[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015133813A1 - Flat luminescent lamp and manufacturing method therefor - Google Patents

Flat luminescent lamp and manufacturing method therefor Download PDF

Info

Publication number
WO2015133813A1
WO2015133813A1 PCT/KR2015/002079 KR2015002079W WO2015133813A1 WO 2015133813 A1 WO2015133813 A1 WO 2015133813A1 KR 2015002079 W KR2015002079 W KR 2015002079W WO 2015133813 A1 WO2015133813 A1 WO 2015133813A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting lamp
lens
led
circuit board
printed circuit
Prior art date
Application number
PCT/KR2015/002079
Other languages
French (fr)
Korean (ko)
Inventor
정병진
박현수
최유민
신성선
Original Assignee
주식회사 금호에이치티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140026995A external-priority patent/KR20150104955A/en
Priority claimed from KR1020140027010A external-priority patent/KR20150104962A/en
Priority claimed from KR1020140152688A external-priority patent/KR20160053525A/en
Application filed by 주식회사 금호에이치티 filed Critical 주식회사 금호에이치티
Publication of WO2015133813A1 publication Critical patent/WO2015133813A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape

Definitions

  • the present invention relates to a surface light emitting lamp and a method of manufacturing the same, and more particularly to a surface light emitting lamp using silicon or bubbles.
  • a light emitting diode is composed of a junction between a p-type and an n-type semiconductor, and is a kind of optoelectronic device that emits energy corresponding to the band gap of a semiconductor in the form of light by combining electrons and holes when voltage is applied. . Since the mid-1990s, blue LEDs have been developed, enabling full-color displays.
  • LED light source is a light source with low heat loss, which consumes much less energy than incandescent bulbs, saves energy, shows excellent characteristics in terms of life and maintenance, and is environmentally friendly with mercury-free light. ) Is widely used in general lighting, building decoration lights, mood lights, traffic lights, indoor and outdoor billboards, induction lights, warning lights, light sources for various security equipment, light sources for sterilization or disinfection.
  • the interior and exterior surfaces of automobiles that are illuminated are not flat and have many curved portions. Therefore, in order to install the light along the inside and outside surfaces of the vehicle, the driving circuit board on which the light source is installed must also be flexible to bend along the surface.
  • a light emitting diode driving circuit board for automotive lighting uses a flexible substrate.
  • the method of manufacturing a surface emitting lamp using such an LED device can be divided into a direct type and an edge type. This is a form of placing the LED element in the lower or edge region of the diffuser plate (Diffuse plate). In this type, since a large number of LED elements are used, the unit cost of the product is increased, and the shape of the diffusion plate is not free.
  • an object of the present invention is to provide a surface light emitting lamp that can be installed on a fabric and the like while using a small number of LED elements and having a surface light emitting effect.
  • the present invention for achieving the above object, a printed circuit board; A plurality of LED light sources mounted on the printed circuit board; A silicon cover covering the plurality of LED light sources; And a diffuser distributed in the silicon cover.
  • the method may further include a reflector formed in a portion of a mounting surface of the printed circuit board.
  • the LED light source may be a side view type LED package.
  • the printed circuit board may be a flexible printed circuit board (flexible PCB).
  • flexible PCB flexible printed circuit board
  • the reflector may include a protruding reflective pattern.
  • the reflector may be formed by depositing Al on the surface of the printed circuit board.
  • the reflective pattern may be formed at regular intervals.
  • the reflective pattern may be irregularities having an inclination inclined in one direction.
  • the reflection pattern may be irregular irregularities.
  • a transparent tube for achieving the above object, a transparent tube; An LED light source disposed at at least one end of the transparent tube; And a liquid filled in the transparent tube, and the surface-emitting lamp may be provided with bubbles formed in the liquid.
  • the transparent tube may be a flexible tube.
  • 20 to 30% of the liquid volume may be bubbles.
  • the present invention for achieving the above object, a plurality of transparent tubes; An LED light source disposed at at least one end of the transparent tube; A liquid filled in the transparent tube; A silicon cover installed to surround the transparent tube; And a diffuser distributed in the silicon cover.
  • the reflector may further include a reflector formed in one region of the silicon cover.
  • the reflector may include a protruding reflective pattern.
  • the present invention for achieving the above object, a plurality of plastic optical fiber; An LED light source disposed at at least one end of the optical fiber; A silicon cover installed to surround the optical fiber; And a diffusion material distributed in the silicon cover, wherein the optical fiber may provide a surface light emitting lamp including a surface treatment area surface-treated so that light may be drawn out.
  • the diffusion material may be disposed on an optical path irradiated through the surface treatment region.
  • the LED light source the LED element mounted on the printed circuit board; And a lens covering the LED element and having a concave portion and a convex portion of an upper surface thereof, and a fine pattern on a surface of the lens.
  • the lens formed of a silicon material may further include a light diffuser distributed therein.
  • the fine pattern may be formed on the entire surface of the lens.
  • the lens is linearly formed in the center portion and may be formed symmetrically about the center portion.
  • the lens may have a shape in which two hemispherical lenses are connected so that some of them overlap.
  • the lens may have a form in which both sides of the lens are removed in the longitudinal direction.
  • the present invention for achieving the above object is an LED element mounted on a printed circuit board; And a lens covering the LED element and having a concave portion and a convex portion of an upper surface thereof, and providing a surface light emitting lamp having a fine pattern formed on a surface of the lens.
  • the lens formed of a silicon material may further include a light diffuser distributed therein.
  • the fine pattern may be formed on the entire surface of the lens.
  • the lens is linearly formed in the center portion and may be formed symmetrically about the center portion.
  • the lens may have a shape in which two hemispherical lenses are connected so that some of them overlap.
  • the lens may have a form in which both sides of the lens are removed in the longitudinal direction.
  • the present invention for achieving the above object, the step of mounting an LED light source on a printed circuit board; Positioning the printed circuit board on a jig having a predetermined frame; Coating an LED light source of the printed circuit board with liquid silicon mixed with a diffusion material; And it can provide a surface-emitting lamp manufacturing method comprising the step of curing the liquid silicone.
  • the LED light source the LED element mounted on the printed circuit board; And a lens covering the LED element and having a concave portion and a convex portion of an upper surface thereof, and a fine pattern on a surface of the lens.
  • the number of LED elements can be reduced, thereby reducing the cost, and the shape of the surface emitting lamp can be freely implemented.
  • FIG. 1 is a structural diagram of a surface light emitting lamp according to an embodiment of the present invention
  • (A) and (b) are each a diagram showing an LED light source of a surface emitting lamp according to a preferred embodiment of the present invention
  • FIG. 5 is a view showing an LED light source in another embodiment of the surface-emitting lamp according to a preferred embodiment of the present invention.
  • FIG. 6 is a view showing a fine pattern formed on the lens surface of the LED light source
  • FIG. 7 is a view showing an LED light source in another embodiment of a surface light emitting lamp according to a preferred embodiment of the present invention.
  • FIG. 8 is a view showing a fine pattern shown in the LED light source in another embodiment of the surface-emitting lamp according to an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method of manufacturing a surface light emitting lamp according to an embodiment of the present invention.
  • FIG. 11 is a view showing a surface light emitting lamp according to a second embodiment which is another preferred embodiment of the present invention.
  • FIG. 12 is a view showing a surface light emitting lamp according to a third embodiment of the present invention.
  • FIG. 13 is a diagram illustrating B-B of FIG. 12;
  • FIG. 14 is a view showing a surface light emitting lamp according to a fourth embodiment of the present invention.
  • FIG. 15 is a view illustrating C-C of FIG. 13.
  • FIG. 1 is a structural diagram of a surface light emitting lamp 1 according to a preferred embodiment of the present invention.
  • the surface light emitting lamp 1 may include a printed circuit board 100, a plurality of LED light sources 200, a silicon cover 300, and a diffusion material 400. have.
  • the printed circuit board 100 may provide one surface as a mounting surface of the LED light source. Circuit patterns can be printed for electrical connection between the mounted LED light sources.
  • the printed circuit board 100 may be formed by forming a circuit pattern on the FR4 substrate, exposing a terminal for mounting an LED light source and other devices, and then covering the circuit pattern with a resist film.
  • the printed circuit board may be implemented as a flexible substrate.
  • the printed circuit board 100 may include a substrate 110, a printed circuit layer 120, and a resistor layer 130.
  • the printed circuit board 100 includes a resistor layer 130 on which a circuit pattern 120 is formed on the FR4 substrate 110 and covers a circuit pattern excluding the LED mounting area of the circuit pattern 120. can do.
  • the LED light source 200 may be mounted in the LED mounting area.
  • the reflector 140 may be formed in all or part of the printed circuit board 100. That is, by forming the reflector 140 in the region in which the LED light source 200 is not mounted on the printed circuit board 100, the light emitted from the LED light source 200 is reflected upwards to increase light extraction efficiency. It can increase.
  • the reflector 140 may be formed on the register layer 130 of the printed circuit board 100.
  • the reflector 140 may be formed by depositing aluminum (Al).
  • Al aluminum
  • the reflector 140 may be formed by depositing aluminum (Al).
  • Al aluminum
  • the present embodiment by forming an aluminum layer on the surface of the printed circuit board 100, the light emitted from the LED light source 200 can be reflected in the upper direction of the printed circuit board 100.
  • the reflector 140 may protrude from the reflector 140.
  • the reflective pattern 150 may be formed of Ni / Ag using a printing process. As such, when the reflective pattern is formed using the printing process, the process may be simplified as compared with the case of attaching a separate pattern film.
  • the reflective pattern 150 may be formed in a shape having a predetermined interval, and because it is a concave-convex shape having a predetermined height, it may serve to reflect the light emitted from the LED light source 200 in the upper direction of the printed circuit board. have.
  • the reflective pattern 150 may be implemented to have a slope in one direction. That is, the cross section of the reflective pattern may be formed so that the inclination in one direction is larger than the inclination in the other direction. By doing this, the reflection efficiency can be further increased.
  • the LED mounting printed circuit board 100 may include a reflector layer 140 and a reflective pattern 150a provided on the printed circuit board 100.
  • the reflective pattern 150a of the present embodiment differs from the embodiment of FIG. 2 in that the reflective pattern is formed in an irregular concave-convex structure.
  • the irregular concave-convex structure may be a shape other than the form in which the concave-convex pattern is formed at regular intervals as shown in FIG. 2. That is, as shown in the drawings, not only the irregular shape may be included, but the irregularities may be irregularly arranged.
  • the irregular reflection pattern may include a discontinuous dot shape.
  • the method of forming irregular irregularities may be performed in a manner obvious to those skilled in the art, such as printing, deposition, printing or grinding after deposition.
  • the LED light source 200 may be an LED package.
  • the LED light source may be a side view type LED package. By using the side view type LED package, it is possible to prevent the point light source from appearing on the light emitting surface of the surface light emitting lamp according to the present embodiment. Although the side view type LED package is illustrated in the present embodiment, a top view type LED package may also be used.
  • the LED light source 200 may be implemented in various forms such as a lens type, COB type.
  • the LED light source 200 may include an LED element 210 mounted on the printed circuit board 100 and a lens 220 covering the LED element 210.
  • the LED element 210 may be an LED chip.
  • the LED chip may be used in this case.
  • a phosphor for converting white light may be included in the lens.
  • the LED chip may be mounted on the substrate by wire bonding or flip chip bonding, and the lens covering the LED chip may be formed by an injection process.
  • the LED element 210 may be an LED package in which an LED chip is mounted in a housing.
  • an LED chip may be mounted by wire bonding or flip chip bonding, and a molding part may be formed to cover the LED chip.
  • a phosphor for converting white light may be included in a molding part inside the package.
  • the lens 220 may have a shape in which a central portion of the upper surface is concave 221 and a peripheral portion thereof is convex 222.
  • the general lens has a convex shape, but as shown in the perspective view of FIG. 4A and the cross-sectional view of FIG. 4B, the lens 220 according to the present embodiment has a concave shape.
  • the center portion can be in the form of a point.
  • the LED element 210 is located below the central portion. Due to the characteristics of the LED device, the optical properties may be different depending on the light emission direction, thereby reducing the light uniformity from the outside. In order to compensate for this, by changing the shape of the lens according to the light emission characteristics it can improve the light uniformity from the outside. In this embodiment, light uniformity can be improved by making the lens thickness of the upper part of an LED element thin and making the lens thickness of a side upper part relatively thick.
  • Fine patterns may be formed on the surface of the lens 220.
  • the fine pattern may be formed in the form of irregularities on the surface of the lens.
  • the light reflected inside the lens due to total reflection caused by the flat surface of the lens can be extracted to the outside of the lens to further expand the dispersion of light emitted from the lens surface.
  • the micropattern may be implemented in various shapes and arrangements.
  • the LED light source 200 may further include a light diffusing agent 230 inside the lens 220.
  • the light diffusing agent 230 may serve to diffuse light emitted from the LED device 210.
  • the light diffusing agent 230 may be used by selecting at least one from titanium oxide, valley titanate, aluminum oxide, silicon oxide, zinc oxide, a metal piece or a phosphor.
  • the light diffusing agent 230 and the phosphor 240 are both included. However, according to the exemplary embodiment, only the light diffusing agent 230 may be used or only the phosphor may be used.
  • 6 (a) and 6 (b) show fine patterns provided on the surface of the lens 220 in the LED light source 200 according to another embodiment of the present invention, respectively.
  • the micropattern 223 formed on the surface of the lens 220 may be formed in a concentric shape centering on the central portion 221 of the lens 220. Although only a few concentric shapes are shown in this figure, the actual product may be arranged in a more compact form.
  • the fine pattern 223 formed on the surface of the lens 220 may be formed to extend radially from the central portion 221 of the lens 220.
  • the actual products may be arranged in a more compact form. Further, in other embodiments, the concentric and radial forms may be combined.
  • FIG. 7 is a perspective view of an LED light source 200a according to another embodiment of the present invention.
  • an LED element 210 is mounted on a printed circuit board 100, and a lens 220a covering the LED element is formed.
  • the LED element 210 may be an LED chip.
  • the LED chip may be used in this case.
  • a phosphor for converting white light may be included in the lens.
  • the LED chip may be mounted on the substrate by wire bonding or flip chip bonding, and the lens covering the LED chip may be formed by an injection process.
  • the LED element 210 may be an LED package in which an LED chip is mounted in a housing.
  • an LED chip may be mounted by wire bonding or flip chip bonding, and a molding part may be formed to cover the LED chip.
  • a phosphor for converting white light may be included in a molding part inside the package.
  • the lens 220a may have a shape in which a central portion of the image surface is concave and a peripheral portion thereof is convex. Unlike the embodiment of FIG. 4, the lens according to the present exemplary embodiment may have a central portion 221a formed in a linear shape and symmetrically with respect to the central portion. That is, the lens 220a may have a shape in which two hemispherical lenses 222a and 222b are connected so that a part thereof overlaps.
  • the LED element 210 is located below the central portion. Due to the characteristics of the LED device, the optical properties may be different depending on the light emission direction, thereby reducing the light uniformity from the outside.
  • light uniformity can be improved by making the lens thickness of the upper part of an LED element thin and making the lens thickness of a side upper part relatively thick.
  • the lens 220a of the LED light source according to the present embodiment may have a form in which both sides thereof are removed in the longitudinal direction.
  • the scattering angle of the light emitted from the LED device 210 may be adjusted by the lens formed in the longitudinal direction.
  • the angle scattered along the longitudinal direction of the lens can be wider than the angle scattered along the width direction of the lens.
  • the shape of the lens 220a may vary according to the use of the surface light source lamp, and as shown in the present embodiment, the radiation angle of the light may be controlled by cutting and removing both sides in the longitudinal direction.
  • the fine pattern may be formed in the form of irregularities on the surface of the lens.
  • the light uniformity can be improved as compared with the case where there is no fine pattern.
  • the 8A illustrates a fine pattern 223a formed only in the central region of the lens 220a. Since the LED element 210 is positioned below the central portion of the lens 220a, the light may be most strongly emitted there. Accordingly, by forming the fine pattern 223a at the center of the lens, which is the lens portion of the region where the LED element 210 is located, as in the present embodiment, the intensity and uniformity of the light can be improved.
  • Fine patterns may be uniformly formed not only on the top of the lens but on the entire side surface. By forming the fine pattern as described above, the intensity and uniformity of the light emitted from the lens 220a may be improved.
  • the size and shape of the fine pattern may be implemented in various ways.
  • 9 (a) and 9 (b) are experimental examples for explaining the effects of the LED light sources 200 and 200a according to the present invention.
  • FIG. 9A illustrates light output without a micropattern formed on the surface of the lens of FIG. 4.
  • FIG. 9B illustrates a micropattern on the surface of the same type lens. The light output is measured in the formed state. 9A and 9B, the light outputs PKG X and PKG Y from the LED devices are the same, but the light outputs (lens X and lens Y) emitted through the lens form a fine pattern. Compared to the case in which one case is not formed, the directivity angle is reduced and the light uniformity is improved.
  • the silicon cover 300 may be formed to cover the printed circuit board 100 and the LED light sources 200 and 200a. It is formed to a height that can cover the LED light source (200, 200a).
  • the silicon cover 300 may have a transparent or translucent property and may transmit light emitted from the LED light sources 200 and 200a.
  • the process of forming the silicon cover 300 on the printed circuit board 100 may include a process of putting a printed circuit board in a jig, and pouring liquid silicone to cure to a predetermined mold.
  • the surface light emitting lamp 1 of various shapes can be formed.
  • the printed circuit board 100 may be manufactured in the form of a surface light source lamp to be actually formed, and in this case, the silicon cover 300 may also be formed in the form of a printed circuit board.
  • the silicon cover 300 since the silicon cover 300 is manufactured by pouring liquid silicon in the process of manufacturing, the light emitting surface of the surface light source lamp 1 can be freely implemented in any form.
  • the silicon cover 300 may be manufactured in a transparent or translucent state.
  • the light transmittance is good, but since the LED light source inside is visible, it may not be visually good.
  • translucent silicon the internal LED light source may not be visible.
  • the material of the silicon cover 300 may be selected according to the use of the surface emitting lamp. That is, in the case of decorative or indicating lamps that do not require large brightness, it is preferable to use a translucent silicone material.
  • the diffusion material 400 is dispersed in the silicon cover 300.
  • the diffusion material 400 may increase light extraction efficiency of the surface light emitting lamp 1 by dispersing the light traveling in the silicon cover 300.
  • the diffusion material 400 may be mixed with liquid silicon, and the liquid silicon mixed with the diffusion material may be poured into a jig to harden.
  • the silicon cover 300 used a moldable silicone, and the diffusion material 400 mixed therewith may use aluminum oxide.
  • the molten silicon and the aluminum oxide may be mixed in a ratio of 80:20 to form liquid silicon, and then hardened to form the silicon cover.
  • the light emitted from the LED light source 200 passes through the silicon cover 300 and is dispersed through the diffusion material 400 dispersed in the silicon cover 300.
  • a surface emitting lamp having a shape of emitting light from the entire light emitting surface of the silicon cover 300 may be formed.
  • FIG. 10 is a flowchart showing a method of manufacturing the surface light emitting lamp 1 according to the preferred embodiment of the present invention.
  • the LED light source 200 is a step of mounting the LED light source 200 on the printed circuit board 100.
  • the LED light source 200 may be an LED package in the form of a side view.
  • the reflector 140 may be formed in a portion of the printed circuit board 100 where the LED light source is not mounted.
  • a flexible substrate may be used as the printed circuit board 100.
  • FIG. 10B illustrates a step of placing the printed circuit board 100 on the jig 10.
  • the jig 10 may pour the liquid silicon to hold the outer shape of the liquid silicon so that a silicon cover of a desired shape is formed upon curing.
  • FIG. 10 (c) is a step of applying a liquid silicon containing the diffusion material 400 to the jig 10 in which the printed circuit board 100 is located.
  • the liquid silicon may be applied to cover the printed circuit board 100 and the LED light source 200.
  • the height of the silicon to be applied should be higher than the mounting height of the LED light source 200.
  • FIG. 10D illustrates a step of forming the silicon cover 300 by curing the applied liquid silicon.
  • the jig may be removed to form a surface light emitting lamp.
  • the LED light source 200 is taken as an example, but is not necessarily limited thereto, and the LED light source 200a may be used.
  • the surface light emitting lamp 1 including the printed circuit board 100, the plurality of LED light sources 200 and 200a, the silicon cover 300, and the diffusion material 400 is used.
  • Surface light emission is implemented, but is not necessarily limited thereto, and surface light emission may be implemented using only the LED light sources 200 and 200a.
  • each of the LED light sources 200 and 200a illustrated in FIGS. 4 to 8 uses the lenses 220 and 220a having the fine patterns 223 and 223a to adjust the light uniformity of the light emitted from the LED element 210. It can be improved to implement surface light emission.
  • the printed circuit board 100 is also used for the LED light source (200, 200a), the description thereof will be omitted.
  • Fig. 11 is a view showing the surface emitting lamp 1a according to the second preferred embodiment of the present invention. Therefore, the description of the same components as the surface light emitting lamp 1 according to the preferred embodiment of the present invention described above will be omitted.
  • the surface light emitting lamp 1a may include a liquid 600 filled in the LED light sources 200 and 200a, the transparent tube 500, and the transparent tube 500. It may include. In addition, bubbles 610 may be formed in the liquid 600.
  • the LED light sources 200 and 200a illustrated in FIGS. 4 to 8 may be used.
  • the term 'transparent' in the transparent tube 500 may include not only a completely transparent material but also a semi-transparent material capable of transmitting light. As such, the surface light source can be produced by using the transparent tube.
  • the transparent tube according to the present embodiment may be made of a flexible material capable of bending.
  • a transparent tube of such a flexible material By using a transparent tube of such a flexible material, various types of surface light source can be manufactured, and processing and assembly are easy.
  • LED light sources 200 and 200a may be disposed at both ends of the transparent tube 500, respectively.
  • the LED light source may be an LED disposed on the printed circuit board 100, or the openings at both ends of the tube may be manufactured to fit the circumference of the light source so that both ends of the tube 500 may be sealed by the LED light source.
  • one LED light sources 200 and 200a are disposed at both ends of the transparent tube, but the light source may be disposed only at one end of the tube 500 according to the shape of the tube 500 and the use of the LED lamp. It is also possible to use a form in which a plurality of LED light sources are arranged.
  • the liquid 600 may be filled in the transparent tube 500.
  • Bubble 610 may be formed in the liquid 600.
  • the bubble 610 formed in the liquid 600 reflects or scatters the light emitted from the LED light source 120 to emit light to the outside of the transparent tube.
  • bubbles of water may be generated by mixing sodium hydrogencarbonate (NaHCO 3 ) with water (H 2 O).
  • NaHCO 3 sodium hydrogencarbonate
  • H 2 O water
  • the liquid in which bubbles are formed may be variously implemented as long as the material may generate bubbles.
  • the density of the bubbles 610 in the liquid 600 may be variously adjusted according to the characteristics of the surface emitting lamp 1a to be manufactured. In this embodiment, about 20 to 30% of the liquid in the transparent tube is formed so that the bubble occupies.
  • the bubble 610 formed in the liquid 600 reflects or scatters the light emitted from the LED light sources 200 and 200a disposed at both ends of the transparent tube 500 so as to be outside the transparent tube 500. It can play a role of emitting.
  • the surface light source may be formed using light emitted to the outside of the transparent tube 500.
  • various types of surface light sources can be realized by using the transparent tube 500 that can be bent.
  • the surface light emitting lamp 1b may include an LED light source 200, 200a, a silicon cover 300a, a diffusion material 400, and a plurality of transparent tubes 500. ) And a liquid 600 filled in each of the transparent tube 500. In addition, bubbles 610 may be formed in the liquid 600.
  • the LED light source of the surface light emitting lamp 1b may be the LED light sources 200 and 200a illustrated in FIGS. 4 to 8.
  • the LED light sources 200 and 200a may be installed at both ends of the transparent tube 500.
  • the LED light sources 200 and 200a may be installed only at one end of both ends of the transparent tube 500.
  • the silicon cover 300a is installed to surround the plurality of transparent tubes 500.
  • the silicon cover 300a has a transparent or translucent property, and the light emitted from the LED light source 200 passes through the transparent tube 500 after being reflected or scattered by the bubble 610. Then, the light passing through the transparent tube 500 is dispersed by the diffusion material 400 dispersed in the silicon cover 300a.
  • a reflector 140 is further installed on one surface of the silicon cover 300a to reflect light emitted from the LED light sources 200 and 200a in one direction to further increase light extraction efficiency. It can increase.
  • the reflective pattern 150 may protrude between the reflector 140 and the silicon cover 300a as described above.
  • the surface light emitting lamp 1c may include an LED light source 200, 200a, a silicon cover 300a, a diffusion material 400, and a plurality of plastic optical fibers ( 700).
  • one region of the plastic optical fiber 700 may be surface treated by an abrasive (not shown) so that light may be drawn out.
  • the plastic optical fiber 700 may have a plurality of surface treatment areas D that are surface treated.
  • the LED light source of the surface light emitting lamp 1c may be the LED light sources 200 and 200a illustrated in FIGS. 4 to 8.
  • the LED light sources 200 and 200a may be installed at both ends of the plastic optical fiber 700.
  • the LED light sources 200 and 200a may be installed only at one end of both ends of the plastic optical fiber 700.
  • the silicon cover 300a is installed to surround the plurality of plastic optical fibers 700.
  • the silicon cover 300a has a transparent or translucent property, and the light emitted from the LED light source 200 is distributed through the surface treatment area D of the plastic optical fiber 700 and then dispersed in the silicon cover 300a. Dispersed by the diffusion material 400.
  • the surface light emitting lamp 1c is directional by the surface treatment region D, and the diffusion material 400 is preferably disposed on the light path irradiated through the surface treatment region D.
  • the reflector 140 is not required, and the diffuser 400 is also on the optical path irradiated through the surface treatment region D. Cost can be saved because it only needs to exist.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

The present invention relates to a flat luminescent lamp and a manufacturing method therefor. The flat luminescent lamp may comprise: a printed circuit board; a plurality of LED light sources mounted on the printed circuit board; a silicon cover for covering the plurality of LED light sources; and a diffusion material distributed within the silicon cover. Accordingly, it is possible to reduce the number of LED elements, thereby reducing costs and allowing the shape of the flat luminescent lamp to be freely implemented.

Description

면발광 램프 및 그 제조방법Surface emitting lamp and manufacturing method thereof
본 발명은 면발광 램프 및 그 제조방법에 관한 것으로서, 보다 상세하게는 실리콘 또는 기포를 이용한 면발광 램프에 관한 것이다.The present invention relates to a surface light emitting lamp and a method of manufacturing the same, and more particularly to a surface light emitting lamp using silicon or bubbles.
발광 다이오드(LED)는 p형과 n형 반도체의 접합으로 이루어져 있으며, 전압을 가하면 전자와 정공의 결합으로 반도체의 밴드 갭(band gap)에 해당하는 에너지를 빛의 형태로 방출하는 일종의 광전소자이다. 1990년대 중반 이후에 청색 LED가 개발되면서 총천연색 디스플레이(display)가 가능하게 되었다. A light emitting diode (LED) is composed of a junction between a p-type and an n-type semiconductor, and is a kind of optoelectronic device that emits energy corresponding to the band gap of a semiconductor in the form of light by combining electrons and holes when voltage is applied. . Since the mid-1990s, blue LEDs have been developed, enabling full-color displays.
발광다이오드(LED) 광원은 열손실이 작은 광원으로서 백열전구에 비해 전력 소비량이 매우 작아 에너지 절약이 가능하며, 수명 및 유지보수 면에서도 우수한 특징을 나타내고, 무수은으로 환경친화적이기 때문에, 발광다이오드(LED)는 일반 조명등, 건물 장식등, 무드등, 교통 신호등, 실내 및 실외 전광판, 유도등, 경고등, 각종 보안 장비용 광원, 살균 또는 소독용 광원 등에 폭넓게 활용되고 있다.Light-emitting diode (LED) light source is a light source with low heat loss, which consumes much less energy than incandescent bulbs, saves energy, shows excellent characteristics in terms of life and maintenance, and is environmentally friendly with mercury-free light. ) Is widely used in general lighting, building decoration lights, mood lights, traffic lights, indoor and outdoor billboards, induction lights, warning lights, light sources for various security equipment, light sources for sterilization or disinfection.
특히, 최근 들어 자동차 실내외 조명에 있어서, 사용수명이 길고 내충격성이 뛰어난 고강도의 LED 램프를 사용하는 추세이다. In particular, in recent years, in the interior and exterior lighting of automobiles, there is a trend to use a high-intensity LED lamp having a long service life and excellent impact resistance.
통상적으로 조명이 설치되는 자동차 내외부 표면은 평평하지 않고 굴곡된 부분이 많다. 따라서, 자동차 내외부 표면을 따라 조명을 설치하려면 광원이 설치되는 구동회로 기판도 표면을 따라 굴곡질 수 있도록 유연해야 한다. 일반적으로 자동차용 조명용 발광 다이오드 구동회로 기판은 플렉서블(flexible) 기판을 사용한다. Typically, the interior and exterior surfaces of automobiles that are illuminated are not flat and have many curved portions. Therefore, in order to install the light along the inside and outside surfaces of the vehicle, the driving circuit board on which the light source is installed must also be flexible to bend along the surface. In general, a light emitting diode driving circuit board for automotive lighting uses a flexible substrate.
이러한 LED 소자를 이용하여 면발광 램프 제조하는 방법은 직하형 타입과 에지형 타입으로 나눌 수 있다. 이는 확산판(Diffuse plate)의 하부 또는 에지 영역에 LED 소자를 배치시키는 형태이다. 이러한 형태의 경우 많은 수의 LED 소자를 사용하게 되므로 제품의 단가가 상승되고, 확산판의 형태를 자유롭게 하지 못한다는 문제점이 있다. The method of manufacturing a surface emitting lamp using such an LED device can be divided into a direct type and an edge type. This is a form of placing the LED element in the lower or edge region of the diffuser plate (Diffuse plate). In this type, since a large number of LED elements are used, the unit cost of the product is increased, and the shape of the diffusion plate is not free.
이에, 본 발명은 상기한 문제점을 해결하기 위한 것으로서, 적은 수의 LED 소자를 사용하고도 면발광 효과를 내면서도 직물 등에도 설치할 수 있는 면발광 램프를 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a surface light emitting lamp that can be installed on a fabric and the like while using a small number of LED elements and having a surface light emitting effect.
상기 목적을 달성하기 위한 본 발명은, 인쇄회로기판; 상기 인쇄회로기판에 실장된 복수개의 LED 광원; 상기 복수개의 LED 광원을 덮는 실리콘 커버; 및 상기 실리콘 커버 내에 분포되는 확산재를 포함하는 면발광 램프를 제공할 수 있다.The present invention for achieving the above object, a printed circuit board; A plurality of LED light sources mounted on the printed circuit board; A silicon cover covering the plurality of LED light sources; And a diffuser distributed in the silicon cover.
바람직하게는, 상기 인쇄회로기판의 실장면 중 일부 영역에 형성되는 리플렉터를 더 포함할 수 있다. Preferably, the method may further include a reflector formed in a portion of a mounting surface of the printed circuit board.
바람직하게는, 상기 LED 광원은, 사이드뷰(Side view) 타입 LED 패키지일 수 있다.Preferably, the LED light source may be a side view type LED package.
바람직하게는, 상기 인쇄회로 기판은 유연성 인쇄회로기판(flexible PCB)일 수 있다.Preferably, the printed circuit board may be a flexible printed circuit board (flexible PCB).
바람직하게는, 상기 리플렉터는 돌출 형성된 반사패턴;을 포함할 수 있다.Preferably, the reflector may include a protruding reflective pattern.
바람직하게는, 상기 리플렉터는 상기 인쇄회로기판의 표면에 Al을 증착하여 형성될 수 있다.Preferably, the reflector may be formed by depositing Al on the surface of the printed circuit board.
바람직하게는, 상기 반사패턴은, 일정한 간격으로 형성될 수 있다.Preferably, the reflective pattern may be formed at regular intervals.
여기서, 상기 반사패턴은, 일측 방향으로 기울어진 기울기를 갖는 요철일 수 있다.Here, the reflective pattern may be irregularities having an inclination inclined in one direction.
바람직하게는, 상기 반사패턴은, 불규칙한 요철일 수 있다.Preferably, the reflection pattern may be irregular irregularities.
상기 목적을 달성하기 위한 본 발명은, 투명 튜브; 상기 투명 튜브의 적어도 일단에 배치되는 LED 광원; 및 상기 투명 튜브 내부에 채워지는 액체를 포함하며, 상기 액체 내에는 기포가 생성된 것을 특징으로 하는 면발광 램프를 제공할 수 있다.The present invention for achieving the above object, a transparent tube; An LED light source disposed at at least one end of the transparent tube; And a liquid filled in the transparent tube, and the surface-emitting lamp may be provided with bubbles formed in the liquid.
바람직하게는, 상기 투명 튜브는 유연성 튜브일 수 있다.Preferably, the transparent tube may be a flexible tube.
그리고, 상기 액체 용량의 20~30 %가 기포일 수 있다.In addition, 20 to 30% of the liquid volume may be bubbles.
상기 목적을 달성하기 위한 본 발명은, 복수 개의 투명 튜브; 상기 투명 튜브의 적어도 일단에 배치되는 LED 광원; 상기 투명 튜브 내부에 채워지는 액체; 상기 투명 튜브를 감싸도록 설치되는 실리콘 커버; 및 상기 실리콘 커버 내에 분포되는 확산재를 포함하는 면발광 램프를 제공할 수 있다.The present invention for achieving the above object, a plurality of transparent tubes; An LED light source disposed at at least one end of the transparent tube; A liquid filled in the transparent tube; A silicon cover installed to surround the transparent tube; And a diffuser distributed in the silicon cover.
바람직하게는, 상기 실리콘 커버의 일 영역에 형성되는 리플렉터를 더 포함할 수 있다.The reflector may further include a reflector formed in one region of the silicon cover.
바람직하게는, 상기 리플렉터는 돌출 형성된 반사패턴을 포함할 수 있다.Preferably, the reflector may include a protruding reflective pattern.
상기 목적을 달성하기 위한 본 발명은, 복수 개의 플라스틱 광섬유; 상기 광섬유의 적어도 일단에 배치되는 LED 광원; 상기 광섬유를 감싸도록 설치되는 실리콘 커버; 및 상기 실리콘 커버 내에 분포되는 확산재를 포함하며, 상기 광섬유는 광이 인출될 수 있도록 표면 처리된 표면 처리 영역을 포함하는 면발광 램프를 제공할 수 있다.The present invention for achieving the above object, a plurality of plastic optical fiber; An LED light source disposed at at least one end of the optical fiber; A silicon cover installed to surround the optical fiber; And a diffusion material distributed in the silicon cover, wherein the optical fiber may provide a surface light emitting lamp including a surface treatment area surface-treated so that light may be drawn out.
바람직하게는, 상기 확산재는 상기 표면 처리 영역을 통해 조사되는 광 경로상에 배치될 수 있다.Preferably, the diffusion material may be disposed on an optical path irradiated through the surface treatment region.
한편, 상기 LED 광원은, 상기 인쇄회로기판에 실장되는 LED 소자; 및 상기 LED 소자를 덮으며 상면의 중심부가 오목하고 주변부가 볼록한 렌즈를 포함하며, 상기 렌즈의 표면에 미세패턴이 형성될 수 있다.On the other hand, the LED light source, the LED element mounted on the printed circuit board; And a lens covering the LED element and having a concave portion and a convex portion of an upper surface thereof, and a fine pattern on a surface of the lens.
바람직하게는, 실리콘 소재로 형성된 상기 렌즈는 내부에 분포되는 광확산재;를 더 포함할 수 있다.Preferably, the lens formed of a silicon material may further include a light diffuser distributed therein.
바람직하게는, 상기 미세패턴은, 상기 렌즈 표면 전체에 형성될 수 있다.Preferably, the fine pattern may be formed on the entire surface of the lens.
바람직하게는, 상기 렌즈는 상기 중심부가 선형으로 형성되며 상기 중심부를 중심으로 좌우 대칭으로 형성될 수 있다.Preferably, the lens is linearly formed in the center portion and may be formed symmetrically about the center portion.
바람직하게는, 상기 렌즈는 두 개의 반구 형태 렌즈가 일부가 중첩되도록 연결되는 형태일 수 있다.Preferably, the lens may have a shape in which two hemispherical lenses are connected so that some of them overlap.
바람직하게는, 상기 렌즈는 길이방향으로 양측 일부가 제거된 형태일 수 있다.Preferably, the lens may have a form in which both sides of the lens are removed in the longitudinal direction.
상기 목적을 달성하기 위한 본 발명은, 인쇄회로기판에 실장되는 LED 소자; 및 상기 LED 소자를 덮으며 상면의 중심부가 오목하고 주변부가 볼록한 렌즈를 포함하며, 상기 렌즈의 표면에 미세패턴이 형성된 면발광 램프를 제공할 수 있다.The present invention for achieving the above object is an LED element mounted on a printed circuit board; And a lens covering the LED element and having a concave portion and a convex portion of an upper surface thereof, and providing a surface light emitting lamp having a fine pattern formed on a surface of the lens.
바람직하게는, 실리콘 소재로 형성된 상기 렌즈는 내부에 분포되는 광확산재;를 더 포함할 수 있다.Preferably, the lens formed of a silicon material may further include a light diffuser distributed therein.
바람직하게는, 상기 미세패턴은, 상기 렌즈 표면 전체에 형성될 수 있다.Preferably, the fine pattern may be formed on the entire surface of the lens.
바람직하게는, 상기 렌즈는 상기 중심부가 선형으로 형성되며 상기 중심부를 중심으로 좌우 대칭으로 형성될 수 있다.Preferably, the lens is linearly formed in the center portion and may be formed symmetrically about the center portion.
바람직하게는, 상기 렌즈는 두 개의 반구 형태 렌즈가 일부가 중첩되도록 연결되는 형태일 수 있다.Preferably, the lens may have a shape in which two hemispherical lenses are connected so that some of them overlap.
바람직하게는, 상기 렌즈는 길이방향으로 양측 일부가 제거된 형태일 수 있다.Preferably, the lens may have a form in which both sides of the lens are removed in the longitudinal direction.
상기 목적을 달성하기 위한 본 발명은, 인쇄회로 기판에 LED 광원을 실장하는 단계; 기설정된 틀을 갖는 지그에 상기 인쇄회로기판을 위치시키는 단계; 확산재가 섞인 액상의 실리콘으로 상기 인쇄회로기판의 LED 광원을 도포하는 단계; 및 상기 액상의 실리콘을 경화시키는 단계를 포함하는 면발광 램프 제조방법을 제공할 수 있다.The present invention for achieving the above object, the step of mounting an LED light source on a printed circuit board; Positioning the printed circuit board on a jig having a predetermined frame; Coating an LED light source of the printed circuit board with liquid silicon mixed with a diffusion material; And it can provide a surface-emitting lamp manufacturing method comprising the step of curing the liquid silicone.
바람직하게는, 상기 LED 광원은, 상기 인쇄회로기판에 실장되는 LED 소자; 및 상기 LED 소자를 덮으며 상면의 중심부가 오목하고 주변부가 볼록한 렌즈를 포함하며, 상기 렌즈의 표면에 미세패턴이 형성될 수 있다.Preferably, the LED light source, the LED element mounted on the printed circuit board; And a lens covering the LED element and having a concave portion and a convex portion of an upper surface thereof, and a fine pattern on a surface of the lens.
본 발명의 바람직한 일실시예에 따르면, LED 소자의 수를 줄일 수 있어 비용을 절감할 수 있으며, 면발광 램프의 형태를 자유롭게 구현이 가능하다.According to a preferred embodiment of the present invention, the number of LED elements can be reduced, thereby reducing the cost, and the shape of the surface emitting lamp can be freely implemented.
도 1은 본 발명의 바람직한 일실시 형태에 따른 면발광 램프의 구조도이고, 1 is a structural diagram of a surface light emitting lamp according to an embodiment of the present invention,
도 2 및 도 3은 도 1의 A를 나타내는 도면이고,2 and 3 are views showing A of FIG. 1,
도 4는 (a) 및 (b)는 각각 본 발명의 바람직한 일실시 형태에 따른 면발광 램프의 LED 광원을 나타내는 도면이고,(A) and (b) are each a diagram showing an LED light source of a surface emitting lamp according to a preferred embodiment of the present invention,
도 5는 본 발명의 바람직한 일실시 형태에 따른 면발광 램프의 다른 실시예 형태에 LED 광원을 나타내는 도면이고,5 is a view showing an LED light source in another embodiment of the surface-emitting lamp according to a preferred embodiment of the present invention.
도 6은 LED 광원의 렌즈 표면에 형성된 미세패턴을 나타내는 도면이고,6 is a view showing a fine pattern formed on the lens surface of the LED light source,
도 7은 본 발명의 바람직한 일실시 형태에 따른 면발광 램프의 또 다른 실시예 형태에 LED 광원을 나타내는 도면이고,7 is a view showing an LED light source in another embodiment of a surface light emitting lamp according to a preferred embodiment of the present invention,
도 8은 본 발명의 바람직한 일실시 형태에 따른 면발광 램프의 또 다른 실시예 형태에 LED 광원에 나타난 미세패턴을 나타내는 도면이고,8 is a view showing a fine pattern shown in the LED light source in another embodiment of the surface-emitting lamp according to an embodiment of the present invention,
도 9의 (a) 및 (b)는 본 발명에 따른 LED 광원의 효과를 설명하기 위한 실험예이고,9 (a) and (b) are experimental examples for explaining the effect of the LED light source according to the present invention,
도 10은 본 발명의 바람직한 일실시 형태에 따른 면발광 램프의 제조방법의 순서도이고,10 is a flowchart of a method of manufacturing a surface light emitting lamp according to an embodiment of the present invention.
도 11은 본 발명의 바람직한 다른 실시 형태인 제2 실시예에 따른 면발광 램프를 나타내는 도면이고,11 is a view showing a surface light emitting lamp according to a second embodiment which is another preferred embodiment of the present invention;
도 12는 본 발명의 바람직한 제3 실시예에 따른 면발광 램프를 나타내는 도면이고,12 is a view showing a surface light emitting lamp according to a third embodiment of the present invention,
도 13은 도 12의 B-B를 나타내는 도면이고, FIG. 13 is a diagram illustrating B-B of FIG. 12;
도 14는 본 발명의 바람직한 제4 실시예에 따른 면발광 램프를 나타내는 도면이고,14 is a view showing a surface light emitting lamp according to a fourth embodiment of the present invention,
도 15는 도 13의 C-C를 나타내는 도면이다. FIG. 15 is a view illustrating C-C of FIG. 13.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 본 발명의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되는 이하의 상세한 설명과 바람직한 실시예들로부터 더욱 명백해질 것이다. 그리고 본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해서 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다. 그리고 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있는 관련된 공지기술에 대한 상세한 설명은 생략한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments in conjunction with the accompanying drawings. And the terms or words used in this specification and claims should not be construed as being limited to the ordinary or dictionary meanings, the inventors properly define the concept of terms in order to best explain their invention in the best way Based on the principle that it can be, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. In describing the present invention, detailed descriptions of related well-known technologies that may unnecessarily obscure the subject matter of the present invention will be omitted.
제1 실시예First embodiment
도 1은 본 발명의 바람직한 일실시 형태에 따른 면발광 램프(1)의 구조도이다. 1 is a structural diagram of a surface light emitting lamp 1 according to a preferred embodiment of the present invention.
도 1을 참조하여 살펴보면, 본 실시형태에 따른 면발광 램프(1)는, 인쇄회로기판(100), 복수개의 LED 광원(200), 실리콘 커버(300) 및 확산재(400)를 포함할 수 있다. Referring to FIG. 1, the surface light emitting lamp 1 according to the present embodiment may include a printed circuit board 100, a plurality of LED light sources 200, a silicon cover 300, and a diffusion material 400. have.
상기 인쇄회로기판(100)은, 일면을 LED 광원의 실장면으로 제공할 수 있다. 실장되는 LED 광원 사이의 전기적인 연결을 위해 회로패턴이 인쇄될 수 있다. 상기 인쇄회로기판(100)은, FR4 기판상에 회로패턴을 형성하고, LED 광원 및 기타 소자의 실장을 위한 단자를 노출시킨 후 상기 회로패턴을 레지스트막으로 덮은 형태일 수 있다. 또한, 상기 인쇄회로 기판은 플렉서블 기판으로 구현될 수도 있다. The printed circuit board 100 may provide one surface as a mounting surface of the LED light source. Circuit patterns can be printed for electrical connection between the mounted LED light sources. The printed circuit board 100 may be formed by forming a circuit pattern on the FR4 substrate, exposing a terminal for mounting an LED light source and other devices, and then covering the circuit pattern with a resist film. In addition, the printed circuit board may be implemented as a flexible substrate.
상기 인쇄회로기판(100)은 기판(110), 인쇄회로층(120) 및 레지스터층(130)을 포함할 수 있다.The printed circuit board 100 may include a substrate 110, a printed circuit layer 120, and a resistor layer 130.
즉, 상기 인쇄회로기판(100)은, FR4 기판(110)상에 회로패턴(120)이 형성되고, 상기 회로패턴(120) 중 LED 실장영역을 제외한 회로패턴을 덮는 레지스터층(130)을 포함할 수 있다. 그리고, 상기 LED 실장영역에는 LED 광원(200)이 실장될 수 있다. 본 실시형태에서는 고전적인 인쇄회로기판을 기준으로 설명하였으나, 플렉서블 인쇄회로기판(FPCB)에 대해서도 본 실시형태는 적용될 수 있다. That is, the printed circuit board 100 includes a resistor layer 130 on which a circuit pattern 120 is formed on the FR4 substrate 110 and covers a circuit pattern excluding the LED mounting area of the circuit pattern 120. can do. The LED light source 200 may be mounted in the LED mounting area. Although the present embodiment has been described with reference to a classic printed circuit board, the present embodiment can also be applied to a flexible printed circuit board (FPCB).
본 실시형태에서, 상기 인쇄회로기판(100)의 전체 또는 일부 영역에는 리플렉터(140)가 형성될 수 있다. 즉, 상기 인쇄회로기판(100)에서 상기 LED 광원(200)이 실장되지 않은 영역에 리플렉터(140)를 형성함으로서, 상기 LED 광원(200)으로부터 방출되는 광을 상부 방향으로 반사시켜 광추출 효율을 높일 수 있다. In the present embodiment, the reflector 140 may be formed in all or part of the printed circuit board 100. That is, by forming the reflector 140 in the region in which the LED light source 200 is not mounted on the printed circuit board 100, the light emitted from the LED light source 200 is reflected upwards to increase light extraction efficiency. It can increase.
좀 더 상세히 살펴보면, 상기 인쇄회로기판(100)의 상기 레지스터층(130) 상부에는 리플렉터(140)가 형성될 수 있다. 여기서, 상기 리플렉터(140)는 알루미늄(Al)을 증착하여 형성할 수 있다. 본 실시형태에서는 상기 인쇄회로기판(100)의 표면에 알루미늄층을 형성함으로서, LED 광원(200)으로부터 방출된 광을 상기 인쇄회로기판(100)의 상부 방향으로 반사시킬 수 있다. In more detail, the reflector 140 may be formed on the register layer 130 of the printed circuit board 100. Here, the reflector 140 may be formed by depositing aluminum (Al). In the present embodiment, by forming an aluminum layer on the surface of the printed circuit board 100, the light emitted from the LED light source 200 can be reflected in the upper direction of the printed circuit board 100.
한편, 도 2에 도시된 바와 같이, 상기 리플렉터(140)에는 반사패턴(150)이 돌출형성될 수 있다. 상기 반사패턴(150)은, 프린팅 공정을 이용하여 Ni/Ag 로 형성할 수 있다. 이처럼 프린팅 공정을 이용하여 반사패턴을 형성하는 경우, 별도의 패턴필름을 부착하는 경우에 비해 공정을 단순화시킬 수 있다. 상기 반사패턴(150)은 일정한 간격을 갖는 형태로 형성될 수 있으며, 소정의 높이를 갖는 요철형태이므로 상기 LED 광원(200)으로부터 방출된 광을 인쇄회로기판의 상부방향으로 반사시키는 역할을 할 수 있다. Meanwhile, as shown in FIG. 2, the reflector 140 may protrude from the reflector 140. The reflective pattern 150 may be formed of Ni / Ag using a printing process. As such, when the reflective pattern is formed using the printing process, the process may be simplified as compared with the case of attaching a separate pattern film. The reflective pattern 150 may be formed in a shape having a predetermined interval, and because it is a concave-convex shape having a predetermined height, it may serve to reflect the light emitted from the LED light source 200 in the upper direction of the printed circuit board. have.
상기 반사패턴(150)은 일측방향으로 기울기를 갖는 형태로 구현될 수도 있다. 즉, 반사패턴의 단면이 일측방향의 기울기가 다른측 방향의 기울기보다 큰 삼각형 형태가 되도록 형성할 수도 있다. 이렇게 함으로서, 반사효율을 더 높일 수 있다.The reflective pattern 150 may be implemented to have a slope in one direction. That is, the cross section of the reflective pattern may be formed so that the inclination in one direction is larger than the inclination in the other direction. By doing this, the reflection efficiency can be further increased.
도 3에 도시된 바와 같이, 본 실시형태에 따른 LED 실장용 인쇄회로기판(100)은, 상기 인쇄회로기판(100) 상에 마련된 리플렉터층(140) 및 반사패턴(150a)을 포함할 수 있다. 본 실시형태의 반사패턴(150a)이, 상기 도 2의 실시형태와 다른 점은, 반사패턴을 불규칙한 요철구조로 형성한 점이다. As shown in FIG. 3, the LED mounting printed circuit board 100 according to the present embodiment may include a reflector layer 140 and a reflective pattern 150a provided on the printed circuit board 100. . The reflective pattern 150a of the present embodiment differs from the embodiment of FIG. 2 in that the reflective pattern is formed in an irregular concave-convex structure.
여기서, 불규칙한 요철구조라는 것은, 상기 도 2와 같이 일정한 간격으로 요철패턴이 형성된 형태가 아닌 형태일 수 있다. 즉, 도면과 같이 요철의 형태가 불규칙한 것뿐만 아니라 요철의 배열이 불규칙한 경우도 포함될 수 있다. 이러한 불규칙한 반사패턴은 불연속적인 점 형상으로 형성되는 것도 포함할 수 있다. 이러한 불규칙한 요철을 형성하는 방법으로는 프린팅 방식, 증착, 프린팅이나 증착 후 그라인딩 등 해당 기술분야에서 당업자에게 자명한 방식으로 진행될 수 있다. Here, the irregular concave-convex structure may be a shape other than the form in which the concave-convex pattern is formed at regular intervals as shown in FIG. 2. That is, as shown in the drawings, not only the irregular shape may be included, but the irregularities may be irregularly arranged. The irregular reflection pattern may include a discontinuous dot shape. The method of forming irregular irregularities may be performed in a manner obvious to those skilled in the art, such as printing, deposition, printing or grinding after deposition.
상기 LED 광원(200)은, LED 패키지일 수 있다. 상기 LED 광원은 사이드뷰(sideview) 타입의 LED 패키지일 수 있다. 사이드뷰 타입의 LED 패키지를 사용함으로써, 본 실시형태에 따른 면발광 램프의 발광면에 점광원이 나타나는 것을 방지할 수 있다. 본 실시형태에서는 사이드뷰 타입의 LED 패키지를 도시하였으나, 탑 뷰(Top View) 타입의 LED 패키지도 사용될 수 있다. 또한, 상기 LED 광원(200)은 렌즈타입, COB 타입 등 다양한 형태로 구현될 수 있다. The LED light source 200 may be an LED package. The LED light source may be a side view type LED package. By using the side view type LED package, it is possible to prevent the point light source from appearing on the light emitting surface of the surface light emitting lamp according to the present embodiment. Although the side view type LED package is illustrated in the present embodiment, a top view type LED package may also be used. In addition, the LED light source 200 may be implemented in various forms such as a lens type, COB type.
도 4를 참조하여 살펴보면, LED 광원(200)은 인쇄회로기판(100) 상에 실장되는 LED 소자(210) 및 상기 LED 소자(210)를 덮는 렌즈(220)를 포함할 수 있다. Referring to FIG. 4, the LED light source 200 may include an LED element 210 mounted on the printed circuit board 100 and a lens 220 covering the LED element 210.
상기 LED 소자(210)는 LED 칩일 수 있다. 예를 들어, COB(Chip On Board) 형태의 LED 램프를 만드는 경우에는 기판상에 직접 LED 칩을 실장하고 이를 렌즈로 덮는 형태이므로 이 경우에는 LED 칩을 사용할 수 있다. 이 경우에는 상기 렌즈의 내부에 백색광 변환을 위한 형광체가 포함될 수도 있다. 이때, LED 칩은 상기 기판에 와이어본딩 또는 플립칩 본딩에 의해 실장되고, 상기 LED 칩을 덮는 렌즈는 인젝션 공정에 의해 형성될 수 있다.The LED element 210 may be an LED chip. For example, in the case of making an LED lamp of a chip on board (COB) type, since the LED chip is directly mounted on a substrate and covered with a lens, the LED chip may be used in this case. In this case, a phosphor for converting white light may be included in the lens. In this case, the LED chip may be mounted on the substrate by wire bonding or flip chip bonding, and the lens covering the LED chip may be formed by an injection process.
상기 LED 소자(210)는 LED 칩이 하우징 내에 실장되어 있는 LED 패키지일 수도 있다. 상기 LED 패키지는 내부에 LED 칩이 와이어본딩 또는 플립칩 본딩으로 실장되고, 상기 LED 칩을 덮는 몰딩부가 형성될 수 있다. 상기 LED 패키지를 사용하는 경우에는 패키지 내부의 몰딩부에 백색광 변환을 위한 형광체가 포함될 수 있다. The LED element 210 may be an LED package in which an LED chip is mounted in a housing. In the LED package, an LED chip may be mounted by wire bonding or flip chip bonding, and a molding part may be formed to cover the LED chip. When the LED package is used, a phosphor for converting white light may be included in a molding part inside the package.
상기 렌즈(220)는 상면의 중심부가 오목(221)하고 그 주변부가 볼록(222)한 형태를 취할 수 있다. 일반적인 렌즈의 형태는 중심부가 볼록한 형태이지만, 도 4의 (a)의 사시도 및 도 4의 (b)의 단면도에서 보듯이 본 실시형태에 따른 렌즈(220)는 중심부가 오목한 형태를 취하고 있다. 본 실시형태에서는 중심부가 점 형태로 될 수 있다. 상기 중심부의 하부에는 LED 소자(210)가 위치한다. LED 소자의 특성상 발광 방향에 따른 광특성이 다르게 나타날 수 있어 외부에서의 광균일성이 떨어질 수 있다. 이를 보완하기 위해 렌즈의 형태를 발광특성에 맞게 바꾸어 줌으로서 외부에서의 광균일성을 향상시킬 수 있다. 본 실시형태에서는 LED 소자의 직상부의 렌즈두께는 얇게 하고 측상부의 렌즈두께를 상대적으로 두껍게 함으로서 광 균일도를 향상시킬 수 있다. The lens 220 may have a shape in which a central portion of the upper surface is concave 221 and a peripheral portion thereof is convex 222. The general lens has a convex shape, but as shown in the perspective view of FIG. 4A and the cross-sectional view of FIG. 4B, the lens 220 according to the present embodiment has a concave shape. In this embodiment, the center portion can be in the form of a point. The LED element 210 is located below the central portion. Due to the characteristics of the LED device, the optical properties may be different depending on the light emission direction, thereby reducing the light uniformity from the outside. In order to compensate for this, by changing the shape of the lens according to the light emission characteristics it can improve the light uniformity from the outside. In this embodiment, light uniformity can be improved by making the lens thickness of the upper part of an LED element thin and making the lens thickness of a side upper part relatively thick.
상기 렌즈(220)의 표면에는 미세패턴이 형성될 수 있다. 상기 미세패턴은 렌즈의 표면에 요철형태로 형성될 수 있다. 미세패턴을 형성하는 경우, 렌즈의 표면이 평평함으로서 생기는 전반사에 의해 렌즈 내부로 반사되는 광을 렌즈 외부로 추출할 수 있어 렌즈 표면으로부터 발광되는 광의 분산을 더 확장시킬 수 있다. 상기 미세패턴을 형상 및 배열은 다양하게 구현될 수 있다. Fine patterns may be formed on the surface of the lens 220. The fine pattern may be formed in the form of irregularities on the surface of the lens. In the case of forming the fine pattern, the light reflected inside the lens due to total reflection caused by the flat surface of the lens can be extracted to the outside of the lens to further expand the dispersion of light emitted from the lens surface. The micropattern may be implemented in various shapes and arrangements.
도 5는, 본 발명의 다른 실시형태에 따른 LED 광원의 단면도이다. 도 5를 참조하여 살펴보면 본 실시형태에 따른 LED 광원(200)에는 렌즈(220)의 내부에 광확산제(230)가 더 포함될 수 있다. 상기 광확산제(230)는 상기 LED 소자(210)로부터 방출된 광을 확산시키는 역할을 할 수 있다. 5 is a cross-sectional view of an LED light source according to another embodiment of the present invention. Referring to FIG. 5, the LED light source 200 according to the present embodiment may further include a light diffusing agent 230 inside the lens 220. The light diffusing agent 230 may serve to diffuse light emitted from the LED device 210.
상기 광확산제(230)로는 산화티탄, 티탄산밸륨, 산화알루미늄, 산화규소, 산화아연, 금속편 또는 형광체로부터 적어도 하나를 선택하여 사용될 수 있다. 본 실시형태에서는 광확산제(230)와 형광체(240)가 모두 포함된 형태를 나타내었으나, 이는 실시형태에 따라 광확산제(230)만을 사용하거나 형광체만을 사용할 수도 있다. The light diffusing agent 230 may be used by selecting at least one from titanium oxide, valley titanate, aluminum oxide, silicon oxide, zinc oxide, a metal piece or a phosphor. In the present embodiment, the light diffusing agent 230 and the phosphor 240 are both included. However, according to the exemplary embodiment, only the light diffusing agent 230 may be used or only the phosphor may be used.
도 6의 (a) 및 (b)는 각각 본 발명의 다른 실시예에 따른 LED 광원(200)에 있어서 상기 렌즈(220) 표면에 마련된 미세패턴을 도시한 것이다. 6 (a) and 6 (b) show fine patterns provided on the surface of the lens 220 in the LED light source 200 according to another embodiment of the present invention, respectively.
도 6의 (a)에 도시된 바와 같이, 렌즈(220) 표면에 형성된 미세패턴(223)은 렌즈(220)의 중심부(221)를 중심으로 하는 동심원 형태로 형성될 수 있다. 본 도면에서는 몇 개의 동심원 형태만을 도시하였으나, 실제 제품에서는 보다 촘촘한 형태로 배열될 수 있다. As shown in FIG. 6A, the micropattern 223 formed on the surface of the lens 220 may be formed in a concentric shape centering on the central portion 221 of the lens 220. Although only a few concentric shapes are shown in this figure, the actual product may be arranged in a more compact form.
도 6의 (b)에 도시된 바와 같이, 렌즈(220) 표면에 형성된 미세패턴(223)은 렌즈(220)의 중심부(221)에서 방사상으로 뻗어나가는 형태로 형성될 수 있다. 본 도면에서는 몇 개의 선의 형태만을 도시하였으나, 실제 제품에서는 보다 촘촘한 형태로 배열될 수 있다. 또한, 다른 실시형태에서는 상기 동심원 형태 및 방사상 형태가 결합된 형태로 형성될 수도 있다. As shown in FIG. 6B, the fine pattern 223 formed on the surface of the lens 220 may be formed to extend radially from the central portion 221 of the lens 220. Although only some of the shapes of the lines are shown in this drawing, the actual products may be arranged in a more compact form. Further, in other embodiments, the concentric and radial forms may be combined.
도 7은 본 발명의 또 다른 실시형태에 따른 LED 광원(200a)의 사시도이다. 7 is a perspective view of an LED light source 200a according to another embodiment of the present invention.
도 7을 참조하여 살펴보면, 본 실시형태에 따른 LED 광원(200a)에는, 인쇄회로기판(100)상에 LED 소자(210)가 실장되고, 상기 LED 소자를 덮는 렌즈(220a)가 형성된다. Referring to FIG. 7, in the LED light source 200a according to the present embodiment, an LED element 210 is mounted on a printed circuit board 100, and a lens 220a covering the LED element is formed.
상기 LED 소자(210)는 LED 칩일 수 있다. 예를 들어, COB(Chip On Board) 형태의 LED 램프를 만드는 경우에는 기판상에 직접 LED 칩을 실장하고 이를 렌즈로 덮는 형태이므로 이 경우에는 LED 칩을 사용할 수 있다. 이 경우에는 상기 렌즈의 내부에 백색광 변환을 위한 형광체가 포함될 수도 있다. 이때, LED 칩은 상기 기판에 와이어본딩 또는 플립칩 본딩에 의해 실장되고, 상기 LED 칩을 덮는 렌즈는 인젝션 공정에 의해 형성될 수 있다.The LED element 210 may be an LED chip. For example, in the case of making an LED lamp of a chip on board (COB) type, since the LED chip is directly mounted on a substrate and covered with a lens, the LED chip may be used in this case. In this case, a phosphor for converting white light may be included in the lens. In this case, the LED chip may be mounted on the substrate by wire bonding or flip chip bonding, and the lens covering the LED chip may be formed by an injection process.
상기 LED 소자(210)는 LED 칩이 하우징내에 실장되어 있는 LED 패키지일 수도 있다. 상기 LED 패키지는 내부에 LED 칩이 와이어본딩 또는 플립칩 본딩으로 실장되고, 상기 LED 칩을 덮는 몰딩부가 형성될 수 있다. 상기 LED 패키지를 사용하는 경우에는 패키지 내부의 몰딩부에 백색광 변환을 위한 형광체가 포함될 수 있다. The LED element 210 may be an LED package in which an LED chip is mounted in a housing. In the LED package, an LED chip may be mounted by wire bonding or flip chip bonding, and a molding part may be formed to cover the LED chip. When the LED package is used, a phosphor for converting white light may be included in a molding part inside the package.
상기 렌즈(220a)는 상면의 중심부가 오목하고 그 주변부가 볼록한 형태일 수 있다. 본 실시형태에 따른 렌즈는 도 4의 실시형태와 달리 중심부(221a)가 선형으로 형성되며 상기 중심부를 중심으로 좌우 대칭으로 형성될 수 있다. 즉, 상기 렌즈(220a)는 두 개의 반구 형태 렌즈(222a, 222b)가 일부가 중첩되도록 연결된 형태일 수 있다. 상기 중심부의 하부에는 LED 소자(210)가 위치한다. LED 소자의 특성상 발광 방향에 따른 광특성이 다르게 나타날 수 있어 외부에서의 광균일성이 떨어질 수 있다. 이를 보완하기 위해 렌즈의 형태를 발광특성에 맞게 바꾸어 줌으로서 외부에서의 광균일성을 향상시킬 수 있다. 본 실시형태에서는 LED 소자의 직상부의 렌즈두께는 얇게 하고 측상부의 렌즈두께를 상대적으로 두껍게 함으로서 광 균일도를 향상시킬 수 있다. The lens 220a may have a shape in which a central portion of the image surface is concave and a peripheral portion thereof is convex. Unlike the embodiment of FIG. 4, the lens according to the present exemplary embodiment may have a central portion 221a formed in a linear shape and symmetrically with respect to the central portion. That is, the lens 220a may have a shape in which two hemispherical lenses 222a and 222b are connected so that a part thereof overlaps. The LED element 210 is located below the central portion. Due to the characteristics of the LED device, the optical properties may be different depending on the light emission direction, thereby reducing the light uniformity from the outside. In order to compensate for this, by changing the shape of the lens according to the light emission characteristics it can improve the light uniformity from the outside. In this embodiment, light uniformity can be improved by making the lens thickness of the upper part of an LED element thin and making the lens thickness of a side upper part relatively thick.
본 실시형태에 따른 LED 광원의 렌즈(220a)는, 길이방향으로 양측 일부가 제거된 형태일 수 있다. 이처럼 길이방향으로 길게 형성된 렌즈에 의해 LED 소자(210)에서 방출된 광의 산란각도를 조절할 수 있다. 본 실시형태에서는 상기 렌즈의 길이 방향을 따라 산란되는 각도가 렌즈의 폭방향을 따라 산란되는 각도보다 넓게 할 수 있다. 상기 렌즈(220a)의 형태는 면광원 램프의 용도에 따라 달라질 수 있으며, 본 실시형태와 같이 길이방향으로 양측부를 절단하여 제거함으로서 광의 방사각을 제어할 수 있다. The lens 220a of the LED light source according to the present embodiment may have a form in which both sides thereof are removed in the longitudinal direction. As such, the scattering angle of the light emitted from the LED device 210 may be adjusted by the lens formed in the longitudinal direction. In this embodiment, the angle scattered along the longitudinal direction of the lens can be wider than the angle scattered along the width direction of the lens. The shape of the lens 220a may vary according to the use of the surface light source lamp, and as shown in the present embodiment, the radiation angle of the light may be controlled by cutting and removing both sides in the longitudinal direction.
도 8은, 본 발명의 또 다른 실시형태에 따른 LED 광원(200a)에 형성된 미세패턴을 나타내는 개념도이다. 상기 미세패턴은 렌즈의 표면에 요철형태로 형성될 수 있다. 본 실시형태의 경우 렌즈 표면에 미세패턴을 형성함으로서, 미세패턴이 없는 경우에 비해 광 균일도를 향상시킬 수 있다. 8 is a conceptual diagram illustrating a fine pattern formed on the LED light source 200a according to still another embodiment of the present invention. The fine pattern may be formed in the form of irregularities on the surface of the lens. In the present embodiment, by forming a fine pattern on the surface of the lens, the light uniformity can be improved as compared with the case where there is no fine pattern.
도 8의 (a)는 미세패턴(223a)이 렌즈(220a)의 중심부 영역에만 형성된 형태이다. 렌즈(220a)의 중심부 하부에는 LED 소자(210)가 위치하므로 이곳에서 광이 가장 강하게 방출될 수 있다. 따라서, 본 실시형태와 같이 LED 소자(210)가 위치한 영역의 렌즈부분인 렌즈의 중심부에 미세패턴(223a)을 형성함으로써 광의 세기(intensiy) 및 균일도를 향상시킬 수 있다. 8A illustrates a fine pattern 223a formed only in the central region of the lens 220a. Since the LED element 210 is positioned below the central portion of the lens 220a, the light may be most strongly emitted there. Accordingly, by forming the fine pattern 223a at the center of the lens, which is the lens portion of the region where the LED element 210 is located, as in the present embodiment, the intensity and uniformity of the light can be improved.
도 8의 (b)는 미세패턴(223a)이 렌즈 표면 전체에 형성된 형태이다. 렌즈의 상부뿐만 아니라 측부 표면 전체에 균일하게 미세패턴이 형성될 수 있다. 이렇게 미세패턴을 형성함으로써 렌즈(220a)에서 방출되는 광의 세기 및 균일도를 향상시킬 수 있다. 상기 미세패턴의 크기 및 형상은 다양하게 구현될 수 있다.8B illustrates a fine pattern 223a formed on the entire lens surface. Fine patterns may be uniformly formed not only on the top of the lens but on the entire side surface. By forming the fine pattern as described above, the intensity and uniformity of the light emitted from the lens 220a may be improved. The size and shape of the fine pattern may be implemented in various ways.
도 9의 (a) 및 (b)는 본 발명에 따른 LED 광원(200, 200a)의 효과를 설명하기 위한 실험예이다. 9 (a) and 9 (b) are experimental examples for explaining the effects of the LED light sources 200 and 200a according to the present invention.
도 9의 (a)는 도 4의 실시형태에 따른 렌즈의 표면에 미세패턴을 형성하지 않은 상태에서 광출력을 측정한 것이고, 도 9의 (b)는 동일한 형태의 렌즈에서 표면에 미세패턴을 형성한 상태에서 광출력을 측정한 것이다. 도 9의 (a) 및 (b)를 비교하면 LED 소자에서 나오는 광출력(PKG X, PKG Y)은 각각 동일하지만, 렌즈를 통해 방출되는 광출력(lens X, lens Y)은 미세패턴을 형성한 경우가 형성하지 않은 경우에 비해 지향각은 줄어들고 광의 균일도는 향상되는 것을 볼 수 있다. FIG. 9A illustrates light output without a micropattern formed on the surface of the lens of FIG. 4. FIG. 9B illustrates a micropattern on the surface of the same type lens. The light output is measured in the formed state. 9A and 9B, the light outputs PKG X and PKG Y from the LED devices are the same, but the light outputs (lens X and lens Y) emitted through the lens form a fine pattern. Compared to the case in which one case is not formed, the directivity angle is reduced and the light uniformity is improved.
상기 실리콘 커버(300)는, 상기 인쇄회로기판(100) 및 LED 광원(200, 200a)을 덮도록 형성될 수 있다. 상기 LED 광원(200, 200a)을 덮을 수 있는 높이로 형성된다. The silicon cover 300 may be formed to cover the printed circuit board 100 and the LED light sources 200 and 200a. It is formed to a height that can cover the LED light source (200, 200a).
상기 실리콘 커버(300)는 투명 또는 반투명한 성질을 가지며 LED 광원(200, 200a)으로부터 방출되는 광을 투과시킬 수 있다. The silicon cover 300 may have a transparent or translucent property and may transmit light emitted from the LED light sources 200 and 200a.
상기 인쇄회로기판(100) 상에 실리콘 커버(300)를 형성하는 공정은, 지그(Jig)에 인쇄회로기판을 넣고, 액상의 실리콘을 부어 일정한 틀에 맞게 경화시키는 공정을 따를 수 있다. 이처럼 액상의 실리콘을 사용함으로써, 다양한 모양의 면발광 램프(1)를 형성할 수 있다. The process of forming the silicon cover 300 on the printed circuit board 100 may include a process of putting a printed circuit board in a jig, and pouring liquid silicone to cure to a predetermined mold. By using liquid silicon as described above, the surface light emitting lamp 1 of various shapes can be formed.
본 실시형태에서 상기 인쇄회로 기판(100)은 실제 형성하고자 하는 면광원 램프의 형태로 제조될 수 있고, 이때, 상기 실리콘 커버(300)도 인쇄회로 기판의 형태대로 형성될 수 있다. 본 실시형태에서, 상기 실리콘 커버(300)가 제조되는 공정상 액상의 실리콘을 부어서 제조하므로, 면광원 램프(1)의 발광면 형태가 어떠한 형태이든 자유롭게 구현이 가능하다. In the present embodiment, the printed circuit board 100 may be manufactured in the form of a surface light source lamp to be actually formed, and in this case, the silicon cover 300 may also be formed in the form of a printed circuit board. In the present embodiment, since the silicon cover 300 is manufactured by pouring liquid silicon in the process of manufacturing, the light emitting surface of the surface light source lamp 1 can be freely implemented in any form.
상기 실리콘 커버(300)는 투명 또는 반투명한 상태로 제조될 수 있다. 투명의 실리콘을 사용하는 경우에는 광의 투과율은 좋으나, 내부의 LED 광원 등이 보이므로 시각적으로 좋지 않을 수 있다. 반대로 반투명 실리콘을 사용하는 경우에는 내부의 LED 광원 등이 보이지 않을 수 있다. The silicon cover 300 may be manufactured in a transparent or translucent state. In the case of using transparent silicon, the light transmittance is good, but since the LED light source inside is visible, it may not be visually good. On the contrary, when using translucent silicon, the internal LED light source may not be visible.
이러한 실리콘 커버(300)의 재질은 면발광 램프의 용도에 따라서 선택될 수 있다. 즉, 큰 광도를 요구하지 않는 장식용 또는 지시용 램프의 경우에는 반투명한 실리콘 재질을 사용하는 것이 바람직하다. The material of the silicon cover 300 may be selected according to the use of the surface emitting lamp. That is, in the case of decorative or indicating lamps that do not require large brightness, it is preferable to use a translucent silicone material.
상기 확산재(400)는, 상기 실리콘 커버(300) 내에 분산되어 있다. 상기 확산재(400)는, 상기 실리콘 커버(300) 내에서 진행하는 광을 분산시켜 상기 면발광 램프(1)의 광추출 효율을 높일 수 있다. 제조 공정상으로는, 액상인 실리콘에 상기 확산재(400)를 섞고, 확산재가 섞인 액상의 실리콘을 지그(JIG)에 부어 경화시키는 공정을 따를 수 있다. The diffusion material 400 is dispersed in the silicon cover 300. The diffusion material 400 may increase light extraction efficiency of the surface light emitting lamp 1 by dispersing the light traveling in the silicon cover 300. In the manufacturing process, the diffusion material 400 may be mixed with liquid silicon, and the liquid silicon mixed with the diffusion material may be poured into a jig to harden.
본 실시형태에서, 상기 실리콘 커버(300)는 몰더블 실리콘(moldable Silicone)을 사용하였고, 이에 혼합되는 확산재(400)는 알루미늄 옥사이드를 사용할 수 있다. 또한, 본 실시형태에서, 상기 몰더블 실리콘과 알루미늄 옥사이드를 80:20 의 비율로 섞어 액상의 실리콘을 형성하고 이를 경화시켜 상기 실리콘 커버를 형성할 수 있다. In the present embodiment, the silicon cover 300 used a moldable silicone, and the diffusion material 400 mixed therewith may use aluminum oxide. In addition, in the present embodiment, the molten silicon and the aluminum oxide may be mixed in a ratio of 80:20 to form liquid silicon, and then hardened to form the silicon cover.
본 실시형태에서는, LED 광원(200)으로부터 방출된 광이 실리콘 커버(300)를 통과하면서, 상기 실리콘 커버(300)에 분산되어 있는 확산재(400)를 통해 분산되게 된다. 이러한 성질을 이용하여 실리콘 커버(300)의 전체 발광면에서 발광하는 형태의 면발광 램프가 형성될 수 있다. In this embodiment, the light emitted from the LED light source 200 passes through the silicon cover 300 and is dispersed through the diffusion material 400 dispersed in the silicon cover 300. By using this property, a surface emitting lamp having a shape of emitting light from the entire light emitting surface of the silicon cover 300 may be formed.
도 10은, 본 발명의 바람직한 일실시 형태에 따른 면발광 램프(1)의 제조방법을 나타내는 순서도이다. 10 is a flowchart showing a method of manufacturing the surface light emitting lamp 1 according to the preferred embodiment of the present invention.
도 10의 (a)는, 인쇄회로기판(100)에 LED 광원(200)을 실장하는 단계이다. 이 때, 상기 LED 광원(200)은 사이드뷰(Side view)형태의 LED 패키지일 수 있다. 상기 인쇄회로 기판(100)에서 LED광원이 실장되지 않은 부분에는 리플렉터(140)가 형성될 수 있다. 상기 인쇄회로기판(100)으로는 플렉서블 기판이 이용될 수도 있다. 10A is a step of mounting the LED light source 200 on the printed circuit board 100. In this case, the LED light source 200 may be an LED package in the form of a side view. The reflector 140 may be formed in a portion of the printed circuit board 100 where the LED light source is not mounted. As the printed circuit board 100, a flexible substrate may be used.
도 10의 (b)는, 상기 인쇄회로기판(100)을 지그(10)에 위치시키는 단계이다. 상기 지그(10)는, 액상의 실리콘을 부어 경화시 원하는 형태의 실리콘 커버가 형성되도록 액상의 실리콘의 외형을 잡아줄 수 있다. FIG. 10B illustrates a step of placing the printed circuit board 100 on the jig 10. The jig 10 may pour the liquid silicon to hold the outer shape of the liquid silicon so that a silicon cover of a desired shape is formed upon curing.
도 10의 (c)는, 상기 인쇄회로기판(100)이 위치된 지그(10)에 확산재(400)가 포함된 액상의 실리콘을 도포하는 단계이다. 본 단계에서, 상기 액상의 실리콘이 인쇄회로기판(100) 및 LED 광원(200)을 덮도록 도포할 수 있다. 상기 도포되는 실리콘의 높이는 LED 광원(200)의 실장높이보다는 높아야 한다. 10 (c) is a step of applying a liquid silicon containing the diffusion material 400 to the jig 10 in which the printed circuit board 100 is located. In this step, the liquid silicon may be applied to cover the printed circuit board 100 and the LED light source 200. The height of the silicon to be applied should be higher than the mounting height of the LED light source 200.
도 10의 (d)는, 상기 도포된 액상의 실리콘을 경화시켜 실리콘 커버(300)를 형성하는 단계이다. 본 단계에서 실리콘이 경화되면 지그를 제거하여 면발광 램프를 형성할 수 있다. FIG. 10D illustrates a step of forming the silicon cover 300 by curing the applied liquid silicon. When the silicon is cured in this step, the jig may be removed to form a surface light emitting lamp.
상기 면발광 램프(1)의 제조방법에 있어서, LED 광원(200)을 그 예로 하고 있으나, 반드시 이에 한정되는 것은 아니며 LED 광원(200a)이 이용될 수 있음은 물론이다.In the method of manufacturing the surface emitting lamp 1, the LED light source 200 is taken as an example, but is not necessarily limited thereto, and the LED light source 200a may be used.
한편, 상기 제1 실시예에서는 상기 인쇄회로기판(100), 복수개의 LED 광원(200, 200a), 실리콘 커버(300) 및 확산재(400)를 포함하는 상기 면발광 램프(1)를 이용하여 면발광을 구현하고 있으나, 반드시 이에 한정되는 것은 아니며, 상기 LED 광원(200, 200a)만을 이용하여 면발광을 구현할 수 있다.Meanwhile, in the first embodiment, the surface light emitting lamp 1 including the printed circuit board 100, the plurality of LED light sources 200 and 200a, the silicon cover 300, and the diffusion material 400 is used. Surface light emission is implemented, but is not necessarily limited thereto, and surface light emission may be implemented using only the LED light sources 200 and 200a.
즉, 도 4 내지 도 8에 도시된 LED 광원(200, 200a) 각각은 미세패턴(223, 223a)를 구비하는 렌즈(220, 220a)를 이용하여 LED 소자(210)로부터 조사되는 광의 광 균일도를 향상시켜 면발광을 구현할 수 있다. 여기서, 인쇄회로기판(100)은 LED 광원(200, 200a)에도 이용되는바, 이에 대한 설명은 생략하도록 한다.That is, each of the LED light sources 200 and 200a illustrated in FIGS. 4 to 8 uses the lenses 220 and 220a having the fine patterns 223 and 223a to adjust the light uniformity of the light emitted from the LED element 210. It can be improved to implement surface light emission. Here, the printed circuit board 100 is also used for the LED light source (200, 200a), the description thereof will be omitted.
제2 실시예Second embodiment
도 11은 본 발명의 바람직한 제2 실시예에 따른 면발광 램프(1a)를 나타내는 도면이다. 따라서, 상술 된 본 발명의 바람직한 일실시예에 따른 면발광 램프(1)와 동일한 구성 요소에 대한 설명은 생략하도록 한다. Fig. 11 is a view showing the surface emitting lamp 1a according to the second preferred embodiment of the present invention. Therefore, the description of the same components as the surface light emitting lamp 1 according to the preferred embodiment of the present invention described above will be omitted.
도 11을 참조하여 살펴보면, 본 발명의 바람직한 다른 실시예에 따른 면발광 램프(1a)는 LED 광원(200, 200a), 투명 튜브(500), 투명 튜브(500) 내부에 채워지는 액체(600)를 포함할 수 있다. 그리고, 액체(600) 내에는 기포(610)가 형성될 수 있다.Referring to FIG. 11, the surface light emitting lamp 1a according to another exemplary embodiment of the present invention may include a liquid 600 filled in the LED light sources 200 and 200a, the transparent tube 500, and the transparent tube 500. It may include. In addition, bubbles 610 may be formed in the liquid 600.
상기 면발광 램프(1a)의 LED 광원은, 도 4 내지 도 8에 도시된 LED 광원(200, 200a)이 이용될 수 있다.As the LED light source of the surface emitting lamp 1a, the LED light sources 200 and 200a illustrated in FIGS. 4 to 8 may be used.
상기 투명 튜브(500)에서 '투명'이라는 용어는 완전 투명한 재질뿐만 아니라 빛의 투과가 가능한 반투명 재질도 포함할 수 있다. 이처럼, 투명 튜브를 사용함으로써 면광원을 제조할 수 있다. The term 'transparent' in the transparent tube 500 may include not only a completely transparent material but also a semi-transparent material capable of transmitting light. As such, the surface light source can be produced by using the transparent tube.
본 실시형태에 따른 투명 튜브는 휘어짐이 가능한 유연한 재질로 제조될 수 있다. 이렇게 유연한 재질의 투명 튜브를 사용함으로써, 다양한 형태의 면광원을 제조할 수 있고, 가공 및 조립이 용이하게 된다. The transparent tube according to the present embodiment may be made of a flexible material capable of bending. By using a transparent tube of such a flexible material, various types of surface light source can be manufactured, and processing and assembly are easy.
상기 투명 튜브(500)의 양단에는 LED 광원(200, 200a)이 각각 배치될 수 있다. 상기 LED 광원은 인쇄회로기판(100)상에 배치된 LED일 수도 있고, 상기 튜브의 양단 개구부를 상기 광원의 둘레에 맞게 제조하여 상기 튜브(500)의 양단이 LED 광원에 의해 밀폐되도록 할 수 있다. 본 실시형태에서는 투명 튜브의 양단에 각각 하나의 LED 광원(200, 200a)을 배치하였으나, 튜브(500)의 형태 및 LED 램프의 용도에 따라 튜브(500)의 일단에만 광원이 배치될 수도 있고, 복수 개의 LED 광원이 배열된 형태를 사용할 수도 있다. LED light sources 200 and 200a may be disposed at both ends of the transparent tube 500, respectively. The LED light source may be an LED disposed on the printed circuit board 100, or the openings at both ends of the tube may be manufactured to fit the circumference of the light source so that both ends of the tube 500 may be sealed by the LED light source. . In this embodiment, one LED light sources 200 and 200a are disposed at both ends of the transparent tube, but the light source may be disposed only at one end of the tube 500 according to the shape of the tube 500 and the use of the LED lamp. It is also possible to use a form in which a plurality of LED light sources are arranged.
상기 투명 튜브(500) 내에는 액체(600)가 채워질 수 있다. 상기 액체(600)에는 기포(610)가 형성될 수 있다. The liquid 600 may be filled in the transparent tube 500. Bubble 610 may be formed in the liquid 600.
상기 액체(600) 내에 형성된 기포(610)는, 상기 LED 광원(120)에서 방출된 광을 반사 또는 산란시켜 투명 튜브 외부로 빛을 방출할 수 있도록 한다. 본 실시예에서는, 물(H2O)에 탄산수소 나트륨(NaHCO3)을 섞어 기포가 발생되게 할 수 있다. 본 실시예 외에 기포가 형성된 액체는, 기포가 발생될 수 있는 물질이라면 다양하게 구현할 수 있다. 그리고, 상기 액체(600) 내부의 기포(610)의 밀도는 제조되는 면발광 램프(1a)의 특성에 따라 다양하게 조절될 수 있다. 본 실시예에서는 투명 튜브 내의 액체의 약 20~30% 정도를 기포가 차지하도록 형성하였다. The bubble 610 formed in the liquid 600 reflects or scatters the light emitted from the LED light source 120 to emit light to the outside of the transparent tube. In this embodiment, bubbles of water may be generated by mixing sodium hydrogencarbonate (NaHCO 3 ) with water (H 2 O). In addition to the present embodiment, the liquid in which bubbles are formed may be variously implemented as long as the material may generate bubbles. In addition, the density of the bubbles 610 in the liquid 600 may be variously adjusted according to the characteristics of the surface emitting lamp 1a to be manufactured. In this embodiment, about 20 to 30% of the liquid in the transparent tube is formed so that the bubble occupies.
본 실시형태에 있어서, 액체(600) 내에 형성된 기포(610)는, 투명 튜브(500) 양단에 배치된 LED 광원(200, 200a)으로부터 발광된 광을 반사시키거나 산란시켜 투명 튜브(500) 외부로 방출하는 역할을 할 수 있다. 이처럼, 투명 튜브(500) 외부로 방출되는 광을 이용하여 면광원을 형성할 수 있다. 또한, 본 실시형태에서는 휘어짐이 가능한 투명 튜브(500)를 사용함으로써, 다양한 형태의 면광원을 구현할 수 있다. In the present embodiment, the bubble 610 formed in the liquid 600 reflects or scatters the light emitted from the LED light sources 200 and 200a disposed at both ends of the transparent tube 500 so as to be outside the transparent tube 500. It can play a role of emitting. As such, the surface light source may be formed using light emitted to the outside of the transparent tube 500. In addition, in the present embodiment, various types of surface light sources can be realized by using the transparent tube 500 that can be bent.
제3 실시예Third embodiment
도 12 및 도 13은 본 발명의 바람직한 다른 실시예에 따른 면발광 램프(1b)를 나타내는 도면이다. 따라서, 상술 된 본 발명의 바람직한 일실시예에 따른 면발광 램프(1, 1a)와 동일한 구성 요소에 대한 설명은 생략하도록 한다. 12 and 13 show a surface emitting lamp 1b according to another preferred embodiment of the present invention. Therefore, the description of the same components as the surface emitting lamps 1 and 1a according to the preferred embodiment of the present invention described above will be omitted.
도 12를 참조하여 살펴보면, 본 발명의 바람직한 또 다른 실시예에 따른 면발광 램프(1b)는 LED 광원(200, 200a), 실리콘 커버(300a), 확산재(400), 복수 개의 투명 튜브(500) 및 투명 튜브(500) 각각의 내부에 채워지는 액체(600)를 포함할 수 있다. 그리고, 액체(600) 내에는 기포(610)가 형성될 수 있다. 12, the surface light emitting lamp 1b according to another exemplary embodiment of the present invention may include an LED light source 200, 200a, a silicon cover 300a, a diffusion material 400, and a plurality of transparent tubes 500. ) And a liquid 600 filled in each of the transparent tube 500. In addition, bubbles 610 may be formed in the liquid 600.
상기 면발광 램프(1b)의 LED 광원은, 도 4 내지 도 8에 도시된 LED 광원(200, 200a)일 수 있다. 그리고, LED 광원(200, 200a)은 상기 투명 튜브(500)의 양단에 설치될 수 있다. 물론, LED 광원(200, 200a)은 상기 투명 튜브(500)의 양단 중 어느 일단에만 설치될 수도 있다.The LED light source of the surface light emitting lamp 1b may be the LED light sources 200 and 200a illustrated in FIGS. 4 to 8. In addition, the LED light sources 200 and 200a may be installed at both ends of the transparent tube 500. Of course, the LED light sources 200 and 200a may be installed only at one end of both ends of the transparent tube 500.
실리콘 커버(300a)는 복수 개의 투명 튜브(500)를 감싸도록 설치된다.The silicon cover 300a is installed to surround the plurality of transparent tubes 500.
상기 실리콘 커버(300a)는 투명 또는 반투명한 성질을 가지며, LED 광원(200)으로부터 방출되는 광은 기포(610)에 의하여 반사 또는 산란된 후 투명 튜브(500)를 통과한다. 그리고, 투명 튜브(500)를 통과한 광은 실리콘 커버(300a) 내에 분산된 확산재(400)에 의하여 분산된다.The silicon cover 300a has a transparent or translucent property, and the light emitted from the LED light source 200 passes through the transparent tube 500 after being reflected or scattered by the bubble 610. Then, the light passing through the transparent tube 500 is dispersed by the diffusion material 400 dispersed in the silicon cover 300a.
그에 따라, 면발광 램프(1b)의 광추출 효율은 높아지게 된다. As a result, the light extraction efficiency of the surface light emitting lamp 1b is increased.
한편, 도 12에 도시된 바와 같이, 상기 실리콘 커버(300a)의 일면에는 리플렉터(140)가 더 설치되어 상기 LED 광원(200, 200a)으로부터 방출되는 광을 일 방향으로 반사시켜 광추출 효율을 더욱 높일 수 있다. Meanwhile, as shown in FIG. 12, a reflector 140 is further installed on one surface of the silicon cover 300a to reflect light emitted from the LED light sources 200 and 200a in one direction to further increase light extraction efficiency. It can increase.
도 13을 참조하여 살펴보면, 상기 리플렉터(140)와 상기 실리콘 커버(300a) 사이에는, 상술된 바와 같이, 반사패턴(150)이 돌출형성될 수도 있다. Referring to FIG. 13, the reflective pattern 150 may protrude between the reflector 140 and the silicon cover 300a as described above.
제4 실시예Fourth embodiment
도 14 및 도 15는 본 발명의 바람직한 다른 실시예에 따른 면발광 램프(1c)를 나타내는 도면이다. 따라서, 상술 된 본 발명의 바람직한 일실시예에 따른 면발광 램프(1, 1a, 1b)와 동일한 구성 요소에 대한 설명은 생략하도록 한다. 14 and 15 show a surface emitting lamp 1c according to another preferred embodiment of the present invention. Therefore, the description of the same components as the surface light emitting lamps 1, 1a, and 1b according to the preferred embodiment of the present invention described above will be omitted.
도 14를 참조하여 살펴보면, 본 발명의 바람직한 또 다른 실시예에 따른 면발광 램프(1c)는 LED 광원(200, 200a), 실리콘 커버(300a), 확산재(400), 및 복수 개의 플라스틱 광섬유(700)를 포함할 수 있다. 여기서, 플라스틱 광섬유(700)의 일영역은 광이 인출될 수 있도록 연마제(미도시)에 의하여 표면 처리될 수 있다.Referring to FIG. 14, the surface light emitting lamp 1c according to another preferred embodiment of the present invention may include an LED light source 200, 200a, a silicon cover 300a, a diffusion material 400, and a plurality of plastic optical fibers ( 700). Here, one region of the plastic optical fiber 700 may be surface treated by an abrasive (not shown) so that light may be drawn out.
따라서, 플라스틱 광섬유(700)는 표면 처리된 복수 개의 표면 처리 영역(D)을 구비할 수 있다.Therefore, the plastic optical fiber 700 may have a plurality of surface treatment areas D that are surface treated.
상기 면발광 램프(1c)의 LED 광원은, 도 4 내지 도 8에 도시된 LED 광원(200, 200a)일 수 있다. 그리고, LED 광원(200, 200a)은 상기 플라스틱 광섬유(700)의 양단에 설치될 수 있다. 물론, LED 광원(200, 200a)은 상기 플라스틱 광섬유(700)의 양단 중 어느 일단에만 설치될 수도 있다.The LED light source of the surface light emitting lamp 1c may be the LED light sources 200 and 200a illustrated in FIGS. 4 to 8. The LED light sources 200 and 200a may be installed at both ends of the plastic optical fiber 700. Of course, the LED light sources 200 and 200a may be installed only at one end of both ends of the plastic optical fiber 700.
실리콘 커버(300a)는 복수 개의 상기 플라스틱 광섬유(700)를 감싸도록 설치된다.The silicon cover 300a is installed to surround the plurality of plastic optical fibers 700.
상기 실리콘 커버(300a)는 투명 또는 반투명한 성질을 가지며, LED 광원(200)으로부터 방출되는 광은 플라스틱 광섬유(700)의 표면 처리 영역(D)을 통해 조사된 후 실리콘 커버(300a) 내에 분산된 확산재(400)에 의하여 분산된다.The silicon cover 300a has a transparent or translucent property, and the light emitted from the LED light source 200 is distributed through the surface treatment area D of the plastic optical fiber 700 and then dispersed in the silicon cover 300a. Dispersed by the diffusion material 400.
그에 따라, 면발광 램프(1c)의 광추출 효율은 높아지게 된다. As a result, the light extraction efficiency of the surface light emitting lamp 1c becomes high.
여기서, 상기 면발광 램프(1c)는 표면 처리 영역(D)에 의하여 방향성을 갖게 되는바, 확산재(400)는 표면 처리 영역(D)을 통해 조사되는 광 경로상에 배치되는 것이 바람직하다. Here, the surface light emitting lamp 1c is directional by the surface treatment region D, and the diffusion material 400 is preferably disposed on the light path irradiated through the surface treatment region D.
또한, 상기 면발광 램프(1c)는 표면 처리 영역(D)에 의하여 방향성을 갖게 되기 때문에 리플렉터(140)가 필요치 않으며, 확산재(400) 또한 표면 처리 영역(D)을 통해 조사되는 광 경로상에만 존재하면 되기 때문에 원가를 절감할 수 있다.In addition, since the surface light emitting lamp 1c is oriented by the surface treatment region D, the reflector 140 is not required, and the diffuser 400 is also on the optical path irradiated through the surface treatment region D. Cost can be saved because it only needs to exist.
이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이다. 즉, 본 실시예에서 예시된 실리콘과 확산재의 성분 및 비율 이외에 다양한 형태로 조합이 가능할 수 있다. 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어 저서는 안 될 것이다. While the above has been shown and described with respect to preferred embodiments of the present invention, the present invention is not limited to the specific embodiments described above, it is usually in the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Various modifications can be made by those skilled in the art. That is, in addition to the components and ratios of the silicon and the diffusion material illustrated in the present embodiment may be combined in various forms. Such modifications should not be individually understood from the technical spirit or the prospect of the present invention.

Claims (33)

  1. 인쇄회로기판;Printed circuit board;
    상기 인쇄회로기판에 실장된 복수개의 LED 광원;A plurality of LED light sources mounted on the printed circuit board;
    상기 복수개의 LED 광원을 덮는 실리콘 커버; 및A silicon cover covering the plurality of LED light sources; And
    상기 실리콘 커버 내에 분포되는 확산재Diffusion material distributed in the silicon cover
    를 포함하는 면발광 램프.Surface emitting lamp comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 인쇄회로기판의 실장면 중 일부 영역에 형성되는 리플렉터Reflector formed in a portion of the mounting surface of the printed circuit board
    를 더 포함하는 면발광 램프.Surface emitting lamp further comprising.
  3. 제1항에 있어서,The method of claim 1,
    상기 LED 광원은,The LED light source,
    사이드뷰(Side view) 타입 LED 패키지인 것을 특징으로 하는 면발광 램프.Side view type surface-emitting lamp, characterized in that the LED package.
  4. 제1항에 있어서,The method of claim 1,
    상기 인쇄회로 기판은 유연성 인쇄회로기판(flexible PCB)인 것을 특징으로 하는 면발광 램프.The printed circuit board is a surface light emitting lamp, characterized in that the flexible printed circuit board (flexible PCB).
  5. 제2항에 있어서,The method of claim 2,
    상기 리플렉터는 돌출 형성된 반사패턴;The reflector may include a protruding reflective pattern;
    을 포함하는 면발광 램프.Surface emitting lamp comprising a.
  6. 제5항에 있어서,The method of claim 5,
    상기 리플렉터는,The reflector,
    상기 인쇄회로기판의 표면에 Al을 증착하여 형성되는 것을 특징으로 하는 면발광 램프.Surface-emitting lamp, characterized in that formed by depositing Al on the surface of the printed circuit board.
  7. 제5항에 있어서,The method of claim 5,
    상기 반사패턴은, The reflection pattern is,
    일정한 간격으로 형성되는 것을 특징으로 하는 면발광 램프.Surface-emitting lamp, characterized in that formed at regular intervals.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 반사패턴은,The reflection pattern is,
    일측 방향으로 기울어진 기울기를 갖는 요철인 것을 특징으로 하는 면발광 램프.Surface-emitting lamp, characterized in that the irregularities having a slope inclined in one direction.
  9. 제5항에 있어서,The method of claim 5,
    상기 반사패턴은, The reflection pattern is,
    불규칙한 요철인 것을 특징으로 하는 면발광 램프.Surface emitting lamp characterized in that irregular irregularities.
  10. 투명 튜브;Transparent tube;
    상기 투명 튜브의 적어도 일단에 배치되는 LED 광원; 및An LED light source disposed at at least one end of the transparent tube; And
    상기 투명 튜브 내부에 채워지는 액체;A liquid filled in the transparent tube;
    를 포함하며, Including;
    상기 액체 내에는 기포가 생성된 것을 특징으로 하는 면발광 램프.And a bubble is generated in the liquid.
  11. 제10항에 있어서,The method of claim 10,
    상기 투명 튜브는,The transparent tube,
    유연성 튜브인 것을 특징으로 하는 면발광 램프.A surface emitting lamp characterized in that it is a flexible tube.
  12. 제10항에 있어서,The method of claim 10,
    상기 액체 용량의 20~30 %가 기포인 것을 특징으로 하는 면발광 램프.A surface light emitting lamp, characterized in that 20-30% of the liquid volume is air bubbles.
  13. 복수 개의 투명 튜브;A plurality of transparent tubes;
    상기 투명 튜브의 적어도 일단에 배치되는 LED 광원; An LED light source disposed at at least one end of the transparent tube;
    상기 투명 튜브 내부에 채워지는 액체;A liquid filled in the transparent tube;
    상기 투명 튜브를 감싸도록 설치되는 실리콘 커버; 및A silicon cover installed to surround the transparent tube; And
    상기 실리콘 커버 내에 분포되는 확산재Diffusion material distributed in the silicon cover
    를 포함하는 면발광 램프.Surface emitting lamp comprising a.
  14. 제13항에 있어서,The method of claim 13,
    상기 실리콘 커버의 일 영역에 형성되는 리플렉터를 더 포함하는 면발광 램프.And a reflector formed in one region of the silicon cover.
  15. 제14항에 있어서,The method of claim 14,
    상기 리플렉터는 돌출 형성된 반사패턴을 포함하는 면발광 램프.The reflector is a surface light emitting lamp including a protruding reflection pattern.
  16. 복수 개의 플라스틱 광섬유;A plurality of plastic optical fibers;
    상기 광섬유의 적어도 일단에 배치되는 LED 광원; An LED light source disposed at at least one end of the optical fiber;
    상기 광섬유를 감싸도록 설치되는 실리콘 커버; 및A silicon cover installed to surround the optical fiber; And
    상기 실리콘 커버 내에 분포되는 확산재Diffusion material distributed in the silicon cover
    를 포함하며,Including;
    상기 광섬유는 광이 인출될 수 있도록 표면 처리된 표면 처리 영역을 포함하는 면발광 램프.And the optical fiber includes a surface treatment area that is surface treated to allow light to be drawn out.
  17. 제16항에 있어서,The method of claim 16,
    상기 확산재는 상기 표면 처리 영역을 통해 조사되는 광 경로상에 배치되는 것을 특징으로 하는 면발광 램프.And the diffusion material is disposed on an optical path irradiated through the surface treatment area.
  18. 제1항 내지 제17항 중 어느 하나의 항에 있어서,The method according to any one of claims 1 to 17,
    상기 LED 광원은,The LED light source,
    상기 인쇄회로기판에 실장되는 LED 소자; 및An LED element mounted on the printed circuit board; And
    상기 LED 소자를 덮으며 상면의 중심부가 오목하고 주변부가 볼록한 렌즈A lens covering the LED element and having a concave center portion and a convex portion at an upper surface thereof
    를 포함하며,Including;
    상기 렌즈의 표면에 미세패턴이 형성된 것을 특징으로 하는 면발광 램프.The surface light emitting lamp, characterized in that the fine pattern is formed on the surface of the lens.
  19. 제18항에 있어서,The method of claim 18,
    실리콘 소재로 형성된 상기 렌즈는 내부에 분포되는 광확산재;The lens formed of a silicon material is a light diffusion material distributed therein;
    를 더 포함하는 면발광 램프.Surface emitting lamp further comprising.
  20. 제18항에 있어서,The method of claim 18,
    상기 미세패턴은,The fine pattern,
    상기 렌즈 표면 전체에 형성된 것을 특징으로 하는 면발광 램프.A surface light emitting lamp, characterized in that formed on the entire surface of the lens.
  21. 제18항에 있어서,The method of claim 18,
    상기 렌즈는 상기 중심부가 선형으로 형성되며 상기 중심부를 중심으로 좌우 대칭으로 형성된 것을 특징으로 면발광 램프.The lens has a surface light emitting lamp, characterized in that the central portion is formed linearly and symmetrically about the central portion.
  22. 제21항에 있어서,The method of claim 21,
    상기 렌즈는 두 개의 반구 형태 렌즈가 일부가 중첩되도록 연결되는 형태인 것을 특징으로 하는 면발광 램프.The lens is a surface light emitting lamp, characterized in that the two hemisphere lens is connected so that a part overlap.
  23. 제22항에 있어서,The method of claim 22,
    상기 렌즈는 길이방향으로 양측 일부가 제거된 형태인 것을 특징으로 하는 면발광 램프.The lens is a surface light emitting lamp, characterized in that the form in which both sides are removed in the longitudinal direction.
  24. 제23항에 있어서, The method of claim 23, wherein
    상기 미세패턴은, 상기 중심부에만 형성된 것을 특징으로 하는 면발광 램프.The fine pattern is a surface light emitting lamp, characterized in that formed only in the central portion.
  25. 인쇄회로기판에 실장되는 LED 소자; 및An LED element mounted on a printed circuit board; And
    상기 LED 소자를 덮으며 상면의 중심부가 오목하고 주변부가 볼록한 렌즈A lens covering the LED element and having a concave center portion and a convex portion at an upper surface thereof
    를 포함하며,Including;
    상기 렌즈의 표면에 미세패턴이 형성된 것을 특징으로 하는 면발광 램프.The surface light emitting lamp, characterized in that the fine pattern is formed on the surface of the lens.
  26. 제25항에 있어서,The method of claim 25,
    실리콘 소재로 형성된 상기 렌즈는 내부에 분포되는 광확산재;The lens formed of a silicon material is a light diffusion material distributed therein;
    를 더 포함하는 면발광 램프.Surface emitting lamp further comprising.
  27. 제25항에 있어서,The method of claim 25,
    상기 미세패턴은,The fine pattern,
    상기 렌즈 표면 전체에 형성된 것을 특징으로 하는 면발광 램프.Surface-emitting lamp, characterized in that formed on the entire surface of the lens.
  28. 제25항에 있어서,The method of claim 25,
    상기 렌즈는 상기 중심부가 선형으로 형성되며 상기 중심부를 중심으로 좌우 대칭으로 형성된 것을 특징으로 면발광 램프.The lens has a surface light emitting lamp, characterized in that the central portion is formed linearly and symmetrically about the central portion.
  29. 제28항에 있어서,The method of claim 28,
    상기 렌즈는 두 개의 반구 형태 렌즈가 일부가 중첩되도록 연결되는 형태인 것을 특징으로 하는 면발광 램프.The lens is a surface light emitting lamp, characterized in that the two hemisphere lens is connected so that a part overlap.
  30. 제29항에 있어서,The method of claim 29,
    상기 렌즈는 길이방향으로 양측 일부가 제거된 형태인 것을 특징으로 하는 면발광 램프.The lens is a surface light emitting lamp, characterized in that the form in which both sides are removed in the longitudinal direction.
  31. 제30항에 있어서, The method of claim 30,
    상기 미세패턴은, 상기 중심부에만 형성된 것을 특징으로 하는 면발광 램프.The fine pattern is a surface light emitting lamp, characterized in that formed only in the central portion.
  32. 인쇄회로 기판에 LED 광원을 실장하는 단계;Mounting an LED light source on a printed circuit board;
    기 설정된 틀을 갖는 지그에 상기 인쇄회로기판을 위치시키는 단계;Placing the printed circuit board on a jig having a preset frame;
    확산재가 섞인 액상의 실리콘으로 상기 인쇄회로기판의 LED 광원을 도포하는 단계; 및Coating an LED light source of the printed circuit board with liquid silicon mixed with a diffusion material; And
    상기 액상의 실리콘을 경화시키는 단계Curing the liquid silicone
    를 포함하는 면발광 램프 제조방법.Surface emitting lamp manufacturing method comprising a.
  33. 제32항에 있어서,33. The method of claim 32,
    상기 LED 광원은,The LED light source,
    상기 인쇄회로기판에 실장되는 LED 소자; 및An LED element mounted on the printed circuit board; And
    상기 LED 소자를 덮으며 상면의 중심부가 오목하고 주변부가 볼록한 렌즈A lens covering the LED element and having a concave center portion and a convex portion at an upper surface thereof
    를 포함하며,Including;
    상기 렌즈의 표면에 미세패턴이 형성된 것을 특징으로 하는 면발광 램프 제조방법.Surface emitting lamp manufacturing method characterized in that the fine pattern is formed on the surface of the lens.
PCT/KR2015/002079 2014-03-07 2015-03-04 Flat luminescent lamp and manufacturing method therefor WO2015133813A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2014-0027010 2014-03-07
KR1020140026995A KR20150104955A (en) 2014-03-07 2014-03-07 LED Lamp
KR10-2014-0027009 2014-03-07
KR10-2014-0026995 2014-03-07
KR20140027009 2014-03-07
KR1020140027010A KR20150104962A (en) 2014-03-07 2014-03-07 Surface Emitting Lamp and Method of Manufacturing the same
KR10-2014-0152688 2014-11-05
KR1020140152688A KR20160053525A (en) 2014-11-05 2014-11-05 LED Lamp

Publications (1)

Publication Number Publication Date
WO2015133813A1 true WO2015133813A1 (en) 2015-09-11

Family

ID=54055556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002079 WO2015133813A1 (en) 2014-03-07 2015-03-04 Flat luminescent lamp and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2015133813A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107861A (en) * 2019-06-05 2019-08-09 华域视觉科技(上海)有限公司 Vehicular illumination device
AU2016277627B2 (en) * 2016-01-11 2020-12-24 Biosense Webster (Israel) Ltd. Tissue depth estimation using gated ultrasound and force measurements
CN112963762A (en) * 2021-02-07 2021-06-15 深圳市祥宇光电子科技有限公司 Underwater diving lamp with high-efficiency waterproof performance
CN114864621A (en) * 2021-12-17 2022-08-05 友达光电股份有限公司 Light source module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110032019A (en) * 2009-09-22 2011-03-30 한국과학기술원 Manufacturing method for lens with micro-patterned complex surface having double curvature, lens with micro-patterned complex surface having double curvature manufactured by the same and led device comprising the lens with micro-patterned complex surface having double curvature
KR20130073328A (en) * 2011-12-23 2013-07-03 서울반도체 주식회사 Light emitting module and lens
KR20130134971A (en) * 2012-05-31 2013-12-10 엘지이노텍 주식회사 Illuminating device
KR20140021480A (en) * 2012-08-10 2014-02-20 엘지이노텍 주식회사 Light device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110032019A (en) * 2009-09-22 2011-03-30 한국과학기술원 Manufacturing method for lens with micro-patterned complex surface having double curvature, lens with micro-patterned complex surface having double curvature manufactured by the same and led device comprising the lens with micro-patterned complex surface having double curvature
KR20130073328A (en) * 2011-12-23 2013-07-03 서울반도체 주식회사 Light emitting module and lens
KR20130134971A (en) * 2012-05-31 2013-12-10 엘지이노텍 주식회사 Illuminating device
KR20140021480A (en) * 2012-08-10 2014-02-20 엘지이노텍 주식회사 Light device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016277627B2 (en) * 2016-01-11 2020-12-24 Biosense Webster (Israel) Ltd. Tissue depth estimation using gated ultrasound and force measurements
CN110107861A (en) * 2019-06-05 2019-08-09 华域视觉科技(上海)有限公司 Vehicular illumination device
CN112963762A (en) * 2021-02-07 2021-06-15 深圳市祥宇光电子科技有限公司 Underwater diving lamp with high-efficiency waterproof performance
CN114864621A (en) * 2021-12-17 2022-08-05 友达光电股份有限公司 Light source module

Similar Documents

Publication Publication Date Title
TWI722193B (en) Light-emitting device and method for manufacturing the same
WO2013081417A1 (en) Light emitting module and lens
WO2010117210A2 (en) Led lamp having broad and uniform light distribution
WO2011037436A2 (en) Composite film for use in a light-emitting device, light-emitting device, and method for producing the composite film
WO2012005489A2 (en) Display device
WO2015133813A1 (en) Flat luminescent lamp and manufacturing method therefor
WO2013015468A1 (en) Led lens and led module for two-sided lighting, and led two-sided lighting apparatus using same
WO2016108570A1 (en) Lamp unit and vehicle lamp device using same
WO2011055973A2 (en) Lighting apparatus using light emitting diodes
WO2013002511A2 (en) Led lamp
WO2017111413A1 (en) Lighting module, and lighting apparatus having same
WO2013141649A1 (en) Light emitting unit array and light diffusing lens suitable for the same
WO2018139687A1 (en) Led module
WO2014168379A1 (en) Doubly-sealed waterproof floodlight and method for same
WO2017183938A1 (en) Lighting device
WO2016099156A1 (en) Illumination device
WO2013036061A1 (en) Lighting device
WO2011049373A2 (en) Light emitting device package and lighting system including same
WO2013081351A1 (en) Indirect lighting apparatus
RU2442240C1 (en) The light-emitting diode module
WO2021020809A1 (en) Lighting device
WO2016200151A1 (en) Lighting apparatus
WO2012070749A2 (en) Led lighting apparatus
WO2018110926A1 (en) Display module and manufacturing method therefor
WO2017069339A1 (en) Light-emitting device package and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758961

Country of ref document: EP

Kind code of ref document: A1