[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016046927A1 - Refrigeration cycle device and air-conditioning device - Google Patents

Refrigeration cycle device and air-conditioning device Download PDF

Info

Publication number
WO2016046927A1
WO2016046927A1 PCT/JP2014/075374 JP2014075374W WO2016046927A1 WO 2016046927 A1 WO2016046927 A1 WO 2016046927A1 JP 2014075374 W JP2014075374 W JP 2014075374W WO 2016046927 A1 WO2016046927 A1 WO 2016046927A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
defrost operation
refrigeration cycle
outdoor
Prior art date
Application number
PCT/JP2014/075374
Other languages
French (fr)
Japanese (ja)
Inventor
永登 齋藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1701195.8A priority Critical patent/GB2545112B/en
Priority to PCT/JP2014/075374 priority patent/WO2016046927A1/en
Publication of WO2016046927A1 publication Critical patent/WO2016046927A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately

Definitions

  • the present invention relates to a refrigeration cycle apparatus and an air conditioner.
  • the refrigeration cycle apparatus has, for example, a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger, and has a refrigerant circuit configured by connecting these with refrigerant piping. Further, for example, the compressor and the outdoor heat exchanger are mounted on an outdoor unit installed outside the room. Here, when the heating operation is performed in the refrigeration cycle apparatus, the outdoor heat exchanger functions as an evaporator.
  • the outdoor heat exchanger functions as an evaporator, and frost may adhere to the outdoor heat exchanger because it is performed in winter.
  • frost adheres to the outdoor heat exchanger in this way, the heat exchange efficiency between the refrigerant supplied to the heat transfer tubes of the outdoor heat exchanger and the air passing through the fins connected to the heat transfer tubes is reduced, and the refrigeration cycle The efficiency at the time of heating operation of an apparatus will reduce.
  • Patent Document 1 a refrigeration cycle apparatus has been proposed in which an outdoor heat exchanger is divided into upper and lower stages (see, for example, Patent Document 1).
  • hot gas is supplied to the upper or lower outdoor heat exchanger for defrosting, and the lower or upper outdoor heat exchanger functions as an evaporator to perform heating operation. It is possible to carry out on-defrost operation. When the on-defrost operation is performed, the heating operation can be continued while the defrosting operation is performed on the upper or lower outdoor heat exchanger.
  • the on-defrost operation is an operation that does not use, for example, heat collection from the indoor unit, and raises the temperature of the refrigerant with the compressor and supplies the refrigerant with the raised temperature to the outdoor heat exchanger.
  • the defrosting capability is insufficient, and frost may remain in the outdoor heat exchanger after the on-defrost operation is performed.
  • the present invention has been made in order to solve the above-described problems, and a refrigeration cycle apparatus and an air conditioner that can suppress a reduction in efficiency of heating operation after finishing on-defrost operation.
  • the purpose is to provide.
  • a refrigeration cycle apparatus includes a compressor, an indoor heat exchanger, a throttling device, and an outdoor heat exchanger, and in the refrigeration cycle apparatus including a refrigerant circuit in which these are connected by a refrigerant pipe, the outdoor heat exchanger
  • the control device When the outside air temperature satisfies a preset condition, the control device causes one of the first heat exchanger and the second heat exchanger to function as an evaporator, On the other hand, the on-defrost operation for supplying hot gas discharged from the compressor without passing through the indoor heat exchanger is performed, and after the on-defrost operation is performed, the temperature of the outdoor heat exchanger satisfies a preset condition.
  • the room Are those configured to implement the reverse defrosting operation for supplying the refrigerant passing through the exchanger from the compressor to the first heat exchanger and the second heat exchanger.
  • the refrigeration cycle apparatus Since the refrigeration cycle apparatus according to the present invention has the above-described configuration, it is possible to suppress a reduction in the efficiency of the heating operation after the on-defrost operation is finished.
  • FIG. 1 It is a schematic diagram which shows a mode that the frost adhering to the outdoor heat exchanger 103 melts
  • the on-defrost operation was carried out, it was frozen in the second heat exchanger 103b, and frost could not be removed, so that the reverse defrost operation was performed.
  • the frost formation amount of the first heat exchanger 103a and the second heat exchanger 103b was large, and the frost could not be removed in either case, so that the reverse defrost operation was performed. It is.
  • It is the modification 3 of the outdoor heat exchanger 103 of the refrigerating-cycle apparatus 500 which concerns on embodiment of this invention.
  • It is the modification 4 of the outdoor heat exchanger 103 of the refrigerating-cycle apparatus 500 which concerns on embodiment of this invention.
  • It is the modification 5 of the outdoor heat exchanger 103 of the refrigerating-cycle apparatus 500 which concerns on embodiment of
  • FIG. 1 is a diagram schematically showing a refrigerant circuit configuration and the like of a refrigeration cycle apparatus 500 according to the present embodiment.
  • FIG. 2 is a schematic diagram of the outdoor heat exchanger 103.
  • a refrigerant circuit configuration and the like of the refrigeration cycle apparatus 500 will be described with reference to FIG.
  • a case where refrigeration cycle apparatus 500 is an air conditioner will be described as an example.
  • the refrigeration cycle apparatus 500 according to the present embodiment is provided with an improvement in which on-defrost operation and reverse defrost operation are performed based on the outside air temperature and the temperature of the outdoor heat exchanger 103.
  • the outdoor unit 100 is a heat source device that supplies cold heat or warm heat to the indoor unit 300.
  • the outdoor unit 100 includes a compressor 101 that compresses and discharges the refrigerant, a four-way switching valve 102 that is used to switch between cooling operation and heating operation, and functions as a condenser during cooling operation, and evaporates during heating operation.
  • An outdoor heat exchanger 103 that functions as a storage unit and an accumulator 104 that is used to store surplus refrigerant in the refrigerant circuit C are connected by refrigerant piping and mounted.
  • the outdoor unit 100 is equipped with a switching valve 105a, a switching valve 105b, a switching valve 106a, and a switching valve 106b that are used for switching between a cooling operation, a heating operation, a reverse defrost operation, an on-defrost operation, and the like.
  • the outdoor unit 100 is provided with an outdoor fan 109 that is attached to the outdoor heat exchanger 103 and supplies air to the outdoor heat exchanger 103.
  • the outdoor unit 100 is equipped with a control device 119 for controlling the rotational speed of the compressor 101 and the like when performing cooling operation, heating operation, reverse defrost operation, on-defrost operation, and the like.
  • the outdoor unit 100 includes an outdoor air temperature sensor 153, a refrigerant temperature detection unit 151, a high pressure sensor 141, and a low pressure sensor 142 that are used when the control device 119 determines switching between heating operation, reverse defrost operation, and on defrost operation. have.
  • the on-defrost operation does not use the indoor unit 300 as a heat collection source. That is, in the on-defrost operation, the defrosting capability is lower than that in the reverse defrost operation because the indoor unit 300 is not used as a heat collection source.
  • any one of the heat exchangers constituting the outdoor heat exchanger 103 that is, one of the first heat exchanger 103a and the second heat exchanger 103b described later is used.
  • the heating operation can be continued by functioning as an evaporator.
  • hot gas refrigerant discharged from the compressor 101 is supplied to the outdoor heat exchanger 103 by bypassing the indoor heat exchanger 312.
  • the reverse defrost operation is an operation that uses the indoor unit 300 as a heat collection source and uses the latent heat of the refrigerant
  • the defrosting capability is higher than the on-defrost operation that supplies hot gas to the outdoor heat exchanger 103.
  • the defrosting of the outdoor heat exchanger 103 can be completed in a shorter time than the on-defrost operation.
  • the four-way switching valve 102 is switched to the cooling side so that the refrigerant flow is reversed from that in the heating operation.
  • the compressor 101 sucks low-temperature and low-pressure gas refrigerant, compresses the refrigerant into high-temperature and high-pressure gas refrigerant, and circulates the refrigerant in the refrigerant circuit C.
  • the compressor 101 may be composed of an inverter type compressor whose capacity can be controlled, for example.
  • the compressor 101 is not limited to an inverter type compressor that can control the capacity, but may be a constant speed type compressor, or a compressor that combines an inverter type and a constant speed type.
  • the compressor 101 has a discharge side connected to the four-way switching valve 102 and a suction side connected to the accumulator 104.
  • the compressor 101 is not particularly limited as long as it can compress the sucked refrigerant.
  • the compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the four-way switching valve 102 is provided on the discharge side of the compressor 101 and switches the refrigerant flow path between the cooling operation and the heating operation. That is, the four-way switching valve 102 controls the flow of the refrigerant so that the outdoor heat exchanger 103 functions as an evaporator or a condenser according to the operation mode.
  • the four-way switching valve 102 is switched so as to connect the indoor heat exchanger 312 and the compressor 101 and to connect the outdoor heat exchanger 103 and the accumulator 104 during the heating operation.
  • the four-way switching valve 102 is switched so as to connect the outdoor heat exchanger 103 and the compressor 101 and to connect the indoor heat exchanger 312 and the accumulator 104 during the cooling operation.
  • the outdoor heat exchanger 103 exchanges heat between a heat medium (for example, ambient air, water, etc.) and a refrigerant, evaporates and gasifies the refrigerant as an evaporator during heating operation, and a condenser (heat radiator) during cooling operation. ) To condense and liquefy the refrigerant.
  • the outdoor heat exchanger 103 can be configured by, for example, a fin tube heat exchanger having a heat transfer tube through which a refrigerant flows and a plurality of fins connected to the heat transfer tube.
  • the outdoor heat exchanger 103 has its condensation capacity or evaporation capacity controlled by the rotational speed of the outdoor fan 109.
  • the outdoor heat exchanger 103 includes a plurality of heat exchangers. That is, the outdoor heat exchanger 103 includes a first heat exchanger 103a and a second heat exchanger 103b disposed below the first heat exchanger 103a.
  • One side of the first heat exchanger 103a is connected to the four-way switching valve 102, and the other side is connected to the expansion device 311 via the switching valve 105a.
  • One of the second heat exchangers 103b is connected to the four-way switching valve 102, and the other is connected to the expansion device 311 via the switching valve 105b.
  • FIG. 2 a mode in which the first heat exchanger 103a is installed on the second heat exchanger 103b will be described, but the present invention is not limited to this.
  • the heat exchanger 103b and the first heat exchanger 103a may be separated from each other.
  • the accumulator 104 is provided on the suction side of the compressor 101, and has a function of storing surplus refrigerant and a function of separating liquid refrigerant and gas refrigerant.
  • One of the accumulators 104 is connected to the suction side of the compressor 101 and the other is connected to the four-way switching valve 102.
  • Control device 119 The control device 119 executes various operations such as a cooling operation, a heating operation, a reverse defrost operation, and an on-defrost operation based on detection results of the outside air temperature sensor 153, the refrigerant temperature detection unit 151, the high pressure sensor 141, and the low pressure sensor 142. Is to control. In order to perform these various operations, the control device 119 performs the rotation speeds (including operation and stop) of the indoor fan 313 and the outdoor fan 109, the rotation speed (including operation and stop) of the compressor 101, and the four-way switching valve. 102, the switching valve 105a, the switching valve 105b, the switching valve 106a and the switching valve 106b, and the opening degree of the expansion device 311 are controlled.
  • FIG. 1 shows an example in which a control device 119 that controls the operation of the refrigeration cycle apparatus 500 is mounted in the outdoor unit 100, but it may be provided in the indoor unit 300. Further, the control device 119 may be provided outside the outdoor unit 100 and the indoor unit 300. Further, the control device 119 may be divided into a plurality according to the function and provided in each of the outdoor unit 100 and the indoor unit 300. In this case, each control device may be connected wirelessly or by wire.
  • the detection result of the first refrigerant temperature sensor 151a of the refrigerant temperature detection unit 151 described later is equal to or lower than the first refrigerant temperature Ta set in advance, and the detection result of the outside air temperature sensor 153 is preset.
  • the control device 119 is configured to perform the reverse defrost operation when the detection result of the second refrigerant temperature sensor 151b of the refrigerant temperature detection unit 151 is equal to or lower than the second refrigerant temperature Tb set in advance. (See step S6 in FIG. 8).
  • the first refrigerant temperature Ta and the second refrigerant temperature Tb for example, 2 degrees can be adopted, and as the preset outside air temperature Tair, for example, 1 degree can be adopted.
  • the first refrigerant temperature Ta and the second refrigerant temperature Tb are set to values larger than the outside air temperature Tair, for example.
  • the first refrigerant temperature Ta and the second refrigerant temperature Tb are set to the same value, but are not limited thereto.
  • the value of the second refrigerant temperature Tb may be set smaller than the first refrigerant temperature Ta, and the reverse defrost operation may be adjusted so as not to be performed even if some frost remains.
  • the value of the second refrigerant temperature Tb may be set higher than the first refrigerant temperature Ta to facilitate the control to perform the reverse defrost operation, and frost may be more reliably removed.
  • the control device 119 may control the rotation speed of the compressor 101 to be, for example, the maximum rotation speed. Thereby, a higher temperature gas refrigerant can be supplied to the outdoor heat exchanger 103, and the defrost of the outdoor heat exchanger 103 can be implemented with high efficiency.
  • the outside air temperature sensor 153 detects the outside air temperature.
  • the outdoor temperature sensor 153 is attached to, for example, a housing portion of the outdoor unit 100.
  • the outside air temperature sensor 153 is used to determine whether to perform on-defrost operation or reverse defrost operation.
  • the on-defrost operation is performed when the outside air temperature is higher than the preset temperature
  • the reverse is performed when the outside air temperature is equal to or lower than the preset temperature. It is configured to perform defrost operation.
  • the refrigerant temperature detector 151 is attached to the outdoor heat exchanger 103 and is used to detect the temperature of the refrigerant in the outdoor heat exchanger 103.
  • the refrigerant temperature detector 151 is used to determine whether or not to perform on-defrost operation and reverse defrost operation.
  • the refrigerant temperature detector 151 is attached to the first heat exchanger 103a, is attached to the first refrigerant temperature sensor 151a that detects the refrigerant of the first heat exchanger 103a, and the second heat exchanger 103b. And a second refrigerant temperature sensor 151b that detects the refrigerant of the second heat exchanger 103b.
  • the first refrigerant temperature sensor 151a is disposed on the inlet side of the first heat exchanger 103a, that is, at a position where the refrigerant temperature before flowing into the first heat exchanger 103a can be detected.
  • the second refrigerant temperature sensor 151b is disposed at the inlet side of the second heat exchanger 103b, that is, at a position where the refrigerant temperature before flowing into the second heat exchanger 103b can be detected.
  • the first refrigerant temperature sensor 151a is attached to a refrigerant pipe that connects the first heat exchanger 103a and the switching valve 105a, and the second refrigerant temperature sensor 151b is switched to the second heat exchanger 103b. It is attached to a refrigerant pipe connecting the valve 105b.
  • the arrangement positions of the first refrigerant temperature sensor 151 a and the second refrigerant temperature sensor 151 b are not limited to this, and may be installed, for example, on the outlet side of the outdoor heat exchanger 103.
  • the high pressure sensor 141 detects the pressure of the refrigerant discharged from the compressor 101.
  • the high-pressure sensor 141 is attached to a refrigerant pipe that connects the discharge side of the compressor 101 and the four-way switching valve 102.
  • the control device 119 causes the compressor 101 to operate at the maximum rotation speed. For this reason, the refrigerant pressure discharged from the compressor 101 tends to increase.
  • the refrigerant pressure increases, the refrigerant oil used for lubricating the drive portion of the compressor 101 may deteriorate due to, for example, an increase in the refrigerant temperature accompanying an increase in the refrigerant pressure. Therefore, when the discharge refrigerant pressure is higher than a preset value, the high-pressure sensor 141 causes the control device 119 to reduce the rotation speed of the compressor 101 or stop the compressor 101.
  • the low pressure sensor 142 detects the pressure of the refrigerant sucked into the compressor 101.
  • the low pressure sensor 142 is attached to a refrigerant pipe that connects the refrigerant inflow side of the accumulator 104 and the four-way switching valve 102. If frost adheres to the outdoor heat exchanger 103 (evaporator) during the heating operation, the fins are clogged, and the heat exchange efficiency between the refrigerant and the air in the outdoor heat exchanger 103 is reduced. Thereby, at the time of heating operation, the refrigerant becomes difficult to gasify in the outdoor heat exchanger 103, and the low pressure may be lowered.
  • the low pressure sensor 142 is used to detect such a low pressure abnormality.
  • the on-defrost is performed.
  • the controller 119 may be configured to perform the on-defrost operation and the reverse defrost operation when the detection result of the low-pressure sensor 142 becomes smaller than a preset value during the heating operation.
  • the indoor unit 300 is a load side unit to which cold or warm heat is supplied from the outdoor unit 100.
  • an indoor heat exchanger 312 and an expansion device 311 are mounted connected in series.
  • a blower (not shown) for supplying air to the indoor heat exchanger 312 may be provided.
  • the indoor heat exchanger 312 may perform heat exchange between the refrigerant and a heat medium different from the refrigerant such as water.
  • the indoor heat exchanger 312 performs heat exchange between a heat medium (for example, ambient air and water) and the refrigerant, condenses and liquefies the refrigerant as a condenser (heat radiator) during heating operation, and evaporates during cooling operation. As a vessel, the refrigerant is evaporated and gasified.
  • the indoor heat exchanger 312 can be configured by, for example, a fin tube heat exchanger having a heat transfer tube through which a refrigerant flows and a plurality of fins connected to the heat transfer tube.
  • the indoor heat exchanger 312 has its condensation capacity or evaporation capacity controlled by the rotational speed of the indoor fan 313.
  • the expansion device 311 decompresses and expands the refrigerant.
  • a device whose opening degree can be variably controlled for example, an electronic expansion valve can be employed.
  • the throttle device 311 cannot adjust the opening degree like an electronic expansion valve or the like, but can employ a capillary or the like that is less expensive than an electronic expansion valve.
  • the refrigeration cycle apparatus 500 can use various refrigerants as the refrigerant sealed in the refrigerant circuit C.
  • natural refrigerants such as carbon dioxide refrigerant, hydrocarbon refrigerant, and helium can be employed.
  • alternative refrigerants that do not contain chlorine such as HFC410A refrigerant, HFC407C refrigerant, and HFC404A refrigerant, may be employed.
  • a fluorocarbon refrigerant such as an R22 refrigerant or an R134a refrigerant can also be used.
  • FIG. 3A is a diagram showing a refrigerant flow during heating operation of the refrigeration cycle apparatus 500 according to the present embodiment.
  • FIG. 3B is a diagram showing a refrigerant flow during the cooling operation of the refrigeration cycle apparatus 500 according to the present embodiment. The operation of the refrigeration cycle apparatus 500 during the heating operation and the cooling operation will be described with reference to FIGS. 3A and 3B.
  • the refrigeration cycle apparatus 500 starts the cooling operation and the heating operation when receiving a signal indicating that the cooling operation is performed, a signal indicating that the heating operation is performed, or the like from a remote controller installed in the room, for example.
  • the control device 119 switches the four-way switching valve 102 to the heating side, connects the discharge side of the compressor 101 and the indoor heat exchanger 312, and connects the refrigerant inflow side of the accumulator 104 and the outdoor heat exchanger. 103 is connected. Further, the control device 119 sets the rotation speed of the compressor 101 to a preset rotation speed, sets the rotation speeds of the outdoor fan 109 and the indoor fan 313 to a preset rotation speed, and sets the opening of the expansion device 311 in advance. To the desired opening. Furthermore, the control device 119 opens the switching valve 105a and the switching valve 105b, and closes the switching valve 106a and the switching valve 106b. As shown in FIG.
  • the refrigerant discharged from the compressor 101 flows into the indoor heat exchanger 312 after flowing through the four-way switching valve 102 and is condensed and liquefied. Thereafter, the refrigerant flowing out of the indoor heat exchanger 312 is decompressed by the expansion device 311 and then gasified by the outdoor heat exchanger 103.
  • the refrigerant that has flowed out of the outdoor heat exchanger 103 flows into the accumulator 104 through the four-way switching valve 102.
  • the gas refrigerant out of the refrigerant in the accumulator 104 flows into the suction side of the compressor 101.
  • the control device 119 switches the four-way switching valve 102 to the cooling side, connects the discharge side of the compressor 101 and the outdoor heat exchanger 103, and connects the refrigerant inflow side of the accumulator 104 and the indoor heat exchanger. 312 is connected. Further, the control device 119 sets the rotation speed of the compressor 101 to a preset rotation speed, sets the rotation speeds of the outdoor fan 109 and the indoor fan 313 to a preset rotation speed, and sets the opening of the expansion device 311 in advance. To the desired opening. Furthermore, the control device 119 opens the switching valve 105a and the switching valve 105b, and closes the switching valve 106a and the switching valve 106b. As shown in FIG.
  • the refrigerant discharged from the compressor 101 flows into the outdoor heat exchanger 103 after flowing through the four-way switching valve 102, and is condensed and liquefied. Thereafter, the refrigerant flowing out of the outdoor heat exchanger 103 is decompressed by the expansion device 311 and then gasified by the indoor heat exchanger 312. The refrigerant that has flowed out of the indoor heat exchanger 312 flows into the accumulator 104 through the four-way switching valve 102. The gas refrigerant out of the refrigerant in the accumulator 104 flows into the suction side of the compressor 101.
  • FIG. 4A is a diagram illustrating a state in which the on-defrost operation of the refrigeration cycle apparatus 500 according to the present embodiment is performed and the refrigerant is supplied to the first heat exchanger 103a.
  • FIG. 4B is a diagram illustrating a state in which the on-defrost operation of the refrigeration cycle apparatus 500 according to the present embodiment is performed and the refrigerant is supplied to the second heat exchanger 103b.
  • FIG. 4C is a diagram showing a refrigerant flow during the reverse defrost operation of the refrigeration cycle apparatus 500 according to the present embodiment.
  • the control device 119 is configured to switch between the first heat exchanger 103a and the second heat exchanger 103b that function as an evaporator and the one that supplies hot gas when performing on-defrost operation.
  • the first heat exchanger 103a functions as an evaporator
  • the first operation mode for supplying hot gas to the second heat exchanger 103b and the second heat exchanger 103b is evaporated.
  • 4A corresponds to the explanatory diagram of the first operation mode
  • FIG. 4B corresponds to the explanatory diagram of the second operation mode.
  • On-defrost operation 1st operation mode
  • the control device 119 switches the four-way switching valve 102 to the heating side.
  • the control device 119 maximizes the rotation speed of the compressor 101 and sets the rotation speeds of the outdoor fan 109 and the indoor fan 313 to preset rotation speeds.
  • the outdoor fan 109 and the indoor fan 313 are operated to continue the heating operation.
  • the control device 119 sets the opening degree of the expansion device 311 to a preset opening degree. Further, the control device 119 opens the switching valve 105a and closes the switching valve 105b. The control device 119 closes the switching valve 106a and opens the switching valve 106b.
  • the first heat exchanger 103a functions as an evaporator, and hot gas refrigerant discharged from the compressor 101 is supplied to the second heat exchanger 103b (FIGS. 5A and 5B). ), FIG. 6 (a) and FIG. 6 (b)).
  • a part of the refrigerant discharged from the compressor 101 flows into the indoor heat exchanger 312 after flowing through the four-way switching valve 102, and is condensed and liquefied.
  • the other part of the refrigerant discharged from the compressor 101 flows through the switching valve 106b and then flows into the second heat exchanger 103b to melt frost.
  • the refrigerant flowing out from the indoor heat exchanger 312 is decompressed by the expansion device 311 and then gasified by the first heat exchanger 103a.
  • the refrigerant flowing out from the first heat exchanger 103a and the refrigerant flowing out from the second heat exchanger 103b merge on the downstream side of the outdoor heat exchanger 103, and then the four-way switching valve 102 is To the accumulator 104.
  • the gas refrigerant out of the refrigerant in the accumulator 104 flows into the suction side of the compressor 101.
  • the control device 119 closes the switching valve 105a and opens the switching valve 105b. Further, the control device 119 opens the switching valve 106a and closes the switching valve 106b.
  • the control of the other configuration is the same as in the first operation mode. Accordingly, the second heat exchanger 103b functions as an evaporator, and hot gas refrigerant discharged from the compressor 101 is supplied to the first heat exchanger 103a (FIGS. 5C and 5D). ), FIG. 6 (c) and FIG. 6 (d)).
  • a part of the refrigerant discharged from the compressor 101 flows into the indoor heat exchanger 312 after flowing through the four-way switching valve 102 and is condensed and liquefied. .
  • the refrigerant flowing out of the indoor heat exchanger 312 is decompressed by the expansion device 311 and then gasified by the second heat exchanger 103b.
  • coolant discharged from the compressor 101 flows through the switching valve 106b, it flows in into the 1st heat exchanger 103a, and melts frost.
  • the control device 119 executes the first operation mode for 10 minutes, for example, and then executes the second operation mode for 10 minutes. In addition, it is not limited to 10 minutes, It may be longer or shorter than this. Further, for example, there are circumstances such as the size of the first heat exchanger 103a and the second heat exchanger 103b differing, and the time required for defrosting is between the first heat exchanger 103a and the second heat exchanger 103b. If they are different, they may be set to different values.
  • the control device 119 maximizes the rotation speed of the compressor 101. In addition, the control device 119 stops the operation of the outdoor fan 109 and the indoor fan 313. If the outdoor fan 109 is operated during the reverse defrost operation, cold outdoor air is supplied to the outdoor heat exchanger 103, and frost is hardly melted. Therefore, the outdoor fan 109 is stopped. In addition, when the indoor fan 313 is operated during the reverse defrost operation, the cold air that has passed through the indoor heat exchanger 312 functioning as an evaporator is supplied to the room in winter and the indoor fan 313 is stopped.
  • the control device 119 sets the opening degree of the expansion device 311 to a preset opening degree. Further, the control device 119 opens the switching valve 105a and the switching valve 105b, and closes the switching valve 106a and the switching valve 106b. In the reverse defrost operation, the first heat exchanger 103a and the second heat exchanger 103b are caused to function as a condenser, and frost is removed more strongly than in the on-defrost operation (FIGS. 6E and 6F). reference). The control device 119 performs the reverse defrost operation, for example, for 7 to 12 minutes.
  • the reverse defrost operation is an operation shifted from the heating operation or the on-defrost operation.
  • the indoor heat exchanger 312 is a condenser during heating operation or on-defrost operation, and has heat corresponding to that.
  • the temperature of the refrigerant flowing out from the indoor heat exchanger 312 is raised through the indoor heat exchanger 312, and the refrigerant whose temperature has been raised is compressed by the compressor 101 and supplied to the outdoor heat exchanger 103. .
  • step S7 After carrying out the on-defrost operation, the reverse defrost operation is carried out, and even if residual frost is formed in the on-defrost operation, it can be removed (see step S4 and step S7 in FIG. 8 described later). ). Further, reverse defrost operation is performed after the heating operation is performed, and it is possible to avoid that the amount of frost formation is large and the defrost time is too long in the on defrost operation (step S3 and FIG. 8 described later). (See step S7).
  • the refrigerant that has flowed out and heated from the indoor heat exchanger 312 flows into the suction side of the compressor 101 via the four-way switching valve 102. Then, the refrigerant discharged from the compressor 101 flows into the outdoor heat exchanger 103 after flowing through the four-way switching valve 102, is condensed and liquefied, and melts frost adhering to the outdoor heat exchanger 103.
  • the refrigerant flowing out of the outdoor heat exchanger 103 is decompressed by the expansion device 311 and then flows into the indoor heat exchanger 312.
  • FIG. 5 is a schematic diagram showing how the frost F adhering to the outdoor heat exchanger 103 melts when the on-defrost operation is performed.
  • FIG. 5A shows a state in which hot gas is supplied to the first heat exchanger 103a and the second heat exchanger 103b functions as an evaporator
  • movement of a) is shown.
  • FIG.5 (c) shows a mode that hot gas is supplied to the 2nd heat exchanger 103b, and the 1st heat exchanger 103a is functioning as an evaporator
  • FIG.5 (d) shows FIG.5 (c).
  • movement of (2) is shown.
  • the frost of the upper first heat exchanger 103a melts and flows into the second heat exchanger 103b, and the second heat exchanger 103b has an iced portion FI formed by freezing of water.
  • the aspect which can remove the frost F adhering to the outdoor heat exchanger 103 is assumed, without implementing reverse defrost driving
  • the amount of frost formation on the outdoor heat exchanger 103 is small, the amount of water that melts in the first heat exchanger 103a and flows into the second heat exchanger 103b is also small. Therefore, since the freezing part FI is also small, the freezing part FI of the outdoor heat exchanger 103 can be removed by the on-defrost operation.
  • FIG. 6A is a schematic diagram illustrating a state where reverse defrost operation is performed because on-defrost operation is performed, but frost is not removed due to icing in the second heat exchanger 103b.
  • the on-defrost operation is performed, the water dissolved by the heat of the upper first heat exchanger 103a flows into the lower second heat exchanger 103b functioning as an evaporator.
  • the fins of the second heat exchanger 103b are frozen and frost formation further proceeds There is. For this reason, even if hot gas is supplied to the 2nd heat exchanger 103b after supplying hot gas to the 1st heat exchanger 103a, it cannot defrost or it takes too much time for defrosting. There is a case.
  • FIG. 6A (a) shows a state in which hot gas is supplied to the first heat exchanger 103a and the second heat exchanger 103b functions as an evaporator
  • FIG. 6A (b) shows FIG. 6A (a).
  • the frost of the first heat exchanger 103a is not completely melted.
  • the frost of the upper first heat exchanger 103a melts and flows into the second heat exchanger 103b, and the second heat exchanger 103b is frozen. Part FI has occurred.
  • FIG. 6A (c) shows a state in which hot gas is supplied to the second heat exchanger 103b and the first heat exchanger 103a functions as an evaporator
  • FIG. 6A (d) shows the state shown in FIG. )
  • the frost of the second heat exchanger 103b is not completely melted. In other words, the frozen portion FI cannot be removed by the defrosting capability of the hot gas.
  • FIG. 6E shows a state in which the reverse defrost operation is performed and the refrigerant that has passed through the indoor heat exchanger 312 is supplied to the first heat exchanger 103a and the second heat exchanger 103b.
  • (F) has shown the mode that the frost of the 1st heat exchanger 103a and the 2nd heat exchanger 103b melt
  • the defrosting capability is higher than that in the on defrost operation, so that the icing portion FI can be removed.
  • FIG. 6B the on-defrost operation was performed, but the amount of frost formation in the first heat exchanger 103a and the second heat exchanger 103b was large, and frost could not be removed in either case, so the reverse defrost operation was performed.
  • FIGS. 6B (a) to 6B (f) correspond to FIGS. 6A (a) to 6 (f), respectively.
  • FIG. 6B when the amount of frost F formed in the outdoor heat exchanger 103 is large, as shown in FIG. 6B (b), some frost can be removed. Most of the frost F may remain. Thus, even if there is much frost adhering to the outdoor heat exchanger 103, frost can be removed by carrying out the reverse defrost operation.
  • FIG. 7 is a schematic diagram showing a state in which the reverse defrost operation is performed without performing the on-defrost operation because the frost formation amount of the first heat exchanger 103a and the second heat exchanger 103b is large.
  • FIG. 7A shows a state in which the reverse defrost operation is performed and the refrigerant that has passed through the indoor heat exchanger 312 is supplied to the first heat exchanger 103a and the second heat exchanger 103b.
  • (B) has shown the mode that the frost of the 1st heat exchanger 103a and the 2nd heat exchanger 103b melt
  • FIG. 8 is a control flowchart when the refrigeration cycle apparatus 500 according to the present embodiment shifts from the heating operation to the defrosting operation (on-defrost operation and reverse defrost operation). A control flow of the refrigeration cycle apparatus 500 will be described with reference to FIG.
  • Step S1 Heating operation time determination
  • the control device 119 performs the determination on the heating operation time.
  • the heating operation elapsed time t is a value set in advance based on the operation capacity of the outdoor unit 100, the performance of the outdoor heat exchanger 103, and the like.
  • the heating operation elapsed time t is stored in advance in a microcomputer of the control device 119 or the like.
  • Step S2 Determination relating to presence or absence of frost formation
  • the control device 119 performs determination based on the first refrigerant temperature Ta set in advance and the detection result of the first refrigerant temperature sensor 151a.
  • the detection result of the first refrigerant temperature sensor 151a is equal to or lower than the first refrigerant temperature Ta (for example, 2 ° C.)
  • the process proceeds to step S3. If the detection result of the first refrigerant temperature sensor 151a is higher than the first refrigerant temperature Ta, the process returns to step S0.
  • step S2 a determination is made regarding the presence or absence of frost formation. That is, in this step S2, determination based on the temperature of the refrigerant before flowing into the first heat exchanger 103a is performed, and frost more than a preset amount is formed in the outdoor heat exchanger 103, so that the defrost operation is performed. It is determined whether or not is necessary.
  • the heating operation is performed, the refrigerant just before being supplied to the outdoor heat exchanger 103 is cooled in the process of passing through the indoor heat exchanger 312 functioning as a condenser.
  • the outdoor heat exchanger 103 is likely to form frost.
  • This defrost operation includes (1) when only on-defrost operation is performed and returning to heating operation, (2) when only reverse defrost operation is performed and returning to heating operation, and (3) on-defrost operation and reverse defrost operation. In some cases, both operations are performed and then the heating operation is returned.
  • Step S3 Judgment related to degree of frost formation
  • the control device 119 performs a determination on the preset outside air temperature Tair. In this determination, the type of defrost operation to be performed is determined.
  • a preset outside air temperature Tair for example, 1 ° C.
  • the process proceeds to step S4. If the outside air temperature is not so low, it is assumed that frost formation on the outdoor heat exchanger 103 can be removed even in on-defrost operation. For this reason, it transfers to step S4 from step S3 and implements an on-defrost operation.
  • step S8 When the detection result of the outside air temperature sensor 153 is equal to or lower than the preset outside air temperature Tair, the process proceeds to step S8.
  • the outside air temperature is low, the degree of frost formation in the outdoor heat exchanger 103 is assumed to be large as described with reference to FIG. For this reason, it is difficult to melt the frost in the on-defrost operation, or it takes a long time to melt the frost, so the process proceeds from step S3 to step S8. That is, in this step S3, the time required for different defrost operations according to the degree of frost formation is determined from the outside air temperature.
  • the value of the outside air temperature Tair can be determined, for example, based on a test result that is performed in advance.
  • Step S4 and Step S5 On-defrost operation
  • the control device 119 performs on-defrost operation. In other words, the control device 119 performs the second operation mode after performing the first operation mode.
  • the control device 119 proceeds to step S6.
  • Step S6 Determination related to presence or absence of residual frost
  • the control device 119 performs determination based on the second refrigerant temperature Tb set in advance and the detection result of the second refrigerant temperature sensor 151b.
  • the detection result of the second refrigerant temperature sensor 151b is equal to or lower than the second refrigerant temperature Tb (for example, 2 ° C.)
  • the process proceeds to step S7.
  • the reason for shifting from step S6 to step S7 is that it is determined that there is residual frost after the on-defrost operation is completed.
  • step S6 it is determined using the detection result of the second refrigerant temperature sensor 151b whether or not the frost has been completely melted in the above-described on-defrost operation of step S4. If the detection result of the second refrigerant temperature sensor 151b is equal to or lower than the second refrigerant temperature, there is a high possibility that the frost has not been completely melted, and the process proceeds to step S7.
  • step S6 may not be performed immediately after the on-defrost operation ends in step S5.
  • the hot gas passes through the refrigerant pipe on the inlet side of the outdoor heat exchanger 103, so that this refrigerant This is because the pipe is heated and it may be determined that the detection result of the second refrigerant temperature sensor 151b is larger than the second refrigerant temperature Tb.
  • Step S7 and Step S8 Reverse defrost operation
  • the control device 119 performs reverse defrost operation.
  • the control device 119 returns to step S0.
  • the refrigeration cycle apparatus 500 performs the residual frost determination based on the temperature of the outdoor heat exchanger 103 (second heat exchanger 103b) after performing the on-defrost operation. For example, when the frozen portion FI is formed in the second heat exchanger 103b (see FIG. 6A (d)), or there is residual frost throughout the outdoor heat exchanger 103 (see FIG. 6B (d)).
  • the control device 119 determines that the detection result of the second refrigerant temperature sensor 151b is equal to or lower than the second refrigerant temperature Tb, and performs the reverse defrost operation.
  • the refrigeration cycle apparatus 500 suppresses a reduction in the heat exchange efficiency between the refrigerant flowing through the outdoor heat exchanger 103 and the air, and suppresses a reduction in the efficiency of the heating operation. be able to.
  • Refrigeration cycle apparatus 500 performs frosting determination based on the temperature of outdoor heat exchanger 103 (first heat exchanger 103a), and at least one of on-defrost operation and reverse defrost operation. Can be determined. Then, refrigeration cycle apparatus 500 according to the present embodiment determines the amount of frost formation based on the outside air temperature, and determines whether to perform on-defrost operation or reverse defrost operation. Thereby, it can suppress that defrost operation time increases.
  • outside air temperature information, refrigerant temperature information before flowing into the outdoor heat exchanger 103, and the like are acquired from a centralized controller that performs overall control of the plurality of refrigeration cycle apparatuses 500, and on-defrost operation and reverse defrost operation are performed. It may be determined whether or not.
  • the refrigeration cycle apparatus 500 supplies hot gas to the first heat exchanger 103a and then supplies hot gas to the second heat exchanger 103b during on-defrost operation.
  • the hot gas may be supplied to the first heat exchanger 103a after the hot gas is supplied to the second heat exchanger 103b.
  • the lower second heat exchanger 103b functions as an evaporator, and the on-defrost operation ends. Become. For this reason, the possibility that a residual frost will be formed in the 2nd heat exchanger 103b becomes higher than the case of the control flow of Drawing 8 of this embodiment.
  • FIG. 9 is a first modification of the outdoor heat exchanger 103 of the refrigeration cycle apparatus 500 according to the present embodiment.
  • FIG. 9A is a perspective view of the outdoor heat exchanger 103B
  • FIG. 9B is a longitudinal sectional view of the outdoor heat exchanger 103B.
  • the outdoor heat exchanger 103B is configured such that the first heat exchanger 103a is disposed above the second heat exchanger 103b, but the horizontal position thereof is shifted. Even if it is such an outdoor heat exchanger 103B, the effect similar to the refrigerating-cycle apparatus 500 which concerns on this Embodiment can be acquired.
  • FIG. 10 is a second modification of the outdoor heat exchanger 103 of the refrigeration cycle apparatus 500 according to the present embodiment.
  • FIG. 10A is a perspective view of the outdoor heat exchanger 103C
  • FIG. 10B is a longitudinal sectional view of the outdoor heat exchanger 103C.
  • an installation part T on a plate used for installing the first heat exchanger 103a is arranged on the second heat exchanger 103b.
  • FIG. 11 is a third modification of the outdoor heat exchanger 103 of the refrigeration cycle apparatus 500 according to the present embodiment.
  • Fig.11 (a) is a perspective view of outdoor heat exchanger 103D
  • FIG.10 (b) is a longitudinal cross-sectional view of outdoor heat exchanger 103D.
  • the outdoor heat exchanger 103D two first heat exchangers 103a are arranged as upper heat exchangers, and two second heat exchangers 103b are arranged as lower heat exchangers. That is, the outdoor heat exchanger 103D has four heat exchangers.
  • the heat exchanger which comprises outdoor heat exchanger 103D is not limited to two, Three or more may be sufficient. Even in the third modification, the same effect as that of the refrigeration cycle apparatus 500 according to the present embodiment can be obtained.
  • FIG. 12 is a fourth modification of the outdoor heat exchanger 103 of the refrigeration cycle apparatus 500 according to the present embodiment.
  • FIG. 12A is a perspective view of the outdoor heat exchanger 103E
  • FIG. 12B is a longitudinal sectional view of the outdoor heat exchanger 103E.
  • the first heat exchanger 103a of the outdoor heat exchanger 103E is inclined so that one end side is located on the lower side and the other end side is located on the upper side.
  • the second heat exchanger 103b is inclined so that one end side is located on the upper side and the other end side is located on the lower side.
  • FIG. 13 is a fifth modification of the outdoor heat exchanger 103 of the refrigeration cycle apparatus 500 according to the present embodiment.
  • FIG. 13A is a perspective view of the outdoor heat exchanger 103F
  • FIG. 13B is a longitudinal sectional view of the outdoor heat exchanger 103F.
  • the outdoor heat exchanger 103F is not formed by stacking two stages of heat exchangers, but is configured by stacking three stages of heat exchangers.
  • the number of stages of the outdoor heat exchanger 103F is not limited to two, and may be three or more.
  • on-defrost operation and reverse defrost operation may be performed as follows.
  • hot gas is supplied to the uppermost heat exchanger 103c, and the other functions as an evaporator.
  • hot gas is supplied to the heat exchanger 103aa at the intermediate stage, and the other functions as an evaporator.
  • hot gas is supplied to the lowermost heat exchanger 103bb and the other functions as an evaporator.
  • reverse defrost operation the refrigerant is supplied to all of the uppermost heat exchanger 103c, the intermediate heat exchanger 103aa, and the lowermost heat exchanger 103bb.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A refrigeration cycle device provided with a refrigerant circuit that is provided with a compressor, indoor heat exchanger, throttle device, and outdoor heat exchanger which are connected by refrigerant piping. The refrigeration cycle device is provided with a control device that controls the execution of defrost operation on the basis of the temperature of the outdoor heat exchanger and outside air temperature. The outdoor heat exchanger is provided with at least a first heat exchanger and a second heat exchanger disposed below the first heat exchanger. The control device is configured so as to perform on-defrost operation in which one of the first heat exchanger and the second heat exchanger serves as an evaporator and the hot gas discharged from the compressor is supplied to the other heat exchanger, without passing through the indoor heat exchanger, if the outside air temperature satisfies a preset condition, and to perform reverse defrost operation in which the refrigerant after passing through the indoor heat exchanger is supplied from the compressor to the first heat exchanger and the second heat exchanger if the temperature of the outdoor heat exchanger satisfies a preset condition after the execution of the on-defrost operation.

Description

冷凍サイクル装置及び空気調和装置Refrigeration cycle apparatus and air conditioner
 本発明は、冷凍サイクル装置及び空気調和装置に関するものである。 The present invention relates to a refrigeration cycle apparatus and an air conditioner.
 冷凍サイクル装置は、たとえば、圧縮機、四方弁、室外熱交換器、絞り装置及び室内熱交換器を有し、これらが冷媒配管で接続されて構成された冷媒回路を有している。また、たとえば圧縮機及び室外熱交換器は、室外に設置される室外ユニットに搭載される。ここで、冷凍サイクル装置で暖房運転を実施すると、室外熱交換器が蒸発器として機能する。 The refrigeration cycle apparatus has, for example, a compressor, a four-way valve, an outdoor heat exchanger, a throttling device, and an indoor heat exchanger, and has a refrigerant circuit configured by connecting these with refrigerant piping. Further, for example, the compressor and the outdoor heat exchanger are mounted on an outdoor unit installed outside the room. Here, when the heating operation is performed in the refrigeration cycle apparatus, the outdoor heat exchanger functions as an evaporator.
 冷凍サイクル装置の暖房運転では、室外熱交換器を蒸発器として機能させ、また、冬季などに実施をするため、室外熱交換器に霜が付着する場合がある。このように室外熱交換器に霜が付着すると、室外熱交換器の伝熱管に供給される冷媒と、伝熱管に複数接続されたフィンを通過する空気との熱交換効率が低減し、冷凍サイクル装置の暖房運転時の効率が低減してしまう。 In the heating operation of the refrigeration cycle apparatus, the outdoor heat exchanger functions as an evaporator, and frost may adhere to the outdoor heat exchanger because it is performed in winter. When frost adheres to the outdoor heat exchanger in this way, the heat exchange efficiency between the refrigerant supplied to the heat transfer tubes of the outdoor heat exchanger and the air passing through the fins connected to the heat transfer tubes is reduced, and the refrigeration cycle The efficiency at the time of heating operation of an apparatus will reduce.
 そこで、冷凍サイクル装置では、室外熱交換器に付着した霜を溶かすために、暖房運転を停止し、四方弁の流路を冷房運転側に切り替え、室内熱交換器を介して室外熱交換器に冷媒を供給するリバースデフロスト運転を実施するものがある。 Therefore, in the refrigeration cycle apparatus, in order to melt frost attached to the outdoor heat exchanger, the heating operation is stopped, the flow path of the four-way valve is switched to the cooling operation side, and the outdoor heat exchanger is switched to the outdoor heat exchanger via the indoor heat exchanger. Some carry out reverse defrost operation to supply refrigerant.
 また、冷凍サイクル装置には、室外熱交換器が上下2段に分割されているものが提案されている(たとえば、特許文献1参照)。特許文献1の冷凍サイクル装置では、上側又は下側の室外熱交換器にホットガスを供給して除霜をし、下側又は上側の室外熱交換器を蒸発器として機能させて暖房運転を実施するオンデフロスト運転を実施することができるものである。オンデフロスト運転を実施すると、上側又は下側の室外熱交換器について除霜運転を実施しながらも、暖房運転を継続することができる。 Also, a refrigeration cycle apparatus has been proposed in which an outdoor heat exchanger is divided into upper and lower stages (see, for example, Patent Document 1). In the refrigeration cycle apparatus of Patent Document 1, hot gas is supplied to the upper or lower outdoor heat exchanger for defrosting, and the lower or upper outdoor heat exchanger functions as an evaporator to perform heating operation. It is possible to carry out on-defrost operation. When the on-defrost operation is performed, the heating operation can be continued while the defrosting operation is performed on the upper or lower outdoor heat exchanger.
特開2009-085484号公報JP 2009-085484 A
 オンデフロスト運転は、たとえば室内ユニットからの採熱を利用するものではなく、圧縮機で冷媒の温度を上昇させ、その温度上昇させた冷媒を室外熱交換器に供給する運転である。特許文献1に記載の冷凍サイクル装置が実施するオンデフロスト運転では、除霜能力が不足し、オンデフロスト運転を実施した後に、室外熱交換器に霜が残ってしまう場合がある。 The on-defrost operation is an operation that does not use, for example, heat collection from the indoor unit, and raises the temperature of the refrigerant with the compressor and supplies the refrigerant with the raised temperature to the outdoor heat exchanger. In the on-defrost operation performed by the refrigeration cycle apparatus described in Patent Document 1, the defrosting capability is insufficient, and frost may remain in the outdoor heat exchanger after the on-defrost operation is performed.
 すなわち、特許文献1に記載の冷凍サイクル装置では、オンデフロスト運転を終えた後に暖房運転を実施すると、室外熱交換器に形成された霜(残霜)により、暖房運転の効率が低減してしまうという課題がある。 That is, in the refrigeration cycle apparatus described in Patent Literature 1, when the heating operation is performed after the on-defrost operation is finished, the efficiency of the heating operation is reduced due to frost (residual frost) formed in the outdoor heat exchanger. There is a problem.
 本発明は、以上のような課題を解決するためになされたもので、オンデフロスト運転を終えた後の暖房運転の効率が低減してしまうことを抑制することができる冷凍サイクル装置及び空気調和装置を提供することを目的としている。 The present invention has been made in order to solve the above-described problems, and a refrigeration cycle apparatus and an air conditioner that can suppress a reduction in efficiency of heating operation after finishing on-defrost operation. The purpose is to provide.
 本発明に係る冷凍サイクル装置は、圧縮機、室内熱交換器、絞り装置及び室外熱交換器を備え、これらが冷媒配管で接続された冷媒回路を備えた冷凍サイクル装置において、室外熱交換器の温度及び外気温度に基づいて、デフロスト運転の実行を制御する制御装置と、を備え、室外熱交換器は、第1の熱交換器及び第1の熱交換器の下側に配置された第2の熱交換器を少なくとも備え、制御装置は、外気温度が予め設定される条件を満たした場合に、第1の熱交換器及び第2の熱交換器のうちの一方を蒸発器として機能させ、他方には室内熱交換器を通さずに圧縮機から吐出されたホットガスを供給するオンデフロスト運転を実施させ、オンデフロスト運転を実施した後に室外熱交換器の温度が予め設定される条件を満たした場合に、室内熱交換器を通った冷媒を圧縮機から第1の熱交換器及び第2の熱交換器に供給するリバースデフロスト運転を実施させるように構成されているものである。 A refrigeration cycle apparatus according to the present invention includes a compressor, an indoor heat exchanger, a throttling device, and an outdoor heat exchanger, and in the refrigeration cycle apparatus including a refrigerant circuit in which these are connected by a refrigerant pipe, the outdoor heat exchanger A control device that controls the execution of the defrost operation based on the temperature and the outside air temperature, and the outdoor heat exchanger is a second heat exchanger disposed below the first heat exchanger and the first heat exchanger. When the outside air temperature satisfies a preset condition, the control device causes one of the first heat exchanger and the second heat exchanger to function as an evaporator, On the other hand, the on-defrost operation for supplying hot gas discharged from the compressor without passing through the indoor heat exchanger is performed, and after the on-defrost operation is performed, the temperature of the outdoor heat exchanger satisfies a preset condition. In the room Are those configured to implement the reverse defrosting operation for supplying the refrigerant passing through the exchanger from the compressor to the first heat exchanger and the second heat exchanger.
 本発明に係る冷凍サイクル装置によれば、上記構成を有しているため、オンデフロスト運転を終えた後の暖房運転の効率が低減してしまうことを抑制することができる。 Since the refrigeration cycle apparatus according to the present invention has the above-described configuration, it is possible to suppress a reduction in the efficiency of the heating operation after the on-defrost operation is finished.
本発明の実施の形態に係る冷凍サイクル装置500の冷媒回路構成などについて模式的に示す図である。It is a figure showing typically about a refrigerant circuit composition etc. of refrigeration cycle device 500 concerning an embodiment of the invention. 室外熱交換器103の模式図である。It is a schematic diagram of the outdoor heat exchanger 103. 本発明の実施の形態に係る冷凍サイクル装置500の暖房運転時の冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of the heating operation of the refrigerating-cycle apparatus 500 which concerns on embodiment of this invention. 本発明の実施の形態に係る冷凍サイクル装置500の冷房運転時の冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of the cooling operation of the refrigerating-cycle apparatus 500 which concerns on embodiment of this invention. 本発明の実施の形態に係る冷凍サイクル装置500のオンデフロスト運転を実施し、第1の熱交換器103aに冷媒を供給する様子を示す図である。It is a figure which shows a mode that the on-defrost driving | operation of the refrigerating-cycle apparatus 500 which concerns on embodiment of this invention is implemented, and a refrigerant | coolant is supplied to the 1st heat exchanger 103a. 本発明の実施の形態に係る冷凍サイクル装置500のオンデフロスト運転を実施し、第2の熱交換器103bに冷媒を供給する様子を示す図である。It is a figure which shows a mode that the on-defrost driving | operation of the refrigerating-cycle apparatus 500 which concerns on embodiment of this invention is implemented, and a refrigerant | coolant is supplied to the 2nd heat exchanger 103b. 本発明の実施の形態に係る冷凍サイクル装置500のリバースデフロスト運転時の冷媒の流れを示す図である。It is a figure which shows the flow of the refrigerant | coolant at the time of the reverse defrost driving | operation of the refrigerating-cycle apparatus 500 which concerns on embodiment of this invention. オンデフロスト運転を実施した場合に、室外熱交換器103に付着した霜が溶ける様子を示す模式図である。It is a schematic diagram which shows a mode that the frost adhering to the outdoor heat exchanger 103 melts | dissolves when on-defrost operation is implemented. オンデフロスト運転を実施したが、第2の熱交換器103bで氷結してしまい、霜を除去できなかったため、リバースデフロスト運転を実施した様子を示す模式図である。Although the on-defrost operation was carried out, it was frozen in the second heat exchanger 103b, and frost could not be removed, so that the reverse defrost operation was performed. オンデフロスト運転を実施したが、第1の熱交換器103a及び第2の熱交換器103bの着霜量が多く、いずれでも霜を除去できなかったため、リバースデフロスト運転を実施した様子を示す模式図である。Although the on-defrost operation was carried out, the frost formation amount of the first heat exchanger 103a and the second heat exchanger 103b was large, and the frost could not be removed in either case, so that the reverse defrost operation was performed. It is. 第1の熱交換器103a及び第2の熱交換器103bの着霜量が多いため、オンデフロスト運転を実施せず、リバースデフロスト運転を実施した様子を示す模式図である。It is a schematic diagram showing a state where reverse defrost operation is performed without performing on-defrost operation because the amount of frost formation on the first heat exchanger 103a and the second heat exchanger 103b is large. 本発明の実施の形態に係る冷凍サイクル装置500の暖房運転から除霜運転に移行する際の制御フローチャートである。It is a control flowchart at the time of transfer from the heating operation of the refrigeration cycle apparatus 500 which concerns on embodiment of this invention to a defrost operation. 本発明の実施の形態に係る冷凍サイクル装置500の室外熱交換器103の変形例1である。It is the modification 1 of the outdoor heat exchanger 103 of the refrigerating-cycle apparatus 500 which concerns on embodiment of this invention. 本発明の実施の形態に係る冷凍サイクル装置500の室外熱交換器103の変形例2である。It is the modification 2 of the outdoor heat exchanger 103 of the refrigerating-cycle apparatus 500 which concerns on embodiment of this invention. 本発明の実施の形態に係る冷凍サイクル装置500の室外熱交換器103の変形例3である。It is the modification 3 of the outdoor heat exchanger 103 of the refrigerating-cycle apparatus 500 which concerns on embodiment of this invention. 本発明の実施の形態に係る冷凍サイクル装置500の室外熱交換器103の変形例4である。It is the modification 4 of the outdoor heat exchanger 103 of the refrigerating-cycle apparatus 500 which concerns on embodiment of this invention. 本発明の実施の形態に係る冷凍サイクル装置500の室外熱交換器103の変形例5である。It is the modification 5 of the outdoor heat exchanger 103 of the refrigerating-cycle apparatus 500 which concerns on embodiment of this invention.
 以下、本発明に係る冷凍サイクル装置及び空気調和装置の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of a refrigeration cycle apparatus and an air conditioner according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
実施の形態.
 図1は、本実施の形態に係る冷凍サイクル装置500の冷媒回路構成などについて模式的に示す図である。図2は、室外熱交換器103の模式図である。図1を参照して冷凍サイクル装置500の冷媒回路構成などについて説明する。本実施の形態では、冷凍サイクル装置500が空気調和装置である場合を一例に説明する。
 本実施の形態に係る冷凍サイクル装置500は、外気温度及び室外熱交換器103の温度に基づいて、オンデフロスト運転及びリバースデフロスト運転を実施する改良が加えられているものである。
Embodiment.
FIG. 1 is a diagram schematically showing a refrigerant circuit configuration and the like of a refrigeration cycle apparatus 500 according to the present embodiment. FIG. 2 is a schematic diagram of the outdoor heat exchanger 103. A refrigerant circuit configuration and the like of the refrigeration cycle apparatus 500 will be described with reference to FIG. In the present embodiment, a case where refrigeration cycle apparatus 500 is an air conditioner will be described as an example.
The refrigeration cycle apparatus 500 according to the present embodiment is provided with an improvement in which on-defrost operation and reverse defrost operation are performed based on the outside air temperature and the temperature of the outdoor heat exchanger 103.
[室外ユニット100]
 室外ユニット100は、室内ユニット300に冷熱又は温熱を供給する熱源機である。室外ユニット100には、冷媒を圧縮して吐出する圧縮機101と、冷房運転及び暖房運転などを切り替えるのに利用される四方切替弁102と、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する室外熱交換器103と、冷媒回路Cの余剰冷媒を貯留するのに利用されるアキュムレータ104とが冷媒配管で接続されて搭載されている。
[Outdoor unit 100]
The outdoor unit 100 is a heat source device that supplies cold heat or warm heat to the indoor unit 300. The outdoor unit 100 includes a compressor 101 that compresses and discharges the refrigerant, a four-way switching valve 102 that is used to switch between cooling operation and heating operation, and functions as a condenser during cooling operation, and evaporates during heating operation. An outdoor heat exchanger 103 that functions as a storage unit and an accumulator 104 that is used to store surplus refrigerant in the refrigerant circuit C are connected by refrigerant piping and mounted.
 また、室外ユニット100には、冷房運転、暖房運転、リバースデフロスト運転、及びオンデフロスト運転などを切り替えるのに利用される切替弁105a、切替弁105b、切替弁106a及び切替弁106bが搭載されている。室外ユニット100には、室外熱交換器103に付設され、室外熱交換器103に空気を供給する室外ファン109が搭載されている。 Further, the outdoor unit 100 is equipped with a switching valve 105a, a switching valve 105b, a switching valve 106a, and a switching valve 106b that are used for switching between a cooling operation, a heating operation, a reverse defrost operation, an on-defrost operation, and the like. . The outdoor unit 100 is provided with an outdoor fan 109 that is attached to the outdoor heat exchanger 103 and supplies air to the outdoor heat exchanger 103.
 さらに、室外ユニット100は、冷房運転、暖房運転、リバースデフロスト運転、及びオンデフロスト運転などを実施するにあたり、圧縮機101の回転数などを制御する制御装置119が搭載されている。室外ユニット100には、制御装置119が暖房運転、リバースデフロスト運転、及びオンデフロスト運転などの切り替え判定をするときに利用される外気温度センサー153、冷媒温度検出部151、高圧センサー141及び低圧センサー142を有している。 Furthermore, the outdoor unit 100 is equipped with a control device 119 for controlling the rotational speed of the compressor 101 and the like when performing cooling operation, heating operation, reverse defrost operation, on-defrost operation, and the like. The outdoor unit 100 includes an outdoor air temperature sensor 153, a refrigerant temperature detection unit 151, a high pressure sensor 141, and a low pressure sensor 142 that are used when the control device 119 determines switching between heating operation, reverse defrost operation, and on defrost operation. have.
 ここで、オンデフロスト運転及びリバースデフロスト運転について説明する。オンデフロスト運転は、室内ユニット300を採熱源としない。すなわち、オンデフロスト運転では、室内ユニット300を採熱源としていない分、除霜能力についてはリバースデフロスト運転よりも低い。その一方で、オンデフロスト運転では、室外熱交換器103を構成するいずれかの熱交換器、すなわち後述する第1の熱交換器103a及び第2の熱交換器103bのうちのいずれかのものを蒸発器として機能させることで、暖房運転を継続することができる。オンデフロスト運転では、圧縮機101から吐出されるホットガス冷媒を室内熱交換器312をバイパスして室外熱交換器103に供給する。 Here, on-defrost operation and reverse defrost operation will be described. The on-defrost operation does not use the indoor unit 300 as a heat collection source. That is, in the on-defrost operation, the defrosting capability is lower than that in the reverse defrost operation because the indoor unit 300 is not used as a heat collection source. On the other hand, in the on-defrost operation, any one of the heat exchangers constituting the outdoor heat exchanger 103, that is, one of the first heat exchanger 103a and the second heat exchanger 103b described later is used. The heating operation can be continued by functioning as an evaporator. In the on-defrost operation, hot gas refrigerant discharged from the compressor 101 is supplied to the outdoor heat exchanger 103 by bypassing the indoor heat exchanger 312.
 また、リバースデフロスト運転は、室内ユニット300を採熱源とし、冷媒の潜熱を利用する運転であるため、ホットガスを室外熱交換器103に供給するオンデフロスト運転よりも除霜能力が高い。このため、オンデフロスト運転よりも、短時間で室外熱交換器103の除霜を完了することができる。リバースデフロスト運転では、暖房運転時とは冷媒の流れが逆になるように、四方切替弁102を冷房側に切り替える。 Further, since the reverse defrost operation is an operation that uses the indoor unit 300 as a heat collection source and uses the latent heat of the refrigerant, the defrosting capability is higher than the on-defrost operation that supplies hot gas to the outdoor heat exchanger 103. For this reason, the defrosting of the outdoor heat exchanger 103 can be completed in a shorter time than the on-defrost operation. In the reverse defrost operation, the four-way switching valve 102 is switched to the cooling side so that the refrigerant flow is reversed from that in the heating operation.
(圧縮機101)
 圧縮機101は、低温、低圧のガス冷媒を吸入し、その冷媒を圧縮して高温、高圧のガス冷媒とし、冷媒回路Cに冷媒を循環させるものである。圧縮機101は、たとえば容量制御できるインバータタイプの圧縮機などで構成するとよい。ただし、圧縮機101を容量制御できるインバータタイプの圧縮機ものに限定するものではなく、一定速のタイプの圧縮機、インバータタイプと一定速タイプと組み合わせた圧縮機であってもよい。圧縮機101は、吐出側が四方切替弁102に接続され、吸入側がアキュムレータ104に接続されている。
(Compressor 101)
The compressor 101 sucks low-temperature and low-pressure gas refrigerant, compresses the refrigerant into high-temperature and high-pressure gas refrigerant, and circulates the refrigerant in the refrigerant circuit C. The compressor 101 may be composed of an inverter type compressor whose capacity can be controlled, for example. However, the compressor 101 is not limited to an inverter type compressor that can control the capacity, but may be a constant speed type compressor, or a compressor that combines an inverter type and a constant speed type. The compressor 101 has a discharge side connected to the four-way switching valve 102 and a suction side connected to the accumulator 104.
 なお、圧縮機101は、吸入した冷媒を圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して圧縮機101を構成することができる。 The compressor 101 is not particularly limited as long as it can compress the sucked refrigerant. For example, the compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw.
(四方切替弁102)
 四方切替弁102は、圧縮機101の吐出側に設けられ、冷房運転時と暖房運転時とで冷媒流路を切替えるものである。すなわち、四方切替弁102は、室外熱交換器103が運転モードに応じて蒸発器もしくは凝縮器として機能するよう、冷媒の流れを制御している。四方切替弁102は、暖房運転時には室内熱交換器312と圧縮機101とを接続するとともに、室外熱交換器103とアキュムレータ104とを接続するように切り替えられる。また、四方切替弁102は、冷房運転時には室外熱交換器103と圧縮機101とを接続するとともに、室内熱交換器312とアキュムレータ104とを接続するように切り替えられる。
(Four-way switching valve 102)
The four-way switching valve 102 is provided on the discharge side of the compressor 101 and switches the refrigerant flow path between the cooling operation and the heating operation. That is, the four-way switching valve 102 controls the flow of the refrigerant so that the outdoor heat exchanger 103 functions as an evaporator or a condenser according to the operation mode. The four-way switching valve 102 is switched so as to connect the indoor heat exchanger 312 and the compressor 101 and to connect the outdoor heat exchanger 103 and the accumulator 104 during the heating operation. In addition, the four-way switching valve 102 is switched so as to connect the outdoor heat exchanger 103 and the compressor 101 and to connect the indoor heat exchanger 312 and the accumulator 104 during the cooling operation.
(室外熱交換器103)
 室外熱交換器103は、熱媒体(たとえば、周囲空気、水など)と冷媒との間で熱交換を行ない、暖房運転時には蒸発器として冷媒を蒸発、ガス化し、冷房運転時には凝縮器(放熱器)として冷媒を凝縮、液化させるものである。室外熱交換器103は、たとえば、冷媒が流れる伝熱管と、伝熱管に複数接続されたフィンとを有するフィンチューブ熱交換器で構成することができる。室外熱交換器103は、室外ファン109の回転数によって凝縮能力又は蒸発能力が制御される。室外熱交換器103は、複数の熱交換器を備えているものである。すなわち、室外熱交換器103は、第1の熱交換器103aと、第1の熱交換器103aの下側に配置されている第2の熱交換器103bとを備えている。
(Outdoor heat exchanger 103)
The outdoor heat exchanger 103 exchanges heat between a heat medium (for example, ambient air, water, etc.) and a refrigerant, evaporates and gasifies the refrigerant as an evaporator during heating operation, and a condenser (heat radiator) during cooling operation. ) To condense and liquefy the refrigerant. The outdoor heat exchanger 103 can be configured by, for example, a fin tube heat exchanger having a heat transfer tube through which a refrigerant flows and a plurality of fins connected to the heat transfer tube. The outdoor heat exchanger 103 has its condensation capacity or evaporation capacity controlled by the rotational speed of the outdoor fan 109. The outdoor heat exchanger 103 includes a plurality of heat exchangers. That is, the outdoor heat exchanger 103 includes a first heat exchanger 103a and a second heat exchanger 103b disposed below the first heat exchanger 103a.
 第1の熱交換器103aは、一方が四方切替弁102に接続され、他方が切替弁105aを介して絞り装置311に接続されている。第2の熱交換器103bは、一方が四方切替弁102に接続され、他方が切替弁105bを介して絞り装置311に接続されている。本実施の形態では、図2に示すように、第2の熱交換器103b上に第1の熱交換器103aが設置されている態様について説明するが、それに限定されるものではなく、第2の熱交換器103bと第1の熱交換器103aとが離れていてもよい。 One side of the first heat exchanger 103a is connected to the four-way switching valve 102, and the other side is connected to the expansion device 311 via the switching valve 105a. One of the second heat exchangers 103b is connected to the four-way switching valve 102, and the other is connected to the expansion device 311 via the switching valve 105b. In the present embodiment, as shown in FIG. 2, a mode in which the first heat exchanger 103a is installed on the second heat exchanger 103b will be described, but the present invention is not limited to this. The heat exchanger 103b and the first heat exchanger 103a may be separated from each other.
(アキュムレータ104)
 アキュムレータ104は、圧縮機101の吸入側に設けられ、余剰冷媒を貯留する機能と液冷媒とガス冷媒とを分離する機能とを有している。アキュムレータ104は、一方が圧縮機101の吸入側に接続され、他方が四方切替弁102に接続されている。
(Accumulator 104)
The accumulator 104 is provided on the suction side of the compressor 101, and has a function of storing surplus refrigerant and a function of separating liquid refrigerant and gas refrigerant. One of the accumulators 104 is connected to the suction side of the compressor 101 and the other is connected to the four-way switching valve 102.
(制御装置119)
 制御装置119は、外気温度センサー153、冷媒温度検出部151、高圧センサー141及び低圧センサー142の検出結果に基づいて、冷房運転、暖房運転、リバースデフロスト運転、及びオンデフロスト運転などの各種運転の実行を制御するものである。制御装置119は、これらの各種運転を実施するために、室内ファン313及び室外ファン109の回転数(運転及び停止を含む)、圧縮機101の回転数(運転及び停止を含む)、四方切替弁102の切り替え、切替弁105a、切替弁105b、切替弁106a及び切替弁106bの開閉、及び、絞り装置311の開度などを制御するものである。
(Control device 119)
The control device 119 executes various operations such as a cooling operation, a heating operation, a reverse defrost operation, and an on-defrost operation based on detection results of the outside air temperature sensor 153, the refrigerant temperature detection unit 151, the high pressure sensor 141, and the low pressure sensor 142. Is to control. In order to perform these various operations, the control device 119 performs the rotation speeds (including operation and stop) of the indoor fan 313 and the outdoor fan 109, the rotation speed (including operation and stop) of the compressor 101, and the four-way switching valve. 102, the switching valve 105a, the switching valve 105b, the switching valve 106a and the switching valve 106b, and the opening degree of the expansion device 311 are controlled.
 図1では、冷凍サイクル装置500の動作を制御する制御装置119を室外ユニット100に搭載した場合を例に示しているが、室内ユニット300に設けるようにしてもよい。また、制御装置119を、室外ユニット100、及び、室内ユニット300の外部に設けるようにしてもよい。また、制御装置119を機能に応じて複数に分けて、室外ユニット100、室内ユニット300のそれぞれに設けるようにしてもよい。この場合、各制御装置を無線又は有線で接続しておくとよい。 FIG. 1 shows an example in which a control device 119 that controls the operation of the refrigeration cycle apparatus 500 is mounted in the outdoor unit 100, but it may be provided in the indoor unit 300. Further, the control device 119 may be provided outside the outdoor unit 100 and the indoor unit 300. Further, the control device 119 may be divided into a plurality according to the function and provided in each of the outdoor unit 100 and the indoor unit 300. In this case, each control device may be connected wirelessly or by wire.
 制御装置119は、後述する冷媒温度検出部151の第1の冷媒温度センサー151aの検出結果が予め設定される第1の冷媒温度Ta以下であり、外気温度センサー153の検出結果が予め設定される外気温度よりも高い場合に、オンデフロスト運転を実施させるように構成されている(図8のステップS2及びステップS3参照)。また、制御装置119は、冷媒温度検出部151の第2の冷媒温度センサー151bの検出結果が予め設定される第2の冷媒温度Tb以下である場合に、リバースデフロスト運転を実施させるように構成されている(図8のステップS6参照)。第1の冷媒温度Ta及び第2の冷媒温度Tbとしては、たとえば2度を採用し、予め設定される外気温度Tairとしては、たとえば1度を採用することができる。本実施の形態において、第1の冷媒温度Ta及び第2の冷媒温度Tbは、たとえば、外気温度Tairよりも大きい値に設定されている。 In the control device 119, the detection result of the first refrigerant temperature sensor 151a of the refrigerant temperature detection unit 151 described later is equal to or lower than the first refrigerant temperature Ta set in advance, and the detection result of the outside air temperature sensor 153 is preset. When the temperature is higher than the outside air temperature, the on-defrost operation is performed (see step S2 and step S3 in FIG. 8). Further, the control device 119 is configured to perform the reverse defrost operation when the detection result of the second refrigerant temperature sensor 151b of the refrigerant temperature detection unit 151 is equal to or lower than the second refrigerant temperature Tb set in advance. (See step S6 in FIG. 8). As the first refrigerant temperature Ta and the second refrigerant temperature Tb, for example, 2 degrees can be adopted, and as the preset outside air temperature Tair, for example, 1 degree can be adopted. In the present embodiment, the first refrigerant temperature Ta and the second refrigerant temperature Tb are set to values larger than the outside air temperature Tair, for example.
 また、本実施の形態において、第1の冷媒温度Taと第2の冷媒温度Tbとは同じ値に設定されているが、それに限定されるものではない。たとえば、第1の冷媒温度Taよりも第2の冷媒温度Tbの値を小さく設定し、多少の霜が残っていても、リバースデフロスト運転を実施しないように調節してもよい。または、第1の冷媒温度Taよりも第2の冷媒温度Tbの値を高く設定し、リバースデフロスト運転を行う制御に移行しやすくし、霜をより確実に除去するようにしてもよい。 In the present embodiment, the first refrigerant temperature Ta and the second refrigerant temperature Tb are set to the same value, but are not limited thereto. For example, the value of the second refrigerant temperature Tb may be set smaller than the first refrigerant temperature Ta, and the reverse defrost operation may be adjusted so as not to be performed even if some frost remains. Alternatively, the value of the second refrigerant temperature Tb may be set higher than the first refrigerant temperature Ta to facilitate the control to perform the reverse defrost operation, and frost may be more reliably removed.
 オンデフロスト運転及びリバースデフロスト運転を実施する場合において、制御装置119は、圧縮機101の回転数が、たとえば最大回転数になるように制御するとよい。これにより、より高温のガス冷媒を室外熱交換器103に供給することができ、高効率に室外熱交換器103の除霜を実施することができる。 When performing the on-defrost operation and the reverse defrost operation, the control device 119 may control the rotation speed of the compressor 101 to be, for example, the maximum rotation speed. Thereby, a higher temperature gas refrigerant can be supplied to the outdoor heat exchanger 103, and the defrost of the outdoor heat exchanger 103 can be implemented with high efficiency.
(各種センサー)
 外気温度センサー153は、外気温度を検出するものである。外気温度センサー153は、たとえば、室外ユニット100の筐体部分に取り付けられている。外気温度センサー153は、オンデフロスト運転を実施するか、又は、リバースデフロスト運転を実施するかを判定するのに利用されるものである。冷凍サイクル装置500では、除霜運転を実施するにあたり、外気温度が予め設定される温度よりも高い場合にはオンデフロスト運転を実施し、外気温度が予め設定される温度以下である場合にはリバースデフロスト運転を実施するように構成されている。
(Various sensors)
The outside air temperature sensor 153 detects the outside air temperature. The outdoor temperature sensor 153 is attached to, for example, a housing portion of the outdoor unit 100. The outside air temperature sensor 153 is used to determine whether to perform on-defrost operation or reverse defrost operation. In the refrigeration cycle apparatus 500, when performing the defrosting operation, the on-defrost operation is performed when the outside air temperature is higher than the preset temperature, and the reverse is performed when the outside air temperature is equal to or lower than the preset temperature. It is configured to perform defrost operation.
 冷媒温度検出部151は、室外熱交換器103に付設され、室外熱交換器103の冷媒の温度を検出するのに利用されるものである。冷媒温度検出部151は、オンデフロスト運転及びリバースデフロスト運転を実施するか否かを判定するのに利用されるものである。冷媒温度検出部151は、第1の熱交換器103aに付設され、第1の熱交換器103aの冷媒検出する第1の冷媒温度センサー151aと、第2の熱交換器103bに付設され、第2の熱交換器103bの冷媒検出する第2の冷媒温度センサー151bとを有している。第1の冷媒温度センサー151aは、第1の熱交換器103aの入口側、すなわち第1の熱交換器103aに流入する前の冷媒温度を検出できる位置に配置されている。また、第2の冷媒温度センサー151bは、第2の熱交換器103bの入口側、すなわち第2の熱交換器103bに流入する前の冷媒温度を検出できる位置に配置されている。たとえば、第1の冷媒温度センサー151aは、第1の熱交換器103aと切替弁105aとを接続する冷媒配管に取り付けられ、第2の冷媒温度センサー151bは、第2の熱交換器103bと切替弁105bとを接続する冷媒配管に取り付けられている。 The refrigerant temperature detector 151 is attached to the outdoor heat exchanger 103 and is used to detect the temperature of the refrigerant in the outdoor heat exchanger 103. The refrigerant temperature detector 151 is used to determine whether or not to perform on-defrost operation and reverse defrost operation. The refrigerant temperature detector 151 is attached to the first heat exchanger 103a, is attached to the first refrigerant temperature sensor 151a that detects the refrigerant of the first heat exchanger 103a, and the second heat exchanger 103b. And a second refrigerant temperature sensor 151b that detects the refrigerant of the second heat exchanger 103b. The first refrigerant temperature sensor 151a is disposed on the inlet side of the first heat exchanger 103a, that is, at a position where the refrigerant temperature before flowing into the first heat exchanger 103a can be detected. The second refrigerant temperature sensor 151b is disposed at the inlet side of the second heat exchanger 103b, that is, at a position where the refrigerant temperature before flowing into the second heat exchanger 103b can be detected. For example, the first refrigerant temperature sensor 151a is attached to a refrigerant pipe that connects the first heat exchanger 103a and the switching valve 105a, and the second refrigerant temperature sensor 151b is switched to the second heat exchanger 103b. It is attached to a refrigerant pipe connecting the valve 105b.
 ここで、第1の冷媒温度センサー151a及び第2の冷媒温度センサー151bの配置位置は、これに限定されるものではなく、たとえば、室外熱交換器103の出口側に設置されていてもよい。 Here, the arrangement positions of the first refrigerant temperature sensor 151 a and the second refrigerant temperature sensor 151 b are not limited to this, and may be installed, for example, on the outlet side of the outdoor heat exchanger 103.
 高圧センサー141は、圧縮機101から吐出された冷媒の圧力を検知するものである。高圧センサー141は、圧縮機101の吐出側と四方切替弁102とを接続する冷媒配管に取り付けられている。冷凍サイクル装置500はオンデフロスト運転及びリバースデフロスト運転時には、制御装置119が圧縮機101を最大回転数で動作させる。このため、圧縮機101から吐出される冷媒圧力が増大しやすい。冷媒圧力が増大すると、たとえば、冷媒圧力上昇に伴う冷媒温度上昇により、圧縮機101の駆動部分の潤滑に利用される冷凍機油が劣化してしまう場合がある。そこで、高圧センサー141は、吐出冷媒圧力が予め設定された値よりも大きくなっていると、制御装置119は、圧縮機101の回転数を下げたり、圧縮機101を停止したりする。 The high pressure sensor 141 detects the pressure of the refrigerant discharged from the compressor 101. The high-pressure sensor 141 is attached to a refrigerant pipe that connects the discharge side of the compressor 101 and the four-way switching valve 102. In the refrigeration cycle apparatus 500, during the on-defrost operation and the reverse defrost operation, the control device 119 causes the compressor 101 to operate at the maximum rotation speed. For this reason, the refrigerant pressure discharged from the compressor 101 tends to increase. When the refrigerant pressure increases, the refrigerant oil used for lubricating the drive portion of the compressor 101 may deteriorate due to, for example, an increase in the refrigerant temperature accompanying an increase in the refrigerant pressure. Therefore, when the discharge refrigerant pressure is higher than a preset value, the high-pressure sensor 141 causes the control device 119 to reduce the rotation speed of the compressor 101 or stop the compressor 101.
 低圧センサー142は、圧縮機101に吸入される冷媒の圧力を検知するものである。低圧センサー142は、アキュムレータ104の冷媒流入側と四方切替弁102とを接続する冷媒配管に取り付けられている。暖房運転時において、室外熱交換器103(蒸発器)に霜が付着すると、フィンが目詰まりし、室外熱交換器103における冷媒と空気との熱交換効率が低減する。これにより、暖房運転時において、室外熱交換器103で冷媒がガス化しにくくなり、低圧が低くなる場合がある。低圧センサー142は、このような低圧異常について検出するのに利用される。本実施の形態では、一例として暖房運転を実施してから予め設定された時間が経過し(後述の図8のステップS1)、冷媒温度及び外気温度が予め設定された条件を満たすと、オンデフロスト運転及びリバースデフロスト運転を実施する態様について説明するが、それに限定されるものではない。たとえば、制御装置119は、暖房運転時において、低圧センサー142の検出結果が予め設定された値よりも小さくなると、オンデフロスト運転及びリバースデフロスト運転を実施するように構成されていてもよい。 The low pressure sensor 142 detects the pressure of the refrigerant sucked into the compressor 101. The low pressure sensor 142 is attached to a refrigerant pipe that connects the refrigerant inflow side of the accumulator 104 and the four-way switching valve 102. If frost adheres to the outdoor heat exchanger 103 (evaporator) during the heating operation, the fins are clogged, and the heat exchange efficiency between the refrigerant and the air in the outdoor heat exchanger 103 is reduced. Thereby, at the time of heating operation, the refrigerant becomes difficult to gasify in the outdoor heat exchanger 103, and the low pressure may be lowered. The low pressure sensor 142 is used to detect such a low pressure abnormality. In the present embodiment, as an example, when a preset time has elapsed since the heating operation was performed (step S1 in FIG. 8 described later), and the refrigerant temperature and the outside air temperature satisfy the preset conditions, the on-defrost is performed. Although the aspect which implements a driving | operation and a reverse defrost driving | operation is demonstrated, it is not limited to it. For example, the controller 119 may be configured to perform the on-defrost operation and the reverse defrost operation when the detection result of the low-pressure sensor 142 becomes smaller than a preset value during the heating operation.
[室内ユニット300]
 室内ユニット300は、室外ユニット100から冷熱又は温熱が供給される負荷側ユニットである。室内ユニット300には、室内熱交換器312と、絞り装置311とが、直列に接続されて搭載されている。また、室内熱交換器312に空気を供給するための図示省略の送風機を設けるとよい。ただし、室内熱交換器312が、冷媒と水などの冷媒とは異なる熱媒体とで熱交換を実行するものであってもよい。
[Indoor unit 300]
The indoor unit 300 is a load side unit to which cold or warm heat is supplied from the outdoor unit 100. In the indoor unit 300, an indoor heat exchanger 312 and an expansion device 311 are mounted connected in series. A blower (not shown) for supplying air to the indoor heat exchanger 312 may be provided. However, the indoor heat exchanger 312 may perform heat exchange between the refrigerant and a heat medium different from the refrigerant such as water.
(室内熱交換器312)
 室内熱交換器312は、熱媒体(たとえば、周囲空気、水など)と冷媒との間で熱交換を行ない、暖房運転時には凝縮器(放熱器)として冷媒を凝縮、液化し、冷房運転時には蒸発器として冷媒を蒸発、ガス化させるものである。室内熱交換器312は、室外熱交換器103と同様に、たとえば、冷媒が流れる伝熱管と、伝熱管に複数接続されたフィンとを有するフィンチューブ熱交換器で構成することができる。室内熱交換器312は、室内ファン313の回転数によって凝縮能力又は蒸発能力が制御される。
(Indoor heat exchanger 312)
The indoor heat exchanger 312 performs heat exchange between a heat medium (for example, ambient air and water) and the refrigerant, condenses and liquefies the refrigerant as a condenser (heat radiator) during heating operation, and evaporates during cooling operation. As a vessel, the refrigerant is evaporated and gasified. Similarly to the outdoor heat exchanger 103, the indoor heat exchanger 312 can be configured by, for example, a fin tube heat exchanger having a heat transfer tube through which a refrigerant flows and a plurality of fins connected to the heat transfer tube. The indoor heat exchanger 312 has its condensation capacity or evaporation capacity controlled by the rotational speed of the indoor fan 313.
(絞り装置311)
 絞り装置311は、冷媒を減圧し、膨張させるものである。この絞り装置311は、開度が可変に制御することができるもの、たとえば電子式膨張弁などを採用することができる。また、絞り装置311は、電子式膨張弁などのように開度調整はできないが、電子式膨張弁と比較すると安価な毛細管などを採用することもできる。
(Aperture device 311)
The expansion device 311 decompresses and expands the refrigerant. As the expansion device 311, a device whose opening degree can be variably controlled, for example, an electronic expansion valve can be employed. In addition, the throttle device 311 cannot adjust the opening degree like an electronic expansion valve or the like, but can employ a capillary or the like that is less expensive than an electronic expansion valve.
 さらに、冷凍サイクル装置500は、冷媒回路Cに封入される冷媒としては各種の冷媒を用いることができる。たとえば、二酸化炭素冷媒、炭化水素冷媒、ヘリウムなどの自然冷媒を採用することができる。その他に、HFC410A冷媒、HFC407C冷媒、HFC404A冷媒などの塩素を含まない代替冷媒を採用することもできる。さらに、R22冷媒、R134a冷媒などのフロン系冷媒を使用することもできる。 Furthermore, the refrigeration cycle apparatus 500 can use various refrigerants as the refrigerant sealed in the refrigerant circuit C. For example, natural refrigerants such as carbon dioxide refrigerant, hydrocarbon refrigerant, and helium can be employed. In addition, alternative refrigerants that do not contain chlorine, such as HFC410A refrigerant, HFC407C refrigerant, and HFC404A refrigerant, may be employed. Furthermore, a fluorocarbon refrigerant such as an R22 refrigerant or an R134a refrigerant can also be used.
[暖房運転及び冷房運転の動作などについて]
 図3Aは、本実施の形態に係る冷凍サイクル装置500の暖房運転時の冷媒の流れを示す図である。図3Bは、本実施の形態に係る冷凍サイクル装置500の冷房運転時の冷媒の流れを示す図である。図3A及び図3Bを参照して冷凍サイクル装置500の暖房運転時及び冷房運転時の動作などについて説明する。
[About operation of heating operation and cooling operation]
FIG. 3A is a diagram showing a refrigerant flow during heating operation of the refrigeration cycle apparatus 500 according to the present embodiment. FIG. 3B is a diagram showing a refrigerant flow during the cooling operation of the refrigeration cycle apparatus 500 according to the present embodiment. The operation of the refrigeration cycle apparatus 500 during the heating operation and the cooling operation will be described with reference to FIGS. 3A and 3B.
 冷凍サイクル装置500は、たとえば室内に設置されたリモートコントローラなどからの冷房運転を実施する旨の信号、暖房運転を実施する旨の信号などを受信すると、冷房運転、暖房運転を開始する。 The refrigeration cycle apparatus 500 starts the cooling operation and the heating operation when receiving a signal indicating that the cooling operation is performed, a signal indicating that the heating operation is performed, or the like from a remote controller installed in the room, for example.
 暖房運転時において、制御装置119は、四方切替弁102を暖房側に切り替えて、圧縮機101の吐出側と室内熱交換器312とを接続するとともに、アキュムレータ104の冷媒流入側と室外熱交換器103とを接続する。また、制御装置119は、圧縮機101の回転数を予め設定された回転数とし、室外ファン109及び室内ファン313の回転数を予め設定された回転数とし、絞り装置311の開度を予め設定された開度にする。さらに、制御装置119は、切替弁105a及び切替弁105bを開とし、切替弁106a及び切替弁106bを閉じる。図3Aに示すように、圧縮機101から吐出された冷媒は、四方切替弁102を流れた後に室内熱交換器312に流入し、凝縮液化する。その後、室内熱交換器312から流出した冷媒は、絞り装置311で減圧された後に、室外熱交換器103でガス化する。室外熱交換器103を流出した冷媒は、四方切替弁102を介してアキュムレータ104に流入する。そして、アキュムレータ104内の冷媒のうちのガス冷媒についてが、圧縮機101の吸入側に流入する。 During the heating operation, the control device 119 switches the four-way switching valve 102 to the heating side, connects the discharge side of the compressor 101 and the indoor heat exchanger 312, and connects the refrigerant inflow side of the accumulator 104 and the outdoor heat exchanger. 103 is connected. Further, the control device 119 sets the rotation speed of the compressor 101 to a preset rotation speed, sets the rotation speeds of the outdoor fan 109 and the indoor fan 313 to a preset rotation speed, and sets the opening of the expansion device 311 in advance. To the desired opening. Furthermore, the control device 119 opens the switching valve 105a and the switching valve 105b, and closes the switching valve 106a and the switching valve 106b. As shown in FIG. 3A, the refrigerant discharged from the compressor 101 flows into the indoor heat exchanger 312 after flowing through the four-way switching valve 102 and is condensed and liquefied. Thereafter, the refrigerant flowing out of the indoor heat exchanger 312 is decompressed by the expansion device 311 and then gasified by the outdoor heat exchanger 103. The refrigerant that has flowed out of the outdoor heat exchanger 103 flows into the accumulator 104 through the four-way switching valve 102. The gas refrigerant out of the refrigerant in the accumulator 104 flows into the suction side of the compressor 101.
 冷房運転時において、制御装置119は、四方切替弁102を冷房側に切り替えて、圧縮機101の吐出側と室外熱交換器103とを接続するとともに、アキュムレータ104の冷媒流入側と室内熱交換器312とを接続する。また、制御装置119は、圧縮機101の回転数を予め設定された回転数とし、室外ファン109及び室内ファン313の回転数を予め設定された回転数とし、絞り装置311の開度を予め設定された開度にする。さらに、制御装置119は、切替弁105a及び切替弁105bを開とし、切替弁106a及び切替弁106bを閉じる。図3Bに示すように、圧縮機101から吐出された冷媒は、四方切替弁102を流れた後に室外熱交換器103に流入し、凝縮液化する。その後、室外熱交換器103を流出した冷媒は、絞り装置311で減圧された後に、室内熱交換器312でガス化する。室内熱交換器312から流出した冷媒は、四方切替弁102を介してアキュムレータ104に流入する。そして、アキュムレータ104内の冷媒のうちのガス冷媒についてが、圧縮機101の吸入側に流入する。 During the cooling operation, the control device 119 switches the four-way switching valve 102 to the cooling side, connects the discharge side of the compressor 101 and the outdoor heat exchanger 103, and connects the refrigerant inflow side of the accumulator 104 and the indoor heat exchanger. 312 is connected. Further, the control device 119 sets the rotation speed of the compressor 101 to a preset rotation speed, sets the rotation speeds of the outdoor fan 109 and the indoor fan 313 to a preset rotation speed, and sets the opening of the expansion device 311 in advance. To the desired opening. Furthermore, the control device 119 opens the switching valve 105a and the switching valve 105b, and closes the switching valve 106a and the switching valve 106b. As shown in FIG. 3B, the refrigerant discharged from the compressor 101 flows into the outdoor heat exchanger 103 after flowing through the four-way switching valve 102, and is condensed and liquefied. Thereafter, the refrigerant flowing out of the outdoor heat exchanger 103 is decompressed by the expansion device 311 and then gasified by the indoor heat exchanger 312. The refrigerant that has flowed out of the indoor heat exchanger 312 flows into the accumulator 104 through the four-way switching valve 102. The gas refrigerant out of the refrigerant in the accumulator 104 flows into the suction side of the compressor 101.
[オンデフロスト運転及びリバースデフロスト運転の動作などについて]
 図4Aは、本実施の形態に係る冷凍サイクル装置500のオンデフロスト運転を実施し、第1の熱交換器103aに冷媒を供給する様子を示す図である。図4Bは、本実施の形態に係る冷凍サイクル装置500のオンデフロスト運転を実施し、第2の熱交換器103bに冷媒を供給する様子を示す図である。図4Cは、本実施の形態に係る冷凍サイクル装置500のリバースデフロスト運転時の冷媒の流れを示す図である。
[On defrost operation and reverse defrost operation]
FIG. 4A is a diagram illustrating a state in which the on-defrost operation of the refrigeration cycle apparatus 500 according to the present embodiment is performed and the refrigerant is supplied to the first heat exchanger 103a. FIG. 4B is a diagram illustrating a state in which the on-defrost operation of the refrigeration cycle apparatus 500 according to the present embodiment is performed and the refrigerant is supplied to the second heat exchanger 103b. FIG. 4C is a diagram showing a refrigerant flow during the reverse defrost operation of the refrigeration cycle apparatus 500 according to the present embodiment.
 制御装置119は、オンデフロスト運転を実施するときにおいて、第1の熱交換器103a及び第2の熱交換器103bのうち、蒸発器として機能させるものとホットガスを供給するものを切り替えるように構成されている。すなわち、オンデフロスト運転では、第1の熱交換器103aを蒸発器として機能させ、第2の熱交換器103bにホットガスを供給する第1の運転モードと、第2の熱交換器103bを蒸発器として機能させ、第1の熱交換器103aにホットガスを供給する第2の運転モードとを有している。図4Aが第1の運転モードの説明図に対応し、図4Bが第2の運転モードの説明図に対応している。 The control device 119 is configured to switch between the first heat exchanger 103a and the second heat exchanger 103b that function as an evaporator and the one that supplies hot gas when performing on-defrost operation. Has been. That is, in the on-defrost operation, the first heat exchanger 103a functions as an evaporator, the first operation mode for supplying hot gas to the second heat exchanger 103b, and the second heat exchanger 103b is evaporated. And a second operation mode for supplying hot gas to the first heat exchanger 103a. 4A corresponds to the explanatory diagram of the first operation mode, and FIG. 4B corresponds to the explanatory diagram of the second operation mode.
(オンデフロスト運転:第1の運転モード)
 図4Aに示すように、第1の運転モード時において、制御装置119は、四方切替弁102を暖房側に切り替える。なお、本実施の形態では、暖房運転を実施しているときにオンデフロスト運転を実施するため、四方切替弁102は暖房側のままである。このため、制御装置119は、四方切替弁102の切り替えをしない。また、制御装置119は、圧縮機101の回転数を最大とし、室外ファン109及び室内ファン313の回転数を予め設定された回転数とする。オンデフロスト運転時には、暖房運転を継続するため、室外ファン109及び室内ファン313を運転する。制御装置119は、絞り装置311の開度を予め設定された開度にする。さらに、制御装置119は、切替弁105aを開とし、切替弁105bを閉とする。また、制御装置119は、切替弁106aを閉とし、切替弁106bを開とする。これにより、第1の熱交換器103aを蒸発器として機能させ、第2の熱交換器103bには圧縮機101から吐出されるホットガス冷媒を供給する(図5(a)、図5(b)、図6(a)及び図6(b)参照)。
(On-defrost operation: 1st operation mode)
As shown in FIG. 4A, in the first operation mode, the control device 119 switches the four-way switching valve 102 to the heating side. In the present embodiment, since the on-defrost operation is performed when the heating operation is performed, the four-way switching valve 102 remains on the heating side. For this reason, the control device 119 does not switch the four-way switching valve 102. In addition, the control device 119 maximizes the rotation speed of the compressor 101 and sets the rotation speeds of the outdoor fan 109 and the indoor fan 313 to preset rotation speeds. During the on-defrost operation, the outdoor fan 109 and the indoor fan 313 are operated to continue the heating operation. The control device 119 sets the opening degree of the expansion device 311 to a preset opening degree. Further, the control device 119 opens the switching valve 105a and closes the switching valve 105b. The control device 119 closes the switching valve 106a and opens the switching valve 106b. Thus, the first heat exchanger 103a functions as an evaporator, and hot gas refrigerant discharged from the compressor 101 is supplied to the second heat exchanger 103b (FIGS. 5A and 5B). ), FIG. 6 (a) and FIG. 6 (b)).
 図4Aに示すように、圧縮機101から吐出された冷媒のうちの一部が、四方切替弁102を流れた後に室内熱交換器312に流入し、凝縮液化する。圧縮機101から吐出された冷媒のうちの他部が、切替弁106bを流れた後に第2の熱交換器103bに流入し、霜を溶かす。室内熱交換器312から流出した冷媒は、絞り装置311で減圧された後に、第1の熱交換器103aでガス化する。 As shown in FIG. 4A, a part of the refrigerant discharged from the compressor 101 flows into the indoor heat exchanger 312 after flowing through the four-way switching valve 102, and is condensed and liquefied. The other part of the refrigerant discharged from the compressor 101 flows through the switching valve 106b and then flows into the second heat exchanger 103b to melt frost. The refrigerant flowing out from the indoor heat exchanger 312 is decompressed by the expansion device 311 and then gasified by the first heat exchanger 103a.
 図4Aに示すように、第1の熱交換器103aから流出した冷媒及び第2の熱交換器103bから流出した冷媒は、室外熱交換器103の下流側で合流した後に、四方切替弁102を介してアキュムレータ104に流入する。そして、アキュムレータ104内の冷媒のうちのガス冷媒についてが、圧縮機101の吸入側に流入する。 As shown in FIG. 4A, the refrigerant flowing out from the first heat exchanger 103a and the refrigerant flowing out from the second heat exchanger 103b merge on the downstream side of the outdoor heat exchanger 103, and then the four-way switching valve 102 is To the accumulator 104. The gas refrigerant out of the refrigerant in the accumulator 104 flows into the suction side of the compressor 101.
(オンデフロスト運転:第2の運転モード)
 図4Bに示すように、第2の運転モード時においては、制御装置119は、切替弁105aを閉とし、切替弁105bを開とする。また、制御装置119は、切替弁106aを開とし、切替弁106bを閉とする。その他の構成の制御は、第1の運転モードと同様である。これにより、第2の熱交換器103bを蒸発器として機能させ、第1の熱交換器103aには圧縮機101から吐出されるホットガス冷媒を供給する(図5(c)、図5(d)、図6(c)及び図6(d)参照)。
(On-defrost operation: second operation mode)
As shown in FIG. 4B, in the second operation mode, the control device 119 closes the switching valve 105a and opens the switching valve 105b. Further, the control device 119 opens the switching valve 106a and closes the switching valve 106b. The control of the other configuration is the same as in the first operation mode. Accordingly, the second heat exchanger 103b functions as an evaporator, and hot gas refrigerant discharged from the compressor 101 is supplied to the first heat exchanger 103a (FIGS. 5C and 5D). ), FIG. 6 (c) and FIG. 6 (d)).
 図4Bに示すように、この第2の運転モードでは、圧縮機101から吐出された冷媒のうちの一部が、四方切替弁102を流れた後に室内熱交換器312に流入し、凝縮液化する。そして、室内熱交換器312から流出した冷媒は、絞り装置311で減圧された後に、第2の熱交換器103bでガス化する。また、圧縮機101から吐出された冷媒のうちの他部が、切替弁106bを流れた後に第1の熱交換器103aに流入し、霜を溶かす。 As shown in FIG. 4B, in this second operation mode, a part of the refrigerant discharged from the compressor 101 flows into the indoor heat exchanger 312 after flowing through the four-way switching valve 102 and is condensed and liquefied. . The refrigerant flowing out of the indoor heat exchanger 312 is decompressed by the expansion device 311 and then gasified by the second heat exchanger 103b. Moreover, after the other part of the refrigerant | coolant discharged from the compressor 101 flows through the switching valve 106b, it flows in into the 1st heat exchanger 103a, and melts frost.
 制御装置119は、第1の運転モードをたとえば10分間実施し、その後、第2の運転モードを10分間実施する。なお、10分間に限定されるものではなく、これよりも長くてもよいし、短くてもよい。また、たとえば第1の熱交換器103aと第2の熱交換器103bの大きさが異なるなどの事情があり、霜取りに要する時間が第1の熱交換器103aと第2の熱交換器103bとで異なるのであれば、異なる値に設定してもよい。 The control device 119 executes the first operation mode for 10 minutes, for example, and then executes the second operation mode for 10 minutes. In addition, it is not limited to 10 minutes, It may be longer or shorter than this. Further, for example, there are circumstances such as the size of the first heat exchanger 103a and the second heat exchanger 103b differing, and the time required for defrosting is between the first heat exchanger 103a and the second heat exchanger 103b. If they are different, they may be set to different values.
(リバースデフロスト運転)
 リバースデフロスト運転は暖房運転又はオンデフロスト運転を実施した後に実施することになるため、制御装置119は、暖房側となっている。このため、制御装置119は、図4Cに示すように、暖房側になっている四方切替弁102を冷房側に切り替える。
(Reverse defrost operation)
Since the reverse defrost operation is performed after the heating operation or the on-defrost operation is performed, the control device 119 is on the heating side. For this reason, as shown in FIG. 4C, the control device 119 switches the four-way switching valve 102 on the heating side to the cooling side.
 制御装置119は、圧縮機101の回転数を最大とする。また、制御装置119は、室外ファン109及び室内ファン313の運転を停止する。リバースデフロスト運転時に室外ファン109を運転すると、冷たい外気が室外熱交換器103に供給されてしまい、霜が溶けにくくなるため、室外ファン109を停止する。また、リバースデフロスト運転時に室内ファン313を運転すると、冬季などにおいて、蒸発器として機能する室内熱交換器312を通過した冷たい空気が室内に供給されてしまうため、室内ファン313を停止する。 The control device 119 maximizes the rotation speed of the compressor 101. In addition, the control device 119 stops the operation of the outdoor fan 109 and the indoor fan 313. If the outdoor fan 109 is operated during the reverse defrost operation, cold outdoor air is supplied to the outdoor heat exchanger 103, and frost is hardly melted. Therefore, the outdoor fan 109 is stopped. In addition, when the indoor fan 313 is operated during the reverse defrost operation, the cold air that has passed through the indoor heat exchanger 312 functioning as an evaporator is supplied to the room in winter and the indoor fan 313 is stopped.
 制御装置119は、絞り装置311の開度を予め設定された開度にする。さらに、制御装置119は、切替弁105a及び切替弁105bを開とし、切替弁106a及び切替弁106bを閉とする。リバースデフロスト運転では、第1の熱交換器103a及び第2の熱交換器103bを凝縮器として機能させ、オンデフロスト運転よりも強力に霜を除去する(図6(e)及び図6(f)参照)。制御装置119は、リバースデフロスト運転を、たとえば7~12分間実施する。 The control device 119 sets the opening degree of the expansion device 311 to a preset opening degree. Further, the control device 119 opens the switching valve 105a and the switching valve 105b, and closes the switching valve 106a and the switching valve 106b. In the reverse defrost operation, the first heat exchanger 103a and the second heat exchanger 103b are caused to function as a condenser, and frost is removed more strongly than in the on-defrost operation (FIGS. 6E and 6F). reference). The control device 119 performs the reverse defrost operation, for example, for 7 to 12 minutes.
 リバースデフロスト運転は、暖房運転又はオンデフロスト運転から移行される運転である。このため、室内熱交換器312には、暖房運転又はオンデフロスト運転時に凝縮器としており、その分の熱を有している。リバースデフロスト運転では、この室内熱交換器312を通し、室内熱交換器312から流出する冷媒の温度を引き上げ、温度が引き上げられた冷媒を圧縮機101で圧縮して室外熱交換器103に供給する。これにより、オンデフロスト運転を実施した後にリバースデフロスト運転を実施して、オンデフロスト運転で残霜が形成されていても、それを除去することができる(後述の図8のステップS4及びステップS7参照)。また、暖房運転を実施した後にリバースデフロスト運転を実施して、着霜量が多くてオンデフロスト運転では除霜時間が長くなりすぎてしまうこと回避することができる(後述の図8のステップS3及びステップS7参照)。 The reverse defrost operation is an operation shifted from the heating operation or the on-defrost operation. For this reason, the indoor heat exchanger 312 is a condenser during heating operation or on-defrost operation, and has heat corresponding to that. In the reverse defrost operation, the temperature of the refrigerant flowing out from the indoor heat exchanger 312 is raised through the indoor heat exchanger 312, and the refrigerant whose temperature has been raised is compressed by the compressor 101 and supplied to the outdoor heat exchanger 103. . Thereby, after carrying out the on-defrost operation, the reverse defrost operation is carried out, and even if residual frost is formed in the on-defrost operation, it can be removed (see step S4 and step S7 in FIG. 8 described later). ). Further, reverse defrost operation is performed after the heating operation is performed, and it is possible to avoid that the amount of frost formation is large and the defrost time is too long in the on defrost operation (step S3 and FIG. 8 described later). (See step S7).
 室内熱交換器312から流出して加熱された冷媒は、四方切替弁102を介して圧縮機101の吸入側に流入する。そして、圧縮機101から吐出された冷媒は、四方切替弁102を流れた後に室外熱交換器103に流入し、凝縮液化し、室外熱交換器103に付着している霜を溶かす。室外熱交換器103を流出した冷媒は、絞り装置311で減圧された後に、室内熱交換器312に流入する。 The refrigerant that has flowed out and heated from the indoor heat exchanger 312 flows into the suction side of the compressor 101 via the four-way switching valve 102. Then, the refrigerant discharged from the compressor 101 flows into the outdoor heat exchanger 103 after flowing through the four-way switching valve 102, is condensed and liquefied, and melts frost adhering to the outdoor heat exchanger 103. The refrigerant flowing out of the outdoor heat exchanger 103 is decompressed by the expansion device 311 and then flows into the indoor heat exchanger 312.
[オンデフロスト運転で霜の溶ける様子]
 図5は、オンデフロスト運転を実施した場合に、室外熱交換器103に付着した霜Fが溶ける様子を示す模式図である。なお、図5(a)は第1の熱交換器103aにホットガスを供給し、第2の熱交換器103bを蒸発器として機能させている様子を示し、図5(b)は図5(a)の動作の後に第1の熱交換器103aの霜Fが溶けた様子を示している。図5(c)は第2の熱交換器103bにホットガスを供給し、第1の熱交換器103aを蒸発器として機能させている様子を示し、図5(d)は図5(c)の動作の後に第2の熱交換器103bの霜Fが溶けた様子を示している。
[How frost melts during on-defrost operation]
FIG. 5 is a schematic diagram showing how the frost F adhering to the outdoor heat exchanger 103 melts when the on-defrost operation is performed. FIG. 5A shows a state in which hot gas is supplied to the first heat exchanger 103a and the second heat exchanger 103b functions as an evaporator, and FIG. The mode that the frost F of the 1st heat exchanger 103a melt | dissolved after the operation | movement of a) is shown. FIG.5 (c) shows a mode that hot gas is supplied to the 2nd heat exchanger 103b, and the 1st heat exchanger 103a is functioning as an evaporator, FIG.5 (d) shows FIG.5 (c). The mode that the frost F of the 2nd heat exchanger 103b melt | dissolved after operation | movement of (2) is shown.
 上側の第1の熱交換器103aの霜が溶けて第2の熱交換器103bに流れ込み、第2の熱交換器103bには水が氷結して形成された氷結部FIが発生している。ここで、図5では、リバースデフロスト運転を実施せずとも、室外熱交換器103に付着した霜Fを除去できる態様を想定している。たとえば、室外熱交換器103の着霜量が小さいと、第1の熱交換器103aで溶けて第2の熱交換器103bに流れ込む水の量も小さい。したがって、氷結部FIも小さいため、オンデフロスト運転で室外熱交換器103の氷結部FIを除去することができる。 The frost of the upper first heat exchanger 103a melts and flows into the second heat exchanger 103b, and the second heat exchanger 103b has an iced portion FI formed by freezing of water. Here, in FIG. 5, the aspect which can remove the frost F adhering to the outdoor heat exchanger 103 is assumed, without implementing reverse defrost driving | operation. For example, when the amount of frost formation on the outdoor heat exchanger 103 is small, the amount of water that melts in the first heat exchanger 103a and flows into the second heat exchanger 103b is also small. Therefore, since the freezing part FI is also small, the freezing part FI of the outdoor heat exchanger 103 can be removed by the on-defrost operation.
[オンデフロスト運転及びリバースデフロスト運転で霜の溶ける様子]
 図6Aは、オンデフロスト運転を実施したが、第2の熱交換器103bで氷結してしまい、霜を除去できなかったため、リバースデフロスト運転を実施した様子を示す模式図である。オンデフロスト運転を実施すると、上側の第1の熱交換器103aの熱で溶けた水が、蒸発器として機能する下側の第2の熱交換器103bに流れ込む。空気中からの水分ではなく、溶けた水が直接的に第2の熱交換器103bに流れ込むことになるので、第2の熱交換器103bのフィンなどが氷結し、霜の形成がさらに進む場合がある。このため、第1の熱交換器103aにホットガスを供給した後に、第2の熱交換器103bにホットガスを供給しても、除霜することができない、或いは除霜に要する時間がかかりすぎる場合がある。
[The frost melts during on-defrost operation and reverse defrost operation]
FIG. 6A is a schematic diagram illustrating a state where reverse defrost operation is performed because on-defrost operation is performed, but frost is not removed due to icing in the second heat exchanger 103b. When the on-defrost operation is performed, the water dissolved by the heat of the upper first heat exchanger 103a flows into the lower second heat exchanger 103b functioning as an evaporator. When melted water flows directly into the second heat exchanger 103b instead of moisture from the air, the fins of the second heat exchanger 103b are frozen and frost formation further proceeds There is. For this reason, even if hot gas is supplied to the 2nd heat exchanger 103b after supplying hot gas to the 1st heat exchanger 103a, it cannot defrost or it takes too much time for defrosting. There is a case.
 たとえば、第1の熱交換器103aにホットガスを供給し、第2の熱交換器103bを蒸発器として機能させていると、第1の熱交換器103aで溶けた水が溶けてフィンなどを伝って第2の熱交換器103bに付着する。第2の熱交換器103bについては、蒸発器として機能しているので、第1の熱交換器103aから流れてくる水が第2の熱交換器103bのフィンなどで氷結し、さらに霜の形成が進んでしまう場合がある。
 そこで、冷凍サイクル装置500では、オンデフロスト運転では霜が除去できない、或いは除霜に要する時間がかかりすぎる場合を想定し、予め設定された条件のもとで、リバースデフロスト運転を実施することができるようになっている。
For example, when hot gas is supplied to the first heat exchanger 103a and the second heat exchanger 103b is functioning as an evaporator, water melted in the first heat exchanger 103a is melted and fins and the like are dissolved. And adheres to the second heat exchanger 103b. Since the second heat exchanger 103b functions as an evaporator, water flowing from the first heat exchanger 103a is frozen by the fins of the second heat exchanger 103b, and frost formation is further formed. May go on.
In view of this, in the refrigeration cycle apparatus 500, it is assumed that frost cannot be removed by on-defrost operation or that it takes too much time for defrosting, and reverse defrost operation can be performed under preset conditions. It is like that.
 図6A(a)は、第1の熱交換器103aにホットガスを供給し、第2の熱交換器103bを蒸発器として機能させている様子を示し、図6A(b)は図6A(a)の動作の後に第1の熱交換器103aの霜が溶けきっていない様子を示している。図6A(a)及び図6A(b)に示すように、上側の第1の熱交換器103aの霜が溶けて第2の熱交換器103bに流れ込み、第2の熱交換器103bには氷結部FIが発生している。 FIG. 6A (a) shows a state in which hot gas is supplied to the first heat exchanger 103a and the second heat exchanger 103b functions as an evaporator, and FIG. 6A (b) shows FIG. 6A (a). ), The frost of the first heat exchanger 103a is not completely melted. As shown in FIGS. 6A (a) and 6A (b), the frost of the upper first heat exchanger 103a melts and flows into the second heat exchanger 103b, and the second heat exchanger 103b is frozen. Part FI has occurred.
 図6A(c)は、第2の熱交換器103bにホットガスを供給し、第1の熱交換器103aを蒸発器として機能させている様子を示し、図6A(d)は図6(c)の動作の後に第2の熱交換器103bの霜が溶けきっていない様子を示している。すなわち、氷結部FIは、ホットガスの有する除霜能力では除去することができていない。 FIG. 6A (c) shows a state in which hot gas is supplied to the second heat exchanger 103b and the first heat exchanger 103a functions as an evaporator, and FIG. 6A (d) shows the state shown in FIG. ), The frost of the second heat exchanger 103b is not completely melted. In other words, the frozen portion FI cannot be removed by the defrosting capability of the hot gas.
 図6(e)は、リバースデフロスト運転を実施して室内熱交換器312を通った冷媒を第1の熱交換器103a及び第2の熱交換器103bに供給している様子を示し、図6(f)は、図6(d)の動作の後に、第1の熱交換器103a及び第2の熱交換器103bの霜が溶けた様子を示している。リバースデフロスト運転では、オンデフロスト運転よりも除霜能力が高いので、氷結部FIを除去することができる。 FIG. 6E shows a state in which the reverse defrost operation is performed and the refrigerant that has passed through the indoor heat exchanger 312 is supplied to the first heat exchanger 103a and the second heat exchanger 103b. (F) has shown the mode that the frost of the 1st heat exchanger 103a and the 2nd heat exchanger 103b melt | dissolved after the operation | movement of FIG.6 (d). In the reverse defrost operation, the defrosting capability is higher than that in the on defrost operation, so that the icing portion FI can be removed.
 図6Bは、オンデフロスト運転を実施したが、第1の熱交換器103a及び第2の熱交換器103bの着霜量が多く、いずれでも霜を除去できなかったため、リバースデフロスト運転を実施した様子を示す模式図である。図6B(a)~図6B(f)は、図6A(a)~図6(f)にそれぞれ対応している。
 図6Bに示すように、室外熱交換器103に形成されている霜Fの量が多いと、図6B(b)に示すように、一部の霜を除去することができるが、霜Fの大部分が霜Fとして残ってしまう場合がある。このように、室外熱交換器103に付着している霜が多い場合であっても、リバースデフロスト運転を実施することで霜を除去することができる。
In FIG. 6B, the on-defrost operation was performed, but the amount of frost formation in the first heat exchanger 103a and the second heat exchanger 103b was large, and frost could not be removed in either case, so the reverse defrost operation was performed. It is a schematic diagram which shows. FIGS. 6B (a) to 6B (f) correspond to FIGS. 6A (a) to 6 (f), respectively.
As shown in FIG. 6B, when the amount of frost F formed in the outdoor heat exchanger 103 is large, as shown in FIG. 6B (b), some frost can be removed. Most of the frost F may remain. Thus, even if there is much frost adhering to the outdoor heat exchanger 103, frost can be removed by carrying out the reverse defrost operation.
[リバースデフロスト運転で霜の溶ける様子]
 図7は、第1の熱交換器103a及び第2の熱交換器103bの着霜量が多いため、オンデフロスト運転を実施せず、リバースデフロスト運転を実施した様子を示す模式図である。図7(a)は、リバースデフロスト運転を実施して室内熱交換器312を通った冷媒を第1の熱交換器103a及び第2の熱交換器103bに供給している様子を示し、図7(b)は、図7(a)の動作の後に、第1の熱交換器103a及び第2の熱交換器103bの霜が溶けた様子を示している。図7に示すように、着霜量自体が多くなっている場合には、オンデフロスト運転をせずにリバースデフロスト運転を実施する。これにより、除霜時間がいたずらに長くなってしまうことを回避することができる。着霜量の判定に対応する判定は、後述するステップS3で実施する。
[Frost melting with reverse defrost operation]
FIG. 7 is a schematic diagram showing a state in which the reverse defrost operation is performed without performing the on-defrost operation because the frost formation amount of the first heat exchanger 103a and the second heat exchanger 103b is large. FIG. 7A shows a state in which the reverse defrost operation is performed and the refrigerant that has passed through the indoor heat exchanger 312 is supplied to the first heat exchanger 103a and the second heat exchanger 103b. (B) has shown the mode that the frost of the 1st heat exchanger 103a and the 2nd heat exchanger 103b melt | dissolved after the operation | movement of Fig.7 (a). As shown in FIG. 7, when the amount of frost formation itself is large, the reverse defrost operation is performed without performing the on defrost operation. Thereby, it can avoid that the defrost time will become unnecessarily long. The determination corresponding to the determination of the amount of frost formation is performed in step S3 described later.
[制御フローについて]
 図8は、本実施の形態に係る冷凍サイクル装置500の暖房運転から除霜運転(オンデフロスト運転及びリバースデフロスト運転)に移行する際の制御フローチャートである。図8を参照して、冷凍サイクル装置500の制御フローについて説明する。
[About control flow]
FIG. 8 is a control flowchart when the refrigeration cycle apparatus 500 according to the present embodiment shifts from the heating operation to the defrosting operation (on-defrost operation and reverse defrost operation). A control flow of the refrigeration cycle apparatus 500 will be described with reference to FIG.
(ステップS1:暖房運転時間判定)
 制御装置119は、暖房の運転時間についての判定を実施する。暖房運転経過時間tは、室外ユニット100の運転容量及び室外熱交換器103の性能などに基づいて予め設定する値である。暖房運転経過時間tについては、制御装置119のマイコンなどに予め記憶させておく。
(Step S1: Heating operation time determination)
The control device 119 performs the determination on the heating operation time. The heating operation elapsed time t is a value set in advance based on the operation capacity of the outdoor unit 100, the performance of the outdoor heat exchanger 103, and the like. The heating operation elapsed time t is stored in advance in a microcomputer of the control device 119 or the like.
(ステップS2:着霜の有無に係る判定)
 制御装置119は、予め設定される第1の冷媒温度Ta及び第1の冷媒温度センサー151aの検出結果に基づく判定を実施する。第1の冷媒温度センサー151aの検出結果が第1の冷媒温度Ta(たとえば、2℃)以下である場合には、ステップS3に移行する。第1の冷媒温度センサー151aの検出結果が、第1の冷媒温度Taよりも高い場合にはステップS0に戻る。
(Step S2: Determination relating to presence or absence of frost formation)
The control device 119 performs determination based on the first refrigerant temperature Ta set in advance and the detection result of the first refrigerant temperature sensor 151a. When the detection result of the first refrigerant temperature sensor 151a is equal to or lower than the first refrigerant temperature Ta (for example, 2 ° C.), the process proceeds to step S3. If the detection result of the first refrigerant temperature sensor 151a is higher than the first refrigerant temperature Ta, the process returns to step S0.
 このステップS2では、着霜の有無に係る判定をしている。すなわち、本ステップS2では、第1の熱交換器103aに流入する前の冷媒の温度に基づく判定を実施し、室外熱交換器103に予め設定された量以上の霜が形成されて、デフロスト運転が必要であるか否かを判定している。暖房運転を実施していた場合において、室外熱交換器103に供給される手前の冷媒は、凝縮器として機能する室内熱交換器312を通過する過程で冷やされている。冷えた冷媒が室外熱交換器103に供給されると、その分、室外熱交換器103で着霜が形成されやすくなる。そこで、第1の冷媒温度センサー151aの検出結果が第1の冷媒温度Ta以下となっている場合には、デフロスト運転を実施するとの判定をする。このデフロスト運転は、(1)オンデフロスト運転のみを実施して暖房運転に戻る場合と、(2)リバースデフロスト運転のみを実施して暖房運転に戻る場合と、(3)オンデフロスト運転及びリバースデフロスト運転の両方を実施してから暖房運転に戻る場合とがある。 In step S2, a determination is made regarding the presence or absence of frost formation. That is, in this step S2, determination based on the temperature of the refrigerant before flowing into the first heat exchanger 103a is performed, and frost more than a preset amount is formed in the outdoor heat exchanger 103, so that the defrost operation is performed. It is determined whether or not is necessary. In the case where the heating operation is performed, the refrigerant just before being supplied to the outdoor heat exchanger 103 is cooled in the process of passing through the indoor heat exchanger 312 functioning as a condenser. When the cooled refrigerant is supplied to the outdoor heat exchanger 103, the outdoor heat exchanger 103 is likely to form frost. Therefore, when the detection result of the first refrigerant temperature sensor 151a is equal to or lower than the first refrigerant temperature Ta, it is determined that the defrost operation is performed. This defrost operation includes (1) when only on-defrost operation is performed and returning to heating operation, (2) when only reverse defrost operation is performed and returning to heating operation, and (3) on-defrost operation and reverse defrost operation. In some cases, both operations are performed and then the heating operation is returned.
(ステップS3:着霜度合いに係る判定)
 制御装置119は、予め設定される外気温度Tairについての判定を実施する。本判定では、実施するデフロスト運転の種類の判定をする。外気温度センサー153の検出結果が、予め設定される外気温度Tair(たとえば、1℃)よりも高い場合には、ステップS4に移行する。外気温度がそれほど低くなっていなければ、オンデフロスト運転でも、室外熱交換器103の着霜を除去できると想定される。このため、ステップS3からステップS4に移行し、オンデフロスト運転を実施する。
(Step S3: Judgment related to degree of frost formation)
The control device 119 performs a determination on the preset outside air temperature Tair. In this determination, the type of defrost operation to be performed is determined. When the detection result of the outside air temperature sensor 153 is higher than a preset outside air temperature Tair (for example, 1 ° C.), the process proceeds to step S4. If the outside air temperature is not so low, it is assumed that frost formation on the outdoor heat exchanger 103 can be removed even in on-defrost operation. For this reason, it transfers to step S4 from step S3 and implements an on-defrost operation.
 外気温度センサー153の検出結果が、予め設定される外気温度Tair以下である場合にはステップS8に移行する。外気温度が低くなっていると室外熱交換器103の着霜の度合いが、図7で説明したように大きいと想定される。このため、オンデフロスト運転では霜を溶かすことが困難、或いは霜を溶かすのに長い時間を要することから、ステップS3からステップS8へ移行する。すなわち、本ステップS3では、着霜度合いに応じて異なるデフロスト運転に要する時間を、外気温度から判定している。なお、外気温度Tairの値は、たとえば予め実施される試験結果などにより決定することができる。 When the detection result of the outside air temperature sensor 153 is equal to or lower than the preset outside air temperature Tair, the process proceeds to step S8. When the outside air temperature is low, the degree of frost formation in the outdoor heat exchanger 103 is assumed to be large as described with reference to FIG. For this reason, it is difficult to melt the frost in the on-defrost operation, or it takes a long time to melt the frost, so the process proceeds from step S3 to step S8. That is, in this step S3, the time required for different defrost operations according to the degree of frost formation is determined from the outside air temperature. The value of the outside air temperature Tair can be determined, for example, based on a test result that is performed in advance.
(ステップS4及びステップS5:オンデフロスト運転)
 制御装置119は、オンデフロスト運転を実施する。すなわち、制御装置119は、第1の運転モードを実施した後に、第2の運転モードを実施する。オンデフロスト運転が終了すると、制御装置119は、ステップS6に移行する。
(Step S4 and Step S5: On-defrost operation)
The control device 119 performs on-defrost operation. In other words, the control device 119 performs the second operation mode after performing the first operation mode. When the on-defrost operation ends, the control device 119 proceeds to step S6.
(ステップS6:残霜の有無に係る判定)
 制御装置119は、予め設定される第2の冷媒温度Tb及び第2の冷媒温度センサー151bの検出結果に基づく判定を実施する。第2の冷媒温度センサー151bの検出結果が第2の冷媒温度Tb(たとえば、2℃)以下である場合には、ステップS7に移行する。このステップS6からステップS7へ移行するのは、オンデフロスト運転を終えた後に、残霜があると判定されたためである。すなわち、本ステップS6では、第2の冷媒温度センサー151bの検出結果を利用して、前述のステップS4のオンデフスト運転で霜を溶かしきれているか否かを判定する。第2の冷媒温度センサー151bの検出結果が第2の冷媒温度以下であると、霜が溶かしきれていない可能性が高いため、ステップS7に移行する。
(Step S6: Determination related to presence or absence of residual frost)
The control device 119 performs determination based on the second refrigerant temperature Tb set in advance and the detection result of the second refrigerant temperature sensor 151b. When the detection result of the second refrigerant temperature sensor 151b is equal to or lower than the second refrigerant temperature Tb (for example, 2 ° C.), the process proceeds to step S7. The reason for shifting from step S6 to step S7 is that it is determined that there is residual frost after the on-defrost operation is completed. That is, in this step S6, it is determined using the detection result of the second refrigerant temperature sensor 151b whether or not the frost has been completely melted in the above-described on-defrost operation of step S4. If the detection result of the second refrigerant temperature sensor 151b is equal to or lower than the second refrigerant temperature, there is a high possibility that the frost has not been completely melted, and the process proceeds to step S7.
 なお、ステップS6の判定は、ステップS5にてオンデフロスト運転が終了してから、ただちに実施しなくてもよい。オンデフロスト運転を終了して間もない状態では、室外熱交換器103に残霜が形成されていても、ホットガスが室外熱交換器103の入口側の冷媒配管を通過することで、この冷媒配管が加熱されており、第2の冷媒温度センサー151bの検出結果が、第2の冷媒温度Tbよりも大きいと判定する場合があるからである。 Note that the determination in step S6 may not be performed immediately after the on-defrost operation ends in step S5. In a state shortly after the on-defrost operation is finished, even if residual frost is formed in the outdoor heat exchanger 103, the hot gas passes through the refrigerant pipe on the inlet side of the outdoor heat exchanger 103, so that this refrigerant This is because the pipe is heated and it may be determined that the detection result of the second refrigerant temperature sensor 151b is larger than the second refrigerant temperature Tb.
(ステップS7及びステップS8:リバースデフロスト運転)
 制御装置119は、リバースデフロスト運転を実施する。オンデフロスト運転が終了すると、制御装置119は、ステップS0に戻る。
(Step S7 and Step S8: Reverse defrost operation)
The control device 119 performs reverse defrost operation. When the on-defrost operation ends, the control device 119 returns to step S0.
[本実施の形態に係る冷凍サイクル装置500の有する効果]
 本実施の形態に係る冷凍サイクル装置500は、オンデフロスト運転を実施した後に、室外熱交換器103(第2の熱交換器103b)の温度に基づいて残霜判定を実施する。 たとえば第2の熱交換器103bに氷結部FIが形成されていたり(図6A(d)参照)、室外熱交換器103の全体に渡って残霜があったりすると(図6B(d)参照)、制御装置119は、第2の冷媒温度センサー151bの検出結果が第2の冷媒温度Tb以下であると判定し、リバースデフロスト運転を実施する。これにより、オンデフロスト運転を終えた後に、室外熱交換器103に霜などが形成されたとしても、その残った霜を除去することができるので、室外熱交換器103を流れる冷媒と空気との熱交換効率が低減することを抑制することができる。すなわち、本実施の形態に係る冷凍サイクル装置500は、室外熱交換器103を流れる冷媒と空気との熱交換効率が低減することを抑制し、暖房運転の効率が低減してしまうことを抑制することができる。
[Effects of refrigeration cycle apparatus 500 according to the present embodiment]
The refrigeration cycle apparatus 500 according to the present embodiment performs the residual frost determination based on the temperature of the outdoor heat exchanger 103 (second heat exchanger 103b) after performing the on-defrost operation. For example, when the frozen portion FI is formed in the second heat exchanger 103b (see FIG. 6A (d)), or there is residual frost throughout the outdoor heat exchanger 103 (see FIG. 6B (d)). The control device 119 determines that the detection result of the second refrigerant temperature sensor 151b is equal to or lower than the second refrigerant temperature Tb, and performs the reverse defrost operation. Thus, even if frost or the like is formed in the outdoor heat exchanger 103 after the on-defrost operation is finished, the remaining frost can be removed, so that the refrigerant and air flowing through the outdoor heat exchanger 103 can be removed. It can suppress that heat exchange efficiency falls. That is, the refrigeration cycle apparatus 500 according to the present embodiment suppresses a reduction in the heat exchange efficiency between the refrigerant flowing through the outdoor heat exchanger 103 and the air, and suppresses a reduction in the efficiency of the heating operation. be able to.
 本実施の形態に係る冷凍サイクル装置500は、室外熱交換器103(第1の熱交換器103a)の温度に基づいて着霜判定を実施し、オンデフロスト運転及びリバースデフロスト運転のうちの少なくとも一方が必要であるかを判定することができる。
 そして、本実施の形態に係る冷凍サイクル装置500は、外気温度に基づいて着霜量の判定を実施し、オンデフロスト運転を実施するか、リバースデフロスト運転を実施するかを判定する。これにより、デフロスト運転時間が増大してしまうことを抑制することができる。
Refrigeration cycle apparatus 500 according to the present embodiment performs frosting determination based on the temperature of outdoor heat exchanger 103 (first heat exchanger 103a), and at least one of on-defrost operation and reverse defrost operation. Can be determined.
Then, refrigeration cycle apparatus 500 according to the present embodiment determines the amount of frost formation based on the outside air temperature, and determines whether to perform on-defrost operation or reverse defrost operation. Thereby, it can suppress that defrost operation time increases.
 なお、本実施の形態に係る冷凍サイクル装置500では、外気温度センサー153及び冷媒温度検出部151を有する態様について説明したが、それに限定されるものではない。たとえば、複数の冷凍サイクル装置500を統括制御する集中コントローラなどから、外気温度情報、室外熱交換器103に流入する前の冷媒温度情報などを取得して、オンデフロスト運転及びリバースデフロスト運転を実施するか否かの判定をしてもよい。 In the refrigeration cycle apparatus 500 according to the present embodiment, the aspect having the outside air temperature sensor 153 and the refrigerant temperature detection unit 151 has been described, but is not limited thereto. For example, outside air temperature information, refrigerant temperature information before flowing into the outdoor heat exchanger 103, and the like are acquired from a centralized controller that performs overall control of the plurality of refrigeration cycle apparatuses 500, and on-defrost operation and reverse defrost operation are performed. It may be determined whether or not.
 また、本実施の形態に係る冷凍サイクル装置500は、オンデフロスト運転時において、第1の熱交換器103aにホットガスを供給してから、第2の熱交換器103bにホットガスを供給するように構成されている場合を一例に説明したが、それに限定されるものではない。たとえば、第2の熱交換器103bにホットガスを供給してから、第1の熱交換器103aにホットガスを供給するように構成されていてもよい。なお、この場合には、第1の熱交換器103aにホットガスを供給しているときに、下側の第2の熱交換器103bが蒸発器として機能し、オンデフロスト運転が終了することになる。このため、本実施の形態の図8の制御フローの場合よりも、第2の熱交換器103bに残霜が形成されれてしまう可能性が高くなる。 In addition, the refrigeration cycle apparatus 500 according to the present embodiment supplies hot gas to the first heat exchanger 103a and then supplies hot gas to the second heat exchanger 103b during on-defrost operation. However, the present invention is not limited to this. For example, the hot gas may be supplied to the first heat exchanger 103a after the hot gas is supplied to the second heat exchanger 103b. In this case, when the hot gas is supplied to the first heat exchanger 103a, the lower second heat exchanger 103b functions as an evaporator, and the on-defrost operation ends. Become. For this reason, the possibility that a residual frost will be formed in the 2nd heat exchanger 103b becomes higher than the case of the control flow of Drawing 8 of this embodiment.
[変形例1]
 図9は、本実施の形態に係る冷凍サイクル装置500の室外熱交換器103の変形例1である。図9(a)は室外熱交換器103Bの斜視図であり、図9(b)は室外熱交換器103Bの縦断面図である。室外熱交換器103Bは、第1の熱交換器103aが第2の熱交換器103bの上側に配置されているが、その水平方向の位置がずれるように構成されている。このような室外熱交換器103Bであっても、本実施の形態に係る冷凍サイクル装置500と同様の効果を得ることができる。
[Modification 1]
FIG. 9 is a first modification of the outdoor heat exchanger 103 of the refrigeration cycle apparatus 500 according to the present embodiment. FIG. 9A is a perspective view of the outdoor heat exchanger 103B, and FIG. 9B is a longitudinal sectional view of the outdoor heat exchanger 103B. The outdoor heat exchanger 103B is configured such that the first heat exchanger 103a is disposed above the second heat exchanger 103b, but the horizontal position thereof is shifted. Even if it is such an outdoor heat exchanger 103B, the effect similar to the refrigerating-cycle apparatus 500 which concerns on this Embodiment can be acquired.
[変形例2]
 図10は、本実施の形態に係る冷凍サイクル装置500の室外熱交換器103の変形例2である。図10(a)は室外熱交換器103Cの斜視図であり、図10(b)は室外熱交換器103Cの縦断面図である。室外熱交換器103Cは、第2の熱交換器103b上に、第1の熱交換器103aを設置するのに利用される板上の設置部Tが配置されている。このように、第1の熱交換器103aと第2の熱交換器103bとの間に、部材が介在していても、本実施の形態に係る冷凍サイクル装置500と同様の効果を得ることができる。
[Modification 2]
FIG. 10 is a second modification of the outdoor heat exchanger 103 of the refrigeration cycle apparatus 500 according to the present embodiment. FIG. 10A is a perspective view of the outdoor heat exchanger 103C, and FIG. 10B is a longitudinal sectional view of the outdoor heat exchanger 103C. In the outdoor heat exchanger 103C, an installation part T on a plate used for installing the first heat exchanger 103a is arranged on the second heat exchanger 103b. Thus, even if a member is interposed between the first heat exchanger 103a and the second heat exchanger 103b, the same effect as the refrigeration cycle apparatus 500 according to the present embodiment can be obtained. it can.
[変形例3]
 図11は、本実施の形態に係る冷凍サイクル装置500の室外熱交換器103の変形例3である。図11(a)は室外熱交換器103Dの斜視図であり、図10(b)は室外熱交換器103Dの縦断面図である。室外熱交換器103Dは、上段の熱交換器として2つの第1の熱交換器103aが配置され、下段の熱交換器として2つの第2の熱交換器103bが配置されている。すなわち、室外熱交換器103Dは、4つの熱交換器を有している。このように、室外熱交換器103Dを構成する熱交換器は2つに限定されるものではなく、3つ以上であってもよい。この変形例3であっても、本実施の形態に係る冷凍サイクル装置500と同様の効果を得ることができる。
[Modification 3]
FIG. 11 is a third modification of the outdoor heat exchanger 103 of the refrigeration cycle apparatus 500 according to the present embodiment. Fig.11 (a) is a perspective view of outdoor heat exchanger 103D, FIG.10 (b) is a longitudinal cross-sectional view of outdoor heat exchanger 103D. In the outdoor heat exchanger 103D, two first heat exchangers 103a are arranged as upper heat exchangers, and two second heat exchangers 103b are arranged as lower heat exchangers. That is, the outdoor heat exchanger 103D has four heat exchangers. Thus, the heat exchanger which comprises outdoor heat exchanger 103D is not limited to two, Three or more may be sufficient. Even in the third modification, the same effect as that of the refrigeration cycle apparatus 500 according to the present embodiment can be obtained.
[変形例4]
 図12は、本実施の形態に係る冷凍サイクル装置500の室外熱交換器103の変形例4である。図12(a)は室外熱交換器103Eの斜視図であり、図12(b)は室外熱交換器103Eの縦断面図である。室外熱交換器103Eの第1の熱交換器103aは、一端側が下側に位置し、他端側が上側に位置するように傾斜配置されている。また、第2の熱交換器103bは、一端側が上側に位置し、他端側が下側に位置するように傾斜配置されている。このように、室外熱交換器103を構成する熱交換器が傾斜していても、本実施の形態に係る冷凍サイクル装置500と同様の効果を得ることができる。
[Modification 4]
FIG. 12 is a fourth modification of the outdoor heat exchanger 103 of the refrigeration cycle apparatus 500 according to the present embodiment. FIG. 12A is a perspective view of the outdoor heat exchanger 103E, and FIG. 12B is a longitudinal sectional view of the outdoor heat exchanger 103E. The first heat exchanger 103a of the outdoor heat exchanger 103E is inclined so that one end side is located on the lower side and the other end side is located on the upper side. The second heat exchanger 103b is inclined so that one end side is located on the upper side and the other end side is located on the lower side. Thus, even if the heat exchanger constituting the outdoor heat exchanger 103 is inclined, the same effect as that of the refrigeration cycle apparatus 500 according to the present embodiment can be obtained.
[変形例5]
 図13は、本実施の形態に係る冷凍サイクル装置500の室外熱交換器103の変形例5である。図13(a)は室外熱交換器103Fの斜視図であり、図13(b)は室外熱交換器103Fの縦断面図である。室外熱交換器103Fは、熱交換器が2段だけ積み重ねられたものではなく、熱交換器が3段だけ積み重ねられて構成されている。このように、室外熱交換器103Fの段数は2段に限定されるものではなく、3段以上であってもよい。たとえば、室外熱交換器103Fには、熱交換器が3段だけ積み重ねられた場合には、たとえば、オンデフロスト運転及びリバースデフロスト運転を次のように実施するとよい。
[Modification 5]
FIG. 13 is a fifth modification of the outdoor heat exchanger 103 of the refrigeration cycle apparatus 500 according to the present embodiment. FIG. 13A is a perspective view of the outdoor heat exchanger 103F, and FIG. 13B is a longitudinal sectional view of the outdoor heat exchanger 103F. The outdoor heat exchanger 103F is not formed by stacking two stages of heat exchangers, but is configured by stacking three stages of heat exchangers. Thus, the number of stages of the outdoor heat exchanger 103F is not limited to two, and may be three or more. For example, when only three stages of heat exchangers are stacked on the outdoor heat exchanger 103F, for example, on-defrost operation and reverse defrost operation may be performed as follows.
 オンデフロスト運転時において、第1の運転モード時には、最上段の熱交換器103cにホットガスを供給し、その他を蒸発器として機能させる。第2の運転モード時には、中間段の熱交換器103aaにホットガスを供給し、その他を蒸発器として機能させる。そして、第3の運転モード時には、最下段の熱交換器103bbにホットガスを供給し、その他を蒸発器として機能させる。
 また、リバースデフロスト運転時においては、最上段の熱交換器103c、中間段の熱交換器103aa、及び最下段の熱交換器103bbの全てに冷媒を供給する。
In the on-defrost operation, in the first operation mode, hot gas is supplied to the uppermost heat exchanger 103c, and the other functions as an evaporator. In the second operation mode, hot gas is supplied to the heat exchanger 103aa at the intermediate stage, and the other functions as an evaporator. In the third operation mode, hot gas is supplied to the lowermost heat exchanger 103bb and the other functions as an evaporator.
In reverse defrost operation, the refrigerant is supplied to all of the uppermost heat exchanger 103c, the intermediate heat exchanger 103aa, and the lowermost heat exchanger 103bb.
 この変形例5であっても、本実施の形態に係る冷凍サイクル装置500と同様の効果を得ることができる。 Even in the fifth modification, the same effect as that of the refrigeration cycle apparatus 500 according to the present embodiment can be obtained.
 100 室外ユニット、101 圧縮機、102 四方切替弁、103 室外熱交換器、103B 室外熱交換器、103C 室外熱交換器、103D 室外熱交換器、103E 室外熱交換器、103F 室外熱交換器、103a 第1の熱交換器、103aa 熱交換器、103b 第2の熱交換器、103bb 熱交換器、103c 熱交換器、104 アキュムレータ、105a 切替弁、105b 切替弁、106a 切替弁、106b 切替弁、109 室外ファン、119 制御装置、141 高圧センサー、142 低圧センサー、151 冷媒温度検出部、151a 第1の冷媒温度センサー、151b 第2の冷媒温度センサー、153 外気温度センサー、300 室内ユニット、311 絞り装置、312 室内熱交換器、313 室内ファン、500 冷凍サイクル装置、C 冷媒回路、F 霜、FI 氷結部、T 設置部、Ta 第1の冷媒温度、Tair 外気温度、Tb 第2の冷媒温度、t 暖房運転経過時間。 100 outdoor unit, 101 compressor, 102 four-way switching valve, 103 outdoor heat exchanger, 103B outdoor heat exchanger, 103C outdoor heat exchanger, 103D outdoor heat exchanger, 103E outdoor heat exchanger, 103F outdoor heat exchanger, 103a 1st heat exchanger, 103aa heat exchanger, 103b 2nd heat exchanger, 103bb heat exchanger, 103c heat exchanger, 104 accumulator, 105a switching valve, 105b switching valve, 106a switching valve, 106b switching valve, 109 Outdoor fan, 119 control device, 141 high pressure sensor, 142 low pressure sensor, 151 refrigerant temperature detector, 151a first refrigerant temperature sensor, 151b second refrigerant temperature sensor, 153 outdoor air temperature sensor, 300 indoor unit, 311 throttle device, 312 room Exchanger, 313 indoor fan, 500 refrigeration cycle device, C refrigerant circuit, F frost, FI freezing part, T installation part, Ta first refrigerant temperature, Tair outdoor temperature, Tb second refrigerant temperature, t heating operation elapsed time .

Claims (8)

  1.  圧縮機、室内熱交換器、絞り装置及び室外熱交換器を備え、これらが冷媒配管で接続された冷媒回路を備えた冷凍サイクル装置において、
     前記室外熱交換器の温度及び外気温度に基づいて、デフロスト運転の実行を制御する制御装置と、
     を備え、
     前記室外熱交換器は、
     第1の熱交換器及び前記第1の熱交換器の下側に配置された第2の熱交換器を少なくとも備え、
     前記制御装置は、
     外気温度が予め設定される条件を満たした場合に、
     前記第1の熱交換器及び前記第2の熱交換器のうちの一方を蒸発器として機能させ、他方には前記室内熱交換器を通さずに前記圧縮機から吐出されたホットガスを供給するオンデフロスト運転を実施させ、
     前記オンデフロスト運転を実施した後に前記室外熱交換器の温度が予め設定される条件を満たした場合に、
     前記室内熱交換器を通った冷媒を前記圧縮機から前記第1の熱交換器及び前記第2の熱交換器に供給するリバースデフロスト運転を実施させるように構成されている
     冷凍サイクル装置。
    In a refrigeration cycle apparatus including a compressor, an indoor heat exchanger, an expansion device, and an outdoor heat exchanger, and having a refrigerant circuit in which these are connected by refrigerant piping,
    A control device for controlling the execution of the defrost operation based on the temperature of the outdoor heat exchanger and the outside air temperature;
    With
    The outdoor heat exchanger is
    Comprising at least a first heat exchanger and a second heat exchanger disposed below the first heat exchanger;
    The controller is
    When the outside air temperature meets the preset condition,
    One of the first heat exchanger and the second heat exchanger is caused to function as an evaporator, and the other is supplied with hot gas discharged from the compressor without passing through the indoor heat exchanger. On-defrost operation,
    When the temperature of the outdoor heat exchanger satisfies a preset condition after performing the on-defrost operation,
    A refrigeration cycle apparatus configured to perform a reverse defrost operation in which the refrigerant that has passed through the indoor heat exchanger is supplied from the compressor to the first heat exchanger and the second heat exchanger.
  2.  前記室外熱交換器に付設され、冷媒温度を検出する冷媒温度検出部と、
     外気温度を検出する外気温度センサーとをさらに備え、
     前記制御装置は、
     前記外気温度センサーの検出結果が予め設定される条件を満たした場合に、前記オンデフロスト運転を実施させ、
     前記オンデフロスト運転を実施した後に、前記冷媒温度検出部の検出結果が予め設定される条件を満たした場合に、前記リバースデフロスト運転を実施させるように構成されている
     請求項1に記載の冷凍サイクル装置。
    A refrigerant temperature detector attached to the outdoor heat exchanger for detecting a refrigerant temperature;
    An outside temperature sensor for detecting the outside temperature,
    The controller is
    When the detection result of the outside air temperature sensor satisfies a preset condition, the on-defrost operation is performed,
    The refrigeration cycle according to claim 1, wherein after the on-defrost operation is performed, the reverse defrost operation is performed when a detection result of the refrigerant temperature detection unit satisfies a preset condition. apparatus.
  3.  前記制御装置は、
     前記オンデフロスト運転を実施するときにおいて、
     前記第1の熱交換器及び前記第2の熱交換器のうち、前記蒸発器として機能させるものと前記ホットガスを供給するものとを切り替える制御を行うように構成されている
     請求項1又は2に記載の冷凍サイクル装置。
    The controller is
    When performing the on-defrost operation,
    The first heat exchanger and the second heat exchanger are configured to perform control to switch between one that functions as the evaporator and one that supplies the hot gas. The refrigeration cycle apparatus described in 1.
  4.  前記制御装置は、
     前記オンデフロスト運転を実施するときにおいて、
     前記第1の熱交換器に前記ホットガスを供給するとともに前記第2の熱交換器を前記蒸発器として機能させた後に、
     前記第1の熱交換器を前記蒸発器として機能させるとともに前記第2の熱交換器に前記ホットガスを供給する制御を行うように構成されている
     請求項3に記載の冷凍サイクル装置。
    The controller is
    When performing the on-defrost operation,
    After supplying the hot gas to the first heat exchanger and causing the second heat exchanger to function as the evaporator,
    The refrigeration cycle apparatus according to claim 3, wherein the refrigeration cycle apparatus is configured to control the first heat exchanger as the evaporator and to supply the hot gas to the second heat exchanger.
  5.  前記冷媒温度センサーは、
     前記第1の熱交換器に付設され、前記第1の熱交換器の冷媒温度を検出する第1の冷媒温度センサーと、
     前記第2の熱交換器に付設され、前記第2の熱交換器の冷媒温度を検出する第2の冷媒温度センサーとを備え、
     前記制御装置は、
     前記第1の冷媒温度センサーの検出結果が予め設定される第1の冷媒温度以下であり、前記外気温度センサーの検出結果が予め設定される温度よりも高い場合に、前記オンデフロスト運転を実施させ、
     前記第2の冷媒温度センサーの検出結果が予め設定される第2の冷媒温度以下である場合に、前記リバースデフロスト運転を実施させるように構成されている
     請求項4に記載の冷凍サイクル装置。
    The refrigerant temperature sensor
    A first refrigerant temperature sensor attached to the first heat exchanger and detecting a refrigerant temperature of the first heat exchanger;
    A second refrigerant temperature sensor attached to the second heat exchanger and detecting a refrigerant temperature of the second heat exchanger;
    The controller is
    When the detection result of the first refrigerant temperature sensor is equal to or lower than a first refrigerant temperature set in advance and the detection result of the outside air temperature sensor is higher than a preset temperature, the on-defrost operation is performed. ,
    The refrigeration cycle apparatus according to claim 4, wherein the reverse defrosting operation is performed when a detection result of the second refrigerant temperature sensor is equal to or lower than a second refrigerant temperature set in advance.
  6.  前記第1の冷媒温度センサーは、
     前記第1の熱交換器に流入する前の冷媒温度を検出する位置に配置され、
     前記第2の冷媒温度センサーは、
     前記第2の熱交換器に流入する前の冷媒温度を検出する位置に配置されている
     請求項5に記載の冷凍サイクル装置。
    The first refrigerant temperature sensor is
    Arranged at a position to detect the refrigerant temperature before flowing into the first heat exchanger;
    The second refrigerant temperature sensor is
    The refrigeration cycle apparatus according to claim 5, wherein the refrigeration cycle apparatus is disposed at a position for detecting a refrigerant temperature before flowing into the second heat exchanger.
  7.  前記室外熱交器に付設され、前記室外熱交換器に空気を供給する室外ファンと、
     前記室内熱交換器に付設され、前記室内熱交換器に空気を供給する室内ファンとをさらに備え、
     前記制御装置は、
     前記リバースデフロスト運転時には前記室外ファン及び前記室内ファンを停止させるように構成されている
     請求項1~6のいずれか一項に記載の冷凍サイクル装置。
    An outdoor fan attached to the outdoor heat exchanger and supplying air to the outdoor heat exchanger;
    An indoor fan attached to the indoor heat exchanger and supplying air to the indoor heat exchanger;
    The controller is
    The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the outdoor fan and the indoor fan are stopped during the reverse defrost operation.
  8.  少なくとも圧縮機及び室外熱交換器が搭載された室外ユニットと、少なくとも室内熱交換器が搭載された室内ユニットとを備えた請求項1~7のいずれか一項に記載の冷凍サイクル装置を備えた
     空気調和装置。
    The refrigeration cycle apparatus according to any one of claims 1 to 7, further comprising: an outdoor unit on which at least a compressor and an outdoor heat exchanger are mounted; and an indoor unit on which at least the indoor heat exchanger is mounted. Air conditioner.
PCT/JP2014/075374 2014-09-25 2014-09-25 Refrigeration cycle device and air-conditioning device WO2016046927A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1701195.8A GB2545112B (en) 2014-09-25 2014-09-25 Refrigeration cycle apparatus and air-conditioning apparatus
PCT/JP2014/075374 WO2016046927A1 (en) 2014-09-25 2014-09-25 Refrigeration cycle device and air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075374 WO2016046927A1 (en) 2014-09-25 2014-09-25 Refrigeration cycle device and air-conditioning device

Publications (1)

Publication Number Publication Date
WO2016046927A1 true WO2016046927A1 (en) 2016-03-31

Family

ID=55580488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075374 WO2016046927A1 (en) 2014-09-25 2014-09-25 Refrigeration cycle device and air-conditioning device

Country Status (2)

Country Link
GB (1) GB2545112B (en)
WO (1) WO2016046927A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018002983A1 (en) * 2016-06-27 2018-09-27 三菱電機株式会社 Refrigeration cycle equipment
CN113959017A (en) * 2021-10-13 2022-01-21 珠海格力电器股份有限公司 Heat exchanger heating device, air conditioner and control method of air conditioner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226149B2 (en) 2017-11-29 2022-01-18 Mitsubishi Electric Corporation Air-conditioning apparatus
CN112032854A (en) * 2020-07-30 2020-12-04 广东积微科技有限公司 Outer quick-witted heat transfer system of air conditioner and air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123264A (en) * 1985-11-25 1987-06-04 株式会社日立製作所 Air-cooled heat pump type refrigeration cycle device
JPS6349673A (en) * 1986-08-19 1988-03-02 松下精工株式会社 Air conditioner
JP2002081807A (en) * 2000-08-31 2002-03-22 Daikin Ind Ltd Refrigerating device
JP2009085484A (en) * 2007-09-28 2009-04-23 Daikin Ind Ltd Outdoor unit for air conditioner
JP2009281607A (en) * 2008-05-20 2009-12-03 Hitachi Appliances Inc Air conditioner
WO2014083867A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123264A (en) * 1985-11-25 1987-06-04 株式会社日立製作所 Air-cooled heat pump type refrigeration cycle device
JPS6349673A (en) * 1986-08-19 1988-03-02 松下精工株式会社 Air conditioner
JP2002081807A (en) * 2000-08-31 2002-03-22 Daikin Ind Ltd Refrigerating device
JP2009085484A (en) * 2007-09-28 2009-04-23 Daikin Ind Ltd Outdoor unit for air conditioner
JP2009281607A (en) * 2008-05-20 2009-12-03 Hitachi Appliances Inc Air conditioner
WO2014083867A1 (en) * 2012-11-29 2014-06-05 三菱電機株式会社 Air-conditioning device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018002983A1 (en) * 2016-06-27 2018-09-27 三菱電機株式会社 Refrigeration cycle equipment
EP3477222A4 (en) * 2016-06-27 2019-05-22 Mitsubishi Electric Corporation Refrigeration cycle device
CN113959017A (en) * 2021-10-13 2022-01-21 珠海格力电器股份有限公司 Heat exchanger heating device, air conditioner and control method of air conditioner
CN113959017B (en) * 2021-10-13 2023-02-24 珠海格力电器股份有限公司 Air conditioner and control method thereof

Also Published As

Publication number Publication date
GB2545112A (en) 2017-06-07
GB201701195D0 (en) 2017-03-08
GB2545112B (en) 2020-05-20

Similar Documents

Publication Publication Date Title
KR101161240B1 (en) Air conditioner
JP6053826B2 (en) Air conditioner
US10024588B2 (en) Air-conditioning apparatus and control method therefor
JP6678332B2 (en) Outdoor unit and control method for air conditioner
JP6390688B2 (en) Refrigeration equipment
JP2018009767A (en) Refrigeration device
JP5949831B2 (en) Refrigeration equipment
WO2016046927A1 (en) Refrigeration cycle device and air-conditioning device
JP6715655B2 (en) Cooling system
JP4211847B2 (en) Refrigeration equipment
JP2018080899A (en) Refrigeration unit
JP6515902B2 (en) Heat source unit of refrigeration system
JP6337924B2 (en) Refrigeration equipment
JP4869320B2 (en) Refrigeration cycle apparatus and water heater equipped with the same
JP6336102B2 (en) Air conditioner
WO2018079731A1 (en) Refrigeration device
JP4375393B2 (en) Refrigeration equipment
JP2017101857A (en) Freezing device
JP6042037B2 (en) Refrigeration cycle equipment
JP5245576B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
WO2017094594A1 (en) Refrigeration device
JP2009115336A (en) Refrigeration system
JP7448848B2 (en) air conditioner
JP5228661B2 (en) Refrigeration equipment
JP2017101858A (en) Freezing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 201701195

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140925

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14902726

Country of ref document: EP

Kind code of ref document: A1