WO2015135421A1 - 一种杀菌组合物 - Google Patents
一种杀菌组合物 Download PDFInfo
- Publication number
- WO2015135421A1 WO2015135421A1 PCT/CN2015/073290 CN2015073290W WO2015135421A1 WO 2015135421 A1 WO2015135421 A1 WO 2015135421A1 CN 2015073290 W CN2015073290 W CN 2015073290W WO 2015135421 A1 WO2015135421 A1 WO 2015135421A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prothioconazole
- bactericidal composition
- fludioxonil
- plant
- composition according
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/34—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
- A01N43/36—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
Definitions
- the present invention relates to a germicidal composition, and more particularly to a germicidal composition comprising prothioconazole and fludioxon; and to a method for controlling phytopathogenic bacteria.
- the invention also relates to controlling or controlling diseases in the post-harvest storage phase of harvested fruits.
- Fungicides are compounds of natural or synthetic origin which are used to protect plants from damage caused by fungi.
- Current agricultural methods rely heavily on the use of fungicides. In fact, some crops cannot grow efficiently without the use of fungicides.
- the use of fungicides allows growers to increase the yield and quality of the crop, and thereby increase the value of the crop. In most cases, the increase in crop value is at least three times the cost of using a fungicide.
- Prothioconazole is a broad-spectrum fungicide for triazole thiones developed by Bayer and is known from W96/16048. Prothioconazole has excellent systemic activity, excellent protection, treatment and eradication activity, and has a long-lasting effect. A large number of field efficacy tests have shown that prothioconazole not only has good safety to crops, but also has good anti-disease and curative effects, and it has obvious yield increase.
- Prothioconazole wheat diseases have good control effects, such as powdery mildew, sheath blight, blight, leaf spot, rust, sclerotinia, net blotch, and moiré in wheat and barley Wait.
- Prothioconazole can also control soil-borne diseases of rapeseed and peanuts, such as sclerotinia.
- Prothioconazole also prevents major foliar diseases such as gray mold, black spot, brown spot, black shank, sclerotinia and rust.
- the single-agent dosage of prothioconazole is high in cost, and long-term use will make the bacteria resistant, and the control effect on diseases on special crops will be reduced.
- the compound can exist in the form of a "thione" of the formula:
- Flavone is a pyrrole bactericide known from EP-A-206999. Flavone is a Pseudomonas spp. The analog of pyrrolnitrin, a secondary metabolite produced by Pseudomonas pyrrocinia, is widely used in prevention and control because it is more resistant to photolysis than the natural product, nicurone. Fungal diseases in agricultural production. The antibacterial mechanism of fludioxonil is to inhibit the growth of glucose hyphaylation and inhibit the growth of fungal mycelium, which ultimately leads to the death of the pathogen. The mechanism of action of fluke nitrile is unique and has no cross-resistance with existing fungicides.
- fluke nitrile is used as a foliar fungicide for controlling Fusarium oxysporum, wheat smut, black rot fungus, and blight fungus, and has special effects on gray mold; as a seed treatment agent: mainly used for cereals and non-cereals.
- Control crops and soil-borne bacteria such as Alternaria, Fusarium, Aspergillus, Fusarium, Helminthosporium, Rhizoctonia and Penicillium in crops.
- Fluoridazole is one of the few products in the world that has received EPA “low risk” certification from the US Environmental Protection Agency.
- the synergistic effect is particularly pronounced when the active compound is present in the bactericidal composition of the invention in a specific weight ratio.
- the weight ratio of active compound in the germicidal composition can vary within a certain range.
- the bactericidal composition of the invention comprises: prothioconazole and fludioxonil, wherein the weight ratio of prothioconazole to fludioxonil is 1:100-100:1, preferably 1:50-50: 1, more preferably 1:25-25:1, more preferably 1:10-10:1.
- a germicidal composition comprising an active ingredient, a filler and/or a surfactant of prothioconazole and fludioxonil.
- the bactericidal composition dosage form is wettable powder, emulsifiable concentrate, suspending agent, microcapsule, seed coating agent, microemulsion, water emulsion, water dispersible granule, foaming agent, ointment, aerosol, ultra low volume spray type .
- the bactericidal composition wherein the active ingredient containing prothioconazole and fludioxonil is present in an amount of from 5% to 90% by weight of the bactericidal composition.
- the bactericidal composition wherein the active ingredient containing prothioconazole and fludioxonil is present in an amount of from 20% to 80% by weight of the bactericidal composition.
- a method of controlling phytopathogenic bacteria which acts on a pathogenic bacterium and/or its environment, or a plant, plant part, seed, soil, area, material or space.
- a method for controlling phytopathogenic bacteria wherein prothioconazole and fludioxonil are administered simultaneously, or separately, or sequentially.
- bactericidal active ingredient composition or bactericidal composition for controlling fungi and bacteria.
- the bactericidal composition is used for controlling fungi and bacteria on cereals, fruits and vegetables.
- the bactericidal composition is used for the purpose of protecting plants and protecting fruits from disease in the post-harvest storage period.
- the germicidal compositions of the present invention have potent microbicidal activity and can be used in crop protection or material protection to control unwanted microorganisms such as fungi and bacteria.
- the bactericidal composition of the present invention can prevent or destroy microorganisms on plant organs (fruits, flowers, leaves, stems, tubers, roots) present on plants or different beneficial plants, and thus the plant organs that continue to grow thereafter are still not Infected by these microorganisms. It can also be applied after harvesting or seed dressing, or used to treat plant propagation material, especially seeds.
- the bactericidal composition of the invention has very good fungicidal properties and can be used for controlling phytopathogenic fungi, which is especially selected from the group consisting of Plasmodiophoromycetes, Oomycetes, and chytrids ( Chytridiomycetes), Zygomycetes, Ascomycetes, Basidiomycetes, Phycomycetes, and Deuteromycetes fungi.
- the bactericidal composition of the present invention has very good bactericidal properties and can be used for controlling phytopathogenic bacteria.
- Psedomonadaceae Rhizobiaceae
- Enterbacteriaceae Cornebacteriaceae
- Streptomycetaceae for example, Psedomonadaceae, Rhizobiaceae, Enterbacteriaceae, Cornebacteriaceae, and Streptomycetaceae.
- Flavobacterium species such as Xanthomonas campestrispv. oryzae;
- Pseudomonas species such as Pseudomonas syringaepv. Lachrymans;
- Erwinia species such as Erwiniaamylovora
- Pythium species such as Pythium ultimum
- Phytophthora species such as Phytophthorainfestans
- Pseudoperonospora species such as Pseudoperonospora humuli or Pseudoperonosporacubensis;
- Plasmopara species such as Plasmoparaviticola
- Bremia lactucae a species of Bremia, such as Bremia lactucae
- Peronospora species such as Peronospora pisi or P. brassicae;
- Erysiphe species such as Erysiphe graminis
- Sphaerotheca species such as the Impalathecafuliginea
- Podosphaera species such as the Podosphaeraleucotricha
- a species of the genus Venturia such as the genus Venturiainaequalis;
- Pyrenophora species such as Pyrenophorateres or P. graminea (conidial form: Drechslera, Syn: Helminthosporium);
- Cochliobolus a species of the genus Cochliobolus, such as Cochliobolus sativus (conidial form: Drechslera, Syn: Helminthosporium);
- Uromyces species such as Uromyces appendiculatus
- Puccinia strains such as Puccinia recondita
- Sclerotinia species such as Sclerotiniasclerotiorum
- Tilletia species such as Tilletiacaries
- Ustilago species such as Ustilago nuda or Ustilago avenae
- Pellicularia species such as Pelliculariasasakii
- Pyricularia species such as Pyricularia oryzae
- Fusarium species such as Fusarium culmorum
- Botrytis species such as Botrytis cinerea
- Septoria a species of Septoria, such as Septoria nodorum
- Leptosphaeria a species of the genus Leptosphaeria, such as Leptosphaeria nodorum;
- Cercospora species such as Cercosporacanescens
- Alternaria species such as Alternaria brassicae
- Pseudocercosporella species such as Pseudocercosporella herpotrichoides
- Phakopsora species such as Phakopsorapachyrhizi and Phakopsora meibomiae
- Rhizoctonia species such as Rhizoctonia solani.
- the bactericidal composition of the present invention also has an excellent stimulating effect in plants. Therefore, they are also suitable for mobilizing the plant's in vivo defense system against the invasion of unwanted microorganisms.
- plant-exciting (resistance-inducing) compounds are to be understood as substances which are capable of stimulating the defense system of plants, whereby the plants exhibit when the treated plants are inoculated by unwanted microorganisms. Significant resistance to the above microorganisms.
- unwanted microorganisms are to be understood as phytopathogenic fungi and bacteria.
- the compounds of the invention are useful for protecting plants against attack by the pathogen for a certain period of time after treatment.
- Protected The time is usually from 1 to 10 days, preferably from 1 to 7 days, from the time the plant is treated with the active compound.
- the bactericidal active ingredient composition of the present invention is applied to various crops such as cotton and vegetable varieties (for example, cucumber, beans, tomatoes, potatoes, and cucurbits), barley, grass, oats, bananas, coffee, corn, and fruit varieties. It is especially important to control large numbers of fungi in rice, rye, soybeans, vines, wheat, ornamental plants, peanuts, canola, sugar cane, and various seeds.
- crops such as cotton and vegetable varieties (for example, cucumber, beans, tomatoes, potatoes, and cucurbits), barley, grass, oats, bananas, coffee, corn, and fruit varieties. It is especially important to control large numbers of fungi in rice, rye, soybeans, vines, wheat, ornamental plants, peanuts, canola, sugar cane, and various seeds.
- the bactericidal active ingredient composition of the present invention is particularly suitable for controlling the following phytopathogenic fungi: Blumeria graminis (powder disease) in cereals, Erysiphe cichoracearum and monofilament in Cucurbitaceae Sphaerotheca fuliginea, Podosphaera leucotricha in apples, Uncinula necator in vines, Puccinia genus in cereals, cotton, rice and turf Rhizoctonia genus, Ustilago genus in cereals and sugar cane, Venturia inaequalis (black star disease) in apples, Helminthosporium in cereals Genus, Septoria nodorum in wheat, Botrytis cinerea (Botrytis cinerea) in strawberries, vegetables, ornamental plants and vines, Cercospora arachidicola in peanuts, wheat And Pseudocercosporella Herpotrichoides in barley, Pyricularia oryzae in rice, Phyt
- the bactericidal composition of the present invention is particularly suitable for controlling cereal plant diseases such as powdery mildew, rust fungus and Fusarium, and diseases in viticulture such as Helminthosporium, unicorn and Botrytis, and can also be used in Gemini.
- cereal plant diseases such as powdery mildew, rust fungus and Fusarium
- diseases in viticulture such as Helminthosporium, unicorn and Botrytis, and can also be used in Gemini.
- Leaf on the control of powdery mildew and downy mildew fungi and pathogens in leaf spots can also be used in Gemini.
- the bactericidal composition of the invention can be used for controlling wheat sheath, barley, corn, rice, peanut, rapeseed sheath blight, smut, root rot, black smut, sclerotinia, total eclipse, and disease Disease.
- the bactericidal compositions of the present invention have good plant tolerance at the concentrations required to control plant diseases, which allows for the treatment of aerial parts of plants, propagation stocks, seeds and soil.
- the germicidal compositions of the invention may also be applied foliar or for seed coating.
- the invention also provides seeds coated with the germicidal compositions of the invention.
- the bactericidal composition of the invention is particularly suitable for seed coating on crops such as wheat, barley, corn, rice, peanut and rape, and can effectively control sheath blight, smut, root rot, black smut, bacteria Nuclear diseases, total eclipses, disease and other diseases.
- the bactericidal composition exhibits reduced toxicity as well as excellent plant tolerance.
- All plants and plant parts can be treated in accordance with the present invention.
- the meaning of plants in the present invention is to be understood as meaning all plants and plant populations, for example Essential and unwanted wild plants or crop plants (including naturally occurring crop plants).
- the crop plant may be a plant obtained by conventional plant breeding and preferred methods or by biotechnological and genetic engineering methods or by a combination of the methods, including transgenic plants, and plant varieties protected or unprotected by plant seedling rights. .
- the meaning of plant parts should be understood as all above-ground and underground parts of plants and plant organs, such as buds, leaves, flowers and roots. Examples are leaves, needles, stems, stems, flowers, fruiting bodies, fruits, seeds. , roots, tubers and rhizomes. Plant parts also include harvested material, as well as vegetative and generative propagation material such as seedlings, tubers, rhizomes, cuttings and seeds.
- the treatment of the present invention may also produce a superadditive (synergistic) effect depending on the plant variety or plant cultivar, its location and growth conditions (soil, climate, plant growth period, nutrition).
- a superadditive (synergistic) effect depending on the plant variety or plant cultivar, its location and growth conditions (soil, climate, plant growth period, nutrition).
- the following effects can be obtained which are more than expected, such as reducing the application amount of the composition of the invention and/or broadening its spectrum of action and/or increasing its activity, improving plant growth, increasing high temperature or low temperature tolerance, and improving Tolerance to drought or to salt content in water or soil, improve flowering quality, make harvesting easier, accelerate maturity, increase yield, improve the quality of harvested products and / or improve their nutritional value, improve harvested products Storage properties and / or its processing properties.
- the treatment of plants and plant parts using bactericidal compounds is carried out directly according to conventional treatment methods, or by treating the environment, habitat or storage space in which they are treated, such as immersion, spraying, evaporation, Mist, spread, smear, for one or more layers of the propagation material, especially the seed.
- the form of use depends on the intended purpose; in any case it should be ensured that the inventive mixtures are distributed as finely and uniformly as possible.
- a preferred method of application is application to the aerial parts of the plant, especially foliar application; the number of applications and the rate of application depend on the biological and climatic conditions of the target microorganism.
- the active ingredient can also be passed through the root system to the plant via soil or water, whereby the liquid formulation can be used to water the locus or the substance can be incorporated into the soil in solid form.
- the bactericidal composition of the present invention can also be applied to the grain in a seed treatment, whereby the tubers or grains can be sequentially soaked with a liquid preparation of each active ingredient or with a wet or dry preparation which has been mixed.
- germicidal compositions of the present invention can also be used to protect industrial materials from fungal attack.
- Industrial materials include wood, paper, leather, construction; cooling systems such as heating systems, ventilation and air conditioning systems.
- the compositions of the present invention are capable of controlling adverse effects such as rot, discoloration or mold.
- the germicidal compositions of the present invention can be applied before or after the material, plant, fruit or seed of the post-harvest storage period is infested by the fungus.
- Prothioconazole and fludioxonil are administered simultaneously, or separately, or sequentially.
- the order of administration of prothioconazole and fludioxonil is not necessary to practice the invention.
- the application rate may vary within a wide range depending on the kind of application.
- the application rate of the active ingredient composition is usually from 0.1 to 10,000 g/ha, preferably from 10 to 1000 g/ha.
- the application rate of the active ingredient composition is usually from 0.001 to 50 g/kg of seed, preferably from 0.01 to 10 g/kg of seed.
- the application rate of the active ingredient composition is usually from 0.1 to 10,000 g/ha, preferably from 1 to 5000 g/ha.
- compositions of the present invention may be in the form of a formulation, i.e., the materials in the composition have been mixed, and the ingredients of the composition may also be provided in a single dose, mixed in a bucket or can before use, and then diluted to the desired concentration.
- the form of the preparation provided by the present invention is preferred.
- the bactericidal composition of the present invention can be converted into a conventional preparation, such as a wettable powder, an emulsifiable concentrate, a suspension, a microcapsule, a seed coating, a microemulsion, an aqueous emulsion, a water-dispersible granule, a foaming agent, a plaster, an aerosol, Ultra low volume spray formulation.
- a conventional preparation such as a wettable powder, an emulsifiable concentrate, a suspension, a microcapsule, a seed coating, a microemulsion, an aqueous emulsion, a water-dispersible granule, a foaming agent, a plaster, an aerosol, Ultra low volume spray formulation.
- a bactericidal composition according to the invention comprises the active compounds prothioconazole and fludioxonil.
- the active compounds prothioconazole and fludioxonil are mixed with a filler and/or a surfactant.
- the term "filler” refers to a natural or synthetic organic or inorganic compound which can be combined or combined with an active compound to make it easier to apply to a subject, such as a plant, crop or grass. Therefore, the filler is preferably inert and at least agriculturally acceptable.
- the filler may be a solid or a liquid.
- the bactericidal composition of the present invention contains the active compound of prothioconazole and fludioxonil in an amount of 5% to 90%, preferably 10% to 80%, of the bactericidal composition.
- preparations can be produced by a known method, for example, by mixing the active compound with a filler, optionally in the case of using a surfactant.
- Liquid fillers are usually: water, alcohol (such as methanol, ethanol, isopropanol, butanol, ethylene glycol, etc.), ketones (such as acetone, methyl ethyl ketone, diisobutyl ketone, cyclohexanone, etc.) ), ethers (such as diethyl ether, dioxane, methyl cellulose, tetrahydrofuran, etc.), aliphatic hydrocarbons (such as kerosene, mineral oil, etc.), aromatic hydrocarbons (such as benzene, toluene, xylene) , solvent oil, alkyl naphthalene, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, chlorobenzene, etc.), halogenated hydrocarbons, amides, sulfones, dimethyl sulfoxide, mineral and vegetable oils, animal oils, and the like.
- alcohol such as m
- Solid fillers are usually: vegetable powders (eg soy flour, starch, cereal flour, wood flour, bark flour, sawdust, walnut shell flour, bran, cellulose powder, coconut shell, corn cob and tobacco stem) Particles, residues after extracting plant extracts, paper, sawdust, synthetic polymers such as synthetic resin, clays (for example, kaolin, bentonite, acid china clay, etc.) and talc.
- vegetable powders eg soy flour, starch, cereal flour, wood flour, bark flour, sawdust, walnut shell flour, bran, cellulose powder, coconut shell, corn cob and tobacco stem
- synthetic polymers such as synthetic resin, clays (for example, kaolin, bentonite, acid china clay, etc.) and talc.
- Silica such as diatomaceous earth, silica sand, mica, hydrous silicic acid, calcium silicate), activated carbon, natural minerals (pumice, attapulgite and zeolite), fired diatomaceous earth,
- inorganic mineral powder such as potassium chloride, calcium carbonate, calcium phosphate, ammonium sulfate, phosphoric acid
- Chemical fertilizers such as ammonium, urea, and green ammonium, and soil fertilizers, these may be used alone or in combination of two or more.
- a surfactant may be used for emulsifying, dispersing, solubilizing, and/or wetting the active ingredient compound, and examples thereof include fatty alcohol polyoxyethylene ether, polyoxyethylene alkyl aryl ether, polyoxyethylene higher fatty acid ester, and poly Phosphate of oxyethylene alcohol or phenol, fatty acid ester of polyhydric alcohol, alkyl aryl sulfonic acid, naphthalene sulfonic acid polymer, lignosulfonate, polymer comb-shaped branched copolymer, butyl naphthalenesulfonic acid Salts, alkyl aryl sulfonates, sodium alkyl sulfosuccinates, oils and fats, polycondensates such as fatty alcohols and ethylene oxide condensates, alkyl taurate salts, protein hydrolysates.
- Suitable oligosaccharides or polymers are for example based on the individual ethylene monomers
- Tackifiers such as carboxymethylcellulose, and natural and synthetic polymers in the form of powders, granules or latexes such as gum arabic, polyvinyl alcohol and polyvinyl acetate or natural phospholipids such as cephalin and lecithin may be used in the formulation. , and synthetic phospholipids.
- Other additives are mineral oils and vegetable oils.
- Colorants such as inorganic pigments such as iron oxide, titanium oxide and Prussian blue, and organic dyes such as alizarin dyes, azo dyes or metal anthraquinone dyes, and trace nutrients such as iron, manganese, boron, may be used. Ketone, cobalt, molybdenum and zinc salts.
- the disintegrant which may be used is selected from one or more of bentonite, urea, ammonium sulfate, aluminum chloride, citric acid, succinic acid, sodium hydrogencarbonate.
- Stabilizers that may be used are selected from one of sodium citrate and resorcinol.
- the antifreeze that may be used is selected from one or more of ethylene glycol, propylene glycol, glycerol, and urea.
- the antifoaming agent is selected from one or more of a silicone oil, a silicone compound, a C 10-20 saturated fatty acid compound, and a C 8-10 fatty alcohol compound.
- additional components may also be included, such as protective colloids, binders, thickeners, thixotropic agents, penetrants, stabilizers, masking agents.
- the formulations of the present invention can be prepared by mixing the active compounds with conventional additives in a known manner.
- the conventional additives such as a conventional extender and a solvent or diluent, an emulsifier, a dispersant, and/or a binder or fixative, a wetting agent, a water repellent, and if necessary, a drier and a colorant may also be included.
- compositions include not only immediate application to the subject to be treated by means of suitable equipment such as spray or dusting equipment, but also concentrated commercial compositions which require dilution prior to application to the subject.
- the seed dressing is applied to the seed in the form known per se in the form of a suitable seed dressing formulation, for example in the form of an aqueous suspension or dry powder which has good adhesion to the seed.
- the seed dressing agents are known in the art.
- the seed dressing may comprise a single active ingredient or a combination of active ingredients in the form of an encapsulate, such as a sustained release capsule or microgel. bag.
- the active ingredient compositions of the invention may also be administered in combination with other active ingredients, for example to broaden the spectrum of activity or to prevent the formation of resistance.
- the other active ingredients are, for example, fungicides, bactericides, attractants, insecticides, acaricides, nematicides, growth regulators, herbicides, safeners, fertilizers or chemical pheromones.
- a bactericidal composition of the present invention comprising a prothioconazole and a bacteriocin active compound has synergistic effect, and the bactericidal activity of the bactericidal composition of the present invention is significantly higher than the sum of the activities of the individual active compounds. In other words, there are unpredictable, real-life synergies, not just supplements to activity.
- the synergistic effect is particularly pronounced when the active compound is present in the bactericidal composition of the invention in a specific weight ratio.
- the good bactericidal properties of the bactericidal compositions of the present invention can be illustrated by the following examples. Although the individual bactericidal active compounds are less active in their bactericidal action, the bactericidal compositions exhibit a simple additive activity that exceeds their respective effects.
- Example 1 2% prothioconazole + 10% fludibacin wettable powder
- the active ingredient, various auxiliaries and fillers are mixed according to the proportions of the formulation, and after being pulverized by an ultrafine pulverizer, 2% prothioconazole + 10% flavonoid wettable powder is obtained.
- the active ingredient, various auxiliaries and fillers are mixed according to the proportions of the formulation, and after ultrafine pulverization, 1% prothioconazole + 50% flavonoid wettable powder is obtained.
- the above components are mixed in proportion, ground and pulverized to prepare a wettable powder.
- the prothioconazole active ingredient, the dispersing agent, the wetting agent, the disintegrating agent and the filler are uniformly mixed according to the formula, and are pulverized into a wettable powder by air flow; then the flaxonitrile is uniformly mixed; and a certain amount of water is mixed. Extrusion. After drying and sieving, 2% prothioconazole + 50% fludibacin water dispersible granules were obtained.
- the above components are mixed in proportion, ground and pulverized to prepare a wettable powder.
- Example 8 40% prothioconazole + 50% fludioxon coated granules
- the milled active ingredient is uniformly applied to the carrier wetted with polyethylene glycol in a mixer. In this way, dust-free coated granules can be obtained.
- the above components are mixed in proportion, ground and pulverized to prepare a wettable powder.
- the active ingredient is mixed with the auxiliaries and ground and the mixture is wetted with water.
- the mixture was extruded and then dried in a stream of air.
- Example 11 50% prothioconazole ++ 2% fludioxon suspension seed coating
- the above components are mixed in proportion and ground and/or sheared at a high speed to obtain a seed coating agent.
- Example 12 50% prothioconazole + 5% fludioxon microcapsule suspension-suspending agent
- the polyphenyl polymethylene polyisocyanates (the PAPI), prothioconazole, SOLVESSO TM 200 oil was added an aqueous solution containing phase formed in ATLOX TM 4913, to form an emulsion.
- the catalyst was then heated and kept at 50 ° C for 2 hours. After cooling, a microcapsule of prothioconazole was obtained.
- ATLOX TM 4913 ATLOX TM 4913, LFH dispersants, antifoaming agents, urea, fludioxonil and water at a mixing ratio, by grinding and / or after high shear to obtain a homogeneous, to give a suspension concentrate.
- prothioconazole microcapsule was added to a suspension of fludioxonil, and uniformly stirred to obtain a 50% prothioconazole + 5% fludioxon microcapsule suspension-suspending agent.
- the components such as the active component, the dispersing agent, the wetting agent and the water are uniformly mixed according to the formulation ratio, and the particle size is controlled to be 5 ⁇ m or less by grinding and/or high-speed shearing to obtain 50% prothioconazole + 1%. Flavone nitrile suspension.
- Example 14 50% prothioconazole + 0.5% oxycodonitrile emulsifiable concentrate
- Example 15 20% prothioconazole + 30% fludibacin water dispersible granules
- the prothioconazole, the active ingredient of the fludioxon, the dispersing agent, the wetting agent, the disintegrating agent and the filler are uniformly mixed according to the formula, and are pulverized into a wettable powder by air flow; and a certain amount of water is added to mix the extruded material. . After drying and sieving, 20% prothioconazole + 30% fludibacin water dispersible granules were obtained.
- the above components are mixed in proportion, ground and pulverized to prepare a wettable powder.
- prothioconazole and fludioxonil are dissolved in methyl oleate, polystyrene is added to obtain an oil phase; the components in the formulation are uniformly mixed to obtain an aqueous phase; and the oil phase is added to the aqueous phase with stirring to obtain an aqueous emulsion.
- Prothioconazole and fludioxonil are uniformly mixed in proportion.
- the ratio in the above embodiment is a weight ratio of one hundred.
- Test 1 Determination of indoor virulence of Fusarium oxysporum by combination of prothioconazole and fludioxon
- the test target was P. oryzae.
- the test used the co-toxicity coefficient method to evaluate the combined virulence of the compound.
- solani that was cultured for 2 days was punched into the bacterium on the edge of the colony with a punch of 5 mm in diameter, and the bacterium was transferred to the center of the pre-formed toxic PDA medium by the inoculation needle, and then cultured at 25 ° C.
- the chamber was cultured and repeated 4 times per treatment. After 3 days, the diameter of each treated colony was measured by a cross method using a caliper in millimeters. The percentage of corrected inhibition was determined. Each colony crosses two diameters and the average number represents the colony size. Then, the colony growth inhibition rate was determined by the following formula:
- the EC 50 of each treatment is converted into the actual toxicity index (ATI); the theoretical toxicity index (TTI) is calculated according to the ratio of the mixture, and the co-toxicity coefficient of the mixture is calculated according to the following formula ( CTC).
- TTT virulence index of A ⁇ virulence index of AM + B ⁇ BM
- AM means the weight percentage of component A in the composition
- BM means the weight percentage of component B in the composition.
- the co-toxicity coefficient is greater than 120, it indicates synergistic effect; if it is lower than 100, it indicates antagonism; between 100 and 120, it indicates additive effect.
- the test target was wheat smut.
- the co-toxicity coefficient method was used to evaluate the combined virulence of the compound.
- the wheat smut pathogen was cultured for 2 days, and the bacteria were cut into the bacterium on the edge of the colony with a punch of 5 mm in diameter, and the bacterium was transferred to the center of the pre-formed toxic PDA medium with the inoculation needle, and then placed at 25 ° C.
- the culture was carried out in an incubator, and each treatment was repeated 4 times. Three days later, the diameter of each treated colony was measured by a caliper using a cross method, and the percentage of corrected inhibition was determined. Each colony crosses two diameters and the average number represents the colony size. Then, the colony growth inhibition rate was determined by the following formula:
- the EC 50 of each treatment is converted into the actual toxicity index (ATI); the theoretical toxicity index (TTI) is calculated according to the ratio of the mixture, and the co-toxicity coefficient of the mixture is calculated according to the following formula ( CTC).
- TTT virulence index of A ⁇ virulence index of AM + B ⁇ BM
- AM means the weight percentage of component A in the composition
- BM means the weight percentage of component B in the composition.
- the co-toxicity coefficient is greater than 120, it indicates synergistic effect; if it is lower than 100, it indicates antagonism; between 100 and 120, it indicates additive effect.
- X is the activity when the active compound A is used in an amount of mg/ha or a concentration of mppm;
- Y is the activity when the active compound B is used in an amount of ng/ha or a concentration of nppm, expressed as an untreated control. Percentage
- E is the activity when active ingredients A and B are used in amounts of m and n g/ha or at concentrations of m and n ppm,
- composition is superadded, i.e., synergistic.
- Emulsifier 0.6 parts by weight of alkyl aryl polyglycol ether
- a portion by weight of the active compound or combination of active compounds is mixed with the above amounts of solvent and emulsifier and diluted with water to the desired concentration.
- the seedlings are sprayed with the active compound preparation of the use amount. After the spray coating layer has dried, the seedlings are dusted with spores of wheat powdery mildew. The test plants were then placed in a greenhouse at a temperature of about 20 ° C and an air humidity of about 80% to promote the growth of white powder lesions. The effect evaluation was performed 7 days after the inoculation, 0% means that the potency was comparable to the control, and 100% means that no infection was observed.
- the active compounds, dosages and test results are listed in the table below:
- Emulsifier 0.6 parts by weight of alkyl aryl polyglycol ether
- a portion by weight of the active compound or combination of active compounds is mixed with the above amounts of solvent and emulsifier and diluted with water to the desired concentration.
- the seedlings were dusted with wheat white powder spores. After 48 hours of inoculation, the seedlings were sprayed with the active ingredient formulation used. The test plants were then placed in a greenhouse at a temperature of about 20 ° C and an air humidity of about 80% to promote the growth of white powder lesions. The effect evaluation was performed 7 days after the inoculation, 0% means that the potency was comparable to the control, and 100% means that no infection was observed.
- the active compounds, dosages and test results are listed in the table below:
- Test 3 Sclerotinia disease test (canola) / seed treatment
- the active compound is applied as a dry seed dressing.
- the preparation can be prepared by mixing the active compound alone or in combination with the finely divided minerals to obtain a finely divided mixture which is evenly distributed on the surface of the seed.
- the infested seeds and seed dressings were shaken in a closed glass flask for 3 minutes.
- the rapeseed seeds are sown in a standard soil of 1 cm depth and cultured in a greenhouse at a temperature of about 18 ° C and an air humidity of about 95%.
- the seed cultivation box requires 15 hours of light per day.
- the active compound is applied as a dry seed dressing.
- the preparation can be prepared by mixing the active compound alone or in combination with the finely divided minerals to obtain a finely divided mixture which is evenly distributed on the surface of the seed.
- the infested seeds and seed dressings were shaken in a closed glass flask for 3 minutes.
- the corn seeds are sown in a standard soil of 1 cm depth and cultured in a greenhouse at a temperature of about 18 ° C and an air humidity of about 95%.
- the seed cultivation box requires 15 hours of light per day.
- Emulsifier 0.6 parts by weight of alkyl aryl polyglycol ether
- a portion by weight of the active compound or combination of active compounds is mixed with the above amounts of solvent and emulsifier and diluted with water to the desired concentration.
- the seedlings were dusted with spores of Botrytis cinerea. After 48 hours of inoculation, strawberry seedlings were sprayed with the active compound formulation at the stated dose. The test plants were then placed in a greenhouse at a temperature of about 20 ° C and an air humidity of about 80% to promote the growth of gray mold spots. The effect evaluation was performed 7 days after the inoculation, 0% means that the potency was comparable to the control, and 100% means that no infection was observed.
- the active compounds, dosages and test results are listed in the table below:
- Test 6 anthracnose test (chili) / therapeutic activity
- Emulsifier 0.6 parts by weight of alkyl aryl polyglycol ether
- a portion by weight of the active compound or combination of active compounds is mixed with the above amounts of solvent and emulsifier and diluted with water to the desired concentration.
- the seedlings were dusted with capsicum anthracis spores. After 48 hours of inoculation, pepper seedlings were sprayed with the active ingredient formulation used. The test plants were then placed in a greenhouse at a temperature of about 20 ° C and an air humidity of about 80% to promote the growth of anthrax. The effect evaluation was performed 7 days after the inoculation, 0% means that the potency was comparable to the control, and 100% means that no infection was observed.
- the active compounds, dosages and test results are listed in the table below:
- Test 8 smut test (wheat) / protective activity
- Emulsifier 0.6 parts by weight of alkyl aryl polyglycol ether
- a portion by weight of the active compound or combination of active compounds is mixed with the above amounts of solvent and emulsifier and diluted with water to the desired concentration.
- the seedlings are sprayed with the active compound preparation of the use amount. After the spray coating layer has dried, the seedlings are dusted with spores of wheat smut. The test plants were then placed in a greenhouse at a temperature of about 20 ° C and an air humidity of about 80% to promote the growth of the smut. The effect evaluation was performed 7 days after the inoculation, 0% means that the potency was comparable to the control, and 100% means that no infection was observed.
- the active compounds, dosages and test results are listed in the table below:
- a portion by weight of the active compound or combination of active compounds is mixed with the above amounts of solvent and emulsifier and diluted with water to the desired concentration.
- rice seedlings are sprayed with the active ingredient formulation of the use amount. After the spray coating layer has dried, the seedlings are sprayed with spores of P.
- the test plants were then placed in a greenhouse at a temperature of about 20 ° C and an air humidity of about 80% to promote the growth of P. The effect evaluation was performed 5 days after the inoculation, 0% means that the potency was comparable to the control, and 100% means that no infection was observed.
- the active compounds, dosages and test results are listed in the table below:
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
本发明涉及的是一种杀菌组合物,尤其涉及一种含丙硫菌唑和咯菌腈的杀菌组合物;本发明还涉及一种防治植物致病菌的方法。本发明还涉及控制或防治收获水果的收获后储藏阶段中的病害。一种杀菌组合物,含有丙硫菌唑和咯菌腈,丙硫菌唑和咯菌腈的重量配比为1:100-100:1。本发明通过将丙硫菌唑和咯菌腈进行二元复配,作用于致病菌和/或其环境,或者植物、植物部位、种子、土壤、区域、材料或空间中可用于防治谷类、水果、蔬菜上真菌和细菌,达到了增效的效果。并且含有丙硫菌唑和咯菌腈的杀菌组合物可用于处理需要保护的植物的种子,还可用于处理收获后储藏期的果实。
Description
本发明涉及的是一种杀菌组合物,尤其涉及一种含丙硫菌唑和咯菌腈的杀菌组合物;本发明还涉及一种防治植物致病菌的方法。本发明还涉及控制或防治收获水果的收获后储藏阶段中的病害。
杀真菌剂是天然或者合成来源的化合物,其用于保护植物不受真菌导致的损害。目前的农业方法严重依赖于使用杀真菌剂。实际上,一些农作物不能在没有使用杀真菌剂的情况下有效地生长。使用杀真菌剂使得种植者增加产量和作物的品质,以及由此增加作物的价值。在大部分情况下,作物价值的增加值为使用杀真菌剂的花费的至少三倍。
但是,没有一种杀真菌剂在所有的情况下都是有用的,并且重复使用单种杀真菌剂常常导致对该种或者相关的杀真菌剂产生耐药性。因此,正在研究生产更加安全、具有更好的性能、需要较低的剂量、容易使用、和费用较低的杀真菌剂和杀真菌剂的组合物。
本发明的目的是提供对有害真菌具有改进活性且活性化合物的总施用量降低的组合物(协同增效组合物),以降低施用率并扩大已知化合物的活性谱。
丙硫菌唑为拜耳公司研制开发的三唑硫酮类广谱杀菌剂,已经由W96/16048已知。丙硫菌唑具有很好的内吸活性,优异的保护、治疗和铲除活性,且持效期长。大量的田间药效试验表明丙硫菌唑对作物不仅具有良好的安全性,防病治病效果好,而且增产明显。
丙硫菌唑(Prothioconazole)麦类病害都有很好的防治效果,如小麦和大麦的白粉病、纹枯病、枯萎病、叶斑病、锈病、菌核病、网斑病、云纹病等。丙硫菌唑还能防治油菜和花生的土传病害,如菌核病。丙硫菌唑还能防治主要叶面病害,如灰霉病、黑斑病、褐斑病、黑胫病、菌核病和锈病等。丙硫菌唑单剂使用量成本较高,长期使用会使病菌产生抗药性,对特殊作物上的病害的防治效果就会降低。
丙硫菌唑2-[2-(1-氯环丙基)-3-(2-氯苯基)-2-羟基丙基]-2,4-二氢-[1,2,4]-三唑-3-硫酮,由WO96-16048已知。该化合物可以下式的“硫酮”形式存在:
或以下式的互变异构“硫醇”形式存在:
为简单起见,在每种情况下仅给出“硫酮”形式。
咯菌腈(Fludioxonil),化学名称:4-(2,2-二氟-1,3-苯并二氧-4-基)吡咯-3-腈,其分子结构式为:
咯菌腈是吡咯类杀菌剂,已经由EP-A-206999已知。咯菌腈是假单胞菌属(Pseudomonas spp.)
的不同种(Pseudomonas pyrrocinia)产生的次生代谢物硝吡咯菌素(pyrrolnitrin)的类似物,由于它比天然产物硝吡咯菌素抗光解,能专一性地抑制霉菌而广泛地应用于防治农业生产中的真菌性病害。咯菌腈的抑菌机制则是通过抑制葡萄糖磷酰化的有关转移,并抑制真菌菌丝体的生长,最终导致病菌的死亡。咯菌腈作用机理独特,与现有杀菌剂无交互抗性。此外,咯菌腈作为叶面杀菌剂用于防治雪腐镰孢菌、小麦网腥黑腐菌、立枯病菌等,对灰霉病有特效;作为种子处理剂:主要用于谷物和非谷物类作物中防治种传和土传病菌如链格孢属、壳二孢属、曲霉属、镰孢菌属、长蠕孢属、丝核菌属及青霉属菌等。咯菌腈是全球为数不多获得美国环保局EPA“低风险”认证的产品之一。
由于现在对杀菌剂的环境要求和经济要求持续提高,例如对活性谱、毒性、选择性、施用率、残余物组成和有利的制备可行性的要求,此外还有例如抗性方面的问题,因此,开发在某些方面优于现有杀菌剂的新的杀菌剂是持续的任务。
发明内容
我们发现同时施用,即一起施用或分别施用丙硫菌唑和咯菌腈,或依次施用丙硫菌唑和咯菌腈所提供的有害真菌防治作用比单独施用各化合物的作用要好。换言之,存在无法预测的、真实存在的协同效应,而不仅仅是活性的加和。
当活性化合物以特定的重量比存在于本发明的杀菌组合物中时,协同效应特别明显。但是,杀菌组合物中的活性化合物的重量比可在一定范围内变化。
本发明一种杀菌组合物是采取以下技术方案实现:
本发明一种杀菌组合物,其特征在于:包含丙硫菌唑和咯菌腈,其中丙硫菌唑和咯菌腈的重量配比1:100-100:1,优选1:50-50:1,更优选1:25-25:1,更优选1:10-10:1。
一种杀菌组合物,包含丙硫菌唑和咯菌腈的活性成分、填充剂和/或表面活性剂。
所述的杀菌组合物剂型为可湿性粉剂、乳油、悬浮剂、微囊剂、种衣剂、微乳剂、水乳剂、水分散粒剂、泡沫剂、膏剂、气雾剂、超低容量喷雾剂型。
所述的杀菌组合物,其中含丙硫菌唑和咯菌腈的活性成分的含量占杀菌组合物的5%-90%。
所述的杀菌组合物,其中含丙硫菌唑和咯菌腈的活性成分的含量占杀菌组合物的20%-80%。
一种防治植物致病菌的方法,将杀菌组合物作用于致病菌和/或其环境,或者植物、植物部位、种子、土壤、区域、材料或空间中。
一种防治植物致病菌的方法,将丙硫菌唑和咯菌腈同时施用、或分别施用、或相继施用。
所述的杀菌活性成分组合物或杀菌组合物用于防治真菌和细菌的用途。
所述杀菌组合物用于防治谷类、水果、蔬菜上真菌和细菌的用途。
所述的杀菌组合物用于保护植物和保护水果在收获后储藏期不爆发病害方面的用途。
本发明的杀菌组合物具有有效的杀微生物活性,并且可在作物保护或材料保护中用于防治不想要的微生物,如真菌和细菌。
利用本发明的杀菌组合物能阻止或破坏出现在植物或不同的有益植物上的植物器官(果实、花、叶、茎、块茎、根)上的微生物,由此之后继续生长的植物器官仍不受这些微生物的侵染。还可收获后施用或拌种使用,或用于处理植物繁殖材料,特别是种子。
本发明的杀菌组合物具有非常好的杀真菌性能,并可被用于防治植物致病真菌,所述真菌尤其选自根肿菌纲(Plasmodiophoromycetes)、卵菌纲(Oomycetes)、壶菌纲(Chytridiomycetes)、接合菌纲(Zygomycetes)、子囊菌纲(Ascomycetes)、担子菌纲(Basidiomycetes)、藻菌纲(Phycomycetes)和半知菌纲(Deuteromycetes)真菌。
本发明的杀菌组合物具有非常好的杀细菌性能,并可被用于防治植物致病细菌。如假单胞菌(Psedomonadaceae)、根瘤菌(Rhizobiaceae)、肠杆菌(Enterbacteriaceae)、棒杆菌(Cornebacteriaceae)以及链霉菌(Streptomycetaceae)。
作为实例可以非限制的方式提出以下归入上述属名的一些导致真菌病害和细菌病害的病原体:
黄杆菌属菌种,例如水稻百叶枯黄单胞菌(Xanthomonascampestrispv.oryzae);
假单胞菌属菌种,例如丁香假单孢杆菌黄瓜致病变种(Pseudomonas syringaepv.Lachrymans);
欧文氏菌属菌种,例如梨水疫病欧文(氏)菌(Erwiniaamylovora);
腐霉(Pythium)菌种,例如终极腐霉(Pythium ultimum);
疫霉(Phytophthora)菌种,例如致病疫霉(Phytophthorainfestans);
假霜霉(Pseudoperonospora)菌种,例如草假霜霉(Pseudoperonospora humuli)或古巴假霜霉(Pseudoperonosporacubensis);
轴霜霉(Plasmopara)菌种,例如葡萄生轴霜霉(Plasmoparaviticola);
盘霜霉(Bremia)菌种,例如莴苣盘霜霉(Bremia lactucae);
霜霉(Peronospora)菌种,例如豌豆霜霉(Peronospora pisi)或十字花科霜霉(P.brassicae);
白粉菌(Erysiphe)菌种,例如禾谷白粉菌(Erysiphe graminis);
单囊壳属(Sphaerotheca)菌种,例如凤仙花单囊壳(Sphaerothecafuliginea);
叉丝单囊壳属(Podosphaera)菌种,例如白叉丝单囊壳(Podosphaeraleucotricha);
黑星菌属(Venturia)菌种,例如苹果黑星病菌(Venturiainaequalis);
核腔菌属(Pyrenophora)菌种,例如圆核腔菌(Pyrenophorateres)或麦类核腔菌(P.graminea)(分生孢子形式:Drechslera,Syn:Helminthosporium);
旋孢腔菌属(Cochliobolus)菌种,例如禾旋孢腔菌(Cochliobolussativus)(分生孢子形式:Drechslera,Syn:Helminthosporium);
单胞锈菌属(Uromyces)菌种,例如疣顶单胞锈菌(Uromycesappendiculatus);
柄锈菌(Puccinia)菌种,例如隐匿柄锈菌(Puccinia recondita);
核盘菌属(Sclerotinia)菌种,例如油菜菌核病菌(Sclerotiniasclerotiorum);
腥黑粉菌属(Tilletia)菌种,例如小麦网腥黑粉菌(Tilletiacaries);
黑粉菌(Ustilago)菌种,例如裸黑粉菌(Ustilago nuda)或燕麦黑粉菌(Ustilago avenae);
薄膜革菌属(Pellicularia)菌种,例如佐佐木薄膜革菌(Pelliculariasasakii);梨孢(Pyricularia)菌种,例如稻梨孢(Pyricularia oryzae);
镰孢属(Fusarium)菌种,例如黄色镰孢(Fusarium culmorum);
葡萄孢属(Botrytis)菌种,例如灰葡萄孢(Botrytis cinerea);
壳针孢属(Septoria)菌种,例如颖枯壳针孢(Septoria nodorum);
小球腔菌属(Leptosphaeria)菌种,例如Leptosphaeria nodorum;
尾孢属(Cercospora)菌种,例如变灰尾孢(Cercosporacanescens);
链格孢属(Alternaria)菌种,例如芸薹链格孢(Alternariabrassicae);
假小尾孢属(Pseudocercosporella)菌种,例如小麦基腐病菌(Pseudocercosporella herpotrichoides);
层锈菌属(Phakopsora)菌种,例如豆薯层锈菌(Phakopsorapachyrhizi)和山马蝗层锈菌(Phakopsora meibomiae);以及
丝核菌属(Rhizoctonia)菌种,例如立枯丝核菌(Rhizoctoniasolani)。
本发明的杀菌组合物在植物体内还具有极好的激发作用。因此,它们还适用于调动植物的体内防御系统抵抗不想要的微生物的侵袭。
在本发明中,植物激发(抗性诱发)化合物应被理解为这样的物质,它们能够激发植物的防御系统,从而,当经处理的植物之后被不想要的微生物接种时,所述植物表现出对上述微生物显著的抗性。
在本发明中,不想要的微生物应被理解为植物致病真菌和细菌。因此,本发明的化合物可用于在处理后的某段时间内保护植物抵抗所述病原体的侵袭。所获得的保护作用的
时间通常为自植物被活性化合物处理起延续1至10天,优选1至7天。
本发明的杀菌活性成分组合物对在各种作物如棉花、蔬菜品种(例如黄瓜、豆类、西红柿、土豆和葫芦科植物)、大麦、禾草、燕麦、香蕉、咖啡、玉米、水果品种、稻、黑麦、大豆、葡萄藤、小麦、观赏植物、花生、油菜、甘蔗以及各种种子中防治大量真菌尤其重要。
本发明的杀菌活性成分组合物特别适于防治下列植物病原性真菌:禾谷类中的禾白粉菌(Blumeria graminis)(白粉病),葫芦科植物中的二孢白粉菌(Erysiphe cichoracearum)和单丝壳(Sphaerotheca fuliginea),苹果中的苹果白粉病菌(Podosphaera leucotricha),葡萄藤中的葡萄钩丝壳霉病(Uncinula necator),禾谷类中的柄锈菌(Puccinia)属,棉花、稻和草坪中的丝核菌(Rhizoctonia)属,禾谷类和甘蔗中的黑粉菌(Ustilago)属,苹果中的苹果黑星菌(Venturia inaequalis)(黑星病),禾谷类中的长蠕孢(Helminthosporium)属,小麦中的小麦颖枯病菌(Septoria nodorum),草莓、蔬菜、观赏植物和葡萄藤中的灰葡萄孢(Botrytis cinerea)(灰霉病),花生中的落花生尾孢(Cercospora arachidicola),小麦和大麦中的眼斑病菌(Pseudocercosporella Herpotrichoides),稻中的稻瘟病菌(Pyricularia oryzae),土豆和西红柿中的致病疫霉(Phytophthora infestans),葡萄藤中的葡萄单轴霉(Plasmopara viticola),啤酒花和黄瓜中的假霜霉(Pseudoperonospora)属,蔬菜和水果中的链格孢(Alternaria)属、香蕉中的球腔菌(Mycosphaerella)属以及链孢霉(Fusarium)和轮枝孢(Verticillium)属。
本发明的杀菌组合物尤其适合于防治谷类植物病害如白粉菌、柄锈菌和镰刀菌,和葡萄栽培中的病害如钩丝壳霉病、单轴霉病和葡萄孢,也可以用在双子叶上防治白粉病和霜霉病真菌以及叶斑中的病原有机物。
本发明的杀菌组合物可用于防治小麦、大麦、玉米、水稻、花生、油菜上纹枯病、黑穗病、根腐病、黑胫病、菌核病、全蚀病、恶苗病多种病害。
本发明的杀菌组合物在防治植物病害所需浓度下具有良好的植物耐受性,这就使得可对植物的地上部分、离体繁殖株(propagationstock)、种子以及土壤进行处理。本发明的杀菌组合物还可叶面施用或者用于种子包衣。本发明还提供用本发明的杀菌组合物包衣的种子。
本发明的杀菌组合物特别适合于小麦、大麦、玉米、水稻、花生、油菜等作物上的种子包衣,可有效防治作物的纹枯病、黑穗病、根腐病、黑胫病、菌核病、全蚀病、恶苗病等病害。
所述杀菌组合物表现出降低的毒性以及优良的植物耐受性。所有的植物及植物部位均可依据本发明来处理。本发明中植物的含义应被理解为所有的植物及植物种群,例如需
要的及不需要的野生植物或作物植物(包括自然存在的作物植物)。作物植物可以是通过常规植物育种和优选法或通过生物技术和遗传工程方法或通过所述方法的结合而获得的植物,包括转基因植物,也包括受植物种苗权保护或不受其保护的植物品种。植物部位的含义应被理解为植物所有的地上及地下部位及植物器官,例如芽、叶、花和根,可列举的实例有叶、针叶、茎、干、花、子实体、果实、种子、根、块茎以及根茎。植物部位还包括采收物,以及无性与有性繁殖物,例如秧苗、块茎、根茎、插条和种子。
依据植物品种或植物栽培种、其种植地点和生长条件(土壤、气候、植物生长期、营养),本发明的处理也可产生超加和性(协同的)效应。由此可取得如下超过实际预期的效果,例如可降低本发明组合物的施用量和/或加宽其作用谱和/或提高其活性、改善植物生长状况、提高高温或低温耐受性、提高对干旱或对水中或土壤中含盐量的耐受性、提高开花品质、使采收更简易、加速成熟、提高产量、提高采收产品的质量和/或改善其营养价值、改善采收产品的贮存性质和/或其加工性能。
根据本发明,使用杀菌化合物对植物和植物部位进行的处理依据常规处理方法直接进行,或通过处理其所处环境、生境或储存空间来实现,所述常规处理方法例如浸液、喷雾、蒸发、弥雾、撒播、涂抹,对于繁殖材料,尤其是种子,还可进行一层或多层包衣。使用形式取决于意欲的目的;在任何情况下都应确保本发明混合物尽可能精细和均匀地分布。优选的施用方法是施用到植物地上部分,尤其是叶面施用;施用次数和施用比率取决于目标微生物的生物和气候生存条件。然而,活性成分也可以经由土壤或水通过根系达到植物体内,由此可用液体制剂浇灌所在地或者把该物质以固体形式掺入土壤中。本发明的杀菌组合物也可以在种子处理中施用到谷种上,由此块茎或谷物可用每种活性成分的液体制剂依次浸泡,或者用已经混合的湿或干的制剂包裹。
此外,本发明的杀菌组合物还可用于保护工业材料不受真菌的侵袭。工业材料包括木材、纸、皮革、建筑;冷却系统如加热系统,通风和空调系统等。本发明的组合物可防治不利影响如腐烂、退色或发霉。
本发明的杀菌组合物可在材料、植物、收获后储藏期的果实或种子被真菌侵染之前或之后施用。
将丙硫菌唑和咯菌腈同时施用、或分别施用、或相继施用。丙硫菌唑和咯菌腈的施用顺序不是实施本发明所必需的。
当使用本发明的杀菌组合物时,施用率可根据施用的种类在较宽范围内变化。
处理植物或收获后的果实时,活性化成分组合物的施用率通常为0.1至10000g/ha,优选为10至1000g/ha。
处理种子时,活性成分组合物的施用率通常为0.001至50g/kg种子,优选为0.01至10g/kg种子。
处理土壤时,活性成分组合物的施用率通常为0.1至10000g/ha,优选为1至5000g/ha。
上述剂量仅是一般性的示例性剂量,实际施用时本领域的技术人员会根据实际情况和需要,尤其是根据待处理的植物或作物的性质以及病菌的严重性调整施用率。
本发明的组合物可以以制剂形式为主,即组合物中各物质已经混合,组合物的成分也可以单剂形式提供,使用前在桶或罐中混合,然后稀释至所需的浓度。其中优选以本发明提供的制剂形式为主。
本发明的杀菌组合物可转化为常规制剂,例如可湿性粉剂、乳油、悬浮剂、微囊剂、种衣剂、微乳剂、水乳剂、水分散粒剂、泡沫剂、膏剂、气雾剂、超低容量喷雾剂型。
本发明所述的一种杀菌组合物包含活性化合物丙硫菌唑和咯菌腈。所述的杀菌组合物中,活性化合物丙硫菌唑和咯菌腈与填充剂和/或表面活性剂混合。
根据本发明,术语“填充剂”指可与活性化合物相组合或联合以使其更易于施用给对象(例如植物、作物或草类)的天然或合成的有机或无机化合物。因此,所述填充剂优选为惰性的,至少应为农业可接受的。所述填充剂可以为固体或液体。
本发明所述的杀菌组合物中,含有丙硫菌唑和咯菌腈活性化合物的含量占杀菌组合物的5%-90%,优选10%-80%。
可通过已知的方法生产这些制剂,例如,在可选择地使用表面活性剂的情况下,通过将活性化合物与填充剂混合而制备制剂。
液体填充剂通常为:水,酒精类(例如甲醇、乙醇、异丙醇、丁醇、乙二醇等)、酮类(例如丙酮、甲基乙基酮、二异丁基甲酮、环己酮等)、醚类(例如乙醚、二恶烷、甲基纤维素、四氢呋喃等)、脂肪族碳氢化合物类(例如煤油、矿物油等)、芳香族碳氢化合物类(例如苯、甲苯、二甲苯、溶剂油、烷基萘、氯代芳烃、氯代脂肪烃、氯苯,等)、卤化碳氢化合物类、酰胺类、砜类、二甲基亚砜、矿物和植物油、动物油等。
固体填充剂通常为:植物质粉末类(例如大豆粉、淀粉、谷物粉、木粉、树皮粉、锯末、核桃壳粉、麸皮、纤维素粉末、椰壳、玉米穗轴和烟草茎的颗粒,提取植物精华后的残渣等)、纸张、锯末,粉碎合成树脂等的合成聚合体、黏土类(例如高岭土、皂土、酸性瓷土等)、滑石粉类。硅石类(例如硅藻土、硅砂、云母、含水硅酸,硅酸钙)、活性炭、天然矿物质类(浮石、绿坡缕石及沸石等)、烧制硅藻土、砂、塑料媒介等(例如聚乙烯、聚丙烯、聚偏二氯乙烯等)、氯化钾、碳酸钙、磷酸钙等的无机矿物性粉末、硫酸铵、磷酸
铵、尿素、绿化铵等的化学肥料、土肥,这些物质可以单独使用或者2种以上混用。
为使有效成分化合物乳化、分散、可溶化、以及/或者润湿可以使用表面活性剂例如可以列举脂肪醇聚氧乙烯醚、聚氧乙烯烷基芳基醚、聚氧乙烯高级脂肪酸酯、聚氧乙烯醇或酚的磷酸酯、多元醇的脂肪酸酯、烷基芳基磺酸、萘磺酸聚合物、木质素磺酸盐、高分子梳形的支状共聚物、丁基萘磺酸盐、烷基芳基磺酸盐、烷基磺基琥珀酸钠、油脂、脂肪醇与环氧乙烷缩合物、烷基牛磺酸盐等聚丙烯酸盐、蛋白质水解物。合适的低聚糖物或聚合物,例如基于单独的乙烯单体、丙烯酸、聚氧乙烯和/或聚氧丙烯或者其与例如(多元)醇或(多元)胺的结合。
制剂中可使用增粘剂例如羧甲基纤维素,及粉末、颗粒或胶乳形式的天然及合成聚合物,例如阿拉伯树胶、聚乙烯醇及聚乙酸乙烯酯或天然磷脂,例如脑磷脂及卵磷脂,及合成磷脂。其它添加剂为矿物油及植物油。
可能使用的着色剂如无机颜料,例如,氧化铁,氧化钛和普鲁士兰,和有机染料,如茜素染料,偶氮染料或金属酞箐染料,和痕量营养素,如铁,锰,硼,酮,钴,钼和锌盐。
可能使用的崩解剂选自:膨润土、尿素、硫酸铵、氯化铝、柠檬酸、丁二酸、碳酸氢钠中的一种或多种。
可能使用的稳定剂选自:柠檬酸钠、间苯二酚中的一种。
可能使用的防冻剂选自:乙二醇、丙二醇、丙三醇、尿素中的一种或多种。
所述的消泡剂选自:硅油、硅酮类化合物、C10-20饱和脂肪酸类化合物、C8-10脂肪醇类化合物中的一种或多种。
任选地,还可包含其它附加组分,例如保护胶体、粘合剂、增稠剂、触变剂、渗透剂、稳定剂、掩蔽剂。
本发明的所述制剂可通过已知方式将所述活性化合物与常规添加剂混合而制备。所述常规添加剂如常规增充剂以及溶剂或稀释剂、乳化剂、分散剂、和/或粘合剂或固定剂、润湿剂、防水剂,如果需要,还可以包含催干剂和着色剂、稳定剂、颜料、消泡剂、防腐剂、增稠剂、水以及其它加工助剂。
这些组合物不仅包括可借助合适的设备如喷雾或撒粉设备立即适用于待处理的对象,而且还包括在施用于对象之前需进行稀释的浓缩商业组合物。
拌种剂是以原来已知的方式施用本发明的杀菌组合物以适宜的拌种制剂形式例如对种子具有良好的附着性的水悬浮液或干粉形式施用到种子上。所述拌种剂是本领域已知的。拌种剂可含有包囊形式的单一的活性成分或活性成分的组合物,例如缓释胶囊或微胶
囊。
本发明的活性成分组合物还可以与其它活性成分联合施用,例如用于扩大活性谱或防止形成抗性。所述其它活性成分例如杀真菌剂、杀细菌剂、引诱剂、杀昆虫剂、杀螨剂、杀线虫剂、生长调节剂、除草剂、安全剂、肥料或化学信息素等。
本发明一种杀菌组合物,包括丙硫菌唑和咯菌腈活性化合物,具有协同增效作用,本发明的杀菌组合物的杀菌活性比单个活性化合物的活性的加和明显更高。换言之,存在无法预测的、真实存在的协同效应,而不仅仅是活性的增补。
当活性化合物以特定的重量比存在于本发明的杀菌组合物中时,协同效应特别明显。
本发明的杀菌组合物的良好的杀菌性能可通过以下实施例说明。虽然单独的杀菌活性化合物在其杀菌作用方面活性较弱,但杀菌组合物显示出超过各自作用的简单加和的活性。
以下将结合实施例对本发明作进一步的阐述。
制剂实施例
实施例1 2%丙硫菌唑+10%咯菌腈可湿性粉剂
将活性成分、各种助剂及填料等按配方的比例成分混合,经超细粉碎机粉碎后,即得到2%丙硫菌唑+10%咯菌腈可湿性粉剂。
实施例2 1%丙硫菌唑+50%咯菌腈可湿性粉剂
将活性成分、各种助剂及填料等按配方的比例成分混合,经超细粉碎后,即得到1%丙硫菌唑+50%咯菌腈可湿性粉剂。
实施例3 1%丙硫菌唑+4%咯菌腈乳油
将上述成分按照比例配制,搅拌均匀得到均一的相。
实施例4 5%丙硫菌唑+50%咯菌腈可湿性粉剂
将上述组分按比例混合,并研磨、粉碎,制备成可湿性粉剂。
实施例5 2%丙硫菌唑+50%咯菌腈水分散粒剂
将丙硫菌唑活性成分、分散剂、润湿剂、崩解剂和填料按配方的比例混合均匀,经过气流粉碎成可湿性粉剂;再加入咯菌腈混合均匀;再加入一定量的水混合挤压造料。经干燥筛分后得到2%丙硫菌唑+50%咯菌腈水分散粒剂。
实施例6 0.5%丙硫菌唑+50%咯菌腈悬乳剂
油相:
丙硫菌唑 0.5%
油酸甲酯 10%
乙氧基化蓖麻油 5%
水相:
咯菌腈 50%
磺化的萘磺酸-甲醛缩合产物的钠盐 1%
水 补足至100%
将丙硫菌唑溶解在油酸甲酯中,加入乙氧基化蓖麻油得到油相;按照配方将咯菌腈、磺化的萘磺酸-甲醛缩合产物的钠盐、水经研磨和/或高速剪切后得到咯菌腈的水悬浮剂;在搅拌下将油相加入水相得到悬乳剂。
实施例7 10%丙硫菌唑+10%咯菌腈可湿性粉剂
将上述组分按比例混合,并研磨、粉碎,制备成可湿性粉剂。
实施例8 40%丙硫菌唑+50%咯菌腈包衣颗粒剂
在混合器中,将磨细的活性成分均匀涂布到被聚乙二醇润湿的载体上。以此方式可获得无尘包衣颗粒剂。
实施例9 50%丙硫菌唑+10%咯菌腈可湿性粉剂
将上述组分按比例混合,并研磨、粉碎,制备成可湿性粉剂。
实施例10 20%丙硫菌唑+60%咯菌腈挤出颗粒剂
将活性组分与助剂混合并研磨,混合物用水润湿。将该混合物挤出,然后在空气流中干燥。
实施例11 50%丙硫菌唑++2%咯菌腈悬浮种衣剂
将上述各组分按比例混合经研磨和/或高速剪切后得到种衣剂。
实施例12 50%丙硫菌唑+5%咯菌腈微囊悬浮-悬浮剂
将多苯基多亚甲基多异氰酸(PAPI)、丙硫菌唑、SOLVESSOTM200形成的油相加入含ATLOX TM 4913的水溶液中,形成乳状液。然后加热并保温在50℃下加入催化剂反应2
小时。冷却后得到丙硫菌唑的微囊剂。
ATLOX TM 4913,分散剂LFH,消泡剂,尿素,咯菌腈和水按比例混合,经研磨和/或高速剪切后得到均匀,得到悬浮剂。
将得到的丙硫菌唑微囊剂加入咯菌腈的悬浮剂中,搅拌均匀得到50%丙硫菌唑+5%咯菌腈微囊悬浮-悬浮剂。
实施例13 50%丙硫菌唑+1%咯菌腈悬浮剂
丙硫菌唑 50%
咯菌腈 1%
甲基萘磺酸钠甲醛缩合物 | 5% |
二辛基琥珀酸磺酸钠 | 5% |
黄原胶 | 0.3% |
丙三醇 | 5% |
消泡剂 | 0.6% |
水 | 补足至100% |
将活性组分、分散剂、润湿剂和水等各组分按照配方的比例混合均匀,经研磨和/或高速剪切,控制粒径在5μm以下,得到50%丙硫菌唑+1%咯菌腈悬浮剂。
实施例14 50%丙硫菌唑+0.5%咯菌腈乳油
将上述各组分混合,搅拌至得到透明均一相。
实施例15 20%丙硫菌唑+30%咯菌腈水分散粒剂
将丙硫菌唑、咯菌腈活性成分、分散剂、润湿剂、崩解剂和填料按配方的比例混合均匀,经过气流粉碎成可湿性粉剂;再加入一定量的水混合挤压造料。经干燥筛分后得到20%丙硫菌唑+30%咯菌腈水分散粒剂。
实施例16 5%丙硫菌唑+30%咯菌腈可湿性粉剂
将上述组分按比例混合,并研磨、粉碎,制备成可湿性粉剂。
实施例17 1%丙硫菌唑+10%咯菌腈水乳剂
油相:
丙硫菌唑 | 1% |
咯菌腈 | 10% |
油酸甲酯 | 10% |
聚苯乙烯 | 3.7% |
水相:
黄原胶 | 0.07% |
磺化的萘磺酸-甲醛缩合产物的钠盐 | 1% |
杀菌剂 | 0.2% |
水 | 补足至100% |
将丙硫菌唑和咯菌腈溶解在油酸甲酯中,加入聚苯乙烯得到油相;按照配方中的组分混合均匀得到水相;在搅拌下将油相加入水相得到水乳剂。
实施例18 10%丙硫菌唑+8%咯菌腈微乳剂
将上述各组分混合,搅拌至得到透明均一相。
实施例19 40%丙硫菌唑+60%咯菌腈
丙硫菌唑 40%
咯菌腈 60%
将丙硫菌唑、咯菌腈按照比例混合均匀。
实施例20 50%丙硫菌唑+50%咯菌腈
丙硫菌唑 50%
咯菌腈 50%
以上实施例中的配比为重量百分配比。
生物实施例
试验一:丙硫菌唑和咯菌腈复配对稻梨孢菌的室内毒力测定
试验靶标为稻梨孢菌,试验采用共毒系数法评价复配制剂的联合毒力作用。
将丙硫菌唑和咯菌腈分别用丙酮溶解,再用0.1%的吐温-80水溶液稀释配制成系列浓度的药液,在超净工作台中分别吸取6mL到灭菌的三角烧瓶,加入50℃左右的马铃薯葡萄糖琼脂培养基(PDA)54mL,摇匀后倒入4个直径9cm的平皿,制成4个相应浓度的含毒培养基;用同样的方法将不同配比的咯菌腈和丙硫菌唑系列浓度复配药液制成含毒培养基。将培养2天的稻梨孢菌,用直径5mm的打孔器在菌落边缘打成菌块,用接种针将菌块移至预先配制成的含毒PDA培养基中央,然后置于25℃培养箱内培养,每处理重复4次。3天后,采用十字交叉法用卡尺量取各处理菌落直径,单位为毫米。求出校正抑制百分率。每个菌落十字交叉测两个直径,以其平均数代表菌落大小。然后按下式求出菌落生长抑制率:
依孙云沛(Y-P Sun)法将测定的各处理的EC50换算成实际毒性指数(ATI);根据混剂的配比,算出理论毒性指数(TTI),按下列公式计算混剂的共毒系数(CTC)。
理论混用毒力指数(TTT)=A的毒力指数×AM+B的毒力指数×BM
这里的AM是指成分A在组合物中所占的重量百分比,BM是指成分B在组合物中所占的重量百分比。
若共毒系数大于120,表明有增效作用;若低于100,表明为拮抗作用;100~120之间,表明为相加作用。
本试验一的毒力测定结果如表1所示:
表1
药剂 | 配比 | EC50(mg/L) | ATI | TTI | CTC |
丙硫菌唑 | - | 6.43 | 100 | / | / |
咯菌腈 | - | 9.40 | 68.4 | / | / |
丙硫菌唑+咯菌腈 | 100:1 | 4.82 | 133.28 | 99.69 | 133.7 |
丙硫菌唑+咯菌腈 | 50:1 | 4.07 | 157.92 | 99.38 | 158.9 |
丙硫菌唑+咯菌腈 | 25:1 | 3.31 | 194.01 | 98.78 | 196.4 |
丙硫菌唑+咯菌腈 | 10:1 | 3.27 | 196.68 | 97.13 | 202.5 |
丙硫菌唑+咯菌腈 | 5:1 | 3.42 | 188.05 | 94.73 | 210.5 |
丙硫菌唑+咯菌腈 | 1:1 | 4.14 | 155.18 | 84.20 | 198.5 |
丙硫菌唑+咯菌腈 | 1:5 | 4.74 | 135.77 | 73.67 | 184.3 |
丙硫菌唑+咯菌腈 | 1:10 | 5.21 | 123.44 | 71.27 | 173.2 |
丙硫菌唑+咯菌腈 | 1:25 | 5.63 | 114.31 | 69.62 | 164.2 |
丙硫菌唑+咯菌腈 | 1:50 | 6.04 | 106.50 | 69.02 | 154.3 |
丙硫菌唑+咯菌腈 | 1:100 | 6.53 | 98.40 | 68.71 | 143.2 |
从表1的数据可以看出,当丙硫菌唑和咯菌腈的配比在1:100~100:1范围内时,共毒系数均大于120,由此可以看出两者的复配药剂在防治稻梨孢菌上取得了增益的效果,尤其是当丙硫菌唑和咯菌腈的配比在5:1范围之时,增益效果尤其突出。
实验二:丙硫菌唑和咯菌腈对小麦黑穗病的室内毒力测定
试验靶标为小麦黑穗病,试验采用共毒系数法评价复配制剂的联合毒力作用。
将丙硫菌唑和咯菌腈分别用丙酮溶解,再用0.1%的吐温-80水溶液稀释配制成系列浓度的药液,在超净工作台中分别吸取6mL到灭菌的三角烧瓶,加入50℃左右的马铃薯葡萄糖琼脂培养基(PDA)54mL,摇匀后倒入4个直径9cm的平皿,制成4个相应浓度的含毒培养基;用同样的方法将不同配比的咯菌腈和丙硫菌唑系列浓度复配药液制成含毒培养基。将培养2天的小麦黑穗病病原菌,用直径5mm的打孔器在菌落边缘打成菌块,用接种针将菌块移至预先配制成的含毒PDA培养基中央,然后置于25℃培养箱内培养,每处理重复4次。3天后,采用十字交叉法用卡尺量取各处理菌落直径cm,求出校正抑制百分率。每个菌落十字交叉测两个直径,以其平均数代表菌落大小。然后按下式求出菌落生长抑制率:
依孙云沛(Y-P Sun)法将测定的各处理的EC50换算成实际毒性指数(ATI);根据混剂的配比,算出理论毒性指数(TTI),按下列公式计算混剂的共毒系数(CTC)。
理论混用毒力指数(TTT)=A的毒力指数×AM+B的毒力指数×BM
这里的AM是指成分A在组合物中所占的重量百分比,BM是指成分B在组合物中所占的重量百分比。
若共毒系数大于120,表明有增效作用;若低于100,表明为拮抗作用;100~120之间,表明为相加作用。
对小麦黑穗病的室内毒力测定结果,如表2所示:
表2
药剂 | 配比 | EC50(mg/L) | ATI | TTI | CTC |
丙硫菌唑 | - | 0.86 | 100 | / | / |
咯菌腈 | - | 1.54 | 55.8 | / | / |
丙硫菌唑+咯菌腈 | 100:1 | 0.60 | 143.07 | 99.56 | 143.7 |
丙硫菌唑+咯菌腈 | 50:1 | 0.49 | 173.78 | 99.13 | 175.3 |
丙硫菌唑+咯菌腈 | 25:1 | 0.47 | 183.23 | 98.30 | 186.4 |
丙硫菌唑+咯菌腈 | 10:1 | 0.43 | 202.04 | 95.98 | 210.5 |
丙硫菌唑+咯菌腈 | 5:1 | 0.34 | 256.04 | 92.63 | 234.5 |
丙硫菌唑+咯菌腈 | 1:1 | 0.43 | 200.83 | 77.90 | 276.4 |
丙硫菌唑+咯菌腈 | 1:5 | 0.53 | 162.84 | 63.17 | 257.8 |
丙硫菌唑+咯菌腈 | 1:10 | 0.58 | 147.21 | 59.82 | 246.1 |
丙硫菌唑+咯菌腈 | 1:25 | 0.69 | 125.06 | 57.50 | 217.5 |
丙硫菌唑+咯菌腈 | 1:50 | 0.91 | 94.86 | 56.67 | 167.4 |
丙硫菌唑+咯菌腈 | 1:100 | 1.02 | 83.91 | 56.24 | 149.2 |
从表2的数据可以看出,当丙硫菌唑和咯菌腈的配比在1:100~100:1范围内时,共毒系数均大于120,由此可以看出两者的复配药剂在防治小麦黑穗病上取得了增益的效果,尤其是当丙硫菌唑和咯菌腈的配比在1:1范围内之时,增益效果尤其突出。
生物测试例
当活性化合物组合物的作用超过当各活性化合物单独施用时的作用的总和时,存在协同增效作用。两种活性化合物的特定组合的预期作用可使用所谓的"Colby公式"(参见S.R.Colby,"Calculating Synergistic and Antagonistic Responses of Herbicide Combinations“,Weeds 1967,15,20-22)如下计算:如果
X是当使用用量为mg/ha或浓度为mppm的活性化合物A时的活性;
Y是当使用用量为ng/ha或浓度为nppm的活性化合物B时的活性,表示为占未处理对照
的百分率;
E是当使用用量为m和n g/ha或浓度为m和n ppm的活性化合物A和B时的活性,
那么
如果实际观察的活性(O)大于预期活性(E),那么该组合物超加和,即具有增效作用。
以下生物测试例用以说明本发明。但是,本发明并不限于这些实施例。
试验1白粉菌试验(小麦)/保护活性
溶剂:10份重量的N-甲基-吡咯烷酮
乳化剂:0.6份重量的烷基芳基聚乙二醇醚
为了制得合适的活性化合物,将一份按重量计的活性化合物或活性化合物的组合与上述量的溶剂和乳化剂混合,并用水稀释到所需浓度。
为了测定保护活性,将幼苗用所述使用剂量的活性化合物制剂喷雾。待喷液层变干后,将幼苗用小麦白粉菌的孢子喷粉。然后试验植物置于温度约20℃、空气湿度约80%的温室中以促进白粉病斑的生长。接种7天后进行效果评价,0%是指效力与对照的相当,100%是指没有观察到侵染。活性化合物、使用剂量和试验结果列于下表中:
试验2白粉菌试验(小麦)/治疗活性
溶剂:10份重量的N-甲基-吡咯烷酮
乳化剂:0.6份重量的烷基芳基聚乙二醇醚
为了制得合适的活性化合物,将一份按重量计的活性化合物或活性化合物的组合与上述量的溶剂和乳化剂混合,并用水稀释到所需浓度。
为了测试治疗性活性,将幼苗用小麦白粉菌孢子喷粉。接种48小时后,将幼苗用所述使用剂量的活性化合物制剂喷雾。然后试验植物置于温度约20℃、空气湿度约80%的温室中以促进白粉病斑的生长。接种7天后进行效果评价,0%是指效力与对照的相当,100%是指没有观察到侵染。活性化合物、使用剂量和试验结果列于下表中:
试验3菌核病试验(油菜)/种子处理
活性化合物以干种子拌种剂施用。该制剂可通过将单独的活性化合物或组合的活性化合物与磨细的矿物质混合来制备,得到能在种子表面均匀分布的细粉状混合物。
种子拌种时,将侵染种子和种子拌种剂在封闭的玻璃烧瓶内摇动3分钟。油菜种子播种于1厘米深的标准土壤中,在温度约18℃,空气湿度约95%的温室内培养,种子栽培箱每日需15小时光照。
播种3周后,评价油菜苗的病症,0%是指效力与对照的相当,100%是指没有观察到侵染。活性化合物、使用剂量和试验结果列于下表中:
试验4苗期茎基腐病(玉米)/种子处理
活性化合物以干种子拌种剂施用。该制剂可通过将单独的活性化合物或组合的活性化合物与磨细的矿物质混合来制备,得到能在种子表面均匀分布的细粉状混合物。
种子拌种时,将侵染种子和种子拌种剂在封闭的玻璃烧瓶内摇动3分钟。玉米种子播种于1厘米深的标准土壤中,在温度约18℃,空气湿度约95%的温室内培养,种子栽培箱每日需15小时光照。
播种3周后,评价玉米的病症,0%是指效力与对照的相当,100%是指没有观察到侵染。活性化合物、使用剂量和试验结果列于下表中:
试验5灰霉病菌试验(草莓)/治疗活性
溶剂:10份重量的N-甲基-吡咯烷酮
乳化剂:0.6份重量的烷基芳基聚乙二醇醚
为了制得合适的活性化合物,将一份按重量计的活性化合物或活性化合物的组合与上述量的溶剂和乳化剂混合,并用水稀释到所需浓度。
为了测试治疗性活性,将幼苗用草莓灰霉菌孢子喷粉。接种48小时后,将草莓幼苗用所述使用剂量的活性化合物制剂喷雾。然后试验植物置于温度约20℃、空气湿度约80%的温室中以促进灰霉病斑的生长。接种7天后进行效果评价,0%是指效力与对照的相当,100%是指没有观察到侵染。活性化合物、使用剂量和试验结果列于下表中:
试验6炭疽病试验(辣椒)/治疗活性
溶剂:10份重量的N-甲基-吡咯烷酮
乳化剂:0.6份重量的烷基芳基聚乙二醇醚
为了制得合适的活性化合物,将一份按重量计的活性化合物或活性化合物的组合与上述量的溶剂和乳化剂混合,并用水稀释到所需浓度。
为了测试治疗性活性,将幼苗用辣椒炭疽病孢子喷粉。接种48小时后,将辣椒幼苗用所述使用剂量的活性化合物制剂喷雾。然后试验植物置于温度约20℃、空气湿度约80%的温室中以促进炭疽病的生长。接种7天后进行效果评价,0%是指效力与对照的相当,100%是指没有观察到侵染。活性化合物、使用剂量和试验结果列于下表中:
试验7丝核菌试验/土壤处理
在塑料盆中混合被丝核菌污染的土壤和规定量的药剂后,播种7粒黄瓜的种子。播种开始66天后,进行效果评价。0%是指效力与对照的相当,100%是指没有观察到侵染。活性化合物、使用剂量和试验结果列于下表中:
试验8黑穗病试验(小麦)/保护活性
溶剂:10份重量的N-甲基-吡咯烷酮
乳化剂:0.6份重量的烷基芳基聚乙二醇醚
为了制得合适的活性化合物,将一份按重量计的活性化合物或活性化合物的组合与上述量的溶剂和乳化剂混合,并用水稀释到所需浓度。
为了测定保护活性,将幼苗用所述使用剂量的活性化合物制剂喷雾。待喷液层变干后,将幼苗用小麦黑穗病菌孢子喷粉。然后试验植物置于温度约20℃、空气湿度约80%的温室中以促进黑穗病菌的生长。接种7天后进行效果评价,0%是指效力与对照的相当,100%是指没有观察到侵染。活性化合物、使用剂量和试验结果列于下表中:
试验9稻梨孢试验(水稻)/保护活性
为了制得合适的活性化合物,将一份按重量计的活性化合物或活性化合物的组合与上述量的溶剂和乳化剂混合,并用水稀释到所需浓度。
为了测定保护活性,将水稻幼苗用所述使用剂量的活性化合物制剂喷雾。待喷液层变干后,将幼苗用稻梨孢的孢子喷粉。然后试验植物置于温度约20℃、空气湿度约80%的温室中以促进稻梨孢的生长。接种5天后进行效果评价,0%是指效力与对照的相当,100%是指没有观察到侵染。活性化合物、使用剂量和试验结果列于下表中:
试验10:对苹果上灰葡萄孢的效力
在苹果上钻3个洞,每个洞里滴入50ul配制的测试组合物。施药2小时候,将50ul灰葡萄孢的孢子悬浮液用移液枪管移到施药位置上。在20℃下于栽培室中孵育5天,确定被感染的果实的面积%。相对于未处理苹果上的病害率计算作用。
从以上试验1~试验10的试验结果看,丙硫菌唑和咯菌腈的复配后观察到的防效明显高于计算防效,显示出明显的协同增效作用。
Claims (15)
- 一种杀菌组合物,其特征在于:包含丙硫菌唑和咯菌腈活性化合物,所述丙硫菌唑与咯菌腈的重量配比为1:100-100:1。
- 根据权利要求1所述的杀菌组合物,其特征在于:所述丙硫菌唑与咯菌腈的重量配比为1:50-50:1。
- 根据权利要求1所述的杀菌组合物,其特征在于:所述丙硫菌唑与咯菌腈的重量配比为1:25-25:1。
- 根据权利要求1所述的杀菌组合物,其特征在于:所述丙硫菌唑与咯菌腈的重量配比为1:10-10:1。
- 根据权利要求1所述的杀菌组合物,其特征在于:包含权利要求1中所述的活性化合物、填充剂和/或表面活性剂。
- 根据权利要求1所述的杀菌组合物,其特征在于:丙硫菌唑和咯菌腈的活性化合物含量占杀菌组合物的5%-90%。
- 根据权利要求1所述的杀菌组合物,其特征在于:丙硫菌唑和咯菌腈的活性化合物含量占杀菌组合物的20%-80%。
- 根据权利要求1所述的杀菌组合物,其特征在于,所述杀菌组合物的剂型为可湿性粉剂、乳油、悬浮剂、微囊剂、种衣剂、微乳剂、水乳剂、水分散粒剂、泡沫剂、膏剂、气雾剂、超低容量喷雾剂。
- 根据权利要求1所述的杀菌组合物用于防治真菌和细菌的用途。
- 根据权利要求1所述的杀菌组合物用于防治谷类、水果、蔬菜上真菌和细菌的用途。
- 一种防治植物致病菌的方法,其特征在于:将权利要求1的杀菌组合物作用于致病菌和/或其环境,或者植物、植物部位、种子、土壤、区域、材料或空间中。
- 根据权利要求11所述的方法,其特征在于:其中用权利要求1的杀菌组合物处理需要保护的植物的种子。
- 根据权利要求11所述的方法,其特征在于:其中用权利要求1的杀菌组合物处理收获后储藏期的果实。
- 根据权利要求1所述的杀菌组合物处理的种子。
- 根据权利要求11所述的方法,其特征在于:权利要求1的丙硫菌唑和咯菌腈化合物同时施用、或分别施用、或相继施用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410086779.3A CN104904723A (zh) | 2014-03-11 | 2014-03-11 | 一种杀菌组合物 |
CN201410086779.3 | 2014-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015135421A1 true WO2015135421A1 (zh) | 2015-09-17 |
Family
ID=54070915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/073290 WO2015135421A1 (zh) | 2014-03-11 | 2015-02-26 | 一种杀菌组合物 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN104904723A (zh) |
WO (1) | WO2015135421A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115349322A (zh) * | 2022-10-21 | 2022-11-18 | 海南大学三亚南繁研究院 | 一种防控大豆种传病害的种子处理方法 |
WO2023023815A1 (en) * | 2021-08-25 | 2023-03-02 | Adama Australia Pty Limited | Highly loaded fludioxonil formulations |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106417311A (zh) * | 2015-08-12 | 2017-02-22 | 四川利尔作物科学有限公司 | 种子处理剂组合物及其应用 |
CN107788001A (zh) * | 2016-08-29 | 2018-03-13 | 四川利尔作物科学有限公司 | 种子处理剂组合物及其应用 |
CN109511661A (zh) * | 2017-09-20 | 2019-03-26 | 佛山市盈辉作物科学有限公司 | 含有丙硫菌唑、咯菌腈、氟吡呋喃酮的复配种子处理剂 |
CN109042700A (zh) * | 2018-08-20 | 2018-12-21 | 贵州道元生物技术有限公司 | 一种防治葡萄灰霉病的复配杀菌组合物 |
CN110376341B (zh) * | 2019-06-24 | 2022-04-15 | 广西大学 | 一种番茄灰霉病防治药物光解作用的测定方法 |
CN113057172A (zh) * | 2021-02-22 | 2021-07-02 | 安徽润农腾辉生物科技有限公司 | 一种包含丙硫菌唑和咯菌腈的三元复配拌种剂 |
CN115152773B (zh) * | 2022-06-17 | 2023-12-29 | 安徽久易农业股份有限公司 | 防治小麦茎基腐病的丙硫菌唑与咯菌腈的组合物 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1642423A (zh) * | 2002-03-21 | 2005-07-20 | 巴斯福股份公司 | 杀真菌混合物 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19716257A1 (de) * | 1997-04-18 | 1998-10-22 | Bayer Ag | Fungizide Wirkstoffkombination |
CN102388888B (zh) * | 2011-10-11 | 2014-03-19 | 陕西上格之路生物科学有限公司 | 一种含丁香菌酯和咯菌腈的杀菌组合物 |
CN102696648A (zh) * | 2012-04-23 | 2012-10-03 | 广东中迅农科股份有限公司 | 一种含有丙硫菌唑和福美双的农药组合物 |
-
2014
- 2014-03-11 CN CN201410086779.3A patent/CN104904723A/zh active Pending
- 2014-03-11 CN CN201810623158.2A patent/CN108935486A/zh not_active Withdrawn
-
2015
- 2015-02-26 WO PCT/CN2015/073290 patent/WO2015135421A1/zh active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1642423A (zh) * | 2002-03-21 | 2005-07-20 | 巴斯福股份公司 | 杀真菌混合物 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023023815A1 (en) * | 2021-08-25 | 2023-03-02 | Adama Australia Pty Limited | Highly loaded fludioxonil formulations |
CN115349322A (zh) * | 2022-10-21 | 2022-11-18 | 海南大学三亚南繁研究院 | 一种防控大豆种传病害的种子处理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108935486A (zh) | 2018-12-07 |
CN104904723A (zh) | 2015-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2528715T3 (es) | Combinaciones sinérgicas de principios activos fungicidas | |
WO2015135421A1 (zh) | 一种杀菌组合物 | |
WO2015062353A9 (en) | Fungicidal composition and the use thereof | |
WO2017121019A1 (zh) | 一种杀菌剂组合物 | |
CN106922703A (zh) | 一种杀菌组合物 | |
WO2015135422A1 (zh) | 一种保护植物免于植物病害的方法 | |
WO2015007250A1 (zh) | 一种杀真菌混合物 | |
CN111903697A (zh) | 一种杀菌组合物 | |
CN103461362A (zh) | 一种杀菌活性成分组合物 | |
CN112136825A (zh) | 一种杀菌组合物 | |
CN104336036B (zh) | 一种杀真菌组合物及其应用 | |
WO2018006462A1 (zh) | 一种杀菌剂组合物 | |
CN103719125A (zh) | 一种杀菌剂组合物及其用途 | |
JP3848530B2 (ja) | 農園芸用殺菌組成物 | |
CN110573016B (zh) | 杀真菌组合物及其用途 | |
CN107318852A (zh) | 一种杀菌组合物 | |
CN106982842B (zh) | 一种杀菌组合物 | |
CN107593710B (zh) | 一种杀菌组合物 | |
CN106982851B (zh) | 一种杀菌组合物 | |
CN105076161B (zh) | 一种杀菌组合物 | |
CN105076178B (zh) | 一种杀菌组合物 | |
CN114365744A (zh) | 一种包含噻霉酮和苯醚双唑的杀菌组合物 | |
CN106982850B (zh) | 一种杀菌组合物 | |
CN112244034A (zh) | 一种杀菌组合物 | |
CN112056316A (zh) | 一种杀菌组合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15761989 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15761989 Country of ref document: EP Kind code of ref document: A1 |