WO2015132429A1 - Method for the quantitative determination of physicochemical properties of soils or solid waste - Google Patents
Method for the quantitative determination of physicochemical properties of soils or solid waste Download PDFInfo
- Publication number
- WO2015132429A1 WO2015132429A1 PCT/ES2015/070061 ES2015070061W WO2015132429A1 WO 2015132429 A1 WO2015132429 A1 WO 2015132429A1 ES 2015070061 W ES2015070061 W ES 2015070061W WO 2015132429 A1 WO2015132429 A1 WO 2015132429A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resistivity
- soil
- samples
- residue
- physicochemical properties
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/14—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
- G01N27/18—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/02—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
Definitions
- the present invention falls within the general field of geophysics and geochemistry of soils and wastes and in particular refers to a method for determining the physicochemical properties of soils or solid wastes by using electrical tomography without the need to perform large samples or laboratory analysis.
- geophysical methods are complementary, non-destructive, low-cost and rapid application techniques to evaluate a large number of environmental and engineering problems.
- the geophysical method of electrical tomography (TE) can be used to study the thickness and extent that cover the different layers of the subsoil, evaluate its degree of erosion, identify cracks and distinguish preferential routes of water or drainage.
- Patents ES2393716, US8461843 describe procedures for detecting anomalies in the subsoil through the use of tomography, but in no case can the specific and necessary configuration of tomography profiles, nor the specific sampling to be performed, be deduced from them. , nor the treatment of data that must be carried out to be able to quantitatively estimate physical-chemical properties of soils or solid waste through the use of electrical tomography. There is therefore a need to provide a procedure for estimating the physical-chemical properties of soils or solid waste that solves the problems described in the state of the art.
- the technical problem solved by the present invention is the quantitative determination of the physical-chemical properties of soils or solid waste of large areas and depths, without the need to take large numbers of samples, both surface and depth, for the characterization of said soils or residues, nor therefore having to analyze these samples in the laboratory, with the consequent reduction in costs of both sampling and analytical determinations, including reagents, labor and equipment.
- the present invention relates to a process for the quantitative determination of physicochemical properties of soils or solid waste comprising the following steps:
- the electrode is 40-50 cm long and is introduced into the soil / residue at 15-25 cm deep.
- the resistivity is determined with a soil moisture or residue less than 15%.
- the resistivity is determined at least three times in each of the tomography profiles.
- the perforations or probes are made at a depth of between 80-100 cm
- the samples are obtained at depths of 0-30 cm, 30-60 cm and 60-90 cm.
- the statistical treatment of the data includes the Spearman correlation coefficient.
- the method comprises a validation stage of the obtained equations, this stage comprises using the geochemical results of the control samples and their corresponding resistivity values, which will provide the accuracy of the equations obtained.
- FIG. one shows an arrangement scheme of the electrical tomography profiles defined in the first stage of the process object of the present invention.
- FIG. 2 Shows a scheme of the sampling process used in the present invention.
- FIG. 3. Shows a scheme of the auger used for sampling in the present invention. Detailed description of the invention
- the described process of the invention has been applied to a mining waste raft (1) of metal mining developed in the Cartagena-La Unión Mining District. It is a raft located between the road (2) that goes to Playa del Gorguel to the south and the road (2) that connects La Unión with Escombreras to the north, whose surface is 7400 m 2 , with a depth of waste from 14 m and a total volume of approximately 150000 m 3 . It is considered representative of the rest of mining waste rafts due to its salinity characteristics, lack of vegetation, high metal content (Cd, Pb, and Zn), low organic matter content and its effect on water and wind erosion.
- Cd, Pb, and Zn high metal content
- each coil is composed of 18 connectors where the 36 metal electrodes (4) of stainless steel will be connected using 36 clamps between connectors and electrodes.
- the electrical current was applied by means of the dipole-dipole configuration, and the data collection of the subsoil resistivity. These measurements were made with dry soil (> 15% humidity) and with three iterations.
- the second stage of the procedure includes the sampling of the residues, for which three 90 cm deep perforations were made in each tomography profile, the first one located in the center of the profile, the second and third probes were located left and right of the first survey respectively and 120 cm apart from it, in each of which three samples (6) are taken at three depths: 0-30 cm; 30-60 cm and 60-90 cm (Fig. 2).
- three control samples (7) were taken per profile, from 0-30 cm to 120 cm to the left of the second survey, from 30-60 cm to 240 cm to the left of this same survey and from 60-90 cm to 120 cm to the right of the third survey, which were used to validate the equations obtained from the statistical treatment of the data.
- the samples were extracted manually with a bit (8) for 123 cm long floors, whose final end (9) 23 cm long (Fig. 3) allows the sample to be extracted, which is stored in a poly bag for transport to the laboratory. The process was repeated for each of the 3 tomography profiles, taking a total of 36 samples.
- the samples were taken to the laboratory where they were analyzed for the following parameters: pH, salinity, moisture, organic carbon, inorganic carbon, total sulfur, total nitrogen, clay, silt, sand, total lead, zinc Total, total copper, total cadmium, total nickel, total aluminum, total manganese, total iron, total arsenic and total selenium.
- the parameters that affect Directly to the electrical resistivity of mining wastes are mainly moisture, salinity, sand, silt, clay, zinc, lead and copper.
- the application of this invention allows the location of the different layers that make up the soil or solid waste under study and identification of possible buried materials by registering different resistivities, specifically the quantification of the extension, depth and composition approximate physicochemical of these layers.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Electrochemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
The invention relates to a method for the quantitative determination of physicochemical properties of soils or solid waste, characterised in that it comprises a step of determining the resistivity of the soil to be evaluated, a step of taking samples and analysing same, and a step of determining the relation between the physicochemical properties of the soil or waste and the resistivity values obtained by means of statistical treatment of the data.
Description
PROCEDIMIENTO PARA DETERMINAR CUANTITATIVAMENTE PROPIEDADES FÍSICO-QUÍMICAS DE SUELOS O RESIDUOS SÓLIDOS PROCEDURE FOR DETERMINING QUANTITATIVELY PHYSICAL-CHEMICAL PROPERTIES OF SOILS OR SOLID WASTE
Campo de la invención Field of the Invention
La presente invención se encuadra en el campo general de la geofísica y la geoquímica de suelos y residuos y en particular se refiere a un método para determinar las propiedades físico-químicas de suelos o residuos sólidos mediante el uso de la tomografía eléctrica sin necesidad de realizar grandes muéstreos ni análisis de laboratorio. The present invention falls within the general field of geophysics and geochemistry of soils and wastes and in particular refers to a method for determining the physicochemical properties of soils or solid wastes by using electrical tomography without the need to perform large samples or laboratory analysis.
Estado de la técnica State of the art
El estudio del subsuelo ha sido de gran interés desde tiempos muy antiguos, incrementando su importancia en tiempos recientes debido a su influencia en la agricultura, la ingeniería y el medioambiente. En este sentido, las técnicas para estudiar el subsuelo incluyen desde métodos eléctricos hasta prospecciones geotecnias mediante sondeos mecánicos de gran profundidad. The study of the subsoil has been of great interest since ancient times, increasing its importance in recent times due to its influence on agriculture, engineering and the environment. In this sense, the techniques for studying the subsoil include from electrical methods to geotechnical surveys by means of deep mechanical drilling.
El primer uso de los métodos eléctricos para el estudio del subsuelo se le atribuye al científico inglés Robert Fox, quien en 1830 detectó que había cuerpos minerales que generaban un voltaje natural y sugirió el uso de la medida de la resistencia eléctrica como herramienta de investigación. Sin embargo, no fue capaz de desarrollar un sistema de trabajo debido a la polarización de los electrodos. En 1880, Cari Barus, solventó el problema desarrollando un electrodo no polarizable hecho de madera porosa y arcilla sin esmaltar bañado en una solución de sulfato de cobre. The first use of electrical methods for the study of the subsoil is attributed to the English scientist Robert Fox, who in 1830 detected that there were mineral bodies that generated a natural voltage and suggested the use of electrical resistance measurement as a research tool. However, he was not able to develop a work system due to the polarization of the electrodes. In 1880, Cari Barus, solved the problem by developing a non-polarizable electrode made of porous wood and unglazed clay bathed in a solution of copper sulfate.
Los métodos de resistividad eléctrica, como se conocen actualmente, empezaron a desarrollarse a principios de 1890; aunque no fue hasta 1970 cuando se generalizó el uso de estas técnicas, ayudado en parte por la disponibilidad de ordenadores para el procesado y análisis de los datos. The electrical resistivity methods, as they are known today, began to develop in the early 1890s; although it was not until 1970 when the use of these techniques became widespread, helped in part by the availability of computers for data processing and analysis.
En la actualidad, a la determinación del potencial que detectó Fox es a lo que se llama medidas del potencial natural; y a los métodos de resistividad desarrollados en Francia por los hermanos Schlumberger y en Estados Unidos por Wenner, uno de los cuales es el utilizado en esta invención, son a los que denominamos métodos de resistividad
eléctrica, estos métodos se basan en la introducción de corriente eléctrica directamente en el subsuelo, modificando el campo potencial del mismo que es medido por medio de un voltímetro permitiendo obtener los valores de resistividad eléctrica que los materiales ofrecen al paso de esta corriente. Currently, the determination of the potential that Fox detected is what is called natural potential measures; and the resistivity methods developed in France by the Schlumberger brothers and in the United States by Wenner, one of which is used in this invention, are what we call resistivity methods electrical, these methods are based on the introduction of electric current directly in the subsoil, modifying the potential field of the same that is measured by means of a voltmeter allowing to obtain the values of electrical resistivity that the materials offer to the passage of this current.
En este sentido, los métodos geofísicos son técnicas complementarias, no destructivas, de bajo coste y de rápida aplicación para evaluar un gran número de problemas ambientales y de ingeniería. Dentro de estas técnicas, el método geofísico de tomografía eléctrica (TE) puede ser usado para estudiar el espesor y la extensión que cubren las diferentes capas del subsuelo, evaluar su grado de erosión, identificar grietas y distinguir rutas preferenciales de agua o drenajes. In this sense, geophysical methods are complementary, non-destructive, low-cost and rapid application techniques to evaluate a large number of environmental and engineering problems. Within these techniques, the geophysical method of electrical tomography (TE) can be used to study the thickness and extent that cover the different layers of the subsoil, evaluate its degree of erosion, identify cracks and distinguish preferential routes of water or drainage.
A pesar de las ventajas que esta técnica lleva asociadas, mencionadas en el párrafo anterior, su potencial de utilización no ha sido desarrollado completamente, ya que actualmente en los estudios del subsuelo además de realizar los perfiles de tomografía eléctrica, que no siempre se llevan a cabo, se realizan sondeos mecánicos con el fin de evaluar las propiedades físico-químicas de las capas identificadas por la tomografía. Estos sondeos son caros de realizar, requieren mucho tiempo para su realización y, por lo tanto, los costes de personal son elevados, los equipos utilizados para realizarlos son pesados y a veces su utilización está limitada por no poder acceder a los lugares de estudio que dichos equipos pesados; además, su representatividad está cuestionada para grandes superficies ya que no se consigue información de la totalidad del subsuelo, únicamente de la zona seleccionada para el sondeo, por lo que se requiere un gran número de sondeos para asegurar dicha representatividad, y una vez efectuados estos sondeos se deben de tomar gran cantidad de muestras que representen la columna extraída en cada sondeo, transportar dichas muestras al laboratorio y realizar los análisis pertinentes, lo cual encarece aún más los costes de su utilización. Despite the advantages that this technique has associated, mentioned in the previous paragraph, its potential for use has not been fully developed, since currently in the subsoil studies in addition to performing the profiles of electrical tomography, which are not always carried After that, mechanical surveys are carried out in order to evaluate the physicochemical properties of the layers identified by the tomography. These surveys are expensive to carry out, require a lot of time for their realization and, therefore, personnel costs are high, the equipment used to carry them out is heavy and sometimes their use is limited because they cannot access the study sites that said heavy equipment; In addition, its representativeness is questioned for large areas since information is not obtained from the entire subsoil, only from the area selected for the survey, so a large number of surveys are required to ensure said representativeness, and once these are carried out surveys should be taken large number of samples representing the column extracted in each survey, transport these samples to the laboratory and perform the relevant analysis, which further increases the costs of its use.
Las patentes ES2393716, US8461843 describen procedimientos para detectar anomalías en el subsuelo mediante el uso de la tomografía, pero en ningún caso se puede deducir de las mismas la configuración específica y necesaria de los perfiles de tomografía, ni el muestreo específico que se debe de realizar, ni el tratamiento de datos que se debe de llevar a cabo para poder estimar de forma cuantitativa propiedades físico-químicas de suelos o residuos sólidos mediante el uso de la tomografía eléctrica.
Existe pues la necesidad de proporcionar un procedimiento para estimar las propiedades físico-químicas de suelos o residuos sólidos que solvente los problemas descritos en el estado de la técnica. Patents ES2393716, US8461843 describe procedures for detecting anomalies in the subsoil through the use of tomography, but in no case can the specific and necessary configuration of tomography profiles, nor the specific sampling to be performed, be deduced from them. , nor the treatment of data that must be carried out to be able to quantitatively estimate physical-chemical properties of soils or solid waste through the use of electrical tomography. There is therefore a need to provide a procedure for estimating the physical-chemical properties of soils or solid waste that solves the problems described in the state of the art.
Descripción de la invención Description of the invention
El problema técnico que resuelve la presente invención es la determinación cuantitativa de las propiedades físico-químicas de suelos o residuos sólidos de grandes extensiones y profundidades, sin necesidad de tomar gran número de muestras, tanto en superficie como en profundidad, para la caracterización de dichos suelos o residuos, ni por lo tanto tener que analizar en el laboratorio dichas muestras, con la consiguiente reducción de costes tanto de muestreo como de determinaciones analíticas, incluyendo reactivos, mano de obra y equipamientos. The technical problem solved by the present invention is the quantitative determination of the physical-chemical properties of soils or solid waste of large areas and depths, without the need to take large numbers of samples, both surface and depth, for the characterization of said soils or residues, nor therefore having to analyze these samples in the laboratory, with the consequent reduction in costs of both sampling and analytical determinations, including reagents, labor and equipment.
Así pues, en un primer aspecto, la presente invención se refiere a un procedimiento para la determinación cuantitativa de propiedades físico-químicas de suelos o residuos sólidos que comprende las siguientes etapas: Thus, in a first aspect, the present invention relates to a process for the quantitative determination of physicochemical properties of soils or solid waste comprising the following steps:
- determinación de las resistividad del suelo o residuo sólido a evaluar mediante tomografía eléctrica, en al menos tres emplazamientos, que comprende el uso de electrodos metálicos (4), separados entre ellos por una distancia comprendida de 25-35 cm e insertados en una cavidad circular para cada electrodo de 4-7 cm de profundidad y de 8-12 cm de diámetro; - determination of the resistivity of the soil or solid residue to be evaluated by electrical tomography, in at least three locations, comprising the use of metal electrodes (4), separated from each other by a distance of 25-35 cm and inserted into a cavity circular for each electrode 4-7 cm deep and 8-12 cm in diameter;
- toma de muestras de suelo o residuo, que comprende al menos tres perforaciones o sondeos sobre cada uno de los perfiles de tomografía donde se toman al menos tres muestras (6) en cada uno de los sondeos, así como la toma de al menos tres muestras control (7) por perfil; - sampling of soil or residue, which comprises at least three perforations or probes on each of the tomography profiles where at least three samples (6) are taken in each of the probes, as well as the taking of at least three control samples (7) per profile;
- determinación y cuantificación de las propiedades físico-químicas de las muestras obtenidas en la etapa anterior, - determination and quantification of the physicochemical properties of the samples obtained in the previous stage,
- obtención de la relación de las propiedades físico-químicas del suelo o residuo con los valores de resistividad obtenidos mediante tratamiento estadístico de los datos. - Obtaining the relationship of the physical-chemical properties of the soil or residue with the resistivity values obtained through statistical treatment of the data.
En una realización en particular de la presente invención, el electrodo es de 40-50 cm de longitud y se introduce en el suelo/residuo a 15-25 cm de profundidad.
En una realización en particular de la presente invención, la resistividad se determina con una humedad del suelo o residuo inferior al 15%. In a particular embodiment of the present invention, the electrode is 40-50 cm long and is introduced into the soil / residue at 15-25 cm deep. In a particular embodiment of the present invention, the resistivity is determined with a soil moisture or residue less than 15%.
En una realización en particular de la presente invención, la resistividad se determina al menos tres veces en cada uno de los perfiles de tomografía. In a particular embodiment of the present invention, the resistivity is determined at least three times in each of the tomography profiles.
En una realización en particular de la presente invención, las perforaciones o sondeos se realizan a una profundidad de entre 80-100 cm In a particular embodiment of the present invention, the perforations or probes are made at a depth of between 80-100 cm
En una realización en particular de la presente invención, las muestras se obtienen a unas profundidades de 0-30 cm, 30-60 cm y 60-90 cm. In a particular embodiment of the present invention, the samples are obtained at depths of 0-30 cm, 30-60 cm and 60-90 cm.
En una realización en particular de la presente invención, el tratamiento estadístico de los datos incluye el coeficiente de correlación de Spearman. In a particular embodiment of the present invention, the statistical treatment of the data includes the Spearman correlation coefficient.
Cuando éste es significativo al 99%, se calculan las ecuaciones que relacionarán las propiedades fisicoquímicas de los suelos o residuos con los valores de resistividad, de tal forma que se determinan de forma cuantitativa las propiedades fisicoquímicas de otros emplazamientos de características semejantes en función de los valores de resistividad. When this is significant at 99%, the equations that will relate the physicochemical properties of the soils or residues to the resistivity values are calculated, so that the physicochemical properties of other sites of similar characteristics are determined quantitatively based on the resistivity values.
En una realización en particular de la presente invención, el procedimiento comprende una etapa de validación de las ecuaciones obtenidas, esta etapa comprende mediante el uso de los resultados geoquímicos de las muestras control y sus correspondientes valores de resistividad, lo que aportará la precisión de las ecuaciones obtenidas. In a particular embodiment of the present invention, the method comprises a validation stage of the obtained equations, this stage comprises using the geochemical results of the control samples and their corresponding resistivity values, which will provide the accuracy of the equations obtained.
Descripción de las figuras Description of the figures
FIG. 1 . Muestra un esquema de disposición de los perfiles de tomografía eléctrica definidos en la primera etapa del proceso objeto de la presente invención. FIG. one . It shows an arrangement scheme of the electrical tomography profiles defined in the first stage of the process object of the present invention.
FIG. 2. Muestra un esquema del proceso de toma de muestras empleado en la presente invención. FIG. 2. Shows a scheme of the sampling process used in the present invention.
FIG. 3. Muestra un esquema de la barrena utilizada para la toma de muestras en la presente invención.
Descripción detallada de la invención FIG. 3. Shows a scheme of the auger used for sampling in the present invention. Detailed description of the invention
En un ejemplo práctico de aplicación, el procedimiento descrito de la invención se ha aplicado a una balsa de residuos mineros (1 ) de la minería metálica desarrollada en el Distrito Minero de Cartagena-La Unión. Se trata de una balsa localizada entre la carretera (2) que va hacia la Playa del Gorguel al sur y la carretera (2) que une La Unión con Escombreras al norte, cuya superficie es de 7400 m2, con una profundidad de residuos de 14 m y un volumen total de 150000 m3 aproximadamente. Se considera representativa del resto de balsas de residuos mineros por sus características de salinidad, falta de vegetación, elevado contenido de metales (Cd, Pb, y Zn), bajo contenido de materia orgánica y su afección por la erosión hídrica y eólica. In a practical example of application, the described process of the invention has been applied to a mining waste raft (1) of metal mining developed in the Cartagena-La Unión Mining District. It is a raft located between the road (2) that goes to Playa del Gorguel to the south and the road (2) that connects La Unión with Escombreras to the north, whose surface is 7400 m 2 , with a depth of waste from 14 m and a total volume of approximately 150000 m 3 . It is considered representative of the rest of mining waste rafts due to its salinity characteristics, lack of vegetation, high metal content (Cd, Pb, and Zn), low organic matter content and its effect on water and wind erosion.
En primer lugar se seleccionó la ubicación de tres perfiles de tomografía (3) sobre la balsa de residuos (1 ) (Figura 1 ), lo cual se basó tanto en diferencias visuales en la superficie de la balsa como en el conocimiento sobre el proceso de formación de este tipo de balsas. Estos emplazamientos fueron seleccionados porque las propiedades físico-químicas de los mismos eran lo más diferentes posibles entre ellos, para ello se tuvo en cuenta tanto diferencias visuales como conocimientos previos de la zona a estudiar. La selección de un menor número de emplazamientos no sería representativa de la superficie a estudiar y a efectos estadísticos los resultados obtenidos no tendrían validez, por lo que al menos deben ser tres los emplazamientos a seleccionar. First, the location of three tomography profiles (3) on the waste raft (1) (Figure 1) was selected, which was based both on visual differences on the surface of the raft and on knowledge about the process of formation of this type of rafts. These sites were selected because their physical-chemical properties were as different as possible between them, for this, both visual differences and previous knowledge of the area to be studied were taken into account. The selection of a smaller number of sites would not be representative of the surface to be studied and for statistical purposes the results obtained would not be valid, so at least three sites must be selected.
Una vez localizados los perfiles, para cada uno de ellos se excavaron 36 cavidades circulares en el residuo, las dimensiones de dichas cavidades fueron de 5 cm de profundidad por 10 de diámetro, esto garantizó el contacto galvánico residuo-electrodo y una mejor transmisión de la corriente eléctrica, estas cavidades distan unas de otras 30 cm, y en cada una ellas se introdujo un electrodo metálico (4), de acero inoxidable de 30 cm de longitud a una profundidad de 20 cm lo que dio como resultado una longitud de cada perfil (3) de 1050 cm. Mayor profundidad y/o diámetro provocarían una pérdida de los valores de resistividad de las capas más superficiales del suelo; al igual que una menor profundidad y/o diámetro no garantizarían que se eliminará la capa de suelo superficial alterada por dichos factores y, por lo tanto, los valores de resistividad obtenidos no serían representativos de las propiedades físico-químicas del subsuelo.
Para esta primera etapa se utilizó un equipo convencional de tomografía eléctrica compuesto por un resistivímetro (5) o unidad principal de medida dos bobinas de cable multiconductor unidas entre sí mediante un cajetín de conexión de bornes del cableado, y un extremo de una de ellas se conectó el resistivímetro (5), cada bobina está compuesta por 18 conectores donde se unirán los 36 electrodos metálicos (4) de acero inoxidable utilizando 36 pinzas de unión entre conectores y electrodos. Once the profiles were located, for each of them 36 circular cavities were excavated in the residue, the dimensions of said cavities were 5 cm deep by 10 in diameter, this guaranteed the residue-electrode galvanic contact and a better transmission of the electric current, these cavities are some 30 cm apart, and in each of them a metal electrode (4), of 30 cm long stainless steel at a depth of 20 cm was introduced which resulted in a length of each profile (3) 1050 cm. Greater depth and / or diameter would cause a loss of the resistivity values of the most superficial layers of the soil; as a smaller depth and / or diameter would not guarantee that the surface soil layer altered by these factors will be eliminated and, therefore, the resistivity values obtained would not be representative of the physical-chemical properties of the subsoil. For this first stage, a conventional electrical tomography equipment consisting of a resistivimeter (5) or main unit of measurement was used, two multiconductor cable coils joined together by means of a wiring terminal connection box, and one end of them connected the resistivity meter (5), each coil is composed of 18 connectors where the 36 metal electrodes (4) of stainless steel will be connected using 36 clamps between connectors and electrodes.
Una vez conectados los electrodos al cable conductor de la electricidad mediante las pinzas metálicas, se procedió a la aplicación de la corriente eléctrica mediante la configuración dipolo-dipolo, y a la toma de datos de resistividad del subsuelo. Estas medidas se realizaron con el suelo seco (>15% de humedad) y con tres iteraciones. Once the electrodes were connected to the electricity conductor cable by means of the metal clamps, the electrical current was applied by means of the dipole-dipole configuration, and the data collection of the subsoil resistivity. These measurements were made with dry soil (> 15% humidity) and with three iterations.
Tras la toma de datos del subsuelo, éstos fueron sometidos a una serie de etapas de procesado (filtración, corrección topográfica, eliminación de datos anómalos, inversión, etc.). Tras estas fases de procesado se obtendrían los valores de resistividad real de los materiales del subsuelo con una profundidad de investigación de 210 cm. After data collection from the subsoil, they were subjected to a series of processing stages (filtration, topographic correction, elimination of anomalous data, inversion, etc.). After these processing phases, the actual resistivity values of the subsoil materials with a research depth of 210 cm would be obtained.
La segunda etapa del procedimiento comprende la toma de muestras de los residuos, para lo cual se realizaron tres perforaciones de 90 cm de profundidad en cada perfil de tomografía, localizado el primero de ellos en el centro del perfil, el segundo y tercer sondeo se localizaron a izquierda y derecha del primer sondeo respectivamente y distanciados 120 cm de este, en cada una de las cuales se toman tres muestras (6) a tres profundidades: 0-30 cm; 30-60 cm y 60-90 cm (Fig. 2). Además, se tomaron tres muestras control (7) por perfil, de 0-30 cm a 120 cm a la izquierda del segundo sondeo, de 30-60 cm a 240 cm a la izquierda de este mismo sondeo y de 60-90 cm a 120 cm a la derecha del tercer sondeo, las cuales se usaron para validar las ecuaciones obtenidas del tratamiento estadístico de los datos. The second stage of the procedure includes the sampling of the residues, for which three 90 cm deep perforations were made in each tomography profile, the first one located in the center of the profile, the second and third probes were located left and right of the first survey respectively and 120 cm apart from it, in each of which three samples (6) are taken at three depths: 0-30 cm; 30-60 cm and 60-90 cm (Fig. 2). In addition, three control samples (7) were taken per profile, from 0-30 cm to 120 cm to the left of the second survey, from 30-60 cm to 240 cm to the left of this same survey and from 60-90 cm to 120 cm to the right of the third survey, which were used to validate the equations obtained from the statistical treatment of the data.
La extracción de las muestras se realizó de forma manual con una barrena (8) para suelos de 123 cm de longitud, cuyo extremo final (9) de 23 cm de longitud (Fig. 3) permite la extracción de la muestra, la cual es guardada en una bolsa de polietileno para su transporte al laboratorio. El proceso se repitió para cada uno de los 3 perfiles de tomografía, tomando un total de 36 muestras. The samples were extracted manually with a bit (8) for 123 cm long floors, whose final end (9) 23 cm long (Fig. 3) allows the sample to be extracted, which is stored in a poly bag for transport to the laboratory. The process was repeated for each of the 3 tomography profiles, taking a total of 36 samples.
En la tercera etapa del proceso, las muestras se llevaron al laboratorio donde fueron analizadas para los siguientes parámetros: pH, salinidad, humedad, carbono orgánico, carbono inorgánico, azufre total, nitrógeno total, arcilla, limo, arena, plomo total, cinc
total, cobre total, cadmio total, níquel total, aluminio total, manganeso total, hierro total, arsénico total y selenio total. In the third stage of the process, the samples were taken to the laboratory where they were analyzed for the following parameters: pH, salinity, moisture, organic carbon, inorganic carbon, total sulfur, total nitrogen, clay, silt, sand, total lead, zinc Total, total copper, total cadmium, total nickel, total aluminum, total manganese, total iron, total arsenic and total selenium.
Una vez obtenidos lo resultados analíticos de la etapa anterior, se comenzó con la cuarta etapa de tratamiento estadístico de los datos y la obtención de las ecuaciones que relacionarán las propiedades fisicoquímicas de los residuos con los valores de resistividad. Para ello se calculó el coeficiente de correlación de Spearman (r), el cual indica la existencia de correlación entre dos variables, en este caso la resistividad y cualquiera de los parámetros anteriormente mencionados (Tabla 1 ). Once the analytical results of the previous stage were obtained, we began with the fourth stage of statistical treatment of the data and obtaining the equations that will relate the physicochemical properties of the residues with the resistivity values. For this, the Spearman correlation coefficient (r) was calculated, which indicates the existence of a correlation between two variables, in this case the resistivity and any of the aforementioned parameters (Table 1).
Tabla 1 . Coeficientes de correlación de Spearman entre los valores de resistividad y las propiedades físico-químicas de los residuos Table 1 . Spearman correlation coefficients between the resistivity values and the physicochemical properties of the residues
correlación significativa al 95% 95% significant correlation
** correlación significativa al 99% ** significant correlation at 99%
Cuando el valor de correlación es significativo al 99%, se calcularon las ecuaciones que mejor rigen dichas correlaciones, lo que permitió estimar las propiedades fisicoquímicas en función de los valores de resistividad (Tabla 2). When the correlation value is significant at 99%, the equations that best govern these correlations were calculated, which allowed us to estimate the physicochemical properties based on the resistivity values (Table 2).
Tabla 2. Ecuaciones que relacionan la resistividad (x) con los parámetros físico- químicos de los residuos (y), indicando el coeficiente de correlación y la desviación respecto a los valores reales Table 2. Equations that relate the resistivity (x) with the physical-chemical parameters of the residues (y), indicating the correlation coefficient and the deviation from the real values
Arena Y = 6,4424 Ln(X) + 56548 0,7019 5 Sand Y = 6.4424 Ln (X) + 56548 0.7019 5
Plomo total Y = -703,27 Ln(X) + 5158 0,4823 25 Total lead Y = -703.27 Ln (X) + 5158 0.4823 25
Cobre total Y = -23,264 Ln(X) + 181 ,79 0,5095 22 Total copper Y = -23,264 Ln (X) + 181, 79 0.5095 22
Zinc total Y = -1409,2 Ln(X) + 11853 0,4326 20 Total Zinc Y = -1409.2 Ln (X) + 11853 0.4326 20
Finalmente se procedió a la validación de las ecuaciones obtenidas mediante la utilización de los resultados geoquímicos de las muestras control y sus correspondientes valores de resistividad, para ello sustituimos la resistividad medida en las muestras tomadas bajo los electrodos control en las ecuaciones y calculamos así un valor estimado de cada uno de los parámetros geoquímicos medidos. Este valor fue comparado con el valor determinado en el laboratorio (Tabla 3), y de este modo calculado la desviación que ofrecen las ecuaciones (Tabla 2). Finally, the equations obtained were validated by using the geochemical results of the control samples and their corresponding resistivity values, for this we substitute the resistivity measured in the samples taken under the control electrodes in the equations and thus calculate a value estimate of each of the measured geochemical parameters. This value was compared with the value determined in the laboratory (Table 3), and thus calculated the deviation offered by the equations (Table 2).
Tabla 3. Valores reales y estimados con las ecuaciones de la tabla 2 de las muestras control Table 3. Actual and estimated values with the equations in Table 2 of the control samples
M: muestra; E: valor estimado con las ecuaciones; R: real M: sample; E: estimated value with the equations; R: real
En base a los resultados obtenidos a partir de los muéstreos geofísicos y geoquímicos y del análisis estadístico de los mismos, se determinó que los parámetros que afectan
directamente a la resistividad eléctrica de los residuos mineros son principalmente la humedad, la salinidad, la arena, el limo, la arcilla, el zinc, el plomo y el cobre. Based on the results obtained from the geophysical and geochemical samples and their statistical analysis, it was determined that the parameters that affect Directly to the electrical resistivity of mining wastes are mainly moisture, salinity, sand, silt, clay, zinc, lead and copper.
Los resultados obtenidos indicaron que la invención descrita permite determinar de forma cuantitativa propiedades físico-químicas de suelos o residuos de grandes extensiones y profundidades sin necesidad de muestrearlos, ni analizarlos en el laboratorio. The results obtained indicated that the described invention allows quantitative determination of physicochemical properties of soils or residues of large areas and depths without the need to sample them, nor analyze them in the laboratory.
Por otro lado, la aplicación de esta invención permite la localización de las diferentes capas que componen el suelo o residuos sólidos objeto de estudio e identificación de posibles materiales enterrados mediante el registro de diferentes resistividades, en concreto la cuantificacion de la extensión, profundidad y composición físico-química aproximada de dichas capas.
On the other hand, the application of this invention allows the location of the different layers that make up the soil or solid waste under study and identification of possible buried materials by registering different resistivities, specifically the quantification of the extension, depth and composition approximate physicochemical of these layers.
Claims
1 . Procedimiento para la determinación cuantitativa de propiedades físico-químicas de suelos o residuos sólidos, caracterizado por que comprende las siguientes etapas: one . Procedure for the quantitative determination of physicochemical properties of soils or solid waste, characterized in that it comprises the following stages:
- determinación de las resistividad del suelo o residuo sólido a evaluar mediante tomografía eléctrica, en al menos tres emplazamientos, que comprende el uso de electrodos metálicos (4), separados entre ellos por una distancia comprendida de 25-35 cm e insertados en una cavidad circular para cada electrodo de 4-7 cm de profundidad y de 8-12 cm de diámetro; - determination of the resistivity of the soil or solid residue to be evaluated by electrical tomography, in at least three locations, comprising the use of metal electrodes (4), separated from each other by a distance of 25-35 cm and inserted into a cavity circular for each electrode 4-7 cm deep and 8-12 cm in diameter;
- toma de muestras de suelo o residuo, que comprende al menos tres perforaciones o sondeos sobre cada uno de los perfiles de tomografía donde se toman al menos tres muestras (6) en cada uno de los sondeos, así como la toma de al menos tres muestras control (7) por perfil; - sampling of soil or residue, which comprises at least three perforations or probes on each of the tomography profiles where at least three samples (6) are taken in each of the probes, as well as the taking of at least three control samples (7) per profile;
- determinación y cuantificación de las propiedades físico-químicas de las muestras obtenidas en la etapa anterior, - determination and quantification of the physicochemical properties of the samples obtained in the previous stage,
- obtención de la relación de las propiedades físico-químicas del suelo o residuo con los valores de resistividad obtenidos mediante tratamiento estadístico de los datos. - Obtaining the relationship of the physical-chemical properties of the soil or residue with the resistivity values obtained through statistical treatment of the data.
2. Procedimiento según la reivindicación 1 , caracterizado por que cada electrodo es de 40-50 cm de longitud y se introduce en el suelo/residuo a 15-25 cm de profundidad. 2. Method according to claim 1, characterized in that each electrode is 40-50 cm long and is introduced into the soil / residue at 15-25 cm deep.
3. Procedimiento según cualquiera de las reivindicaciones 1 - 2, donde la resistividad se determina con una humedad del suelo o residuo inferior al 15%. 3. Method according to any one of claims 1-2, wherein the resistivity is determined with a soil moisture or residue of less than 15%.
4. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado por que la resistividad se determina al menos tres veces en cada uno de los perfiles de tomografía. 4. Method according to any of the preceding claims, characterized in that the resistivity is determined at least three times in each of the tomography profiles.
5. Procedimiento según las reivindicaciones anteriores, donde las perforaciones o sondeos se realizan a una profundidad de entre 80-100 cm 5. Method according to the preceding claims, wherein the perforations or probes are made at a depth of between 80-100 cm
6. Procedimiento según las reivindicaciones anteriores donde las muestras se obtienen a unas profundidades de 0-30 cm, 30-60 cm y 60-90 cm. 6. Method according to the preceding claims wherein the samples are obtained at depths of 0-30 cm, 30-60 cm and 60-90 cm.
7. Procedimiento según cualquiera de las reivindicaciones anteriores donde el tratamiento estadístico de los datos incluye el coeficiente de correlación de Spearman.
7. Method according to any of the preceding claims wherein the statistical treatment of the data includes the Spearman correlation coefficient.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP201430291 | 2014-03-04 | ||
ES201430291A ES2474919B1 (en) | 2014-03-04 | 2014-03-04 | Procedure for quantitatively determining physicochemical properties of soils or solid waste |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015132429A1 true WO2015132429A1 (en) | 2015-09-11 |
Family
ID=51059752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2015/070061 WO2015132429A1 (en) | 2014-03-04 | 2015-01-29 | Method for the quantitative determination of physicochemical properties of soils or solid waste |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2474919B1 (en) |
WO (1) | WO2015132429A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2740759C1 (en) * | 2020-02-17 | 2021-01-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Курский государственный университет" | Method for determining maximum geochemical capacity of soil and ground when compacted at landfill sites |
US11653255B2 (en) | 2017-03-08 | 2023-05-16 | Nec Corporation | Apparatus and method for communication network |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2683991B1 (en) | 2011-03-08 | 2018-10-03 | Abengoa Solar Inc. | Trough solar collector module |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4219776A (en) * | 1978-08-25 | 1980-08-26 | The Regents Of The University Of California | Method and apparatus for measuring in situ density and fabric of soils |
US6295512B1 (en) * | 1998-05-01 | 2001-09-25 | John Bryant | Subsurface mapping apparatus and method |
US20040201380A1 (en) * | 2002-08-23 | 2004-10-14 | Forschungszentrum Julich Gmbh | Method and apparatus for rapid tomographic measurements of the electrical conductivity distribution of a sample |
US20110037474A1 (en) * | 2009-08-12 | 2011-02-17 | Baker Hughes Incorporated | Method and system for measuring resistivity anisotropy of layered rock samples |
ES2393716A1 (en) * | 2012-07-12 | 2012-12-27 | Universidad Politécnica De Cartagena | Method to detect and evaluate soils contaminated by hydrocarbons in service stations and out of service supply units (Machine-translation by Google Translate, not legally binding) |
-
2014
- 2014-03-04 ES ES201430291A patent/ES2474919B1/en active Active
-
2015
- 2015-01-29 WO PCT/ES2015/070061 patent/WO2015132429A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4219776A (en) * | 1978-08-25 | 1980-08-26 | The Regents Of The University Of California | Method and apparatus for measuring in situ density and fabric of soils |
US6295512B1 (en) * | 1998-05-01 | 2001-09-25 | John Bryant | Subsurface mapping apparatus and method |
US20040201380A1 (en) * | 2002-08-23 | 2004-10-14 | Forschungszentrum Julich Gmbh | Method and apparatus for rapid tomographic measurements of the electrical conductivity distribution of a sample |
US20110037474A1 (en) * | 2009-08-12 | 2011-02-17 | Baker Hughes Incorporated | Method and system for measuring resistivity anisotropy of layered rock samples |
ES2393716A1 (en) * | 2012-07-12 | 2012-12-27 | Universidad Politécnica De Cartagena | Method to detect and evaluate soils contaminated by hydrocarbons in service stations and out of service supply units (Machine-translation by Google Translate, not legally binding) |
Non-Patent Citations (1)
Title |
---|
ROSALES, R. MA. ET AL.: "Environmental Monitoring Using Electrical Resistivity Tomography (ERT) in the Subsoil of Three Former Petrol Stations in SE of Spain", WATER, AIR AND SOIL POLLUTION;, vol. 223, no. 7, 28 March 2012 (2012-03-28), pages 3757 - 3773, XP035092811, ISSN: 0049-6979 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11653255B2 (en) | 2017-03-08 | 2023-05-16 | Nec Corporation | Apparatus and method for communication network |
RU2740759C1 (en) * | 2020-02-17 | 2021-01-20 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Курский государственный университет" | Method for determining maximum geochemical capacity of soil and ground when compacted at landfill sites |
Also Published As
Publication number | Publication date |
---|---|
ES2474919A1 (en) | 2014-07-09 |
ES2474919B1 (en) | 2015-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | Electrical resistivity imaging (ERI) monitoring for groundwater contamination in an uncontrolled landfill, South Korea | |
Watlet et al. | Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring | |
Nyquist et al. | Stream bottom resistivity tomography to map ground water discharge | |
Piegari et al. | Estimating soil suction from electrical resistivity | |
Putro | Geophysical and hydrochemical approach for seawater intrusion in north semarang, Central Java, Indonesia | |
Murad | Obtaining chemical properties through soil electrical resistivity | |
Raji et al. | Dam safety assessment using 2D electrical resistivity geophysical survey and geological mapping | |
Rhoades | Inexpensive four‐electrode probe for monitoring soil salinity | |
Deceuster et al. | Automated identification of changes in electrode contact properties for long-term permanent ERT monitoring experiments | |
Bery et al. | Empirical correlation between electrical resistivity and engineering properties of soils | |
WO2015132429A1 (en) | Method for the quantitative determination of physicochemical properties of soils or solid waste | |
CN115979900B (en) | Underground water circulation element monitoring method based on northern full-row karst springs | |
Oyubu | Soil resistivity and soil PH profile investigation: a case study of Delta state university faculty of engineering complex | |
Kazmi et al. | Exploring the relationship between moisture content and electrical resistivity for sandy and silty soils | |
Ibuot et al. | Assessment of impact of leachate on hydrogeological repositories in Uyo, Southern Nigeria | |
Hautot et al. | Groundwater electromagnetic imaging in complex geological and topographical regions: A case study of a tectonic boundary in the French Alps | |
Toran et al. | Delineating a road-salt plume in lakebed sediments using electrical resistivity, piezometers, and seepage meters at Mirror Lake, New Hampshire, USA | |
Narjary et al. | Quantitative assessment of soil salinity using electromagnetic induction technique and geostatistical approach | |
Cuong et al. | Imaging the movement of toxic pollutants with 2D electrical resistivity tomography (ERT) in the geological environment of the Hoa Khanh Industrial Park, Da Nang, Vietnam | |
Abidin et al. | Groundwater seepage mapping using electrical resistivity imaging | |
Kušnirák et al. | Complex geophysical investigation of the Kapušany landslide (Eastern Slovakia) | |
Suprianto et al. | Assessment of validated geoelectrical resistivity methods to reconstruct buried archaeological site (case study: Beteng Site-Sidomekar, Jember Regency) | |
Putra et al. | Effect soil resistivity in mapping potential corrosion in underground pipelines area | |
Funk et al. | Possibilities and limitations of cave detection with ERT | |
Caputo et al. | Field measurement of hydraulic conductivity of rocks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15758690 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15758690 Country of ref document: EP Kind code of ref document: A1 |