[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2016043048A1 - Position sensor - Google Patents

Position sensor Download PDF

Info

Publication number
WO2016043048A1
WO2016043048A1 PCT/JP2015/074904 JP2015074904W WO2016043048A1 WO 2016043048 A1 WO2016043048 A1 WO 2016043048A1 JP 2015074904 W JP2015074904 W JP 2015074904W WO 2016043048 A1 WO2016043048 A1 WO 2016043048A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
light
lattice
outer peripheral
position sensor
Prior art date
Application number
PCT/JP2015/074904
Other languages
French (fr)
Japanese (ja)
Inventor
良真 吉岡
裕介 清水
柴田 直樹
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2016043048A1 publication Critical patent/WO2016043048A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to a position sensor that optically detects a pressed position.
  • the present applicant has proposed a position sensor that optically detects the pressed position (see, for example, Patent Document 1).
  • this has a rectangular sheet-shaped optical waveguide W ⁇ b> 1 in which a sheet-shaped core pattern member is sandwiched between a rectangular sheet-like under cladding layer 11 and an over cladding layer 13.
  • the core pattern member includes a lattice-shaped portion 12A formed by arranging a plurality of linear optical path cores 12 vertically and horizontally, and extends from the core 12 of the lattice-shaped portion 12A to the outer periphery of the lattice-shaped portion 12A.
  • positioned in the state along is provided.
  • a light emitting element 14 is connected to one end face of the core 12 of the outer peripheral portion 12B of the core pattern member, and a light receiving element 15 is connected to the other end face of the core 12.
  • the light emitted from the light emitting element 14 passes through the core 12 from the outer peripheral portion 12B connected to the light emitting element 14 through the lattice portion 12A and the outer peripheral portion 12B on the opposite side. It is designed to receive light.
  • a surface portion of the over clad layer 13 corresponding to the lattice portion 12A (a rectangular portion indicated by a one-dot chain line in the center of FIG. 4) is an input region 13A of the position sensor.
  • the input area 13A When inputting, the input area 13A is pressed with, for example, an input pen tip. Thereby, the core 12 of the pressed portion is deformed, and the light propagation amount of the core 12 is reduced. Therefore, in the core 12 of the pressing portion, the light receiving level at the light receiving element 15 is lowered, so that the pressing position can be detected.
  • a light emitting element and a light receiving element are mounted on an electric circuit board. From the viewpoint of reducing the manufacturing cost by making the electric circuit board as compact as possible, the light emitting element and the light receiving element are combined. It is common technical knowledge to place them close together. In fact, in the position sensor shown in FIG. 4, both the light emitting element 14 and the light receiving element 15 are provided on one side (the lower end side in FIG. 4) of the rectangular sheet-shaped optical waveguide W ⁇ b> 1. Are placed close together.
  • the spectral intensity of the propagating light is made substantially equal between the vertical core 12 and the horizontal core 12, It is necessary to make the difference small. Therefore, the arrangement and the like of the core 12 of the outer peripheral portion 12B are designed so as to be so. However, the spectral intensity of the light may differ greatly between the vertical direction and the horizontal direction due to variations in the quality of the forming material such as the core 12 and variations in dimensions during the manufacturing process. If the difference in spectral intensity of the light exceeds the allowable range, the pressed position may not be detected properly. In that case, the vertical and horizontal spectral intensities are adjusted by redesigning the arrangement of the core 12 in the outer peripheral portion 12B of the core pattern member, and the difference is made within an allowable range.
  • the redesign and the like require a cost.
  • the arrangement of the light emitting element 14 and the light receiving element 15 is limited, and therefore there is a limit to the device for arranging the core 12 of the outer peripheral portion 12B. Therefore, it takes time to adjust the vertical and horizontal spectral intensity. In these respects, the position sensor has room for improvement.
  • the present invention has been made in view of such circumstances, and provides a position sensor capable of easily reducing the difference between the vertical direction and the horizontal direction of the spectral intensity of light propagating through the lattice-shaped core. Is the purpose.
  • the position sensor of the present invention has a lattice-shaped portion composed of a plurality of linear cores, and extends along the outer periphery of the lattice-shaped portion extending from the core of the lattice-shaped portion.
  • a position sensor including an element, wherein one end surface and the other end surface of a core in an outer peripheral portion where a longitudinal core of the lattice portion is extended, and a lateral core of the lattice portion is extended.
  • One end face and the other end face of the core in the outer peripheral portion are positioned on one side of the rectangular shape of the substantially rectangular sheet-shaped optical waveguide, and one light emitting element is connected to each of the two end faces of the core in the outer peripheral portion.
  • the outer circumference One light receiving element is connected to each of the two other end surfaces of the core, and light emitted from the light emitting element is received by the light receiving element through the core of the optical waveguide, and the core pattern member
  • the surface portion of the position sensor corresponding to the lattice portion is used as an input region, and the pressing position in the input region is specified by the light propagation amount of the core changed by the pressing.
  • the position sensor of the present invention breaks down the conventional common sense, and even if the manufacturing cost is sacrificed, priority is given to the detection of the pressed position, and two light emitting elements and two light receiving elements are used. Yes. And, one light emitting element is connected to one end face of the core of the outer peripheral part where the longitudinal core of the lattice-like part is extended, and one light receiving element is connected to the other end face of the core, The remaining one light-emitting element is connected to one end face of the core in the outer peripheral part where the horizontal core of the grid-like part is extended, and the remaining one light-receiving element is connected to the other end face of the core. ing.
  • the spectral intensity of light can be individually adjusted in the vertical direction and the horizontal direction, the difference between the two is reduced, and the detectability of the pressed position is improved.
  • two light emitting elements and two light receiving elements are used, respectively, and one light emitting element is provided on one end face of the core in the outer peripheral portion where the longitudinal core of the lattice-like portion is extended.
  • One light-receiving element is connected to the other end face of the core, and the remaining one light-emitting element is attached to one end face of the core in the outer peripheral part where the horizontal core of the lattice-like part is extended.
  • the remaining one light receiving element is connected to the other end face of the core. Therefore, the spectral intensity of the light propagating through the core of the lattice portion can be individually adjusted in the vertical direction and the horizontal direction of the lattice portion.
  • the two light-emitting elements and the light-receiving elements are connected to the core from the two light-emitting elements and the light-receiving elements. It is arranged on one side of the rectangular shape of the optical waveguide.
  • these elements are arranged at positions close to each other. For this reason, even if the number of elements is increased, the electric circuit board on which the elements are mounted can be made compact, and the manufacturing cost can be suppressed.
  • (A) is a top view which shows typically one Embodiment of the position sensor of this invention
  • (b) is an expanded sectional view of the center part.
  • (A) to (f) are enlarged plan views schematically showing the crossing form of the cores of the lattice-like portion in the position sensor.
  • (A), (b) is an enlarged plan view which shows typically the course of the light in the cross
  • FIG. 1 (a) is a plan view showing an embodiment of the position sensor of the present invention
  • FIG. 1 (b) is an enlarged view of the cross section of the central portion thereof.
  • the position sensor of this embodiment includes a substantially rectangular sheet-shaped optical waveguide W and two light-emitting elements 4 and 2 arranged on one side of the optical waveguide W (the lower side in FIG. 1A).
  • the number of the elements 4 and 5 is a major feature of the present invention.
  • the optical waveguide W is extended on the surface of the substantially quadrilateral sheet-like under cladding layer 1 from a lattice portion 2A composed of a plurality of linear optical path cores 2 and the core 2 of the lattice portion 2A.
  • a sheet-like core pattern member provided with an outer peripheral portion 2B arranged along the outer periphery of the lattice-like portion 2A is formed, and the surface of the under-cladding layer 1 is covered with the core pattern member.
  • the over clad layer 3 is formed.
  • One end surface and the other end surface of the core 2 of 2B are positioned on one side of the substantially rectangular sheet-shaped optical waveguide W [lower side in FIG. 1A].
  • the core 2 is indicated by a chain line
  • the thickness of the chain line indicates the thickness of the core 2
  • the number of the cores 2 in the lattice-like portion 2A is omitted.
  • the arrow of Fig.1 (a) has shown the direction where light travels.
  • one light emitting element 4 is connected to one end surface of the core 2 of the outer peripheral portion 2B where the longitudinal core 2 of the lattice-shaped portion 2A of the core pattern member is extended, and the other end surface of the core 2 is connected to the other end surface of the core 2
  • One light-receiving element 5 is connected, and the remaining one light-emitting element 4 is connected to one end surface of the core 2 of the outer peripheral part 2B in which the horizontal core 2 of the lattice-like part 2A extends.
  • the remaining one light receiving element 5 is connected to the other end surface of the core 2.
  • the light emitted from the light emitting element 4 passes through the core 2 through the outer peripheral part 2B on the opposite side from the outer peripheral part 2B connected to the light emitting element 4 through the lattice part 2A.
  • the light receiving element 5 receives light.
  • the surface portion of the over clad layer 3 corresponding to the lattice-like portion 2A of the core pattern member [rectangular portion indicated by a one-dot chain line in the center of FIG. 1A] is an input region 3A.
  • the position sensor uses two light emitting elements 4 and two light receiving elements 5, respectively.
  • the vertical direction and the horizontal direction of the lattice-shaped portion 2A two directions ( The light emitting element 4 and the light receiving element 5 are connected to each other (XY direction). Therefore, the light in these two directions can be individually controlled. As a result, even if a difference in the spectral intensity of light occurs between the vertical direction and the horizontal direction, the difference can be easily reduced, and the pressed position can be detected appropriately.
  • the difference in spectral intensity is preferably 1 dB or less.
  • the elements 4 and 5 are substantially rectangular sheet-shaped light guides They are arranged on one side of the rectangular shape of the waveguide W and are close to each other. Therefore, even if the number of the elements 4 and 5 increases, the electric circuit board (not shown) on which the elements 4 and 5 are mounted can be made compact, and the manufacturing cost can be suppressed.
  • the position sensor when the input area 3A of the position sensor is widened or the detection accuracy of the pressed position in the input area 3A is improved, it is necessary to increase the number of cores 2.
  • the light emitting element 4 and two light receiving elements 5 are used, respectively, and the increase in the number of cores 2 can be easily accommodated without weakening the spectral intensity of light propagating through the cores 2. That is, the position sensor can easily cope with the enlargement of the input area 3A and the improvement of the detection accuracy of the pressed position.
  • the input of characters or the like to the position sensor is performed by writing the characters or the like in the input area 3A directly or via a resin film or paper with an input body such as a pen.
  • the input area 3A is pressed with a pen tip or the like, the core 2 of the pressed portion is deformed, and the light propagation amount of the core 2 is reduced. Therefore, in the core 2 of the pressing portion, the light receiving level at the light receiving element 5 is lowered, so that the pressing position (XY coordinate) can be detected.
  • the elastic modulus of the core 2 is preferably set to be larger than the elastic modulus of the under cladding layer 1 and the over cladding layer 3. The reason is that if the elastic modulus is set in the opposite direction, the periphery of the core 2 becomes hard, so that the optical waveguide having an area considerably larger than the area of the pen tip or the like that presses the input region 3A portion of the over clad layer 3 This is because the W portion is recessed and it is difficult to accurately detect the pressed position.
  • each elastic modulus for example, the elastic modulus of the core 2 is set within a range of 1 GPa or more and 10 GPa or less, and the elastic modulus of the over clad layer 3 is set within a range of 0.1 GPa or more and less than 10 GPa
  • the elastic modulus of the under cladding layer 1 is preferably set within a range of 0.1 MPa to 1 GPa.
  • the elastic modulus of the core 2 is large, the core 2 is not crushed by a small pressing force (the cross-sectional area of the core 2 is not reduced), but the optical waveguide W is recessed by the pressing, and therefore corresponds to the recessed portion.
  • Light leakage (scattering) occurs from the bent portion of the core 2, and in the core 2, the light receiving level at the light receiving element 5 decreases, so that the pressed position can be detected.
  • Examples of the material for forming the under cladding layer 1, the core 2 and the over cladding layer 3 include a photosensitive resin, a thermosetting resin, and the like, and the optical waveguide W can be manufactured by a manufacturing method corresponding to the forming material.
  • the refractive index of the core 2 is set to be larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3.
  • the refractive index and the elastic modulus can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio.
  • each layer is set, for example, in the range of 10 to 500 ⁇ m for the under cladding layer 1, in the range of 5 to 100 ⁇ m for the core 2, and in the range of 1 to 200 ⁇ m for the over cladding layer 3.
  • a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.
  • each of the intersecting portions of the core 2 of the lattice-shaped portion 2A is normally formed in a state in which all of the four intersecting directions are continuous, as shown in an enlarged plan view in FIG. Others are acceptable.
  • FIG. 2B only one intersecting direction may be divided by the gap G and discontinuous.
  • the gap G is formed of a material for forming the under cladding layer 1 or the over cladding layer 3.
  • the width d of the gap G exceeds 0 (zero), and is usually set to 20 ⁇ m or less.
  • two intersecting directions two opposing directions in FIG. 2 (c) and two adjacent directions in FIG.
  • the three intersecting directions may be discontinuous, or as shown in FIG. 2 (f), all the four intersecting directions may be discontinuous. It may be discontinuous.
  • the light crossing loss can be reduced. That is, as shown in FIG. 3 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions (upward in FIG. 3 (a)) is noted, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and the incident angle at the wall surface is smaller than the critical angle, so that the light passes through the core 2 [FIG. )) Such transmission of light also occurs in the direction opposite to the above (downward in FIG. 3A). On the other hand, as shown in FIG.
  • Component a 60 parts by weight of an epoxy resin (Mitsubishi Chemical Corporation YL7410).
  • Component b 40 parts by weight of epoxy resin (manufactured by Daicel, EHPE3150).
  • Component c 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI101A).
  • Component d 90 parts by weight of an epoxy resin (manufactured by Daicel Corporation, EHPE3150).
  • Component e 10 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, Epicoat 1002).
  • Component f 1 part by weight of a photoacid generator (manufactured by ADEKA, SP170).
  • Component g 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries, Ltd., solvent).
  • a core forming material was prepared by mixing these components d to g.
  • an under clad layer was formed by spin coating using the under clad layer forming material.
  • the thickness of this under cladding layer was 25 ⁇ m.
  • the elastic modulus was 240 MPa and the refractive index was 1.496.
  • the elastic modulus was measured using a viscoelasticity measuring device (TA instruments Japan Inc., RSA3).
  • a sheet-like core pattern member having a lattice-shaped portion composed of a plurality of linear cores and an outer peripheral portion is formed on the surface of the under-cladding layer by the photolithography method using the core forming material.
  • the size of the grid portion (input area) was 210 mm long ⁇ 297 mm wide.
  • the width of the core was 100 ⁇ m, the thickness was 50 ⁇ m, and the width of the gap between adjacent parallel linear cores in the lattice portion was 500 ⁇ m.
  • the elastic modulus was 1.58 GPa and the refractive index was 1.516.
  • an over clad layer was formed on the surface of the under clad layer by spin coating using the over clad layer forming material so as to cover the core pattern member.
  • the thickness of this over clad layer was 40 ⁇ m.
  • the elastic modulus was 240 MPa and the refractive index was 1.496. In this way, a sheet-like optical waveguide was produced.
  • one light emitting element and one light receiving element are provided, and one light emitting element is connected to one end face of both cores of the outer peripheral part in which the vertical direction and the horizontal direction of the lattice-shaped part are extended, One light receiving element was connected to the other end faces of the cores (see FIG. 4).
  • the above example and the comparative example were compared with respect to the spectral intensity of light received by the light receiving element.
  • the difference between the vertical direction and the horizontal direction of the spectral intensity of the light of the lattice-shaped portion of the core pattern member is 1 dB in the example and 5 dB in the comparative example, and the example is smaller than the comparative example. It was.
  • the position sensor of the present invention can be used to reduce the difference between the vertical direction and the horizontal direction of the spectral intensity of propagating light in the lattice-like core of the optical waveguide constituting the position sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Provided is a position sensor with which the difference between the spectral intensities, in the vertical and horizontal directions, of light propagating through a lattice core can be easily reduced. This position sensor is provided with: a substantially rectangular sheet-like optical waveguide (W) having a sheet-like core pattern member provided with a lattice section (2A) comprising a plurality of linear cores (2), and an outer peripheral section (2B) which extends from each of the cores (2) of the lattice section (2A), and which is disposed along the outer periphery of the lattice section (2A); two light-emission elements (4); and two light-reception elements (5). One end surface and another end surface of the core (2) of the outer peripheral section (2B) from which the vertical-direction cores (2) of the lattice section (2A) extend, and one end surface and another end surface of the core (2) of the outer peripheral section (2B) from which the horizontal-direction cores (2) of the lattice section (2A) extend are positioned at one side of the rectangular shape of the optical waveguide (W). The one end surfaces of the two cores (2) of the outer peripheral section (2B) respectively have one of the light-emission elements (4) connected thereto. The other end surfaces of the two cores (2) of the outer peripheral section (2B) respectively have one of the light-reception elements (5) connected thereto.

Description

位置センサPosition sensor
 本発明は、押圧位置を光学的に検知する位置センサに関するものである。 The present invention relates to a position sensor that optically detects a pressed position.
 本出願人は、これまでに、押圧位置を光学的に検知する位置センサを提案している(例えば、特許文献1参照)。このものは、図4に示すように、シート状のコアパターン部材を四角形シート状のアンダークラッド層11とオーバークラッド層13とで挟持した四角形シート状の光導波路W1を有している。上記コアパターン部材は、複数の線状の光路用のコア12を縦横に配置してなる格子状部分12Aと、この格子状部分12Aのコア12から延設されてその格子状部分12Aの外周に沿った状態で配置された外周部分12Bとを備えている。また、上記コアパターン部材の外周部分12Bのコア12の一端面に、発光素子14が接続され、そのコア12の他端面に、受光素子15が接続されている。そして、上記発光素子14から発光された光は、コア12の中を、その発光素子14に接続された外周部分12Bから格子状部分12Aを経て反対側の外周部分12Bを通り、上記受光素子15で受光されるようになっている。上記格子状部分12Aに対応するオーバークラッド層13の表面部分(図4の中央に一点鎖線で示す長方形部分)が、位置センサの入力領域13Aとなっている。 The present applicant has proposed a position sensor that optically detects the pressed position (see, for example, Patent Document 1). As shown in FIG. 4, this has a rectangular sheet-shaped optical waveguide W <b> 1 in which a sheet-shaped core pattern member is sandwiched between a rectangular sheet-like under cladding layer 11 and an over cladding layer 13. The core pattern member includes a lattice-shaped portion 12A formed by arranging a plurality of linear optical path cores 12 vertically and horizontally, and extends from the core 12 of the lattice-shaped portion 12A to the outer periphery of the lattice-shaped portion 12A. The outer peripheral part 12B arrange | positioned in the state along is provided. A light emitting element 14 is connected to one end face of the core 12 of the outer peripheral portion 12B of the core pattern member, and a light receiving element 15 is connected to the other end face of the core 12. The light emitted from the light emitting element 14 passes through the core 12 from the outer peripheral portion 12B connected to the light emitting element 14 through the lattice portion 12A and the outer peripheral portion 12B on the opposite side. It is designed to receive light. A surface portion of the over clad layer 13 corresponding to the lattice portion 12A (a rectangular portion indicated by a one-dot chain line in the center of FIG. 4) is an input region 13A of the position sensor.
 そして、入力する際には、上記入力領域13Aを、例えば入力用のペン先で押圧することが行われる。それにより、その押圧部分のコア12が変形し、そのコア12の光伝播量が低下する。そのため、上記押圧部分のコア12では、上記受光素子15での受光レベルが低下することから、上記押圧位置を検知できるようになっている。 When inputting, the input area 13A is pressed with, for example, an input pen tip. Thereby, the core 12 of the pressed portion is deformed, and the light propagation amount of the core 12 is reduced. Therefore, in the core 12 of the pressing portion, the light receiving level at the light receiving element 15 is lowered, so that the pressing position can be detected.
特許第5513656号公報Japanese Patent No. 5513656
 一般に、この種の位置センサでは、発光素子および受光素子が電気回路基板に実装されており、その電気回路基板をできる限りコンパクト化して製造コストの低減を図る観点から、発光素子と受光素子とを近づけて配置することが技術常識となっている。実際、図4に示す上記位置センサでは、発光素子14も受光素子15も、四角形シート状の光導波路W1の四角形状の一辺(図4では下端辺)に設けられており、両素子14,15を近づけた配置にしている。 Generally, in this type of position sensor, a light emitting element and a light receiving element are mounted on an electric circuit board. From the viewpoint of reducing the manufacturing cost by making the electric circuit board as compact as possible, the light emitting element and the light receiving element are combined. It is common technical knowledge to place them close together. In fact, in the position sensor shown in FIG. 4, both the light emitting element 14 and the light receiving element 15 are provided on one side (the lower end side in FIG. 4) of the rectangular sheet-shaped optical waveguide W <b> 1. Are placed close together.
 また、一般に、この種の位置センサでは、製造コストの観点から、発光素子および受光素子の個数をできる限り少なくすることが技術常識となっている。実際、図4に示す上記位置センサでは、それぞれ1個ずつ用いられている。 In general, in this type of position sensor, it is common technical knowledge to reduce the number of light emitting elements and light receiving elements as much as possible from the viewpoint of manufacturing cost. In fact, one position sensor is used in each of the position sensors shown in FIG.
 そして、押圧位置を適正に検知するためには、上記コアパターン部材の格子状部分12Aにおいて、縦方向のコア12と横方向のコア12とで、伝播する光のスペクトル強度を略等しくし、その差が小さくなるようにする必要がある。そのため、そうなるように、上記外周部分12Bのコア12の配置等が設計されている。しかしながら、コア12等の形成材料の品質のばらつき,製造過程での寸法のばらつき等により、縦方向と横方向とで、上記光のスペクトル強度が大きく異なることがある。その光のスペクトル強度の差が許容範囲を超えると、押圧位置を適正に検知することができないことがある。その場合、上記コアパターン部材の外周部分12Bのコア12の配置等を再設計する等して、上記縦横のスペクトル強度を調整し、その差を許容範囲内にすることが行われる。 And in order to detect a press position appropriately, in the lattice-like part 12A of the core pattern member, the spectral intensity of the propagating light is made substantially equal between the vertical core 12 and the horizontal core 12, It is necessary to make the difference small. Therefore, the arrangement and the like of the core 12 of the outer peripheral portion 12B are designed so as to be so. However, the spectral intensity of the light may differ greatly between the vertical direction and the horizontal direction due to variations in the quality of the forming material such as the core 12 and variations in dimensions during the manufacturing process. If the difference in spectral intensity of the light exceeds the allowable range, the pressed position may not be detected properly. In that case, the vertical and horizontal spectral intensities are adjusted by redesigning the arrangement of the core 12 in the outer peripheral portion 12B of the core pattern member, and the difference is made within an allowable range.
 しかしながら、上記再設計等にはコストを要する。しかも、先に述べたように、製造コストの観点から、発光素子14および受光素子15の配置に制限があり、そのため、上記外周部分12Bのコア12の配置等の工夫にも限度がある。そのことから、縦横のスペクトル強度の調整に手間がかかる等する。これらの点で上記位置センサは改良の余地がある。 However, the redesign and the like require a cost. In addition, as described above, from the viewpoint of manufacturing cost, the arrangement of the light emitting element 14 and the light receiving element 15 is limited, and therefore there is a limit to the device for arranging the core 12 of the outer peripheral portion 12B. Therefore, it takes time to adjust the vertical and horizontal spectral intensity. In these respects, the position sensor has room for improvement.
 本発明は、このような事情に鑑みなされたもので、格子状のコアの中を伝播する光のスペクトル強度の、縦方向と横方向との差を容易に小さくすることができる位置センサの提供をその目的とする。 The present invention has been made in view of such circumstances, and provides a position sensor capable of easily reducing the difference between the vertical direction and the horizontal direction of the spectral intensity of light propagating through the lattice-shaped core. Is the purpose.
 上記の目的を達成するため、本発明の位置センサは、複数の線状のコアからなる格子状部分と、この格子状部分のコアから延設されてその格子状部分の外周に沿った状態で配置された外周部分とを備えたシート状のコアパターン部材を、2層のシート状のクラッド層で挟持した略四角形シート状の光導波路と、この光導波路のコアに接続された発光素子および受光素子とを備えた位置センサであって、上記格子状部分の縦方向のコアが延設された外周部分のコアの一端面および他端面、ならびに上記格子状部分の横方向のコアが延設された外周部分のコアの一端面および他端面が、上記略四角形シート状の光導波路の四角形状の一辺に位置決めされ、上記外周部分のコアの上記二つの一端面にそれぞれ1個の発光素子が接続され、上記外周部分のコアの上記二つの他端面にそれぞれ1個の受光素子が接続され、上記発光素子で発光された光が、上記光導波路のコアを経て、上記受光素子で受光され、上記コアパターン部材の格子状部分に対応する上記位置センサの表面部分を入力領域とし、その入力領域における押圧位置を、その押圧により変化したコアの光伝播量によって特定するという構成をとる。 In order to achieve the above object, the position sensor of the present invention has a lattice-shaped portion composed of a plurality of linear cores, and extends along the outer periphery of the lattice-shaped portion extending from the core of the lattice-shaped portion. A substantially rectangular sheet-shaped optical waveguide sandwiched between two sheet-shaped clad layers with a sheet-shaped core pattern member having an outer peripheral portion disposed, and a light emitting element and a light receiving element connected to the core of the optical waveguide A position sensor including an element, wherein one end surface and the other end surface of a core in an outer peripheral portion where a longitudinal core of the lattice portion is extended, and a lateral core of the lattice portion is extended. One end face and the other end face of the core in the outer peripheral portion are positioned on one side of the rectangular shape of the substantially rectangular sheet-shaped optical waveguide, and one light emitting element is connected to each of the two end faces of the core in the outer peripheral portion. The outer circumference One light receiving element is connected to each of the two other end surfaces of the core, and light emitted from the light emitting element is received by the light receiving element through the core of the optical waveguide, and the core pattern member The surface portion of the position sensor corresponding to the lattice portion is used as an input region, and the pressing position in the input region is specified by the light propagation amount of the core changed by the pressing.
 すなわち、本発明の位置センサは、従来の技術常識を打破したものであり、製造コストを犠牲にしてまでも、押圧位置の検知性を優先させ、発光素子および受光素子をそれぞれ2個ずつ用いている。そして、格子状部分の縦方向のコアが延設された外周部分のコアの一端面に、1個の発光素子を接続し、そのコアの他端面に、1個の受光素子を接続し、上記格子状部分の横方向のコアが延設された外周部分のコアの一端面に、残りの1個の発光素子を接続し、そのコアの他端面に、残りの1個の受光素子を接続している。それにより、コアパターン部材の格子状部分において、光のスペクトル強度を、縦方向と横方向とで個別に調整可能にして、両者の差を小さくし、押圧位置の検知性を向上させている。このようにすると、上記光のスペクトル強度の差が大きい場合の再設計等が不要となり、その分のコストを低減することができる。そして、結果的に、犠牲にした製造コストを取り戻すことも可能である。 In other words, the position sensor of the present invention breaks down the conventional common sense, and even if the manufacturing cost is sacrificed, priority is given to the detection of the pressed position, and two light emitting elements and two light receiving elements are used. Yes. And, one light emitting element is connected to one end face of the core of the outer peripheral part where the longitudinal core of the lattice-like part is extended, and one light receiving element is connected to the other end face of the core, The remaining one light-emitting element is connected to one end face of the core in the outer peripheral part where the horizontal core of the grid-like part is extended, and the remaining one light-receiving element is connected to the other end face of the core. ing. Thereby, in the lattice-like portion of the core pattern member, the spectral intensity of light can be individually adjusted in the vertical direction and the horizontal direction, the difference between the two is reduced, and the detectability of the pressed position is improved. This eliminates the need for redesign or the like when the difference in spectral intensity of the light is large, and the cost can be reduced accordingly. As a result, the sacrificed manufacturing cost can be recovered.
 本発明の位置センサは、発光素子および受光素子がそれぞれ2個ずつ用いられており、格子状部分の縦方向のコアが延設された外周部分のコアの一端面に、1個の発光素子が接続され、そのコアの他端面に、1個の受光素子が接続され、上記格子状部分の横方向のコアが延設された外周部分のコアの一端面に、残りの1個の発光素子が接続され、そのコアの他端面に、残りの1個の受光素子が接続されている。そのため、上記格子状部分のコアの中を伝播する光のスペクトル強度を、その格子状部分の縦方向と横方向とで、個別に調整することができる。それにより、縦方向と横方向とで光のスペクトル強度の差が発生しても、容易にその差を小さくすることができ、押圧位置を適正に検知することができるようになる。さらに、上記格子状部分の縦方向のコアが延設された外周部分のコアの一端面および他端面、ならびに上記格子状部分の横方向のコアが延設された外周部分のコアの一端面および他端面が、上記略四角形シート状の光導波路の四角形状の一辺に位置決めされているため、上記2個ずつの発光素子および受光素子の、上記コアとの接続から、それら素子は、略四角形シート状の光導波路の四角形状の一辺に配置されている。そのため、それら素子は、互いに近い位置に配置されている。このことから、素子の個数を増やしても、それら素子を実装する電気回路基板のコンパクト化が可能であり、製造コストを抑制することができる。また、入力領域を広くしたり、その入力領域における押圧位置の検知精度を向上させたりする場合、コアの本数を多くする必要があるが、発光素子および受光素子をそれぞれ2個用いているため、コアの中を伝播する光のスペクトル強度をあまり弱めることなく、コアの増加に容易に対応することができる。 In the position sensor of the present invention, two light emitting elements and two light receiving elements are used, respectively, and one light emitting element is provided on one end face of the core in the outer peripheral portion where the longitudinal core of the lattice-like portion is extended. One light-receiving element is connected to the other end face of the core, and the remaining one light-emitting element is attached to one end face of the core in the outer peripheral part where the horizontal core of the lattice-like part is extended. The remaining one light receiving element is connected to the other end face of the core. Therefore, the spectral intensity of the light propagating through the core of the lattice portion can be individually adjusted in the vertical direction and the horizontal direction of the lattice portion. As a result, even if a difference in the spectral intensity of light occurs between the vertical direction and the horizontal direction, the difference can be easily reduced, and the pressed position can be detected appropriately. Further, one end surface and the other end surface of the outer peripheral portion where the longitudinal core of the lattice-like portion is extended, and one end surface of the outer peripheral portion core where the lateral core of the lattice-like portion is extended, and Since the other end face is positioned on one side of the rectangular shape of the substantially rectangular sheet-shaped optical waveguide, the two light-emitting elements and the light-receiving elements are connected to the core from the two light-emitting elements and the light-receiving elements. It is arranged on one side of the rectangular shape of the optical waveguide. Therefore, these elements are arranged at positions close to each other. For this reason, even if the number of elements is increased, the electric circuit board on which the elements are mounted can be made compact, and the manufacturing cost can be suppressed. In addition, when widening the input area or improving the detection accuracy of the pressed position in the input area, it is necessary to increase the number of cores, but because two light emitting elements and two light receiving elements are used, The increase in the number of cores can be easily accommodated without weakening the spectral intensity of light propagating through the core.
(a)は、本発明の位置センサの一実施の形態を模式的に示す平面図であり、(b)は、その中央部分の拡大断面図である。(A) is a top view which shows typically one Embodiment of the position sensor of this invention, (b) is an expanded sectional view of the center part. (a)~(f)は、上記位置センサにおける格子状部分のコアの交差形態を模式的に示す拡大平面図である。(A) to (f) are enlarged plan views schematically showing the crossing form of the cores of the lattice-like portion in the position sensor. (a),(b)は、上記格子状部分のコアの交差部における光の進路を模式的に示す拡大平面図である。(A), (b) is an enlarged plan view which shows typically the course of the light in the cross | intersection part of the core of the said lattice-shaped part. 従来の位置センサを模式的に示す平面図である。It is a top view which shows the conventional position sensor typically.
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
 図1(a)は、本発明の位置センサの一実施の形態を示す平面図であり、図1(b)は、その中央部の断面を拡大した図である。この実施の形態の位置センサは、略四角形シート状の光導波路Wと、この光導波路Wの四角形状の一辺〔図1(a)では下端辺〕に配置された2個の発光素子4および2個の受光素子5とを備えている。この位置センサにおいて、上記素子4,5の数が本発明の大きな特徴である。 FIG. 1 (a) is a plan view showing an embodiment of the position sensor of the present invention, and FIG. 1 (b) is an enlarged view of the cross section of the central portion thereof. The position sensor of this embodiment includes a substantially rectangular sheet-shaped optical waveguide W and two light- emitting elements 4 and 2 arranged on one side of the optical waveguide W (the lower side in FIG. 1A). Light receiving elements 5. In this position sensor, the number of the elements 4 and 5 is a major feature of the present invention.
 上記光導波路Wは、略四角形シート状のアンダークラッド層1の表面に、複数の線状の光路用のコア2からなる格子状部分2Aと、この格子状部分2Aのコア2から延設されてその格子状部分2Aの外周に沿った状態で配置された外周部分2Bとを備えたシート状のコアパターン部材が形成され、そのコアパターン部材を被覆した状態で、上記アンダークラッド層1の表面に、オーバークラッド層3が形成されたものとなっている。そして、上記格子状部分2Aの縦方向のコア2が延設された外周部分2Bのコア2の一端面および他端面、ならびに上記格子状部分2Aの横方向のコア2が延設された外周部分2Bのコア2の一端面および他端面が、上記略四角形シート状の光導波路Wの四角形状の一辺〔図1(a)では下端辺〕に位置決めされている。なお、図1(a)では、コア2を鎖線で示しており、鎖線の太さがコア2の太さを示し、また、格子状部分2Aのコア2の数を略して図示している。また、図1(a)の矢印は、光の進む方向を示している。 The optical waveguide W is extended on the surface of the substantially quadrilateral sheet-like under cladding layer 1 from a lattice portion 2A composed of a plurality of linear optical path cores 2 and the core 2 of the lattice portion 2A. A sheet-like core pattern member provided with an outer peripheral portion 2B arranged along the outer periphery of the lattice-like portion 2A is formed, and the surface of the under-cladding layer 1 is covered with the core pattern member. The over clad layer 3 is formed. Then, one end face and the other end face of the core 2 of the outer peripheral portion 2B where the longitudinal core 2 of the lattice-like portion 2A extends, and an outer peripheral portion where the horizontal core 2 of the lattice-like portion 2A extends. One end surface and the other end surface of the core 2 of 2B are positioned on one side of the substantially rectangular sheet-shaped optical waveguide W [lower side in FIG. 1A]. In FIG. 1A, the core 2 is indicated by a chain line, the thickness of the chain line indicates the thickness of the core 2, and the number of the cores 2 in the lattice-like portion 2A is omitted. Moreover, the arrow of Fig.1 (a) has shown the direction where light travels.
 そして、上記コアパターン部材の格子状部分2Aの縦方向のコア2が延設された外周部分2Bのコア2の一端面に、1個の発光素子4が接続され、そのコア2の他端面に、1個の受光素子5が接続されており、上記格子状部分2Aの横方向のコア2が延設された外周部分2Bのコア2の一端面に、残りの1個の発光素子4が接続され、そのコア2の他端面に、残りの1個の受光素子5が接続されている。このような位置センサにおいて、上記発光素子4から発光された光は、コア2の中を、その発光素子4に接続された外周部分2Bから格子状部分2Aを経て反対側の外周部分2Bを通り、上記受光素子5で受光されるようになっている。そして、上記コアパターン部材の格子状部分2Aに対応するオーバークラッド層3の表面部分〔図1(a)の中央に一点鎖線で示す長方形部分〕が、入力領域3Aとなっている。 Then, one light emitting element 4 is connected to one end surface of the core 2 of the outer peripheral portion 2B where the longitudinal core 2 of the lattice-shaped portion 2A of the core pattern member is extended, and the other end surface of the core 2 is connected to the other end surface of the core 2 One light-receiving element 5 is connected, and the remaining one light-emitting element 4 is connected to one end surface of the core 2 of the outer peripheral part 2B in which the horizontal core 2 of the lattice-like part 2A extends. The remaining one light receiving element 5 is connected to the other end surface of the core 2. In such a position sensor, the light emitted from the light emitting element 4 passes through the core 2 through the outer peripheral part 2B on the opposite side from the outer peripheral part 2B connected to the light emitting element 4 through the lattice part 2A. The light receiving element 5 receives light. The surface portion of the over clad layer 3 corresponding to the lattice-like portion 2A of the core pattern member [rectangular portion indicated by a one-dot chain line in the center of FIG. 1A] is an input region 3A.
 上記位置センサは、先に述べた大きな特徴のように、発光素子4および受光素子5をそれぞれ2個ずつ用いており、上記のように、格子状部分2Aの縦方向と横方向の2方向(XY方向)それぞれに発光素子4および受光素子5を接続している。そのため、それら2方向の光を個別に制御することができる。それにより、縦方向と横方向とで光のスペクトル強度の差が発生しても、容易にその差を小さくすることができ、押圧位置を適正に検知することができるようになる。上記スペクトル強度の差は、1dB以下であることが好ましい。 As described above, the position sensor uses two light emitting elements 4 and two light receiving elements 5, respectively. As described above, the vertical direction and the horizontal direction of the lattice-shaped portion 2A (two directions ( The light emitting element 4 and the light receiving element 5 are connected to each other (XY direction). Therefore, the light in these two directions can be individually controlled. As a result, even if a difference in the spectral intensity of light occurs between the vertical direction and the horizontal direction, the difference can be easily reduced, and the pressed position can be detected appropriately. The difference in spectral intensity is preferably 1 dB or less.
 さらに、上記発光素子4および受光素子5は、2個ずつ用いられ、従来の位置センサ(図4参照)よりもその個数が増えているものの、それら素子4,5は、略四角形シート状の光導波路Wの四角形状の一辺に配置されており、互いに近い位置にある。そのため、素子4,5の個数が増えても、それら素子4,5を実装する電気回路基板(図示せず)のコンパクト化が可能であり、製造コストを抑制することができる。 Furthermore, although the light emitting element 4 and the light receiving element 5 are used two by two, and the number of the light emitting elements 4 and the light receiving elements 5 is larger than that of the conventional position sensor (see FIG. 4), the elements 4 and 5 are substantially rectangular sheet-shaped light guides They are arranged on one side of the rectangular shape of the waveguide W and are close to each other. Therefore, even if the number of the elements 4 and 5 increases, the electric circuit board (not shown) on which the elements 4 and 5 are mounted can be made compact, and the manufacturing cost can be suppressed.
 また、上記位置センサの入力領域3Aを広くしたり、その入力領域3Aにおける押圧位置の検知精度を向上させたりする場合、コア2の本数を多くする必要があるが、上記位置センサでは、発光素子4および受光素子5をそれぞれ2個用いているため、コア2の中を伝播する光のスペクトル強度をあまり弱めることなく、コア2の増加に容易に対応することができる。すなわち、上記位置センサは、入力領域3Aの拡大および押圧位置の検知精度の向上に容易に対応することができる。 In addition, when the input area 3A of the position sensor is widened or the detection accuracy of the pressed position in the input area 3A is improved, it is necessary to increase the number of cores 2. In the position sensor, the light emitting element 4 and two light receiving elements 5 are used, respectively, and the increase in the number of cores 2 can be easily accommodated without weakening the spectral intensity of light propagating through the cores 2. That is, the position sensor can easily cope with the enlargement of the input area 3A and the improvement of the detection accuracy of the pressed position.
 そして、上記位置センサへの文字等の入力は、上記入力領域3Aに、直接または樹脂フィルムや紙等を介して、ペン等の入力体で文字等を書くことにより行われる。このとき、上記入力領域3Aがペン先等で押圧され、その押圧部分のコア2が変形し、そのコア2の光伝播量が低下する。そのため、上記押圧部分のコア2では、上記受光素子5での受光レベルが低下することから、上記押圧位置(XY座標)を検知できるようになっている。 Then, the input of characters or the like to the position sensor is performed by writing the characters or the like in the input area 3A directly or via a resin film or paper with an input body such as a pen. At this time, the input area 3A is pressed with a pen tip or the like, the core 2 of the pressed portion is deformed, and the light propagation amount of the core 2 is reduced. Therefore, in the core 2 of the pressing portion, the light receiving level at the light receiving element 5 is lowered, so that the pressing position (XY coordinate) can be detected.
 また、上記光導波路Wでは、コア2の弾性率がアンダークラッド層1およびオーバークラッド層3の弾性率よりも大きく設定されていることが好ましい。その理由は、弾性率の設定がその逆であると、コア2の周辺が硬くなるため、オーバークラッド層3の入力領域3Aの部分を押圧するペン先等の面積よりもかなり広い面積の光導波路Wの部分が凹み、押圧位置を正確に検知し難くなる傾向にあるからである。そこで、各弾性率としては、例えば、コア2の弾性率は、1GPa以上10GPa以下の範囲内に設定され、オーバークラッド層3の弾性率は、0.1GPa以上10GPa未満の範囲内に設定され、アンダークラッド層1の弾性率は、0.1MPa以上1GPa以下の範囲内に設定されることが好ましい。この場合、コア2の弾性率が大きいため、小さな押圧力では、コア2はつぶれない(コア2の断面積は小さくならない)ものの、押圧により光導波路Wが凹むため、その凹んだ部分に対応するコア2の曲がった部分から光の漏れ(散乱)が発生し、そのコア2では、受光素子5での受光レベルが低下することから、押圧位置を検知することができる。 In the optical waveguide W, the elastic modulus of the core 2 is preferably set to be larger than the elastic modulus of the under cladding layer 1 and the over cladding layer 3. The reason is that if the elastic modulus is set in the opposite direction, the periphery of the core 2 becomes hard, so that the optical waveguide having an area considerably larger than the area of the pen tip or the like that presses the input region 3A portion of the over clad layer 3 This is because the W portion is recessed and it is difficult to accurately detect the pressed position. Therefore, as each elastic modulus, for example, the elastic modulus of the core 2 is set within a range of 1 GPa or more and 10 GPa or less, and the elastic modulus of the over clad layer 3 is set within a range of 0.1 GPa or more and less than 10 GPa, The elastic modulus of the under cladding layer 1 is preferably set within a range of 0.1 MPa to 1 GPa. In this case, since the elastic modulus of the core 2 is large, the core 2 is not crushed by a small pressing force (the cross-sectional area of the core 2 is not reduced), but the optical waveguide W is recessed by the pressing, and therefore corresponds to the recessed portion. Light leakage (scattering) occurs from the bent portion of the core 2, and in the core 2, the light receiving level at the light receiving element 5 decreases, so that the pressed position can be detected.
 上記アンダークラッド層1,コア2およびオーバークラッド層3の形成材料としては、感光性樹脂,熱硬化性樹脂等があげられ、その形成材料に応じた製法により、光導波路Wを作製することができる。また、コア2の屈折率は、アンダークラッド層1およびオーバークラッド層3の屈折率よりも大きく設定されている。その屈折率および上記弾性率の調整は、例えば、各形成材料の種類の選択や組成比率を調整して行うことができる。そして、各層の厚みは、例えば、アンダークラッド層1が10~500μmの範囲内、コア2が5~100μmの範囲内、オーバークラッド層3が1~200μmの範囲内に設定される。なお、上記アンダークラッド層1として、ゴムシートを用い、そのゴムシート上にコア2を格子状に形成するようにしてもよい。 Examples of the material for forming the under cladding layer 1, the core 2 and the over cladding layer 3 include a photosensitive resin, a thermosetting resin, and the like, and the optical waveguide W can be manufactured by a manufacturing method corresponding to the forming material. . The refractive index of the core 2 is set to be larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3. The refractive index and the elastic modulus can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio. The thickness of each layer is set, for example, in the range of 10 to 500 μm for the under cladding layer 1, in the range of 5 to 100 μm for the core 2, and in the range of 1 to 200 μm for the over cladding layer 3. Note that a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.
 さらに、上記実施の形態において、格子状部分2Aのコア2の各交差部は、通常、図2(a)に拡大平面図で示すように、交差する4方向の全てが連続した状態に形成されているが、他でもよい。例えば、図2(b)に示すように、交差する1方向のみが、隙間Gにより分断され、不連続になっているものでもよい。上記隙間Gは、アンダークラッド層1またはオーバークラッド層3の形成材料で形成されている。その隙間Gの幅dは、0(零)を超え(隙間Gが形成されていればよく)、通常、20μm以下に設定される。それと同様に、図2(c),(d)に示すように、交差する2方向〔図2(c)は対向する2方向、図2(d)は隣り合う2方向〕が不連続になっているものでもよいし、図2(e)に示すように、交差する3方向が不連続になっているものでもよいし、図2(f)に示すように、交差する4方向の全てが不連続になっているものでもよい。さらに、図2(a)~(f)に示す上記交差部のうちの2種類以上の交差部を備えた格子状としてもよい。すなわち、本発明において、複数の線状のコア2により形成される「格子状」とは、一部ないし全部の交差部が上記のように形成されているものを含む意味である。 Furthermore, in the above-described embodiment, each of the intersecting portions of the core 2 of the lattice-shaped portion 2A is normally formed in a state in which all of the four intersecting directions are continuous, as shown in an enlarged plan view in FIG. Others are acceptable. For example, as shown in FIG. 2B, only one intersecting direction may be divided by the gap G and discontinuous. The gap G is formed of a material for forming the under cladding layer 1 or the over cladding layer 3. The width d of the gap G exceeds 0 (zero), and is usually set to 20 μm or less. Similarly, as shown in FIGS. 2 (c) and 2 (d), two intersecting directions (two opposing directions in FIG. 2 (c) and two adjacent directions in FIG. 2 (d)) are discontinuous. As shown in FIG. 2 (e), the three intersecting directions may be discontinuous, or as shown in FIG. 2 (f), all the four intersecting directions may be discontinuous. It may be discontinuous. Furthermore, a lattice shape having two or more types of intersections among the above-described intersections shown in FIGS. That is, in the present invention, the “lattice shape” formed by the plurality of linear cores 2 means that a part or all of the intersections are formed as described above.
 なかでも、図2(b)~(f)に示すように、交差する少なくとも1方向を不連続とすると、光の交差損失を低減させることができる。すなわち、図3(a)に示すように、交差する4方向の全てが連続した交差部では、その交差する1方向〔図3(a)では上方向〕に注目すると、交差部に入射する光の一部は、その光が進んできたコア2と直交するコア2の壁面2aに到達し、その壁面での入射角が臨界角よりも小さいことから、コア2を透過する〔図3(a)の二点鎖線の矢印参照〕。このような光の透過が、交差する上記と反対側の方向〔図3(a)では下方向〕でも発生する。これに対し、図3(b)に示すように、交差する1方向〔図3(b)では上方向〕が隙間Gにより不連続になっていると、上記隙間Gとコア2との界面が形成され、図3(a)においてコア2を透過する光の一部は、上記界面での入射角が臨界角よりも大きくなることから、その界面を透過することなく、その界面で反射し、コア2を進み続ける〔図3(b)の二点鎖線の矢印参照〕。このことから、先に述べたように、交差する少なくとも1方向を不連続とすると、光の交差損失を低減させることができるのである。その結果、ペン先等による押圧位置の検知感度を高めることができる。 In particular, as shown in FIGS. 2B to 2F, if at least one intersecting direction is discontinuous, the light crossing loss can be reduced. That is, as shown in FIG. 3 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions (upward in FIG. 3 (a)) is noted, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and the incident angle at the wall surface is smaller than the critical angle, so that the light passes through the core 2 [FIG. )) Such transmission of light also occurs in the direction opposite to the above (downward in FIG. 3A). On the other hand, as shown in FIG. 3 (b), when one intersecting direction (upward in FIG. 3 (b)) is discontinuous by the gap G, the interface between the gap G and the core 2 is Part of the light that is formed and passes through the core 2 in FIG. 3 (a) is reflected at the interface without passing through the interface because the incident angle at the interface is larger than the critical angle. Continue to advance through the core 2 (see the two-dot chain arrow in FIG. 3B). From this, as described above, if at least one intersecting direction is discontinuous, the light crossing loss can be reduced. As a result, it is possible to increase the detection sensitivity of the pressed position by the pen tip or the like.
 つぎに、実施例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to the examples.
〔アンダークラッド層およびオーバークラッド層の形成材料〕
 成分a:エポキシ樹脂(三菱化学社製、YL7410)60重量部。
 成分b:エポキシ樹脂(ダイセル社製、EHPE3150)40重量部。
 成分c:光酸発生剤(サンアプロ社製、CPI101A)4重量部。
 これら成分a~cを混合することにより、アンダークラッド層およびオーバークラッド層の形成材料を調製した。
[Formation material of under clad layer and over clad layer]
Component a: 60 parts by weight of an epoxy resin (Mitsubishi Chemical Corporation YL7410).
Component b: 40 parts by weight of epoxy resin (manufactured by Daicel, EHPE3150).
Component c: 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI101A).
By mixing these components a to c, materials for forming the under cladding layer and the over cladding layer were prepared.
〔コアの形成材料〕
 成分d:エポキシ樹脂(ダイセル社製、EHPE3150)90重量部。
 成分e:エポキシ樹脂(三菱化学社製、エピコート1002)10重量部。
 成分f:光酸発生剤(ADEKA社製、SP170)1重量部。
 成分g:乳酸エチル(和光純薬工業社製、溶剤)50重量部。
 これら成分d~gを混合することにより、コアの形成材料を調製した。
[Core forming material]
Component d: 90 parts by weight of an epoxy resin (manufactured by Daicel Corporation, EHPE3150).
Component e: 10 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, Epicoat 1002).
Component f: 1 part by weight of a photoacid generator (manufactured by ADEKA, SP170).
Component g: 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries, Ltd., solvent).
A core forming material was prepared by mixing these components d to g.
〔光導波路の作製〕
 まず、上記アンダークラッド層の形成材料を用いて、スピンコート法により、アンダークラッド層を形成した。このアンダークラッド層の厚みは25μmとした。弾性率は240MPa、屈折率は1.496であった。なお、弾性率の測定は、粘弾性測定装置(TA instruments Japan Inc. 社製、RSA3)を用いた。
[Production of optical waveguide]
First, an under clad layer was formed by spin coating using the under clad layer forming material. The thickness of this under cladding layer was 25 μm. The elastic modulus was 240 MPa and the refractive index was 1.496. The elastic modulus was measured using a viscoelasticity measuring device (TA instruments Japan Inc., RSA3).
 ついで、上記アンダークラッド層の表面に、上記コアの形成材料を用いて、フォトリソグラフィ法により、複数の線状のコアからなる格子状部分と外周部分とを備えたシート状のコアパターン部材を形成した。上記格子状部分(入力領域)の寸法は、縦210mm×横297mmとした。また、上記コアの幅は100μm、厚みは50μm、格子状部分における隣り合う平行な線状のコアとコアとの間の隙間の幅は500μmとした。弾性率は1.58GPa、屈折率は1.516であった。 Next, a sheet-like core pattern member having a lattice-shaped portion composed of a plurality of linear cores and an outer peripheral portion is formed on the surface of the under-cladding layer by the photolithography method using the core forming material. did. The size of the grid portion (input area) was 210 mm long × 297 mm wide. The width of the core was 100 μm, the thickness was 50 μm, and the width of the gap between adjacent parallel linear cores in the lattice portion was 500 μm. The elastic modulus was 1.58 GPa and the refractive index was 1.516.
 つぎに、上記コアパターン部材を被覆するように、上記アンダークラッド層の表面に、上記オーバークラッド層の形成材料を用いて、スピンコート法により、オーバークラッド層を形成した。このオーバークラッド層の厚み(コアの表面からの厚み)は40μmとした。弾性率は240MPa、屈折率は1.496であった。このようにして、シート状の光導波路を作製した。 Next, an over clad layer was formed on the surface of the under clad layer by spin coating using the over clad layer forming material so as to cover the core pattern member. The thickness of this over clad layer (thickness from the surface of the core) was 40 μm. The elastic modulus was 240 MPa and the refractive index was 1.496. In this way, a sheet-like optical waveguide was produced.
〔位置センサの作製〕
 2個の発光素子(Optowell社製、XH85-S0603-2s )と、2個の受光素子(浜松ホトニクス社製、s10226)とを準備した。そして、上記コアパターン部材の格子状部分の縦方向のコアが延設された外周部分のコアの一端面に、1個の発光素子を接続し、そのコアの他端面に、1個の受光素子を接続し、上記格子状部分の横方向のコアが延設された外周部分のコアの一端面に、残りの1個の発光素子を接続し、そのコアの他端面に、残りの1個の受光素子を接続した〔図1(a)参照〕。
[Production of position sensor]
Two light emitting elements (manufactured by Optowell, XH85-S0603-2s) and two light receiving elements (manufactured by Hamamatsu Photonics, s10226) were prepared. And one light emitting element is connected to one end face of the core of the outer peripheral part where the longitudinal core of the lattice-like part of the core pattern member is extended, and one light receiving element is connected to the other end face of the core. And connecting the remaining one light-emitting element to one end face of the core of the outer peripheral portion where the lateral core of the lattice-like portion is extended, and connecting the remaining one light-emitting element to the other end face of the core A light receiving element was connected [see FIG. 1 (a)].
〔比較例〕
 上記実施例において、発光素子および受光素子を1個ずつとし、格子状部分の縦方向および横方向が延設された外周部分の両方のコアの一端面に、1個の発光素子を接続し、それらコアの他端面に、1個の受光素子を接続した(図4参照)。
[Comparative Example]
In the above embodiment, one light emitting element and one light receiving element are provided, and one light emitting element is connected to one end face of both cores of the outer peripheral part in which the vertical direction and the horizontal direction of the lattice-shaped part are extended, One light receiving element was connected to the other end faces of the cores (see FIG. 4).
 上記受光素子で受光する光のスペクトル強度について、上記実施例と比較例とを比較した。その結果、上記コアパターン部材の格子状部分の光のスペクトル強度の、縦方向と横方向との差は、実施例が1dB、比較例が5dBであり、実施例の方が比較例よりも小さかった。 The above example and the comparative example were compared with respect to the spectral intensity of light received by the light receiving element. As a result, the difference between the vertical direction and the horizontal direction of the spectral intensity of the light of the lattice-shaped portion of the core pattern member is 1 dB in the example and 5 dB in the comparative example, and the example is smaller than the comparative example. It was.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の位置センサは、その位置センサを構成する光導波路の格子状のコアにおいて、伝播する光のスペクトル強度の、縦方向と横方向との差を小さくする場合に利用可能である。 The position sensor of the present invention can be used to reduce the difference between the vertical direction and the horizontal direction of the spectral intensity of propagating light in the lattice-like core of the optical waveguide constituting the position sensor.
 W 光導波路
 2 コア
 2A 格子状部分
 2B 外周部分
 4 発光素子
 5 受光素子
W Optical waveguide 2 Core 2A Grid-like part 2B Outer peripheral part 4 Light emitting element 5 Light receiving element

Claims (1)

  1.  複数の線状のコアからなる格子状部分と、この格子状部分のコアから延設されてその格子状部分の外周に沿った状態で配置された外周部分とを備えたシート状のコアパターン部材を、2層のシート状のクラッド層で挟持した略四角形シート状の光導波路と、
     この外周部分のコアに接続された発光素子および受光素子と
    を備えた位置センサであって、
     上記格子状部分の縦方向のコアが延設された外周部分のコアの一端面および他端面、ならびに上記格子状部分の横方向のコアが延設された外周部分のコアの一端面および他端面が、上記略四角形シート状の光導波路の四角形状の一辺に位置決めされ、
     上記外周部分のコアの上記二つの一端面にそれぞれ1個の発光素子が接続され、
     上記外周部分のコアの上記二つの他端面にそれぞれ1個の受光素子が接続され、
     上記発光素子で発光された光が、上記光導波路のコアを経て、上記受光素子で受光され、上記コアパターン部材の格子状部分に対応する上記位置センサの表面部分を入力領域とし、その入力領域における押圧位置を、その押圧により変化したコアの光伝播量によって特定することを特徴とする位置センサ。
    A sheet-like core pattern member comprising a lattice-shaped portion composed of a plurality of linear cores and an outer peripheral portion that extends from the core of the lattice-shaped portion and is arranged along the outer periphery of the lattice-shaped portion A substantially rectangular sheet-like optical waveguide sandwiched between two sheet-like clad layers;
    A position sensor comprising a light emitting element and a light receiving element connected to the core of the outer peripheral part,
    One end surface and the other end surface of the core in the outer peripheral portion where the longitudinal core of the lattice portion extends, and one end surface and the other end surface of the core in the outer peripheral portion where the lateral core of the lattice portion extends. Is positioned on one side of the substantially rectangular sheet-shaped optical waveguide,
    One light emitting element is connected to each of the two end faces of the core of the outer peripheral portion,
    One light receiving element is connected to each of the two other end faces of the outer peripheral core,
    The light emitted from the light emitting element is received by the light receiving element through the core of the optical waveguide, and the surface portion of the position sensor corresponding to the lattice portion of the core pattern member is used as an input region. A position sensor characterized in that the pressing position in the is specified by the amount of light propagation of the core changed by the pressing.
PCT/JP2015/074904 2014-09-16 2015-09-02 Position sensor WO2016043048A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014187704A JP2016062159A (en) 2014-09-16 2014-09-16 Position sensor
JP2014-187704 2014-09-16

Publications (1)

Publication Number Publication Date
WO2016043048A1 true WO2016043048A1 (en) 2016-03-24

Family

ID=55533088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074904 WO2016043048A1 (en) 2014-09-16 2015-09-02 Position sensor

Country Status (3)

Country Link
JP (1) JP2016062159A (en)
TW (1) TW201614457A (en)
WO (1) WO2016043048A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073276A (en) * 2011-09-26 2013-04-22 Nitto Denko Corp Input device
WO2014136481A1 (en) * 2013-03-08 2014-09-12 日東電工株式会社 Electronic underlay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073276A (en) * 2011-09-26 2013-04-22 Nitto Denko Corp Input device
WO2014136481A1 (en) * 2013-03-08 2014-09-12 日東電工株式会社 Electronic underlay

Also Published As

Publication number Publication date
JP2016062159A (en) 2016-04-25
TW201614457A (en) 2016-04-16

Similar Documents

Publication Publication Date Title
US10288807B2 (en) Optical waveguide having core partially formed in S-shape, and position sensor and optical circuit board including the same
WO2016043048A1 (en) Position sensor
WO2016031601A1 (en) Location sensor
WO2016031538A1 (en) Position sensor
WO2016039166A1 (en) Position sensor
US10101855B2 (en) Optical waveguide and position sensor using same
WO2015151858A1 (en) Position sensor
WO2016056393A1 (en) Position sensor
WO2015151861A1 (en) Position sensor
WO2017043570A1 (en) Optical waveguide, and position sensor and optical circuit board using optical waveguide
WO2015151859A1 (en) Position sensor
WO2016043047A1 (en) Position sensor
WO2014175298A1 (en) Position sensor
WO2016031539A1 (en) Position sensor
JP2017004199A (en) Position sensor
WO2015045571A1 (en) Input device
WO2016047448A1 (en) Position sensor
WO2015151860A1 (en) Position sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842453

Country of ref document: EP

Kind code of ref document: A1