記モータ電流検出値として出力するAD変換間引きフィルタと、
    前記ΔΣ型ADコンバータと前記AD変換間引きフィルタとを動作させるためのクロックを生成するクロック生成部とを備え、
    前記停止信号により前記クロックを停止させることを特徴とする請求項1から請求項3のいずれか1項に記載のモータ制御装置。
    The ΔΣ AD converter is
    A ΔΣ AD converter that converts the analog voltage into a 1-bit digital signal;
    An AD conversion decimation filter that converts the 1-bit digital signal into a multi-bit digital signal and outputs the converted signal as the motor current detection value;
    A clock generation unit that generates a clock for operating the ΔΣ AD converter and the AD conversion decimation filter;
    4. The motor control device according to claim 1, wherein the clock is stopped by the stop signal. 5.
  5. 前記停止信号生成部は、前記モータ電流検出値があらかじめ決められた値以上になった場合は、停止信号の出力をしないことを特徴とする請求項1から請求項4のいずれか1項に記載のモータ制御装置。 5. The stop signal generation unit according to claim 1, wherein the stop signal generation unit does not output a stop signal when the detected motor current value is equal to or greater than a predetermined value. 6. Motor control device.
  6. 前記停止信号生成部は、モータ速度があらかじめ決められた値以上になった場合は、停止信号の出力をしないことを特徴とする請求項1から請求項5のいずれか1項に記載のモータ制御装置。 6. The motor control according to claim 1, wherein the stop signal generation unit does not output a stop signal when the motor speed exceeds a predetermined value. 7. apparatus.
PCT/JP2015/004871 2014-09-30 2015-09-25 Motor control device WO2016051743A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016551528A JP6454881B2 (en) 2014-09-30 2015-09-25 Motor control device
CN201580040152.7A CN106575940B (en) 2014-09-30 2015-09-25 Control device of electric motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-200310 2014-09-30
JP2014200310 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051743A1 true WO2016051743A1 (en) 2016-04-07

Family

ID=55629813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004871 WO2016051743A1 (en) 2014-09-30 2015-09-25 Motor control device

Country Status (3)

Country Link
JP (1) JP6454881B2 (en)
CN (1) CN106575940B (en)
WO (1) WO2016051743A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239792A1 (en) 2018-06-15 2019-12-19 パナソニックIpマネジメント株式会社 Motor control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114594716B (en) * 2022-03-30 2024-08-16 四川航天烽火伺服控制技术有限公司 Electric steering engine monitoring method and related components

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131968A (en) * 1997-07-10 1999-02-02 Rohm Co Ltd Analog-to-digital converter
JP2008118750A (en) * 2006-11-01 2008-05-22 Yaskawa Electric Corp Servo controller and current detection method for servo controller
JP2008148403A (en) * 2006-12-07 2008-06-26 Fuji Electric Fa Components & Systems Co Ltd Motor control device and a/d converter
CN102288895A (en) * 2011-05-05 2011-12-21 清华大学 On-chip auxiliary testing system of delta-sigma analog-digital converter and auxiliary testing method of same
CN102751991A (en) * 2012-07-30 2012-10-24 哈尔滨工业大学 Delta-Sigma modulation principle based digital switching device and method for rotary transformer
JP2013198229A (en) * 2012-03-16 2013-09-30 Yaskawa Electric Corp Δς modulation a/d converter and motor controller including the same
JP2013223350A (en) * 2012-04-17 2013-10-28 Fanuc Ltd Motor control device incorporating δς modulation type ad converter
JP2014014045A (en) * 2012-07-05 2014-01-23 Sumitomo Electric Ind Ltd Signal conversion device and transmitter using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104319B2 (en) * 2007-05-28 2012-12-19 セイコーエプソン株式会社 Electric motor drive control circuit and electric motor provided with the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131968A (en) * 1997-07-10 1999-02-02 Rohm Co Ltd Analog-to-digital converter
JP2008118750A (en) * 2006-11-01 2008-05-22 Yaskawa Electric Corp Servo controller and current detection method for servo controller
JP2008148403A (en) * 2006-12-07 2008-06-26 Fuji Electric Fa Components & Systems Co Ltd Motor control device and a/d converter
CN102288895A (en) * 2011-05-05 2011-12-21 清华大学 On-chip auxiliary testing system of delta-sigma analog-digital converter and auxiliary testing method of same
JP2013198229A (en) * 2012-03-16 2013-09-30 Yaskawa Electric Corp Δς modulation a/d converter and motor controller including the same
JP2013223350A (en) * 2012-04-17 2013-10-28 Fanuc Ltd Motor control device incorporating δς modulation type ad converter
JP2014014045A (en) * 2012-07-05 2014-01-23 Sumitomo Electric Ind Ltd Signal conversion device and transmitter using the same
CN102751991A (en) * 2012-07-30 2012-10-24 哈尔滨工业大学 Delta-Sigma modulation principle based digital switching device and method for rotary transformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239792A1 (en) 2018-06-15 2019-12-19 パナソニックIpマネジメント株式会社 Motor control device
JPWO2019239792A1 (en) * 2018-06-15 2021-06-24 パナソニックIpマネジメント株式会社 Motor control device
EP3809584A4 (en) * 2018-06-15 2021-07-14 Panasonic Intellectual Property Management Co., Ltd. Motor control device
US11211891B2 (en) 2018-06-15 2021-12-28 Panasonic Intellectual Property Management Co., Ltd. Motor control device
JP7296594B2 (en) 2018-06-15 2023-06-23 パナソニックIpマネジメント株式会社 motor controller

Also Published As

Publication number Publication date
CN106575940B (en) 2019-06-18
JPWO2016051743A1 (en) 2017-07-13
CN106575940A (en) 2017-04-19
JP6454881B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
JP5938704B1 (en) Motor control device and motor control method
JP5253828B2 (en) Motor driving device and semiconductor integrated circuit device
CN103378796B (en) There is the control device of electric motor of Δ Σ modulation type AD converter
JP2018153028A (en) Integrated circuit
US11658600B2 (en) Motor controller, motor system and method for controlling motor
JP6454881B2 (en) Motor control device
JP7296594B2 (en) motor controller
JP6914787B2 (en) Integrated circuit for motor control
JP2009136125A (en) Motor control device
JP5954107B2 (en) Motor control device
US11804797B2 (en) Motor controller, motor system and method for controlling motor
JP2019004660A (en) Motor controller
JP2012065495A (en) Driving device of brushless motor
KR101684807B1 (en) Lead Angle Controller
US20230268863A1 (en) Motor control device and computer program
US11716045B2 (en) Motor controller, motor system and method for controlling motor
WO2021200209A1 (en) Motor control device, motor system, and motor control method
WO2021200236A1 (en) Motor control device, motor system, and motor control method
JP6232580B2 (en) Motor drive device
JP2023005838A (en) Motor controller, motor control method, and program
JP5589382B2 (en) Brushless motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551528

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847384

Country of ref document: EP

Kind code of ref document: A1