[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016043206A1 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
WO2016043206A1
WO2016043206A1 PCT/JP2015/076233 JP2015076233W WO2016043206A1 WO 2016043206 A1 WO2016043206 A1 WO 2016043206A1 JP 2015076233 W JP2015076233 W JP 2015076233W WO 2016043206 A1 WO2016043206 A1 WO 2016043206A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
hydraulic
oil passage
hydraulic oil
chamber
Prior art date
Application number
PCT/JP2015/076233
Other languages
English (en)
French (fr)
Inventor
宏治 川島
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2016043206A1 publication Critical patent/WO2016043206A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means

Definitions

  • the present invention relates to an excavator having a regeneration circuit that realizes a flow of hydraulic oil from a rod-side oil chamber to a bottom-side oil chamber of a hydraulic cylinder.
  • a hydraulic circuit for a construction machine is known in which hydraulic oil flowing out from one hydraulic cylinder can be used to drive another hydraulic cylinder (see Patent Document 1).
  • Patent Document 1 does not mention a circuit for regenerating hydraulic oil flowing out from the rod side oil chamber of the hydraulic cylinder into the bottom side oil chamber of the same hydraulic cylinder.
  • An excavator controls a hydraulic pump that supplies hydraulic oil to a plurality of hydraulic actuators including a hydraulic cylinder, and a flow of hydraulic oil between each of the hydraulic pump and the plurality of hydraulic actuators.
  • a plurality of control valves a first oil passage that enables a flow of hydraulic oil from a rod-side oil chamber to a bottom-side oil chamber of the hydraulic cylinder; and the rod-side oil chamber through the first oil passage from the rod-side oil chamber.
  • a third oil passage capable of communicating the passage and the second oil passage.
  • the above-described means provides an excavator that can efficiently execute a regeneration operation in which hydraulic oil flowing out from the rod-side oil chamber of the hydraulic cylinder flows into the bottom-side oil chamber.
  • FIG. 1 is a side view of the excavator.
  • An upper swing body 3 is mounted on a lower traveling body 1 of the shovel shown in FIG.
  • a boom 4 is attached to the upper swing body 3.
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 is attached to the tip of the arm 5.
  • the boom 4, the arm 5, and the bucket 6 are hydraulically driven by a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9, respectively.
  • the upper swing body 3 is provided with a cabin 10 and a power source such as an engine 11 is mounted.
  • FIG. 2 is a block diagram showing a configuration example of the drive system of the excavator of FIG. 1, and the mechanical power system, the high-pressure hydraulic line, the pilot line, and the electric control system are represented by double lines, solid lines, broken lines, and dotted lines, respectively. Show.
  • the drive system of the shovel mainly includes an engine 11, a regulator 13, a main pump 14, a pilot pump 15, a control valve 17, an operating device 26, a pressure sensor 29, and a controller 30.
  • the engine 11 is a drive source for the excavator.
  • the diesel engine is an internal combustion engine that operates to maintain a predetermined rotational speed.
  • the output shaft of the engine 11 is connected to the input shafts of the main pump 14 and the pilot pump 15.
  • the main pump 14 is a device for supplying hydraulic oil to the control valve 17 through a high pressure hydraulic line.
  • the main pump 14 is a swash plate type variable displacement hydraulic pump.
  • the regulator 13 is a device for controlling the discharge amount of the main pump 14.
  • the regulator 13 controls the discharge amount of the main pump 14 by adjusting the swash plate tilt angle of the main pump 14 according to the discharge pressure of the main pump 14 or the control signal from the controller 30. To do.
  • the pilot pump 15 is a device for supplying hydraulic oil to various hydraulic control devices via a pilot line.
  • the pilot pump 15 is a fixed displacement hydraulic pump.
  • the control valve 17 is a hydraulic control device that controls a hydraulic system in the excavator.
  • the control valve 17 is one or more of the boom cylinder 7, the arm cylinder 8, the bucket cylinder 9, the left traveling hydraulic motor 1A, the right traveling hydraulic motor 1B, and the turning hydraulic motor 2A.
  • hydraulic fluid discharged from the main pump 14 is selectively supplied.
  • the boom cylinder 7, the arm cylinder 8, the bucket cylinder 9, the left traveling hydraulic motor 1A, the right traveling hydraulic motor 1B, and the turning hydraulic motor 2A are collectively referred to as “hydraulic actuators”.
  • the operating device 26 is a device used by an operator for operating the hydraulic actuator.
  • the operating device 26 supplies the hydraulic oil discharged from the pilot pump 15 to the pilot port of the control valve in the control valve 17.
  • the operating device 26 supplies hydraulic oil discharged from the pilot pump 15 to the pilot port of the control valve corresponding to each of the hydraulic actuators.
  • the hydraulic oil pressure (pilot pressure) supplied to each pilot port is a pressure corresponding to the operation direction and operation amount of a lever or pedal (not shown) of the operation device 26 corresponding to each hydraulic actuator. It is.
  • the pressure sensor 29 is an example of an operation content detection unit for detecting the operation content of the operation device 26.
  • the pressure sensor 29 detects the operation direction and the operation amount of the operation device 26 corresponding to each of the hydraulic actuators in the form of pressure, and outputs the detected value to the controller 30.
  • the operation content of the operation device 26 may be detected using a sensor other than the pressure sensor, such as an inclination sensor that detects the inclination of various operation levers.
  • the pressure sensor 29 is attached to each of the operation devices 26 such as a left travel lever, a right travel lever, an arm operation lever, a turning operation lever, a boom operation lever, and a bucket operation lever.
  • the controller 30 is a control device for controlling the excavator.
  • the controller 30 is composed of a computer having a CPU, RAM, ROM and the like. Further, the controller 30 reads programs corresponding to various functional elements from the ROM, loads them into the RAM, and causes the CPU to execute processes corresponding to the various functional elements.
  • controller 30 electrically detects each operation content (for example, presence / absence of lever operation, lever operation direction, lever operation amount, etc.) of the operation device 26 based on the output of the pressure sensor 29.
  • FIG. 3 is a diagram illustrating a configuration example of a hydraulic circuit mounted on the shovel of FIG. 3 shows the high-pressure hydraulic line, the pilot line, and the electric control system by a solid line, a broken line, and a dotted line, respectively, as in FIG.
  • the main pumps 14L and 14R are variable displacement hydraulic pumps driven by the engine 11 and correspond to the main pump 14 of FIG.
  • the main pump 14L circulates the hydraulic oil to the hydraulic oil tank T through the center bypass oil passage 21L and the merged oil passage 24 that pass through each of the control valves 171L to 175L.
  • the main pump 14L can supply hydraulic oil to each of the control valves 172L to 175L through a parallel oil passage 22L extending in parallel with the center bypass oil passage 21L.
  • the main pump 14R circulates the hydraulic oil to the hydraulic oil tank T through the center bypass oil passage 21R and the merging oil passage 24 that pass through each of the control valves 171R to 175R.
  • the main pump 14R can supply hydraulic oil to each of the control valves 172R to 175R through a parallel oil passage 22R extending in parallel with the center bypass oil passage 21R.
  • the main pump 14L and the main pump 14R may be collectively referred to as the “main pump 14”. The same applies to the other components configured by a pair of left and right.
  • the control valve 171L is a spool valve that switches the flow of hydraulic oil in order to supply the hydraulic oil discharged from the main pump 14L to the left-side traveling hydraulic motor 1A when a left-side traveling lever (not shown) is operated. is there.
  • the control valve 171R is a spool valve as a traveling straight valve.
  • the traveling straight valve 171R is a 4-port 2-position spool valve, and has a first valve position and a second valve position.
  • the first valve position has a flow path that connects the main pump 14L and the parallel oil path 22L, and a flow path that connects the main pump 14R and the control valve 172R.
  • the second valve position has a flow path that connects the main pump 14R and the parallel oil path 22L, and a flow path that connects the main pump 14L and the control valve 172R.
  • the control valve 172L is a spool valve that switches the flow of hydraulic oil in order to supply hydraulic oil discharged from the main pump 14 to an optional hydraulic actuator (not shown).
  • the control valve 172R is a spool valve that switches the flow of hydraulic oil in order to supply hydraulic oil discharged from the main pump 14 to the hydraulic motor 1B for right traveling when a right traveling lever (not shown) is operated. is there.
  • the control valve 173L is a spool valve that switches the flow of hydraulic oil in order to supply hydraulic oil discharged from the main pump 14 to the hydraulic hydraulic motor 2A when a turning operation lever (not shown) is operated. .
  • the control valve 173R is a spool valve that switches the flow of hydraulic oil to supply the hydraulic oil discharged from the main pump 14R to the bucket cylinder 9 when a bucket operation lever (not shown) is operated.
  • the control valves 174L and 174R are spool valves that switch the flow of hydraulic oil to supply the hydraulic oil discharged from the main pump 14 to the boom cylinder 7 when a boom operation lever (not shown) is operated. .
  • the control valve 174L additionally supplies hydraulic oil to the boom cylinder 7 when the boom operation lever is operated in the boom raising direction with a predetermined lever operation amount or more.
  • the control valves 175L and 175R are spool valves that switch the flow of hydraulic oil to supply the hydraulic oil discharged from the main pump 14 to the arm cylinder 8 when an arm operation lever (not shown) is operated. .
  • the control valve 175R additionally supplies hydraulic oil to the arm cylinder 8 when the arm operation lever is operated at a predetermined lever operation amount or more.
  • the hydraulic oil flowing out from each of the left traveling hydraulic motor 1A, the optional hydraulic actuator, the turning hydraulic motor 2A, and the arm cylinder 8 is discharged to the hydraulic oil tank T through the return oil path 23L and the merged oil path 24.
  • the hydraulic oil flowing out from each of the right traveling hydraulic motor 1B, the bucket cylinder 9 and the boom cylinder 7 is discharged to the hydraulic oil tank T through the return oil path 23R and the merged oil path 24.
  • part of the hydraulic oil flowing out from the arm cylinder 8 may be discharged to the hydraulic oil tank T through the return oil path 23R and the merged oil path 24.
  • the center bypass oil passages 21L and 21R are respectively provided with negative control throttles 20L and 20R between the control valves 175L and 175R on the most downstream side and the merge oil passage 24.
  • the negative control is abbreviated as “negative control”.
  • the negative control throttles 20L and 20R generate a negative control pressure upstream of the negative control throttles 20L and 20R by limiting the flow of hydraulic oil discharged from the main pumps 14L and 14R.
  • the hydraulic oil discharged from the main pumps 14L and 14R can reach the hydraulic oil tank T through a plurality of paths without passing through the hydraulic actuator that performs the regeneration operation among the hydraulic actuators.
  • the hydraulic oil flowing through each of the bleed oil passages, the center bypass oil passages 21L and 21R, and the return oil passages 23L and 23R formed by the control valves 171L to 175L and 171R to 175R is the combined oil passage 24.
  • the hydraulic oil tank T At the hydraulic oil tank T.
  • the pressure sensors S1L and S1R detect the negative control pressure generated upstream of the negative control throttles 20L and 20R, and output the detected value to the controller 30 as an electrical negative control pressure signal.
  • the pressure sensors S2L and S2R detect the discharge pressures of the main pumps 14L and 14R, and output the detected values to the controller 30 as electrical discharge pressure signals.
  • the pressure sensor S3R detects the pressure in the rod side oil chamber of the arm cylinder 8 and outputs the detected value to the controller 30 as an electric arm rod pressure signal.
  • the pressure sensor S3B detects the pressure in the bottom side oil chamber of the arm cylinder 8, and outputs the detected value to the controller 30 as an electric arm bottom pressure signal.
  • Controller 30 receives the output of pressure sensor 29, S1L, S1R, S2L, S2R, S3R, S3B, etc., and causes the CPU to execute a program for operating arm regeneration circuit 60.
  • the arm regeneration circuit 60 is a circuit for regenerating the hydraulic oil flowing out from the rod side oil chamber of the arm cylinder 8 into the bottom side oil chamber.
  • the arm regeneration circuit 60 includes a pressure reducing valve 61, switching valves 62, 63, 64, a variable throttle 65, a pressure reducing valve 66, a switching valve 67, and an accumulator 68.
  • the pressure reducing valve 61 is an electromagnetic valve used for simultaneously switching the switching valves 62, 63, 64, and generates a predetermined secondary pressure using hydraulic fluid discharged from the pilot pump 15. Specifically, when the stop command is received from the controller 30, the secondary pressure is reduced and each of the switching valves 62, 63, 64 is switched to the first valve position, and when the operation command is received from the controller 30, the secondary pressure is increased. Thus, each of the switching valves 62, 63, 64 is switched to the second valve position.
  • Each of the switching valves 62 to 64 is a spool valve that is driven by the secondary pressure of the pressure reducing valve 61, and has a first valve position and a second valve position.
  • the numbers in parentheses in the figure represent the valve position.
  • the switching valve 62 blocks communication between the left side (arm closing side) pilot port of the control valve 175L and the hydraulic oil tank T at the first valve position, and the control valve 175L at the second valve position.
  • the left side (arm closing side) pilot port and the hydraulic oil tank T are connected.
  • the switching valve 63 allows the control valve 175L to communicate with each of the rod-side oil chamber and the bottom-side oil chamber of the arm cylinder 8 at the first valve position, and the arm cylinder 8 through the regeneration oil passage 63c at the second valve position.
  • the rod side oil chamber communicates with the bottom side oil chamber.
  • the regeneration oil passage 63c is an oil passage that connects the rod-side oil chamber and the bottom-side oil chamber of the arm cylinder 8, and includes a check valve.
  • the check valve blocks the flow of hydraulic oil from the bottom side oil chamber of the arm cylinder 8 to the rod side oil chamber.
  • the switching valve 64 blocks the oil passage 25 connecting the arm cylinder 8 and the merging oil passage 24 at the first valve position, and allows the oil passage 25 to communicate at the second valve position.
  • the oil passage 25 includes a check valve that blocks the flow of hydraulic oil from the arm cylinder 8 to the merged oil passage 24.
  • variable throttle 65 is placed on the merged oil path 24 downstream of the branch point between the merged oil path 24 and the oil path 25.
  • the throttle opening that is, the flow passage area of the merge oil passage 24 is reduced, and when the stop command is received from the controller 30, the flow passage area of the merge oil passage 24 is increased.
  • the pressure reducing valve 66 is an electromagnetic valve used for switching the switching valve 67, and generates a predetermined secondary pressure using hydraulic oil discharged from the pilot pump 15. Specifically, when the stop command is received from the controller 30, the secondary pressure is reduced and the switching valve 67 is switched to the first valve position, and when the operation command is received from the controller 30, the secondary pressure is increased and the switching valve 67 is switched. Switch to the second valve position.
  • the switching valve 67 is a spool valve that is driven by the secondary pressure of the pressure reducing valve 66, and has a first valve position and a second valve position. Specifically, the switching valve 67 blocks communication between the oil passage 25 and the accumulator 68 at the first valve position, and connects the oil passage 25 and the accumulator 68 at the second valve position.
  • the accumulator 68 is a functional element that accumulates the hydraulic oil in the hydraulic system and releases the accumulated hydraulic oil as necessary. Specifically, the controller 30 outputs an operation command to the variable throttle 65 and the pressure reducing valve 66 when a predetermined condition is satisfied. Then, the throttle opening of the variable throttle 65 is reduced, and the switching valve 67 is switched to the second valve position so that the oil passage 25 and the accumulator 68 are communicated. Then, the controller 30 accumulates hydraulic oil flowing through the merged oil passage 24 in the accumulator 68. “When the predetermined condition is satisfied” is, for example, when the excavator is not operated or when the main pump 14 is under a low load.
  • the controller 30 passes through an oil passage (not shown) from hydraulic oil flowing out from the braking side (discharge side) of the turning hydraulic motor 2A during turning deceleration, or from the bottom side oil chamber of the boom cylinder 7 during boom lowering operation.
  • the flowing hydraulic oil may be accumulated in the accumulator 68.
  • the controller 30 releases the hydraulic oil accumulated in the accumulator 68 to the oil passage 25.
  • FIG. 4 is a flowchart showing an example of the arm regeneration process, and the controller 30 repeatedly executes the arm regeneration process at a predetermined control cycle.
  • 5 to 8 are diagrams showing various states of the hydraulic circuit in FIG. 3, and the thick solid line arrow in the figure indicates the flow direction of the hydraulic oil, and the thicker the solid line is, the more the flow rate of the hydraulic oil is. Represents big.
  • the controller 30 determines whether or not an arm closing operation has been performed (step S1). In this embodiment, the controller 30 determines whether or not the arm operation lever has been operated in the closing direction based on the output of the pressure sensor 29.
  • FIG. 5 shows the state of the hydraulic circuit when the arm closing operation is performed.
  • the control valve 175L receives the pilot pressure corresponding to the operation amount of the arm operation lever at the left side (arm closing side) pilot port and moves to the right side.
  • the hydraulic oil discharged from the main pump 14L flows into the bottom oil chamber of the arm cylinder 8 through the control valve 175L.
  • a part of the hydraulic oil discharged from the main pump 14L passes through the center bypass oil passage 21L and the merging oil passage 24 as a bleed flow rate passing through the bleed oil passage formed by the PT port of the control valve 175L.
  • the oil is discharged to the hydraulic oil tank T.
  • a part of the hydraulic oil flowing out from the rod side oil chamber of the arm cylinder 8 is regenerated to the bottom side oil chamber through a partially regenerated oil passage 175Lc formed in the control valve 175L, and the remaining part is returned oil.
  • the oil is discharged to the hydraulic oil tank T through the passage 23L and the merging oil passage 24.
  • the partially regenerated oil passage 175Lc may be omitted.
  • the hydraulic oil discharged from the main pump 14R merges with the hydraulic oil that passes through the center bypass oil passage 21R and flows through the return oil passage 23L.
  • the oil is discharged to the hydraulic oil tank T through the oil passage 24.
  • the controller 30 determines whether or not the state of the arm 5 moving in the closing direction is suitable for the arm closing reproduction operation (step S2). .
  • the arm closing regeneration operation is an operation in which all the hydraulic oil flowing out from the rod side oil chamber of the arm cylinder 8 flows into the bottom side oil chamber.
  • the state suitable for the arm closing / reproducing operation includes the state of the arm 5 when the arm 5 is closed by its own weight, the state of the arm 5 when an external force is acting in the closing direction of the arm 5, and the like.
  • the controller 30 determines whether or not the state of the arm 5 is suitable for the arm closing regeneration operation based on the outputs of the pressure sensors S3R and S3B.
  • the controller 30 multiplies the pressure of the hydraulic oil in the rod-side oil chamber output from the pressure sensor S3R by the rod-side pressure receiving area of the piston of the arm cylinder 8, and the rod that the hydraulic oil in the rod-side oil chamber exerts on the piston. Deriving side thrust. Similarly, the controller 30 multiplies the pressure of the hydraulic oil in the bottom side oil chamber output from the pressure sensor S3B by the bottom pressure receiving area of the piston of the arm cylinder 8 and the bottom side thrust exerted on the piston by the hydraulic oil in the bottom side oil chamber. To derive. When the controller 30 determines that the bottom thrust is smaller than the rod thrust even though the arm 5 moves in the closing direction, the controller 30 determines that the state of the arm 5 is suitable for the arm closing regeneration operation. To do.
  • step S3 When it is determined that the state of the arm 5 is a state suitable for the arm closing reproduction operation (YES in step S2), the controller 30 operates the arm reproduction circuit 60 (step S3).
  • the controller 30 outputs an operation command to the pressure reducing valve 61 and the variable throttle 65.
  • each of the switching valves 62, 63, 64 is switched to the second valve position, and the throttle opening of the variable throttle 65, that is, the flow passage area of the merging oil passage 24 is reduced.
  • FIG. 6 shows a state of the hydraulic circuit when the arm regeneration circuit 60 is operated.
  • the switching valve 62 switched to the second valve position makes the left side (arm closing side) pilot port of the control valve 175L communicate with the hydraulic oil tank T and reduces the pilot pressure. As a result, the control valve 175L returns to the neutral position, and the hydraulic oil discharged from the main pump 14L reaches the merged oil passage 24 through the center bypass oil passage 21L.
  • the switching valve 63 switched to the second valve position causes the rod-side oil chamber and the bottom-side oil chamber of the arm cylinder 8 to communicate with each other through the regeneration oil passage 63c. Therefore, all of the hydraulic oil flowing out from the rod side oil chamber flows into the bottom side oil chamber.
  • the switching valve 64 switched to the second valve position causes the oil passage 25 connecting the arm cylinder 8 and the merging oil passage 24 to communicate with each other. Therefore, the hydraulic oil that travels through the oil passage 25 toward the arm cylinder 8 joins the hydraulic oil that flows from the rod-side oil chamber of the arm cylinder 8 to the bottom-side oil chamber.
  • variable throttle 65 with the throttle opening reduced reduces the hydraulic oil flowing through the merging oil passage 24 from being discharged to the hydraulic oil tank T, and the hydraulic oil flowing through the oil passage 25 to the arm cylinder 8 is reduced. Increase the flow rate.
  • the throttle opening of the variable throttle 65 is at least one of the operation content of the arm operating lever for operating the arm cylinder 8, the pressure of the rod side oil chamber of the arm cylinder 8, and the pressure of the bottom side oil chamber of the arm cylinder 8. May be adjusted based on For example, the opening degree of the variable diaphragm 65 may be adjusted so as to decrease as the operation amount in the lowering direction of the arm operation lever increases.
  • the throttle opening of the variable throttle 65 may be adjusted so as to decrease as the pressure in the rod-side oil chamber of the arm cylinder 8 increases, and decreases as the pressure in the bottom-side oil chamber of the arm cylinder 8 decreases. May be adjusted. This is because it is estimated that more hydraulic oil needs to flow into the arm cylinder 8.
  • the insufficient regeneration flow rate which is the difference between the hydraulic oil flow rate required for the expansion of the bottom side oil chamber and the hydraulic oil flow rate flowing out of the rod side oil chamber due to the contraction of the rod side oil chamber
  • the replenishment replenishment flow rate which is the flow rate of the hydraulic oil flowing in through the switching valve 64.
  • the controller 30 determines whether or not the regeneration replenishment flow rate is insufficient (step S4). In this embodiment, the controller 30 determines whether or not the regeneration replenishment flow rate is insufficient based on the pressure in the bottom side oil chamber of the arm cylinder 8 output from the pressure sensor S3B.
  • step S5 When it is determined that the regeneration replenishment flow rate is insufficient (YES in step S4), the controller 30 releases hydraulic oil from the accumulator 68 (step S5).
  • the controller 30 determines that the regeneration replenishment flow rate is insufficient when the pressure in the bottom side oil chamber falls below a predetermined pressure. Then, the controller 30 outputs an operation command to the pressure reducing valve 66. As a result, the switching valve 67 is switched to the second valve position, and the hydraulic oil accumulated in the accumulator 68 is discharged to the oil passage 25.
  • the controller 30 feedback-controls the regeneration replenishment flow rate so that the regeneration insufficient flow rate becomes zero by adjusting the discharge amount of the accumulator 68 according to the output of the pressure sensor S3B.
  • FIG. 7 shows the state of the hydraulic circuit when the controller 30 determines that the regeneration replenishment flow rate is insufficient.
  • the switching valve 67 switched to the second valve position causes the oil passage 25 and the accumulator 68 to communicate with each other. As a result, at least a part of the hydraulic oil discharged from the accumulator 68 flows toward the arm cylinder 8 and joins the hydraulic oil flowing from the rod side oil chamber of the arm cylinder 8 to the bottom side oil chamber.
  • the regeneration insufficient flow rate is a regeneration flow rate that is a total flow rate of the hydraulic oil flowing in through the switching valve 64, that is, the hydraulic fluid flowing into the oil path 25 from the merged oil path 24 and the hydraulic oil discharged from the accumulator 68. Supplemented by replenishment flow.
  • the arm cylinder 8 can be extended without generating cavitation in the bottom side oil chamber.
  • step S4 the controller 30 continues the operation of the arm regeneration circuit 60 without releasing the hydraulic oil from the accumulator 68.
  • the controller 30 determines that the regeneration replenishment flow rate is not insufficient when the pressure in the bottom side oil chamber is equal to or higher than a predetermined pressure.
  • the controller 30 outputs a stop command to the pressure reducing valve 66.
  • the switching valve 67 is switched to the first valve position, and the release of the hydraulic oil from the accumulator 68 to the oil passage 25 is stopped.
  • FIG. 8 shows the state of the hydraulic circuit when the controller 30 determines that the regeneration replenishment flow rate is not insufficient.
  • FIG. 8 shows a state in which the boom raising operation is performed simultaneously with the arm closing operation, and the amount of hydraulic oil flowing into the merged oil passage 24 is larger than when the arm closing operation is performed alone.
  • the flow rate of the hydraulic oil flowing into the merging oil passage 24 is the flow rate of the hydraulic oil flowing through the center bypass oil passage 21L discharged from the main pump 14L and the return oil passage 23R flowing out from the rod side oil chamber of the boom cylinder 7.
  • the flow rate of the hydraulic fluid flowing through the center bypass oil passage 21R through the PT port of the control valve 174R discharged from the main pump 14R (bleed flow rate).
  • the insufficient regeneration flow rate is compensated by the regeneration replenishment flow rate constituted only by the flow rate of the hydraulic oil flowing from the merged oil passage 24 into the oil passage 25.
  • the arm cylinder 8 can be extended without generating cavitation in the bottom side oil chamber without using the hydraulic oil discharged from the accumulator 68.
  • step S1 the controller 30 ends the current arm regeneration process without operating the arm regeneration circuit 60. Further, the controller 30 stops the arm regeneration circuit 60 when the arm regeneration circuit 60 is in an operating state. In this embodiment, the controller 30 outputs a stop command to the pressure reducing valve 61, the variable throttle 65, and the pressure reducing valve 66. As a result, each of the switching valves 62, 63, 64, 67 is switched to the first valve position, and the throttle opening of the variable throttle 65, that is, the flow passage area of the merging oil passage 24 is increased.
  • FIG. 9 is a flowchart showing the flow of another example of the arm regeneration process.
  • FIG. 10 is a diagram showing a state of the hydraulic circuit in which the arm regeneration process of FIG. 9 is executed.
  • the thick solid line arrow in the figure indicates the flow direction of the hydraulic oil, and the thicker the solid line, the greater the flow rate of the hydraulic oil. Is large.
  • the arm regeneration process in FIG. 9 increases the regeneration replenishment flow rate by increasing the discharge amount of the main pump 14 instead of increasing the regeneration replenishment flow rate using the hydraulic oil released by the accumulator when the regeneration replenishment flow rate is insufficient.
  • the hydraulic circuit of FIG. 10 is different from the hydraulic circuit of FIG. 3 in that the pressure reducing valve 66, the switching valve 67, and the accumulator 68 are omitted from the arm regeneration circuit 60, but is common in other points. Therefore, description of common parts is omitted, and different parts are described in detail.
  • the controller 30 increases the discharge amount of the main pump 14L (step S15).
  • the controller 30 determines that the regeneration replenishment flow rate is insufficient when the pressure in the bottom oil chamber of the arm cylinder 8 falls below a predetermined pressure. Then, the controller 30 outputs a discharge amount increase command to the regulator 13L. In this manner, the controller 30 feedback-controls the regeneration replenishment flow rate so that the regeneration insufficient flow rate becomes zero by adjusting the discharge amount of the main pump 14L according to the output of the pressure sensor S3B.
  • FIG. 10 shows the state of the hydraulic circuit when the controller 30 determines that the regeneration replenishment flow rate is insufficient.
  • the main pump 14L with the increased discharge amount joins the flow rate of the working oil flowing through the merging oil passage 24 and the oil passage 25, that is, the working oil regenerated from the rod side oil chamber of the arm cylinder 8 to the bottom side oil chamber.
  • the regeneration replenishment flow rate that is the flow rate of the hydraulic oil is increased. Therefore, the insufficient regeneration flow rate is compensated by the regeneration replenishment flow rate.
  • the arm cylinder 8 can be extended without generating cavitation in the bottom side oil chamber.
  • the controller 30 may increase the discharge amount of the main pump 14R instead of increasing the discharge amount of the main pump 14L, or may increase the discharge amounts of both the main pump 14L and the main pump 14R.
  • the controller 30 may execute the arm regeneration process of FIG. 9 by the hydraulic circuit of FIG. For example, the controller 30 may increase the discharge amount of the main pump 14 when sufficient hydraulic oil is not accumulated in the accumulator 68. Alternatively, the controller 30 may increase the discharge amount of the main pump 14 simultaneously with the release of the hydraulic oil from the accumulator 68.
  • FIG. 11 is a diagram illustrating a state of the hydraulic circuit in which the arm regeneration process of FIG. 4 is executed.
  • the thick solid arrow in the figure represents the flow direction of the hydraulic oil, and the thicker the solid line, the larger the flow rate of the hydraulic oil. Represents that.
  • the hydraulic circuit in FIG. 11 is different from the hydraulic circuit in FIG. 3 in that the hydraulic underflow rate can be reduced to zero using only the hydraulic oil that is discharged by the accumulator 68 when the under-regenerative flow rate is greater than zero. It is common in other points. Therefore, description of common parts is omitted, and different parts are described in detail.
  • the switching valve 64A is a spool valve that is disposed instead of the switching valve 64 of FIG. 3, and shuts off the oil passage 25 connecting the arm cylinder 8 and the merging oil passage 24 at the first valve position, and at the second valve position.
  • the oil passage 25 is connected.
  • the switching valve 64 is driven by the secondary pressure of the pressure reducing valve 61A.
  • the pressure reducing valve 61A is an electromagnetic valve used for switching the switching valve 64A, and generates a predetermined secondary pressure using hydraulic oil discharged from the pilot pump 15. Specifically, when the stop command is received from the controller 30, the secondary pressure is reduced and the switching valve 64A is switched to the first valve position, and when the operation command is received from the controller 30, the secondary pressure is increased and the switching valve 64A is switched. Switch to the second valve position.
  • the pressure reducing valve 61A is controlled independently of the pressure reducing valve 61. Therefore, the switching valve 64A is switched regardless of the switching of the switching valve 62 and the switching valve 63.
  • the controller 30 determines that the insufficient regeneration flow is greater than zero when the pressure in the bottom oil chamber of the arm cylinder 8 output from the pressure sensor S3B falls below a predetermined pressure. Then, a stop command is output to the pressure reducing valve 61A, and an operation command is output to the pressure reducing valve 66. As a result, as shown in FIG. 11, the switching valve 64 ⁇ / b> A is switched to the first position, and the oil passage 25 connecting the arm cylinder 8 and the merged oil passage 24 is blocked. Further, the switching valve 67 is switched to the second valve position, and the hydraulic oil accumulated in the accumulator 68 is discharged to the oil passage 25.
  • the controller 30 controls the discharge insufficient flow rate to be zero by adjusting the discharge amount of the accumulator 68 according to the output of the pressure sensor S3B. Therefore, the insufficient regeneration flow rate is compensated only by the hydraulic oil discharged from the accumulator 68. As a result, the arm cylinder 8 can be extended without generating cavitation in the bottom side oil chamber.
  • the controller 30 may cause the hydraulic oil flowing out from the bottom side oil chamber of the arm cylinder 8 to flow into the rod side oil chamber of the arm cylinder 8 through the regeneration oil path 63c. Then, excess hydraulic oil that does not enter the rod-side oil chamber of the arm cylinder 8 may flow into the accumulator 68 through the oil passage 25.
  • the controller 30 can cause all of the hydraulic oil flowing out from the rod side oil chamber of the arm cylinder 8 to flow into the bottom side oil chamber. Therefore, it is possible to more efficiently execute the arm closing regeneration operation in which the hydraulic oil flowing out from the rod side oil chamber of the arm cylinder 8 flows into the bottom side oil chamber.
  • controller 30 realizes a regeneration replenishment flow rate corresponding to the regeneration insufficient flow rate by discharging hydraulic oil from the accumulator 68 or increasing the discharge amount of the main pump 14. Therefore, the flow rate of the hydraulic oil discharged from the main pump 14 during the arm closing regeneration operation can be minimized.
  • the regeneration oil passage 63c is formed in the switching valve 63 installed outside the control valve 175L, but the present invention is not limited to this configuration.
  • the switching valve 63 may be integrated with the control valve 175L.
  • the control valve 175L may be configured with a 6-port 4-position spool valve instead of the 6-port 3-position spool valve, and a regenerated oil passage may be formed at the added valve position.
  • the oil passage 25 is connected to the oil passage connecting the rod-side oil chamber of the arm cylinder 8 and the switching valve 63, but the present invention is not limited to this configuration.
  • the oil passage 25 may be directly connected to the rod-side oil chamber, may be directly connected to the bottom-side oil chamber, or may be directly connected to the regenerated oil passage 63 c in the switching valve 63.
  • the present invention is applied to the arm regeneration circuit 60, but may be applied to other regeneration circuits such as a bucket regeneration circuit.
  • Controller 60 ... Arm regeneration circuit 61 ... Pressure reducing valve 62-64 ... Switching valve 65 ... Variable throttle 66 ... Pressure reducing valve 67 ... Switching valve 68 ... Accumulator 171L-175L, 171R ⁇ 175R ... Control valve S1L, S2R, S2L, S2R, S3R, S3B ... Pressure sensor T ... Hydraulic oil tank

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

 本発明の実施例に係るショベルは、油圧アクチュエータ1A、2A、8に作動油を供給するメインポンプ14Lと、メインポンプ14Lと油圧アクチュエータ1A、2A、8のそれぞれとの間の作動油の流れを制御する制御弁171L~175Lと、アームシリンダ8のロッド側油室からボトム側油室への作動油の流れを可能にする再生油路63cと、再生油路63cを通ってアームシリンダ8のロッド側油室からボトム側油室へ作動油が流れるときに、油圧ポンプ14Lが吐出する複数の経路を通流可能な作動油が作動油タンクTに至る前に合流して流れる合流油路24と、再生油路63cと合流油路24とを連通可能な油路25とを有する。

Description

ショベル
 本発明は、油圧シリンダのロッド側油室からボトム側油室への作動油の流れを実現させる再生回路を有するショベルに関する。
 1の油圧シリンダから流出する作動油を別の油圧シリンダの駆動に利用できるようにした建設機械の油圧回路が知られている(特許文献1参照。)。
特開2014-74433号公報
 しかしながら、特許文献1は、油圧シリンダのロッド側油室から流出する作動油を同じ油圧シリンダのボトム側油室に再生する回路については言及していない。
 特に、油圧シリンダのロッド側油室から流出する作動油を同じ油圧シリンダのボトム側油室に流入させてその油圧シリンダを伸張させる場合、ロッド側油室の容積とボトム側油室の容積との違いから、ロッド側油室から流出する作動油の流量だけでは、ボトム側油室を膨張させるのに必要な作動油の流量をまかなうことができない。
 上述に鑑み、油圧シリンダのロッド側油室から流出する作動油をボトム側油室に流入させる再生動作を効率的に実行できるショベルを提供することが望まれる。
 本発明の実施例に係るショベルは、油圧シリンダを含む複数の油圧アクチュエータに作動油を供給する油圧ポンプと、前記油圧ポンプと前記複数の油圧アクチュエータのそれぞれとの間の作動油の流れを制御する複数の制御弁と、前記油圧シリンダのロッド側油室からボトム側油室への作動油の流れを可能にする第1油路と、前記第1油路を通って前記ロッド側油室から前記ボトム側油室へ作動油が流れるときに、前記油圧ポンプが吐出する複数の経路を通流可能な作動油が作動油タンクに至る前に合流して流れる第2油路と、前記第1油路と前記第2油路とを連通可能な第3油路とを有する。
 上述の手段により、油圧シリンダのロッド側油室から流出する作動油をボトム側油室に流入させる再生動作を効率的に実行できるショベルが提供される。
本発明の実施例に係るショベルの側面図である。 図1のショベルの駆動系の構成例を示すブロック図である。 図1のショベルに搭載される油圧回路の構成例を示す概略図である。 アーム再生処理の一例の流れを示すフローチャートである。 アーム閉じ操作が行われたときの油圧回路の状態を示す図である。 アーム再生回路を作動させたときの油圧回路の状態を示す図である。 再生補充流量が不足しているときの油圧回路の状態を示す図である。 再生補充流量が不足していないときの油圧回路の状態を示す図である。 アーム再生処理の別の一例の流れを示すフローチャートである。 図1のショベルに搭載される油圧回路の別の構成例を示す概略図である。 図1のショベルに搭載される油圧回路のさらに別の構成例を示す概略図である。
 最初に、図1を参照し、本発明の実施例に係る建設機械の一例であるショベルについて説明する。なお、図1はショベルの側面図である。図1に示すショベルの下部走行体1には旋回機構2を介して上部旋回体3が搭載される。上部旋回体3にはブーム4が取り付けられる。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはバケット6が取り付けられる。ブーム4、アーム5、及びバケット6は、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。また、上部旋回体3にはキャビン10が設けられ且つエンジン11等の動力源が搭載される。
 図2は、図1のショベルの駆動系の構成例を示すブロック図であり、機械的動力系、高圧油圧ライン、パイロットライン、及び電気制御系をそれぞれ二重線、実線、破線、及び点線で示す。
 ショベルの駆動系は、主に、エンジン11、レギュレータ13、メインポンプ14、パイロットポンプ15、コントロールバルブ17、操作装置26、圧力センサ29、及びコントローラ30を含む。
 エンジン11は、ショベルの駆動源である。本実施例では、所定の回転数を維持するように動作する内燃機関としてのディーゼルエンジンである。また、エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15の入力軸に接続される。
 メインポンプ14は、高圧油圧ラインを介して作動油をコントロールバルブ17に供給するための装置である。本実施例では、メインポンプ14は斜板式可変容量型油圧ポンプである。
 レギュレータ13は、メインポンプ14の吐出量を制御するための装置である。本実施例では、レギュレータ13は、メインポンプ14の吐出圧、又はコントローラ30からの制御信号等に応じてメインポンプ14の斜板傾転角を調節することによって、メインポンプ14の吐出量を制御する。
 パイロットポンプ15は、パイロットラインを介して各種油圧制御機器に作動油を供給するための装置である。本実施例では、パイロットポンプ15は固定容量型油圧ポンプである。
 コントロールバルブ17は、ショベルにおける油圧システムを制御する油圧制御装置である。本実施例では、コントロールバルブ17は、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左側走行用油圧モータ1A、右側走行用油圧モータ1B、及び旋回用油圧モータ2Aのうちの1又は複数のものに対しメインポンプ14が吐出する作動油を選択的に供給する。なお、以下では、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左側走行用油圧モータ1A、右側走行用油圧モータ1B、及び旋回用油圧モータ2Aを集合的に「油圧アクチュエータ」と称する。
 操作装置26は、操作者が油圧アクチュエータの操作のために用いる装置である。本実施例では、操作装置26は、パイロットポンプ15が吐出する作動油をコントロールバルブ17内における制御弁のパイロットポートに供給する。具体的には、操作装置26は、油圧アクチュエータのそれぞれに対応する制御弁のパイロットポートにパイロットポンプ15が吐出する作動油を供給する。なお、パイロットポートのそれぞれに供給される作動油の圧力(パイロット圧)は、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダル(図示せず。)の操作方向及び操作量に応じた圧力である。
 圧力センサ29は、操作装置26の操作内容を検出するための操作内容検出部の一例である。本実施例では、圧力センサ29は、油圧アクチュエータのそれぞれに対応する操作装置26の操作方向及び操作量を圧力の形で検出し、検出した値をコントローラ30に対して出力する。なお、操作装置26の操作内容は、各種操作レバーの傾きを検出する傾きセンサ等、圧力センサ以外の他のセンサを用いて検出されてもよい。具体的には、圧力センサ29は、左側走行レバー、右側走行レバー、アーム操作レバー、旋回操作レバー、ブーム操作レバー、バケット操作レバー等の操作装置26のそれぞれに取り付けられる。
 コントローラ30は、ショベルを制御するための制御装置である。本実施例では、コントローラ30はCPU、RAM、ROM等を備えたコンピュータで構成される。また、コントローラ30は、各種機能要素に対応するプログラムをROMから読み出してRAMにロードし、各種機能要素に対応する処理をCPUに実行させる。
 また、コントローラ30は、圧力センサ29の出力に基づいて操作装置26のそれぞれの操作内容(例えば、レバー操作の有無、レバー操作方向、レバー操作量等である。)を電気的に検出する。
 次に、図3を参照し、図1のショベルに搭載される油圧回路の構成例について説明する。なお、図3は、図1のショベルに搭載される油圧回路の構成例を示す図である。また、図3は、図2と同様、高圧油圧ライン、パイロットライン、及び電気制御系をそれぞれ実線、破線、及び点線で示す。
 メインポンプ14L、14Rは、エンジン11によって駆動される可変容量型油圧ポンプであり、図2のメインポンプ14に対応する。本実施例では、メインポンプ14Lは、制御弁171L~175Lのそれぞれを通るセンターバイパス油路21L及び合流油路24を通じて作動油タンクTまで作動油を循環させる。また、メインポンプ14Lは、センターバイパス油路21Lに平行に伸びるパラレル油路22Lを通じて制御弁172L~175Lのそれぞれに作動油を供給可能である。同様に、メインポンプ14Rは、制御弁171R~175Rのそれぞれを通るセンターバイパス油路21R及び合流油路24を通じて作動油タンクTまで作動油を循環させる。また、メインポンプ14Rは、センターバイパス油路21Rに平行に伸びるパラレル油路22Rを通じて制御弁172R~175Rのそれぞれに作動油を供給可能である。なお、以下では、メインポンプ14L及びメインポンプ14Rは、集合的に「メインポンプ14」として参照される場合もある。左右一対で構成される他の構成要素についても同様である。
 制御弁171Lは、左側走行レバー(図示せず。)が操作された場合に、メインポンプ14Lが吐出する作動油を左側走行用油圧モータ1Aに供給するために作動油の流れを切り換えるスプール弁である。
 制御弁171Rは、走行直進弁としてのスプール弁である。本実施例では、走行直進弁171Rは、4ポート2位置のスプール弁であり、第1弁位置及び第2弁位置を有する。具体的には、第1弁位置は、メインポンプ14Lとパラレル油路22Lとを連通する流路と、メインポンプ14Rと制御弁172Rとを連通する流路と有する。また、第2弁位置は、メインポンプ14Rとパラレル油路22Lとを連通する流路と、メインポンプ14Lと制御弁172Rとを連通する流路とを有する。
 制御弁172Lは、メインポンプ14が吐出する作動油をオプションの油圧アクチュエータ(図示せず。)に供給するために作動油の流れを切り換えるスプール弁である。
 制御弁172Rは、右側走行レバー(図示せず。)が操作された場合に、メインポンプ14が吐出する作動油を右側走行用油圧モータ1Bに供給するために作動油の流れを切り換えるスプール弁である。
 制御弁173Lは、旋回操作レバー(図示せず。)が操作された場合に、メインポンプ14が吐出する作動油を旋回用油圧モータ2Aに供給するために作動油の流れを切り換えるスプール弁である。
 制御弁173Rは、バケット操作レバー(図示せず。)が操作された場合に、メインポンプ14Rが吐出する作動油をバケットシリンダ9へ供給するために作動油の流れを切り換えるスプール弁である。
 制御弁174L、174Rは、ブーム操作レバー(図示せず。)が操作された場合に、メインポンプ14が吐出する作動油をブームシリンダ7へ供給するために作動油の流れを切り換えるスプール弁である。なお、制御弁174Lは、ブーム操作レバーが所定のレバー操作量以上でブーム上げ方向に操作された場合に、作動油を追加的にブームシリンダ7に供給する。
 制御弁175L、175Rは、アーム操作レバー(図示せず。)が操作された場合に、メインポンプ14が吐出する作動油をアームシリンダ8へ供給するために作動油の流れを切り換えるスプール弁である。なお、制御弁175Rは、アーム操作レバーが所定のレバー操作量以上で操作された場合に、作動油を追加的にアームシリンダ8に供給する。
 なお、左側走行用油圧モータ1A、オプションの油圧アクチュエータ、旋回用油圧モータ2A、アームシリンダ8のそれぞれから流出する作動油は、戻り油路23L及び合流油路24を通じて作動油タンクTに排出される。同様に、右側走行用油圧モータ1B、バケットシリンダ9、ブームシリンダ7のそれぞれから流出する作動油は、戻り油路23R及び合流油路24を通じて作動油タンクTに排出される。また、アームシリンダ8から流出する作動油の一部は戻り油路23R及び合流油路24を通じて作動油タンクTに排出される場合もある。
 センターバイパス油路21L、21Rはそれぞれ、最も下流にある制御弁175L、175Rと合流油路24との間にネガティブコントロール絞り20L、20Rを備える。なお、以下では、ネガティブコントロールを「ネガコン」と略称する。ネガコン絞り20L、20Rは、メインポンプ14L、14Rが吐出する作動油の流れを制限してネガコン絞り20L、20Rの上流でネガコン圧を発生させる。なお、メインポンプ14L、14Rが吐出する作動油は、油圧アクチュエータのうちで再生動作が行われる油圧アクチュエータを経由せずに複数の経路を通流して作動油タンクTに到達できる。具体的には、制御弁171L~175L、171R~175Rのそれぞれで形成されるブリード油路、センターバイパス油路21L、21R、及び戻り油路23L、23Rのそれぞれを流れる作動油は合流油路24で合流して作動油タンクTに至る。
 圧力センサS1L、S1Rは、ネガコン絞り20L、20Rの上流で発生したネガコン圧を検出し、検出した値を電気的なネガコン圧信号としてコントローラ30に対して出力する。
 圧力センサS2L、S2Rは、メインポンプ14L、14Rの吐出圧を検出し、検出した値を電気的な吐出圧信号としてコントローラ30に対して出力する。
 圧力センサS3Rは、アームシリンダ8のロッド側油室の圧力を検出し、検出した値を電気的なアームロッド圧信号としてコントローラ30に対して出力する。
 圧力センサS3Bは、アームシリンダ8のボトム側油室の圧力を検出し、検出した値を電気的なアームボトム圧信号としてコントローラ30に対して出力する。
 コントローラ30は、圧力センサ29、S1L、S1R、S2L、S2R、S3R、S3B等の出力を受け、アーム再生回路60を動作させるプログラムをCPUに実行させる。
 アーム再生回路60は、アームシリンダ8のロッド側油室から流出する作動油をボトム側油室に再生するための回路である。本実施例では、アーム再生回路60は、減圧弁61、切換弁62、63、64、可変絞り65、減圧弁66、切換弁67、及びアキュムレータ68を含む。
 減圧弁61は、切換弁62、63、64を同時に切り換えるために用いられる電磁弁であり、パイロットポンプ15が吐出する作動油を用いて所定の二次圧を生成する。具体的には、コントローラ30から停止指令を受けると二次圧を低減させて切換弁62、63、64のそれぞれを第1弁位置に切り換え、コントローラ30から作動指令を受けると二次圧を増大させて切換弁62、63、64のそれぞれを第2弁位置に切り換える。
 切換弁62~64のそれぞれは、減圧弁61の二次圧によって駆動されるスプール弁であり、第1弁位置及び第2弁位置を有する。なお、図中の括弧内の数字は弁位置を表す。
 具体的には、切換弁62は、第1弁位置において制御弁175Lの左側(アーム閉じ側)パイロットポートと作動油タンクTとの間の連通を遮断し、第2弁位置において制御弁175Lの左側(アーム閉じ側)パイロットポートと作動油タンクTとを連通させる。
 また、切換弁63は、第1弁位置においてアームシリンダ8のロッド側油室及びボトム側油室のそれぞれと制御弁175Lとを連通させ、第2弁位置において再生油路63cを通じてアームシリンダ8のロッド側油室とボトム側油室とを連通させる。
 再生油路63cは、アームシリンダ8のロッド側油室とボトム側油室とを繋ぐ油路であり、逆止弁を含む。逆止弁は、アームシリンダ8のボトム側油室からロッド側油室への作動油の流れを遮断する。
 また、切換弁64は、第1弁位置においてアームシリンダ8と合流油路24とを繋ぐ油路25を遮断し、第2弁位置において油路25を連通させる。油路25は、アームシリンダ8から合流油路24への作動油の流れを遮断する逆止弁を含む。
 可変絞り65は、合流油路24と油路25との分岐点の下流で合流油路24上に置かれる。本実施例では、コントローラ30から作動指令を受けると絞り開度すなわち合流油路24の流路面積を低減させ、コントローラ30から停止指令を受けると合流油路24の流路面積を増大させる。
 減圧弁66は、切換弁67を切り換えるために用いられる電磁弁であり、パイロットポンプ15が吐出する作動油を用いて所定の二次圧を生成する。具体的には、コントローラ30から停止指令を受けると二次圧を低減させて切換弁67を第1弁位置に切り換え、コントローラ30から作動指令を受けると二次圧を増大させて切換弁67を第2弁位置に切り換える。
 切換弁67は、減圧弁66の二次圧によって駆動されるスプール弁であり、第1弁位置及び第2弁位置を有する。具体的には、切換弁67は、第1弁位置において油路25とアキュムレータ68との間の連通を遮断し、第2弁位置において油路25とアキュムレータ68とを連通させる。
 アキュムレータ68は、油圧システム内の作動油を蓄積し、必要に応じてその蓄積した作動油を放出する機能要素である。具体的には、コントローラ30は、所定条件が満たされた場合に可変絞り65及び減圧弁66に対して作動指令を出力する。そして、可変絞り65の絞り開度を低減させ、且つ、切換弁67を第2弁位置に切り換えて油路25とアキュムレータ68とを連通させる。そして、コントローラ30は、合流油路24を流れる作動油をアキュムレータ68に蓄積する。「所定条件が満たされた場合」は、例えば、ショベルの操作が行われていない場合、メインポンプ14が低負荷の場合等である。また、コントローラ30は、図示しない油路を通じ、旋回減速中に旋回用油圧モータ2Aの制動側(吐出側)から流出する作動油、又は、ブーム下げ操作中にブームシリンダ7のボトム側油室から流出する作動油をアキュムレータ68に蓄積してもよい。そして、コントローラ30は、例えばアーム再生回路60を作動させるときに、アキュムレータ68に蓄積した作動油を油路25に放出する。
 次に、図4~図8を参照し、コントローラ30がアーム再生回路60を作動させる処理(以下、「アーム再生処理」とする。)の一例について説明する。なお、図4はアーム再生処理の一例の流れを示すフローチャートであり、コントローラ30は、所定の制御周期で繰り返しこのアーム再生処理を実行する。また、図5~図8のそれぞれは図3の油圧回路の様々な状態を示す図であり、図中の太実線矢印は作動油の流れ方向を表し、太実線が太いほど作動油の流量が大きいことを表す。
 最初に、コントローラ30は、アーム閉じ操作が行われたか否かを判定する(ステップS1)。本実施例では、コントローラ30は、圧力センサ29の出力に基づいてアーム操作レバーが閉じ方向に操作されたか否かを判定する。
 図5は、アーム閉じ操作が行われたときの油圧回路の状態を示す。図5において、制御弁175Lは、左側(アーム閉じ側)パイロットポートでアーム操作レバーの操作量に応じたパイロット圧を受けて右側に移動する。その結果、メインポンプ14Lが吐出する作動油は制御弁175Lを通じてアームシリンダ8のボトム側油室に流入する。アーム操作レバーの操作量によっては、メインポンプ14Lが吐出する作動油の一部は、制御弁175LのPTポートが形成するブリード油路を通るブリード流量としてセンターバイパス油路21L及び合流油路24を通じて作動油タンクTに排出される。また、アームシリンダ8のロッド側油室から流出する作動油は、制御弁175L内に形成された一部再生油路175Lcを通じてその一部がボトム側油室に再生され、残りの部分が戻り油路23L及び合流油路24を通じて作動油タンクTに排出される。なお、一部再生油路175Lcは省略されてもよい。また、図5では、アーム閉じ操作が行われているのみであるため、メインポンプ14Rが吐出する作動油は、センターバイパス油路21Rを通り、戻り油路23Lを流れる作動油と合流し、合流油路24を通じて作動油タンクTに排出される。
 アーム閉じ操作が行われたと判断した場合(ステップS1のYES)、コントローラ30は、閉じ方向に動くアーム5の状態がアーム閉じ再生動作に適した状態であるか否かを判定する(ステップS2)。アーム閉じ再生動作は、アームシリンダ8のロッド側油室から流出する作動油の全部をそのボトム側油室に流入させる動作である。また、アーム閉じ再生動作に適した状態は、アーム5が自重で閉じるときのアーム5の状態、アーム5の閉じ方向に外力が作用しているときのアーム5の状態等を含む。本実施例では、コントローラ30は、圧力センサS3R、S3Bの出力に基づいてアーム5の状態がアーム閉じ再生動作に適した状態であるか否かを判定する。具体的には、コントローラ30は、圧力センサS3Rが出力するロッド側油室内の作動油の圧力にアームシリンダ8のピストンのロッド側受圧面積を乗じてロッド側油室の作動油がピストンに及ぼすロッド側推力を導き出す。同様に、コントローラ30は、圧力センサS3Bが出力するボトム側油室内の作動油の圧力にアームシリンダ8のピストンのボトム側受圧面積を乗じてボトム側油室の作動油がピストンに及ぼすボトム側推力を導き出す。そして、コントローラ30は、アーム5が閉じ方向に動いているにもかかわらずボトム側推力がロッド側推力より小さいと判断した場合にアーム5の状態がアーム閉じ再生動作に適した状態であると判定する。
 アーム5の状態がアーム閉じ再生動作に適した状態であると判定した場合(ステップS2のYES)、コントローラ30は、アーム再生回路60を作動させる(ステップS3)。本実施例では、コントローラ30は、減圧弁61及び可変絞り65に対して作動指令を出力する。その結果、切換弁62、63、64のそれぞれは第2弁位置に切り換えられ、且つ、可変絞り65の絞り開度、すなわち合流油路24の流路面積は低減される。なお、図6は、アーム再生回路60を作動させたときの油圧回路の状態を示す。
 第2弁位置に切り換えられた切換弁62は、制御弁175Lの左側(アーム閉じ側)パイロットポートと作動油タンクTとを連通させ、そのパイロット圧を低減させる。その結果、制御弁175Lは中立位置に戻り、メインポンプ14Lが吐出する作動油は、センターバイパス油路21Lを通じて合流油路24に至る。
 また、第2弁位置に切り換えられた切換弁63は、再生油路63cを通じてアームシリンダ8のロッド側油室とボトム側油室とを連通させる。そのため、ロッド側油室から流出する作動油は、その全てがボトム側油室に流入する。
 また、第2弁位置に切り換えられた切換弁64は、アームシリンダ8と合流油路24とを繋ぐ油路25を連通させる。そのため、油路25を通ってアームシリンダ8に向かう作動油は、アームシリンダ8のロッド側油室からボトム側油室に流れる作動油に合流する。
 また、絞り開度が低減された可変絞り65は、合流油路24を流れる作動油が作動油タンクTに排出されるのを抑制し、油路25を通ってアームシリンダ8に流れる作動油の流量を増大させる。なお、可変絞り65の絞り開度は、アームシリンダ8を操作するアーム操作レバーの操作内容、アームシリンダ8のロッド側油室の圧力、及びアームシリンダ8のボトム側油室の圧力の少なくとも1つに基づいて調整されてもよい。例えば、可変絞り65の絞り開度は、アーム操作レバーの下げ方向の操作量が大きいほど小さくなるように調整されてもよい。また、可変絞り65の絞り開度は、アームシリンダ8のロッド側油室の圧力が高いほど小さくなるように調整されてもよく、アームシリンダ8のボトム側油室の圧力が低いほど小さくなるように調整されてもよい。より多くの作動油がアームシリンダ8に流れる必要があると推定されるためである。
 このように、メインポンプ14Lが吐出するセンターバイパス油路21Lを流れる作動油と、メインポンプ14Rが吐出するセンターバイパス油路21Rを流れる作動油とが合流油路24で合流する。そして、合流油路24で合流した作動油は、可変絞り65によって作動油タンクTへの流れが抑制されて油路25に流入し、さらに、アームシリンダ8のロッド側油室からボトム側油室に流れる作動油に合流する。
 そのため、ボトム側油室の膨張に必要な作動油流量とロッド側油室の収縮によりロッド側油室から流出する作動油流量との差である再生不足流量は、合流油路24から油路25及び切換弁64を通って流入する作動油の流量である再生補充流量によって補われる。その結果、アームシリンダ8は、ボトム側油室でキャビテーションを発生させることなく伸張できる。
 その後、コントローラ30は、再生補充流量が不足しているか否かを判定する(ステップS4)。本実施例では、コントローラ30は、圧力センサS3Bが出力するアームシリンダ8のボトム側油室の圧力に基づいて再生補充流量が不足しているか否かを判定する。
 そして、再生補充流量が不足していると判定した場合(ステップS4のYES)、コントローラ30は、アキュムレータ68から作動油を放出させる(ステップS5)。本実施例では、コントローラ30は、ボトム側油室の圧力が所定圧力を下回った場合に再生補充流量が不足していると判定する。そして、コントローラ30は、減圧弁66に対して作動指令を出力する。その結果、切換弁67は第2弁位置に切り換えられ、アキュムレータ68に蓄積された作動油が油路25に放出される。このように、コントローラ30は、圧力センサS3Bの出力に応じてアキュムレータ68の放出量を調整することで再生不足流量がゼロとなるように再生補充流量をフィードバック制御する。なお、図7は、再生補充流量が不足しているとコントローラ30が判定したときの油圧回路の状態を示す。
 第2弁位置に切り換えられた切換弁67は、油路25とアキュムレータ68とを連通させる。その結果、アキュムレータ68から放出される作動油は、少なくともその一部がアームシリンダ8の方に流れ、アームシリンダ8のロッド側油室からボトム側油室に流れる作動油に合流する。
 そのため、再生不足流量は、切換弁64を通って流入する作動油、すなわち、合流油路24から油路25に流入する作動油とアキュムレータ68から放出される作動油との合計の流量である再生補充流量によって補われる。その結果、アームシリンダ8は、ボトム側油室でキャビテーションを発生させることなく伸張できる。
 一方、再生補充流量が不足していないと判定した場合(ステップS4のNO)、コントローラ30は、アキュムレータ68から作動油を放出させることなく、アーム再生回路60の作動を継続させる。本実施例では、コントローラ30は、ボトム側油室の圧力が所定圧力以上の場合に再生補充流量が不足していないと判定する。そして、コントローラ30は、減圧弁66が第2弁位置にある場合には、減圧弁66に対して停止指令を出力する。その結果、切換弁67は第1弁位置に切り換えられ、アキュムレータ68から油路25への作動油の放出が中止される。なお、図8は、再生補充流量が不足していないとコントローラ30が判定したときの油圧回路の状態を示す。
 具体的には、図8は、アーム閉じ操作と同時にブーム上げ操作が行われ、アーム閉じ操作が単独で行われる場合に比べて合流油路24に流入する作動油流量が大きい状態を示す。この場合、合流油路24に流入する作動油の流量は、メインポンプ14Lが吐出するセンターバイパス油路21Lを流れる作動油の流量と、ブームシリンダ7のロッド側油室から流出する戻り油路23Rを流れる作動油の流量と、メインポンプ14Rが吐出する、制御弁174RのPTポートを通ってセンターバイパス油路21Rを流れる作動油の流量(ブリード流量)とを含む。
 そのため、再生不足流量は、合流油路24から油路25に流入する作動油の流量のみで構成される再生補充流量によって補われる。その結果、アームシリンダ8は、アキュムレータ68が放出する作動油を用いずに、ボトム側油室でキャビテーションを発生させることなく伸張できる。
 また、アーム閉じ操作が行われていないと判断した場合(ステップS1のNO)、コントローラ30は、アーム再生回路60を作動させることなく、今回のアーム再生処理を終了させる。また、コントローラ30は、アーム再生回路60が作動状態にある場合には、アーム再生回路60を停止させる。本実施例では、コントローラ30は、減圧弁61、可変絞り65、及び減圧弁66に対して停止指令を出力する。その結果、切換弁62、63、64、67のそれぞれは第1弁位置に切り換えられ、且つ、可変絞り65の絞り開度、すなわち合流油路24の流路面積は増大される。
 次に、図9及び図10を参照し、アーム再生処理の別の一例について説明する。なお、図9はアーム再生処理の別の一例の流れを示すフローチャートである。また、図10は、図9のアーム再生処理が実行される油圧回路の状態を示す図であり、図中の太実線矢印は作動油の流れ方向を表し、太実線が太いほど作動油の流量が大きいことを表す。
 図9のアーム再生処理は、再生補充流量が不足した場合に、アキュムレータが放出する作動油を用いて再生補充流量を増大させる代わりにメインポンプ14の吐出量を増大させることで再生補充流量を増大させる点で図4のアーム再生処理と相違するがその他の点で共通する。また、図10の油圧回路は、アーム再生回路60から減圧弁66、切換弁67、及びアキュムレータ68が省略された点で図3の油圧回路と相違するがその他の点で共通する。そのため、共通部分の説明を省略し、相違部分を詳細に説明する。
 再生補充流量が不足していると判定した場合(ステップS14のYES)、コントローラ30は、メインポンプ14Lの吐出量を増大させる(ステップS15)。本実施例では、コントローラ30は、アームシリンダ8のボトム側油室の圧力が所定圧力を下回った場合に再生補充流量が不足していると判定する。そして、コントローラ30は、レギュレータ13Lに対して吐出量増大指令を出力する。このように、コントローラ30は、圧力センサS3Bの出力に応じてメインポンプ14Lの吐出量を調整することで再生不足流量がゼロとなるように再生補充流量をフィードバック制御する。なお、図10は、再生補充流量が不足しているとコントローラ30が判定したときの油圧回路の状態を示す。
 吐出量が増大されたメインポンプ14Lは、合流油路24及び油路25を流れる作動油の流量、すなわち、アームシリンダ8のロッド側油室からボトム側油室に再生される作動油に合流する作動油の流量である再生補充流量を増大させる。そのため、再生不足流量は、再生補充流量によって補われる。その結果、アームシリンダ8は、ボトム側油室でキャビテーションを発生させることなく伸張できる。
 なお、コントローラ30は、メインポンプ14Lの吐出量を増大させる代わりに、メインポンプ14Rの吐出量を増大させてもよく、メインポンプ14L及びメインポンプ14Rの双方の吐出量を増大させてもよい。
 また、コントローラ30は、図3の油圧回路で図9のアーム再生処理を実行してもよい。例えば、コントローラ30は、アキュムレータ68内に十分な作動油が蓄積されていない場合にメインポンプ14の吐出量を増大させてもよい。或いは、コントローラ30は、アキュムレータ68からの作動油の放出と同時にメインポンプ14の吐出量を増大させてもよい。
 次に、図11を参照し、アーム再生処理のさらに別の一例について説明する。図11は、図4のアーム再生処理が実行される油圧回路の状態を示す図であり、図中の太実線矢印は作動油の流れ方向を表し、太実線が太いほど作動油の流量が大きいことを表す。
 図11の油圧回路は、再生不足流量がゼロより大きい場合にアキュムレータ68が放出する作動油のみを用いて再生不足流量をゼロにできるように構成される点で図3の油圧回路と相違するがその他の点で共通する。そのため、共通部分の説明を省略し、相違部分を詳細に説明する。
 切換弁64Aは、図3の切換弁64の代わりに配置されるスプール弁であり、第1弁位置においてアームシリンダ8と合流油路24とを繋ぐ油路25を遮断し、第2弁位置において油路25を連通させる。また、切換弁64は減圧弁61Aの二次圧によって駆動される。
 減圧弁61Aは、切換弁64Aを切り換えるために用いられる電磁弁であり、パイロットポンプ15が吐出する作動油を用いて所定の二次圧を生成する。具体的には、コントローラ30から停止指令を受けると二次圧を低減させて切換弁64Aを第1弁位置に切り換え、コントローラ30から作動指令を受けると二次圧を増大させて切換弁64Aを第2弁位置に切り換える。また、減圧弁61Aは減圧弁61とは独立して制御される。そのため、切換弁64Aは、切換弁62及び切換弁63の切り換えとは無関係に切り換えられる。
 コントローラ30は、アーム閉じ操作が行われた場合に、圧力センサS3Bが出力するアームシリンダ8のボトム側油室の圧力が所定圧力を下回ると、再生不足流量がゼロより大きいと判定する。そして、減圧弁61Aに対して停止指令を出力し、且つ、減圧弁66に対して作動指令を出力する。その結果、図11に示すように、切換弁64Aは第1位置に切り換えられ、アームシリンダ8と合流油路24とを繋ぐ油路25を遮断する。また、切換弁67は第2弁位置に切り換えられ、アキュムレータ68に蓄積された作動油が油路25に放出される。このように、コントローラ30は、圧力センサS3Bの出力に応じてアキュムレータ68の放出量を調整することで再生不足流量がゼロとなるように制御する。そのため、再生不足流量は、アキュムレータ68から放出される作動油のみによって補われる。その結果、アームシリンダ8は、ボトム側油室でキャビテーションを発生させることなく伸張できる。
 また、コントローラ30は、アーム開き操作が行われた場合に、アームシリンダ8のボトム側油室から流出する作動油を再生油路63cを通じてアームシリンダ8のロッド側油室に流入させてもよい。そして、アームシリンダ8のロッド側油室に入りきらない余剰の作動油を油路25を通じてアキュムレータ68に流入させてもよい。
 以上の構成により、コントローラ30は、アームシリンダ8のロッド側油室から流出する作動油の全てをボトム側油室に流入させることができる。そのため、アームシリンダ8のロッド側油室から流出する作動油をボトム側油室に流入させるアーム閉じ再生動作をより効率的に実行できる。
 また、コントローラ30は、アキュムレータ68から作動油を放出させることによって、或いは、メインポンプ14の吐出量を増大させることによって再生不足流量に相当する再生補充流量を実現する。そのため、アーム閉じ再生動作時にメインポンプ14が吐出する作動油の流量を必要最小限に抑えることができる。
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び置換を加えることができる。
 例えば、上述の実施例では、再生油路63cは、制御弁175Lの外部に設置される切換弁63内に形成されるが、本発明はこの構成に限定されるものではない。例えば、切換弁63は、制御弁175Lに一体化されてもよい。この場合、制御弁175Lは、6ポート3位置のスプール弁に代えて6ポート4位置のスプール弁で構成され、追加された弁位置に再生油路が形成されてもよい。
 また、上述の実施例では、油路25は、アームシリンダ8のロッド側油室と切換弁63とを繋ぐ油路に接続されるが、本発明はこの構成に限定されるものではない。例えば、油路25は、ロッド側油室に直結されてもよく、ボトム側油室に直結されてもよく、或いは、切換弁63内の再生油路63cに直結されてもよい。
 また、上述の実施例では、本発明はアーム再生回路60に適用されるが、バケット再生回路等の他の再生回路に適用されてもよい。
 また、本願は、2014年9月17日に出願した日本国特許出願2014-189212号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
 1・・・下部走行体 1A、1B・・・走行用油圧モータ 2・・・旋回機構 2A・・・旋回用油圧モータ 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 13、13L、13R・・・レギュレータ 14、14L、14R・・・メインポンプ 15・・・パイロットポンプ 17・・・コントロールバルブ 20L、20R・・・ネガティブコントロール絞り 21L、21R・・・センターバイパス油路 22L、22R・・・パラレル油路 23L、23R・・・戻り油路 24・・・合流油路 25・・・油路 26・・・操作装置 29・・・圧力センサ 30・・・コントローラ 60・・・アーム再生回路 61・・・減圧弁 62~64・・・切換弁 65・・・可変絞り 66・・・減圧弁 67・・・切換弁 68・・・アキュムレータ 171L~175L、171R~175R・・・制御弁 S1L、S2R、S2L、S2R、S3R、S3B・・・圧力センサ T・・・作動油タンク

Claims (9)

  1.  油圧シリンダを含む複数の油圧アクチュエータに作動油を供給する油圧ポンプと、
     前記油圧ポンプと前記複数の油圧アクチュエータのそれぞれとの間の作動油の流れを制御する複数の制御弁と、
     前記油圧シリンダのロッド側油室からボトム側油室への作動油の流れを可能にする第1油路と、
     前記第1油路を通って前記ロッド側油室から前記ボトム側油室へ作動油が流れるときに、前記油圧ポンプが吐出する複数の経路を通流可能な作動油が作動油タンクに至る前に合流して流れる第2油路と、
     前記第1油路と前記第2油路とを連通可能な第3油路と、
     を有するショベル。
  2.  前記第2油路に設けられる可変絞りをさらに有し、
     前記第2油路は、前記可変絞りの下流で前記作動油タンクに接続され、且つ、前記可変絞りの上流にある分岐点で前記第3油路に接続され、
     前記可変絞りは、絞り開度が小さいほど前記作動油タンクに向かう作動油の流量を低減させ且つ前記第3油路を通じて前記第1油路に向かう作動油の流量を増大させる、
     請求項1に記載のショベル。
  3.  前記可変絞りの絞り開度は、前記油圧シリンダを操作する操作装置の操作内容、前記ロッド側油室の圧力、及び前記ボトム側油室の圧力の少なくとも1つに基づいて調整される、
     請求項2に記載のショベル。
  4.  前記第3油路に接続されるアキュムレータをさらに有する、
     請求項1又は2に記載のショベル。
  5.  前記アキュムレータは、前記第1油路を通って前記ロッド側油室から前記ボトム側油室へ作動油が流れるときに、更に、前記アキュムレータから放出される作動油が前記ボトム側油室へ流れる、
     請求項4に記載のショベル。
  6.  前記アキュムレータは、前記第1油路を通って前記ボトム側油室から前記ロッド側油室へ作動油が流れるときに、前記ボトム側油室から流出する作動油が前記アキュムレータへ流れる、
     請求項4又は5に記載のショベル。
  7.  前記第2油路を流れる作動油が前記第3油路を通じて前記第1油路に流れる場合であって、且つ、前記ボトム側油室の圧力が所定圧力未満の場合、前記油圧ポンプは吐出量を増大させる、
     請求項1又は2に記載のショベル。
  8.  前記第1油路の連通・遮断を切り換える切換弁をさらに有し、
     前記油圧ポンプと前記油圧シリンダとの間の作動油の流れを制御する第1制御弁は、前記複数の制御弁のうちの1つであり、
     前記切換弁は、前記第1制御弁とは別に設けられ、
     前記第1制御弁は、前記切換弁が前記第1油路を連通させた場合、前記油圧ポンプと前記油圧シリンダとの間の作動油の流れを遮断する、
     請求項1又は2に記載のショベル。
  9.  前記第1油路の連通・遮断を切り換える切換弁をさらに有し、
     前記油圧ポンプと前記油圧シリンダとの間の作動油の流れを制御する第1制御弁は、前記複数の制御弁のうちの1つであり、
     前記切換弁は、前記第1制御弁に一体化される、
     請求項1又は2に記載のショベル。
PCT/JP2015/076233 2014-09-17 2015-09-16 ショベル WO2016043206A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014189212A JP2017201072A (ja) 2014-09-17 2014-09-17 ショベル
JP2014-189212 2014-09-17

Publications (1)

Publication Number Publication Date
WO2016043206A1 true WO2016043206A1 (ja) 2016-03-24

Family

ID=55533243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076233 WO2016043206A1 (ja) 2014-09-17 2015-09-16 ショベル

Country Status (2)

Country Link
JP (1) JP2017201072A (ja)
WO (1) WO2016043206A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804167A (zh) * 2016-10-27 2019-05-24 川崎重工业株式会社 油压挖掘机驱动系统
CN112639296A (zh) * 2018-09-28 2021-04-09 神钢建机株式会社 行走式工程机械的液压驱动装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3770339A4 (en) * 2018-03-22 2021-05-26 Sumitomo Heavy Industries, Ltd. EXCAVATOR
JP7379226B2 (ja) * 2020-03-17 2023-11-14 株式会社小松製作所 油圧システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013959A1 (en) * 1992-12-04 1994-06-23 Hitachi Construction Machinery Co., Ltd. Hydraulic regenerator
WO2002086331A1 (fr) * 2001-04-17 2002-10-31 Shin Caterpillar Mitsubishi Ltd. Circuit hydraulique
US20100024410A1 (en) * 2008-07-29 2010-02-04 Caterpillar Inc. Hydraulic system having regeneration modulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013959A1 (en) * 1992-12-04 1994-06-23 Hitachi Construction Machinery Co., Ltd. Hydraulic regenerator
WO2002086331A1 (fr) * 2001-04-17 2002-10-31 Shin Caterpillar Mitsubishi Ltd. Circuit hydraulique
US20100024410A1 (en) * 2008-07-29 2010-02-04 Caterpillar Inc. Hydraulic system having regeneration modulation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804167A (zh) * 2016-10-27 2019-05-24 川崎重工业株式会社 油压挖掘机驱动系统
CN109804167B (zh) * 2016-10-27 2020-04-17 川崎重工业株式会社 油压挖掘机驱动系统
CN112639296A (zh) * 2018-09-28 2021-04-09 神钢建机株式会社 行走式工程机械的液压驱动装置
US11542963B2 (en) 2018-09-28 2023-01-03 Kobelco Construction Machinery Co., Ltd. Hydraulic drive device for traveling work machine

Also Published As

Publication number Publication date
JP2017201072A (ja) 2017-11-09

Similar Documents

Publication Publication Date Title
JP4272207B2 (ja) 建設機械の油圧制御装置
WO2011105436A1 (ja) 建設機械の制御システム
JP6467515B2 (ja) 建設機械
US10604916B2 (en) Shovel
KR101953049B1 (ko) 작업 기계의 압유 에너지 재생 장치
WO2014192458A1 (ja) 建設機械の油圧駆動装置
WO2013146409A1 (ja) ブーム駆動装置
US10480158B2 (en) Working machine
KR102460499B1 (ko) 쇼벨
JP6514522B2 (ja) アンロード弁および油圧ショベルの油圧駆動システム
WO2016043206A1 (ja) ショベル
JP6776334B2 (ja) ショベル及びショベル用コントロールバルブ
JP7071979B2 (ja) ショベル
JPWO2020067084A1 (ja) 流体回路
WO2018021288A1 (ja) ショベル、ショベル用コントロールバルブ
CN105971043B (zh) 挖土机
JP4541209B2 (ja) 油圧回路
JPWO2015178317A1 (ja) ショベル及びその制御方法
JP2015110981A5 (ja)
WO2016002392A1 (ja) 建設機械用油圧回路
CN108884843B (zh) 挖土机及挖土机用控制阀门
JP6282523B2 (ja) 作業機械
JP4926627B2 (ja) 電油システム
WO2023074821A1 (ja) ショベル
JP2019094609A (ja) ショベル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841502

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15841502

Country of ref document: EP

Kind code of ref document: A1