WO2015131739A1 - 数据交互方法、基带处理单元、射频拉远单元及中继单元 - Google Patents
数据交互方法、基带处理单元、射频拉远单元及中继单元 Download PDFInfo
- Publication number
- WO2015131739A1 WO2015131739A1 PCT/CN2015/072267 CN2015072267W WO2015131739A1 WO 2015131739 A1 WO2015131739 A1 WO 2015131739A1 CN 2015072267 W CN2015072267 W CN 2015072267W WO 2015131739 A1 WO2015131739 A1 WO 2015131739A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- packet
- mac address
- relay unit
- downlink
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/155—Ground-based stations
Definitions
- the present invention relates to the field of communications, and in particular, to a data interaction method, a baseband processing unit, a radio remote unit, and a relay unit.
- the traditional distributed base station system uses a BBU (Building Base Band Unite) + Radio Remote Unit (RRU), as shown in Figure 1.
- the BBU is responsible for completing the baseband processing.
- the RRU is responsible for performing uplink and downlink RF signal processing and interaction with the UE.
- the BBU and the RRU are connected by optical fibers.
- this networking method has two obvious disadvantages: First, the high cost fiber causes the carrier's CAPEX to be relatively high, and there are few fiber deployments in the room; the second is the waste of the BBU. Processing capacity.
- an optical port of the BBU can provide 9.8304 Gbps of data capacity.
- the RRU capacity of the indoor coverage is limited. In addition, there are few cascading scenarios for indoor coverage.
- FIG. 2 Show An architecture of a Baseband Processing Unit (BBU) + R-Hub + Radio Remote Unit (RRU) for indoor coverage is proposed, as shown in FIG. 2 Show.
- the R-Hub completes the routing and forwarding of the baseband data in the downlink, and completes the reorganization and upload of the RRU data in the uplink.
- the R-Hub can be connected to multiple RRUs.
- the R-Hub can also be connected to other R-Hubs to ensure the full coverage of the network coverage and BBU resources.
- R-Hub and RRU are connected by CAT5/5E/6 twisted pair cable, which can improve the flexibility of indoor coverage and achieve higher cost performance.
- the BBU and the R-Hub are connected by optical fibers, so that the RRU can choose to perform traditional networking through the optical fiber and the BBU, or through the CAT5/5E/6 twisted pair.
- the BBU+R-Hub+RRU networking in order to complete the long-distance coverage, it is sometimes necessary to use the existing public network to transmit user data. How to ensure the security and isolation of carrier user data in the public network, so that the number of users According to the "transparent" transmission when crossing the public network, it is a problem that needs to be solved.
- the embodiment of the invention provides a data interaction method, a baseband processing unit, a radio remote unit and a relay unit, which solves the problem of how to ensure the security and isolation of data transmission through the public network.
- An embodiment of the present invention provides a data interaction method, including:
- the baseband processing unit adds an outer media control access (MAC) header to the outer layer of the downlink original packet to be sent to obtain a downlink transmission packet, and sends the obtained downlink transmission packet to the relay unit or the radio remote.
- MAC outer media control access
- a unit the baseband processing unit is connected to the relay unit or the radio remote unit through an electrical interface; or the relay unit adds an outer media control access (MAC) header to the outer layer of the downlink original message to be sent.
- the relay unit adds an outer MAC header to the outer layer of the original original packet to be sent to obtain an uplink sending packet, and sends the obtained uplink sending packet to the upper-level relay unit or the baseband processing unit.
- the relay unit is connected to the upper-level relay unit or the baseband processing unit through the electrical port; or the radio remote unit adds an outer MAC header to the outer layer of the original original message to be sent to obtain an uplink sending message. Sending the obtained uplink sending message to the relay unit or the baseband processing unit, where the radio remote unit is connected to the relay unit or the baseband processing unit through the electrical port;
- the outer MAC header includes at least a destination MAC address and a source MAC address.
- the outer MAC header further includes a MAC type.
- the uplink original packet includes an uplink service data packet and/or an uplink private packet
- the downlink original packet includes a downlink service data packet and/or a downlink private packet
- the source MAC address is the MAC of its electrical port.
- the destination MAC address is the MAC address of the electrical interface of the upper-level or lower-level relay unit, the baseband processing unit, or the remote radio unit connected to its electrical interface.
- the source MAC address is its electrical interface.
- the destination MAC address is the MAC address of the electrical port of the relay unit connected to its electrical port;
- the source MAC address is the MAC address of the electrical interface
- the destination MAC address is the MAC address of the electrical interface of the relay unit or the radio remote unit connected to its electrical interface.
- the relay unit or the radio remote unit parses the downlink original packet, and needs to send the next downlink packet to the next level.
- the new outer MAC header is added to the outer layer of the obtained downlink original message. Send it to the next level relay unit or radio remote unit;
- the relay unit parses the packet to obtain the uplink original packet, and sends it to the relay unit or the baseband processing unit of the upper level, and is in the upper level.
- the new outer MAC header is added to the outer layer of the obtained original original message, and then sent to the upper-level relay unit or the baseband processing unit.
- the relay unit or the remote radio unit after receiving the downlink sending message, the relay unit or the remote radio unit needs to send to the relay unit or the radio remote unit of the next level, and the next level When the relay unit or the radio remote unit is connected through the optical port, the downlink original message is directly sent to the relay unit or the radio remote unit of the next stage;
- the relay unit In the uplink direction, after receiving the uplink uplink sending message, the relay unit needs to send to the relay unit or the baseband processing unit of the upper level, and is connected to the relay unit or the baseband processing unit of the upper level through the optical port.
- the uplink original message is directly sent to the relay unit or the baseband processing unit of the upper level.
- an embodiment of the present invention further provides a baseband processing unit, including An interface module and a first interface processing module;
- the first interface module is configured to be connected to the relay unit or the radio remote unit through an electrical interface
- the first interface processing module is configured to: in the downlink direction, add an outer MAC header to the outer layer of the downlink original packet to be sent to obtain a downlink sending packet, and send the obtained downlink sending packet to the relay unit or the radio remote unit;
- the outer MAC header includes at least a destination MAC address and a source MAC address.
- the source MAC address is the MAC address of the electrical interface
- the destination MAC address is the MAC address of the electrical interface of the relay unit or the remote radio unit connected to the electrical port.
- an embodiment of the present invention further provides a relay unit, including a second interface module and a second interface processing module;
- the second interface module is configured to be connected to the relay unit or the radio remote unit of the next stage through an electrical interface; and to the upper relay unit or the baseband processing unit through an electrical interface;
- the second interface processing module is configured to: in the downlink direction, add an outer MAC header to the outer layer of the downlink original packet to be sent to obtain a downlink sending packet, and send the obtained downlink sending packet to the next-level relay unit or
- the outer MAC header is added to the outer layer of the original original packet to be sent to obtain an uplink sending packet, and the obtained uplink sending packet is sent to the upper-level relay unit or baseband processing.
- the outer MAC header includes at least a destination MAC address and a source MAC address.
- the source MAC address is the MAC address of the electrical port
- the destination MAC address is the electrical port of the relay unit, the baseband processing unit, or the remote radio unit connected to the electrical port.
- an embodiment of the present invention further provides a radio remote unit, including a third interface module and a third interface processing module;
- the third interface module is configured to be connected to the relay unit or the baseband processing unit through an electrical interface
- the third interface processing module is set to be in the uplink direction, in the outer layer of the original original message to be sent.
- the outer MAC header is added to obtain an uplink sending packet, and the obtained uplink sending packet is sent to the relay unit or the baseband processing unit.
- the outer MAC header includes at least a destination MAC address and a source MAC address.
- the source MAC address is the MAC address of the electrical interface
- the destination MAC address is the MAC address of the electrical interface of the relay unit connected to the electrical interface.
- the embodiment of the invention further provides a computer readable storage medium storing program instructions, which can be implemented when the program instructions are executed.
- the transmission of related data packets can be transparently transmitted through an additional outer MAC header to ensure security and isolation when the data traverses the public network. That is, the public network only needs to play the role of data transmission tunnel in the data transmission process.
- FIG. 1 is a schematic structural diagram of a BBU+RRU networking
- FIG. 2 is a schematic structural diagram of a BBU+R-Hub+RRU networking
- FIG. 3 is a schematic structural diagram of a BBU according to an embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of an R-Hub according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of an RRU according to an embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of a first networking provided in Embodiment 3 of the present invention.
- FIG. 7 is a schematic structural diagram of a second networking provided in Embodiment 3 of the present invention.
- FIG. 8 is a schematic structural diagram of a third networking provided in Embodiment 3 of the present invention.
- Embodiment 9 is a schematic structural diagram of a fourth networking provided in Embodiment 3 of the present invention.
- FIG. 10 is a schematic structural diagram of a fifth networking provided in Embodiment 3 of the present invention.
- FIG. 11 is a schematic diagram of a sixth networking structure provided in Embodiment 3 of the present invention.
- FIG. 12 is a schematic structural diagram of a packet after an outer MAC header is encapsulated according to Embodiment 3 of the present invention.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the "transparent" data interaction method provided in this embodiment additionally adds addressing between R-Hub and RRU, R-Hub and R-Hub, BBU and R-Hub, and between BBU and RRU in the data transmission process; Then, the original data of the uplink and downlink are encapsulated and decapsulated separately during the traversal process to ensure the security and isolation of the data in the case of traversing the public network.
- the BBU or the R-Hub adds an outer MAC header to the outer layer of the downlink original packet to be sent, and obtains the downlink sending packet, and sends the obtained downlink sending packet to the next-level R-Hub or RRU.
- the BBU or the R-Hub is connected to the next-level R-Hub or RRU through the electrical interface.
- the R-Hub or the RRU adds an outer MAC header to the outer layer of the original original packet to be sent.
- the uplink sending packet is sent to the upper-level R-Hub or the BBU.
- the R-Hub or the RRU is connected to the upper-level R-Hub or the BBU through the electrical interface.
- the added outer MAC header includes at least a destination MAC address and a source MAC address.
- the outer MAC header may include a basic field and an extended field, wherein the destination MAC address and the source MAC address are set in a basic field, and the MAC type may also be included in the basic field.
- the extension field can be set according to actual needs, for example, it can be used as an IP header to construct a layer-3 based tunnel network.
- the added MAC header definition can refer to the standard IEEE802.3 Ethernet frame format, and the set basic field length is 12 bytes. The length of the extension field is defined as needed.
- the packet to be transmitted includes a service data packet for implementing a service and a private packet between the R-Hub and the RRU.
- the service data packet transmitted in the downlink direction is called the downlink service data packet
- the service data packet transmitted in the uplink direction is called the uplink service data packet
- the private packet transmitted in the downlink direction is called the downlink private packet.
- the private message transmitted in the uplink direction is called an uplink private message.
- the uplink original packet in this embodiment includes an uplink service datagram.
- the text and/or the uplink private message; the downlink original message includes a downlink service data message and/or a downlink private message.
- the private message in this embodiment may include a MAC address self-learning message, a delay message, and an Ethernet OAM message, and different MAC types are different.
- the MAC address self-learning message is a broadcast message, and the R-Hub and the RRU learn to obtain the MAC address of the other party by broadcasting the message when the link is established.
- the delay packet is a unicast packet, and is used to send the delay of the R-Hub to the RRU.
- the RRU is used to calculate and compensate the uplink and downlink delays.
- the Ethernet OAM packet is a unicast packet. After the R-Hub and the RRU are connected to each other, they periodically send link keep-alive and status messages to each other for link monitoring and maintenance.
- the source MAC address is the MAC address of the electrical interface
- the destination MAC address is the MAC address of the electrical interface of the R-Hub, BBU, or RRU connected to the electrical interface
- the source MAC address is the MAC address of the electrical interface
- the destination MAC address is the MAC address of the R-Hub electrical interface connected to its electrical interface
- the source MAC address is the MAC address of the electrical interface
- the destination MAC address is the MAC address of the electrical interface of the R-Hub or RRU connected to its electrical interface.
- the destination MAC address in this embodiment can be obtained through learning during the link establishment process.
- the R-Hub or the RRU parses the downlink original packet, and determines the packet according to the MAC type included in the outer MAC header in the packet. The type is then stripped of the outer MAC header and processed according to the packet type. After the R-Hub or RRU receives the downlink packet and parses the downlink original packet, it needs to send it to the next-level R-Hub.
- the RRU, and the R-Hub or the RRU of the next-level is connected through the electrical interface, and newly adds a new outer MAC header to the outer layer of the obtained downlink original packet (the newly added MAC header includes the new source MAC address) And the destination MAC address), send it to the next level R-Hub or RRU.
- the next-level R-Hub or RRU After receiving the downlink transmission packet and parsing the downlink original packet, the next-level R-Hub or RRU receives the downlink original packet.
- the downlink original packet is directly sent to the next-level R-Hub or RRU; There is no need to re-add a new outer MAC header.
- the R-Hub In the uplink direction, after receiving the uplink uplink transmission packet, the R-Hub parses the original original packet, and determines the packet according to the MAC type included in the outer MAC header in the packet. The type, then strips the outer MAC header and performs subsequent processing based on the message type. After receiving the uplink uplink packet, the R-Hub needs to send the R-Hub or the BBU to the upper-level R-Hub or the BBU. Then, after adding a new outer MAC header to the outer layer of the obtained original original packet, send it to the upper-level R-Hub or BBU.
- the R-Hub of the upper-level R-Hub needs to send to the R-Hub or BBU of the upper-level and the R-Hub or BBU of the upper-level.
- the original original packet is directly sent to the R-Hub or BBU of the upper level.
- the data interaction scheme provided in this embodiment is mainly used for data transmission through a networking system of an electrical interface networking.
- a networking system of an electrical interface networking For example, it can be applied to various forms of BBU+R-Hub+RRU networking.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- the BBU provided in this embodiment includes a first interface module and a first interface processing module.
- the first interface module is configured to be connected to the R-Hub or the RRU through an electrical interface.
- the BBU and the R-Hub or the BBU connected to the electrical interface may need to traverse the public network.
- the first interface processing module is configured to add the outer MAC header to the outer layer of the downlink original packet to be sent.
- the packet sends the received downlink packet to the R-Hub or the RRU.
- the added outer MAC header includes at least the destination MAC address and the source MAC address.
- the source MAC address is the MAC address of the electrical interface
- the destination MAC address is the MAC address of the electrical interface of the R-Hub or RRU connected to its electrical interface.
- BBU can be learned through the process of building the chain.
- the R-Hub provided in this embodiment includes a second interface module and a second interface processing module.
- the second interface module is configured to be connected to the R-Hub or the RRU of the next stage through an electrical interface; and is configured to be connected to the R-Hub or the BBU of the upper stage through an electrical interface; and the second interface processing module is configured to be in the downstream direction,
- the outer MAC header is added to the outer layer of the downlink original packet to be sent to obtain the downlink transmission packet, and the obtained downlink transmission packet is sent to the next-level R-Hub or RRU; and is used to be sent in the uplink direction.
- the added outer MAC header also includes at least the destination MAC address and
- the source MAC address is the MAC address of the electrical interface of the R-Hub.
- the destination MAC address is the MAC address of the electrical interface of the R-Hub, BBU, or RRU connected to its electrical interface. For the destination MAC address R-Hub can be learned through the process of building the chain.
- the R-Hub in this embodiment further includes a routing module, configured to: route the data of the BBU or the R-Hub of the upper level to the R-Hub or the RRU of the next level in the downlink direction, and the uplink direction will be from the lower direction.
- the data of the first-level RRU or R-Hub is routed to the BBU or R-Hub of the upper level.
- the RRU provided in this embodiment includes a third interface module and a third interface processing module.
- the third interface module is configured to be connected to the upper-layer R-Hub or the BBU through the electrical interface; the third interface processing module is configured to be in the uplink direction, and the outer MAC header is added to the outer layer of the original original packet to be sent to obtain the uplink. Send the packet and send the obtained uplink packet to the upper-level R-Hub or BBU.
- the added outer MAC header also includes at least the destination MAC address and the source MAC address.
- the source MAC address is the MAC address of its electrical interface
- the destination MAC address is the MAC address of the electrical interface of the relay unit connected to its electrical interface.
- For the destination MAC address RRU can be learned through the process of building the chain.
- the packet to be transmitted includes a service data packet for implementing a service and a private packet between the R-Hub and the RRU.
- the service data packet transmitted in the downlink direction is called For the downlink service data packet, the service data packet transmitted in the uplink direction is called the uplink service data packet; the private packet transmitted in the downlink direction is called the downlink private packet, and the private packet transmitted in the uplink direction is called the uplink private packet.
- the uplink original packet in the embodiment includes an uplink service data packet and/or an uplink private packet; the downlink original packet includes a downlink service data packet and/or a downlink private packet.
- the private message in this embodiment may include a MAC address self-learning message, a delay message, and an Ethernet OAM message, and different MAC types are different.
- the MAC address self-learning message is a broadcast message, and the R-Hub and the RRU learn to obtain the MAC address of the other party by broadcasting the message when the link is established.
- the delay packet is a unicast packet, and is used to send the delay of the R-Hub to the RRU.
- the RRU is used to calculate and compensate the uplink and downlink delays.
- the Ethernet OAM packet is a unicast packet. After the R-Hub and the RRU are connected to each other, they periodically send link keep-alive and status messages to each other for link monitoring and maintenance.
- Embodiment 3 is a diagrammatic representation of Embodiment 3
- This embodiment exemplifies the present invention by combining several specific networking modes. However, it should be understood that the present embodiment is not limited to the following typical networking modes.
- the network shown in the figure includes a baseband processing unit (BBU), a first relay unit (first R-Hub), a public network, and a second relay unit (second R-Hub).
- BBU baseband processing unit
- first R-Hub first relay unit
- second R-Hub second relay unit
- RRU radio remote unit
- the BBU is connected to the first R-Hub through the optical port, so the interaction between the BBU and the first R-Hub in the uplink and downlink data does not need to additionally increase the outer MAC header.
- the first R-Hub separates the signaling and IQ data after the SerDes and the de-frame of the optical interface;
- One The R-Hub determines that the packet needs to be forwarded to the second R-Hub of the next-level, and is connected to the second R-Hub through the electrical interface, and the first R-Hub sends the original downlink packet to the BBU.
- the MAC header After the MAC header is added to the layer, it is sent to the second R-Hub through the public network. After receiving the downlink sending packet sent by the first R-Hub, the second R-Hub parses the MAC packet according to the MAC type to obtain the downlink original packet; then the second R-Hub determines that the packet needs to be forwarded to the next level.
- the RRU is connected to the RRU through the electrical interface.
- the second R-Hub adds a new outer MAC header to the outer layer of the downlink original packet that is parsed, and sends the new outer MAC header to the RRU.
- the newly added outer MAC header is added. Includes new source and destination MAC addresses.
- the RRU In the uplink direction, the RRU adds an outer MAC header to the outer layer of the original original packet to be sent to obtain an uplink packet, and then sends the packet to the second R-Hub connected to the electrical port through the second R-Hub. After receiving the uplink sending packet sent by the RRU, it parses the original sending packet according to its type. The second R-Hub determines that the original original packet needs to be sent to the upper level connected to the electrical interface.
- the first R-Hub re-adds the outer MAC header (including the new source MAC address and the destination MAC address) to the original original packet, and then sends the first R-Hub through the public network; the first R-Hub receives the first After the uplink packet is sent by the second R-Hub, it is parsed according to its type to obtain the original original packet.
- the first R-Hub determines that the original original packet needs to be sent to the BBU connected to the optical port. After the parsed uplink original packet is parsed, the SerDes that have passed the optical port are sent to the BBU. It can be seen that when the packet sent in this embodiment traverses the public network, the security and isolation of the outer MAC header can be ensured.
- the interaction between the R-Hub and the R-Hub and the R-Hub and the R-Hub and the RRU also adds an additional outer MAC header to ensure security and isolation.
- the network baseband processing unit (BBU), the first relay unit (first R-Hub), and the second relay unit cascaded with the first R-Hub are shown in the figure.
- the electrical interface is connected to the third R-Hub through the public network; the third R-Hub is connected to the RRU through the electrical interface; and the BBU is connected to the first R-Hub through the optical interface.
- the BBU is connected to the first R-Hub through the optical port, so the BBU and the The interaction between the upstream and downstream data between an R-Hub does not require an additional outer MAC header.
- the first R-Hub separates the signaling and IQ data after the SerDes and the de-frame of the optical interface;
- An R-Hub determines that the packet needs to be forwarded to the second R-Hub of the next level, and the second R-Hub is connected to the second R-Hub through the electrical interface, and the first R-Hub sends the downlink original packet to the BBU.
- the outer layer adds the MAC header and sends it to the second R-Hub.
- the second R-Hub parses the downlink original packet according to the MAC type, and the second R-Hub parses the received downlink transmission packet.
- the downlink original packet is sent, and the packet is forwarded to the third R-Hub of the next level, and the third R-Hub is connected to the third R-Hub through the electrical interface, and the third R-Hub sends the downlink original report to the BBU.
- the third R-Hub determines that the packet needs to be forwarded to the RRU of the next level, and the RRU is connected to the RRU through the electrical interface, and the third R-Hub adds a new outer layer to the outer layer of the downlink original packet that is parsed.
- the layer MAC header is sent to the RRU, and the newly added outer MAC header includes the new source MAC address and the destination MAC address.
- the RRU adds an outer MAC header to the outer layer of the original original packet to be sent to obtain an uplink packet, and then sends the packet to the third R-Hub connected to the electrical interface through the public network.
- the R-Hub After receiving the uplink sending packet sent by the RRU, the R-Hub parses the original sending packet according to its type. The third R-Hub determines that the original original packet needs to be sent to the electrical port.
- the second R-Hub of the first level re-adds the outer MAC header (including the new source MAC address and the destination MAC address) to the original original packet, and then sends the second R-Hub through the public network; the second R-Hub After receiving the uplink sending packet sent by the third R-Hub, the uplink original packet is parsed according to the type, and the second R-Hub determines that the original original packet needs to be sent to the electrical interface.
- the first R-Hub of the upper level re-adds the outer MAC header (including the new source MAC address and the destination MAC address) to the first original R-Hub, and sends the first R-Hub to the first R-Hub; the first R-Hub receives After the uplink packet is sent by the second R-Hub, it is parsed according to its type to obtain the original original packet; An R-Hub determines that the original original packet needs to be sent to the BBU connected to the optical port, and the analysis is directly obtained.
- the uplink original packet is sent to the BBU through the SerDes of the optical port. It can be seen that when the packet sent in this embodiment traverses the public network, the security and isolation of the outer MAC header can be ensured.
- the network shown in the figure includes a baseband processing unit (BBU), a first relay unit (first R-Hub), a public network, and a second relay unit (second R-Hub).
- BBU baseband processing unit
- first R-Hub first relay unit
- second R-Hub second relay unit
- RRU radio remote unit
- the BBU is connected to the first R-Hub through an electrical interface. Therefore, the interaction between the BBU and the first R-Hub in the uplink and downlink data requires an additional outer MAC header.
- the BBU sends the downlink packet to the first R-Hub after the outer MAC header of the downlink original packet is sent, and the first R-Hub receives the downlink transmission packet sent by the BBU.
- the first R-Hub determines that the message needs to be forwarded to the second R-Hub of the next level, and the second R-Hub is After the electrical interface is connected, the first R-Hub adds a MAC header to the outer layer of the downlink original packet sent by the BBU, and then sends the MAC header to the second R-Hub.
- the second R-Hub After receiving the downlink sending packet sent by the first R-Hub, the second R-Hub parses the MAC packet according to the MAC type to obtain the downlink original packet; then the second R-Hub determines that the packet needs to be forwarded to the next level.
- the RRU is connected to the RRU through the electrical interface.
- the second R-Hub adds a new outer MAC header to the outer layer of the downlink original packet that is parsed, and sends the new outer MAC header to the RRU.
- the newly added outer MAC header is added. Includes new source and destination MAC addresses.
- the RRU adds an outer MAC header to the outer layer of the original original packet to be sent to obtain an uplink packet, and then sends the packet to the second R-Hub connected to the electrical port through the second R-Hub. After receiving the uplink sending packet sent by the RRU, it parses the original sending packet according to its type.
- the second R-Hub determines that the original original packet needs to be sent to the upper level connected to the electrical interface.
- the first R-Hub re-adds the outer MAC header (including the new source MAC address and the destination MAC address) to the original original packet, and then sends the first R-Hub through the public network; the first R-Hub receives the first After the uplink packet is sent by the second R-Hub, The first R-Hub determines that the original original packet is sent to the BBU connected to the electrical interface, and the outer MAC header is added to the parsed original original packet. Then send it to the BBU. It can be seen that when the packet sent in this embodiment traverses the public network, the security and isolation of the outer MAC header can be ensured.
- the network shown in the figure includes a baseband processing unit (BBU), a public network, a first relay unit (first R-Hub), and a radio remote unit (RRU), where the first R - The Hub connects to the RRU through the electrical interface; the BBU connects to the first R-Hub through the electrical network through the electrical interface.
- BBU baseband processing unit
- first R-Hub first relay unit
- RRU radio remote unit
- the BBU traverses the public network and is connected to the first R-Hub through the electrical interface. Therefore, the interaction between the BBU and the first R-Hub in the uplink and downlink data also requires an additional outer MAC header. .
- the BBU sends the downlink packet to the outer MAC header of the downlink original packet to be sent, and then sends the packet to the first R-Hub through the public network.
- the first R-Hub receives the packet sent by the BBU. After the downlink packet is sent, it is parsed according to its type to separate the signaling and the IQ data.
- the first R-Hub determines that the packet needs to be forwarded to the next-stage RRU, and the RRU is connected to the RRU through the electrical interface.
- the first R-Hub adds a new outer MAC header to the outer layer of the parsed downlink original packet, and sends the new outer MAC header to the RRU.
- the newly added outer MAC header includes the new source MAC address and the destination MAC address.
- the RRU adds an outer MAC header to the outer layer of the original original packet to be sent to obtain an uplink packet, and then sends the packet to the first R-Hub connected to the electrical port through the first R-Hub. After receiving the uplink sending packet sent by the RRU, it parses the original packet according to its type.
- the first R-Hub determines that the original original packet needs to be sent to the BBU connected to the electrical interface.
- the obtained original original packet is added to the outer MAC header and sent to the BBU. It can be seen that when the packet sent in this embodiment traverses the public network, the security and isolation of the outer MAC header can be ensured.
- the network shown in the figure includes a baseband processing unit (BBU), a first relay unit (first R-Hub), a public network, and a radio remote unit (RRU), where the first R - The Hub connects to the RRU through the electrical network through the electrical interface; the BBU connects to the first R-Hub through the optical interface.
- BBU baseband processing unit
- first R-Hub first relay unit
- RRU radio remote unit
- the BBU traverses the public network and is connected to the first R-Hub through the optical interface. Therefore, the interaction between the BBU and the first R-Hub in the uplink and downlink data does not require an additional outer MAC header. .
- the BBU sends the downlink original packet to be sent to the first R-Hub directly. After receiving the downlink transmission packet sent by the BBU, the first R-Hub is separated by the SerDes of the optical interface and the de-framed frame.
- the first R-Hub determines that the message needs to be forwarded to the next-stage RRU, and the RRU is connected to the RRU through the electrical interface, and the first R-Hub analyzes the obtained downlink original message.
- the outer layer adds a new outer MAC header and sends it to the RRU through the public network.
- the newly added outer MAC header includes the new source MAC address and the destination MAC address.
- the RRU adds an outer MAC header to the outer layer of the original original packet to be sent to obtain an uplink packet, and then sends the packet to the first R-Hub connected to the electrical interface through the public network.
- the R-Hub After receiving the uplink transmission packet sent by the RRU, the R-Hub parses the original transmission packet according to its type. The first R-Hub determines that the original original packet needs to be sent to the BBU connected to the optical interface. The SerDes that have passed through the optical port after parsing the obtained original original packet are directly sent to the BBU. It can be seen that when the packet sent in this embodiment traverses the public network, the security and isolation of the outer MAC header can be ensured.
- the network shown in the figure includes a baseband processing unit (BBU), a first relay unit (first R-Hub), and a second relay unit cascaded with the first R-Hub ( The second R-Hub, the public network, and the radio remote unit (RRU), wherein the first R-Hub is connected to the second first R-Hub through the electrical interface, and the second R-Hub is traversed through the public network and the RRU through the electrical interface.
- the BBU is connected to the first R-Hub through an electrical port.
- the BBU is connected to the first R-Hub through an electrical interface. Therefore, the interaction between the BBU and the first R-Hub in the uplink and downlink data also requires an additional outer MAC header.
- the BBU sends the downlink packet to the first R-Hub after the outer MAC header of the downlink original packet is sent, and the first R-Hub receives the downlink transmission packet sent by the BBU.
- the first R-Hub determines that the message needs to be forwarded to the second R-Hub of the next level, and the second R-Hub is Connected via electrical port
- the first R-Hub adds a MAC header to the outer layer of the downlink original packet sent by the BBU, and sends the MAC header to the second R-Hub.
- the second R-Hub After receiving the downlink sending packet sent by the first R-Hub, the second R-Hub parses the MAC packet according to the MAC type to obtain the downlink original packet; then the second R-Hub determines that the packet needs to be forwarded to the next level.
- the RRU is connected to the RRU through the electrical interface.
- the second R-Hub adds a new outer MAC header to the outer layer of the downlink original packet that is parsed, and then sends the new outer MAC header to the RRU.
- the newly added outer layer is added.
- the MAC header includes a new source MAC address and a destination MAC address.
- the RRU adds an outer MAC header to the outer layer of the original original packet to be sent to obtain an uplink packet, and then traverses the public network to send it to the upper second R-Hub connected to the electrical interface.
- the second R-Hub parses the original sending packet according to the type, and the second R-Hub determines that the original original packet needs to be sent to the electrical interface.
- the first R-Hub of the upper layer of the connection is re-added to the first R-Hub by adding the outer MAC header (including the new source MAC address and the destination MAC address) to the original original packet; the first R-Hub After receiving the uplink sending packet sent by the second R-Hub, the first R-Hub determines that the original original packet needs to be sent to the electrical interface through the electrical interface.
- the BBU adds an outer MAC header to the parsed original original packet and sends it to the BBU. It can be seen that when the packet sent in this embodiment traverses the public network, the security and isolation of the outer MAC header can be ensured.
- the outer MAC header is divided into a basic field and an extended field.
- the basic fields include the destination MAC address, source MAC address, and MAC type.
- Each electrical port of the Hub is based on a physical network card and is globally unique. Therefore, it can be connected to the public network.
- the destination MAC address of the peer end of the electrical interface is learned through the broadcast MAC address self-learning message.
- the MAC type is used to distinguish different types of packets.
- the interface processing modules of the BBU, R-Hub, and RRU can encapsulate different types of MAC addresses for different types of packets to facilitate processing.
- signaling and IQ data are encapsulated by IP protocol. , but pay attention to distinguish the MACtype of the existing protocol.
- the extension fields and field lengths can be defined as needed, such as IP headers, which can be used to build a Layer 3 based tunnel network.
- all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve. Thus, the invention is not limited to any specific combination of hardware and software.
- the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
- each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
- the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
- the transmission of related data packets can be transparently transmitted through an additional outer MAC header to ensure security and isolation when the data traverses the public network. That is, the public network only needs to play the role of data transmission tunnel in the data transmission process.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Small-Scale Networks (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种数据交互方法、基带处理单元、射频拉远单元及中继单元,在下行方向,基带处理单元在待发送的下行原始报文外层添加外层媒体控制接入(MAC)头得到下行发送报文,将得到的下行发送报文发送给中继单元或射频拉远单元,所述基带处理单元通过电口与所述中继单元或射频拉远单元连接;在上行方向,中继单元在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,将得到的上行发送报文发送给上一级中继单元或基带处理单元,所述中继单元通过电口与所述上一级中继单元连接或基带处理单元连接。
Description
本发明涉及通信领域,具体涉及一种数据交互方法、基带处理单元、射频拉远单元及中继单元。
传统的分布式基站系统采用基带处理单元(BBU:Building Base band Unite)+射频拉远单元(RRU:Radio Remote Unit),请参见图1所示。其中BBU负责完成基带处理,RRU负责完成上下行射频信号处理、与UE的交互功能,BBU与RRU之间通过光纤连接。当RRU用于室内覆盖时,这种组网方式有两个明显的缺点:一是高成本的光纤导致运营商的CAPEX相对较高,而且室内也很少有光纤部署;二是浪费了BBU的处理能力,目前BBU的一个光口通常可以提供9.8304Gbps的数据容量,室内覆盖的RRU容量需求有限,另外室内覆盖也很少有级联的场景,这样会造成BBU资源的浪费。于是一种用于室内覆盖的基带处理单元(BBU:Building Base band Unite)+中继单元(R-Hub)+射频拉远单元(RRU:Radio Remote Unit)的架构被提出,请参见图2所示。其中R-Hub在下行完成基带数据的路由和转发,上行完成RRU数据的重组和上传。R-Hub可以连接多个RRU,R-Hub也可以级联其他的R-Hub,以保证组网覆盖范围和BBU资源的充分利用。R-Hub和RRU之间通过CAT5/5E/6双绞线连接,这样可以提高室内覆盖的灵活性以及获得更高的性价比。另外,还可设置为兼容原BBU+RRU架构,此时BBU和R-Hub之间用光纤连接,这样RRU可以选择通过光纤和BBU进行传统组网,也可以通过CAT5/5E/6双绞线加上R-Hub构成BBU+R-Hub+RRU组网。在BBU+R-Hub+RRU组网中,为了完成远距离覆盖,有时需要利用已有的公网传输用户数据。如何在公网中保证运营商用户数据的安全性和隔离性,使用户数
据在穿越公网时“透明”的传输,是需要重点解决的问题。
发明内容
本发明实施例提供一种数据交互方法、基带处理单元、射频拉远单元及中继单元,解决如何保证数据在通过公网传输的安全性和隔离性。
本发明实施例提供一种数据交互方法,包括:
在下行方向,基带处理单元在待发送的下行原始报文外层添加外层媒体控制接入(MAC)头得到下行发送报文,将得到的下行发送报文发送给中继单元或射频拉远单元,所述基带处理单元通过电口与所述中继单元或射频拉远单元连接;或者中继单元在待发送的下行原始报文外层添加外层媒体控制接入(MAC)头得到下行发送报文,将得到的下行发送报文发送给下一级中继单元或射频拉远单元;所述中继单元通过电口与所述下一级中继单元或射频拉远单元连接;
在上行方向,中继单元在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,将得到的上行发送报文发送给上一级中继单元或基带处理单元,所述中继单元通过电口与所述上一级中继单元连接或基带处理单元连接;或者射频拉远单元在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,将得到的上行发送报文发送给中继单元或基带处理单元,所述射频拉远单元通过电口与所述中继单元连接或基带处理单元连接;
所述外层MAC头至少包括目的MAC地址和源MAC地址。
在本发明的一种实施例中,所述外层MAC头还包括MAC类型。
在本发明的一种实施例中,所述上行原始报文包括上行业务数据报文和/或上行私有报文;所述下行原始报文包括下行业务数据报文和/或下行私有报文。
在本发明的一种实施例中,对于中继单元,源MAC地址为其电口的MAC
地址,目的MAC地址为与其电口连接的上一级或下一级中继单元、基带处理单元或射频拉远单元的电口的MAC地址;对于射频拉远单元,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的中继单元电口的MAC地址;
对于基带处理单元,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的中继单元或射频拉远单元的电口的MAC地址。
在本发明的一种实施例中,在下行方向,中继单元或射频拉远单元接收到所述下行发送报文后,对其进行解析得到下行原始报文,并在需要发送到下一级的中继单元或射频拉远单元、且与下一级的中继单元或射频拉远单元为通过电口连接时,重新在得到的下行原始报文外层增加新的外层MAC头后,将其发送给下一级中继单元或射频拉远单元;
在上行方向,中继单元接收到交互上行发送报文后,对其进行解析得到上行原始报文,并在需要发送到上一级的中继单元或基带处理单元、且与上一级的中继单元或基带处理单元为通过电口连接时,重新在得到的上行原始报文外层增加新的外层MAC头后,将其发送给上一级中继单元或基带处理单元。
在本发明的一种实施例中,中继单元或射频拉远单元接收到所述下行发送报文后,在需要发送到下一级的中继单元或射频拉远单元、且与下一级的中继单元或射频拉远单元为通过光口连接时,直接将所述下行原始报文发送给下一级的中继单元或射频拉远单元;
在上行方向,中继单元接收到交互上行发送报文后,在需要发送到上一级的中继单元或基带处理单元、且与上一级的中继单元或基带处理单元为通过光口连接时,直接将所述上行原始报文发送给上一级的中继单元或基带处理单元。
为了解决上述问题,本发明实施例还提供了一种基带处理单元,包括第
一接口模块和第一接口处理模块;
第一接口模块设置为与中继单元或射频拉远单元通过电口连接;
第一接口处理模块设置为在下行方向,在待发送的下行原始报文外层添加外层MAC头得到下行发送报文,将得到的下行发送报文发送给中继单元或射频拉远单元;所述外层MAC头至少包括目的MAC地址和源MAC地址。
在本发明的一种实施例中,对于基带处理单元,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的中继单元或射频拉远单元的电口的MAC地址。
为了解决上述问题,本发明实施例还提供了一种中继单元,包括第二接口模块和第二接口处理模块;
第二接口模块设置为与下一级的中继单元或射频拉远单元通过电口连接;以及与上一级中继单元或基带处理单元通过电口连接;
第二接口处理模块设置为在下行方向,在待发送的下行原始报文外层添加外层MAC头得到下行发送报文,将得到的下行发送报文发送给所述下一级中继单元或射频拉远单元;以及在上行方向,在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,将得到的上行发送报文发送给上一级中继单元或基带处理单元;所述外层MAC头至少包括目的MAC地址和源MAC地址。
在本发明的一种实施例中,对于中继单元,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的中继单元、基带处理单元或射频拉远单元的电口的MAC地址。
为了解决上述问题,本发明实施例还提供了一种射频拉远单元,包括第三接口模块和第三接口处理模块;
第三接口模块设置为与中继单元或基带处理单元通过电口连接;
第三接口处理模块设置为在上行方向,在待发送的上行原始报文的外层
添加外层MAC头得到上行发送报文,将得到的上行发送报文发送给中继单元或基带处理单元;所述外层MAC头至少包括目的MAC地址和源MAC地址。
在本发明的一种实施例中,对于射频拉远单元,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的中继单元电口的MAC地址。
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现上面所述的方法。
本发明实施例提供的方案,在组网有穿过公网时,相关数据报文的传输可以通过额外增加的外层MAC头实现透明传输,以保证数据穿越公网时的安全性和隔离性,即公网在数据传输过程中只需起到数据的传输隧道作用。
附图概述
图1为BBU+RRU组网结构示意图;
图2为BBU+R-Hub+RRU组网结构示意图;
图3为本发明实施例的BBU的结构示意图;
图4为本发明实施例的R-Hub的结构示意图;
图5为本发明实施例的RRU的结构示意图;
图6为本发明实施例三中提供的第一种组网结构示意图;
图7为本发明实施例三中提供的第二种组网结构示意图;
图8为本发明实施例三中提供的第三种组网结构示意图;
图9为本发明实施例三中提供的第四种组网结构示意图;
图10为本发明实施例三中提供的第五种组网结构示意图;
图11为本发明实施例三中提供的第六种组网结构示意图;
图12为本发明实施例三中提供封装了外层MAC头后的报文结构示意图。
本发明的较佳实施方式
下面将结合附图对本发明的具体实施例进行详细描述。
实施例一:
本实施例提供的“透明”数据交互方法,在数据传输过程中额外增加用于R-Hub和RRU、R-Hub和R-Hub、BBU和R-Hub以及BBU和RRU之间的寻址;然后在穿越过程中分别对上行和下行的原始数据进行封装和解封装,以保证数据在穿越公网情况下的安全性和隔离性。其中,在下行方向,BBU或R-Hub在待发送的下行原始报文外层添加外层MAC头得到下行发送报文,将得到的下行发送报文发送给下一级R-Hub或RRU;其中BBU或R-Hub通过电口与下一级的R-Hub或RRU连接;在上行方向,R-Hub或RRU在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,将得到的上行发送报文发送给上一级R-Hub或BBU;其中,R-Hub或RRU通过电口与上一级的R-Hub连接或BBU连接。本实施例中,所增加的外层MAC头至少包括目的MAC地址和源MAC地址。该外层MAC头可包括基本字段和扩展字段,其中目的MAC地址和源MAC地址设置在基本字段中,且该基本字段中还可包括MAC类型。扩展字段则可根据实际需要进行设置,例如可作为IP头,用于构建基于层三的隧道网络。
本实施例中,添加的MAC头定义可参照标准的IEEE802.3以太网帧格式,所设置的基本字段的长度为12个字节。扩展字段的长度则根据需要进行定义。
本实施例中,进行传输的报文包括用于实现业务的业务数据报文以及R-Hub和RRU之间的私有报文。其中,下行方向上传输的业务数据报文称为下行业务数据报文,上行方向传输的业务数据报文称为上行业务数据报文;下行方向上传输的私有报文称为下行私有报文,上行方向传输的私有报文称为上行私有报文。对应的,本实施例中的上行原始报文包括上行业务数据报
文和/或上行私有报文;下行原始报文包括下行业务数据报文和/或下行私有报文。
本实施例中的私有报文可包括MAC地址自学习报文、时延报文、以及以太网OAM报文等,不同的报文MAC type不同;
MAC地址自学习报文为广播报文,R-Hub和RRU在建链时通过广播该报文来学习获取对方的MAC地址;
时延报文为单播报文,用于把R-Hub的转发时延,通过报文发给RRU,RRU用来计算和补偿上下行链路时延;
以太网OAM报文为单播报文,R-Hub和RRU建链后,各自定期相互发送链路保活和状态消息,用于链路的监控和维护。
在本实施例中,对于R-Hub,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的R-Hub、BBU或RRU的电口的MAC地址;
对于RRU,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的R-Hub电口的MAC地址;
对于BBU,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的R-Hub或RRU的电口的MAC地址。
本实施例中的目的MAC地址可在建链过程中通过学习得到。
在下行方向,R-Hub或RRU接收到下行发送报文后,对其进行解析得到下行原始报文,在解析时可根据该报文中的外层MAC头中包括的MAC类型判断出报文的类型,然后剥离外层MAC头,根据报文类型进行后续的处理;R-Hub或RRU接收到下行发送报文且解析得到下行原始报文后,在需要发送到下一级的R-Hub或RRU、且与下一级的R-Hub或RRU为通过电口连接时,重新在得到的下行原始报文外层增加新的外层MAC头(新添加的MAC头包括新的源MAC地址和目的MAC地址)后,将其发送给下一级R-Hub或RRU。下一级的R-Hub或RRU接收到下行发送报文且解析得到下行原始报文后,
在需要发送到下一级的R-Hub或RRU、且与下一级的R-Hub或RRU为通过光口连接时,直接将下行原始报文发送给下一级的R-Hub或RRU;并不需要重新添加新的外层MAC头。
在上行方向,R-Hub接收到交互上行发送报文后,对其进行解析得到上行原始报文,在解析时具体可根据该报文中的外层MAC头中包括的MAC类型判断出报文的类型,然后剥离外层MAC头,根据报文类型进行后续的处理。R-Hub接收到交互上行发送报文且在解析得到上行原始报文后,在需要发送到上一级的R-Hub或BBU、且与上一级的R-Hub或BBU为通过电口连接时,重新在得到的上行原始报文外层增加新的外层MAC头后,将其发送给上一级R-Hub或BBU。上一级的R-Hub接收到交互上行发送报文且在解析得到上行原始报文后,在需要发送到上一级的R-Hub或BBU、且与上一级的R-Hub或BBU为通过光口连接时,直接将上行原始报文发送给上一级的R-Hub或BBU。
本实施例提供的上述数据交互方案主要用于通过电口组网的组网系统的数据传输。例如适用于各种形式的BBU+R-Hub+RRU组网中。
实施例二:
如图3所示,本实施例提供的BBU包括第一接口模块和第一接口处理模块;其中第一接口模块设置为与R-Hub或RRU通过电口连接。在通过电口连接的BBU和R-Hub或BBU之间可能需要穿越公网;第一接口处理模块设置为在下行方向,在待发送的下行原始报文外层添加外层MAC头得到下行发送报文,将得到的下行发送报文发送给R-Hub或RRU;添加的外层MAC头至少包括目的MAC地址和源MAC地址。对于BBU,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的R-Hub或RRU的电口的MAC地址。对于目的MAC地址BBU可在建链过程中通过学习得到
如图4所示,本实施例提供的R-Hub包括第二接口模块和第二接口处理模块;
第二接口模块设置为与下一级的R-Hub或RRU通过电口连接;以及用于与上一级的R-Hub或BBU通过电口连接;第二接口处理模块用于在下行方向,在待发送的下行原始报文外层添加外层MAC头得到下行发送报文,将得到的下行发送报文发送给下一级R-Hub或RRU;以及用于在上行方向,在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,将得到的上行发送报文发送给上一级R-Hub或BBU;所添加的外层MAC头也至少包括目的MAC地址和源MAC地址;对于R-Hub,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的R-Hub、BBU或RRU的电口的MAC地址。对于目的MAC地址R-Hub可在建链过程中通过学习得到。
本实施例中的R-Hub还包括路由模块,设置为:在下行方向把上一级的BBU或R-Hub的数据路由到下一级的R-Hub或RRU上,在上行方向将来自下一级的RRU或R-Hub的数据路由到上一级的BBU或R-Hub。
如图5所示,本实施例提供的RRU包括第三接口模块和第三接口处理模块;
第三接口模块设置为与上一级的R-Hub或BBU通过电口连接;第三接口处理模块设置为在上行方向,在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,将得到的上行发送报文发送给上一级R-Hub或BBU;添加的外层MAC头也至少包括目的MAC地址和源MAC地址。对于RRU,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的中继单元电口的MAC地址。对于目的MAC地址RRU可在建链过程中通过学习得到。
本实施例中,进行传输的报文包括用于实现业务的业务数据报文以及R-Hub和RRU之间的私有报文。其中,下行方向上传输的业务数据报文称为
下行业务数据报文,上行方向传输的业务数据报文称为上行业务数据报文;下行方向上传输的私有报文称为下行私有报文,上行方向传输的私有报文称为上行私有报文。对应的,本实施例中的上行原始报文包括上行业务数据报文和/或上行私有报文;下行原始报文包括下行业务数据报文和/或下行私有报文。
本实施例中的私有报文可包括MAC地址自学习报文、时延报文、以及以太网OAM报文等,不同的报文MAC type不同;
MAC地址自学习报文为广播报文,R-Hub和RRU在建链时通过广播该报文来学习获取对方的MAC地址;
时延报文为单播报文,用于把R-Hub的转发时延,通过报文发给RRU,RRU用来计算和补偿上下行链路时延;
以太网OAM报文为单播报文,R-Hub和RRU建链后,各自定期相互发送链路保活和状态消息,用于链路的监控和维护。
实施例三:
本实施例结合几种具体的组网方式,对本发明做示例性说明。但应当理解的是,本实施例并不仅局限于以下几种典型的组网方式。
请参见图6所示,该图所示的组网包括基带处理单元(BBU)、第一中继单元(第一R-Hub)、公网以及第二中继单元(第二R-Hub)和射频拉远单元(RRU),其中第一R-Hub通过电口穿越公网与第二R-Hub连接;第二R-Hub通过电口与RRU连接;BBU则通过光口与第一R-Hub连接。
在图3所示的组网中,BBU与第一R-Hub通过光口连接,因此BBU与第一R-Hub之间在上行和下行数据的交互并不需要额外增加外层MAC头。在下行方向,第一R-Hub接收到BBU发送的下行原始报文(该报文一般为业务报文)后,经过其光口的SerDes及解帧后分离出信令和IQ数据;然后第一
R-Hub判断该报文需转发给下一级的第二R-Hub,且其与第二R-Hub是通过电口连接的,第一R-Hub对BBU发送的下行原始报文的外层添加MAC头后穿越公网发给第二R-Hub。第二R-Hub接收到第一R-Hub发送的下行发送报文后,根据其MAC类型对其进行解析得到下行原始报文;然后第二R-Hub判断该报文需转发给下一级的RRU,且其与RRU是通过电口连接的,第二R-Hub对解析得到的下行原始报文的外层添加新的外层MAC头后发给RRU,新添加的外层MAC头中包括新的源MAC地址和目标MAC地址。在上行方向,RRU在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,然后将其发送给通过电口与之连接的第二R-Hub;第二R-Hub收到RRU发送的上行发送报文后,根据其类型对其进行解析得到上行原始报文;第二R-Hub判断需将该上行原始报文发送给通过电口与之连接的上一级的第一R-Hub,为该上行原始报文重新添加外层MAC头(包括新的源MAC地址和目的MAC地址)后穿越公网发送给第一R-Hub;第一R-Hub收到第二R-Hub发送的上行发送报文后,根据其类型对其进行解析得到上行原始报文;第一R-Hub判断需将该上行原始报文发送给通过光口与之连接的BBU,直接将解析得到的上行原始报文组帧后经过光口的SerDes发送给BBU。可见,在本实施例中发送的报文穿越公网时可通过额外增设的外层MAC头保证其安全性和隔离性。
对于R-Hub与R-Hub以及R-Hub与RRU之间的私有报文的交互也通过上述方案添加额外的外层MAC头以保证安全性和隔离性,在此不再赘述。
请参见图7所示,该图所示的组网基带处理单元(BBU)、第一中继单元(第一R-Hub)、与第一R-Hub级联的第二中继单元(第二R-Hub)、公网、以及第三中继单元(第三R-Hub)和RRU,其中第一R-Hub通过电口与第二第一R-Hub连接,第二R-Hub通过电口穿越公网与第三R-Hub连接;第三R-Hub通过电口与RRU连接;BBU则通过光口与第一R-Hub连接。
在图7所示的组网中,BBU与第一R-Hub通过光口连接,因此BBU与第
一R-Hub之间在上行和下行数据的交互也不需要额外增加外层MAC头。在下行方向,第一R-Hub接收到BBU发送的下行原始报文(该报文一般为业务报文)后,经过其光口的SerDes及解帧后分离出信令和IQ数据;然后第一R-Hub判断该报文需转发给下一级的第二R-Hub,且其与第二R-Hub是通过电口连接的,第一R-Hub对BBU发送的下行原始报文的外层添加MAC头后发给第二R-Hub。第二R-Hub接收到第一R-Hub发送的下行发送报文后,根据其MAC类型对其进行解析得到下行原始报文;第二R-Hub对接收到的下行发送报文进行解析得到下行原始报文,并判断该报文需转发给下一级的第三R-Hub,且其与第三R-Hub是通过电口连接的,第三R-Hub对BBU发送的下行原始报文的外层添加MAC头后穿越公网发给第三R-Hub。然后第三R-Hub判断该报文需转发给下一级的RRU,且其与RRU是通过电口连接的,第三R-Hub对解析得到的下行原始报文的外层添加新的外层MAC头后发给RRU,新添加的外层MAC头中包括新的源MAC地址和目标MAC地址。在上行方向,RRU在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,然后将其穿越公网发送给通过电口与之连接的第三R-Hub;第三R-Hub收到RRU发送的上行发送报文后,根据其类型对其进行解析得到上行原始报文;第三R-Hub判断需将该上行原始报文发送给通过电口与之连接的上一级的第二R-Hub,为该上行原始报文重新添加外层MAC头(包括新的源MAC地址和目的MAC地址)后穿越公网发送给第二R-Hub;第二R-Hub收到第三R-Hub发送的上行发送报文后,根据其类型对其进行解析得到上行原始报文;第二R-Hub判断需将该上行原始报文发送给通过电口与之连接的上一级的第一R-Hub,为该上行原始报文重新添加外层MAC头(包括新的源MAC地址和目的MAC地址)后发送给第一R-Hub;第一R-Hub收到第二R-Hub发送的上行发送报文后,根据其类型对其进行解析得到上行原始报文;第一R-Hub判断需将该上行原始报文发送给通过光口与之连接的BBU,直接将解析得到
的上行原始报文组帧后经过光口的SerDes发送给BBU。可见,在本实施例中发送的报文穿越公网时也可通过额外增设的外层MAC头保证其安全性和隔离性。
请参见图8所示,该图所示的组网包括基带处理单元(BBU)、第一中继单元(第一R-Hub)、公网以及第二中继单元(第二R-Hub)和射频拉远单元(RRU),其中第一R-Hub通过电口穿越公网与第二R-Hub连接;第二R-Hub通过电口与RRU连接;BBU也通过电口与第一R-Hub连接。
在图8所示的组网中,BBU与第一R-Hub通过电口连接,因此BBU与第一R-Hub之间在上行和下行数据的交互需要额外增加外层MAC头。在下行方向,BBU在待发送的下行原始报文外层封装外层MAC头得到下行发送报文后,将其发给第一R-Hub;第一R-Hub接收到BBU发送的下行发送报文后,根据其类型对其进行解析分离出信令和IQ数据;然后第一R-Hub判断该报文需转发给下一级的第二R-Hub,且其与第二R-Hub是通过电口连接的,第一R-Hub对BBU发送的下行原始报文的外层添加MAC头后穿越公网发给第二R-Hub。第二R-Hub接收到第一R-Hub发送的下行发送报文后,根据其MAC类型对其进行解析得到下行原始报文;然后第二R-Hub判断该报文需转发给下一级的RRU,且其与RRU是通过电口连接的,第二R-Hub对解析得到的下行原始报文的外层添加新的外层MAC头后发给RRU,新添加的外层MAC头中包括新的源MAC地址和目标MAC地址。在上行方向,RRU在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,然后将其发送给通过电口与之连接的第二R-Hub;第二R-Hub收到RRU发送的上行发送报文后,根据其类型对其进行解析得到上行原始报文;第二R-Hub判断需将该上行原始报文发送给通过电口与之连接的上一级的第一R-Hub,为该上行原始报文重新添加外层MAC头(包括新的源MAC地址和目的MAC地址)后穿越公网发送给第一R-Hub;第一R-Hub收到第二R-Hub发送的上行发送报文后,
根据其类型对其进行解析得到上行原始报文;第一R-Hub判断需将该上行原始报文发送给通过电口与之连接的BBU,对解析得到的上行原始报文添加外层MAC头后发送给BBU。可见,在本实施例中发送的报文穿越公网时可通过额外增设的外层MAC头保证其安全性和隔离性。
请参见图9所示,该图所示的组网包括基带处理单元(BBU)、公网、第一中继单元(第一R-Hub)和射频拉远单元(RRU),其中第一R-Hub通过电口与RRU连接;BBU则通过电口穿越公网与第一R-Hub连接。
在图9所示的组网中,BBU穿越公网与第一R-Hub通过电口连接,因此BBU与第一R-Hub之间在上行和下行数据的交互也需要额外增加外层MAC头。在下行方向,BBU在待发送的下行原始报文外层封装外层MAC头得到下行发送报文后,穿越公网将其发给第一R-Hub;第一R-Hub接收到BBU发送的下行发送报文后,根据其类型对其进行解析分离出信令和IQ数据;然后第一R-Hub判断该报文需转发给下一级的RRU,且其与RRU是通过电口连接的,第一R-Hub对解析得到的下行原始报文的外层添加新的外层MAC头后发给RRU,新添加的外层MAC头中包括新的源MAC地址和目标MAC地址。在上行方向,RRU在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,然后将其发送给通过电口与之连接的第一R-Hub;第一R-Hub收到RRU发送的上行发送报文后,根据其类型对其进行解析得到上行原始报文;第一R-Hub判断需将该上行原始报文发送给通过电口与之连接的BBU,对解析得到的上行原始报文添加外层MAC头后发送给BBU。可见,在本实施例中发送的报文穿越公网时也可通过额外增设的外层MAC头保证其安全性和隔离性。
请参见图10所示,该图所示的组网包括基带处理单元(BBU)、第一中继单元(第一R-Hub)、公网以及射频拉远单元(RRU),其中第一R-Hub通过电口穿越公网与RRU连接;BBU则通过光口与第一R-Hub连接。
在图10所示的组网中,BBU穿越公网与第一R-Hub通过光口连接,因此BBU与第一R-Hub之间在上行和下行数据的交互不需要额外增加外层MAC头。在下行方向,BBU将待发送的下行原始报文直接发给第一R-Hub;第一R-Hub接收到BBU发送的下行发送报文后,经过其光口的SerDes及解帧后分离出信令和IQ数据;然后第一R-Hub判断该报文需转发给下一级的RRU,且其与RRU是通过电口连接的,第一R-Hub对解析得到的下行原始报文的外层添加新的外层MAC头后穿越公网发给RRU,新添加的外层MAC头中包括新的源MAC地址和目标MAC地址。在上行方向,RRU在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,然后穿越公网将其发送给通过电口与之连接的第一R-Hub;第一R-Hub收到RRU发送的上行发送报文后,根据其类型对其进行解析得到上行原始报文;第一R-Hub判断需将该上行原始报文发送给通过光口与之连接的BBU,将解析得到的上行原始报文组帧后经过光口的SerDes直接发送给BBU。可见,在本实施例中发送的报文穿越公网时也可通过额外增设的外层MAC头保证其安全性和隔离性。
请参见图11所示,该图所示的组网包括基带处理单元(BBU)、第一中继单元(第一R-Hub)、与第一R-Hub级联的第二中继单元(第二R-Hub)、公网以及射频拉远单元(RRU),其中第一R-Hub通过电口与第二第一R-Hub连接,第二R-Hub通过电口穿越公网与RRU连接;BBU则通过电口与第一R-Hub连接。
在图11所示的组网中,BBU与第一R-Hub通过电口连接,因此BBU与第一R-Hub之间在上行和下行数据的交互也需要额外增加外层MAC头。在下行方向,BBU在待发送的下行原始报文外层封装外层MAC头得到下行发送报文后,将其发给第一R-Hub;第一R-Hub接收到BBU发送的下行发送报文后,根据其类型对其进行解析分离出信令和IQ数据;然后第一R-Hub判断该报文需转发给下一级的第二R-Hub,且其与第二R-Hub是通过电口连接
的,第一R-Hub对BBU发送的下行原始报文的外层添加MAC头后发给第二R-Hub。第二R-Hub接收到第一R-Hub发送的下行发送报文后,根据其MAC类型对其进行解析得到下行原始报文;然后第二R-Hub判断该报文需转发给下一级的RRU,且其与RRU是通过电口连接的,第二R-Hub对解析得到的下行原始报文的外层添加新的外层MAC头后穿越公网发给RRU,新添加的外层MAC头中包括新的源MAC地址和目标MAC地址。在上行方向,RRU在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,然后穿越公网将其发送给通过电口与之连接的上一级第二R-Hub;第二R-Hub收到RRU发送的上行发送报文后,根据其类型对其进行解析得到上行原始报文;第二R-Hub判断需将该上行原始报文发送给通过电口与之连接的上一级的第一R-Hub,为该上行原始报文重新添加外层MAC头(包括新的源MAC地址和目的MAC地址)后发送给第一R-Hub;第一R-Hub收到第二R-Hub发送的上行发送报文后,根据其类型对其进行解析得到上行原始报文;第一R-Hub判断需将该上行原始报文发送给通过电口与之连接的BBU,对解析得到的上行原始报文添加外层MAC头后发送给BBU。可见,在本实施例中发送的报文穿越公网时可通过额外增设的外层MAC头保证其安全性和隔离性。
本实施例中,所添加的MAC头的具体格式请参见图12所示,外层MAC头分为基本字段和扩展字段,基本字段包括目的MAC、源MAC及MAC type,对于BBU、RRU和R-Hub的各个电口,其MAC地址基于物理网卡,都是全球唯一,因此可以连接公网。电口对端的目的MAC通过广播的MAC地址自学习报文学习得到。MAC type用于区分不同的报文类型,在BBU、R-Hub和RRU的接口处理模块对不同类型的报文分别封装不通的MAC type,以方便处理,比如信令和IQ数据以IP协议封装,但要注意区别已存在协议的MACtype。扩展字段及字段长度可以根据需要定义,比如定义为IP头,可用于构建基于层三的隧道网络。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
本发明实施例提供的方案,在组网有穿过公网时,相关数据报文的传输可以通过额外增加的外层MAC头实现透明传输,以保证数据穿越公网时的安全性和隔离性,即公网在数据传输过程中只需起到数据的传输隧道作用。
Claims (13)
- 一种数据交互方法,包括:在下行方向,基带处理单元在待发送的下行原始报文外层添加外层媒体控制接入(MAC)头得到下行发送报文,将得到的下行发送报文发送给中继单元或射频拉远单元,所述基带处理单元通过电口与所述中继单元或射频拉远单元连接;或者中继单元在待发送的下行原始报文外层添加外层媒体控制接入(MAC)头得到下行发送报文,将得到的下行发送报文发送给下一级中继单元或射频拉远单元;所述中继单元通过电口与所述下一级中继单元或射频拉远单元连接;在上行方向,中继单元在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,将得到的上行发送报文发送给上一级中继单元或基带处理单元,所述中继单元通过电口与所述上一级中继单元连接或基带处理单元连接;或者射频拉远单元在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,将得到的上行发送报文发送给中继单元或基带处理单元,所述射频拉远单元通过电口与所述中继单元连接或基带处理单元连接;所述外层MAC头至少包括目的MAC地址和源MAC地址。
- 如权利要求1所述的数据交互方法,其中,所述外层MAC头还包括MAC类型。
- 如权利要求1所述的数据交互方法,其中,所述上行原始报文包括上行业务数据报文和/或上行私有报文;所述下行原始报文包括下行业务数据报文和/或下行私有报文。
- 如权利要求1-3任一项所述的数据交互单元,其中,对于中继单元,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的上一级或下一级中继单元、基带处理单元或射频拉远单元的电口的MAC地址;对于射频拉远单元,源MAC地址为其电口的MAC地址, 目的MAC地址为与其电口连接的中继单元电口的MAC地址;对于基带处理单元,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的中继单元或射频拉远单元的电口的MAC地址。
- 如权利要求1-3任一项所述的数据交互方法,还包括:在下行方向,中继单元或射频拉远单元接收到所述下行发送报文后,对其进行解析得到下行原始报文,并在需要发送到下一级的中继单元或射频拉远单元、且与下一级的中继单元或射频拉远单元为通过电口连接时,重新在得到的下行原始报文外层增加新的外层MAC头后,将其发送给下一级中继单元或射频拉远单元;在上行方向,中继单元接收到交互上行发送报文后,对其进行解析得到上行原始报文,并在需要发送到上一级的中继单元或基带处理单元、且与上一级的中继单元或基带处理单元为通过电口连接时,重新在得到的上行原始报文外层增加新的外层MAC头后,将其发送给上一级中继单元或基带处理单元。
- 如权利要求5所述的数据交互方法,还包括:中继单元或射频拉远单元接收到所述下行发送报文后,在需要发送到下一级的中继单元或射频拉远单元、且与下一级的中继单元或射频拉远单元为通过光口连接时,直接将所述下行原始报文发送给下一级的中继单元或射频拉远单元;在上行方向,中继单元接收到交互上行发送报文后,在需要发送到上一级的中继单元或基带处理单元、且与上一级的中继单元或基带处理单元为通过光口连接时,直接将所述上行原始报文发送给上一级的中继单元或基带处理单元。
- 一种基带处理单元,包括第一接口模块和第一接口处理模块;第一接口模块设置为与中继单元或射频拉远单元通过电口连接;第一接口处理模块设置为:在下行方向,在待发送的下行原始报文外层 添加外层MAC头得到下行发送报文,将得到的下行发送报文发送给中继单元或射频拉远单元;所述外层MAC头至少包括目的MAC地址和源MAC地址。
- 如权利要求7所述的基带处理单元,其中,对于基带处理单元,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的中继单元或射频拉远单元的电口的MAC地址。
- 一种中继单元,包括第二接口模块和第二接口处理模块;第二接口模块设置为与下一级的中继单元或射频拉远单元通过电口连接;以及与上一级中继单元或基带处理单元通过电口连接;第二接口处理模块设置为:在下行方向,在待发送的下行原始报文外层添加外层MAC头得到下行发送报文,将得到的下行发送报文发送给所述下一级中继单元或射频拉远单元;以及在上行方向,在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,将得到的上行发送报文发送给上一级中继单元或基带处理单元;所述外层MAC头至少包括目的MAC地址和源MAC地址。
- 如权利要求9所述的中继单元,其中,对于中继单元,源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的中继单元、基带处理单元或射频拉远单元的电口的MAC地址。
- 一种射频拉远单元,包括第三接口模块和第三接口处理模块;第三接口模块设置为与中继单元或基带处理单元通过电口连接;第三接口处理模块设置为:在上行方向,在待发送的上行原始报文的外层添加外层MAC头得到上行发送报文,将得到的上行发送报文发送给中继单元或基带处理单元;所述外层MAC头至少包括目的MAC地址和源MAC地址。
- 如权利要求11所述的射频拉远单元,其中,对于射频拉远单元, 源MAC地址为其电口的MAC地址,目的MAC地址为与其电口连接的中继单元电口的MAC地址。
- 一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现权利要求1-6任一项所述的方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017515122A JP2017532875A (ja) | 2014-09-17 | 2015-02-05 | データ交換方法、ベースバンド処理ユニット、無線リモートユニット及びリレーユニット |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410476157.1A CN105451272A (zh) | 2014-09-17 | 2014-09-17 | 数据交互方法、基带处理单元、射频拉远单元及中继单元 |
CN201410476157.1 | 2014-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015131739A1 true WO2015131739A1 (zh) | 2015-09-11 |
Family
ID=54054580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/072267 WO2015131739A1 (zh) | 2014-09-17 | 2015-02-05 | 数据交互方法、基带处理单元、射频拉远单元及中继单元 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2017532875A (zh) |
CN (1) | CN105451272A (zh) |
WO (1) | WO2015131739A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113498078A (zh) * | 2020-03-20 | 2021-10-12 | 富华科精密工业(深圳)有限公司 | 数据交互方法及射频拉远集线器 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109412948B (zh) * | 2017-08-18 | 2022-03-22 | 中兴通讯股份有限公司 | 一种基带单元、基站及数据转发处理方法 |
CN108834153A (zh) * | 2018-09-27 | 2018-11-16 | 京信通信系统(中国)有限公司 | 一种小区无线覆盖系统及方法 |
CN113872659B (zh) * | 2020-06-30 | 2024-11-22 | 中兴通讯股份有限公司 | 第三方设备的接入方法、系统、微射频拉远单元 |
CN114980078A (zh) * | 2022-03-18 | 2022-08-30 | 广西电网有限责任公司 | 一种5g通信基站上行底噪和干扰抑制系统及方法 |
CN115021818B (zh) * | 2022-04-22 | 2024-05-07 | 三维通信股份有限公司 | 基于分布式基站的以太网组网系统及组网方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101247576A (zh) * | 2006-03-28 | 2008-08-20 | 华为技术有限公司 | 一种室内分布系统及其组网方法 |
CN102186265A (zh) * | 2011-05-04 | 2011-09-14 | 京信通信系统(中国)有限公司 | 分布式基站及其组网方法 |
CN103404226A (zh) * | 2013-06-07 | 2013-11-20 | 华为技术有限公司 | 一种传输数据的方法及设备 |
CN103441799A (zh) * | 2013-08-27 | 2013-12-11 | 京信通信系统(中国)有限公司 | 一种数据信号传输的方法及装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102083234A (zh) * | 2009-11-30 | 2011-06-01 | 中国移动通信集团江苏有限公司 | 一种通信信号的发送方法和设备 |
CN103533630B (zh) * | 2012-07-02 | 2016-09-28 | 华为技术有限公司 | 空口时间同步方法及系统、无线设备、无线设备控制器 |
-
2014
- 2014-09-17 CN CN201410476157.1A patent/CN105451272A/zh active Pending
-
2015
- 2015-02-05 JP JP2017515122A patent/JP2017532875A/ja active Pending
- 2015-02-05 WO PCT/CN2015/072267 patent/WO2015131739A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101247576A (zh) * | 2006-03-28 | 2008-08-20 | 华为技术有限公司 | 一种室内分布系统及其组网方法 |
CN102186265A (zh) * | 2011-05-04 | 2011-09-14 | 京信通信系统(中国)有限公司 | 分布式基站及其组网方法 |
CN103404226A (zh) * | 2013-06-07 | 2013-11-20 | 华为技术有限公司 | 一种传输数据的方法及设备 |
CN103441799A (zh) * | 2013-08-27 | 2013-12-11 | 京信通信系统(中国)有限公司 | 一种数据信号传输的方法及装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113498078A (zh) * | 2020-03-20 | 2021-10-12 | 富华科精密工业(深圳)有限公司 | 数据交互方法及射频拉远集线器 |
Also Published As
Publication number | Publication date |
---|---|
JP2017532875A (ja) | 2017-11-02 |
CN105451272A (zh) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6852096B2 (ja) | パケット処理方法、及びデバイス | |
US12156148B2 (en) | Link establishment between a radio equipment controller (REC) and radio equipment (RE) in a fronthaul network | |
US9438496B2 (en) | Monitoring link quality between network devices | |
WO2015131739A1 (zh) | 数据交互方法、基带处理单元、射频拉远单元及中继单元 | |
US9231820B2 (en) | Methods and apparatus for controlling wireless access points | |
CN103747470B (zh) | 用于控制无线接入点的方法和设备 | |
US20110310907A1 (en) | Systems and methods for implementing a control plane in a distributed network | |
WO2017054576A1 (zh) | 单播隧道建立方法、装置和系统 | |
CN104468384A (zh) | 一种实现多业务优先级的系统及方法 | |
CN102694738B (zh) | 在虚拟专用网网关转发报文的方法以及虚拟专用网网关 | |
CN101286922A (zh) | 一种信令控制的方法、系统及设备 | |
JP2015122665A (ja) | 中継システムおよびスイッチ装置 | |
CN105723654A (zh) | Clos类网络中的优化多播路由 | |
CN109428949A (zh) | 一种基于sdn实现arp代理的方法和装置 | |
JP6480452B2 (ja) | パケット処理方法および装置 | |
CN202285423U (zh) | 智能机顶盒 | |
CN104579973B (zh) | 一种虚拟集群中的报文转发方法和装置 | |
CN102238057A (zh) | 以太网根基多点服务实现方法、系统、装置及网络设备 | |
CN103685007B (zh) | 一种边缘设备报文转发时的mac学习方法及边缘设备 | |
US9755970B2 (en) | Information processing method, device and system | |
WO2017041534A1 (zh) | 一种电力线网络通信的方法及装置、计算机存储介质 | |
US20130329733A1 (en) | Method, apparatus and system for processing a tunnel packet | |
CN102857415A (zh) | 介质访问控制地址学习控制方法、装置和路由桥 | |
WO2022007749A1 (zh) | 一种数据传输方法和装置 | |
CN103825831A (zh) | 报文转发方法以及交换机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15758338 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017515122 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15758338 Country of ref document: EP Kind code of ref document: A1 |