[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016047390A1 - Electromagnetic actuator - Google Patents

Electromagnetic actuator Download PDF

Info

Publication number
WO2016047390A1
WO2016047390A1 PCT/JP2015/074783 JP2015074783W WO2016047390A1 WO 2016047390 A1 WO2016047390 A1 WO 2016047390A1 JP 2015074783 W JP2015074783 W JP 2015074783W WO 2016047390 A1 WO2016047390 A1 WO 2016047390A1
Authority
WO
WIPO (PCT)
Prior art keywords
dog gear
magnetic
magnetic pole
output
control
Prior art date
Application number
PCT/JP2015/074783
Other languages
French (fr)
Japanese (ja)
Inventor
山口康夫
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2016047390A1 publication Critical patent/WO2016047390A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/118Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with interengaging jaws or gear teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors

Definitions

  • the present invention relates to an electromagnetic actuator having a magnetic core around which a coil is wound.
  • the linear actuator [1] includes a first coil [51], a second coil [52], a first slit [12], and a second slit [13].
  • movable part [11] is comprised so that a reciprocation is possible between the 1st position [P1] of the one side of an axial direction, and the 2nd position [P2] of the other side.
  • a magnetic flux circuit for driving the movable part [11] is provided in the reciprocating direction of the movable part [11]. It is the structure formed along a certain axial direction. Therefore, the reciprocating amount of the movable part [11] is as short as about one quarter of the overall axial length of the linear actuator [1]. Therefore, in order to secure a large amount of reciprocation of the movable part [11], the entire axial length of the linear actuator [1] has to be increased.
  • the characteristic configuration of the electromagnetic actuator includes a plurality of magnetic cores around which a coil is wound, a control device that controls energization of each of the coils, and one or both of a magnet and a magnetic body.
  • a driven portion that moves in the driving direction by electromagnetic force generated in the magnetic core, and each of the magnetic cores has a pair of magnetic poles that have opposite polarities when energized to the coil, These two magnetic poles are arranged in a magnetic pole arrangement direction intersecting the drive direction, the plurality of magnetic cores are arranged along the drive direction, and the driven part is one of the magnetic bodies It has the point which has a pair of opposing part arrange
  • the pair of magnetic poles of the magnetic cores are arranged in the magnetic pole arrangement direction intersecting the driving direction, and the pair of opposed parts of the driven part are arranged to face the pair of magnetic poles. Therefore, a magnetic flux circuit that passes through the magnetic core and the driven part is formed along the magnetic pole arrangement direction that intersects the driving direction. And the stop position of a driven part is formed according to each position of the some magnetic body core arrange
  • the electromagnetic actuator 1 moves in the axial direction X to drive the switching member 3 that switches the engagement state of the meshing engagement device 2 by electromagnetic force.
  • a direction parallel to the rotational axis of the meshing engagement device 2 is defined as an axial direction X.
  • the “drive direction” of the electromagnetic actuator 1 is a direction parallel to the rotational axis of the meshing engagement device 2 and coincides with the axial direction X.
  • the “axial direction X” will be described as the “driving direction” of the electromagnetic actuator 1.
  • the rotational axis of the meshing engagement device 2 coincides with the rotational axis of the switching member 3.
  • One side of the axial direction X is defined as an axial first side X1
  • the other side of the axial direction X opposite to the axial first side X1 is defined as an axial second side X2.
  • the electromagnetic actuator 1 includes a plurality of magnetic cores MB around which coils C are wound, a control device 5 (see FIG. 7) that controls energization of each of the coils C, and one or both of a magnet 6 and a magnetic body 7. And a driven portion 8 that moves in the axial direction X by electromagnetic force generated in the magnetic core MB.
  • each of the magnetic cores MB has a pair of magnetic poles 9 and 10 that have opposite polarities when the coil C is energized. They are arranged in a magnetic pole arrangement direction Y that intersects the direction X.
  • the plurality of magnetic cores MB are arranged side by side along the axial direction X.
  • the driven part 8 has a pair of facing parts 11 and 12 arranged to face each of the pair of magnetic poles 9 and 10 of any one of the plurality of magnetic cores MB.
  • the driven part 8 has a pair of facing parts 11 and 12 arranged so as to face each of the pair of magnetic poles 9 and 10 of any magnetic core MB corresponding to the position in the axial direction X. . That is, when the driven unit 8 is moved in the axial direction X so that a part of the plurality of magnetic cores MB corresponds to the position in the axial direction X, the pair of opposed units 11 included in the driven unit 8; 12 are arranged so that the position in the axial direction X faces the pair of magnetic poles 9 and 10 of the corresponding magnetic core MB.
  • the driven portion 8 is configured to be interlocked with the switching member 3 that switches the engagement state of the meshing engagement device 2. And the driven part 8 moves to the axial direction X by the electromagnetic force which generate
  • each of the magnetic cores MB has the pair of magnetic poles 9 and 10
  • the driven portion 8 is a pair of the magnetic poles 9 and 10 of the magnetic core MB facing each of the pair of magnetic poles 9 and 10. Since the opposing portions 11 and 12 are provided, two sets of opposing magnetic poles and opposing portions can be provided. Therefore, the electromagnetic force acting on the driven part 8 can be increased as compared with the case where a pair of opposing magnetic poles and opposing parts are provided.
  • the driven unit 8 includes a magnet 6 and a magnetic body 7. And a pair of opposing parts 11 and 12 which the to-be-driven part 8 has are made into the magnetic poles with which polarity is mutually opposite. According to this configuration, a stronger magnetic force is generated in the driven part 8 than in the case where the magnet 6 is not provided, so that an attractive force or a repulsive force acting on the driven part 8 can be increased.
  • a permanent magnet is used for the magnet 6, and a ferromagnetic material such as iron is used for the magnetic body 7. Further, a ferromagnetic material such as iron is used for the magnetic core MB.
  • the control device 5 energizes the coil C so that the magnetic core MB to which the driven unit 8 is moved is caused to generate an attractive force with respect to the driven unit 8, and the magnetic core MB from which the driven unit 8 is moved Further, the coil C is configured to be energized so that a repulsive force against the driven portion 8 is generated. According to this configuration, it is possible to use both the attraction force by the magnetic core MB that is the moving destination and the repulsive force by the magnetic core MB that is the moving source, so that the driven portion 8 is moved in the axial direction X. Can increase power.
  • each of the magnetic cores MB includes a first coil C ⁇ b> 1 and a second coil C ⁇ b> 2 in which the directions of magnetic fields generated in the magnetic core MB by energization are opposite to each other. And two coils C are wound.
  • the control device 5 energizes either the first coil C1 or the second coil C2 depending on whether an attractive force or a repulsive force is generated for the driven part 8 in each of the magnetic cores MB. It is comprised so that it may switch.
  • the control device 5 can be configured by a simple circuit such as a switch for controlling on / off of energization of each of the coils C.
  • the control device 5 includes a switch S for turning on / off the energization of each of the coils C as shown in FIG.
  • the control device 5 includes a computer that executes a program for controlling on / off of each switch S, a transistor for turning on / off each switch S, and the like.
  • the electromagnetic actuator 1 includes three magnetic cores MB1, MB2, and MB3, and therefore includes a total of six coils C11, C21, C12, C22, C13, and C23.
  • the control apparatus 5 is equipped with six switch S11, S21, S12, S22, S13, S23 corresponding to each coil.
  • each of the magnetic cores MB includes a pair of magnetic pole forming portions 13 and 14 extending in the magnetic pole extending direction Z orthogonal to the axial direction X and the magnetic pole arranging direction Y, and the magnetic pole arranging direction Y. And a magnetic pole connecting portion 15 that connects the pair of magnetic pole forming portions 13 and 14 to each other.
  • the ends of the pair of magnetic pole forming portions 13 and 14 on the first side Z1 in the magnetic pole extending direction are the magnetic poles 9 and 10, respectively.
  • the driven portion 8 includes a pair of opposing portion forming portions 16 and 17 extending in the magnetic pole extending direction Z, an opposing portion connecting portion 18 extending in the magnetic pole arrangement direction Y and connecting the pair of opposing portion forming portions 16 and 17, have.
  • the ends of the pair of opposing portion forming portions 16 and 17 on the magnetic core MB side (magnetic pole extending direction second side Z2) in the magnetic pole extending direction Z are opposing portions 11 and 12, respectively.
  • one side in the magnetic pole extension direction Z is defined as the first side Z1 of the magnetic pole extension direction
  • the other side in the magnetic pole extension direction Z opposite to the first side Z1 of the magnetic pole extension direction is defined as the magnetic pole extension direction Z. It is defined as the extending direction second side Z2.
  • the magnetic pole extending direction first side Magnetic force can be concentrated on the end of Z1.
  • the edge part of the magnetic pole extension direction 2nd side Z2 in the opposing part formation parts 16 and 17 extended in the magnetic pole extension direction Z is made into the opposing parts 11 and 12, the opposing parts 11 and 12 are made into the magnetic pole 9, 10 can be opposed to the magnetic pole extending direction Z. Therefore, the magnetic force can be efficiently applied from the magnetic poles 9 and 10 to the facing portions 11 and 12, and the generated attractive force or repulsive force can be increased.
  • the electromagnetic actuator 1 can be prevented from being elongated in the magnetic pole arrangement direction Y.
  • the opposing portion connecting portion 18 connects the end portions of the first side Z1 in the magnetic pole extending direction in each of the pair of opposing portion forming portions 16 and 17.
  • the driven portion 8 is formed in an angular U shape that opens to the second side Z2 in the magnetic pole extending direction.
  • the facing portion forming portion 17 (facing portion 12) on the second side Y2 in the magnetic pole arrangement direction is composed of the magnet 6, and other portions (forming the facing portion on the facing portion connecting portion 18 and the first side Y1 in the magnetic pole arrangement direction).
  • the part 16) is composed of the magnetic body 7.
  • the magnet 6 is attached to the driven part 8 (magnetic body 7) with a polarity direction in which the facing part 12 on the second side Y2 in the magnetic pole arrangement direction is an N pole.
  • the facing portion 11 on the first side Y1 in the magnetic pole arrangement direction is the S pole.
  • the magnetic pole connecting portion 15 connects the end portions of the pair of magnetic pole forming portions 13 and 14 on the second side Z2 in the magnetic pole extending direction.
  • the magnetic core MB is formed in an angular U-shape that opens to the first side Z1 in the magnetic pole extending direction.
  • a coil C is wound around each of the pair of magnetic pole forming portions 13 and 14. The first coil C1 is wound around the magnetic pole forming portion 13 on the first side Y1 in the magnetic pole arrangement direction, and the second coil C2 is wound around the magnetic pole forming portion 14 on the second side Y2 in the magnetic pole arrangement direction. Then, as shown in FIG.
  • the meshing engagement device 2 includes a first input dog gear DI ⁇ b> 1 that is drivingly connected to the electric motor MG via the first drive connecting mechanism 20, and the first drive connecting mechanism 20.
  • a second input dog gear DI2 that is drive-coupled to the electric motor MG via a second drive coupling mechanism 21 having a different speed ratio, an output dog gear DO that is drive-coupled to the output member O, a first input dog gear DI1,
  • a switching member 3 having a meshing portion that meshes with at least one of the second input dog gear DI2 and the output dog gear DO.
  • the switching member 3 is configured to be interlocked with the driven portion 8 of the electromagnetic actuator 1.
  • the first input dog gear DI1, the output dog gear DO, and the second input dog gear DI2 along the axial direction X from the first axial side X1 (that is, from the first axial side X1 toward the second axial side X2). Arranged in order.
  • driving connection refers to a state where two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or It is used as a concept including a state in which two rotating elements are connected so as to be able to transmit a driving force via one or more transmission members.
  • a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like.
  • an engagement device that selectively transmits rotation and driving force, for example, a friction engagement device or a meshing engagement device may be included.
  • the first and second input dog gears DI1, DI2 and the output dog gear DO are formed in a cylindrical shape having the same outer diameter and are arranged coaxially.
  • a plurality of meshing teeth (dog gear side meshing) extending in the axial direction X formed at a constant pitch in the circumferential direction over the entire circumference. Part), and the cross-sectional shapes of the meshing teeth are made equal.
  • the switching member 3 is a sleeve formed in a cylindrical shape, and is coaxially disposed on the radially outer side of the first and second input dog gears DI1 and DI2 and the output dog gear DO.
  • a plurality of meshing teeth (switching side meshing portions) extending in the axial direction X formed at a constant pitch in the circumferential direction are formed on the inner peripheral surface of the switching member 3.
  • the teeth have a cross-sectional shape that engages with the dog gears by engaging with the meshing teeth of the first and second input dog gears DI1, DI2, and the output dog gear DO.
  • the first drive coupling mechanism 20 is engaged with the first motor output gear GMO1 that rotates integrally with the rotating shaft 22 of the electric motor MG, and the first motor input gear that meshes with the first motor output gear GMO1 and rotates integrally with the first input dog gear DI1.
  • the second drive coupling mechanism 21 is engaged with the second motor output gear GMO2 that rotates integrally with the rotary shaft 22 of the electric motor MG, and the second motor input gear that meshes with the second motor output gear GMO2 and rotates integrally with the second input dog gear DI2.
  • GMI2 and a gear mechanism are examples of the second motor output gear GMO1 that rotates integrally with the rotating shaft 22 of the electric motor MG.
  • the electric motor MG includes a stator St fixed to the case, and a rotor Ro that is rotatably supported on the radially inner side of the stator St.
  • the rotating shaft 22 rotates integrally with the rotor Ro.
  • the electric motor MG is electrically connected to the power storage device via an inverter that performs DC / AC conversion.
  • Control device 5 controls the output torque of electric motor MG via an inverter.
  • the first motor output gear GMO1 has a smaller diameter than the second motor output gear GMO2, and the first motor input gear GMI1 has a larger diameter than the second motor input gear GMI2. Therefore, even if the rotation speed of the electric motor MG is the same, the rotation speed of the second input dog gear DI2 is higher than the rotation speed of the first input dog gear DI1.
  • the output member O is formed in a cylindrical shape extending from the output dog gear DO to both sides in the axial direction X, and is connected to rotate integrally with the output dog gear DO.
  • the output member O is formed in the central portion of the second motor input gear GMI2 and the second input dog gear DI2 and the through hole extending in the axial direction X formed in the central portion of the first motor input gear GMI1 and the first input dog gear DI1.
  • the through-holes extending in the axial direction X are passed through, and these are rotatably supported from the inside in the radial direction.
  • the output member O is connected to two left and right wheels via a differential gear device (not shown).
  • a fork insertion groove 23 that is recessed radially inward and extends over the entire circumference is provided on the outer circumferential surface of the switching member 3.
  • a fork 24 is inserted into the fork insertion groove 23.
  • the switching member 3 that is a rotating member can be slid in the axial direction X.
  • the fork 24 is connected to the driven portion 8 of the electromagnetic actuator 1, and when the driven portion 8 moves in the axial direction X, the fork 24 and the switching member 3 move in the axial direction X.
  • the driven portion 8 of the electromagnetic actuator 1 and the switching member 3 of the meshing engagement device 2 are configured to be interlocked.
  • the driven part 8 moves to the axial direction X by the electromagnetic force which generate
  • the electromagnetic actuator 1 includes the first magnetic core MB1 and the second magnetic body along the axial direction X from the first axial side X1 (that is, from the first axial side X1 toward the second axial side X2).
  • Three magnetic cores MB arranged in the order of the core MB2 and the third magnetic core MB3 are provided.
  • the first coil C1 wound around the first magnetic core MB1 is referred to as a first core first coil C11
  • the second coil C2 wound around the first magnetic core MB1 is referred to as a first core second coil C21.
  • the first coil C1 wound around the second magnetic core MB2 is designated as the second core first coil C12
  • the second coil C2 wound around the second magnetic core MB2 is designated as the second core second.
  • the first coil C1 wound around the third magnetic core MB3 as the coil C22 is used as the third core first coil C13
  • the second coil is C23.
  • the switch energized to the first core first coil C11 is a first core first switch S11
  • the switch energized to the first core second coil C21 is a first core second switch S21
  • the switch energizing the second core first coil C12 is a second core first switch S12
  • the switch energizing the second core second coil C22 is a second core second switch S22
  • the third core first switch The switch that energizes the coil C13 is referred to as a third core first switch S13
  • the switch that energizes the third core second coil C23 is referred to as a third core second switch S23.
  • the second magnetic core MB2 has a central portion in the axial direction X of the driven portion 8 at a position facing the central portion in the axial direction X of the second magnetic core MB2 (hereinafter referred to as “the second magnetic core MB2”).
  • the switching member 3 is disposed at a position in the axial direction X so as to mesh only with the output dog gear DO. In this case, the switching member 3 meshes only with the output dog gear DO and does not mesh with any of the first and second input dog gears DI1 and DI2, and the meshing engagement device 2 outputs the driving force of the electric motor MG.
  • the neutral state is not transmitted to the member O.
  • the driven portion 8 moves to the first axial side X1 from the central position, and the driven portion 8 is at least at a position facing the first magnetic core MB1 (hereinafter simply referred to as “the driven portion 8”).
  • the switching member 3 is disposed at a position in the axial direction X so as to mesh with the output dog gear DO and the first input dog gear DI1.
  • the meshing engagement device 2 transmits the driving force of the electric motor MG to the output member O via the first drive coupling mechanism 20, the first input dog gear DI1, the switching member 3, and the output dog gear DO.
  • the first shift speed is established.
  • the driven portion 8 when the driven portion 8 moves to the second axial side X2 from the center position, and the driven portion 8 is at least at a position facing the third magnetic core MB3 (hereinafter simply referred to as “the driven portion 8”).
  • the switching member 3 is disposed at a position in the axial direction X so as to mesh with the output dog gear DO and the second input dog gear DI2.
  • the meshing engagement device 2 transmits the driving force of the electric motor MG to the output member O via the second drive coupling mechanism 21, the second input dog gear DI2, the switching member 3, and the output dog gear DO. A state in which the second shift speed is formed is obtained.
  • the control device 5 sets the first core first switch S ⁇ b> 11 as shown in FIG. 8.
  • the first core first coil C11 that is the first coil C1 wound around the first magnetic core MB1 is energized, and the driven part 8 is attracted to the first magnetic core MB1.
  • the control device 5 turns on the second core first switch S12 as shown in FIG.
  • the second core first coil C12 which is the first coil C1 wound around the magnetic core MB2, is energized, and the driven part 8 is attracted to the second magnetic core MB2.
  • the control device 5 sets the third core first switch S13 as shown in FIG. 8.
  • the third core first coil C13 that is the first coil C1 wound around the third magnetic core MB3 is energized, and the driven part 8 is attracted to the third magnetic core MB3.
  • the control device 5 when moving the driven part 8 from the first side position to the center position, the control device 5 turns on the second core first switch S12 as shown in FIG.
  • the second core first coil C12 which is the first coil C1 wound around the core MB2, is energized to attract the driven part 8 to the second magnetic core MB2, and the first core second switch S21 is turned on.
  • the first core second coil C21 which is the second coil C2 wound around the first magnetic core MB1, is energized to repel the driven part 8 from the first magnetic core MB1.
  • the control device 5 when moving the driven unit 8 from the center position to the first side position, the control device 5 turns on the first core first switch S11 and turns the first core wound around the first magnetic core MB1.
  • the first core first coil C11 which is the coil C1
  • the second core second switch S22 is turned on, and the second magnetic core MB2 is wound.
  • the second core second coil C22 which is the second coil C2 mounted, is energized to repel the driven part 8 from the second magnetic core MB2.
  • the control device 5 When the driven device 8 is moved from the second side position to the center position, the control device 5 turns on the second core first switch S12 and uses the first coil C1 wound around the second magnetic core MB2.
  • the second core first coil C12 is energized to attract the driven part 8 to the second magnetic core MB2, and the third core second switch S23 is turned on to be wound around the third magnetic core MB3.
  • the third core second coil C23 which is the second coil C2, is energized, and the driven portion 8 is repelled from the third magnetic core MB3.
  • the control device 5 turns on the third core first switch S13 and turns the first core wound around the third magnetic core MB3.
  • the third core first coil C13 which is the coil C1 is energized, the driven part 8 is attracted to the third magnetic core MB3, the second core second switch S22 is turned on, and the second magnetic core MB2 is wound.
  • the second core second coil C22 which is the second coil C2 mounted, is energized to repel the driven part 8 from the second magnetic core MB2.
  • the axis of the magnetic core MB disposed on the first axial side X1 in the two magnetic cores MB adjacent in the axial direction X The width W0 in the axial direction X of the driven portion 8 is larger than the interval W1 between the end surface on the first direction side X1 and the end surface on the second axial direction side X2 of the magnetic core MB disposed on the second axial side X2. Is shortened (see FIG. 11).
  • the end surface on the first axial side X1 of the magnetic core MB disposed on the first axial side X1 The width W0 of the driven portion 8 in the axial direction X is shorter than the interval W2 between the magnetic core MB disposed on the second axial side X2 and the end surface on the first axial side X1.
  • the end surface on the second axial side X2 of the magnetic core MB disposed on the first axial side X1 and the second axial side X2 are disposed.
  • the width W0 in the axial direction X of the driven portion 8 is shorter than the distance (not shown) from the end surface on the second axial side X2 of the magnetic core MB.
  • the driven portion 8 and the plurality of magnetic cores MB are disposed in a space radially outside the first and second input dog gears DI1, DI2, the output dog gear DO, and the switching member 3.
  • the fork 24 extends radially outward from the switching member 3, and the driven portion 8 is integrally connected to the radially outer end of the fork 24.
  • the plurality of magnetic cores MB are disposed on the radially outer side of the driven part 8.
  • the magnetic pole extending direction Z which is the direction in which the pair of magnetic pole forming portions 13, 14 extends, is the direction along the radial direction of the meshing engagement device 2, and the magnetic pole extending direction first side Z1.
  • a magnetic pole arrangement direction Y which is a direction in which the pair of magnetic poles 9 and 10 are arranged, is a direction along the circumferential direction of the meshing engagement device 2.
  • the control device 5 controls the energization to the coil C to move the switching member 3 interlocked with the driven portion 8 in the axial direction X, so that the switching member 3 is the input dog gear (in this example, the first input dog gear). DI1 or the second input dog gear DI2) and the output dog gear DO are engaged, and the release control is executed so that the switching member 3 shifts to a release state in which the switching member 3 meshes with either the input dog gear or the output dog gear DO. ing. Further, the control device 5 controls the energization to the coil C to move the switching member 3 interlocked with the driven portion 8 in the axial direction X, so that the switching member 3 is one of the input dog gear and the output dog gear DO. It is configured to be able to execute an engagement control in which the switching member 3 shifts to an engagement state in which both of the input dog gear and the output dog gear DO are engaged from the release state in which the mesh is engaged.
  • the control device 5 After performing the release control, the control device 5 performs rotation speed change control for controlling the output torque of the electric motor MG so as to increase or decrease the rotation speed of the electric motor MG, and the electric motor MG is controlled by the rotation speed change control.
  • the abnormality first control is executed.
  • the control device 5 is configured to perform release control again as the first control for abnormality.
  • the control device 5 obtains rotation speed information from a rotation speed sensor that detects the rotation speed of each rotation member such as the rotation shaft 22 and the output member O of the electric motor MG.
  • the control device 5 performs the torque control for controlling the output torque of the electric motor MG after performing the engagement control, and after the torque control is started, the rotational speed of the input dog gear and the rotational speed of the output dog gear DO coincide with each other. If not, the second control for abnormality is executed. In the present embodiment, the control device 5 is configured to perform the engagement control again as the abnormal second control.
  • the control device 5 uses one of the first input dog gear DI1 and the second input dog gear DI2 as the pre-shift dog gear, the other of the first input dog gear DI1 and the second input dog gear DI2 as the post-shift dog gear, and the coil C
  • the switching member 3 interlocked with the driven portion 8 is moved in the axial direction X, and the switching member 3 is moved from the pre-shifting shift state where the switching member 3 meshes with the pre-shifting dog gear and the output dog gear DO
  • the post-shift engagement control for shifting the shift member 3 from the neutral state to the post-shift gear state that meshes with the post-shift dog gear and the output dog gear DO.
  • the shift control to be performed is configured to be executable.
  • the control device 5 performs the neutral shift control and then controls the output torque of the electric motor MG so that the rotation speed of the post-shift dog gear that is drivingly connected to the electric motor MG approaches the rotation speed of the output dog gear DO.
  • the change control is performed, and when the output torque of the electric motor MG increases or decreases more than a predetermined determination change amount by the rotation speed change control, the abnormality third control is executed.
  • the control device 5 is configured to perform the neutral shift control again as the abnormal third control.
  • the abnormal third control is an aspect of the abnormal first control.
  • feedback control is performed to change the output torque of the electric motor MG by proportional-integral control based on the deviation between the rotational speed of the post-shift dog gear and the rotational speed of the output dog gear DO. Yes.
  • the rotational speed of the post-shift dog gear After shifting from the pre-shifting shift state where the rotational speed of the pre-shift dog gear matches the rotational speed of the output dog gear DO to the neutral state, the rotational speed of the post-shift dog gear is set to the output dog gear.
  • Rotational speed change control that approximates the rotational speed of DO is executed.
  • the switching member 3 does not shift to the state engaged only with the output dog gear DO, but remains in an engaged state with the pre-shifting dog gear and the output dog gear DO. A condition may occur.
  • the control device 5 ends the rotation speed change control and performs the torque control for controlling the output torque of the electric motor MG.
  • the rotation of the dog gear after the shift is performed.
  • the fourth control for abnormal time is configured to be executed.
  • the control device 5 is configured to perform the post-shift engagement control again as the abnormal fourth control.
  • the fourth control for abnormal time is an aspect of the second control for abnormal time.
  • torque control is executed, and the output torque of the electric motor MG is transmitted to the output member O.
  • torque control is control which makes the output torque of the electric motor MG approach the target torque set according to the accelerator opening degree of a vehicle, etc., for example.
  • the switching member 3 does not shift to a state where it engages with the post-shift dog gear and the output dog gear DO, but remains engaged only with the output dog gear DO. Abnormal conditions may occur.
  • the rotation speed of the post-shift dog gear increases or decreases with respect to the rotation speed of the output dog gear DO.
  • the abnormal state can be detected when the rotational speed of the post-shift dog gear does not match the rotational speed of the output dog gear DO, and the abnormal fourth control is performed. Can be executed. Therefore, after shifting from the neutral state to the post-shifting shift state, using the torque control executed to transmit the output torque of the electric motor MG to the output member O, the neutral state is shifted to the post-shifting shift state. It can be determined whether or not.
  • step # 01: Yes when it is determined that the shift control is to be started (step # 01: Yes), the control device 5 starts the rotation speed synchronization control for synchronizing the rotation speed of the pre-shift dog gear with the rotation speed of the output dog gear DO (step #). 02). If the control device 5 has performed torque control for controlling the output torque of the electric motor MG transmitted to the output member O before starting the shift control, the control device 5 stops the torque control and starts the rotational speed synchronization control. .
  • the control device 5 controls the energization to the coil C after the start of the rotational speed synchronization control, thereby moving the switching member 3 interlocked with the driven portion 8 in the axial direction X, so that the switching member 3 is a dog gear before shifting. Then, the neutral shift control is executed in which the switching member 3 shifts to the neutral state in which only the output dog gear DO meshes with the shift state before the gear meshing with the output dog gear DO (step # 03).
  • the control device 5 performs the neutral shift control and then controls the output torque of the electric motor MG so that the rotation speed of the post-shift dog gear that is drivingly connected to the electric motor MG approaches the rotation speed of the output dog gear DO.
  • Change control is started (step # 04).
  • the control device 5 determines that the neutral state has not been reached, The third control for abnormal time is executed.
  • the control device 5 is configured to return to step # 02, perform rotational speed synchronization control again, and perform neutral shift control.
  • step # 06: Yes the control device 5 switches the switching member 3 from the neutral state to the post-shift dog gear and the output dog gear DO.
  • Post-shift engagement control for shifting to the meshed post-shift state is executed (step # 07).
  • control device 5 ends the rotation speed change control after the execution of the post-shift engagement control, and starts torque control for controlling the output torque of the electric motor MG transmitted to the output member O (step # 08). After starting torque control, control device 5 determines that the shift to the post-shift state has not been made if the rotational speed of the post-shift dog gear does not match the rotational speed of output dog gear DO (step # 09: No). However, it is configured to execute the abnormality fourth control. In the present embodiment, the control device 5 is configured to return to step # 04 and perform the rotation speed change control again to perform post-shift engagement control.
  • the rotational speed of the post-shifting dog gear is kept in agreement with the rotational speed of the output dog gear DO even if torque control is performed.
  • the control device 5 shifts to the post-shifting shift state when the rotational speed of the post-shifting dog gear remains synchronized (matched) with the rotational speed of the output dog gear DO (step # 09: Yes). And shift control is terminated.
  • the magnetic pole arrangement direction Y is orthogonal to the axial direction X (drive direction).
  • Each of the magnetic cores MB includes a pair of magnetic pole forming portions 13 and 14 extending in the magnetic pole extending direction Z orthogonal to the axial direction X and the magnetic pole arranging direction Y, and a pair of magnetic pole forming portions 13 extending in the magnetic pole arranging direction Y, And a magnetic pole connecting portion 15 for connecting the two.
  • the surfaces of the pair of magnetic pole forming portions 13 and 14 facing each other are the magnetic poles 9 and 10, respectively.
  • the driven part 8 has a facing part forming part 19 extending in the magnetic pole arrangement direction Y. Then, both end portions in the magnetic pole arrangement direction Y in the facing portion forming portion 19 are facing portions 11 and 12.
  • the magnetic pole connecting portion 15 connects the end portions of the pair of magnetic pole forming portions 13 and 14 on the second side Z2 in the magnetic pole extending direction. Therefore, the magnetic core MB is formed in an angular U-shape that opens to the first side Z1 in the magnetic pole extending direction.
  • a coil C is wound around each of the pair of magnetic pole forming portions 13 and 14. The first coil C1 is wound around the magnetic pole forming portion 13 on the first side Y1 in the magnetic pole arrangement direction, and the second coil C2 is wound around the magnetic pole forming portion 14 on the second side Y2 in the magnetic pole arrangement direction.
  • a pair of magnetic pole forming portions 13 and 14 extending in the magnetic pole extending direction Z are arranged side by side in the magnetic pole arrangement direction Y. Accordingly, the surfaces of the pair of magnetic pole forming portions 13 and 14 that face each other are surfaces that face each other in the magnetic pole arrangement direction Y.
  • coils C1 and C2 are wound around the pair of magnetic pole forming portions 13 and 14, respectively. Therefore, the portion on the first side Z1 in the magnetic pole extending direction from the portion where the coils C1 and C2 are wound on the mutually opposing surfaces of the pair of magnetic pole forming portions 13 and 14 (hereinafter referred to as “opposing surface target portion”).
  • FIG. 10 In the example shown in the figure, projecting portions that protrude toward the magnetic pole arrangement direction Y are formed on the opposing surface target portions of each of the pair of magnetic pole forming portions 13 and 14, and the magnetic pole 9, 10 is formed.
  • the mutually opposing surface of a pair of magnetic pole formation parts 13 and 14 may be made into a uniform plane over the whole magnetic pole extension direction Z in the magnetic pole formation parts 13 and 14. .
  • the opposing surface target portions of the pair of magnetic pole forming portions 13 and 14 are the magnetic poles 9 and 10.
  • the driven portion 8 is formed in a linear bar shape. More specifically, in the illustrated example, the driven portion 8 is formed in a columnar shape (for example, a columnar shape, a quadrangular prism shape, or the like) having a generatrix parallel to the magnetic pole arrangement direction Y. Then, both end portions of the driven portion 8 in the magnetic pole arrangement direction Y are opposed portions 11 and 12. As described above, the driven portion 8 is disposed so that the pair of facing portions 11, 12 face the opposing surface target portions of the pair of magnetic pole forming portions 13, 14.
  • a columnar shape for example, a columnar shape, a quadrangular prism shape, or the like
  • the driven portion 8 is sandwiched between the magnetic pole arrangement directions Y of the pair of magnetic pole forming portions 13 and 14 in the vicinity of the tip portion of the pair of magnetic pole forming portions 13 and 14 on the first side Z1 in the magnetic pole extending direction.
  • the magnetic core MB and the driven portion 8 form a rectangular ring-shaped magnetic flux circuit as a whole.
  • the driven part 8 is comprised with the magnet and the magnetic body.
  • This magnet is attached to the driven portion 8 with a polarity direction in which the facing portion 12 on the second side Y2 in the magnetic pole arrangement direction is an N pole.
  • the facing portion 11 on the first side Y1 in the magnetic pole arrangement direction is the S pole.
  • the driven part 8 may be comprised only with the magnet, or the driven part 8 may be comprised only with the magnetic body.
  • the shapes of the magnetic core MB and the driven portion 8 are not limited to the above specific examples, and the pair of opposed portions 11 and 12 in the driven portion 8 is a pair of any magnetic core MB.
  • the magnetic core MB and the driven part 8 may have any shape as long as they are arranged to face each of the magnetic poles 9 and 10.
  • the shape of the magnetic core MB or the driven portion 8 viewed from the same direction as in FIGS. 5 and 11 may be formed in a V shape, an arc shape, a column shape, or the like.
  • each of the magnetic cores MB includes two coils C, the first coil C1 and the second coil C2, in which the directions of magnetic fields generated in the magnetic core MB by energization are opposite to each other.
  • the case where is wound is described as an example.
  • one or three or more coils may be wound around each of the magnetic cores MB.
  • the coil C may be wound around the magnetic pole forming portion 14 on the second side Y2 in the magnetic pole arrangement direction.
  • the driven unit 8 is configured in the same manner as in the above embodiment.
  • the electromagnetic actuator 1 includes the three magnetic cores MB, as shown in FIG. 13, the electromagnetic actuator 1 includes a total of three coils C1, C2, and C3.
  • the control device 5 includes three switches S1, S2, and S3.
  • the control device 5 when the driven unit 8 is positioned or moved to the first side position, the control device 5 turns on the switch S1 of the first magnetic core MB1 and switches the first magnetic core MB1 to the first magnetic core MB1. The coil C1 wound is energized, and the driven portion 8 is attracted to the first magnetic core MB1. The control device 5 turns on the switch S2 of the second magnetic core MB2 to energize the coil C2 wound around the second magnetic core MB2 when the driven part 8 is positioned or moved to the center position. Then, the driven part 8 is attracted to the second magnetic core MB2.
  • the control device 5 When the driven device 8 is positioned or moved to the second position, the control device 5 turns on the switch S3 of the third magnetic core MB3, and turns on the coil C3 wound around the third magnetic core MB3. Energized to attract the driven part 8 to the third magnetic core MB3.
  • the coil C may be wound by the magnetic pole formation part 13 of the magnetic pole arrangement direction 1st side Y1. Is natural.
  • the coil C is wound around each of the pair of magnetic pole forming portions 13 and 14 in the magnetic core MB has been described as an example.
  • the coil C may be wound around any part of the magnetic core MB as long as electromagnetic force can be generated.
  • the coil C may be wound around the magnetic pole coupling portion 15 in the magnetic core MB.
  • the distance W2 between the end faces on the first axial side X1 in the two magnetic cores MB in which the width W0 in the axial direction X of the driven part 8 is adjacent has been described as an example.
  • the width W0 in the axial direction X of the driven portion 8 may be longer than that, without being limited to such a configuration. Also in this case, as shown in FIG.
  • the width W0 of the driven portion 8 in the axial direction X is preferably shorter than the interval W1 between the end face of the magnetic core MB arranged on the second axial side X2 and the second axial side X2. is there. That is, in the example shown in FIG.
  • the width W0 in the axial direction X of the driven part 8 is longer than the interval W2 between the end surfaces on the first axial side X1 in the two adjacent magnetic cores MB, It is configured to be shorter than the interval W1 between the end face of the first side X1 and the end face of the second axial side X2.
  • control device 5 has been described as an example in which the control device 5 is configured by a switch that supplies current to each of the coils C in one direction.
  • the control device 5 is configured by a switch with a current reversal function that can reverse the direction of the current flowing through each of the coils C and can turn on / off the current. May be.
  • the switch with the current reversal function may be configured to reverse the direction of the magnetic field generated in the magnetic core MB by reversing the direction of the current flowing through the coil wound around the magnetic core MB. .
  • the driven portion 8 is configured by the magnet 6 and the magnetic body 7 has been described as an example.
  • the driven portion 8 only needs to be configured by one or both of the magnet 6 and the magnetic body 7, and may be configured by only the magnet 6. It may be constituted only by.
  • the driven part 8 may be configured by a U-shaped magnet 6.
  • the driven portion 8 is attracted by the magnetic force generated in the magnetic core MB and moves in the axial direction X, but the repulsive force acts. do not do.
  • the magnetic pole arrangement direction Y is orthogonal to the axial direction X has been described as an example.
  • the magnetic pole arrangement direction Y only needs to intersect the axial direction X without being limited to such a configuration.
  • the magnetic pole arrangement direction Y may be inclined with respect to the axial direction X and intersect.
  • the plurality of magnetic cores MB are arranged along the axial direction X in a state where the two magnetic poles 9 and 10 of the magnetic core MB are arranged in the magnetic pole arrangement direction Y.
  • the meshing engagement device 2 is different from the first input dog gear DI1 that is drivingly connected to the electric motor MG via the first drive connecting mechanism 20 and the first drive connecting mechanism 20.
  • a second input dog gear DI2 drivingly connected to the electric motor MG via a second drive connecting mechanism 21 having a gear ratio, an output dog gear DO drivingly connected to the output member O, a first input dog gear DI1, and a second input And a switching member 3 having a meshing portion that meshes with at least one of the dog gear DI2 and the output dog gear DO, and the first input dog gear DI1, the output from the first axial side X1 along the axial direction X.
  • the meshing engagement device is not limited to such a configuration, and has a switching member 3 that switches the engagement state of the meshing engagement device. As long as the switching member 3 interlocked with is moved in the axial direction X and the state of engagement is switched, any configuration may be used.
  • the meshing engagement device may not have the second input dog gear DI2 but may have the first input dog gear DI1 and the output dog gear DO.
  • the electromagnetic actuator 1 has been described as an example in which the magnetic actuator 1 includes the three magnetic cores MB.
  • the configuration is not limited to such a configuration, and the electromagnetic actuator 1 may have a configuration including only two magnetic cores MB or a configuration including four or more magnetic cores MB.
  • the magnetic pole extending direction Z which is the direction in which the pair of magnetic pole forming portions 13, 14 extends, is the direction along the radial direction of the meshing engagement device 2, and the magnetic pole extending
  • the direction first side Z1 is a side toward the radially inner side
  • the magnetic pole extension direction second side Z2 is a side toward the radially outer side, and is a direction in which the pair of magnetic poles 9 and 10 are arranged.
  • Y is a direction along the circumferential direction of the meshing engagement device 2 has been described as an example.
  • the present invention is not limited to such a configuration, and the magnetic pole extending direction Z and the magnetic pole can be used as long as the driven portion 8 and the switching member 3 are moved in the axial direction X by the electromagnetic force generated in the magnetic core MB.
  • the arrangement direction Y may be arranged in any direction.
  • the magnetic pole extending direction Z may be a direction along the circumferential direction of the meshing engagement device 2
  • the magnetic pole arrangement direction Y may be a direction along the radial direction of the meshing engagement device 2.
  • the shape of the fork 24 that connects the switching member 3 and the driven portion 8 is set.
  • the electromagnetic actuator 1 is applied to an actuator that drives the switching member 3 of the meshing engagement device 2 .
  • the electromagnetic actuator 1 may be used for driving devices other than the meshing engagement device 2 without being limited to such a configuration.
  • the electromagnetic actuator 1 is preferably used for an actuator or the like that drives a valve body to perform valve switching.
  • the electromagnetic actuator (1) includes a plurality of magnetic cores (MB) around which coils (C) are wound, a control device (5) that controls energization of each of the coils (C), a magnet (6), And a driven part (8) configured by one or both of the magnetic body (7) and moving in the driving direction (X) by an electromagnetic force generated in the magnetic core (MB), and the magnetic core (MB)
  • MB magnetic cores
  • Each has a pair of magnetic poles (9, 10) having opposite polarities when energized to the coil (C), and these two magnetic poles (9, 10) cross the drive direction (X).
  • the plurality of magnetic cores (MB) are arranged side by side along the drive direction (X), and the driven part (8) is connected to any one of the magnetic cores (MB).
  • the pair of magnetic poles (9, 10) of each magnetic core (MB) are arranged in the magnetic pole arrangement direction (Y) intersecting the driving direction (X), and the driven part (8) Since the pair of opposed portions (11, 12) are arranged to face the pair of magnetic poles (9, 10), a magnetic flux circuit passing through the magnetic core (MB) and the driven portion (8) is driven. It is formed along the magnetic pole arrangement direction (Y) crossing the direction (X). And the stop position of the driven part (8) is formed according to each position of the plurality of magnetic cores (MB) arranged side by side along the driving direction (X), and thereby the driven part (8 ) Is determined.
  • the magnetic cores (MB) that define the reciprocating region of the driven portion (8) are compared with the case where the magnetic flux circuit is formed along the driving direction (X).
  • the arrangement area in the driving direction (X) can be kept small. Therefore, the axial length of the entire electromagnetic actuator (1) with respect to the reciprocating amount of the driven portion (8) can be kept small.
  • the driven part (8) is composed of a magnet (6) and a magnetic body (7) or a magnet (6), and the pair of opposing parts (11, 12) are magnetic poles having opposite polarities. It is preferable.
  • control device (5) energizes the coil (C) so as to generate an attractive force for the driven portion (8) in the magnetic core (MB) to which the driven portion (8) is moved, It is preferable that the coil (C) is energized so that a repulsive force against the driven part (8) is generated in the magnetic core (MB) from which the driven part (8) is moved.
  • Each of the magnetic cores (MB) includes two coils, a first coil (C1) and a second coil (C2), in which the directions of magnetic fields generated in the magnetic core (MB) are opposite to each other when energized.
  • (C) is wound, and the control device (5) is configured to generate an attractive force or a repulsive force for the driven part (8) in each of the magnetic cores (MB). It is preferable to switch which of the first coil (C1) and the second coil (C2) is energized.
  • the control device (5) can be configured by a simple circuit such as a switch for controlling on / off of energization of each of the coils (C).
  • the driven portion (8) is made of a magnetic material,
  • the driven portion (8) is preferably attracted by the magnetic force generated in the magnetic core (MB) and moved in the driving direction (X).
  • the driven part (8) is made of a magnetic material, the structure of the driven part (8) can be simplified.
  • the magnetic pole arrangement direction (Y) is orthogonal to the driving direction (X), and each of the magnetic cores (MB) is magnetic pole extending direction (Z) orthogonal to the driving direction (X) and the magnetic pole arrangement direction (Y). And a pair of magnetic pole forming portions (13, 14) extending in the magnetic pole arrangement direction (Y) and connecting the pair of magnetic pole forming portions (13, 14).
  • the surfaces of the magnetic pole forming portions (13, 14) facing each other are the magnetic poles (9, 10), and the driven portion (8) is the opposing portion forming portion (16, extending in the magnetic pole arrangement direction (Y)). 17), and both ends of the magnetic pole arrangement direction (Y) in the facing portion forming portions (16, 17) are preferably a pair of facing portions (11, 12).
  • each of the opposed surfaces of the pair of magnetic pole forming portions (13, 14) extending in the magnetic pole extending direction (Z) is the magnetic pole (9, 10), and the driven portion (8) is opposed to each other.
  • Both end portions in the magnetic pole arrangement direction (Y) in the portion forming portion (16, 17) are a pair of opposing portions (11, 12). Therefore, the driven part (8) can be arranged in a region sandwiched between the pair of magnetic pole forming parts (13, 14).
  • a magnetic flux circuit is appropriately formed by the magnetic core (MB) and the driven part (8), and the magnetic force can be efficiently applied from the magnetic poles (9, 10) to the opposing parts (11, 12). it can.
  • the magnetic pole arrangement direction (Y) is orthogonal to the driving direction (X), and each of the magnetic cores (MB) is magnetic pole extending direction (Z) orthogonal to the driving direction (X) and the magnetic pole arrangement direction (Y). And a pair of magnetic pole forming portions (13, 14) extending in the magnetic pole arrangement direction (Y) and connecting the pair of magnetic pole forming portions (13, 14).
  • One end (Z1) of the magnetic pole extending direction (Z) in each of the magnetic pole forming portions (13, 14) is the magnetic pole (9, 10)
  • the driven portion (8) is the magnetic pole extending A pair of facing portion forming portions (16, 17) extending in the direction (Z), and a facing portion connecting portion (18) extending in the magnetic pole arrangement direction (Y) to connect the pair of facing portion forming portions (16, 17).
  • a magnetic core (Z) in the magnetic pole extension direction (Z) in each of the pair of opposed portion forming portions (16, 17) End of B) side it is preferable that are opposed portion (11, 12).
  • the end on one side (Z1) of the magnetic pole extending direction (Z) in the magnetic pole forming portions (13, 14) extending in the magnetic pole extending direction (Z) is the magnetic pole (9, 10). Therefore, the magnetic force can be concentrated on the end portion on one side (Z1) in the magnetic pole extending direction (Z). Further, the other end (Z2) in the magnetic pole extending direction (Z) in the opposing portion forming portion (16, 17) extending in the magnetic pole extending direction (Z) is the opposing portion (11, 12). Therefore, the opposing portions (11, 12) can be opposed to the magnetic poles (9, 10) in the magnetic pole extending direction (Z).
  • the pair of magnetic pole forming portions (13, 14) and the pair of opposing portion forming portions (16, 17) are extended in the magnetic pole extending direction (Z), so that the electromagnetic actuator (1) Can be prevented from becoming longer in the magnetic pole arrangement direction (Y).
  • driving of the magnetic core (MB) disposed on the first side (X1) in the driving direction which is one side of the driving direction (X), in the two magnetic cores (MB) adjacent in the driving direction (X).
  • Driving direction second side (MB) of the magnetic core (MB) disposed on the driving direction second side (X2) opposite to the driving direction first side (X1) and the end surface of the direction first side (X1) It is preferable that the width of the driven part (8) in the driving direction (X) is shorter than the distance from the end face of X2).
  • the width in the driving direction (X) of the driven part (8) is made shorter than the width in the driving direction (X) of two magnetic cores (MB) adjacent to the driving direction (X). Therefore, the control accuracy of the position in the driving direction (X) of the driven part (8) by the magnetic force generated in each magnetic core (MB) can be improved.
  • driving of the magnetic core (MB) disposed on the first side (X1) in the driving direction which is one side of the driving direction (X), in the two magnetic cores (MB) adjacent in the driving direction (X).
  • Driving direction first side of the magnetic core (MB) disposed on the driving direction second side (X2) opposite to the driving direction first side (X1) and the end surface of the direction first side (X1) It is preferable that the width of the driven part (8) in the driving direction (X) is shorter than the distance from the end face of X1).
  • the width in the driving direction (X) of the driven part (8) is such that the end surfaces on the first side (X1) in the driving direction of the two magnetic cores (MB) adjacent in the driving direction (X). Therefore, the control accuracy of the position in the drive direction (X) of the driven part (8) by the magnetic force generated in each magnetic core (MB) can be further improved.
  • the driven portion (8) is configured to be interlocked with a switching member (3) that switches the engagement state of the meshing engagement device (2), and the drive direction (X) is the meshing engagement device. It is preferable that the direction is parallel to the rotational axis of (2).
  • the electromagnetic actuator (1) causes the switching member (3) of the meshing engagement device (2) to move in the driving direction (the direction parallel to the rotational axis of the meshing engagement device (2)). X), the engagement state of the meshing engagement device (2) can be switched.
  • each of the magnetic cores (MB) has a pair of magnetic poles (9, 10), and the pair of magnetic poles (9, 10) is a rotating shaft of the meshing engagement device (2).
  • the magnetic poles are arranged in a magnetic pole arrangement direction (Y) that intersects the direction parallel to the center. Therefore, the magnetic core (MB) can be easily arranged in a partial region in the circumferential direction of the meshing engagement device (2). Therefore, the mountability of the electromagnetic actuator (1) to the meshing engagement device (2) can be improved.
  • the meshing engagement device (2) includes a first input dog gear (DI1) that is drivingly connected to the electric motor (MG) via the first drive connecting mechanism (20), and a first drive connecting mechanism (20).
  • a second input dog gear (DI2) drivingly connected to the electric motor (MG) via a second drive connecting mechanism (21) having a transmission ratio different from that of the output dog gear (DI2) drivingly connected to the output member (O) ( DO) and a switching member (3) having a meshing portion that meshes with at least one of the first input dog gear (DI1), the second input dog gear (DI2), and the output dog gear (DO), and the drive direction
  • the first input dog gear (DI1), the output dog gear (DO), and the second input dog gear (DI2) are arranged in this order along the drive direction (X) from the drive direction first side (X1) which is one side of (X).
  • the second magnetic core (MB2) has a central portion in the driving direction (X) of the driven portion (8) facing a central portion in the driving direction (X) of the second magnetic core (MB2).
  • the switching member (3) is disposed at a position in the driving direction (X) so as to mesh only with the output dog gear (DO).
  • the driven part (8) and the switching member (3) are moved in the driving direction X by controlling energization to the coils of the three magnetic cores (MB) arranged in the driving direction X.
  • the switching member (3) meshes with the first input dog gear (DI1) and the output dog gear (DO), the switching member (3) meshes only with the output dog gear (DO), and the switching member (3) is the second.
  • the transmission state of the driving force can be switched between the state in which the input dog gear (DI2) and the output dog gear (DO) are engaged.
  • the meshing engagement device (2) includes an input dog gear that is drivingly connected to the electric motor (MG), an output dog gear (DO) that is drivingly connected to the output member (O), and an input dog gear and an output dog gear (DO). And a switching member (3) having a meshing portion that meshes with at least one of the control unit (5), and the control device (5) controls the energization to the coil (C), thereby controlling the driven portion (8).
  • the interlocking switching member (3) is moved in the driving direction (X), the switching member (3) is engaged with both the input dog gear and the output dog gear (DO).
  • the control device (5) is configured to be able to execute a release control that shifts to a release state that meshes with one of the output dog gears (DO), and the control device (5) increases the rotation speed of the electric motor (MG) after performing the release control. Decrease When the rotational speed change control for controlling the output torque of the electric motor (MG) is performed and the output torque of the electric motor (MG) increases or decreases by a predetermined change amount or more by the rotational speed change control, an abnormality occurs. It is preferable to execute the hour first control.
  • the switching member (3) does not shift to the state in which either the input dog gear or the output dog gear (DO) is engaged, and the input dog gear and the output dog gear (DO)
  • an abnormal state occurs in which both sides remain engaged.
  • the rotational speed change control is performed to control the output torque of the electric motor (MG) so as to increase or decrease the rotational speed of the electric motor (MG)
  • the output torque of the electric motor (MG) is increased or decreased.
  • the rotational speed of the input dog gear does not change from the rotational speed of the output dog gear (DO), so the amount of increase or decrease in the output torque of the electric motor (MG) increases.
  • the abnormal state can be detected when the output torque of the electric motor (MG) increases or decreases more than a predetermined determination change amount by the rotational speed change control. Control can be performed. Further, it is not necessary to provide a sensor or the like for detecting the position of the switching member (3) for detecting such an abnormal state, and the configuration can be simplified.
  • the meshing engagement device (2) includes an input dog gear that is drivingly connected to the electric motor (MG), an output dog gear (DO) that is drivingly connected to the output member (O), and an input dog gear and an output dog gear (DO). And a switching member (3) having a meshing portion that meshes with at least one of the control unit (5), and the control device (5) controls the energization to the coil (C), thereby controlling the driven portion (8).
  • the interlocking switching member (3) is moved in the driving direction (X)
  • the switching member (3) is in the input dog gear from the release state where the switching member (3) meshes with either the input dog gear or the output dog gear (DO).
  • control device (5) is configured to be able to execute an engagement control for shifting to an engagement state that meshes with both of the output dog gear (DO) and the control device (5), after performing the engagement control, the output torque of the electric motor (MG).
  • Torque control to control was carried out, after the start of the torque control, when the rotational speed of the input Dogugiya and the rotational speed of the output Dogugiya (DO) does not match, it is preferable to perform the second control abnormality.
  • the switching member (3) does not shift to a state in which both the input dog gear and the output dog gear (DO) are engaged, and either the input dog gear or the output dog gear (DO).
  • An abnormal state may occur in which one of the two remains engaged.
  • torque control is executed in this abnormal state and the output torque of the electric motor (MG) is increased or decreased, the rotational speed of the input dog gear is increased or decreased relative to the rotational speed of the output dog gear (DO).
  • the meshing engagement device (2) includes a first input dog gear (DI1) that is drivingly connected to the electric motor (MG) via the first drive connecting mechanism (20), and a first drive connecting mechanism (20).
  • a second input dog gear (DI2) drivingly connected to the electric motor (MG) via a second drive connecting mechanism (21) having a transmission ratio different from that of the output dog gear (DI2) drivingly connected to the output member (O) ( DO) and a switching member (3) having a meshing portion that meshes with at least one of the first input dog gear (DI1), the second input dog gear (DI2), and the output dog gear (DO), and the drive direction
  • the first input dog gear (DI1), the output dog gear (DO), and the second input dog gear (DI2) are arranged in this order along the drive direction (X) from the drive direction first side (X1) which is one side of (X).
  • the control device (5) One of the one input dog gear (DI1) and the second input dog gear (DI2) is a dog gear before shifting, and the other of the first input dog gear (DI1) and the second input dog gear (DI2) is a dog gear after shifting to the coil (C).
  • the switching member (3) interlocked with the driven portion (8) is moved in the driving direction (X) by controlling the energization of the driven portion (8), and the switching member (3) meshes with the pre-shifting dog gear and the output dog gear (DO).
  • the shift control for performing the post-shift engagement control for shifting to the post-shift engagement state meshing with the output dog gear (DO) is configured to be executable, and the control device (5) performs the motor release after performing the intermediate release control.
  • Rotational speed change control for controlling the output torque of the electric motor (MG) is performed so that the rotational speed of the post-shift dog gear connected to the motor (MG) approaches the rotational speed of the output dog gear (DO).
  • the abnormality third control is executed, and the control device (5) performs post-shift engagement control. After that, the rotational speed change control is finished and the torque control is performed to control the output torque of the electric motor (MG). After the torque control is started, the rotational speed of the dog gear after the shift becomes the rotational speed of the output dog gear (DO). If they do not match, it is preferable to execute the abnormal fourth control.
  • the shift gear shifts to the post-shift shift state.
  • Rotational speed change control is performed to bring the rotational speed of the rear dog gear closer to the rotational speed of the output dog gear (DO).
  • the neutral shift control is executed, the switching member (3) does not shift to a state in which it is engaged only with the output dog gear (DO) due to some factor, and both the dog gear before shifting and the output dog gear (DO) are shifted. There may be an abnormal condition that remains engaged.
  • an abnormal state can be detected when the output torque of the electric motor (MG) increases or decreases by a rotational speed change control to a value greater than or equal to a predetermined determination change amount. Control can be performed.
  • the technology according to the present disclosure can be suitably used for an electromagnetic actuator having a magnetic core around which a coil is wound.
  • Electromagnetic actuator 2 Engagement type engagement device 3: Switching member 5: Control device 6: Magnet 7: Magnetic body 8: Driven part 9, 10: A pair of magnetic poles 11 and 12: A pair of opposing parts 13 and 14: A pair of magnetic pole forming parts 16, 17: A pair of opposing part forming parts 20: First drive connecting mechanism 21: Second drive connecting mechanism 22: Rotating shaft C of the electric motor: Coil DI1: First input dog gear DI2: Second input Dog gear DO: Output dog gear MB: Magnetic core MG: Electric motor O: Output member W0: Drive direction width X of driven part: Axial direction X1: Axial direction first side (Axial direction one side) X2: Second axial side (the other axial side) Y: Magnetic pole arrangement direction Y1: Magnetic pole arrangement direction first side (one side of magnetic pole arrangement direction) Y2: The second side in the magnetic pole arrangement direction (the other side in the magnetic pole arrangement direction) Z: magnetic pole extending direction Z1: magnetic pole extending direction first side (one side in

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

 There has been a need to realize an electromagnetic actuator in which the length of a magnetic core can be kept from increasing in the drive direction while ensuring electromagnetically produced drive force, and in which the magnetic core can be disposed in a partial circumferential-direction area. Magnetic cores (MB) of an electromagnetic actuator (1) have a pair of magnetic poles (9, 10) that are given opposite polarities by energizing a coil, the two magnetic poles (9, 10) are aligned in the magnetic pole arrangement direction (Y), which intersects the drive direction (X); the plurality of magnetic cores (MB) are arranged in alignment along the drive direction (X); and a driven part (8) has a pair of opposing parts (11, 12) that are arranged so as to respectively oppose the pair of magnetic poles (9, 10) of any of the magnetic cores (MB).

Description

電磁アクチュエータElectromagnetic actuator
 本発明は、コイルが巻装された磁性体コアを有する電磁アクチュエータに関する。 The present invention relates to an electromagnetic actuator having a magnetic core around which a coil is wound.
 上記のような電磁アクチュエータに関して、例えば下記の特許文献1に記載された技術が既に知られている。以下、この背景技術の欄の説明では、〔〕内に特許文献1における符号を引用して説明する。特許文献1に記載されている技術では、リニアアクチュエータ〔1〕は、第一のコイル〔51〕及び第二のコイル〔52〕と第一のスリット〔12〕及び第二のスリット〔13〕が設けられたアウタヨーク〔4〕とを有した固定部〔10〕と、インナヨーク〔9〕と第一の磁石〔71〕および第二の磁石〔72〕とを有した可動部〔11〕と、を備えている。そして、第一のスリット〔12〕及び第二のスリット〔13〕は、固定部〔10〕の軸方向の端部よりも中央部の近くに位置されている。これにより、可動部〔11〕が、軸方向の一方側の第一の位置〔P1〕と他方側の第二の位置〔P2〕との間で往復移動可能に構成されている。 Regarding the electromagnetic actuator as described above, for example, a technique described in Patent Document 1 below is already known. Hereinafter, in the description of the background art section, reference numerals in Patent Document 1 are quoted in []. In the technique described in Patent Document 1, the linear actuator [1] includes a first coil [51], a second coil [52], a first slit [12], and a second slit [13]. A fixed portion [10] having an outer yoke [4] provided, and a movable portion [11] having an inner yoke [9], a first magnet [71] and a second magnet [72]. I have. And the 1st slit [12] and the 2nd slit [13] are located near the center part rather than the edge part of the axial direction of fixed part [10]. Thereby, movable part [11] is comprised so that a reciprocation is possible between the 1st position [P1] of the one side of an axial direction, and the 2nd position [P2] of the other side.
特開2014-110746号公報JP 2014-110746 A
 特許文献1の技術では、当該特許文献1の図4及び図5に示されているように、可動部〔11〕を駆動するための磁束回路が、当該可動部〔11〕の往復移動方向である軸方向に沿って形成される構成となっている。そのため、可動部〔11〕の往復移動量は、リニアアクチュエータ〔1〕の全体の軸方向長さのおおよそ4分の1程度と短くなっている。従って、可動部〔11〕の往復移動量を大きく確保しようとするとためには、リニアアクチュエータ〔1〕の全体の軸方向長さが大きくならざるを得なかった In the technique of Patent Document 1, as shown in FIGS. 4 and 5 of Patent Document 1, a magnetic flux circuit for driving the movable part [11] is provided in the reciprocating direction of the movable part [11]. It is the structure formed along a certain axial direction. Therefore, the reciprocating amount of the movable part [11] is as short as about one quarter of the overall axial length of the linear actuator [1]. Therefore, in order to secure a large amount of reciprocation of the movable part [11], the entire axial length of the linear actuator [1] has to be increased.
 そこで、被駆動部の往復移動量に対してアクチュエータ全体の軸方向長さを小さく抑えることができる電磁アクチュエータの実現が望まれる。 Therefore, it is desired to realize an electromagnetic actuator that can keep the axial length of the entire actuator small with respect to the amount of reciprocation of the driven part.
 上記に鑑みた電磁アクチュエータの特徴構成は、コイルが巻装された複数の磁性体コアと、前記コイルのそれぞれへの通電を制御する制御装置と、磁石及び磁性体の一方又は双方から構成され、前記磁性体コアに発生する電磁力により駆動方向に移動する被駆動部と、を備え、前記磁性体コアのそれぞれは、前記コイルへの通電によって互いに反対の極性となる一対の磁極を有すると共に、これら二つの磁極が、前記駆動方向に交差する磁極配置方向に並べられ、前記複数の磁性体コアは、前記駆動方向に沿って並んで配置され、前記被駆動部は、いずれかの前記磁性体コアの前記一対の磁極のそれぞれと対向するように配置される一対の対向部を有する点にある。 In view of the above, the characteristic configuration of the electromagnetic actuator includes a plurality of magnetic cores around which a coil is wound, a control device that controls energization of each of the coils, and one or both of a magnet and a magnetic body. A driven portion that moves in the driving direction by electromagnetic force generated in the magnetic core, and each of the magnetic cores has a pair of magnetic poles that have opposite polarities when energized to the coil, These two magnetic poles are arranged in a magnetic pole arrangement direction intersecting the drive direction, the plurality of magnetic cores are arranged along the drive direction, and the driven part is one of the magnetic bodies It has the point which has a pair of opposing part arrange | positioned so as to oppose each of the said pair of magnetic poles of a core.
 この特徴構成によれば、各磁性体コアの一対の磁極が駆動方向に交差する磁極配置方向に並べられており、被駆動部の一対の対向部が一対の磁極と対向するように配置されているので、磁性体コアと被駆動部とを通る磁束回路が、駆動方向に交差する磁極配置方向に沿って形成される。そして、駆動方向に沿って並んで配置された複数の磁性体コアのそれぞれの位置に応じて被駆動部の停止位置が形成され、それにより被駆動部の往復移動領域が定まる。すなわち、この特徴構成によれば、磁束回路が駆動方向に沿って形成される場合に比べて、被駆動部の往復移動領域を規定する複数の磁性体コアの駆動方向の配置領域を小さく抑えることができる。従って、被駆動部の往復移動量に対する電磁アクチュエータ全体の軸方向長さを小さく抑えることができる。 According to this characteristic configuration, the pair of magnetic poles of the magnetic cores are arranged in the magnetic pole arrangement direction intersecting the driving direction, and the pair of opposed parts of the driven part are arranged to face the pair of magnetic poles. Therefore, a magnetic flux circuit that passes through the magnetic core and the driven part is formed along the magnetic pole arrangement direction that intersects the driving direction. And the stop position of a driven part is formed according to each position of the some magnetic body core arrange | positioned along with the drive direction, and the reciprocating region of a driven part is decided by it. That is, according to this characteristic configuration, the arrangement area in the driving direction of the plurality of magnetic cores that define the reciprocating movement area of the driven part can be reduced compared to the case where the magnetic flux circuit is formed along the driving direction. Can do. Accordingly, it is possible to reduce the axial length of the entire electromagnetic actuator with respect to the reciprocating amount of the driven part.
実施形態に係る噛み合い式係合装置及び電磁アクチュエータの模式図である。It is a schematic diagram of the meshing engagement device and the electromagnetic actuator according to the embodiment. 実施形態に係る被駆動部の軸方向の移動を説明するための模式図である。It is a schematic diagram for demonstrating the movement of the axial direction of the to-be-driven part which concerns on embodiment. 実施形態に係る被駆動部の軸方向の移動を説明するための模式図である。It is a schematic diagram for demonstrating the movement of the axial direction of the to-be-driven part which concerns on embodiment. 実施形態に係る被駆動部の軸方向の移動を説明するための模式図である。It is a schematic diagram for demonstrating the movement of the axial direction of the to-be-driven part which concerns on embodiment. 実施形態に係る磁性体コア及び被駆動部の模式図である。It is a schematic diagram of the magnetic body core and driven part which concern on embodiment. 実施形態に係る磁性体コア及び被駆動部の模式図である。It is a schematic diagram of the magnetic body core and driven part which concern on embodiment. 実施形態に係る制御装置の構成を説明するための回路図である。It is a circuit diagram for demonstrating the structure of the control apparatus which concerns on embodiment. 実施形態に係るコイルへの通電制御を説明するための図である。It is a figure for demonstrating the electricity supply control to the coil which concerns on embodiment. 実施形態に係る被駆動部の幅と隣り合う磁性体コアの間隔との関係の一例を示す模式図である。It is a schematic diagram which shows an example of the relationship between the width | variety of the to-be-driven part which concerns on embodiment, and the space | interval of an adjacent magnetic body core. 実施形態に係る変速制御を説明するためのフローチャートである。It is a flowchart for demonstrating the shift control which concerns on embodiment. 第二の実施形態に係る磁性体コア及び被駆動部の模式図である。It is a schematic diagram of the magnetic body core and driven part which concern on 2nd embodiment. その他の実施形態に係る磁性体コア及び被駆動部の模式図である。It is a schematic diagram of the magnetic body core and driven part which concern on other embodiment. その他の実施形態に係る制御装置の構成を説明するための回路図である。It is a circuit diagram for demonstrating the structure of the control apparatus which concerns on other embodiment. その他の実施形態に係るコイルへの通電制御を説明するための図である。It is a figure for demonstrating the electricity supply control to the coil which concerns on other embodiment. 実施形態に係る被駆動部の幅と隣り合う磁性体コアの間隔との関係の一例を示す模式図である。It is a schematic diagram which shows an example of the relationship between the width | variety of the to-be-driven part which concerns on embodiment, and the space | interval of an adjacent magnetic body core.
1.第一の実施形態
<電磁アクチュエータ1>
 電磁アクチュエータ1の第一の実施形態について、図面を参照して説明する。本実施形態では、図1から図4に示すように、電磁アクチュエータ1が、軸方向Xに移動して噛み合い式係合装置2の係合の状態を切り替える切替部材3を電磁力により駆動するアクチュエータに適用された場合の例について説明する。
 噛み合い式係合装置2の回転軸心に平行な方向を軸方向Xと定義する。本実施形態では、電磁アクチュエータ1の「駆動方向」は、噛み合い式係合装置2の回転軸心に平行な方向であり、軸方向Xに一致している。従って以下では、「軸方向X」を電磁アクチュエータ1の「駆動方向」として説明する。なお、ここでは、噛み合い式係合装置2の回転軸心は、切替部材3の回転軸心に一致している。軸方向Xの一方側を軸方向第一側X1と定義し、軸方向第一側X1とは反対側である軸方向Xの他方側を軸方向第二側X2と定義する。
1. First Embodiment <Electromagnetic Actuator 1>
A first embodiment of the electromagnetic actuator 1 will be described with reference to the drawings. In the present embodiment, as shown in FIGS. 1 to 4, the electromagnetic actuator 1 moves in the axial direction X to drive the switching member 3 that switches the engagement state of the meshing engagement device 2 by electromagnetic force. An example in the case of being applied to will be described.
A direction parallel to the rotational axis of the meshing engagement device 2 is defined as an axial direction X. In the present embodiment, the “drive direction” of the electromagnetic actuator 1 is a direction parallel to the rotational axis of the meshing engagement device 2 and coincides with the axial direction X. Therefore, hereinafter, the “axial direction X” will be described as the “driving direction” of the electromagnetic actuator 1. Here, the rotational axis of the meshing engagement device 2 coincides with the rotational axis of the switching member 3. One side of the axial direction X is defined as an axial first side X1, and the other side of the axial direction X opposite to the axial first side X1 is defined as an axial second side X2.
 電磁アクチュエータ1は、コイルCが巻装された複数の磁性体コアMBと、コイルCのそれぞれへの通電を制御する制御装置5(図7参照)と、磁石6及び磁性体7の一方又は双方により構成され、磁性体コアMBに発生する電磁力により軸方向Xに移動する被駆動部8と、を備えている。
 図5及び図6に示すように、磁性体コアMBのそれぞれは、コイルCへの通電によって互いに反対の極性となる一対の磁極9、10を有すると共に、これら二つの磁極9、10が、軸方向Xに交差する磁極配置方向Yに並べられている。そして、図1に示すように、複数の磁性体コアMBは、軸方向Xに沿って並んで配置されている。
The electromagnetic actuator 1 includes a plurality of magnetic cores MB around which coils C are wound, a control device 5 (see FIG. 7) that controls energization of each of the coils C, and one or both of a magnet 6 and a magnetic body 7. And a driven portion 8 that moves in the axial direction X by electromagnetic force generated in the magnetic core MB.
As shown in FIGS. 5 and 6, each of the magnetic cores MB has a pair of magnetic poles 9 and 10 that have opposite polarities when the coil C is energized. They are arranged in a magnetic pole arrangement direction Y that intersects the direction X. As shown in FIG. 1, the plurality of magnetic cores MB are arranged side by side along the axial direction X.
 被駆動部8は、複数の磁性体コアMBの内のいずれかの磁性体コアMBの一対の磁極9、10のそれぞれと対向するように配置される一対の対向部11、12を有する。言い換えると、被駆動部8は、軸方向Xの位置が対応するいずれかの磁性体コアMBの一対の磁極9、10のそれぞれと対向するように配置される一対の対向部11、12を有する。すなわち、被駆動部8は、複数の磁性体コアMBの一部と軸方向Xの位置が対応するように軸方向Xに移動された場合に、被駆動部8が有する一対の対向部11、12は、軸方向Xの位置が対応する磁性体コアMBの一対の磁極9、10のそれぞれと対向するように配置される。本実施形態では、被駆動部8は、噛み合い式係合装置2の係合の状態を切り替える切替部材3と連動するように構成されている。そして、被駆動部8は、磁性体コアMBに発生する電磁力により軸方向Xに移動して切替部材3を軸方向Xに移動させる。 The driven part 8 has a pair of facing parts 11 and 12 arranged to face each of the pair of magnetic poles 9 and 10 of any one of the plurality of magnetic cores MB. In other words, the driven part 8 has a pair of facing parts 11 and 12 arranged so as to face each of the pair of magnetic poles 9 and 10 of any magnetic core MB corresponding to the position in the axial direction X. . That is, when the driven unit 8 is moved in the axial direction X so that a part of the plurality of magnetic cores MB corresponds to the position in the axial direction X, the pair of opposed units 11 included in the driven unit 8; 12 are arranged so that the position in the axial direction X faces the pair of magnetic poles 9 and 10 of the corresponding magnetic core MB. In the present embodiment, the driven portion 8 is configured to be interlocked with the switching member 3 that switches the engagement state of the meshing engagement device 2. And the driven part 8 moves to the axial direction X by the electromagnetic force which generate | occur | produces in the magnetic body core MB, and moves the switching member 3 to the axial direction X. FIG.
 この構成によれば、磁性体コアMBのそれぞれは、一対の磁極9、10を有しており、被駆動部8は、磁性体コアMBの一対の磁極9、10のそれぞれと対向する一対の対向部11、12を有しているため、対向する磁極と対向部とを二組設けることできる。よって、対向する磁極と対向部とを一組設ける場合よりも、被駆動部8に作用する電磁力を増大させることができる。 According to this configuration, each of the magnetic cores MB has the pair of magnetic poles 9 and 10, and the driven portion 8 is a pair of the magnetic poles 9 and 10 of the magnetic core MB facing each of the pair of magnetic poles 9 and 10. Since the opposing portions 11 and 12 are provided, two sets of opposing magnetic poles and opposing portions can be provided. Therefore, the electromagnetic force acting on the driven part 8 can be increased as compared with the case where a pair of opposing magnetic poles and opposing parts are provided.
 本実施形態では、図5及び図6に示すように、被駆動部8は、磁石6及び磁性体7により構成されている。そして、被駆動部8が有する一対の対向部11、12は、互いに極性が反対の磁極とされている。
 この構成によれば、被駆動部8には、磁石6を有しない場合よりも、より強い磁力が生じるので、被駆動部8に作用する吸引力又は反発力を増加させることができる。本実施形態では、磁石6には、永久磁石が用いられ、磁性体7には、鉄などの強磁性体が用いられる。また、磁性体コアMBには、鉄などの強磁性体が用いられる。
In the present embodiment, as shown in FIGS. 5 and 6, the driven unit 8 includes a magnet 6 and a magnetic body 7. And a pair of opposing parts 11 and 12 which the to-be-driven part 8 has are made into the magnetic poles with which polarity is mutually opposite.
According to this configuration, a stronger magnetic force is generated in the driven part 8 than in the case where the magnet 6 is not provided, so that an attractive force or a repulsive force acting on the driven part 8 can be increased. In this embodiment, a permanent magnet is used for the magnet 6, and a ferromagnetic material such as iron is used for the magnetic body 7. Further, a ferromagnetic material such as iron is used for the magnetic core MB.
 制御装置5は、被駆動部8を移動させる先の磁性体コアMBに、被駆動部8に対する吸引力を発生させるようにコイルCに通電させ、被駆動部8の移動元の磁性体コアMBに、被駆動部8に対する反発力が生じるようにコイルCに通電させるように構成されている。
この構成によれば、移動先の磁性体コアMBによる吸引力と、移動元の磁性体コアMBによる反発力との双方を利用することができるので、被駆動部8を軸方向Xに移動させる力を増加させることができる。
The control device 5 energizes the coil C so that the magnetic core MB to which the driven unit 8 is moved is caused to generate an attractive force with respect to the driven unit 8, and the magnetic core MB from which the driven unit 8 is moved Further, the coil C is configured to be energized so that a repulsive force against the driven portion 8 is generated.
According to this configuration, it is possible to use both the attraction force by the magnetic core MB that is the moving destination and the repulsive force by the magnetic core MB that is the moving source, so that the driven portion 8 is moved in the axial direction X. Can increase power.
 本実施形態では、図5及び図6に示すように、磁性体コアMBのそれぞれには、通電により磁性体コアMBに発生させる磁界の向きが互いに反対になる第一コイルC1と第二コイルC2との二つのコイルCが巻装されている。制御装置5は、磁性体コアMBのそれぞれにおいて、被駆動部8に対して吸引力を発生させるか、反発力を発生させるかに応じて、第一コイルC1及び第二コイルC2のいずれに通電させるかを切り替えるように構成されている。この構成によれば、磁性体コアMBのそれぞれについて、第一コイルC1への通電と第二コイルC2への通電とを切り替えるだけで、被駆動部8に作用する吸引力と反発力とを切り替えることができる。そのため、制御装置5を、コイルCのそれぞれへの通電をオンオフ制御するスイッチ等の簡単な回路により構成することができる。 In the present embodiment, as shown in FIGS. 5 and 6, each of the magnetic cores MB includes a first coil C <b> 1 and a second coil C <b> 2 in which the directions of magnetic fields generated in the magnetic core MB by energization are opposite to each other. And two coils C are wound. The control device 5 energizes either the first coil C1 or the second coil C2 depending on whether an attractive force or a repulsive force is generated for the driven part 8 in each of the magnetic cores MB. It is comprised so that it may switch. According to this configuration, for each of the magnetic cores MB, the attractive force and the repulsive force acting on the driven part 8 are switched by simply switching between energization to the first coil C1 and energization to the second coil C2. be able to. Therefore, the control device 5 can be configured by a simple circuit such as a switch for controlling on / off of energization of each of the coils C.
 本実施形態では、制御装置5は、図7に示すように、コイルCのそれぞれへの通電をオンオフするスイッチSを備えている。制御装置5は、各スイッチSをオンオフ制御するプログラムを実行するコンピュータや、各スイッチSをオンオフするトランジスタなどを備えている。本実施形態では、電磁アクチュエータ1は、後述するように、三つの磁性体コアMB1、MB2、MB3を備えているため、合計六つのコイルC11、C21、C12、C22、C13、C23を備えている。そして、制御装置5は、各コイルに対応する六つのスイッチS11、S21、S12、S22、S13、S23を備えている。 In the present embodiment, the control device 5 includes a switch S for turning on / off the energization of each of the coils C as shown in FIG. The control device 5 includes a computer that executes a program for controlling on / off of each switch S, a transistor for turning on / off each switch S, and the like. In the present embodiment, as will be described later, the electromagnetic actuator 1 includes three magnetic cores MB1, MB2, and MB3, and therefore includes a total of six coils C11, C21, C12, C22, C13, and C23. . And the control apparatus 5 is equipped with six switch S11, S21, S12, S22, S13, S23 corresponding to each coil.
 本実施形態では、磁極配置方向Yは、軸方向Xに直交している。図5及び図6に示すように、磁性体コアMBのそれぞれは、軸方向X及び磁極配置方向Yに直交する磁極延出方向Zに延びる一対の磁極形成部13、14と、磁極配置方向Yに延びて一対の磁極形成部13、14を連結する磁極連結部15と、を有している。そして、一対の磁極形成部13、14のそれぞれにおける磁極延出方向第一側Z1の端部が、磁極9、10とされている。 In this embodiment, the magnetic pole arrangement direction Y is orthogonal to the axial direction X. As shown in FIGS. 5 and 6, each of the magnetic cores MB includes a pair of magnetic pole forming portions 13 and 14 extending in the magnetic pole extending direction Z orthogonal to the axial direction X and the magnetic pole arranging direction Y, and the magnetic pole arranging direction Y. And a magnetic pole connecting portion 15 that connects the pair of magnetic pole forming portions 13 and 14 to each other. The ends of the pair of magnetic pole forming portions 13 and 14 on the first side Z1 in the magnetic pole extending direction are the magnetic poles 9 and 10, respectively.
 被駆動部8は、磁極延出方向Zに延びる一対の対向部形成部16、17と、磁極配置方向Yに延びて一対の対向部形成部16、17を連結する対向部連結部18と、を有している。そして、一対の対向部形成部16、17のそれぞれにおける磁極延出方向Zの磁性体コアMB側(磁極延出方向第二側Z2)の端部が、対向部11、12とされている。 The driven portion 8 includes a pair of opposing portion forming portions 16 and 17 extending in the magnetic pole extending direction Z, an opposing portion connecting portion 18 extending in the magnetic pole arrangement direction Y and connecting the pair of opposing portion forming portions 16 and 17, have. The ends of the pair of opposing portion forming portions 16 and 17 on the magnetic core MB side (magnetic pole extending direction second side Z2) in the magnetic pole extending direction Z are opposing portions 11 and 12, respectively.
 ここで、磁極延出方向Zにおける一方側を、磁極延出方向第一側Z1と定義し、磁極延出方向第一側Z1とは反対側である磁極延出方向Zにおける他方側を、磁極延出方向第二側Z2と定義する。 Here, one side in the magnetic pole extension direction Z is defined as the first side Z1 of the magnetic pole extension direction, and the other side in the magnetic pole extension direction Z opposite to the first side Z1 of the magnetic pole extension direction is defined as the magnetic pole extension direction Z. It is defined as the extending direction second side Z2.
 この構成によれば、磁極延出方向Zに延びる磁極形成部13、14における磁極延出方向第一側Z1の端部が磁極9、10とされているので、当該磁極延出方向第一側Z1の端部に磁力を集中させることができる。また、磁極延出方向Zに延びる対向部形成部16、17における磁極延出方向第二側Z2の端部が、対向部11、12とされているので、対向部11、12を磁極9、10に磁極延出方向Zに対向させることができる。そのため、磁極9、10から対向部11、12に磁力を効率的に作用させて、生じる吸引力又は反発力を増加させることができる。
 また、一対の磁極形成部13、14、及び一対の対向部形成部16、17を磁極延出方向Zに延ばしているので、電磁アクチュエータ1が磁極配置方向Yに長くなることを抑制できる。
According to this configuration, since the ends of the magnetic pole extending direction first side Z1 in the magnetic pole forming portions 13 and 14 extending in the magnetic pole extending direction Z are the magnetic poles 9 and 10, the magnetic pole extending direction first side Magnetic force can be concentrated on the end of Z1. Moreover, since the edge part of the magnetic pole extension direction 2nd side Z2 in the opposing part formation parts 16 and 17 extended in the magnetic pole extension direction Z is made into the opposing parts 11 and 12, the opposing parts 11 and 12 are made into the magnetic pole 9, 10 can be opposed to the magnetic pole extending direction Z. Therefore, the magnetic force can be efficiently applied from the magnetic poles 9 and 10 to the facing portions 11 and 12, and the generated attractive force or repulsive force can be increased.
Further, since the pair of magnetic pole forming portions 13 and 14 and the pair of opposing portion forming portions 16 and 17 are extended in the magnetic pole extending direction Z, the electromagnetic actuator 1 can be prevented from being elongated in the magnetic pole arrangement direction Y.
 本実施形態では、対向部連結部18は、一対の対向部形成部16、17のそれぞれにおける磁極延出方向第一側Z1の端部を連結させている。被駆動部8は、磁極延出方向第二側Z2に開口する角張ったU字状に形成されている。磁極配置方向第二側Y2の対向部形成部17(対向部12)は、磁石6により構成されており、それ以外の部分(対向部連結部18及び磁極配置方向第一側Y1の対向部形成部16)は、磁性体7で構成されている。磁石6は、磁極配置方向第二側Y2の対向部12がN極となる極性の向きで被駆動部8(磁性体7)に取り付けられている。磁極配置方向第一側Y1の対向部11はS極となる。 In the present embodiment, the opposing portion connecting portion 18 connects the end portions of the first side Z1 in the magnetic pole extending direction in each of the pair of opposing portion forming portions 16 and 17. The driven portion 8 is formed in an angular U shape that opens to the second side Z2 in the magnetic pole extending direction. The facing portion forming portion 17 (facing portion 12) on the second side Y2 in the magnetic pole arrangement direction is composed of the magnet 6, and other portions (forming the facing portion on the facing portion connecting portion 18 and the first side Y1 in the magnetic pole arrangement direction). The part 16) is composed of the magnetic body 7. The magnet 6 is attached to the driven part 8 (magnetic body 7) with a polarity direction in which the facing part 12 on the second side Y2 in the magnetic pole arrangement direction is an N pole. The facing portion 11 on the first side Y1 in the magnetic pole arrangement direction is the S pole.
 磁極連結部15は、一対の磁極形成部13、14のそれぞれにおける磁極延出方向第二側Z2の端部を連結させている。磁性体コアMBは、磁極延出方向第一側Z1に開口する角張ったU字状に形成されている。一対の磁極形成部13、14のそれぞれには、コイルCが巻装されている。磁極配置方向第一側Y1の磁極形成部13には第一コイルC1が巻装され、磁極配置方向第二側Y2の磁極形成部14には第二コイルC2が巻装されている。そして、図5に示すように、太線で表した第一コイルC1に通電されると、磁極配置方向第一側Y1の磁極9がN極になり、磁極配置方向第二側Y2の磁極10がS極になる。
この場合は、被駆動部8に吸引力が作用する。一方、図6に示すように、太線で表した第二コイルC2に通電されると、磁極配置方向第一側Y1の磁極9がS極になり、磁極配置方向第二側Y2の磁極10がN極になる。この場合は、被駆動部8に反発力が作用する。
The magnetic pole connecting portion 15 connects the end portions of the pair of magnetic pole forming portions 13 and 14 on the second side Z2 in the magnetic pole extending direction. The magnetic core MB is formed in an angular U-shape that opens to the first side Z1 in the magnetic pole extending direction. A coil C is wound around each of the pair of magnetic pole forming portions 13 and 14. The first coil C1 is wound around the magnetic pole forming portion 13 on the first side Y1 in the magnetic pole arrangement direction, and the second coil C2 is wound around the magnetic pole forming portion 14 on the second side Y2 in the magnetic pole arrangement direction. Then, as shown in FIG. 5, when the first coil C1 represented by a thick line is energized, the magnetic pole 9 on the first side Y1 in the magnetic pole arrangement direction becomes N pole, and the magnetic pole 10 on the second side Y2 in the magnetic pole arrangement direction becomes Becomes the S pole.
In this case, a suction force acts on the driven part 8. On the other hand, as shown in FIG. 6, when the second coil C2 indicated by a thick line is energized, the magnetic pole 9 on the first side Y1 in the magnetic pole arrangement direction becomes the S pole, and the magnetic pole 10 on the second side Y2 in the magnetic pole arrangement direction becomes It becomes N pole. In this case, a repulsive force acts on the driven part 8.
<噛み合い式係合装置2>
 図1に示すように、本実施形態では、噛み合い式係合装置2は、第一駆動連結機構20を介して電動モータMGに駆動連結された第一入力ドグギヤDI1と、第一駆動連結機構20とは異なる変速比を有する第二駆動連結機構21を介して電動モータMGに駆動連結された第二入力ドグギヤDI2と、出力部材Oに駆動連結された出力ドグギヤDOと、第一入力ドグギヤDI1、第二入力ドグギヤDI2、及び出力ドグギヤDOの少なくとも一つに噛み合う噛合い部を有する切替部材3と、を有している。切替部材3は、電磁アクチュエータ1の被駆動部8に連動するように構成されている。
 軸方向第一側X1から軸方向Xに沿って(すなわち、軸方向第一側X1から軸方向第二側X2に向かって)、第一入力ドグギヤDI1、出力ドグギヤDO、第二入力ドグギヤDI2の順に配置されている。
<Meshing engagement device 2>
As shown in FIG. 1, in the present embodiment, the meshing engagement device 2 includes a first input dog gear DI <b> 1 that is drivingly connected to the electric motor MG via the first drive connecting mechanism 20, and the first drive connecting mechanism 20. A second input dog gear DI2 that is drive-coupled to the electric motor MG via a second drive coupling mechanism 21 having a different speed ratio, an output dog gear DO that is drive-coupled to the output member O, a first input dog gear DI1, And a switching member 3 having a meshing portion that meshes with at least one of the second input dog gear DI2 and the output dog gear DO. The switching member 3 is configured to be interlocked with the driven portion 8 of the electromagnetic actuator 1.
The first input dog gear DI1, the output dog gear DO, and the second input dog gear DI2 along the axial direction X from the first axial side X1 (that is, from the first axial side X1 toward the second axial side X2). Arranged in order.
 なお、本願において、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば摩擦係合装置や噛み合い式係合装置等が含まれていてもよい。 In the present application, “driving connection” refers to a state where two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or It is used as a concept including a state in which two rotating elements are connected so as to be able to transmit a driving force via one or more transmission members. Examples of such a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like. Further, as such a transmission member, an engagement device that selectively transmits rotation and driving force, for example, a friction engagement device or a meshing engagement device may be included.
 本実施形態では、第一及び第二入力ドグギヤDI1、DI2、及び出力ドグギヤDOは、同等の外径を有する円筒状に形成され、同軸上に配置されている。第一及び第二入力ドグギヤDI1、DI2、及び出力ドグギヤDOの外周面には、全周に亘って周方向に一定のピッチで形成された軸方向Xに延びる複数の噛合歯(ドグギヤ側噛合い部)が形成され、それらの噛合歯の断面形状は同等にされている。切替部材3は、円筒状に形成されたスリーブであり、第一及び第二入力ドグギヤDI1、DI2、及び出力ドグギヤDOの径方向外側に同軸上に配置される。切替部材3の内周面には、全周に亘って周方向に一定のピッチで形成された軸方向Xに延びる複数の噛合歯(切替側噛合い部)が形成され、切替部材3の噛合歯は、第一及び第二入力ドグギヤDI1、DI2、及び出力ドグギヤDOの噛合歯に噛み合うことにより、これらのドグギヤに嵌合する断面形状を有している。 In the present embodiment, the first and second input dog gears DI1, DI2 and the output dog gear DO are formed in a cylindrical shape having the same outer diameter and are arranged coaxially. On the outer peripheral surfaces of the first and second input dog gears DI1, DI2 and the output dog gear DO, a plurality of meshing teeth (dog gear side meshing) extending in the axial direction X formed at a constant pitch in the circumferential direction over the entire circumference. Part), and the cross-sectional shapes of the meshing teeth are made equal. The switching member 3 is a sleeve formed in a cylindrical shape, and is coaxially disposed on the radially outer side of the first and second input dog gears DI1 and DI2 and the output dog gear DO. A plurality of meshing teeth (switching side meshing portions) extending in the axial direction X formed at a constant pitch in the circumferential direction are formed on the inner peripheral surface of the switching member 3. The teeth have a cross-sectional shape that engages with the dog gears by engaging with the meshing teeth of the first and second input dog gears DI1, DI2, and the output dog gear DO.
 第一駆動連結機構20は、電動モータMGの回転軸22と一体回転する第一モータ出力ギヤGMO1と、第一モータ出力ギヤGMO1に噛み合い、第一入力ドグギヤDI1と一体回転する第一モータ入力ギヤGMI1と、により構成されたギヤ機構である。第二駆動連結機構21は、電動モータMGの回転軸22と一体回転する第二モータ出力ギヤGMO2と、第二モータ出力ギヤGMO2に噛み合い、第二入力ドグギヤDI2と一体回転する第二モータ入力ギヤGMI2と、により構成されたギヤ機構である。電動モータMGは、ケースに固定されたステータStと、このステータStの径方向内側に、回転自在に支持されたロータRoと、を有している。回転軸22は、ロータRoと一体回転する。電動モータMGは、直流交流変換を行うインバータを介して蓄電装置に電気的に接続されている。制御装置5は、インバータを介して電動モータMGの出力トルクを制御する。 The first drive coupling mechanism 20 is engaged with the first motor output gear GMO1 that rotates integrally with the rotating shaft 22 of the electric motor MG, and the first motor input gear that meshes with the first motor output gear GMO1 and rotates integrally with the first input dog gear DI1. A gear mechanism configured by GMI1. The second drive coupling mechanism 21 is engaged with the second motor output gear GMO2 that rotates integrally with the rotary shaft 22 of the electric motor MG, and the second motor input gear that meshes with the second motor output gear GMO2 and rotates integrally with the second input dog gear DI2. GMI2 and a gear mechanism. The electric motor MG includes a stator St fixed to the case, and a rotor Ro that is rotatably supported on the radially inner side of the stator St. The rotating shaft 22 rotates integrally with the rotor Ro. The electric motor MG is electrically connected to the power storage device via an inverter that performs DC / AC conversion. Control device 5 controls the output torque of electric motor MG via an inverter.
 本実施形態では、第一モータ出力ギヤGMO1は、第二モータ出力ギヤGMO2よりも小径とされており、第一モータ入力ギヤGMI1は、第二モータ入力ギヤGMI2よりも大径とされている。そのため、電動モータMGの回転速度が同じでも、第二入力ドグギヤDI2の回転速度は、第一入力ドグギヤDI1の回転速度よりも高くなる。 In the present embodiment, the first motor output gear GMO1 has a smaller diameter than the second motor output gear GMO2, and the first motor input gear GMI1 has a larger diameter than the second motor input gear GMI2. Therefore, even if the rotation speed of the electric motor MG is the same, the rotation speed of the second input dog gear DI2 is higher than the rotation speed of the first input dog gear DI1.
 出力部材Oは、出力ドグギヤDOから軸方向Xの両側に延びた円柱状に形成され、出力ドグギヤDOと一体回転するように連結されている。出力部材Oは、第一モータ入力ギヤGMI1及び第一入力ドグギヤDI1の中心部に形成された軸方向Xに延びる貫通孔、及び第二モータ入力ギヤGMI2及び第二入力ドグギヤDI2の中心部に形成された軸方向Xに延びる貫通孔を貫通し、これらを径方向内側から回転可能に支持している。本例では、出力部材Oは、差動歯車装置を介して左右二つの車輪に連結されている(不図示)。 The output member O is formed in a cylindrical shape extending from the output dog gear DO to both sides in the axial direction X, and is connected to rotate integrally with the output dog gear DO. The output member O is formed in the central portion of the second motor input gear GMI2 and the second input dog gear DI2 and the through hole extending in the axial direction X formed in the central portion of the first motor input gear GMI1 and the first input dog gear DI1. The through-holes extending in the axial direction X are passed through, and these are rotatably supported from the inside in the radial direction. In this example, the output member O is connected to two left and right wheels via a differential gear device (not shown).
 切替部材3の外周面には、径方向内側に窪み、全周に亘って延びるフォーク挿入溝23が設けられている。フォーク挿入溝23の中には、フォーク24が挿入されている。非回転部材であるフォーク24を軸方向Xにスライドさせることにより、回転部材である切替部材3を軸方向Xにスライドさせることができる。フォーク24は、電磁アクチュエータ1の被駆動部8に連結されており、被駆動部8が軸方向Xに移動すると、フォーク24及び切替部材3が軸方向Xに移動する。このようにして、電磁アクチュエータ1の被駆動部8と噛み合い式係合装置2の切替部材3とが連動するように構成されている。そして、被駆動部8は、磁性体コアMBに発生する電磁力により軸方向Xに移動して切替部材3を軸方向Xに移動させる。 A fork insertion groove 23 that is recessed radially inward and extends over the entire circumference is provided on the outer circumferential surface of the switching member 3. A fork 24 is inserted into the fork insertion groove 23. By sliding the fork 24 that is a non-rotating member in the axial direction X, the switching member 3 that is a rotating member can be slid in the axial direction X. The fork 24 is connected to the driven portion 8 of the electromagnetic actuator 1, and when the driven portion 8 moves in the axial direction X, the fork 24 and the switching member 3 move in the axial direction X. In this way, the driven portion 8 of the electromagnetic actuator 1 and the switching member 3 of the meshing engagement device 2 are configured to be interlocked. And the driven part 8 moves to the axial direction X by the electromagnetic force which generate | occur | produces in the magnetic body core MB, and moves the switching member 3 to the axial direction X. FIG.
 電磁アクチュエータ1は、軸方向第一側X1から軸方向Xに沿って(すなわち、軸方向第一側X1から軸方向第二側X2に向かって)、第一磁性体コアMB1、第二磁性体コアMB2、第三磁性体コアMB3の順に配置された3つの磁性体コアMBを備えている。 The electromagnetic actuator 1 includes the first magnetic core MB1 and the second magnetic body along the axial direction X from the first axial side X1 (that is, from the first axial side X1 toward the second axial side X2). Three magnetic cores MB arranged in the order of the core MB2 and the third magnetic core MB3 are provided.
 第一磁性体コアMB1に巻装された第一コイルC1を、第一コア第一コイルC11とし、第一磁性体コアMB1に巻装された第二コイルC2を、第一コア第二コイルC21とし、第二磁性体コアMB2に巻装された第一コイルC1を、第二コア第一コイルC12とし、第二磁性体コアMB2に巻装された第二コイルC2を、第二コア第二コイルC22とし、第三磁性体コアMB3に巻装された第一コイルC1を、第三コア第一コイルC13とし、第三磁性体コアMB3に巻装された第二コイルC2を、第三コア第二コイルC23とする。 The first coil C1 wound around the first magnetic core MB1 is referred to as a first core first coil C11, and the second coil C2 wound around the first magnetic core MB1 is referred to as a first core second coil C21. The first coil C1 wound around the second magnetic core MB2 is designated as the second core first coil C12, and the second coil C2 wound around the second magnetic core MB2 is designated as the second core second. The first coil C1 wound around the third magnetic core MB3 as the coil C22 is used as the third core first coil C13, and the second coil C2 wound around the third magnetic core MB3 as the third core. The second coil is C23.
 図7に示すように、第一コア第一コイルC11に通電するスイッチを、第一コア第一スイッチS11とし、第一コア第二コイルC21に通電するスイッチを、第一コア第二スイッチS21とし、第二コア第一コイルC12に通電するスイッチを、第二コア第一スイッチS12とし、第二コア第二コイルC22に通電するスイッチを、第二コア第二スイッチS22とし、第三コア第一コイルC13に通電するスイッチを、第三コア第一スイッチS13とし、第三コア第二コイルC23に通電するスイッチを、第三コア第二スイッチS23とする。 As shown in FIG. 7, the switch energized to the first core first coil C11 is a first core first switch S11, and the switch energized to the first core second coil C21 is a first core second switch S21. The switch energizing the second core first coil C12 is a second core first switch S12, the switch energizing the second core second coil C22 is a second core second switch S22, and the third core first switch The switch that energizes the coil C13 is referred to as a third core first switch S13, and the switch that energizes the third core second coil C23 is referred to as a third core second switch S23.
 第二磁性体コアMB2は、図3に示すように、被駆動部8の軸方向Xの中央部が当該第二磁性体コアMB2の軸方向Xの中央部に対向する位置にある場合(以下、単に中央位置と称す)に、切替部材3が出力ドグギヤDOにのみ噛み合うような軸方向Xの位置に配置されている。この場合は、切替部材3は、出力ドグギヤDOにのみ噛み合い、第一及び第二入力ドグギヤDI1、DI2のいずれとも噛み合っておらず、噛み合い式係合装置2は、電動モータMGの駆動力が出力部材Oに伝達されないニュートラル状態となる。 As shown in FIG. 3, the second magnetic core MB2 has a central portion in the axial direction X of the driven portion 8 at a position facing the central portion in the axial direction X of the second magnetic core MB2 (hereinafter referred to as “the second magnetic core MB2”). The switching member 3 is disposed at a position in the axial direction X so as to mesh only with the output dog gear DO. In this case, the switching member 3 meshes only with the output dog gear DO and does not mesh with any of the first and second input dog gears DI1 and DI2, and the meshing engagement device 2 outputs the driving force of the electric motor MG. The neutral state is not transmitted to the member O.
 図2に示すように、被駆動部8が、中央位置よりも軸方向第一側X1に移動し、被駆動部8が少なくとも第一磁性体コアMB1に対向する位置にある場合(以下、単に第一側位置と称す)に、切替部材3が、出力ドグギヤDO及び第一入力ドグギヤDI1に噛み合うような軸方向Xの位置に配置される。この場合は、噛み合い式係合装置2は、電動モータMGの駆動力を、第一駆動連結機構20、第一入力ドグギヤDI1、切替部材3、及び出力ドグギヤDOを介して出力部材Oに伝達する第一変速段が形成された状態となる。 As shown in FIG. 2, when the driven portion 8 moves to the first axial side X1 from the central position, and the driven portion 8 is at least at a position facing the first magnetic core MB1 (hereinafter simply referred to as “the driven portion 8”). The switching member 3 is disposed at a position in the axial direction X so as to mesh with the output dog gear DO and the first input dog gear DI1. In this case, the meshing engagement device 2 transmits the driving force of the electric motor MG to the output member O via the first drive coupling mechanism 20, the first input dog gear DI1, the switching member 3, and the output dog gear DO. The first shift speed is established.
 図4に示すように、被駆動部8が、中央位置よりも軸方向第二側X2に移動し、被駆動部8が少なくとも第三磁性体コアMB3に対向する位置にある場合(以下、単に第二側位置と称す)に、切替部材3が、出力ドグギヤDO及び第二入力ドグギヤDI2に噛み合うような軸方向Xの位置に配置される。この場合は、噛み合い式係合装置2は、電動モータMGの駆動力を、第二駆動連結機構21、第二入力ドグギヤDI2、切替部材3、及び出力ドグギヤDOを介して出力部材Oに伝達する第二変速段が形成された状態となる。 As shown in FIG. 4, when the driven portion 8 moves to the second axial side X2 from the center position, and the driven portion 8 is at least at a position facing the third magnetic core MB3 (hereinafter simply referred to as “the driven portion 8”). The switching member 3 is disposed at a position in the axial direction X so as to mesh with the output dog gear DO and the second input dog gear DI2. In this case, the meshing engagement device 2 transmits the driving force of the electric motor MG to the output member O via the second drive coupling mechanism 21, the second input dog gear DI2, the switching member 3, and the output dog gear DO. A state in which the second shift speed is formed is obtained.
 制御装置5は、図2に示すように、被駆動部8を第一側位置に位置させ、第一変速段を形成する場合は、図8に示すように、第一コア第一スイッチS11をオンにし、第一磁性体コアMB1に巻装された第一コイルC1である第一コア第一コイルC11に通電し、被駆動部8を第一磁性体コアMB1に吸引させる。
 制御装置5は、図3に示すように、被駆動部8を中央位置に位置させ、ニュートラル状態にする場合は、図8に示すように、第二コア第一スイッチS12をオンにし、第二磁性体コアMB2に巻装された第一コイルC1である第二コア第一コイルC12に通電し、被駆動部8を第二磁性体コアMB2に吸引させる。
 制御装置5は、図4に示すように、被駆動部8を第二側位置に位置させ、第二変速段を形成する場合は、図8に示すように、第三コア第一スイッチS13をオンにし、第三磁性体コアMB3に巻装された第一コイルC1である第三コア第一コイルC13に通電し、被駆動部8を第三磁性体コアMB3に吸引させる。
As shown in FIG. 2, when the driven unit 8 is positioned at the first side position and the first shift stage is formed, the control device 5 sets the first core first switch S <b> 11 as shown in FIG. 8. The first core first coil C11 that is the first coil C1 wound around the first magnetic core MB1 is energized, and the driven part 8 is attracted to the first magnetic core MB1.
As shown in FIG. 3, when the driven unit 8 is positioned at the center position and is in the neutral state, the control device 5 turns on the second core first switch S12 as shown in FIG. The second core first coil C12, which is the first coil C1 wound around the magnetic core MB2, is energized, and the driven part 8 is attracted to the second magnetic core MB2.
As shown in FIG. 4, when the driven unit 8 is positioned at the second side position and the second shift stage is formed, the control device 5 sets the third core first switch S13 as shown in FIG. 8. The third core first coil C13 that is the first coil C1 wound around the third magnetic core MB3 is energized, and the driven part 8 is attracted to the third magnetic core MB3.
 本実施形態では、制御装置5は、被駆動部8を第一側位置から中央位置に移動させる場合は、図8に示すように、第二コア第一スイッチS12をオンにし、第二磁性体コアMB2に巻装された第一コイルC1である第二コア第一コイルC12に通電し、被駆動部8を第二磁性体コアMB2に吸引させると共に、第一コア第二スイッチS21をオンにし、第一磁性体コアMB1に巻装された第二コイルC2である第一コア第二コイルC21に通電し、被駆動部8を第一磁性体コアMB1から反発させる。
 反対に、制御装置5は、被駆動部8を中央位置から第一側位置に移動させる場合は、第一コア第一スイッチS11をオンにし、第一磁性体コアMB1に巻装された第一コイルC1である第一コア第一コイルC11に通電し、被駆動部8を第一磁性体コアMB1に吸引させると共に、第二コア第二スイッチS22をオンにし、第二磁性体コアMB2に巻装された第二コイルC2である第二コア第二コイルC22に通電し、被駆動部8を第二磁性体コアMB2から反発させる。
In this embodiment, when moving the driven part 8 from the first side position to the center position, the control device 5 turns on the second core first switch S12 as shown in FIG. The second core first coil C12, which is the first coil C1 wound around the core MB2, is energized to attract the driven part 8 to the second magnetic core MB2, and the first core second switch S21 is turned on. The first core second coil C21, which is the second coil C2 wound around the first magnetic core MB1, is energized to repel the driven part 8 from the first magnetic core MB1.
On the other hand, when moving the driven unit 8 from the center position to the first side position, the control device 5 turns on the first core first switch S11 and turns the first core wound around the first magnetic core MB1. The first core first coil C11, which is the coil C1, is energized, the driven part 8 is attracted to the first magnetic core MB1, the second core second switch S22 is turned on, and the second magnetic core MB2 is wound. The second core second coil C22, which is the second coil C2 mounted, is energized to repel the driven part 8 from the second magnetic core MB2.
 制御装置5は、被駆動部8を第二側位置から中央位置に移動させる場合は、第二コア第一スイッチS12をオンにし、第二磁性体コアMB2に巻装された第一コイルC1である第二コア第一コイルC12に通電し、被駆動部8を第二磁性体コアMB2に吸引させると共に、第三コア第二スイッチS23をオンにし、第三磁性体コアMB3に巻装された第二コイルC2である第三コア第二コイルC23に通電し、被駆動部8を第三磁性体コアMB3から反発させる。
 反対に、制御装置5は、被駆動部8を中央位置から第二側位置に移動させる場合は、第三コア第一スイッチS13をオンにし、第三磁性体コアMB3に巻装された第一コイルC1である第三コア第一コイルC13に通電し、被駆動部8を第三磁性体コアMB3に吸引させると共に、第二コア第二スイッチS22をオンにし、第二磁性体コアMB2に巻装された第二コイルC2である第二コア第二コイルC22に通電し、被駆動部8を第二磁性体コアMB2から反発させる。
When the driven device 8 is moved from the second side position to the center position, the control device 5 turns on the second core first switch S12 and uses the first coil C1 wound around the second magnetic core MB2. The second core first coil C12 is energized to attract the driven part 8 to the second magnetic core MB2, and the third core second switch S23 is turned on to be wound around the third magnetic core MB3. The third core second coil C23, which is the second coil C2, is energized, and the driven portion 8 is repelled from the third magnetic core MB3.
On the other hand, when moving the driven unit 8 from the central position to the second position, the control device 5 turns on the third core first switch S13 and turns the first core wound around the third magnetic core MB3. The third core first coil C13, which is the coil C1, is energized, the driven part 8 is attracted to the third magnetic core MB3, the second core second switch S22 is turned on, and the second magnetic core MB2 is wound. The second core second coil C22, which is the second coil C2 mounted, is energized to repel the driven part 8 from the second magnetic core MB2.
 このような吸引又は反発による被駆動部8の動作を良好に実現するため、軸方向Xに隣り合う二つの磁性体コアMBにおける、軸方向第一側X1に配置された磁性体コアMBの軸方向第一側X1の端面と、軸方向第二側X2に配置された磁性体コアMBの軸方向第二側X2の端面との間隔W1よりも、被駆動部8の軸方向Xの幅W0が短くされている(図11参照)。 In order to satisfactorily realize the operation of the driven portion 8 by such suction or repulsion, the axis of the magnetic core MB disposed on the first axial side X1 in the two magnetic cores MB adjacent in the axial direction X The width W0 in the axial direction X of the driven portion 8 is larger than the interval W1 between the end surface on the first direction side X1 and the end surface on the second axial direction side X2 of the magnetic core MB disposed on the second axial side X2. Is shortened (see FIG. 11).
 本実施形態では、図9に示すように、軸方向Xに隣り合う二つの磁性体コアMBにおける、軸方向第一側X1に配置された磁性体コアMBの軸方向第一側X1の端面と、軸方向第二側X2に配置された磁性体コアMBの軸方向第一側X1の端面との間隔W2よりも、被駆動部8の軸方向Xの幅W0が短くされている。同様に、軸方向Xに隣り合う二つの磁性体コアMBにおける、軸方向第一側X1に配置された磁性体コアMBの軸方向第二側X2の端面と、軸方向第二側X2に配置された磁性体コアMBの軸方向第二側X2の端面との間隔(不図示)よりも、被駆動部8の軸方向Xの幅W0が短くされている。 In the present embodiment, as shown in FIG. 9, in the two magnetic cores MB adjacent to each other in the axial direction X, the end surface on the first axial side X1 of the magnetic core MB disposed on the first axial side X1 The width W0 of the driven portion 8 in the axial direction X is shorter than the interval W2 between the magnetic core MB disposed on the second axial side X2 and the end surface on the first axial side X1. Similarly, in the two magnetic cores MB adjacent to each other in the axial direction X, the end surface on the second axial side X2 of the magnetic core MB disposed on the first axial side X1 and the second axial side X2 are disposed. The width W0 in the axial direction X of the driven portion 8 is shorter than the distance (not shown) from the end surface on the second axial side X2 of the magnetic core MB.
 被駆動部8及び複数の磁性体コアMBは、第一及び第二入力ドグギヤDI1、DI2、出力ドグギヤDO、及び切替部材3の径方向外側の空間に配置されている。フォーク24は、切替部材3から径方向外側に延びており、フォーク24の径方向外側の端部に、被駆動部8が一体的に連結されている。複数の磁性体コアMBは、被駆動部8の径方向外側に配置されている。本例では、一対の磁極形成部13、14が延びる方向である磁極延出方向Zは、噛み合い式係合装置2の径方向に沿った方向とされており、磁極延出方向第一側Z1は、径方向内側に向かう側とされ、磁極延出方向第二側Z2は、径方向外側に向かう側とされている。一対の磁極9、10が並べられる方向である磁極配置方向Yは、噛み合い式係合装置2の周方向に沿った方向とされている。 The driven portion 8 and the plurality of magnetic cores MB are disposed in a space radially outside the first and second input dog gears DI1, DI2, the output dog gear DO, and the switching member 3. The fork 24 extends radially outward from the switching member 3, and the driven portion 8 is integrally connected to the radially outer end of the fork 24. The plurality of magnetic cores MB are disposed on the radially outer side of the driven part 8. In this example, the magnetic pole extending direction Z, which is the direction in which the pair of magnetic pole forming portions 13, 14 extends, is the direction along the radial direction of the meshing engagement device 2, and the magnetic pole extending direction first side Z1. Is a side toward the radially inner side, and the magnetic pole extending direction second side Z2 is a side toward the radially outer side. A magnetic pole arrangement direction Y, which is a direction in which the pair of magnetic poles 9 and 10 are arranged, is a direction along the circumferential direction of the meshing engagement device 2.
<変速制御>
 制御装置5は、コイルCへの通電を制御することにより、被駆動部8に連動する切替部材3を軸方向Xに移動させて、切替部材3が入力ドグギヤ(本例では、第一入力ドグギヤDI1又は第二入力ドグギヤDI2)及び出力ドグギヤDOの双方に噛み合う係合状態から、切替部材3が入力ドグギヤ及び出力ドグギヤDOのいずれか一方に噛み合う解除状態に移行させる解除制御を実行可能に構成されている。
 また、制御装置5は、コイルCへの通電を制御することにより、被駆動部8に連動する切替部材3を軸方向Xに移動させて、切替部材3が入力ドグギヤ及び出力ドグギヤDOのいずれか一方に噛み合う解除状態から、切替部材3が入力ドグギヤ及び出力ドグギヤDOの双方に噛み合う係合状態に移行させる係合制御を実行可能に構成されている。
<Shift control>
The control device 5 controls the energization to the coil C to move the switching member 3 interlocked with the driven portion 8 in the axial direction X, so that the switching member 3 is the input dog gear (in this example, the first input dog gear). DI1 or the second input dog gear DI2) and the output dog gear DO are engaged, and the release control is executed so that the switching member 3 shifts to a release state in which the switching member 3 meshes with either the input dog gear or the output dog gear DO. ing.
Further, the control device 5 controls the energization to the coil C to move the switching member 3 interlocked with the driven portion 8 in the axial direction X, so that the switching member 3 is one of the input dog gear and the output dog gear DO. It is configured to be able to execute an engagement control in which the switching member 3 shifts to an engagement state in which both of the input dog gear and the output dog gear DO are engaged from the release state in which the mesh is engaged.
 制御装置5は、解除制御を行った後、電動モータMGの回転速度を増加又は減少させるように電動モータMGの出力トルクを制御する回転速度変化制御を行い、当該回転速度変化制御により電動モータMGの出力トルクが予め定めた判定変化量以上に増加又は減少した場合に、異常時用第一制御を実行するように構成されている。本実施形態では、制御装置5は、異常時用第一制御として再び解除制御を行うように構成されている。
 なお、制御装置5は、電動モータMGの回転軸22や出力部材Oなどの各回転部材の回転速度を検出する回転速度センサから回転速度情報を得る。
After performing the release control, the control device 5 performs rotation speed change control for controlling the output torque of the electric motor MG so as to increase or decrease the rotation speed of the electric motor MG, and the electric motor MG is controlled by the rotation speed change control. When the output torque increases or decreases more than a predetermined determination change amount, the abnormality first control is executed. In the present embodiment, the control device 5 is configured to perform release control again as the first control for abnormality.
The control device 5 obtains rotation speed information from a rotation speed sensor that detects the rotation speed of each rotation member such as the rotation shaft 22 and the output member O of the electric motor MG.
 制御装置5は、係合制御を行った後、電動モータMGの出力トルクを制御するトルク制御を行い、トルク制御の開始後、入力ドグギヤの回転速度と出力ドグギヤDOの回転速度とが一致していない場合に、異常時用第二制御を実行するように構成されている。本実施形態では、制御装置5は、異常時用第二制御として再び係合制御を行うように構成されている。 The control device 5 performs the torque control for controlling the output torque of the electric motor MG after performing the engagement control, and after the torque control is started, the rotational speed of the input dog gear and the rotational speed of the output dog gear DO coincide with each other. If not, the second control for abnormality is executed. In the present embodiment, the control device 5 is configured to perform the engagement control again as the abnormal second control.
 本実施形態では、制御装置5は、第一入力ドグギヤDI1及び第二入力ドグギヤDI2の一方を変速前ドグギヤとし、第一入力ドグギヤDI1及び第二入力ドグギヤDI2の他方を変速後ドグギヤとし、コイルCへの通電を制御することにより、被駆動部8に連動する切替部材3を軸方向Xに移動させて、切替部材3が変速前ドグギヤ及び出力ドグギヤDOに噛み合う変速前変速状態から、切替部材3が出力ドグギヤDOにのみ噛み合うニュートラル状態に移行させるニュートラル移行制御を行った後、ニュートラル状態から、切替部材3が変速後ドグギヤ及び出力ドグギヤDOに噛み合う変速後変速状態に移行させる変速後係合制御を行う変速制御を実行可能に構成されている。 In the present embodiment, the control device 5 uses one of the first input dog gear DI1 and the second input dog gear DI2 as the pre-shift dog gear, the other of the first input dog gear DI1 and the second input dog gear DI2 as the post-shift dog gear, and the coil C By controlling the energization of the switch member 3, the switching member 3 interlocked with the driven portion 8 is moved in the axial direction X, and the switching member 3 is moved from the pre-shifting shift state where the switching member 3 meshes with the pre-shifting dog gear and the output dog gear DO After performing the neutral shift control for shifting to the neutral state that meshes only with the output dog gear DO, the post-shift engagement control for shifting the shift member 3 from the neutral state to the post-shift gear state that meshes with the post-shift dog gear and the output dog gear DO. The shift control to be performed is configured to be executable.
 制御装置5は、ニュートラル移行制御を行った後、電動モータMGに駆動連結された変速後ドグギヤの回転速度が出力ドグギヤDOの回転速度に近づくように、電動モータMGの出力トルクを制御する回転速度変化制御を行い、当該回転速度変化制御により電動モータMGの出力トルクが予め定めた判定変化量以上に増加又は減少した場合に、異常時用第三制御を実行するように構成されている。本実施形態では、制御装置5は、異常時用第三制御として再びニュートラル移行制御を行うように構成されている。なお、異常時用第三制御は、上記異常時用第一制御の一態様である。また、回転速度変化制御として、変速後ドグギヤの回転速度と出力ドグギヤDOの回転速度との偏差に基づく比例積分制御などにより、電動モータMGの出力トルクを変化させるフィードバック制御を行うように構成されている。 The control device 5 performs the neutral shift control and then controls the output torque of the electric motor MG so that the rotation speed of the post-shift dog gear that is drivingly connected to the electric motor MG approaches the rotation speed of the output dog gear DO. The change control is performed, and when the output torque of the electric motor MG increases or decreases more than a predetermined determination change amount by the rotation speed change control, the abnormality third control is executed. In the present embodiment, the control device 5 is configured to perform the neutral shift control again as the abnormal third control. The abnormal third control is an aspect of the abnormal first control. Further, as the rotational speed change control, feedback control is performed to change the output torque of the electric motor MG by proportional-integral control based on the deviation between the rotational speed of the post-shift dog gear and the rotational speed of the output dog gear DO. Yes.
 変速前ドグギヤの回転速度が出力ドグギヤDOの回転速度に一致している変速前変速状態からニュートラル状態に移行させた後、変速後変速状態に移行させるために、変速後ドグギヤの回転速度を出力ドグギヤDOの回転速度に近づける回転速度変化制御を実行する。しかし、ニュートラル移行制御を実行したにもかかわらず、何らかの要因により、切替部材3が出力ドグギヤDOにのみ噛み合った状態に移行せず、変速前ドグギヤ及び出力ドグギヤDOに噛み合ったままの状態になる異常状態が発生する場合がある。この異常状態で、変速後ドグギヤの回転速度を出力ドグギヤDOの回転速度に近づける回転速度変化制御を行うと、電動モータMGの出力トルクを増加又は減少させても、変速後ドグギヤの回転速度が出力ドグギヤDOの回転速度に近づかないため、電動モータMGの出力トルクの増加量又は減少量が大きくなる。上記の構成によれば、回転速度変化制御により電動モータMGの出力トルクが予め定めた判定変化量以上に増加又は減少した場合に、異常状態を検出することができ、異常時用第三制御を実行することができる。よって、変速前変速状態からニュートラル状態に移行させた後、変速後変速状態に移行させるために実行する回転速度変化制御を利用して、変速前変速状態からニュートラル状態に移行しているか否かを判定することができる。 After shifting from the pre-shifting shift state where the rotational speed of the pre-shift dog gear matches the rotational speed of the output dog gear DO to the neutral state, the rotational speed of the post-shift dog gear is set to the output dog gear. Rotational speed change control that approximates the rotational speed of DO is executed. However, despite the execution of the neutral shift control, due to some reason, the switching member 3 does not shift to the state engaged only with the output dog gear DO, but remains in an engaged state with the pre-shifting dog gear and the output dog gear DO. A condition may occur. In this abnormal state, when the rotational speed change control is performed so that the rotational speed of the post-shift dog gear approaches the rotational speed of the output dog gear DO, the rotational speed of the post-shift dog gear is output even if the output torque of the electric motor MG is increased or decreased. Since it does not approach the rotational speed of the dog gear DO, the amount of increase or decrease in the output torque of the electric motor MG increases. According to the above configuration, when the output torque of the electric motor MG increases or decreases by a rotational speed change control to a value greater than or equal to a predetermined determination change amount, an abnormal state can be detected, and the abnormal third control is performed. Can be executed. Therefore, after changing from the pre-shifting shift state to the neutral state, using the rotational speed change control executed to shift to the post-shifting shift state, it is determined whether or not the shift state from the pre-shifting shift state to the neutral state. Can be determined.
 また、制御装置5は、変速後係合制御を行った後、回転速度変化制御を終了して電動モータMGの出力トルクを制御するトルク制御を行い、トルク制御の開始後、変速後ドグギヤの回転速度が出力ドグギヤDOの回転速度に一致していない場合に、異常時用第四制御を実行するように構成されている。本実施形態では、制御装置5は、異常時用第四制御として再び変速後係合制御を行うように構成されている。なお、異常時用第四制御は、上記異常時用第二制御の一態様である。 Further, after performing the engagement control after the shift, the control device 5 ends the rotation speed change control and performs the torque control for controlling the output torque of the electric motor MG. After starting the torque control, the rotation of the dog gear after the shift is performed. When the speed does not match the rotational speed of the output dog gear DO, the fourth control for abnormal time is configured to be executed. In the present embodiment, the control device 5 is configured to perform the post-shift engagement control again as the abnormal fourth control. The fourth control for abnormal time is an aspect of the second control for abnormal time.
 変速後係合制御により切替部材3が変速後ドグギヤ及び出力ドグギヤDOに噛み合う変速後変速状態に移行させた後、トルク制御を実行し、出力部材Oに電動モータMGの出力トルクを伝達させる。ここで、トルク制御は、例えば、車両のアクセル開度などに応じて設定される目標トルクに、電動モータMGの出力トルクを近づける制御である。しかし、変速後係合制御を実行したにもかかわらず、何らかの要因により、切替部材3が変速後ドグギヤ及び出力ドグギヤDOに噛み合う状態に移行せず、出力ドグギヤDOにのみ噛み合ったままの状態になる異常状態が発生する場合がある。この異常状態で、トルク制御を実行し、電動モータMGの出力トルクを増加又は減少させると、出力ドグギヤDOの回転速度に対して、変速後ドグギヤの回転速度が増加又は減少する。上記の構成によれば、トルク制御の開始後、変速後ドグギヤの回転速度が出力ドグギヤDOの回転速度に一致していない場合に、異常状態を検出することができ、異常時用第四制御を実行することができる。よって、ニュートラル状態から変速後変速状態に移行させた後、出力部材Oに電動モータMGの出力トルクを伝達させるために実行するトルク制御を利用して、ニュートラル状態から変速後変速状態に移行しているか否かを判定することができる。 After the shift member 3 is shifted to the post-shifting shift state in which the switching member 3 meshes with the post-shift dog gear and the output dog gear DO by the post-shift engagement control, torque control is executed, and the output torque of the electric motor MG is transmitted to the output member O. Here, torque control is control which makes the output torque of the electric motor MG approach the target torque set according to the accelerator opening degree of a vehicle, etc., for example. However, although the post-shift engagement control is executed, for some reason, the switching member 3 does not shift to a state where it engages with the post-shift dog gear and the output dog gear DO, but remains engaged only with the output dog gear DO. Abnormal conditions may occur. When torque control is executed in this abnormal state to increase or decrease the output torque of the electric motor MG, the rotation speed of the post-shift dog gear increases or decreases with respect to the rotation speed of the output dog gear DO. According to the above configuration, after the torque control is started, the abnormal state can be detected when the rotational speed of the post-shift dog gear does not match the rotational speed of the output dog gear DO, and the abnormal fourth control is performed. Can be executed. Therefore, after shifting from the neutral state to the post-shifting shift state, using the torque control executed to transmit the output torque of the electric motor MG to the output member O, the neutral state is shifted to the post-shifting shift state. It can be determined whether or not.
 次に、図10に示すフローチャートを用いて変速制御をより詳細に説明する。
 まず、制御装置5は、変速制御を開始すると判定した場合(ステップ♯01:Yes)に、変速前ドグギヤの回転速度を出力ドグギヤDOの回転速度に同期させる回転速度同期制御を開始する(ステップ♯02)。制御装置5は、変速制御を開始する前に、出力部材Oに伝達する電動モータMGの出力トルクを制御するトルク制御を行っていた場合は、トルク制御を中止し、回転速度同期制御を開始する。回転速度同期制御を実行すると、切替部材3を介して変速前ドグギヤから出力ドグギヤDOに伝達されるトルクが低下するため、切替部材3と、変速前ドグギヤ及び出力ドグギヤDOとの間の摩擦力が減少し、切替部材3を軸方向Xに移動させ易くなる。
Next, the shift control will be described in more detail using the flowchart shown in FIG.
First, when it is determined that the shift control is to be started (step # 01: Yes), the control device 5 starts the rotation speed synchronization control for synchronizing the rotation speed of the pre-shift dog gear with the rotation speed of the output dog gear DO (step #). 02). If the control device 5 has performed torque control for controlling the output torque of the electric motor MG transmitted to the output member O before starting the shift control, the control device 5 stops the torque control and starts the rotational speed synchronization control. . When the rotation speed synchronization control is executed, the torque transmitted from the pre-shifting dog gear to the output dog gear DO via the switching member 3 decreases, so that the frictional force between the switching member 3 and the pre-shifting dog gear and the output dog gear DO is reduced. This makes it easier to move the switching member 3 in the axial direction X.
 制御装置5は、回転速度同期制御の開始後、コイルCへの通電を制御することにより、被駆動部8に連動する切替部材3を軸方向Xに移動させて、切替部材3が変速前ドグギヤ及び出力ドグギヤDOに噛み合う変速前変速状態から、切替部材3が出力ドグギヤDOにのみ噛み合うニュートラル状態に移行させるニュートラル移行制御を実行する(ステップ♯03)。 The control device 5 controls the energization to the coil C after the start of the rotational speed synchronization control, thereby moving the switching member 3 interlocked with the driven portion 8 in the axial direction X, so that the switching member 3 is a dog gear before shifting. Then, the neutral shift control is executed in which the switching member 3 shifts to the neutral state in which only the output dog gear DO meshes with the shift state before the gear meshing with the output dog gear DO (step # 03).
 制御装置5は、ニュートラル移行制御を行った後、電動モータMGに駆動連結された変速後ドグギヤの回転速度が出力ドグギヤDOの回転速度に近づくように、電動モータMGの出力トルクを制御する回転速度変化制御を開始する(ステップ♯04)。
 制御装置5は、回転速度変化制御により電動モータMGの出力トルクが予め定めた判定変化量以上に増加又は減少した場合(ステップ♯05:Yes)に、ニュートラル状態に移行していないと判定し、異常時用第三制御を実行する。本実施形態では、制御装置5は、ステップ♯02に戻り、再び、回転速度同期制御を行い、ニュートラル移行制御を行うように構成されている。
The control device 5 performs the neutral shift control and then controls the output torque of the electric motor MG so that the rotation speed of the post-shift dog gear that is drivingly connected to the electric motor MG approaches the rotation speed of the output dog gear DO. Change control is started (step # 04).
When the output torque of the electric motor MG increases or decreases by a rotational speed change control to be greater than or equal to a predetermined determination change amount (step # 05: Yes), the control device 5 determines that the neutral state has not been reached, The third control for abnormal time is executed. In the present embodiment, the control device 5 is configured to return to step # 02, perform rotational speed synchronization control again, and perform neutral shift control.
 一方、ニュートラル状態に移行している場合は、回転速度変化制御により、変速後ドグギヤの回転速度が出力ドグギヤDOの回転速度に近づいていく。制御装置5は、変速後ドグギヤの回転速度が出力ドグギヤDOの回転速度に同期(一致)した場合(ステップ♯06:Yes)に、ニュートラル状態から、切替部材3が変速後ドグギヤ及び出力ドグギヤDOに噛み合う変速後変速状態に移行させる変速後係合制御を実行する(ステップ♯07)。 On the other hand, when shifting to the neutral state, the rotational speed of the post-shift dog gear approaches the rotational speed of the output dog gear DO by the rotational speed change control. When the rotational speed of the post-shift dog gear is synchronized (matched) with the rotational speed of the output dog gear DO (step # 06: Yes), the control device 5 switches the switching member 3 from the neutral state to the post-shift dog gear and the output dog gear DO. Post-shift engagement control for shifting to the meshed post-shift state is executed (step # 07).
 制御装置5は、変速後係合制御の実行後、回転速度変化制御を終了して、出力部材Oに伝達する電動モータMGの出力トルクを制御するトルク制御を開始する(ステップ♯08)。制御装置5は、トルク制御の開始後、変速後ドグギヤの回転速度が出力ドグギヤDOの回転速度に一致していない場合(ステップ♯09:No)に、変速後変速状態に移行していないと判定し、異常時用第四制御を実行するように構成されている。本実施形態では、制御装置5は、ステップ♯04に戻り、再び、回転速度変化制御を行って、変速後係合制御を行うように構成されている。 The control device 5 ends the rotation speed change control after the execution of the post-shift engagement control, and starts torque control for controlling the output torque of the electric motor MG transmitted to the output member O (step # 08). After starting torque control, control device 5 determines that the shift to the post-shift state has not been made if the rotational speed of the post-shift dog gear does not match the rotational speed of output dog gear DO (step # 09: No). However, it is configured to execute the abnormality fourth control. In the present embodiment, the control device 5 is configured to return to step # 04 and perform the rotation speed change control again to perform post-shift engagement control.
 一方、変速後変速状態に移行している場合は、トルク制御を行っても、変速後ドグギヤの回転速度は出力ドグギヤDOの回転速度に一致した状態に保たれる。制御装置5は、トルク制御の開始後、変速後ドグギヤの回転速度が出力ドグギヤDOの回転速度に同期(一致)したままである場合(ステップ♯09:Yes)に、変速後変速状態に移行したと判定し、変速制御を終了する。 On the other hand, in the case of shifting to the post-shifting shift state, the rotational speed of the post-shifting dog gear is kept in agreement with the rotational speed of the output dog gear DO even if torque control is performed. After the torque control is started, the control device 5 shifts to the post-shifting shift state when the rotational speed of the post-shifting dog gear remains synchronized (matched) with the rotational speed of the output dog gear DO (step # 09: Yes). And shift control is terminated.
2.第二の実施形態
 次に、電磁アクチュエータ1の第二の実施形態について、図11を用いて説明する。本実施形態の構成は、磁性体コアMB及び被駆動部8の形状が、上記第一の実施形態とは異なる。以下では、上記第一の実施形態との相違点を中心として説明する。特に説明しない点については、上記第一の実施形態と同様とすることができる。
2. Second Embodiment Next, a second embodiment of the electromagnetic actuator 1 will be described with reference to FIG. In the configuration of the present embodiment, the shapes of the magnetic core MB and the driven portion 8 are different from those of the first embodiment. Below, it demonstrates centering around difference with said 1st embodiment. Points that are not particularly described can be the same as those in the first embodiment.
 図11に示す例では、磁極配置方向Yは、軸方向X(駆動方向)に直交している。磁性体コアMBのそれぞれは、軸方向X及び磁極配置方向Yに直交する磁極延出方向Zに延びる一対の磁極形成部13、14と、磁極配置方向Yに延びて一対の磁極形成部13、14を連結する磁極連結部15と、を有している。そして、一対の磁極形成部13、14の互いに対向する面のそれぞれが、磁極9、10とされている。被駆動部8は、磁極配置方向Yに延びる対向部形成部19を有している。そして、対向部形成部19における磁極配置方向Yの両端部が、対向部11、12とされている。 In the example shown in FIG. 11, the magnetic pole arrangement direction Y is orthogonal to the axial direction X (drive direction). Each of the magnetic cores MB includes a pair of magnetic pole forming portions 13 and 14 extending in the magnetic pole extending direction Z orthogonal to the axial direction X and the magnetic pole arranging direction Y, and a pair of magnetic pole forming portions 13 extending in the magnetic pole arranging direction Y, And a magnetic pole connecting portion 15 for connecting the two. The surfaces of the pair of magnetic pole forming portions 13 and 14 facing each other are the magnetic poles 9 and 10, respectively. The driven part 8 has a facing part forming part 19 extending in the magnetic pole arrangement direction Y. Then, both end portions in the magnetic pole arrangement direction Y in the facing portion forming portion 19 are facing portions 11 and 12.
 磁極連結部15は、一対の磁極形成部13、14のそれぞれにおける磁極延出方向第二側Z2の端部を連結させている。従って、磁性体コアMBは、磁極延出方向第一側Z1に開口する角張ったU字状に形成されている。一対の磁極形成部13、14のそれぞれには、コイルCが巻装されている。磁極配置方向第一側Y1の磁極形成部13には第一コイルC1が巻装され、磁極配置方向第二側Y2の磁極形成部14には第二コイルC2が巻装されている。 The magnetic pole connecting portion 15 connects the end portions of the pair of magnetic pole forming portions 13 and 14 on the second side Z2 in the magnetic pole extending direction. Therefore, the magnetic core MB is formed in an angular U-shape that opens to the first side Z1 in the magnetic pole extending direction. A coil C is wound around each of the pair of magnetic pole forming portions 13 and 14. The first coil C1 is wound around the magnetic pole forming portion 13 on the first side Y1 in the magnetic pole arrangement direction, and the second coil C2 is wound around the magnetic pole forming portion 14 on the second side Y2 in the magnetic pole arrangement direction.
 本実施形態では、磁極延出方向Zに延びる一対の磁極形成部13、14が、磁極配置方向Yに並んで配置されている。従って、一対の磁極形成部13、14の互いに対向する面は、磁極配置方向Yに向かって互いに対向する面である。ここでは、一対の磁極形成部13、14のそれぞれにコイルC1、C2が巻装されている。そのため、一対の磁極形成部13、14の互いに対向する面における、コイルC1、C2が巻装されている部分よりも磁極延出方向第一側Z1の部分(以下「対向面対象部分」という)が、被駆動部8の対向部11、12に対向する部分とされており、この対向面対象部分が、磁極9、10とされている。図示の例では、一対の磁極形成部13、14のそれぞれにおける対向面対象部分に、磁極配置方向Yに向かって互いに近づく側に突出する突出部が形成されており、各突出部に磁極9、10が形成されている。なお、このような突出部を備えず、一対の磁極形成部13、14の互いに対向する面が、磁極形成部13、14における磁極延出方向Zの全体にわたって均一な平面とされていてもよい。この場合にも、一対の磁極形成部13、14の対向面対象部分が、磁極9、10とされると好適である。 In this embodiment, a pair of magnetic pole forming portions 13 and 14 extending in the magnetic pole extending direction Z are arranged side by side in the magnetic pole arrangement direction Y. Accordingly, the surfaces of the pair of magnetic pole forming portions 13 and 14 that face each other are surfaces that face each other in the magnetic pole arrangement direction Y. Here, coils C1 and C2 are wound around the pair of magnetic pole forming portions 13 and 14, respectively. Therefore, the portion on the first side Z1 in the magnetic pole extending direction from the portion where the coils C1 and C2 are wound on the mutually opposing surfaces of the pair of magnetic pole forming portions 13 and 14 (hereinafter referred to as “opposing surface target portion”). However, it is a part which opposes the opposing parts 11 and 12 of the to-be-driven part 8, and this opposing surface object part is made into the magnetic poles 9 and 10. FIG. In the example shown in the figure, projecting portions that protrude toward the magnetic pole arrangement direction Y are formed on the opposing surface target portions of each of the pair of magnetic pole forming portions 13 and 14, and the magnetic pole 9, 10 is formed. In addition, it is not provided with such a protrusion part, but the mutually opposing surface of a pair of magnetic pole formation parts 13 and 14 may be made into a uniform plane over the whole magnetic pole extension direction Z in the magnetic pole formation parts 13 and 14. . Also in this case, it is preferable that the opposing surface target portions of the pair of magnetic pole forming portions 13 and 14 are the magnetic poles 9 and 10.
 本実施形態では、被駆動部8は、直線的な棒状に形成されている。より詳しくは、図示の例では、被駆動部8は磁極配置方向Yに平行な母線を有する柱状(例えば円柱状や四角柱状など)に形成されている。そして、被駆動部8における磁極配置方向Yの両端部が、対向部11、12とされている。上記のとおり、被駆動部8は、一対の磁極形成部13、14の対向面対象部分に対して、一対の対向部11、12がそれぞれ対向するように配置されている。これにより、被駆動部8は、一対の磁極形成部13、14の磁極延出方向第一側Z1の先端部付近において、一対の磁極形成部13、14の磁極配置方向Yの間に挟まれて配置されている。て、本実施形態では、磁性体コアMB及び被駆動部8は、全体として、矩形輪状の磁束回路を形成している。 In the present embodiment, the driven portion 8 is formed in a linear bar shape. More specifically, in the illustrated example, the driven portion 8 is formed in a columnar shape (for example, a columnar shape, a quadrangular prism shape, or the like) having a generatrix parallel to the magnetic pole arrangement direction Y. Then, both end portions of the driven portion 8 in the magnetic pole arrangement direction Y are opposed portions 11 and 12. As described above, the driven portion 8 is disposed so that the pair of facing portions 11, 12 face the opposing surface target portions of the pair of magnetic pole forming portions 13, 14. Thus, the driven portion 8 is sandwiched between the magnetic pole arrangement directions Y of the pair of magnetic pole forming portions 13 and 14 in the vicinity of the tip portion of the pair of magnetic pole forming portions 13 and 14 on the first side Z1 in the magnetic pole extending direction. Are arranged. In this embodiment, the magnetic core MB and the driven portion 8 form a rectangular ring-shaped magnetic flux circuit as a whole.
 また、本実施形態では、被駆動部8は、磁石及び磁性体により構成されている。この磁石は、磁極配置方向第二側Y2の対向部12がN極となる極性の向きで被駆動部8に取り付けられている。磁極配置方向第一側Y1の対向部11はS極となる。なお、被駆動部8が磁石のみにより構成されていてもよく、或いは、被駆動部8が磁性体のみにより構成されていてもよい。 Moreover, in this embodiment, the driven part 8 is comprised with the magnet and the magnetic body. This magnet is attached to the driven portion 8 with a polarity direction in which the facing portion 12 on the second side Y2 in the magnetic pole arrangement direction is an N pole. The facing portion 11 on the first side Y1 in the magnetic pole arrangement direction is the S pole. In addition, the driven part 8 may be comprised only with the magnet, or the driven part 8 may be comprised only with the magnetic body.
 なお、磁性体コアMB及び被駆動部8の形状は、以上の具体例に限定されるものではなく、被駆動部8における一対の対向部11、12が、いずれかの磁性体コアMBの一対の磁極9、10のそれぞれと対向するように配置されれば、磁性体コアMB及び被駆動部8はどのような形状であってもよい。例えば、図5及び図11と同様の方向から見た磁性体コアMB又は被駆動部8の形状が、V字状、円弧状、柱状等に形成されていてもよい。 The shapes of the magnetic core MB and the driven portion 8 are not limited to the above specific examples, and the pair of opposed portions 11 and 12 in the driven portion 8 is a pair of any magnetic core MB. The magnetic core MB and the driven part 8 may have any shape as long as they are arranged to face each of the magnetic poles 9 and 10. For example, the shape of the magnetic core MB or the driven portion 8 viewed from the same direction as in FIGS. 5 and 11 may be formed in a V shape, an arc shape, a column shape, or the like.
3.その他の実施形態
 最後に、電磁アクチュエータ1のその他の実施形態について説明する。なお、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
3. Other Embodiments Finally, other embodiments of the electromagnetic actuator 1 will be described. Note that the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of other embodiments as long as no contradiction arises.
(1)上記の実施形態において、磁性体コアMBのそれぞれには、通電により磁性体コアMBに発生させる磁界の向きが互いに反対になる第一コイルC1と第二コイルC2との二つのコイルCが巻装されている場合を例として説明した。しかし、そのような構成に限定されることなく、磁性体コアMBのそれぞれには、一つ又は三つ以上のコイルが巻装されていてもよい。例えば、一つのコイルが巻装される場合は、図12に示すように、磁極配置方向第二側Y2の磁極形成部14にコイルCが巻装されていてもよい。図12に示す例では、被駆動部8は、上記の実施形態と同様に構成されている。コイルCに通電されると、磁極配置方向第一側Y1の磁極9がN極になり、磁極配置方向第二側Y2の磁極10がS極になり、被駆動部8に吸引力が作用する。この場合は、電磁アクチュエータ1は、三つの磁性体コアMBを備えているため、図13に示すように、合計三つのコイルC1、C2、C3を備えている。そして、制御装置5は、3つのスイッチS1、S2、S3を備えている。 (1) In the above embodiment, each of the magnetic cores MB includes two coils C, the first coil C1 and the second coil C2, in which the directions of magnetic fields generated in the magnetic core MB by energization are opposite to each other. The case where is wound is described as an example. However, without being limited to such a configuration, one or three or more coils may be wound around each of the magnetic cores MB. For example, when one coil is wound, as shown in FIG. 12, the coil C may be wound around the magnetic pole forming portion 14 on the second side Y2 in the magnetic pole arrangement direction. In the example shown in FIG. 12, the driven unit 8 is configured in the same manner as in the above embodiment. When the coil C is energized, the magnetic pole 9 on the first side Y1 in the magnetic pole arrangement direction becomes N pole, the magnetic pole 10 on the second side Y2 in the magnetic pole arrangement direction becomes S pole, and an attractive force acts on the driven part 8. . In this case, since the electromagnetic actuator 1 includes the three magnetic cores MB, as shown in FIG. 13, the electromagnetic actuator 1 includes a total of three coils C1, C2, and C3. The control device 5 includes three switches S1, S2, and S3.
 制御装置5は、図14に示すように、被駆動部8を第一側位置に位置させる又は移動させる場合は、第一磁性体コアMB1のスイッチS1をオンにし、第一磁性体コアMB1に巻装されたコイルC1に通電し、被駆動部8を第一磁性体コアMB1に吸引させる。制御装置5は、被駆動部8を中央位置に位置させる又は移動させる場合は、第二磁性体コアMB2のスイッチS2をオンにし、第二磁性体コアMB2に巻装されたコイルC2に通電し、被駆動部8を第二磁性体コアMB2に吸引させる。制御装置5は、被駆動部8を第二側位置に位置させる又は移動させる場合は、第三磁性体コアMB3のスイッチS3をオンにし、第三磁性体コアMB3に巻装されたコイルC3に通電し、被駆動部8を第三磁性体コアMB3に吸引させる。なお、図示は省略するが、磁性体コアMBのそれぞれに一つのコイルが巻装される場合において、磁極配置方向第一側Y1の磁極形成部13にコイルCが巻装されていてもよいことは当然である。 As shown in FIG. 14, when the driven unit 8 is positioned or moved to the first side position, the control device 5 turns on the switch S1 of the first magnetic core MB1 and switches the first magnetic core MB1 to the first magnetic core MB1. The coil C1 wound is energized, and the driven portion 8 is attracted to the first magnetic core MB1. The control device 5 turns on the switch S2 of the second magnetic core MB2 to energize the coil C2 wound around the second magnetic core MB2 when the driven part 8 is positioned or moved to the center position. Then, the driven part 8 is attracted to the second magnetic core MB2. When the driven device 8 is positioned or moved to the second position, the control device 5 turns on the switch S3 of the third magnetic core MB3, and turns on the coil C3 wound around the third magnetic core MB3. Energized to attract the driven part 8 to the third magnetic core MB3. In addition, although illustration is abbreviate | omitted, when one coil is wound by each of the magnetic body core MB, the coil C may be wound by the magnetic pole formation part 13 of the magnetic pole arrangement direction 1st side Y1. Is natural.
(2)上記の実施形態において、磁性体コアMBにおける一対の磁極形成部13、14のそれぞれに、コイルCが巻装されている場合を例として説明した。しかし、そのような構成に限定されることなく、電磁力を発生可能であれば磁性体コアMBのいずれの箇所にコイルCが巻装されてもよい。例えば、磁性体コアMBにおける磁極連結部15にコイルCが巻装されていてもよい。 (2) In the above embodiment, the case where the coil C is wound around each of the pair of magnetic pole forming portions 13 and 14 in the magnetic core MB has been described as an example. However, without being limited to such a configuration, the coil C may be wound around any part of the magnetic core MB as long as electromagnetic force can be generated. For example, the coil C may be wound around the magnetic pole coupling portion 15 in the magnetic core MB.
(3)上記の実施形態においては、図9に示すように、被駆動部8の軸方向Xの幅W0が隣り合う二つの磁性体コアMBにおける軸方向第一側X1の端面同士の間隔W2よりも短い構成を例として説明した。しかし、そのような構成に限定されることなく、被駆動部8の軸方向Xの幅W0がそれよりも長く構成されていてもよい。この場合においても、図15に示すように、軸方向Xに隣り合う二つの磁性体コアMBにおける、軸方向第一側X1に配置された磁性体コアMBの軸方向第一側X1の端面と、軸方向第二側X2に配置された磁性体コアMBの軸方向第二側X2の端面との間隔W1よりも、被駆動部8の軸方向Xの幅W0が短くされていると好適である。すなわち、図15に示す例では、被駆動部8の軸方向Xの幅W0は、隣り合う二つの磁性体コアMBにおける、軸方向第一側X1の端面同士の間隔W2よりも長く、軸方向第一側X1の端面と軸方向第二側X2の端面との間隔W1よりも短く構成されている。 (3) In the above embodiment, as shown in FIG. 9, the distance W2 between the end faces on the first axial side X1 in the two magnetic cores MB in which the width W0 in the axial direction X of the driven part 8 is adjacent. A shorter configuration has been described as an example. However, the width W0 in the axial direction X of the driven portion 8 may be longer than that, without being limited to such a configuration. Also in this case, as shown in FIG. 15, in the two magnetic cores MB adjacent to each other in the axial direction X, the end surface on the first axial side X1 of the magnetic core MB arranged on the first axial side X1 The width W0 of the driven portion 8 in the axial direction X is preferably shorter than the interval W1 between the end face of the magnetic core MB arranged on the second axial side X2 and the second axial side X2. is there. That is, in the example shown in FIG. 15, the width W0 in the axial direction X of the driven part 8 is longer than the interval W2 between the end surfaces on the first axial side X1 in the two adjacent magnetic cores MB, It is configured to be shorter than the interval W1 between the end face of the first side X1 and the end face of the second axial side X2.
(4)上記の実施形態において、制御装置5は、コイルCのそれぞれに対して電流を一方向に通電するスイッチにより構成されている場合を例として説明した。しかし、そのような構成に限定されることなく、制御装置5は、コイルCのそれぞれに流れる電流の向きを反転させることができると共に通電をオンオフすることができる電流反転機能付きのスイッチにより構成されてもよい。当該電流反転機能付きのスイッチにより、磁性体コアMBに巻装されたコイルに流す電流の向きを反転させることにより、磁性体コアMBに発生させる磁界の向きを反転させるように構成されてもよい。 (4) In the above-described embodiment, the control device 5 has been described as an example in which the control device 5 is configured by a switch that supplies current to each of the coils C in one direction. However, without being limited to such a configuration, the control device 5 is configured by a switch with a current reversal function that can reverse the direction of the current flowing through each of the coils C and can turn on / off the current. May be. The switch with the current reversal function may be configured to reverse the direction of the magnetic field generated in the magnetic core MB by reversing the direction of the current flowing through the coil wound around the magnetic core MB. .
(5)上記の実施形態において、被駆動部8は、磁石6及び磁性体7により構成されている場合を例として説明した。しかし、そのような構成に限定されることなく、被駆動部8は、磁石6及び磁性体7の一方又は双方により構成されていればよく、磁石6のみにより構成されてもよく、磁性体7のみにより構成されてもよい。例えば、被駆動部8は、U字状の磁石6により構成されてもよい。また、被駆動部8が、磁石でない磁性体7により構成される場合は、被駆動部8は、磁性体コアMBに発生する磁力により吸引されて軸方向Xに移動するが、反発力は作用しない。 (5) In the above embodiment, the case where the driven portion 8 is configured by the magnet 6 and the magnetic body 7 has been described as an example. However, without being limited to such a configuration, the driven portion 8 only needs to be configured by one or both of the magnet 6 and the magnetic body 7, and may be configured by only the magnet 6. It may be constituted only by. For example, the driven part 8 may be configured by a U-shaped magnet 6. In addition, when the driven portion 8 is configured by a magnetic body 7 that is not a magnet, the driven portion 8 is attracted by the magnetic force generated in the magnetic core MB and moves in the axial direction X, but the repulsive force acts. do not do.
(6)上記の実施形態において、磁極配置方向Yは、軸方向Xに直交している場合を例として説明した。しかし、そのような構成に限定されることなく、磁極配置方向Yは、軸方向Xに交差していればよい。例えば、磁極配置方向Yは、軸方向Xに対して傾斜して交差していてもよい。この場合も、磁性体コアMBのそれぞれの二つの磁極9、10が、磁極配置方向Yに並べられた状態で、複数の磁性体コアMBは、軸方向Xに沿って並んで配置される。 (6) In the above-described embodiment, the case where the magnetic pole arrangement direction Y is orthogonal to the axial direction X has been described as an example. However, the magnetic pole arrangement direction Y only needs to intersect the axial direction X without being limited to such a configuration. For example, the magnetic pole arrangement direction Y may be inclined with respect to the axial direction X and intersect. Also in this case, the plurality of magnetic cores MB are arranged along the axial direction X in a state where the two magnetic poles 9 and 10 of the magnetic core MB are arranged in the magnetic pole arrangement direction Y.
(7)上記の実施形態において、噛み合い式係合装置2は、第一駆動連結機構20を介して電動モータMGに駆動連結された第一入力ドグギヤDI1と、第一駆動連結機構20とは異なる変速比を有する第二駆動連結機構21を介して電動モータMGに駆動連結された第二入力ドグギヤDI2と、出力部材Oに駆動連結された出力ドグギヤDOと、第一入力ドグギヤDI1、第二入力ドグギヤDI2、及び出力ドグギヤDOの少なくとも一つに噛み合う噛合い部を有する切替部材3と、を有しており、軸方向第一側X1から軸方向Xに沿って、第一入力ドグギヤDI1、出力ドグギヤDO、第二入力ドグギヤDI2の順に配置されている場合を例として説明した。しかし、そのような構成に限定されることなく、噛み合い式係合装置は、当該噛み合い式係合装置の係合の状態を切り替える切替部材3を有しており、電磁アクチュエータ1により被駆動部8に連動する切替部材3が軸方向Xに移動され、係合の状態が切り替えられれば、どのような構成であってもよい。例えば、噛み合い式係合装置は、第二入力ドグギヤDI2を有しておらず、第一入力ドグギヤDI1及び出力ドグギヤDOを有する構成であってもよい。 (7) In the above-described embodiment, the meshing engagement device 2 is different from the first input dog gear DI1 that is drivingly connected to the electric motor MG via the first drive connecting mechanism 20 and the first drive connecting mechanism 20. A second input dog gear DI2 drivingly connected to the electric motor MG via a second drive connecting mechanism 21 having a gear ratio, an output dog gear DO drivingly connected to the output member O, a first input dog gear DI1, and a second input And a switching member 3 having a meshing portion that meshes with at least one of the dog gear DI2 and the output dog gear DO, and the first input dog gear DI1, the output from the first axial side X1 along the axial direction X. The case where the dog gear DO and the second input dog gear DI2 are arranged in this order has been described as an example. However, the meshing engagement device is not limited to such a configuration, and has a switching member 3 that switches the engagement state of the meshing engagement device. As long as the switching member 3 interlocked with is moved in the axial direction X and the state of engagement is switched, any configuration may be used. For example, the meshing engagement device may not have the second input dog gear DI2 but may have the first input dog gear DI1 and the output dog gear DO.
(8)上記の実施形態において、電磁アクチュエータ1は、三つの磁性体コアMBを備えている場合を例として説明した。しかし、そのような構成に限定されることなく、電磁アクチュエータ1は、磁性体コアMBを二つだけ備えた構成や、磁性体コアMBを四つ以上備えた構成でもよい。 (8) In the above embodiment, the electromagnetic actuator 1 has been described as an example in which the magnetic actuator 1 includes the three magnetic cores MB. However, the configuration is not limited to such a configuration, and the electromagnetic actuator 1 may have a configuration including only two magnetic cores MB or a configuration including four or more magnetic cores MB.
(9)上記の実施形態において、一対の磁極形成部13、14が延びる方向である磁極延出方向Zは、噛み合い式係合装置2の径方向に沿った方向とされており、磁極延出方向第一側Z1は、径方向内側に向かう側とされ、磁極延出方向第二側Z2は、径方向外側に向かう側とされ、一対の磁極9、10が並べられる方向である磁極配置方向Yは、噛み合い式係合装置2の周方向に沿った方向とされている場合を例として説明した。しかし、そのような構成に限定されることなく、磁性体コアMBに発生する電磁力により被駆動部8及び切替部材3を軸方向Xに移動させる向きであれば、磁極延出方向Z及び磁極配置方向Yはどのような向きに配置されてもよい。例えば、磁極延出方向Zが噛み合い式係合装置2の周方向に沿った方向とされ、磁極配置方向Yが噛み合い式係合装置2の径方向に沿った方向とされていてもよい。この配置に合わせ、切替部材3と被駆動部8を連結するフォーク24の形状が設定される。 (9) In the above embodiment, the magnetic pole extending direction Z, which is the direction in which the pair of magnetic pole forming portions 13, 14 extends, is the direction along the radial direction of the meshing engagement device 2, and the magnetic pole extending The direction first side Z1 is a side toward the radially inner side, and the magnetic pole extension direction second side Z2 is a side toward the radially outer side, and is a direction in which the pair of magnetic poles 9 and 10 are arranged. The case where Y is a direction along the circumferential direction of the meshing engagement device 2 has been described as an example. However, the present invention is not limited to such a configuration, and the magnetic pole extending direction Z and the magnetic pole can be used as long as the driven portion 8 and the switching member 3 are moved in the axial direction X by the electromagnetic force generated in the magnetic core MB. The arrangement direction Y may be arranged in any direction. For example, the magnetic pole extending direction Z may be a direction along the circumferential direction of the meshing engagement device 2, and the magnetic pole arrangement direction Y may be a direction along the radial direction of the meshing engagement device 2. In accordance with this arrangement, the shape of the fork 24 that connects the switching member 3 and the driven portion 8 is set.
(10)上記の実施形態においては、電磁アクチュエータ1が噛み合い式係合装置2の切替部材3を駆動するアクチュエータに適用された場合の例について説明した。しかし、そのような構成に限定されることなく、電磁アクチュエータ1は、噛み合い式係合装置2以外の装置の駆動に用いてもよい。例えば、この電磁アクチュエータ1は、弁の切り替えを行うために弁体を駆動するアクチュエータ等に用いられても好適である。 (10) In the above embodiment, an example in which the electromagnetic actuator 1 is applied to an actuator that drives the switching member 3 of the meshing engagement device 2 has been described. However, the electromagnetic actuator 1 may be used for driving devices other than the meshing engagement device 2 without being limited to such a configuration. For example, the electromagnetic actuator 1 is preferably used for an actuator or the like that drives a valve body to perform valve switching.
4.実施形態の概要
 以下、上記において説明した電磁アクチュエータ(1)の実施形態の概要について説明する。
4). Outline of Embodiment Hereinafter, an outline of an embodiment of the electromagnetic actuator (1) described above will be described.
 電磁アクチュエータ(1)は、コイル(C)が巻装された複数の磁性体コア(MB)と、コイル(C)のそれぞれへの通電を制御する制御装置(5)と、磁石(6)及び磁性体(7)の一方又は双方により構成され、磁性体コア(MB)に発生する電磁力により駆動方向(X)に移動する被駆動部(8)と、を備え、磁性体コア(MB)のそれぞれは、コイル(C)への通電によって互いに反対の極性となる一対の磁極(9、10)を有すると共に、これら二つの磁極(9、10)が、駆動方向(X)に交差する磁極配置方向(Y)に並べられ、複数の磁性体コア(MB)は、駆動方向(X)に沿って並んで配置され、被駆動部(8)は、いずれかの磁性体コア(MB)の一対の磁極(9、10)のそれぞれと対向するように配置される一対の対向部(11、12)を有する。 The electromagnetic actuator (1) includes a plurality of magnetic cores (MB) around which coils (C) are wound, a control device (5) that controls energization of each of the coils (C), a magnet (6), And a driven part (8) configured by one or both of the magnetic body (7) and moving in the driving direction (X) by an electromagnetic force generated in the magnetic core (MB), and the magnetic core (MB) Each has a pair of magnetic poles (9, 10) having opposite polarities when energized to the coil (C), and these two magnetic poles (9, 10) cross the drive direction (X). Arranged in the arrangement direction (Y), the plurality of magnetic cores (MB) are arranged side by side along the drive direction (X), and the driven part (8) is connected to any one of the magnetic cores (MB). One arranged to face each of the pair of magnetic poles (9, 10) Having opposing portion (11, 12).
 このような構成により、各磁性体コア(MB)の一対の磁極(9、10)が駆動方向(X)に交差する磁極配置方向(Y)に並べられており、被駆動部(8)の一対の対向部(11、12)が一対の磁極(9、10)と対向するように配置されているので、磁性体コア(MB)と被駆動部(8)とを通る磁束回路が、駆動方向(X)に交差する磁極配置方向(Y)に沿って形成される。そして、駆動方向(X)に沿って並んで配置された複数の磁性体コア(MB)のそれぞれの位置に応じて被駆動部(8)の停止位置が形成され、それにより被駆動部(8)の往復移動領域が定まる。すなわち、この特徴構成によれば、磁束回路が駆動方向(X)に沿って形成される場合に比べて、被駆動部(8)の往復移動領域を規定する複数の磁性体コア(MB)の駆動方向(X)の配置領域を小さく抑えることができる。従って、被駆動部(8)の往復移動量に対する電磁アクチュエータ(1)全体の軸方向長さを小さく抑えることができる。 With such a configuration, the pair of magnetic poles (9, 10) of each magnetic core (MB) are arranged in the magnetic pole arrangement direction (Y) intersecting the driving direction (X), and the driven part (8) Since the pair of opposed portions (11, 12) are arranged to face the pair of magnetic poles (9, 10), a magnetic flux circuit passing through the magnetic core (MB) and the driven portion (8) is driven. It is formed along the magnetic pole arrangement direction (Y) crossing the direction (X). And the stop position of the driven part (8) is formed according to each position of the plurality of magnetic cores (MB) arranged side by side along the driving direction (X), and thereby the driven part (8 ) Is determined. That is, according to this characteristic configuration, the magnetic cores (MB) that define the reciprocating region of the driven portion (8) are compared with the case where the magnetic flux circuit is formed along the driving direction (X). The arrangement area in the driving direction (X) can be kept small. Therefore, the axial length of the entire electromagnetic actuator (1) with respect to the reciprocating amount of the driven portion (8) can be kept small.
 ここで、被駆動部(8)は、磁石(6)及び磁性体(7)、又は磁石(6)により構成され、一対の対向部(11、12)は、互いに極性が反対の磁極であると好適である。 Here, the driven part (8) is composed of a magnet (6) and a magnetic body (7) or a magnet (6), and the pair of opposing parts (11, 12) are magnetic poles having opposite polarities. It is preferable.
 この構成によれば、被駆動部(8)に磁石(6)を有しない場合よりも、より強い磁力を作用させることができると共に、被駆動部(8)に対して吸引力だけでなく反発力も作用させることができる。従って、被駆動部(8)をより大きい力で駆動することができる。 According to this configuration, a stronger magnetic force can be applied to the driven portion (8) than when the magnet (6) is not provided, and not only the attractive force but also the repulsive force is exerted on the driven portion (8). Force can also be applied. Therefore, the driven part (8) can be driven with a larger force.
 また、制御装置(5)は、被駆動部(8)を移動させる先の磁性体コア(MB)に、被駆動部(8)に対する吸引力を発生させるようにコイル(C)に通電させ、被駆動部(8)の移動元の磁性体コア(MB)に、被駆動部(8)に対する反発力が生じるようにコイル(C)に通電させると好適である。 Further, the control device (5) energizes the coil (C) so as to generate an attractive force for the driven portion (8) in the magnetic core (MB) to which the driven portion (8) is moved, It is preferable that the coil (C) is energized so that a repulsive force against the driven part (8) is generated in the magnetic core (MB) from which the driven part (8) is moved.
 この構成によれば、移動先の磁性体コア(MB)による吸引力と、移動元の磁性体コア(MB)による反発力との双方を利用することができるので、より大きい力で被駆動部(8)を駆動方向(X)に移動させることができる。 According to this configuration, it is possible to use both the attractive force by the moving magnetic core (MB) and the repulsive force by the moving magnetic core (MB). (8) can be moved in the driving direction (X).
 また、磁性体コア(MB)のそれぞれには、通電により磁性体コア(MB)に発生させる磁界の向きが互いに反対になる第一コイル(C1)と第二コイル(C2)との二つのコイル(C)が巻装されており、制御装置(5)は、磁性体コア(MB)のそれぞれにおいて、被駆動部(8)に対して吸引力を発生させるか反発力を発生させるかに応じて、第一コイル(C1)及び第二コイル(C2)のいずれに通電させるかを切り替えると好適である。 Each of the magnetic cores (MB) includes two coils, a first coil (C1) and a second coil (C2), in which the directions of magnetic fields generated in the magnetic core (MB) are opposite to each other when energized. (C) is wound, and the control device (5) is configured to generate an attractive force or a repulsive force for the driven part (8) in each of the magnetic cores (MB). It is preferable to switch which of the first coil (C1) and the second coil (C2) is energized.
 この構成によれば、磁性体コア(MB)のそれぞれについて、第一コイル(C1)への通電と第二コイル(C2)への通電とを切り替えるだけで、被駆動部(8)に作用する吸引力と反発力とを切り替えることができる。そのため、吸引力と反発力の双方を利用する場合においても、制御装置(5)を、コイル(C)のそれぞれへの通電をオンオフ制御するスイッチ等の簡単な回路により構成することができる。 According to this configuration, for each of the magnetic cores (MB), only switching between energization of the first coil (C1) and energization of the second coil (C2) acts on the driven portion (8). A suction force and a repulsive force can be switched. Therefore, even when both the attractive force and the repulsive force are used, the control device (5) can be configured by a simple circuit such as a switch for controlling on / off of energization of each of the coils (C).
 また、被駆動部(8)は、磁性体により構成され、
 被駆動部(8)は、磁性体コア(MB)に発生する磁力により吸引されて駆動方向(X)に移動すると好適である。
The driven portion (8) is made of a magnetic material,
The driven portion (8) is preferably attracted by the magnetic force generated in the magnetic core (MB) and moved in the driving direction (X).
 この構成によれば、被駆動部(8)が磁性体により構成されるので、被駆動部(8)の構造を単純化することができる。 According to this configuration, since the driven part (8) is made of a magnetic material, the structure of the driven part (8) can be simplified.
 また、磁極配置方向(Y)は、駆動方向(X)に直交し、磁性体コア(MB)のそれぞれは、駆動方向(X)及び磁極配置方向(Y)に直交する磁極延出方向(Z)に延びる一対の磁極形成部(13、14)と、磁極配置方向(Y)に延びて一対の磁極形成部(13、14)を連結する磁極連結部(15)と、を有し、一対の磁極形成部(13、14)の互いに対向する面のそれぞれが、磁極(9、10)とされ、被駆動部(8)は、磁極配置方向(Y)に延びる対向部形成部(16、17)を有し、対向部形成部(16、17)における磁極配置方向(Y)の両端部が、一対の対向部(11、12)とされていると好適である。 The magnetic pole arrangement direction (Y) is orthogonal to the driving direction (X), and each of the magnetic cores (MB) is magnetic pole extending direction (Z) orthogonal to the driving direction (X) and the magnetic pole arrangement direction (Y). And a pair of magnetic pole forming portions (13, 14) extending in the magnetic pole arrangement direction (Y) and connecting the pair of magnetic pole forming portions (13, 14). The surfaces of the magnetic pole forming portions (13, 14) facing each other are the magnetic poles (9, 10), and the driven portion (8) is the opposing portion forming portion (16, extending in the magnetic pole arrangement direction (Y)). 17), and both ends of the magnetic pole arrangement direction (Y) in the facing portion forming portions (16, 17) are preferably a pair of facing portions (11, 12).
 この構成によれば、磁極延出方向(Z)に延びる一対の磁極形成部(13、14)の互いに対向する面のそれぞれが磁極(9、10)とされ、被駆動部(8)の対向部形成部(16、17)における磁極配置方向(Y)の両端部が一対の対向部(11、12)とされている。そのため、一対の磁極形成部(13、14)の間に挟まれる領域内に被駆動部(8)を配置することができる。これにより、磁性体コア(MB)と被駆動部(8)とにより適切に磁束回路を形成し、磁極(9、10)から対向部(11、12)に磁力を効率的に作用させることができる。 According to this configuration, each of the opposed surfaces of the pair of magnetic pole forming portions (13, 14) extending in the magnetic pole extending direction (Z) is the magnetic pole (9, 10), and the driven portion (8) is opposed to each other. Both end portions in the magnetic pole arrangement direction (Y) in the portion forming portion (16, 17) are a pair of opposing portions (11, 12). Therefore, the driven part (8) can be arranged in a region sandwiched between the pair of magnetic pole forming parts (13, 14). Thereby, a magnetic flux circuit is appropriately formed by the magnetic core (MB) and the driven part (8), and the magnetic force can be efficiently applied from the magnetic poles (9, 10) to the opposing parts (11, 12). it can.
 また、磁極配置方向(Y)は、駆動方向(X)に直交し、磁性体コア(MB)のそれぞれは、駆動方向(X)及び磁極配置方向(Y)に直交する磁極延出方向(Z)に延びる一対の磁極形成部(13、14)と、磁極配置方向(Y)に延びて一対の磁極形成部(13、14)を連結する磁極連結部(15)と、を有し、一対の磁極形成部(13、14)のそれぞれにおける磁極延出方向(Z)の一方側(Z1)の端部が、磁極(9、10)とされ、被駆動部(8)は、磁極延出方向(Z)に延びる一対の対向部形成部(16、17)と、磁極配置方向(Y)に延びて一対の対向部形成部(16、17)を連結する対向部連結部(18)と、を有し、一対の対向部形成部(16、17)のそれぞれにおける磁極延出方向(Z)の磁性体コア(MB)側の端部が、対向部(11、12)とされていると好適である。 The magnetic pole arrangement direction (Y) is orthogonal to the driving direction (X), and each of the magnetic cores (MB) is magnetic pole extending direction (Z) orthogonal to the driving direction (X) and the magnetic pole arrangement direction (Y). And a pair of magnetic pole forming portions (13, 14) extending in the magnetic pole arrangement direction (Y) and connecting the pair of magnetic pole forming portions (13, 14). One end (Z1) of the magnetic pole extending direction (Z) in each of the magnetic pole forming portions (13, 14) is the magnetic pole (9, 10), and the driven portion (8) is the magnetic pole extending A pair of facing portion forming portions (16, 17) extending in the direction (Z), and a facing portion connecting portion (18) extending in the magnetic pole arrangement direction (Y) to connect the pair of facing portion forming portions (16, 17). , And a magnetic core (Z) in the magnetic pole extension direction (Z) in each of the pair of opposed portion forming portions (16, 17) End of B) side, it is preferable that are opposed portion (11, 12).
 この構成によれば、磁極延出方向(Z)に延びる磁極形成部(13、14)における磁極延出方向(Z)の一方側(Z1)の端部が磁極(9、10)とされているので、当該磁極延出方向(Z)の一方側(Z1)の端部に磁力を集中させることができる。また、磁極延出方向(Z)に延びる対向部形成部(16、17)における磁極延出方向(Z)の他方側(Z2)の端部が、対向部(11、12)とされているので、磁極(9、10)に対して対向部(11、12)を磁極延出方向(Z)に対向させることができる。そのため、磁極(9、10)から対向部(11、12)に磁力を効率的に作用させることができる。また、この構成によれば、一対の磁極形成部(13、14)、及び一対の対向部形成部(16、17)を磁極延出方向(Z)に延ばしているので、電磁アクチュエータ(1)が磁極配置方向(Y)に長くなることを抑制できる。 According to this configuration, the end on one side (Z1) of the magnetic pole extending direction (Z) in the magnetic pole forming portions (13, 14) extending in the magnetic pole extending direction (Z) is the magnetic pole (9, 10). Therefore, the magnetic force can be concentrated on the end portion on one side (Z1) in the magnetic pole extending direction (Z). Further, the other end (Z2) in the magnetic pole extending direction (Z) in the opposing portion forming portion (16, 17) extending in the magnetic pole extending direction (Z) is the opposing portion (11, 12). Therefore, the opposing portions (11, 12) can be opposed to the magnetic poles (9, 10) in the magnetic pole extending direction (Z). Therefore, a magnetic force can be efficiently applied from the magnetic poles (9, 10) to the facing portions (11, 12). Further, according to this configuration, the pair of magnetic pole forming portions (13, 14) and the pair of opposing portion forming portions (16, 17) are extended in the magnetic pole extending direction (Z), so that the electromagnetic actuator (1) Can be prevented from becoming longer in the magnetic pole arrangement direction (Y).
 また、駆動方向(X)に隣り合う二つの磁性体コア(MB)における、駆動方向(X)の一方側である駆動方向第一側(X1)に配置された磁性体コア(MB)の駆動方向第一側(X1)の端面と、駆動方向第一側(X1)とは反対側である駆動方向第二側(X2)に配置された磁性体コア(MB)の駆動方向第二側(X2)の端面との間隔よりも、被駆動部(8)の駆動方向(X)の幅が短いと好適である。 In addition, driving of the magnetic core (MB) disposed on the first side (X1) in the driving direction, which is one side of the driving direction (X), in the two magnetic cores (MB) adjacent in the driving direction (X). Driving direction second side (MB) of the magnetic core (MB) disposed on the driving direction second side (X2) opposite to the driving direction first side (X1) and the end surface of the direction first side (X1) It is preferable that the width of the driven part (8) in the driving direction (X) is shorter than the distance from the end face of X2).
 この構成によれば、被駆動部(8)の駆動方向(X)の幅が、駆動方向(X)に隣り合う二つの磁性体コア(MB)の駆動方向(X)の幅よりも短くされているので、各磁性体コア(MB)に生じた磁力による、被駆動部(8)の駆動方向(X)の位置の制御精度を向上させることができる。 According to this configuration, the width in the driving direction (X) of the driven part (8) is made shorter than the width in the driving direction (X) of two magnetic cores (MB) adjacent to the driving direction (X). Therefore, the control accuracy of the position in the driving direction (X) of the driven part (8) by the magnetic force generated in each magnetic core (MB) can be improved.
 また、駆動方向(X)に隣り合う二つの磁性体コア(MB)における、駆動方向(X)の一方側である駆動方向第一側(X1)に配置された磁性体コア(MB)の駆動方向第一側(X1)の端面と、駆動方向第一側(X1)とは反対側である駆動方向第二側(X2)に配置された磁性体コア(MB)の駆動方向第一側(X1)の端面との間隔よりも、被駆動部(8)の駆動方向(X)の幅が短いと好適である。 In addition, driving of the magnetic core (MB) disposed on the first side (X1) in the driving direction, which is one side of the driving direction (X), in the two magnetic cores (MB) adjacent in the driving direction (X). Driving direction first side of the magnetic core (MB) disposed on the driving direction second side (X2) opposite to the driving direction first side (X1) and the end surface of the direction first side (X1) ( It is preferable that the width of the driven part (8) in the driving direction (X) is shorter than the distance from the end face of X1).
 この構成によれば、被駆動部(8)の駆動方向(X)の幅が、駆動方向(X)に隣り合う二つの磁性体コア(MB)の駆動方向第一側(X1)の端面同士の幅よりも短くされているので、各磁性体コア(MB)に生じた磁力による、被駆動部(8)の駆動方向(X)の位置の制御精度を更に向上させることができる。 According to this configuration, the width in the driving direction (X) of the driven part (8) is such that the end surfaces on the first side (X1) in the driving direction of the two magnetic cores (MB) adjacent in the driving direction (X). Therefore, the control accuracy of the position in the drive direction (X) of the driven part (8) by the magnetic force generated in each magnetic core (MB) can be further improved.
 また、被駆動部(8)は、噛み合い式係合装置(2)の係合の状態を切り替える切替部材(3)と連動するように構成され、駆動方向(X)は、噛み合い式係合装置(2)の回転軸心に平行な方向であると好適である。 The driven portion (8) is configured to be interlocked with a switching member (3) that switches the engagement state of the meshing engagement device (2), and the drive direction (X) is the meshing engagement device. It is preferable that the direction is parallel to the rotational axis of (2).
 この構成によれば、電磁アクチュエータ(1)により、噛み合い式係合装置(2)の切替部材(3)を、噛み合い式係合装置(2)の回転軸心に平行な方向である駆動方向(X)に移動させ、噛み合い式係合装置(2)の係合の状態を切り替えることができる。また、上記のとおり、磁性体コア(MB)のそれぞれは、一対の磁極(9、10)を有し、これら一対の磁極(9、10)が、噛み合い式係合装置(2)の回転軸心に平行な方向に交差する磁極配置方向(Y)に並べられている。従って、磁性体コア(MB)を噛み合い式係合装置(2)の周方向の一部の領域に容易に配置することができる。よって、噛み合い式係合装置(2)への電磁アクチュエータ(1)の搭載性を良好にすることができる。 According to this configuration, the electromagnetic actuator (1) causes the switching member (3) of the meshing engagement device (2) to move in the driving direction (the direction parallel to the rotational axis of the meshing engagement device (2)). X), the engagement state of the meshing engagement device (2) can be switched. In addition, as described above, each of the magnetic cores (MB) has a pair of magnetic poles (9, 10), and the pair of magnetic poles (9, 10) is a rotating shaft of the meshing engagement device (2). The magnetic poles are arranged in a magnetic pole arrangement direction (Y) that intersects the direction parallel to the center. Therefore, the magnetic core (MB) can be easily arranged in a partial region in the circumferential direction of the meshing engagement device (2). Therefore, the mountability of the electromagnetic actuator (1) to the meshing engagement device (2) can be improved.
 また、噛み合い式係合装置(2)は、第一駆動連結機構(20)を介して電動モータ(MG)に駆動連結された第一入力ドグギヤ(DI1)と、第一駆動連結機構(20)とは異なる変速比を有する第二駆動連結機構(21)を介して電動モータ(MG)に駆動連結された第二入力ドグギヤ(DI2)と、出力部材(O)に駆動連結された出力ドグギヤ(DO)と、第一入力ドグギヤ(DI1)、第二入力ドグギヤ(DI2)、及び出力ドグギヤ(DO)の少なくとも一つに噛み合う噛合い部を有する切替部材(3)と、を有し、駆動方向(X)の一方側である駆動方向第一側(X1)から駆動方向(X)に沿って、第一入力ドグギヤ(DI1)、出力ドグギヤ(DO)、第二入力ドグギヤ(DI2)の順に配置され、駆動方向第一側(X1)から駆動方向(X)に沿って、第一磁性体コア(MB1)、第二磁性体コア(MB2)、第三磁性体コア(MB3)の順に配置された3つの磁性体コア(MB)を備え、第二磁性体コア(MB2)は、被駆動部(8)の駆動方向(X)の中央部が当該第二磁性体コア(MB2)の駆動方向(X)の中央部に対向する位置にある場合に、切替部材(3)が出力ドグギヤ(DO)にのみ噛み合うような駆動方向(X)の位置に配置されていると好適である。 The meshing engagement device (2) includes a first input dog gear (DI1) that is drivingly connected to the electric motor (MG) via the first drive connecting mechanism (20), and a first drive connecting mechanism (20). A second input dog gear (DI2) drivingly connected to the electric motor (MG) via a second drive connecting mechanism (21) having a transmission ratio different from that of the output dog gear (DI2) drivingly connected to the output member (O) ( DO) and a switching member (3) having a meshing portion that meshes with at least one of the first input dog gear (DI1), the second input dog gear (DI2), and the output dog gear (DO), and the drive direction The first input dog gear (DI1), the output dog gear (DO), and the second input dog gear (DI2) are arranged in this order along the drive direction (X) from the drive direction first side (X1) which is one side of (X). Drive direction first side (X ) From the first magnetic core (MB1), the second magnetic core (MB2), and the third magnetic core (MB3) in this order along the driving direction (X). The second magnetic core (MB2) has a central portion in the driving direction (X) of the driven portion (8) facing a central portion in the driving direction (X) of the second magnetic core (MB2). When in the position, it is preferable that the switching member (3) is disposed at a position in the driving direction (X) so as to mesh only with the output dog gear (DO).
 この構成によれば、駆動方向Xに並べられた3つの磁性体コア(MB)のコイルへの通電を制御することにより、被駆動部(8)及び切替部材(3)を駆動方向Xに移動させて、切替部材(3)が第一入力ドグギヤ(DI1)及び出力ドグギヤ(DO)に噛み合う状態、切替部材(3)が出力ドグギヤ(DO)にのみ噛み合う状態、切替部材(3)が第二入力ドグギヤ(DI2)及び出力ドグギヤ(DO)に噛み合う状態、との間で駆動力の伝達状態を切り替えることができる。 According to this configuration, the driven part (8) and the switching member (3) are moved in the driving direction X by controlling energization to the coils of the three magnetic cores (MB) arranged in the driving direction X. The switching member (3) meshes with the first input dog gear (DI1) and the output dog gear (DO), the switching member (3) meshes only with the output dog gear (DO), and the switching member (3) is the second. The transmission state of the driving force can be switched between the state in which the input dog gear (DI2) and the output dog gear (DO) are engaged.
 また、噛み合い式係合装置(2)は、電動モータ(MG)に駆動連結された入力ドグギヤと、出力部材(O)に駆動連結された出力ドグギヤ(DO)と、入力ドグギヤ及び出力ドグギヤ(DO)の少なくとも一つに噛み合う噛合い部を有する切替部材(3)と、を有し、制御装置(5)は、コイル(C)への通電を制御することにより、被駆動部(8)に連動する切替部材(3)を駆動方向(X)に移動させて、切替部材(3)が入力ドグギヤ及び出力ドグギヤ(DO)の双方に噛み合う係合状態から、切替部材(3)が入力ドグギヤ及び出力ドグギヤ(DO)のいずれか一方に噛み合う解除状態に移行させる解除制御を実行可能に構成され、制御装置(5)は、解除制御を行った後、電動モータ(MG)の回転速度を増加又は減少させるように電動モータ(MG)の出力トルクを制御する回転速度変化制御を行い、当該回転速度変化制御により電動モータ(MG)の出力トルクが予め定めた判定変化量以上に増加又は減少した場合に、異常時用第一制御を実行すると好適である。 The meshing engagement device (2) includes an input dog gear that is drivingly connected to the electric motor (MG), an output dog gear (DO) that is drivingly connected to the output member (O), and an input dog gear and an output dog gear (DO). And a switching member (3) having a meshing portion that meshes with at least one of the control unit (5), and the control device (5) controls the energization to the coil (C), thereby controlling the driven portion (8). When the interlocking switching member (3) is moved in the driving direction (X), the switching member (3) is engaged with both the input dog gear and the output dog gear (DO). The control device (5) is configured to be able to execute a release control that shifts to a release state that meshes with one of the output dog gears (DO), and the control device (5) increases the rotation speed of the electric motor (MG) after performing the release control. Decrease When the rotational speed change control for controlling the output torque of the electric motor (MG) is performed and the output torque of the electric motor (MG) increases or decreases by a predetermined change amount or more by the rotational speed change control, an abnormality occurs. It is preferable to execute the hour first control.
 何らかの要因により、解除制御を実行したにもかかわらず、切替部材(3)が入力ドグギヤ及び出力ドグギヤ(DO)のいずれか一方に噛み合った状態に移行せず、入力ドグギヤ及び出力ドグギヤ(DO)の双方に噛み合ったままの状態になる異常状態が発生する場合がある。この異常状態で、電動モータ(MG)の回転速度を増加又は減少させるように電動モータ(MG)の出力トルクを制御する回転速度変化制御を行うと、電動モータ(MG)の出力トルクを増加又は減少させても、入力ドグギヤの回転速度が出力ドグギヤ(DO)の回転速度から変化しないため、電動モータ(MG)の出力トルクの増加量又は減少量が大きくなる。上記の構成によれば、回転速度変化制御により電動モータ(MG)の出力トルクが予め定めた判定変化量以上に増加又は減少した場合に、異常状態を検出することができ、異常時用第一制御を実行することができる。また、このような異常状態の検出のために切替部材(3)の位置を検出するセンサ等を設ける必要がなく構成を簡易化できる。 Although the release control is executed for some reason, the switching member (3) does not shift to the state in which either the input dog gear or the output dog gear (DO) is engaged, and the input dog gear and the output dog gear (DO) There is a case where an abnormal state occurs in which both sides remain engaged. In this abnormal state, when the rotational speed change control is performed to control the output torque of the electric motor (MG) so as to increase or decrease the rotational speed of the electric motor (MG), the output torque of the electric motor (MG) is increased or decreased. Even if it is decreased, the rotational speed of the input dog gear does not change from the rotational speed of the output dog gear (DO), so the amount of increase or decrease in the output torque of the electric motor (MG) increases. According to the above configuration, the abnormal state can be detected when the output torque of the electric motor (MG) increases or decreases more than a predetermined determination change amount by the rotational speed change control. Control can be performed. Further, it is not necessary to provide a sensor or the like for detecting the position of the switching member (3) for detecting such an abnormal state, and the configuration can be simplified.
 また、噛み合い式係合装置(2)は、電動モータ(MG)に駆動連結された入力ドグギヤと、出力部材(O)に駆動連結された出力ドグギヤ(DO)と、入力ドグギヤ及び出力ドグギヤ(DO)の少なくとも一つに噛み合う噛合い部を有する切替部材(3)と、を有し、制御装置(5)は、コイル(C)への通電を制御することにより、被駆動部(8)に連動する切替部材(3)を駆動方向(X)に移動させて、切替部材(3)が入力ドグギヤ及び出力ドグギヤ(DO)のいずれか一方に噛み合う解除状態から、切替部材(3)が入力ドグギヤ及び出力ドグギヤ(DO)の双方に噛み合う係合状態に移行させる係合制御を実行可能に構成され、制御装置(5)は、係合制御を行った後、電動モータ(MG)の出力トルクを制御するトルク制御を行い、トルク制御の開始後、入力ドグギヤの回転速度と出力ドグギヤ(DO)の回転速度とが一致していない場合に、異常時用第二制御を実行すると好適である。 The meshing engagement device (2) includes an input dog gear that is drivingly connected to the electric motor (MG), an output dog gear (DO) that is drivingly connected to the output member (O), and an input dog gear and an output dog gear (DO). And a switching member (3) having a meshing portion that meshes with at least one of the control unit (5), and the control device (5) controls the energization to the coil (C), thereby controlling the driven portion (8). When the interlocking switching member (3) is moved in the driving direction (X), the switching member (3) is in the input dog gear from the release state where the switching member (3) meshes with either the input dog gear or the output dog gear (DO). In addition, the control device (5) is configured to be able to execute an engagement control for shifting to an engagement state that meshes with both of the output dog gear (DO) and the control device (5), after performing the engagement control, the output torque of the electric motor (MG). Torque control to control Was carried out, after the start of the torque control, when the rotational speed of the input Dogugiya and the rotational speed of the output Dogugiya (DO) does not match, it is preferable to perform the second control abnormality.
 何らかの要因により、係合制御を実行したにもかかわらず、切替部材(3)が入力ドグギヤ及び出力ドグギヤ(DO)の双方に噛み合う状態に移行せず、入力ドグギヤ及び出力ドグギヤ(DO)のいずれか一方に噛み合ったままの状態になる異常状態が発生する場合がある。この異常状態で、トルク制御を実行し、電動モータ(MG)の出力トルクを増加又は減少させると、出力ドグギヤ(DO)の回転速度に対して、入力ドグギヤの回転速度が増加又は減少する。上記の構成によれば、トルク制御の開始後、入力ドグギヤの回転速度が出力ドグギヤ(DO)の回転速度に一致していない場合に、異常状態を検出することができ、異常時用第二制御を実行することができる。また、このような異常状態の検出のために切替部材(3)の位置を検出するセンサ等を設ける必要がなく構成を簡易化できる。 Although the engagement control is executed for some reason, the switching member (3) does not shift to a state in which both the input dog gear and the output dog gear (DO) are engaged, and either the input dog gear or the output dog gear (DO). An abnormal state may occur in which one of the two remains engaged. When torque control is executed in this abnormal state and the output torque of the electric motor (MG) is increased or decreased, the rotational speed of the input dog gear is increased or decreased relative to the rotational speed of the output dog gear (DO). According to the above configuration, after the torque control is started, when the rotational speed of the input dog gear does not match the rotational speed of the output dog gear (DO), an abnormal state can be detected, and the abnormal second control Can be executed. Further, it is not necessary to provide a sensor or the like for detecting the position of the switching member (3) for detecting such an abnormal state, and the configuration can be simplified.
 また、噛み合い式係合装置(2)は、第一駆動連結機構(20)を介して電動モータ(MG)に駆動連結された第一入力ドグギヤ(DI1)と、第一駆動連結機構(20)とは異なる変速比を有する第二駆動連結機構(21)を介して電動モータ(MG)に駆動連結された第二入力ドグギヤ(DI2)と、出力部材(O)に駆動連結された出力ドグギヤ(DO)と、第一入力ドグギヤ(DI1)、第二入力ドグギヤ(DI2)、及び出力ドグギヤ(DO)の少なくとも一つに噛み合う噛合い部を有する切替部材(3)と、を有し、駆動方向(X)の一方側である駆動方向第一側(X1)から駆動方向(X)に沿って、第一入力ドグギヤ(DI1)、出力ドグギヤ(DO)、第二入力ドグギヤ(DI2)の順に配置され、制御装置(5)は、第一入力ドグギヤ(DI1)及び第二入力ドグギヤ(DI2)の一方を変速前ドグギヤとし、第一入力ドグギヤ(DI1)及び第二入力ドグギヤ(DI2)の他方を変速後ドグギヤとし、コイル(C)への通電を制御することにより、被駆動部(8)に連動する切替部材(3)を駆動方向(X)に移動させて、切替部材(3)が変速前ドグギヤ及び出力ドグギヤ(DO)に噛み合う変速前係合状態から、切替部材(3)が出力ドグギヤ(DO)にのみ噛み合う中間解除状態に移行させる中間解除制御を行った後、中間解除状態から、切替部材(3)が変速後ドグギヤ及び出力ドグギヤ(DO)に噛み合う変速後係合状態に移行させる変速後係合制御を行う変速制御を実行可能に構成され、制御装置(5)は、中間解除制御を行った後、電動モータ(MG)に駆動連結された変速後ドグギヤの回転速度が出力ドグギヤ(DO)の回転速度に近づくように、電動モータ(MG)の出力トルクを制御する回転速度変化制御を行い、当該回転速度変化制御により電動モータ(MG)の出力トルクが予め定めた判定変化量以上に増加又は減少した場合に、異常時用第三制御を実行し、制御装置(5)は、変速後係合制御を行った後、回転速度変化制御を終了して電動モータ(MG)の出力トルクを制御するトルク制御を行い、トルク制御の開始後、変速後ドグギヤの回転速度が出力ドグギヤ(DO)の回転速度に一致していない場合に、異常時用第四制御を実行すると好適である。 The meshing engagement device (2) includes a first input dog gear (DI1) that is drivingly connected to the electric motor (MG) via the first drive connecting mechanism (20), and a first drive connecting mechanism (20). A second input dog gear (DI2) drivingly connected to the electric motor (MG) via a second drive connecting mechanism (21) having a transmission ratio different from that of the output dog gear (DI2) drivingly connected to the output member (O) ( DO) and a switching member (3) having a meshing portion that meshes with at least one of the first input dog gear (DI1), the second input dog gear (DI2), and the output dog gear (DO), and the drive direction The first input dog gear (DI1), the output dog gear (DO), and the second input dog gear (DI2) are arranged in this order along the drive direction (X) from the drive direction first side (X1) which is one side of (X). The control device (5) One of the one input dog gear (DI1) and the second input dog gear (DI2) is a dog gear before shifting, and the other of the first input dog gear (DI1) and the second input dog gear (DI2) is a dog gear after shifting to the coil (C). The switching member (3) interlocked with the driven portion (8) is moved in the driving direction (X) by controlling the energization of the driven portion (8), and the switching member (3) meshes with the pre-shifting dog gear and the output dog gear (DO). After performing the intermediate release control in which the switching member (3) shifts to the intermediate release state in which only the output dog gear (DO) is engaged from the pre-shift engagement state, the switching member (3) is moved from the intermediate release state to the post-shift dog gear and The shift control for performing the post-shift engagement control for shifting to the post-shift engagement state meshing with the output dog gear (DO) is configured to be executable, and the control device (5) performs the motor release after performing the intermediate release control. Rotational speed change control for controlling the output torque of the electric motor (MG) is performed so that the rotational speed of the post-shift dog gear connected to the motor (MG) approaches the rotational speed of the output dog gear (DO). When the output torque of the electric motor (MG) is increased or decreased by a change control to be greater than or equal to a predetermined determination change amount, the abnormality third control is executed, and the control device (5) performs post-shift engagement control. After that, the rotational speed change control is finished and the torque control is performed to control the output torque of the electric motor (MG). After the torque control is started, the rotational speed of the dog gear after the shift becomes the rotational speed of the output dog gear (DO). If they do not match, it is preferable to execute the abnormal fourth control.
 この構成によれば、変速前ドグギヤの回転速度が出力ドグギヤ(DO)の回転速度に一致している変速前変速状態からニュートラル状態に移行させた後、変速後変速状態に移行させるために、変速後ドグギヤの回転速度を出力ドグギヤ(DO)の回転速度に近づける回転速度変化制御を実行する。しかし、ニュートラル移行制御を実行したにもかかわらず、何らかの要因により、切替部材(3)が出力ドグギヤ(DO)にのみ噛み合った状態に移行せず、変速前ドグギヤ及び出力ドグギヤ(DO)の双方に噛み合ったままの状態になる異常状態が発生する場合がある。この異常状態で、変速後ドグギヤの回転速度を出力ドグギヤ(DO)の回転速度に近づける回転速度変化制御を行うと、電動モータ(MG)の出力トルクを増加又は減少させても、変速後ドグギヤの回転速度が出力ドグギヤ(DO)の回転速度に近づかないため、電動モータ(MG)の出力トルクの増加量又は減少量が大きくなる。上記の構成によれば、回転速度変化制御により電動モータ(MG)の出力トルクが予め定めた判定変化量以上に増加又は減少した場合に、異常状態を検出することができ、異常時用第三制御を実行することができる。よって、変速前変速状態からニュートラル状態に移行させた後、変速後変速状態に移行させるために実行する回転速度変化制御を利用して、変速前変速状態からニュートラル状態に移行しているか否かを判定し、異常時用第三制御を実行することができる。 According to this configuration, in order to shift from the pre-shifting shift state in which the rotation speed of the pre-shift dog gear matches the rotation speed of the output dog gear (DO) to the neutral state, the shift gear shifts to the post-shift shift state. Rotational speed change control is performed to bring the rotational speed of the rear dog gear closer to the rotational speed of the output dog gear (DO). However, although the neutral shift control is executed, the switching member (3) does not shift to a state in which it is engaged only with the output dog gear (DO) due to some factor, and both the dog gear before shifting and the output dog gear (DO) are shifted. There may be an abnormal condition that remains engaged. In this abnormal state, if rotational speed change control is performed to bring the rotational speed of the post-shift dog gear close to the rotational speed of the output dog gear (DO), even if the output torque of the electric motor (MG) is increased or decreased, the post-shift dog gear Since the rotational speed does not approach the rotational speed of the output dog gear (DO), the amount of increase or decrease in the output torque of the electric motor (MG) increases. According to the above configuration, an abnormal state can be detected when the output torque of the electric motor (MG) increases or decreases by a rotational speed change control to a value greater than or equal to a predetermined determination change amount. Control can be performed. Therefore, after changing from the pre-shifting shift state to the neutral state, using the rotational speed change control executed to shift to the post-shifting shift state, it is determined whether or not the shift state from the pre-shifting shift state to the neutral state. It is possible to determine and execute the abnormal third control.
 また、変速後係合制御により切替部材(3)が変速後ドグギヤ及び出力ドグギヤ(DO)に噛み合う変速後変速状態に移行させた後、トルク制御を実行し、出力部材(O)に電動モータ(MG)の出力トルクを伝達させる。しかし、変速後係合制御を実行したにもかかわらず、何らかの要因により、切替部材(3)が変速後ドグギヤ及び出力ドグギヤ(DO)の双方に噛み合う状態に移行せず、出力ドグギヤ(DO)にのみ噛み合ったままの状態になる異常状態が発生する場合がある。この異常状態で、トルク制御を実行し、電動モータ(MG)の出力トルクを増加又は減少させると、出力ドグギヤ(DO)の回転速度に対して、変速後ドグギヤの回転速度が増加又は減少する。上記の構成によれば、トルク制御の開始後、変速後ドグギヤの回転速度が出力ドグギヤ(DO)の回転速度に一致していない場合に、異常状態を検出することができ、異常時用第四制御を実行することができる。よって、ニュートラル状態から変速後変速状態に移行させた後、出力部材(O)に電動モータ(MG)の出力トルクを伝達させるために実行するトルク制御を利用して、ニュートラル状態から変速後変速状態に移行しているか否かを判定し、異常時用第四制御を実行することができる。また、このような異常状態の検出のために切替部材(3)の位置を検出するセンサ等を設ける必要がなく構成を簡易化できる。 In addition, after the shift member (3) is shifted to the post-shifting shift state in which the switching member (3) meshes with the post-shift dog gear and the output dog gear (DO) by the post-shift engagement control, torque control is executed, and the electric motor ( MG) output torque is transmitted. However, although the post-shift engagement control is executed, the switching member (3) does not shift to a state where both the post-shift dog gear and the output dog gear (DO) are engaged with each other due to some factor, and the output dog gear (DO) is not moved. An abnormal state may occur in which only the meshed state remains. When torque control is executed in this abnormal state and the output torque of the electric motor (MG) is increased or decreased, the rotational speed of the post-shift dog gear is increased or decreased relative to the rotational speed of the output dog gear (DO). According to the above configuration, after the torque control is started, when the rotational speed of the post-shift dog gear does not coincide with the rotational speed of the output dog gear (DO), an abnormal state can be detected. Control can be performed. Therefore, after shifting from the neutral state to the post-shifting shift state, using the torque control executed to transmit the output torque of the electric motor (MG) to the output member (O), the neutral shift state from the neutral state is performed. It is possible to determine whether or not the process has been shifted to, and execute the fourth control for abnormal times. Further, it is not necessary to provide a sensor or the like for detecting the position of the switching member (3) for detecting such an abnormal state, and the configuration can be simplified.
 本開示に係る技術は、コイルが巻装された磁性体コアを有する電磁アクチュエータに好適に利用することができる。 The technology according to the present disclosure can be suitably used for an electromagnetic actuator having a magnetic core around which a coil is wound.
1    :電磁アクチュエータ
2    :噛み合い式係合装置
3    :切替部材
5    :制御装置
6    :磁石
7    :磁性体
8    :被駆動部
9、10 :一対の磁極
11、12:一対の対向部
13、14:一対の磁極形成部
16、17:一対の対向部形成部
20   :第一駆動連結機構
21   :第二駆動連結機構
22   :電動モータの回転軸
C    :コイ
ルDI1  :第一入力ドグギヤ
DI2  :第二入力ドグギヤ
DO   :出力ドグギヤ
MB   :磁性体コア
MG   :電動モータ
O    :出力部材
W0   :被駆動部の駆動方向の幅
X    :軸方向
X1   :軸方向第一側(軸方向の一方側)
X2   :軸方向第二側(軸方向の他方側)
Y    :磁極配置方向
Y1   :磁極配置方向第一側(磁極配置方向の一方側)
Y2   :磁極配置方向第二側(磁極配置方向の他方側)
Z    :磁極延出方向
Z1   :磁極延出方向第一側(磁極延出方向の一方側)
Z2   :磁極延出方向第二側(磁極延出方向の他方側)
1: Electromagnetic actuator 2: Engagement type engagement device 3: Switching member 5: Control device 6: Magnet 7: Magnetic body 8: Driven part 9, 10: A pair of magnetic poles 11 and 12: A pair of opposing parts 13 and 14: A pair of magnetic pole forming parts 16, 17: A pair of opposing part forming parts 20: First drive connecting mechanism 21: Second drive connecting mechanism 22: Rotating shaft C of the electric motor: Coil DI1: First input dog gear DI2: Second input Dog gear DO: Output dog gear MB: Magnetic core MG: Electric motor O: Output member W0: Drive direction width X of driven part: Axial direction X1: Axial direction first side (Axial direction one side)
X2: Second axial side (the other axial side)
Y: Magnetic pole arrangement direction Y1: Magnetic pole arrangement direction first side (one side of magnetic pole arrangement direction)
Y2: The second side in the magnetic pole arrangement direction (the other side in the magnetic pole arrangement direction)
Z: magnetic pole extending direction Z1: magnetic pole extending direction first side (one side of magnetic pole extending direction)
Z2: The second side in the magnetic pole extension direction (the other side in the magnetic pole extension direction)

Claims (14)

  1.  コイルが巻装された複数の磁性体コアと、前記コイルのそれぞれへの通電を制御する制御装置と、磁石及び磁性体の一方又は双方から構成され、前記磁性体コアに発生する電磁力により駆動方向に移動する被駆動部と、を備え、
     前記磁性体コアのそれぞれは、前記コイルへの通電によって互いに反対の極性となる一対の磁極を有すると共に、これら二つの磁極が、前記駆動方向に交差する磁極配置方向に並べられ、
     前記複数の磁性体コアは、前記駆動方向に沿って並んで配置され、
     前記被駆動部は、いずれかの前記磁性体コアの前記一対の磁極のそれぞれと対向するように配置される一対の対向部を有する電磁アクチュエータ。
    A plurality of magnetic cores around which coils are wound, a control device for controlling energization of each of the coils, one or both of a magnet and a magnetic body, and driven by electromagnetic force generated in the magnetic core A driven part that moves in the direction,
    Each of the magnetic cores has a pair of magnetic poles having opposite polarities when energized to the coil, and these two magnetic poles are arranged in a magnetic pole arrangement direction intersecting the driving direction,
    The plurality of magnetic cores are arranged side by side along the driving direction,
    The driven part is an electromagnetic actuator having a pair of facing parts arranged to face each of the pair of magnetic poles of any one of the magnetic cores.
  2.  前記被駆動部は、磁石及び磁性体、又は磁石により構成され、
     前記一対の対向部は、互いに極性が反対の磁極である請求項1に記載の電磁アクチュエータ。
    The driven part is composed of a magnet and a magnetic material, or a magnet,
    The electromagnetic actuator according to claim 1, wherein the pair of opposed portions are magnetic poles having opposite polarities.
  3.  前記制御装置は、前記被駆動部を移動させる先の前記磁性体コアに、前記被駆動部に対する吸引力を発生させるように前記コイルに通電させ、前記被駆動部の移動元の前記磁性体コアに、前記被駆動部に対する反発力が生じるように前記コイルに通電させる請求項1又は2に記載の電磁アクチュエータ。 The control device energizes the coil so as to generate an attractive force to the driven part in the magnetic core to which the driven part is moved, and the magnetic core from which the driven part is moved The electromagnetic actuator according to claim 1, wherein the coil is energized so as to generate a repulsive force against the driven portion.
  4.  前記磁性体コアのそれぞれには、通電により前記磁性体コアに発生させる磁界の向きが互いに反対になる第一コイルと第二コイルとの二つの前記コイルが巻装されており、
     前記制御装置は、前記磁性体コアのそれぞれにおいて、前記被駆動部に対して吸引力を発生させるか反発力を発生させるかに応じて、前記第一コイル及び前記第二コイルのいずれに通電させるかを切り替える請求項3に記載の電磁アクチュエータ。
    Each of the magnetic cores is wound with two coils, a first coil and a second coil, in which directions of a magnetic field generated in the magnetic core by energization are opposite to each other,
    The control device energizes either the first coil or the second coil depending on whether an attractive force or a repulsive force is generated with respect to the driven part in each of the magnetic cores. The electromagnetic actuator according to claim 3 which switches between.
  5.  前記被駆動部は、磁性体により構成され、
     前記被駆動部は、前記磁性体コアに発生する磁力により吸引されて前記駆動方向に移動する請求項1に記載の電磁アクチュエータ。
    The driven part is made of a magnetic material,
    The electromagnetic actuator according to claim 1, wherein the driven portion is attracted by a magnetic force generated in the magnetic core and moves in the driving direction.
  6.  前記磁極配置方向は、前記駆動方向に直交し、
     前記磁性体コアのそれぞれは、前記駆動方向及び前記磁極配置方向に直交する磁極延出方向に延びる一対の磁極形成部と、前記磁極配置方向に延びて前記一対の磁極形成部を連結する磁極連結部と、を有し、
     前記一対の磁極形成部の互いに対向する面のそれぞれが、前記磁極とされ、
     前記被駆動部は、前記磁極配置方向に延びる対向部形成部を有し、
     前記対向部形成部における前記磁極配置方向の両端部が、前記一対の対向部とされている請求項1から5のいずれか一項に記載の電磁アクチュエータ。
    The magnetic pole arrangement direction is orthogonal to the driving direction,
    Each of the magnetic cores includes a pair of magnetic pole forming portions extending in a magnetic pole extending direction orthogonal to the driving direction and the magnetic pole arranging direction, and a magnetic pole connection extending in the magnetic pole arranging direction and connecting the pair of magnetic pole forming portions. And
    Each of the opposing surfaces of the pair of magnetic pole forming portions is the magnetic pole,
    The driven portion has a facing portion forming portion extending in the magnetic pole arrangement direction,
    The electromagnetic actuator according to any one of claims 1 to 5, wherein both end portions in the magnetic pole arrangement direction in the facing portion forming portion are the pair of facing portions.
  7.  前記磁極配置方向は、前記駆動方向に直交し、
     前記磁性体コアのそれぞれは、前記駆動方向及び前記磁極配置方向に直交する磁極延出方向に延びる一対の磁極形成部と、前記磁極配置方向に延びて前記一対の磁極形成部を連結する磁極連結部と、を有し、
     前記一対の磁極形成部のそれぞれにおける前記磁極延出方向の一方側の端部が、前記磁極とされ、
     前記被駆動部は、前記磁極延出方向に延びる一対の対向部形成部と、前記磁極配置方向に延びて前記一対の対向部形成部を連結する対向部連結部と、を有し、
     前記一対の対向部形成部のそれぞれにおける前記磁極延出方向の前記磁性体コア側の端部が、前記対向部とされている請求項1から5のいずれか一項に記載の電磁アクチュエータ。
    The magnetic pole arrangement direction is orthogonal to the driving direction,
    Each of the magnetic cores includes a pair of magnetic pole forming portions extending in a magnetic pole extending direction orthogonal to the driving direction and the magnetic pole arranging direction, and a magnetic pole connection extending in the magnetic pole arranging direction and connecting the pair of magnetic pole forming portions. And
    One end of the magnetic pole extending direction in each of the pair of magnetic pole forming portions is the magnetic pole,
    The driven part has a pair of opposing part forming parts extending in the magnetic pole extending direction and an opposing part connecting part extending in the magnetic pole arrangement direction and connecting the pair of opposing part forming parts,
    6. The electromagnetic actuator according to claim 1, wherein an end portion on the magnetic core side in the magnetic pole extending direction in each of the pair of opposed portion forming portions is the opposed portion.
  8.  前記駆動方向に隣り合う二つの前記磁性体コアにおける、前記駆動方向の一方側である駆動方向第一側に配置された前記磁性体コアの前記駆動方向第一側の端面と、前記駆動方向第一側とは反対側である駆動方向第二側に配置された前記磁性体コアの前記駆動方向第二側の端面との間隔よりも、前記被駆動部の前記駆動方向の幅が短い請求項1から7のいずれか一項に記載の電磁アクチュエータ。 In the two magnetic cores adjacent to each other in the driving direction, an end face on the first driving direction side of the magnetic core disposed on the first driving direction side that is one side of the driving direction, and the driving direction first The width of the driven portion in the driving direction is shorter than the interval between the magnetic core disposed on the second side in the driving direction opposite to the one side and the end surface on the second side in the driving direction. The electromagnetic actuator according to any one of 1 to 7.
  9.  前記駆動方向に隣り合う二つの前記磁性体コアにおける、前記駆動方向の一方側である駆動方向第一側に配置された前記磁性体コアの前記駆動方向第一側の端面と、前記駆動方向第一側とは反対側である駆動方向第二側に配置された前記磁性体コアの前記駆動方向第一側の端面との間隔よりも、前記被駆動部の前記駆動方向の幅が短い請求項1から8のいずれか一項に記載の電磁アクチュエータ。 In the two magnetic cores adjacent to each other in the driving direction, an end face on the first driving direction side of the magnetic core disposed on the first driving direction side that is one side of the driving direction, and the driving direction first The width of the driven portion in the driving direction is shorter than the interval between the magnetic core disposed on the second side in the driving direction opposite to the one side and the end surface on the first side in the driving direction. The electromagnetic actuator according to any one of 1 to 8.
  10.  前記被駆動部は、噛み合い式係合装置の係合の状態を切り替える切替部材と連動するように構成され、
     前記駆動方向は、前記噛み合い式係合装置の回転軸心に平行な方向である請求項1から9のいずれか一項に記載の電磁アクチュエータ。
    The driven portion is configured to be interlocked with a switching member that switches an engagement state of the meshing engagement device,
    The electromagnetic actuator according to any one of claims 1 to 9, wherein the driving direction is a direction parallel to a rotation axis of the meshing engagement device.
  11.  前記噛み合い式係合装置は、第一駆動連結機構を介して電動モータに駆動連結された第一入力ドグギヤと、前記第一駆動連結機構とは異なる変速比を有する第二駆動連結機構を介して前記電動モータに駆動連結された第二入力ドグギヤと、出力部材に駆動連結された出力ドグギヤと、前記第一入力ドグギヤ、前記第二入力ドグギヤ、及び前記出力ドグギヤの少なくとも一つに噛み合う噛合い部を有する前記切替部材と、を有し、
     前記駆動方向の一方側である駆動方向第一側から前記駆動方向に沿って、前記第一入力ドグギヤ、前記出力ドグギヤ、前記第二入力ドグギヤの順に配置され、
     前記駆動方向第一側から前記駆動方向に沿って、第一磁性体コア、第二磁性体コア、第三磁性体コアの順に配置された3つの前記磁性体コアを備え、
     前記第二磁性体コアは、前記被駆動部の前記駆動方向の中央部が当該第二磁性体コアの前記駆動方向の中央部に対向する位置にある場合に、前記切替部材が前記出力ドグギヤにのみ噛み合うような前記駆動方向の位置に配置されている請求項10に記載の電磁アクチュエータ。
    The meshing engagement device includes a first input dog gear that is drive-coupled to the electric motor via the first drive coupling mechanism, and a second drive coupling mechanism that has a gear ratio different from that of the first drive coupling mechanism. A second input dog gear drivingly connected to the electric motor, an output dog gear drivingly connected to an output member, and a meshing portion that meshes with at least one of the first input dog gear, the second input dog gear, and the output dog gear. The switching member having
    The first input dog gear, the output dog gear, and the second input dog gear are arranged in this order along the drive direction from the drive direction first side that is one side of the drive direction,
    Three magnetic cores arranged in the order of the first magnetic core, the second magnetic core, and the third magnetic core along the driving direction from the first side in the driving direction,
    In the second magnetic core, when the central portion of the driven portion in the driving direction is at a position facing the central portion of the second magnetic core in the driving direction, the switching member is connected to the output dog gear. The electromagnetic actuator according to claim 10, wherein the electromagnetic actuator is disposed at a position in the driving direction so as to mesh only.
  12.  前記噛み合い式係合装置は、電動モータに駆動連結された入力ドグギヤと、出力部材に駆動連結された出力ドグギヤと、前記入力ドグギヤ及び前記出力ドグギヤの少なくとも一つに噛み合う噛合い部を有する前記切替部材と、を有し、
     前記制御装置は、前記コイルへの通電を制御することにより、前記被駆動部に連動する前記切替部材を前記駆動方向に移動させて、前記切替部材が前記入力ドグギヤ及び前記出力ドグギヤの双方に噛み合う係合状態から、前記切替部材が前記入力ドグギヤ及び前記出力ドグギヤのいずれか一方に噛み合う解除状態に移行させる解除制御を実行可能に構成され、
     前記制御装置は、前記解除制御を行った後、前記電動モータの回転速度を増加又は減少させるように前記電動モータの出力トルクを制御する回転速度変化制御を行い、当該回転速度変化制御により前記電動モータの出力トルクが予め定めた判定変化量以上に増加又は減少した場合に、異常時用第一制御を実行する請求項10又は11に記載の電磁アクチュエータ。
    The meshing engagement device includes the input dog gear that is drivingly connected to the electric motor, the output dog gear that is drivingly connected to the output member, and the meshing portion that meshes with at least one of the input dog gear and the output dog gear. A member, and
    The control device controls the energization of the coil to move the switching member interlocked with the driven portion in the driving direction, and the switching member meshes with both the input dog gear and the output dog gear. From the engagement state, the switching member is configured to be able to execute a release control for shifting to a release state where the switching member meshes with either the input dog gear or the output dog gear.
    After performing the release control, the control device performs rotational speed change control for controlling output torque of the electric motor so as to increase or decrease the rotational speed of the electric motor, and the electric speed is controlled by the rotational speed change control. The electromagnetic actuator according to claim 10 or 11, wherein the first control for abnormal time is executed when the output torque of the motor increases or decreases more than a predetermined determination change amount.
  13.  前記噛み合い式係合装置は、電動モータに駆動連結された入力ドグギヤと、出力部材に駆動連結された出力ドグギヤと、前記入力ドグギヤ及び前記出力ドグギヤの少なくとも一つに噛み合う噛合い部を有する前記切替部材と、を有し、
     前記制御装置は、前記コイルへの通電を制御することにより、前記被駆動部に連動する前記切替部材を前記駆動方向に移動させて、前記切替部材が前記入力ドグギヤ及び前記出力ドグギヤのいずれか一方に噛み合う解除状態から、前記切替部材が前記入力ドグギヤ及び前記出力ドグギヤの双方に噛み合う係合状態に移行させる係合制御を実行可能に構成され、
     前記制御装置は、前記係合制御を行った後、前記電動モータの出力トルクを制御するトルク制御を行い、前記トルク制御の開始後、前記入力ドグギヤの回転速度と前記出力ドグギヤの回転速度とが一致していない場合に、異常時用第二制御を実行する請求項10から12のいずれか一項に記載の電磁アクチュエータ。
    The meshing engagement device includes the input dog gear that is drivingly connected to the electric motor, the output dog gear that is drivingly connected to the output member, and the meshing portion that meshes with at least one of the input dog gear and the output dog gear. A member, and
    The control device controls the energization to the coil to move the switching member interlocked with the driven portion in the driving direction, and the switching member is one of the input dog gear and the output dog gear. The switching control is configured to be able to execute an engagement control in which the switching member shifts to an engagement state in which the switching member meshes with both the input dog gear and the output dog gear.
    The control device performs torque control for controlling the output torque of the electric motor after performing the engagement control, and after starting the torque control, the rotational speed of the input dog gear and the rotational speed of the output dog gear are The electromagnetic actuator according to any one of claims 10 to 12, wherein the second control for abnormality is executed when they do not match.
  14.  前記噛み合い式係合装置は、第一駆動連結機構を介して電動モータに駆動連結された第一入力ドグギヤと、前記第一駆動連結機構とは異なる変速比を有する第二駆動連結機構を介して前記電動モータに駆動連結された第二入力ドグギヤと、出力部材に駆動連結された出力ドグギヤと、前記第一入力ドグギヤ、前記第二入力ドグギヤ、及び前記出力ドグギヤの少なくとも一つに噛み合う噛合い部を有する前記切替部材と、を有し、
     前記駆動方向の一方側である駆動方向第一側から前記駆動方向に沿って、前記第一入力ドグギヤ、前記出力ドグギヤ、前記第二入力ドグギヤの順に配置され、
     前記制御装置は、前記第一入力ドグギヤ及び前記第二入力ドグギヤの一方を変速前ドグギヤとし、前記第一入力ドグギヤ及び前記第二入力ドグギヤの他方を変速後ドグギヤとし、前記コイルへの通電を制御することにより、前記被駆動部に連動する前記切替部材を前記駆動方向に移動させて、前記切替部材が前記変速前ドグギヤ及び前記出力ドグギヤに噛み合う変速前変速状態から、前記切替部材が前記出力ドグギヤにのみ噛み合うニュートラル状態に移行させるニュートラル移行制御を行った後、前記ニュートラル状態から、前記切替部材が前記変速後ドグギヤ及び前記出力ドグギヤに噛み合う変速後変速状態に移行させる変速後係合制御を行う変速制御を実行可能に構成され、
     前記制御装置は、前記ニュートラル移行制御を行った後、前記電動モータに駆動連結された前記変速後ドグギヤの回転速度が前記出力ドグギヤの回転速度に近づくように、前記電動モータの出力トルクを制御する回転速度変化制御を行い、当該回転速度変化制御により前記電動モータの出力トルクが予め定めた判定変化量以上に増加又は減少した場合に、異常時用第三制御を実行し、
     前記制御装置は、前記変速後係合制御を行った後、前記回転速度変化制御を終了して前記電動モータの出力トルクを制御するトルク制御を行い、前記トルク制御の開始後、前記変速後ドグギヤの回転速度が前記出力ドグギヤの回転速度に一致していない場合に、異常時用第四制御を実行する請求項10から13のいずれか一項に記載の電磁アクチュエータ。
    The meshing engagement device includes a first input dog gear that is drive-coupled to the electric motor via the first drive coupling mechanism, and a second drive coupling mechanism that has a gear ratio different from that of the first drive coupling mechanism. A second input dog gear drivingly connected to the electric motor, an output dog gear drivingly connected to an output member, and a meshing portion that meshes with at least one of the first input dog gear, the second input dog gear, and the output dog gear. The switching member having
    The first input dog gear, the output dog gear, and the second input dog gear are arranged in this order along the drive direction from the drive direction first side that is one side of the drive direction,
    The control device controls one of the first input dog gear and the second input dog gear as a pre-shift dog gear, the other of the first input dog gear and the second input dog gear as a post-shift dog gear, and controls energization to the coil. By moving the switching member interlocked with the driven part in the driving direction, the switching member is moved from the pre-shifting gear state in which the switching member meshes with the pre-shifting dog gear and the output dog gear, and the switching member is moved to the output dog gear. After performing the neutral shift control for shifting to the neutral state meshing only with the gear, the shift member performs the post-shift engagement control for shifting from the neutral state to the post-shift gear shift state in which the switching member meshes with the post-shift dog gear and the output dog gear. Configured to be able to perform control,
    The control device controls the output torque of the electric motor so that the rotation speed of the post-shift dog gear that is drivingly connected to the electric motor approaches the rotation speed of the output dog gear after performing the neutral shift control. When the rotational speed change control is performed, and the output torque of the electric motor is increased or decreased by a predetermined determination change amount or more by the rotational speed change control, the abnormality third control is executed.
    The control device, after performing the post-shift engagement control, performs the torque control for controlling the output torque of the electric motor by terminating the rotational speed change control, and after the start of the torque control, the post-shift dog gear The electromagnetic actuator according to any one of claims 10 to 13, wherein the abnormality fourth control is executed when the rotation speed of the output dog gear does not coincide with the rotation speed of the output dog gear.
PCT/JP2015/074783 2014-09-25 2015-08-31 Electromagnetic actuator WO2016047390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-195571 2014-09-25
JP2014195571 2014-09-25

Publications (1)

Publication Number Publication Date
WO2016047390A1 true WO2016047390A1 (en) 2016-03-31

Family

ID=55580918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074783 WO2016047390A1 (en) 2014-09-25 2015-08-31 Electromagnetic actuator

Country Status (1)

Country Link
WO (1) WO2016047390A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035127A (en) * 2019-08-21 2021-03-01 アイシン精機株式会社 Linear actuators, disconnection devices and vehicle disconnection devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174418A (en) * 1996-12-04 1998-06-26 Yaskawa Electric Corp Linear motor
JP2003244925A (en) * 2002-02-19 2003-08-29 Hitachi Ltd Drive
JP2005245047A (en) * 2004-02-24 2005-09-08 Nippon Pulse Motor Co Ltd Linear actuator
JP2008256007A (en) * 2007-04-02 2008-10-23 Toyota Central R&D Labs Inc Dog clutch actuator
JP2014105845A (en) * 2012-11-29 2014-06-09 Fuji Heavy Ind Ltd Clutch control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10174418A (en) * 1996-12-04 1998-06-26 Yaskawa Electric Corp Linear motor
JP2003244925A (en) * 2002-02-19 2003-08-29 Hitachi Ltd Drive
JP2005245047A (en) * 2004-02-24 2005-09-08 Nippon Pulse Motor Co Ltd Linear actuator
JP2008256007A (en) * 2007-04-02 2008-10-23 Toyota Central R&D Labs Inc Dog clutch actuator
JP2014105845A (en) * 2012-11-29 2014-06-09 Fuji Heavy Ind Ltd Clutch control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021035127A (en) * 2019-08-21 2021-03-01 アイシン精機株式会社 Linear actuators, disconnection devices and vehicle disconnection devices

Similar Documents

Publication Publication Date Title
CN103427585B (en) Tubular linear motor
JPH099602A (en) Stepping motor
JP2009159775A (en) Switched reluctance motor
US20080179987A1 (en) Reluctance motor rotor and reluctance motor equipped with the same
JP2007300751A (en) Crankshaft direct-coupled rotating electric machine for vehicle
JP2005150305A (en) Electromagnetic actuator
GB2492259A (en) Magnetic transmission assembly and corresponding split phase motor
JP5502818B2 (en) Variable speed magnetic coupling device
JP4429228B2 (en) Drive device
WO2016047390A1 (en) Electromagnetic actuator
SE529846C2 (en) Electromagnetic rotor machine
JP5649203B1 (en) Stepping motor
WO2018123711A1 (en) Shift range control device
WO2005008864A1 (en) Steering device for vehicle
CN103493346A (en) Actuator
JP5723473B1 (en) Magnet excitation rotating electrical machine system
JP4972442B2 (en) Permanent magnet arrangement structure of direct acting motor
JP2007089260A (en) Linear synchronous motor
JP2008079446A (en) Rotary electric machine
JP2006191783A (en) Rotating electric machine
JP6746862B2 (en) Rotation direction switching device
KR102129100B1 (en) Driving apparatus for electric vehicle
JP6006196B2 (en) Rotating electric machine
JP2008161038A (en) Axial-gap electric motor
JP2010068554A (en) Linear motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP