[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015129762A1 - 電線の製造方法、成形品の製造方法、及び改質フッ素樹脂を含む樹脂材料の製造方法 - Google Patents

電線の製造方法、成形品の製造方法、及び改質フッ素樹脂を含む樹脂材料の製造方法 Download PDF

Info

Publication number
WO2015129762A1
WO2015129762A1 PCT/JP2015/055447 JP2015055447W WO2015129762A1 WO 2015129762 A1 WO2015129762 A1 WO 2015129762A1 JP 2015055447 W JP2015055447 W JP 2015055447W WO 2015129762 A1 WO2015129762 A1 WO 2015129762A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
structural unit
electron beam
group
melting point
Prior art date
Application number
PCT/JP2015/055447
Other languages
English (en)
French (fr)
Inventor
正登志 阿部
細田 朋也
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP15754580.7A priority Critical patent/EP3113193B1/en
Priority to JP2016505270A priority patent/JP6390694B2/ja
Publication of WO2015129762A1 publication Critical patent/WO2015129762A1/ja
Priority to US15/226,356 priority patent/US10144792B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Definitions

  • the present invention relates to a method for manufacturing an electric wire, a method for manufacturing a molded product, and a method for manufacturing a resin material containing a modified fluororesin.
  • PTFE Polytetrafluoroethylene
  • PFA tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer
  • PTFE ethylene-tetrafluoroethylene copolymer
  • Fluorine resins such as “ETFE” and polyvinylidene fluoride (hereinafter also referred to as “PVdF”) have heat resistance, flame resistance, chemical resistance, weather resistance, non-adhesiveness, low friction, and low dielectric properties.
  • Patent Document 1 proposes a method in which ETFE kneaded with a crosslinking aid is extruded under predetermined conditions, and then the resulting molded product is irradiated with an electron beam for crosslinking.
  • this method is effective for partially fluorinated fluororesins, when applied to perfluoro fluororesins, the molecular main chain is cut by electron beam irradiation, embrittlement is promoted, and mechanical strength and the like are increased. There arises a problem that physical properties deteriorate.
  • Patent Document 2 the perfluoro type fluororesin is irradiated with ionizing radiation in the absence of oxygen and at a temperature equal to or higher than the crystalline melting point to crosslink, thereby improving the friction resistance, wear resistance, load resistance and the like.
  • Patent Document 3 improvement of mechanical properties and the like is achieved by blending a fluorine-containing divinyl polyether compound as a crosslinking agent with PFA having a crystal melting heat of 10 J / g or less and irradiating with radiation to crosslink.
  • the present invention relates to a manufacturing method capable of improving the wear resistance of electric wires and molded products using fluororesin by electron beam irradiation in air at a temperature at which the fluororesin does not melt, and an electric wire excellent in wear resistance.
  • Another object of the present invention is to provide a method for producing a resin material containing a modified fluororesin from which a molded product can be obtained.
  • a method for producing an electric wire having a conductor and an insulating layer containing a fluororesin covering the surface of the conductor Irradiating the insulating layer containing the fluororesin covering the surface of the conductor with an electron beam, including at least a part of the fluororesin as a modified fluororesin, and forming the insulating layer containing the modified fluororesin,
  • the fluororesin has a crystalline melting point of 260 ° C.
  • Structural unit (a1) based on a hydrocarbon monomer in which the fluororesin has one or both of a carboxy group and an acid anhydride group, and a structural unit based on tetrafluoroethylene
  • the structural unit (a1) is 0.01-5 mol% with respect to the total molar amount of the structural unit (a1), the structural unit (b1), and the structural unit (b2), and the structural unit (b1 ) Is 50 to 99.89 mol%, and the structural unit (b2) is 0.1 to 49.99 mol%.
  • the fluororesin has a crystalline melting point of 260 ° C. or higher, and either or both of the structural unit (a) having a carbonyl group-containing group and the main chain terminal group (a ′) having a carbonyl group-containing group, and a perfluoromonomer And a structural unit based on a hydrocarbon monomer (excluding the structural unit (a)), and a structural unit (b) (excluding the structural unit (a)).
  • the molded article characterized in that the irradiation with the electron beam is performed so as to satisfy at least one of the following (1) to (3) under a temperature lower than the crystal melting point of the fluororesin and in air: Manufacturing method.
  • (1) 0.5 ⁇ Mb / Ma ⁇ 1.2 [In the formula, Ma represents the melt flow rate (g / 10 minutes) of the fluororesin before electron beam irradiation, and Mb represents the melt flow rate (g / 10 minutes) of the fluororesin after electron beam irradiation.
  • Ta shows the crystalline melting point (degreeC) of the fluororesin before electron beam irradiation
  • Tb shows the crystalline melting point (degreeC) of the fluororesin after electron beam irradiation.
  • Structural unit (a1) based on a hydrocarbon monomer in which the fluororesin has one or both of a carboxy group and an acid anhydride group, and a structural unit based on tetrafluoroethylene
  • the structural unit (a1) is 0.01-5 mol% with respect to the total molar amount of the structural unit (a1), the structural unit (b1), and the structural unit (b2), and the structural unit (b1 ) Is 50 to 99.89 mol%, and the structural unit (b2) is 0.1 to 49.99 mol%.
  • [5] including a step of obtaining a resin material containing the modified fluororesin by irradiating a resin material containing the fluororesin with an electron beam to make at least a part of the fluororesin a modified fluororesin;
  • the fluororesin has a crystalline melting point of 260 ° C. or higher, and either or both of the structural unit (a) having a carbonyl group-containing group and the main chain terminal group (a ′) having a carbonyl group-containing group, and a perfluoromonomer And a structural unit based on a hydrocarbon monomer (excluding the structural unit (a)), and a structural unit (b) (excluding the structural unit (a)).
  • the modification is characterized in that the irradiation with the electron beam is performed so as to satisfy at least one of the following (1) to (3) under a temperature lower than the crystal melting point of the fluororesin and in air.
  • a method for producing a resin material containing a fluororesin (1) 0.5 ⁇ Mb / Ma ⁇ 1.2 [In the formula, Ma represents the melt flow rate (g / 10 minutes) of the fluororesin before electron beam irradiation, and Mb represents the melt flow rate (g / 10 minutes) of the fluororesin after electron beam irradiation.
  • Ta shows the crystalline melting point (degreeC) of the fluororesin before electron beam irradiation
  • Tb shows the crystalline melting point (degreeC) of the fluororesin after electron beam irradiation.
  • Structural unit (a1) based on a hydrocarbon monomer in which the fluororesin has one or both of a carboxy group and an acid anhydride group, and a structural unit based on tetrafluoroethylene
  • the structural unit (a1) is 0.01-5 mol% with respect to the total molar amount of the structural unit (a1), the structural unit (b1), and the structural unit (b2), and the structural unit (b1 ) Is 50 to 99.89 mol%, and the structural unit (b2) is 0.1 to 49.99 mol%
  • a method for producing a resin material containing a modified fluororesin is 0.01-5 mol% with respect to the total molar amount of the structural unit (a1), the structural unit (b1), and the structural unit (b2)
  • the structural unit (b1 ) Is 50 to
  • a step of obtaining a resin material containing a modified fluororesin by the method for producing a resin material containing a modified fluororesin according to the above [6], and obtaining a molded product by molding the resin material containing the modified fluororesin The manufacturing method of the molded article containing a process.
  • the wear resistance of electric wires and molded products using fluororesin can be improved by electron beam irradiation in air at a temperature at which the fluororesin does not melt, and excellent in wear resistance. It is possible to provide a method for producing a resin material containing a modified fluororesin from which an electric wire or molded product can be obtained.
  • the “structural unit” in the present specification means a unit based on the monomer formed by polymerization of the monomer.
  • the structural unit may be a unit directly formed by a polymerization reaction, or may be a unit in which a part of the unit is converted into another structure by treating the polymer.
  • “monomer” means a compound having a polymerizable unsaturated bond, that is, a polymerization-reactive carbon-carbon double bond.
  • “Fluorine monomer” means a monomer having a fluorine atom in the molecule
  • “non-fluorine monomer” means a monomer having no fluorine atom in the molecule.
  • “Hydrocarbon monomer” means a monomer having a hydrocarbon group in the molecule and no fluorine atom.
  • “Modified fluororesin” means a fluororesin that exhibits a different value in fluidity and / or crystalline melting point compared to a fluororesin before being modified (that is, before electron beam irradiation). . If it is fluid, the behavior decreases after irradiation compared to before irradiation, and if it is the crystalline melting point, the behavior increases after irradiation compared to before irradiation.
  • a first aspect of the method for producing an electric wire of the present invention is a method for producing an electric wire having a conductor and an insulating layer containing a fluororesin covering the surface of the conductor, A step of irradiating an insulating layer containing a fluororesin that covers the surface of the conductor with an electron beam and using at least a part of the fluororesin as a modified fluororesin to form an insulating layer containing the modified fluororesin (hereinafter “electron beam”) Irradiation process (I) ”)),
  • the fluororesin has a crystalline melting point of 260 ° C.
  • the irradiation with the electron beam is performed so as to satisfy the following expression (1) under a temperature lower than the crystal melting point of the fluororesin and in air.
  • an electric wire (hereinafter also referred to as electric wire A) having a conductor (core wire) and an insulating layer containing a fluororesin (hereinafter also referred to as insulating layer A) covering the surface of the conductor. .) Is irradiated with an electron beam.
  • an insulating layer containing the modified fluororesin (hereinafter also referred to as an insulating layer B) is formed, and the conductor and the surface of the conductor
  • An electric wire (hereinafter also referred to as an electric wire B) having an insulating layer (hereinafter also referred to as an insulating layer B) containing a modified fluororesin is obtained.
  • the conductor is not particularly limited, and examples thereof include copper, copper alloy, aluminum and aluminum alloy, various plating wires such as tin plating, silver plating, and nickel plating, stranded wires, superconductors, and plating wires for semiconductor element leads.
  • the fluororesin will be described in detail later.
  • the insulating layer A may be made of a fluororesin, or may be a fluororesin to which an inorganic filler, an organic filler or the like is added.
  • the insulating layer A is preferably made of a fluororesin from the viewpoint that the electrical characteristics, chemical resistance, heat resistance, low elution property, etc. specific to the fluororesin are fully utilized.
  • a fluororesin means that the main component is a fluororesin, and specifically includes 50 mass% or more, preferably 75 mass% or more, more preferably 85 mass% or more of the fluororesin.
  • the wire A may be used as long as it has a conductor and an insulating layer A, and may be manufactured by a known method.
  • the conductor can be covered with the fluororesin by a known method.
  • a molding method so-called wire extrusion molding in which extrusion is performed so as to cover the melted fluororesin on the conductor for the wire using an extruder is preferable.
  • the fluororesin is melted and fused to the conductor and cooled, and the solidified fluororesin (insulating layer A) is taken up and / or wound while irradiating an electron beam.
  • the solidified fluororesin insulating layer A
  • the electron beam irradiation step (I) is performed under a temperature lower than the crystal melting point of the fluororesin and in air.
  • the temperature at the time of electron beam irradiation is less than the crystalline melting point (Ta) of the fluororesin, preferably (Ta-290 ° C.) or more and (Ta-5 ° C.) or less, (Ta-280 ° C.) or more, (Ta ⁇ 200 ° C.) or less is more preferable.
  • the temperature during electron beam irradiation is (Ta-290 ° C.) or higher, the dimensional stability of the molded article is good.
  • Performing the electron beam irradiation in the air (in the presence of oxygen) is preferable from the viewpoint of easily generating a reaction point of the perfluoropolymer, and from the viewpoint of productivity and safety.
  • Mb / Ma is an index indicating the displacement of the melt flow rate (that is, MFR) of the fluororesin before and after irradiation with the electron beam.
  • Mb / Ma is 0.5 or more and less than 1.2, preferably 0.6 or more and less than 1.1, and particularly preferably 0.7 or more and less than 1.0.
  • Mb / Ma satisfies the formula (1), the wear resistance is improved and the mechanical strength and the like are sufficiently maintained.
  • Mb / Ma is smaller than the lower limit of the above range, the abrasion resistance of the insulating layer B is not excellent.
  • Mb / Ma When Mb / Ma is larger than the upper limit of the above range, there is almost no change between the wear resistance of the insulating layer A and the wear resistance of the insulating layer B.
  • Mb / Ma can be adjusted by the dose of electron beam. For example, the smaller the electron beam irradiation amount, the larger Mb / Ma (that is, the smaller the MFR displacement).
  • the electron beam irradiation is performed so as to satisfy the following formula (3) in addition to the formula (1).
  • the abrasion resistance of the insulating layer B becomes more excellent.
  • Wb / Wa ⁇ 0.6 Wa represents the tensile strength (MPa) of the fluororesin (fluororesin A) before electron beam irradiation, and Wb represents the tensile strength (MPa) of the fluororesin (fluororesin B) after electron beam irradiation. Show. ]
  • Wb / Wa is an index indicating the displacement of the mechanical strength before and after the electron beam irradiation.
  • Wb / Wa is 0.6 or more, preferably 0.7 or more and less than 1.2, more preferably 0.7 or more and less than 1.1, and particularly preferably 0.75 or more and less than 1.0.
  • Wb / Wa is 0.6 or more, more excellent wear resistance can be obtained.
  • Wb / Wa is 1.2 or more, there is almost no change between the wear resistance of the insulating layer A and the wear resistance of the insulating layer B.
  • Wb / Wa can be adjusted by the amount of electron beam irradiation. For example, the smaller the electron beam irradiation amount, the larger the Wb / Wa (that is, the smaller the mechanical strength displacement).
  • the fluororesin irradiated with an electron beam has a crystal melting point (crystal melting temperature) of 260 ° C. or higher.
  • the crystal melting point of the fluororesin is preferably 260 to 330 ° C, more preferably 260 to 320 ° C, and particularly preferably 280 to 310 ° C. If the crystalline melting point of the fluororesin is not less than the lower limit of the above range, it has excellent mechanical properties such as wear resistance, tensile strength, tensile elongation, and elastic modulus, and if it is not more than the upper limit of the above range, it has excellent moldability. .
  • the crystal melting point of the fluororesin can be adjusted by the type and content ratio of the structural units constituting the fluororesin, the molecular weight, and the like. For example, the crystal melting point tends to increase as the proportion of the structural unit based on tetrafluoroethylene increases.
  • the average molecular weight of the fluororesin may usually be 2,000 to 1,000,000.
  • the fluororesin preferably has a melt flow rate (melt flow rate: hereinafter referred to as “MFR”) of 1 to 200 g / 10 minutes, more preferably 2 to 100 g / 10 minutes, more preferably 3 to 50 g / 10 min is particularly preferred.
  • MFR melt flow rate
  • the fluororesin exhibits melt fluidity and can be melt-molded, and thus has excellent moldability.
  • the MFR is not more than the upper limit of the above range, the mechanical properties, wear resistance, etc. are excellent.
  • MFR is a value measured under a load of 49 N at a temperature 20 ° C. higher than the crystal melting point (usually 372 ° C. is adopted).
  • MFR is a measure of the molecular weight of the fluororesin. When the MFR is large, the molecular weight is small, and when the MFR is small, the molecular weight is large.
  • the molecular weight of the fluororesin, and thus the MFR, can be adjusted by the production conditions of the fluororesin. For example, if the polymerization time is shortened during the polymerization of the monomer, the MFR tends to increase.
  • the fluororesin preferably has a tensile strength measured by the following measuring method of 5 to 100 MPa, more preferably 5 to 60 MPa, and particularly preferably 7 to 55 MPa.
  • the tensile strength is not less than the lower limit of the above range, the wear resistance is excellent, and when it is not more than the upper limit, the flexibility is excellent.
  • the tensile strength is a value of the fluororesin before electron beam irradiation. [Measurement method of tensile strength] From the fluororesin, a test piece having a dumbbell shape No. 3 (thickness 1 mm) is prepared in accordance with JIS K6251: 2010.
  • the fluororesin contains one or both of the structural unit (a) having a carbonyl group-containing group and the main chain terminal group (a ′) having a carbonyl group-containing group.
  • the abrasion resistance of the fluororesin can be improved by electron beam irradiation at a temperature lower than the crystal melting point of the fluororesin and in air.
  • the fluororesin may have only one or both of the structural unit (a) and the main chain terminal group (a ′). It is preferable to have at least the structural unit (a) in that a reactive site is easily generated by an electron beam.
  • the carbonyl group-containing group is a group containing a carbonyl group (—C ( ⁇ O) —) in the structure.
  • a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an amide group, and an acid anhydride residue are preferable, and a haloformyl group, an alkoxycarbonyl group, an amide group, and an acid anhydride residue are more preferable.
  • the haloformyl group is represented by —C ( ⁇ O) —X (where X is a halogen atom).
  • halogen atom in the haloformyl group examples include a fluorine atom and a chlorine atom.
  • a fluoroformyl group also referred to as a carbonyl fluoride group
  • the alkoxy group in the alkoxycarbonyl group (also referred to as an ester group) may be linear or branched, and is preferably an alkoxy group having 1 to 8 carbon atoms.
  • a methoxycarbonyl group, an ethoxycarbonyl group and the like are particularly preferable.
  • the carbonyl group-containing group of the fluororesin may be one type or two or more types.
  • an acid anhydride residue is most preferable from the viewpoint that the effect of improving the abrasion resistance by the operation of electron beam irradiation under a predetermined condition is more excellent.
  • a structural unit based on a monomer having a carbonyl group-containing group, or a structural unit based on a monomer having a functional group that generates a carbonyl group-containing group by thermal decomposition is used to thermally decompose the carbonyl group-containing group.
  • a carbonyl group-containing group was introduced by reacting a compound having a functional group that reacts with the reactive functional group and a compound having a carbonyl group-containing group with a structural unit based on a monomer having a reactive functional group.
  • a structural unit, and the like As the structural unit (a), a structural unit based on a monomer having a carbonyl group-containing group is preferable.
  • the monomer having a carbonyl group-containing group may be a fluorine monomer or a non-fluorine monomer.
  • R f is a perfluoroalkyl group having 1 to 10 carbon atoms, or carbon having an oxygen atom between carbon atoms.
  • a perfluoroalkyl group having 2 to 10 carbon atoms, and X 2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • non-fluorine monomer having a carbonyl group-containing group examples include a hydrocarbon monomer having one or both of a carboxy group and an acid anhydride group (hereinafter also referred to as “AM monomer”); vinyl ester such as vinyl acetate; Etc.
  • AM monomer examples include dicarboxylic acids such as itaconic acid, citraconic acid, 5-norbornene-2,3-dicarboxylic acid and maleic acid; itaconic anhydride (hereinafter also referred to as “IAH”), citraconic anhydride (hereinafter referred to as “CAH”).
  • NAH 5-norbornene-2,3-dicarboxylic acid anhydride
  • acid anhydrides of dicarboxylic acids such as maleic anhydride; and the like. These may be used alone or in combination of two or more.
  • the monomer having a carbonyl group-containing group is preferably an AM monomer from the viewpoint of thermal stability.
  • at least one selected from the group consisting of IAH, CAH, and NAH is preferable.
  • the acid can be used without using a special polymerization method required when maleic anhydride is used (see JP-A-11-19312). A fluororesin containing an anhydride residue can be easily produced.
  • Examples of the main chain terminal group (a ′) include an alkoxycarbonyl group, an alkoxycarbonyloxy group, a carboxy group, and a carbonyl fluoride group.
  • the main chain terminal group of the fluororesin can be introduced by using a radical polymerization initiator or chain transfer agent having a predetermined functional group used in the production of the fluororesin.
  • a radical polymerization initiator or chain transfer agent having a carbonyl group-containing group as a functional group introduced at the main chain terminal is used, a fluororesin having a main chain terminal group (a ′) can be obtained directly by the polymerization reaction.
  • a radical polymerization initiator or a chain transfer agent having a functional group that generates a carbonyl group-containing group by thermal decomposition as a functional group introduced into the main chain terminal
  • the main chain terminal group of the obtained fluororesin is pyrolyzed,
  • a fluororesin having a main chain end group (a ′) is obtained.
  • a radical polymerization initiator or a chain transfer agent having a reactive functional group as a functional group introduced into the main chain terminal a functional group that reacts with the reactive functional group on the main chain terminal group of the obtained fluororesin, and When a compound having a carbonyl group-containing group is reacted, a fluororesin having a main chain terminal group (a ′) is obtained.
  • radical polymerization initiator used for introducing the main chain terminal group examples include tertiary butyl peroxypivalate and perfluorobutyroyl peroxide.
  • chain transfer agent used for introducing the main chain terminal group examples include chain transfer agents having a functional group such as an ester group, a carbonate group, a hydroxyl group, a carboxy group, and a carbonyl fluoride group. Specific examples include acetic acid, acetic anhydride, methyl acetate, ethylene glycol, and propylene glycol.
  • the content of the structural unit (a) and / or main chain terminal group (a ′) in the fluororesin is such that the content of the carbonyl group-containing group in the fluororesin is 1 ⁇ 10 6 main chain carbon atoms of the fluororesin.
  • An amount in the range of 10 to 60,000 is preferable.
  • the content of the carbonyl group-containing group in the fluororesin is more preferably from 100 to 10,000, particularly preferably from 300 to 5000, per 1 ⁇ 10 6 main chain carbon atoms of the fluororesin.
  • the content of the carbonyl group-containing group is at least the lower limit of the above range, the reactivity is excellent, and when it is at most the upper limit of the above range, the thermal stability is excellent.
  • the content (number) of the carbonyl group-containing groups can be measured by a method such as nuclear magnetic resonance (NMR) analysis or infrared absorption spectrum analysis.
  • NMR nuclear magnetic resonance
  • the content of the carbonyl group-containing group can be calculated from the ratio.
  • the fluororesin contains a structural unit (b) based on a perfluoromonomer.
  • the perfluoromonomer is preferably at least one selected from the group consisting of tetrafluoroethylene (TFE), hexafluoropropene (HFP), and perfluoro (alkyl vinyl ether).
  • perfluoro (oxaalkyl vinyl ether) examples include CF 2 ⁇ CFOR f2 (where R f2 is a C 2-10 perfluoroalkyl group containing an oxygen atom between carbon atoms).
  • the fluororesin preferably contains at least the structural unit (b1) based on TFE as the structural unit (b), and the structural unit (b2) based on the structural unit (b1) and the perfluoromonomer (excluding TFE). It is more preferable to contain.
  • the structural unit (b2) is preferably at least one selected from the group consisting of structural units based on hexafluoropropylene (HFP) and structural units based on perfluoro (alkyl vinyl ether).
  • Preferred examples of the structural unit (b) in the fluororesin include the following (X1) to (X3).
  • the fluororesin is a polytetrafluoroethylene polymer (PTFE).
  • the structural unit (b) is (X2)
  • the fluororesin is a tetrafluoroethylene-hexafluoropropylene copolymer (FEP).
  • the structural unit (b) is (X3)
  • the fluororesin is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA).
  • (X1) Only the structural unit (b1).
  • (X2) A combination of the structural unit (b1) and the structural unit based on HFP.
  • (X3) A combination of the structural unit (b1) and a structural unit based on perfluoro (alkyl vinyl ether).
  • the structural unit (b), (X2) or (X3) is preferable, and (X3) is particularly preferable.
  • the ratio of the structural unit (b1) to the total of the structural unit (b1) and the structural unit based on HFP is preferably 87 to 96% by mass.
  • the ratio of the structural unit (b1) to the total of the structural unit (b1) and the structural unit based on perfluoro (alkyl vinyl ether) is preferably 92 to 99% by mass.
  • the content of the structural unit (b) in the fluororesin is preferably at least 80 mol%, more preferably at least 90 mol%, particularly preferably at least 95 mol%, based on the total of all structural units constituting the fluororesin.
  • the fluororesin contains the structural unit (a)
  • the upper limit of the content of the structural unit (b) can be appropriately set in consideration of the content of the structural unit (a) and other structural units optionally included.
  • the fluororesin contains the main chain terminal group (a ′) and does not contain the structural unit (a)
  • it can be appropriately set in consideration of the content of other structural units that are arbitrarily included, and is 100 mol%. Also good.
  • the fluororesin may further contain a structural unit other than the structural unit (a) and the structural unit (b) (hereinafter also referred to as “arbitrary structural unit”) as long as the effects of the present invention are not impaired.
  • the fluororesin does not contain a structural unit based on a hydrocarbon monomer (however, excluding the structural unit (a)).
  • the hydrocarbon monomer include olefins such as ethylene and propylene.
  • the optional structural unit include those obtained by substituting a part of fluorine atoms of the above-mentioned perfluoromonomer with hydrogen atoms, chlorine atoms, and the like.
  • fluoroolefins such as vinyl fluoride, vinylidene fluoride (hereinafter also referred to as “VdF”), trifluoroethylene, and chlorotrifluoroethylene (hereinafter also referred to as “CTFE”) (excluding perfluoroolefin).
  • CFE chlorotrifluoroethylene
  • the fluororesin preferably does not contain a structural unit based on a monomer having a carbon-hydrogen bond (except for the structural unit (a)).
  • a copolymer containing a structural unit (a1) based on an AM monomer, a structural unit (b1) based on TFE, and a structural unit (b2) based on a perfluoromonomer (excluding TFE) (
  • the structural unit (a1) is derived from the AM monomer and has one or both of a carboxy group and an acid anhydride group, which corresponds to a carbonyl group-containing group.
  • the copolymer (I) may or may not have the main chain end group (b ′).
  • the AM monomer and the perfluoromonomer are the same as those described above.
  • the perfluoromonomer in the structural unit (b2) HFP and perfluoro (alkyl vinyl ether) are preferable.
  • the copolymer (I) may further contain other structural units other than the structural units (a1), (b1), and (b2) as long as the effects of the present invention are not impaired. As said other structural unit, the thing similar to what was mentioned above as an arbitrary structural unit is mentioned.
  • the structural unit (a1) is 0.01 to 5 mol% with respect to the total molar amount of the structural unit (a1), the structural unit (b1), and the structural unit (b2).
  • the structural unit (b1) is preferably 50 to 99.89 mol%
  • the structural unit (b2) is preferably 0.1 to 49.99 mol%
  • the structural unit (a1) is 0.1 to 3 mol%. More preferably, the structural unit (b1) is 50 to 99.4 mol%
  • the structural unit (b2) is 0.5 to 49.9 mol%
  • the structural unit (a1) is 0.1 to 2 mol%.
  • the structural unit (b1) is 50 to 98.9 mol% and the structural unit (b2) is 1 to 49.9 mol%.
  • the copolymer (I) is excellent in heat resistance and chemical resistance and excellent in mechanical strength.
  • the amount of the carbonyl group-containing group of the copolymer (I) is an appropriate amount, and the concentration of the AM monomer is also an appropriate amount during the polymerization.
  • the copolymer (I) is excellent in moldability, and the molded product of the modified fluororesin obtained from the copolymer (I) is resistant to stress cracking. Excellent mechanical properties such as properties.
  • the total molar amount of the structural unit (a1), the structural unit (b1), and the structural unit (b2) is based on the total molar amount of all the structural units constituting the copolymer (I). 60 mol% or more is preferable, and 70 mol% or more is more preferable. A preferable upper limit is 100 mol%.
  • copolymer (I) consists of a structural unit (a1), a structural unit (b1), and a structural unit (b2)
  • structural unit (a1) is 0.00 with respect to the total molar amount of those structural units.
  • 01 mol% corresponds to the content of the carbonyl group-containing group in the copolymer (I) being 100 with respect to 1 ⁇ 10 6 main chain carbon atoms of the copolymer (I).
  • the structural unit (a1) is 5 mol% with respect to the total molar amount, wherein the content of the carbonyl group-containing group in the copolymer (I) is 1 ⁇ main chain carbon number of the copolymer (I). This corresponds to 50,000 pieces per 10 6 pieces.
  • the structural unit based on the AM monomer is partially hydrolyzed, and as a result, the copolymer (I) contains an acid anhydride residue.
  • Constituent units based on the corresponding dicarboxylic acids may be included.
  • content of this structural unit shall be contained in a structural unit (a1).
  • the content of each structural unit can be calculated by melt NMR analysis, fluorine content analysis, infrared absorption spectrum analysis, or the like of the copolymer (I).
  • Preferred examples of the copolymer (I) include TFE / PPVE / NAH copolymer, TFE / PPVE / IAH copolymer, TFE / PPVE / CAH copolymer, TFE / HFP / IAH copolymer, TFE. / HFP / CAH copolymer and the like.
  • the aforementioned fluororesin may be used as long as the desired fluororesin is commercially available, and may be produced from various raw material compounds by an appropriate method such as polymerization.
  • Examples of the fluororesin production method include the following (1) to (4).
  • a fluorocarbon resin having a thermal decomposition site that generates a carbonyl group-containing group by thermal decomposition is heated, and the fluororesin is partially thermally decomposed to generate a carbonyl group-containing group, thereby producing a carbonyl group-containing group.
  • a method for obtaining a fluororesin having (4) A method of introducing a carbonyl group-containing group into the fluororesin by graft polymerization of a monomer having a carbonyl group-containing group onto a fluororesin having no carbonyl group-containing group.
  • the method (1) is preferable.
  • the polymerization method is not particularly limited, and for example, a polymerization method using a radical polymerization initiator is used.
  • the radical polymerization initiator the temperature at which the half-life is 10 hours is preferably 0 to 100 ° C., more preferably 20 to 90 ° C.
  • azo compounds such as azobisisobutyronitrile, non-fluorinated diacyl peroxides such as isobutyryl peroxide, octanoyl peroxide, benzoyl peroxide and lauroyl peroxide, peroxydicarbonates such as diisopropylperoxydicarbonate, tert- Peroxyesters such as butylperoxypivalate, tert-butylperoxyisobutyrate, tert-butylperoxyacetate, (Z (CF 2 ) r COO) 2 (wherein Z is a hydrogen atom, a fluorine atom or a chlorine atom, r is an integer of 1 to 10.)
  • Fluorine-containing diacyl peroxide such as a compound represented by formula (I)
  • inorganic persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate.
  • Polymerization methods include bulk polymerization, solution polymerization using organic solvents such as fluorinated hydrocarbons, chlorinated hydrocarbons, fluorinated chlorohydrocarbons, alcohols, hydrocarbons, aqueous media, and appropriate organic solvents as required. Suspension polymerization, and emulsion polymerization using an aqueous medium and an emulsifier. Preferably, it is solution polymerization.
  • the polymerization conditions are not particularly limited, and the polymerization temperature is preferably 0 to 100 ° C., more preferably 20 to 90 ° C.
  • the polymerization pressure is preferably from 0.1 to 10 MPa, more preferably from 0.5 to 3 MPa.
  • the polymerization time is preferably 1 to 30 hours.
  • the concentration of the AM monomer during the polymerization is preferably 0.01 to 5 mol% with respect to the total of all monomers, preferably 0.1 to 3 mol. % Is more preferable, and 0.1 to 1 mol% is particularly preferable.
  • concentration of the AM monomer is within the above range, the polymerization rate is good. If the concentration of the AM monomer is too high, the polymerization rate tends to decrease.
  • the AM monomer is consumed in the polymerization, it is preferable to supply the consumed amount into the polymerization tank continuously or intermittently to maintain the AM monomer concentration within the above range.
  • Chain transfer agents include alcohols such as methanol and ethanol, chlorofluorohydrocarbons such as 1,3-dichloro-1,1,2,2,3-pentafluoropropane, 1,1-dichloro-1-fluoroethane, Hydrocarbons such as pentane, hexane, and cyclohexane are listed.
  • chain transfer agent having a functional group such as an ester group, a carbonate group, a hydroxyl group, a carboxy group, or a carbonyl fluoride group
  • the functional group can be introduced into the main chain terminal of the fluororesin.
  • chain transfer agents include acetic acid, acetic anhydride, methyl acetate, ethylene glycol, and propylene glycol.
  • the second aspect of the method for manufacturing an electric wire according to the present invention is to satisfy the following formula (2) instead of performing the electron beam irradiation in the electron beam irradiation step (I) so as to satisfy the formula (1).
  • the process is the same as in the first aspect except for the above.
  • Ta represents the crystal melting point (° C.) of the fluororesin (fluororesin A) before electron beam irradiation
  • Tb represents the crystal melting point (° C) of the fluororesin (fluororesin B) after electron beam irradiation.
  • Tb-Ta is an index indicating the displacement of the crystalline melting point of the fluororesin before and after the electron beam irradiation.
  • Tb-Ta is preferably 1 or more and less than 5, and particularly preferably 1 or more and less than 4.
  • Tb-Ta exceeds the upper limit of the above range, the abrasion resistance of the fluororesin B layer is not excellent.
  • Tb-Ta is less than the lower limit of the above range, there is almost no change between the wear resistance of the fluororesin A layer and the wear resistance of the fluororesin B layer.
  • the electron beam irradiation is performed so as to satisfy the formula (3) in addition to the formula (2).
  • the abrasion resistance of the insulating layer B becomes more excellent.
  • a third aspect of the method for producing an electric wire according to the present invention is that the irradiation with the electron beam in the electron beam irradiation step (I) is performed with an irradiation dose of less than 30 kGy instead of satisfying the formula (1).
  • the irradiation dose is preferably 0.01 kGy or more, more preferably 0.1 kGy or more.
  • the irradiation dose is preferably less than 25 kGy, and more preferably less than 10 kGy.
  • embrittlement of the fluororesin is promoted, and physical properties such as wear resistance and mechanical strength are greatly reduced. If the irradiation dose is less than 0.01 kGy, the wear resistance may not be improved due to a shortage of the dose required for wear resistance.
  • the electron beam irradiation is performed so as to satisfy the formula (3) in addition to the formula (2).
  • the abrasion resistance of the insulating layer B becomes more excellent.
  • it is not essential to satisfy the formula (1) but it is preferable to satisfy the formula (1) as in the first embodiment.
  • it is not essential to satisfy the formula (2) but it is preferable to satisfy the formula (2) as in the second embodiment.
  • the first aspect of the method for producing a molded article of the present invention is a molding containing the modified fluororesin, wherein at least a part of the fluororesin is irradiated with an electron beam on the molded article containing the fluororesin, Including a step of obtaining a product (hereinafter also referred to as “electron beam irradiation step (II)”),
  • the fluororesin has a crystalline melting point of 260 ° C.
  • the irradiation with the electron beam is performed so as to satisfy the following expression (1) under a temperature lower than the crystal melting point of the fluororesin and in air.
  • a molded product containing a fluororesin (hereinafter also referred to as a molded product A) is irradiated with an electron beam. Thereby, at least a part of the fluororesin contained in the molded product A becomes a modified fluororesin, and a molded product containing the modified fluororesin (hereinafter also referred to as a molded product B) is obtained.
  • the fluororesin examples include the same fluororesins as mentioned in the explanation of the method for producing an electric wire.
  • the molded product A may be made of a fluororesin, or may be a fluororesin to which an inorganic filler, an organic filler or the like is added.
  • the molded product A is preferably made of a fluororesin, from the viewpoint that the electrical characteristics, chemical resistance, heat resistance, low elution property, etc. specific to the fluororesin are fully utilized.
  • “consisting of a fluororesin” means that the fluororesin is mainly used as described above, and specifically, the fluororesin is 50% by mass or more, preferably 75% by mass or more, more preferably It means containing 85 mass% or more.
  • the molded product A examples include a film, a tube material, a bearing, a gear, a gear member, a sliding member, an electronic device member, a spacer, a roller, a cam, and the like.
  • the molded article in the present invention is not limited to these.
  • a sliding member is preferable as the molded product A because excellent wear resistance can be obtained by electron beam irradiation.
  • the molded product A may be used as long as a molded product containing a predetermined fluororesin is commercially available, or may be manufactured by a known method. As a manufacturing method of the molded article A, when the fluororesin is capable of melt molding, the melt molding method is preferable.
  • melt molding method examples include extrusion molding, injection molding, compression molding, blow molding, transfer molding, and calendar molding.
  • the molded product A is a film, a tube material or the like
  • extrusion molding is mainly employed
  • the molded product A is a bearing, a gear, a gear member, a sliding member, an electronic device, a spacer, a roller, a cam, or the like.
  • injection molding is mainly adopted.
  • the melt molding can be performed using a melt molding apparatus usually used for melt molding, such as a melt hot press “hot press duplex type” (manufactured by Tester Sangyo Co., Ltd.).
  • a melt hot press duplex type manufactured by Tester Sangyo Co., Ltd.
  • the electron beam irradiation in this embodiment is performed in the same manner as the electron beam irradiation in the first embodiment of the above-described electric wire manufacturing method.
  • the preferable conditions are also the same.
  • the second aspect of the method for producing a molded article according to the present invention satisfies the following formula (2) instead of performing the electron beam irradiation in the electron beam irradiation step (II) so as to satisfy the formula (1).
  • This is the same as the first aspect except for the above.
  • Ta represents the crystal melting point (° C.) of the fluororesin (fluororesin A) before electron beam irradiation
  • Tb represents the crystal melting point (° C) of the fluororesin (fluororesin B) after electron beam irradiation.
  • the irradiation of the electron beam in this embodiment is performed in the same manner as the irradiation of the electron beam in the second embodiment of the above-described electric wire manufacturing method.
  • the preferable conditions are also the same.
  • the electron beam irradiation in the electron beam irradiation step (II) is performed with an irradiation dose of less than 30 kGy instead of performing the above-described equation (1). Except for this, it is the same as the first aspect.
  • the electron beam irradiation in this embodiment is performed in the same manner as the electron beam irradiation in the third embodiment of the above-described method for manufacturing an electric wire.
  • the preferable conditions are also the same.
  • the resin material containing the fluororesin is irradiated with an electron beam so that at least a part of the fluororesin is the modified fluororesin.
  • the fluororesin has a crystalline melting point of 260 ° C.
  • the irradiation with the electron beam is performed so as to satisfy the following expression (1) under a temperature lower than the crystal melting point of the fluororesin and in air.
  • a resin material containing a fluororesin (hereinafter also referred to as a resin material A) is irradiated with an electron beam. Thereby, at least a part of the fluororesin contained in the resin material A becomes a modified fluororesin, and a resin material containing the modified fluororesin (hereinafter also referred to as a resin material B) is obtained.
  • the fluororesin examples include the same fluororesins as mentioned in the explanation of the method for producing an electric wire.
  • the resin material A may be made of a fluororesin, or may be a fluororesin to which an inorganic filler, an organic filler or the like is added.
  • the resin material A is preferably made of a fluororesin from the viewpoint that the electrical characteristics, chemical resistance, heat resistance, low elution property, etc. specific to the fluororesin are fully utilized.
  • “consisting of a fluororesin” means that the fluororesin is mainly used as described above, and specifically, the fluororesin is 50% by mass or more, preferably 75% by mass or more, more preferably It means containing 85 mass% or more.
  • the electron beam irradiation in this embodiment is performed in the same manner as the electron beam irradiation in the first embodiment of the above-described electric wire manufacturing method. The preferable conditions are also the same.
  • the irradiation of the electron beam in this embodiment is performed in the same manner as the irradiation of the electron beam in the second embodiment of the above-described electric wire manufacturing method.
  • the preferable conditions are also the same.
  • the use of the resin material B obtained by the method for producing a resin material containing the modified fluororesin of the present invention is not particularly limited.
  • the wire coating material, film, tube material, bearing, gear, gear member, sliding It can be used for various applications such as members, electronic devices, spacers, rollers, cams and the like. Since it is excellent in wear resistance, a use requiring high wear resistance is preferable, and a wire coating material or a sliding member is preferable.
  • the resin material B is typically used as a molded article made of the resin material B, a structure (for example, an electric wire or the like) in which a member made of the resin material B and another member are combined.
  • a molded product a precursor molded product obtained by molding the resin material A into a target shape is irradiated with an electron beam under predetermined conditions, and the resulting resin material B is molded into a final shape, and beads or pellets of the resin material A And the like, and the like obtained by irradiating an electron beam under a predetermined condition and molding the obtained resin material B.
  • an electron beam is applied to the member made of the resin material A of a structure in which the member made of the resin material A and another member are combined under predetermined conditions.
  • the resin material A is irradiated with an electron beam under predetermined conditions, and the resulting resin material B is molded and combined with other members.
  • a molding method of the resin material A or B a known molding method can be used. For example, the methods shown in the above-described electric wire manufacturing method, molded product manufacturing method and the like can be adopted.
  • the electron beam is irradiated, the fluidity of the resin material A is lowered and the melt moldability is lowered. Therefore, it is preferable to irradiate a molded product (including a molded member) obtained by molding the resin material A into a target shape. .
  • a fourth aspect of the method for producing a molded article of the present invention includes a step of obtaining a resin material containing a modified fluororesin by the method for producing a resin material containing a modified fluororesin of the present invention, and the modified fluororesin. Forming a resin material including the step of obtaining a molded product.
  • the step of obtaining the resin material containing the modified fluororesin may be performed by any one of the first to third aspects of the method for producing the resin material containing the modified fluororesin. It does not specifically limit as a method to shape
  • the temperature should be higher than the crystal melting point temperature in order to increase the degree of freedom of the polymer, and in the absence of oxygen (for example, under vacuum) in order to suppress oxidative decomposition Yes.
  • the mechanical strength is reduced even when the fluororesin is mainly composed of carbon-fluorine bonds by irradiation with an electron beam in the air (that is, in the presence of oxygen). It is possible to drastically improve the wear resistance without causing any damage.
  • the carbonyl group-containing groups can be exchanged between the molecules of the fluororesin or between the molecules by electron beam irradiation.
  • the reaction in which the active radicals generated by the reaction or when the polymer chain is cleaved reacts with the carbonyl group-containing group to form a three-dimensional network structure proceeds preferentially at the surface portion in contact with the air, and the surface is cured. Is possible.
  • the wear resistance of the fluororesin is enhanced by improving the intermolecular force by curing the surface without causing a decrease in mechanical strength.
  • the present invention is particularly effective for a scrape wear test in accordance with ISO 6722, which is a friction test by a reciprocating motion in a horizontal direction using a general blade as a wear test for a wire coating material.
  • a perfluoro type fluororesin only by electron beam irradiation.
  • additives such as fillers and cross-linking agents may be added to improve wear resistance, but the additives are excellent electrical properties, chemical resistance, heat resistance, low There is concern that the dissolution may be impaired.
  • the modified fluororesin since it is not necessary to add these additives, the modified fluororesin has not only excellent wear resistance but also sufficient electrical characteristics, chemical resistance, heat resistance, low elution property, etc. specific to the fluororesin Is obtained.
  • examples 1 to 10 described later examples 2 to 4 are examples, and examples 1 and 5 to 10 are comparative examples.
  • the materials and measurement methods used in each example are shown below.
  • PFA-1 TFE / perfluoro (alkyl vinyl ether) copolymer (crystal melting point 303 ° C., MFR 15.2 g / 10 min), manufactured by Asahi Glass Co., Ltd., product name “Fluon PFA 73PT”.
  • PFA-2 TFE / NAH / PPVE copolymer (crystal melting point 296.4 ° C., MFR 17.0 g / 10 min) obtained in Production Example 1 described later.
  • composition of the fluororesin (molar ratio of each structural unit) was calculated from data measured by melt NMR analysis, fluorine content analysis, and infrared absorption spectrum analysis.
  • the crystalline melting point (Tm) of the fluororesin was determined by differential scanning calorimetry (DSC). Specifically, using a thermal analyzer “EXSTAR DSC7020” (manufactured by Seiko Instruments Inc.), record the melting peak when the temperature is raised at a rate of 10 ° C./min, and correspond to the maximum value that is the top peak. The temperature (° C.) to be used was defined as the crystalline melting point. In measuring the crystal melting point, the fluororesin before electron beam irradiation and the fluororesin after electron beam irradiation were respectively measured, and the former result was Ta and the latter result was Tb.
  • DSC differential scanning calorimetry
  • MFR Melt flow rate (g / 10 min)> Measure the mass (g) of fluororesin flowing out from a nozzle with a diameter of 2 mm and a length of 8 mm in 10 minutes under a load of 49 N (5 kg) at 372 ° C. using a melt indexer manufactured by Techno Seven. It was set as MFR (g / 10min). The melt flow rate was measured for each of the fluororesin before electron beam irradiation and the fluororesin after electron beam irradiation, with the former result being Ma and the latter result being Mb.
  • a test piece having a dumbbell shape No. 3 was prepared from the fluororesin in accordance with JIS K6251: 2010. About five test pieces, the distance between marked lines was 20mm, using a "Strograph" manufactured by Toyo Seiki Co., Ltd. in a constant temperature and humidity environment controlled at a temperature of 23 ⁇ 2 ° C and a humidity of 50% ⁇ 10%.
  • a tensile strength / elongation test was performed under the condition of a speed of 200 m / min, and the stress (MPa) at the maximum point load and the ratio (%) of the sample length at break to the initial sample length were obtained. The average value of the obtained stress was calculated, and the value was taken as the tensile strength. Moreover, the average value of the calculated
  • ⁇ Abrasion resistance (scrape wear resistance)> The wire sample of each example was cut out to a length of 2 m, and a scrape wear test was conducted by a test method compliant with ISO6722-1 using a product name “Magnet Wire Wear Tester (reciprocating type)” manufactured by Yasuda Seiki Co., Ltd. Resistance (number of times) was measured. Specifically, needle diameter: 0.45 ⁇ 0.01 mm, needle material: SUS316 (conforms to JIS G7602), wear distance: 15.5 ⁇ 1 mm, wear speed: 55 ⁇ 5 times / min, load: 7 N, test Environment: Conducted under conditions of 23 ⁇ 1 ° C. The abrasion resistance is represented by the number of times of reciprocation of the needle required until the core wire is exposed from the insulating coating due to the reciprocation of the needle. The greater the wear resistance (number of times), the better the wear resistance of the wire coating material.
  • AK225cb 1,3-dichloro-1,1,2,2,3-pentafluoropropane
  • PPVE PPVE
  • the specific gravity of the fluororesin (PFA-2) was 2.15.
  • the crystal melting point of the fluororesin (PFA-2) was 296.4 ° C.
  • the MFR of the fluororesin (PFA-2) was 17.0 g / 10 min at a measurement temperature of 372 ° C.
  • -Electric wire die cross head manufactured by Unitech Co., Ltd., maximum conductor diameter: 3 mm, maximum die hole diameter: 20 mm.
  • ⁇ Electric wire take-up machine, winding machine manufactured by Holy Seisakusho.
  • As the core wire manufactured by Yasuda Kogyo Co., Ltd. (kneaded wire, core wire diameter: 1.8 mm, configuration: 37 / 0.26 mm (1 layer: 7 right twists, 2 layers: 12 left twists, 3 layers: 18 right twists) )).
  • the obtained wire sample was subjected to a scrape wear test by the above method to measure the wear resistance (number of times).
  • the wire coating that is, the fluororesin layer
  • MFR and crystal melting point were measured using the obtained wire coating. The results are shown in Table 1.
  • Example 2 The wire sample obtained in Example 1 was irradiated with an electron beam (hereinafter also referred to as EB) at an irradiation dose (kGy) shown in Table 1 in the air (that is, in the presence of oxygen).
  • EB electron beam
  • KGy irradiation dose
  • the scrape abrasion test was implemented by said method and the abrasion resistance (number of times) was measured.
  • the wire coating was extracted from the core wire from the wire sample after EB irradiation in the same manner as in Example 1, and the MFR and the crystal melting point were measured using the obtained wire coating. The results are shown in Table 1.
  • Example 7 Except for using PFA-1 in place of pelletized PFA-2, electric wire extrusion was carried out in the same manner as in Example 1 to obtain an electric wire sample. About the obtained electric wire sample, the scrape abrasion test was implemented by said method and the abrasion resistance (number of times) was measured. Separately, the wire coating was extracted from the core wire from the wire sample after EB irradiation in the same manner as in Example 1, and the MFR and the crystal melting point were measured using the obtained wire coating. The results are shown in Table 1.
  • Example 8 The wire sample obtained in Example 7 was irradiated with an electron beam (EB) at an irradiation dose (kGy) shown in Table 1 in the air (that is, in the presence of oxygen). About the electric wire sample after EB irradiation, the scrape abrasion test was implemented by said method and the abrasion resistance (number of times) was measured. Separately, the wire coating was extracted from the core wire from the wire sample after EB irradiation in the same manner as in Example 1, and the MFR and the crystal melting point were measured using the obtained wire coating. The results are shown in Table 1.
  • Table 1 shows the values of Mb / Ma, Tb-Ta, and Wb / Wa for Examples 2 to 6 and Examples 8 to 10.
  • the Mb / Ma, Tb—Ta, and Wb / Wa of Examples 2 to 6 were determined as MFR, crystal melting point, and tensile strength of Example 1 as Ma, Ta, and Wa, respectively.
  • the Mb / Ma, Tb-Ta, and Wb / Wa of Examples 8 to 10 were determined by setting the MFR, crystal melting point, and tensile strength of Example 7 as Ma, Ta, and Wa, respectively.
  • Examples 2 to 4 where PFA-2 having a carbonyl group-containing group was irradiated with EB at an irradiation dose of less than 30 kGy were superior in abrasion resistance compared to Example 1 where EB was not irradiated.
  • the tensile strength was sufficiently maintained.
  • the abrasion resistance of Examples 5 to 6 where EB was irradiated to PFA-2 at an irradiation dose of 30 kGy or more was lower than that of Example 1.
  • the displacement of the tensile strength was larger than in Examples 2-4.
  • the electric wire, molded product and resin material obtained by the production method of the present invention are excellent in mechanical properties such as wear resistance, tensile strength, tensile elongation and elastic modulus. It is used in a wide range of fields, such as the use of materials and sliding members used under high loads or high temperatures.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2014-035140 filed on February 26, 2014 are incorporated herein as the disclosure of the present invention. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

フッ素樹脂は、結晶融点が260℃以上で、カルボニル基含有基を有する構成単位(a)及びカルボニル基含有基を有する主鎖末端基(a')のいずれか一方又は両方と、ペルフルオロモノマーに基づく構成単位とを含有し、炭化水素モノマーに基づく構成単位(構成単位(a)を除く)を含有せず、電子線の照射が、フッ素樹脂の結晶融点未満の温度かつ空気中の条件下にて、(1) 0.5≦Mb/Ma<1.2[Ma及びMb:電子線照射前後のフッ素樹脂の溶融流れ速度(g/10分)](2) 1≦Tb-Ta<6.5[Ta及びTb:電子線照射前後のフッ素樹脂の結晶融点(℃)](3)30kGy未満の照射線量。 の少なくともいずれかを満たすことを特徴とする樹脂材料の製造方法。

Description

電線の製造方法、成形品の製造方法、及び改質フッ素樹脂を含む樹脂材料の製造方法
 本発明は、電線の製造方法、成形品の製造方法、及び改質フッ素樹脂を含む樹脂材料の製造方法に関する。
 ポリテトラフルオロエチレン(以下、「PTFE」とも称する。)、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)共重合体(以下、「PFA」とも称する。)、エチレン-テトラフルオロエチレン共重合体(以下、「ETFE」とも称する)、ポリフッ化ビニリデン(以下、「PVdF」とも称する)等のフッ素樹脂は、耐熱性、難燃性、耐薬品性、耐候性、非粘着性、低摩擦性、低誘電特性に優れ、耐熱難燃電線用被覆材料、ケミカルプラント耐蝕配管材料、農業用ビニールハウス材料、厨房器用離型コート材料等の幅広い分野に用いられている。
 フッ素樹脂のうち、PTFE、PFA等のペルフルオロ型のフッ素樹脂は、ETFE、PVdF等の部分フッ素化型のフッ素樹脂と比較して、耐薬品性や耐熱性に優れる。しかし、その一方で、分子間力が低いために凝集性が小さく、弾性率や耐摩耗性が低い傾向がある。弾性率や耐摩耗性が低い材料は、特に、高荷重又は高温下で使用される摺動部材や電線被覆材の用途においては、変型しやすい、相手材との摩耗によって削られやすい等の問題がある。
 フッ素樹脂の弾性率や耐摩耗性の向上のため、フッ素樹脂を架橋する試みがなされている。例えば、特許文献1では、架橋助剤を練り込んだETFEを所定の条件で押出成形したのち、得られた成形品に電子線を照射し架橋させる方法が提案されている。
 しかし、この方法は、部分フッ素化型のフッ素樹脂には有効であるものの、ペルフルオロ型のフッ素樹脂に適用すると、電子線照射によって分子主鎖が切断され、脆化が促進されて機械強度等の物性が悪くなる問題が生じる。
 かかる問題に対し、ペルフルオロ型のフッ素樹脂を架橋させる試みもなされている。
 特許文献2では、ペルフルオロ型のフッ素樹脂に、酸素不在下及び結晶融点以上の温度で電離性放射線を照射し架橋させることによって、耐摩擦性、耐摩耗性、耐荷重性等の向上を図っている。
 特許文献3では、結晶融解熱量が10J/g以下であるPFAに、架橋剤として含フッ素ジビニルポリエーテル化合物を配合し、放射線を照射して架橋させることによって、機械的特性等の向上を図っている。
 しかし、特許文献2の方法では、フッ素樹脂の結晶融点以上の温度で電子線を照射する必要があるため、成形品に電子線を照射する場合、フッ素樹脂の溶融粘度が低いと、成形品の形状が維持できない。そのため、実際に使用できるフッ素樹脂は、溶融粘度が高いPTFEに限定される。また、PTFEにおいても溶融時に寸法変化や他材との圧着等の問題が生じる。一方、成形前のペレットの段階でフッ素樹脂に電子線を照射し架橋させると、流動性が低下し成形性が悪くなる。
 特許文献3の方法においては、100℃以下の温度で架橋が可能とされている。しかし、この方法では、ビニル基を含んだ架橋剤を用いる必要があるため、架橋後、未反応のまま残留するビニル基によって耐熱性及び熱安定性が悪くなる。そのため、ビニル基を含んだ架橋剤を用いることは、高温下で使用される摺動部材や電線被覆材等の用途には好ましくない。なお、特許文献3でも、電子線の照射は、酸素不在下で行われている。
 このように、ペルフルオロ型のフッ素樹脂の耐摩耗性を、架橋剤等と組み合わせなくても、フッ素樹脂が溶融しない温度かつ空気中での電子線照射によって向上させ得る技術は、未だ確立されていない。
特開平1-237113号公報 特開平9-278907号公報 特開2008-231331号公報
 本発明は、フッ素樹脂を用いた電線や成形品の耐摩耗性を、フッ素樹脂が溶融しない温度かつ空気中での電子線照射によって向上させることができる製造方法、及び耐摩耗性に優れた電線や成形品が得られる改質フッ素樹脂を含む樹脂材料の製造方法を提供することを目的とする。
 本発明者らが鋭意検討したところ、ペルフルオロ型のフッ素樹脂にカルボニル基を含む官能基を導入し、かつ電子線の照射量を規定することで、驚くべきことに、フッ素樹脂が溶融しない温度かつ空気中での電子線照射によって、高い耐摩耗性を付与できることを見出した。
 本発明は、上記知見に基づくものであり、以下の要旨を有する。
 [1]導体と、前記導体の表面を被覆するフッ素樹脂を含む絶縁層とを有する電線の製造方法であって、
 導体の表面を被覆するフッ素樹脂を含む絶縁層に電子線を照射し、前記フッ素樹脂の少なくとも一部を改質フッ素樹脂として、前記改質フッ素樹脂を含む絶縁層とする工程を含み、
 前記フッ素樹脂は、結晶融点が260℃以上であり、カルボニル基含有基を有する構成単位(a)及びカルボニル基含有基を有する主鎖末端基(a’)のいずれか一方又は両方と、ペルフルオロモノマーに基づく構成単位(b)(ただし前記構成単位(a)を除く。)とを含有し、炭化水素モノマーに基づく構成単位(ただし前記構成単位(a)を除く。)を含有せず、
 前記電子線の照射が、前記フッ素樹脂の結晶融点未満の温度かつ空気中の条件下にて、下記(1)~(3)の少なくともいずれかを満たすように行われることを特徴とする電線の製造方法。
 (1) 0.5≦Mb/Ma<1.2
  [式中、Maは、電子線照射前のフッ素樹脂の溶融流れ速度(g/10分)を示し、Mbは、電子線照射後のフッ素樹脂の溶融流れ速度(g/10分)を示す。]
 (2) 1≦Tb-Ta<6.5
  [式中、Taは、電子線照射前のフッ素樹脂の結晶融点(℃)を示し、Tbは、電子線照射後のフッ素樹脂の結晶融点(℃)を示す。]
 (3) 30kGy未満の照射線量
 [2]前記フッ素樹脂が、カルボキシ基及び酸無水物基のいずれか一方又は両方を有する炭化水素モノマーに基づく構成単位(a1)と、テトラフルオロエチレンに基づく構成単位(b1)と、ペルフルオロモノマー(ただしテトラフルオロエチレンを除く。)に基づく構成単位(b2)とを含有する共重合体であり、
 前記構成単位(a1)と前記構成単位(b1)と前記構成単位(b2)との合計モル量に対して、前記構成単位(a1)が0.01~5モル%で、前記構成単位(b1)が50~99.89モル%で、前記構成単位(b2)が0.1~49.99モル%である、[1]の電線の製造方法。
 [3]フッ素樹脂を含む成形品に電子線を照射し、前記フッ素樹脂の少なくとも一部を改質フッ素樹脂として、前記改質フッ素樹脂を含む成形品を得る工程を含み、
 前記フッ素樹脂は、結晶融点が260℃以上であり、カルボニル基含有基を有する構成単位(a)及びカルボニル基含有基を有する主鎖末端基(a’)のいずれか一方又は両方と、ペルフルオロモノマーに基づく構成単位(b)(ただし前記構成単位(a)を除く。)とを含有し、炭化水素モノマーに基づく構成単位(ただし前記構成単位(a)を除く。)を含有せず、
 前記電子線の照射が、前記フッ素樹脂の結晶融点未満の温度かつ空気中の条件下にて、下記(1)~(3)の少なくともいずれかを満たすように行われることを特徴とする成形品の製造方法。
 (1) 0.5≦Mb/Ma<1.2
  [式中、Maは、電子線照射前のフッ素樹脂の溶融流れ速度(g/10分)を示し、Mbは、電子線照射後のフッ素樹脂の溶融流れ速度(g/10分)を示す。]
 (2) 1≦Tb-Ta<6.5
  [式中、Taは、電子線照射前のフッ素樹脂の結晶融点(℃)を示し、Tbは、電子線照射後のフッ素樹脂の結晶融点(℃)を示す。]
 (3)30kGy未満の照射線量
 [4]前記フッ素樹脂が、カルボキシ基及び酸無水物基のいずれか一方又は両方を有する炭化水素モノマーに基づく構成単位(a1)と、テトラフルオロエチレンに基づく構成単位(b1)と、ペルフルオロモノマー(ただしテトラフルオロエチレンを除く。)に基づく構成単位(b2)とを含有する共重合体であり、
 前記構成単位(a1)と前記構成単位(b1)と前記構成単位(b2)との合計モル量に対して、前記構成単位(a1)が0.01~5モル%で、前記構成単位(b1)が50~99.89モル%で、前記構成単位(b2)が0.1~49.99モル%である、[3]の成形品の製造方法。
 [5]フッ素樹脂を含む樹脂材料に電子線を照射して前記フッ素樹脂の少なくとも一部を改質フッ素樹脂とすることにより、前記改質フッ素樹脂を含む樹脂材料を得る工程を含み、
 前記フッ素樹脂は、結晶融点が260℃以上であり、カルボニル基含有基を有する構成単位(a)及びカルボニル基含有基を有する主鎖末端基(a’)のいずれか一方又は両方と、ペルフルオロモノマーに基づく構成単位(b)(ただし前記構成単位(a)を除く。)とを含有し、炭化水素モノマーに基づく構成単位(ただし前記構成単位(a)を除く。)を含有せず、
 前記電子線の照射が、前記フッ素樹脂の結晶融点未満の温度かつ空気中の条件下にて、下記(1)~(3)の少なくともいずれかを満たすように行われることを特徴とする改質フッ素樹脂を含む樹脂材料の製造方法。
 (1) 0.5≦Mb/Ma<1.2
  [式中、Maは、電子線照射前のフッ素樹脂の溶融流れ速度(g/10分)を示し、Mbは、電子線照射後のフッ素樹脂の溶融流れ速度(g/10分)を示す。]
 (2) 1≦Tb-Ta<6.5
  [式中、Taは、電子線照射前のフッ素樹脂の結晶融点(℃)を示し、Tbは、電子線照射後のフッ素樹脂の結晶融点(℃)を示す。]
 (3)30kGy未満の照射線量
 [6]前記フッ素樹脂が、カルボキシ基及び酸無水物基のいずれか一方又は両方を有する炭化水素モノマーに基づく構成単位(a1)と、テトラフルオロエチレンに基づく構成単位(b1)と、ペルフルオロモノマー(ただしテトラフルオロエチレンを除く。)に基づく構成単位(b2)とを含有する共重合体であり、
 前記構成単位(a1)と前記構成単位(b1)と前記構成単位(b2)との合計モル量に対して、前記構成単位(a1)が0.01~5モル%で、前記構成単位(b1)が50~99.89モル%で、前記構成単位(b2)が0.1~49.99モル%である、[5]の改質フッ素樹脂を含む樹脂材料の製造方法。
 [7]前記[6]の改質フッ素樹脂を含む樹脂材料の製造方法により改質フッ素樹脂を含む樹脂材料を得る工程と、前記改質フッ素樹脂を含む樹脂材料を成形して成形品を得る工程とを含む成形品の製造方法。
 本発明によれば、フッ素樹脂を用いた電線や成形品の耐摩耗性を、フッ素樹脂が溶融しない温度かつ空気中での電子線照射によって向上させることができる製造方法、及び耐摩耗性に優れた電線や成形品が得られる改質フッ素樹脂を含む樹脂材料の製造方法を提供できる。
 本明細書における「構成単位」とは、モノマーが重合することによって形成された該モノマーに基づく単位を意味する。構成単位は、重合反応によって直接形成された単位であってもよく、重合体を処理することによって該単位の一部が別の構造に変換された単位であってもよい。
 本明細書における「モノマー」とは、重合性不飽和結合、すなわち重合反応性の炭素-炭素二重結合を有する化合物を意味する。「フッ素モノマー」とは、分子内にフッ素原子を有するモノマーを意味し、「非フッ素モノマー」とは、分子内にフッ素原子を有しないモノマーを意味する。「炭化水素モノマー」とは、分子内に炭化水素基を有し、フッ素原子を有しないモノマーを意味する。
 「改質フッ素樹脂」とは、改質される前(すなわち、電子線の照射前)のフッ素樹脂に比べて流動性及び結晶融点のいずれか一方又は両方が異なる値を示すフッ素樹脂を意味する。流動性であれば、照射前と比べ照射後は、低下する挙動がみられ、結晶融点であれば、照射前と比べ照射後には上昇する挙動がみられる。
≪電線の製造方法≫
(第一の態様)
 本発明の電線の製造方法の第一の態様は、導体と、前記導体の表面を被覆するフッ素樹脂を含む絶縁層とを有する電線の製造方法であって、
 導体の表面を被覆するフッ素樹脂を含む絶縁層に電子線を照射し、前記フッ素樹脂の少なくとも一部を改質フッ素樹脂として、前記改質フッ素樹脂を含む絶縁層とする工程(以下「電子線照射工程(I)」ともいう。)を含み、
 前記フッ素樹脂は、結晶融点が260℃以上であり、カルボニル基含有基を有する構成単位(a)及びカルボニル基含有基を有する主鎖末端基(a’)のいずれか一方又は両方と、ペルフルオロモノマーに基づく構成単位(b)(ただし前記構成単位(a)を除く。)とを含有し、炭化水素モノマーに基づく構成単位(ただし前記構成単位(a)を除く。)を含有せず、
 前記電子線の照射が、前記フッ素樹脂の結晶融点未満の温度かつ空気中の条件下にて、下式(1)を満たすように行われることを特徴とする。
  (1) 0.5≦Mb/Ma<1.2
 [式中、Maは、電子線照射前のフッ素樹脂の溶融流れ速度(g/10分)を示し、Mbは、電子線照射後のフッ素樹脂の溶融流れ速度(g/10分)を示す。]
<電子線照射工程(I)>
 電子線照射工程(I)では、導体(芯線)と、導体の表面を被覆する、フッ素樹脂を含有する絶縁層(以下、絶縁層Aともいう。)とを有する電線(以下、電線Aともいう。)の絶縁層Aに、電子線を照射する。これにより、絶縁層Aに含まれるフッ素樹脂の少なくとも一部が改質フッ素樹脂となり、改質フッ素樹脂を含む絶縁層(以下、絶縁層Bともいう。)が形成され、導体と、導体の表面を被覆する、改質フッ素樹脂を含有する絶縁層(以下、絶縁層Bともいう。)とを有する電線(以下、電線Bともいう。)が得られる。
 導体としては、特に限定されず、銅、銅合金、アルミニウム及びアルミニウム合金、スズメッキ、銀メッキ、ニッケルメッキ等の各種メッキ線、より線、超電導体、半導体素子リード用メッキ線などが挙げられる。
 フッ素樹脂については後で詳しく説明する。
 絶縁層Aは、フッ素樹脂からなるものでもよく、フッ素樹脂に無機フィラー、有機フィラー等が添加されたものでもよい。フッ素樹脂特有の電気特性、耐薬品性、耐熱性、低溶出性等が充分に生かされる点で、絶縁層Aは、フッ素樹脂からなることが好ましい。ここにおいて、「フッ素樹脂からなる」とは、フッ素樹脂を主体とすることを意味し、具体的にはフッ素樹脂を50質量%以上、好ましくは75質量%以上、より好ましくは85質量%以上含むことを意味する。
 電線Aは、導体と絶縁層Aとを有するものが市販されていればそれを用いてもよく、また、公知の方法により製造してもよい。
 フッ素樹脂による導体の被覆は、公知の方法により行うことができる。フッ素樹脂が、溶融成形が可能なものである場合は、押出機を用いて、電線用の導体上に溶融させたフッ素樹脂を被覆させるように押し出す成形方法(所謂、電線押し出し成型)が好ましい。
 電線Aを製造する成形工程を行う場合、成形工程と電子線照射工程(I)とを一連のプロセスに組むことも、コストメリットが高い点で好ましい。このような例として、電線押し出し成型において、フッ素樹脂を溶融させて導体に融着させて冷却し、固化したフッ素樹脂(絶縁層A)に電子線を照射しながら引き取りおよび/または巻き付けを行う、といったプロセスが考えられる。
 電子線照射工程(I)は、前記フッ素樹脂の結晶融点未満の温度かつ空気中の条件下にて行う。電子線の照射時の温度は、フッ素樹脂の結晶融点(Ta)未満であり、(Ta-290℃)以上、(Ta-5℃)以下が好ましく、(Ta-280℃)以上、(Ta-200℃)以下がより好ましい。
 電子線照射をTa未満の温度で行うことにより、特に(Ta-5℃)以下の温度で行うことにより、以下電子線照射時に絶縁層Aが変形したり、他材に圧着する等の問題が生じにくい。
 電子線照射時の温度が(Ta-290℃)以上であると、成形品の寸法安定性が良好である。
 電子線照射を空気中(酸素存在下)で行うことは、パーフルオロポリマーの反応点を生成しやすい点、さらには生産性、安全性の点で好ましい。
 本態様においては、前記条件下での電子線照射を、前記式(1)を満たすように行う。
 Mb/Maは、電子線の照射前後でのフッ素樹脂の溶融流れ速度(すなわち、MFR)の変位を示す指標である。
 Mb/Maは、0.5以上、1.2未満であり、0.6以上、1.1未満が好ましく、0.7以上、1.0未満が特に好ましい。
 Mb/Maが式(1)を満たすことで、耐摩耗性が向上し、機械強度等も充分に維持される。Mb/Maが前記範囲の下限値よりも小さいと、絶縁層Bの耐摩耗性が優れない。Mb/Maが前記範囲の上限値よりも大きいと、絶縁層Aの耐摩耗性と絶縁層Bの耐摩耗性との間にほとんど変化は見られない。
 Mb/Maは、電子線の照射量によって調整できる。例えば、電子線の照射量が少ないほど、Mb/Maが大きい(すなわち、MFRの変位が少ない)傾向がある。
 本態様においては、電子線の照射を、式(1)に加えて、下式(3)を満たすように行うことが好ましい。これにより、絶縁層Bの耐摩耗性がより優れたものとなる。
  (3) Wb/Wa≧0.6
[式中、Waは、電子線照射前のフッ素樹脂(フッ素樹脂A)の引張り強度(MPa)を示し、Wbは、電子線照射後のフッ素樹脂(フッ素樹脂B)の引張り強度(MPa)を示す。]
 Wb/Waは、電子線の照射前後での機械強度の変位を示す指標である。
 Wb/Waは、0.6以上であり、0.7以上、1.2未満が好ましく、0.7以上、1.1未満がより好ましく、0.75以上、1.0未満が特に好ましい。
 Wb/Waが0.6以上であると、より優れた耐摩耗性が得られる。Wb/Waが1.2以上であると、絶縁層Aの耐摩耗性と絶縁層Bの耐摩耗性との間にほとんど変化は見られない。
 Wb/Waは、電子線の照射量によって調整できる。例えば電子線の照射量が少ないほど、Wb/Waが大きい(すなわち、機械強度の変位が少ない)傾向がある。
<フッ素樹脂>
 本発明において、電子線が照射されるフッ素樹脂は、260℃以上の結晶融点(結晶融解温度)を有する。フッ素樹脂の結晶融点は、260~330℃が好ましく、260~320℃がより好ましく、280~310℃が特に好ましい。フッ素樹脂の結晶融点が上記範囲の下限値以上であれば、耐摩耗性、引張り強度、引張り伸度、弾性率等の機械物性に優れ、上記範囲の上限値以下であれば、成形性に優れる。
 フッ素樹脂の結晶融点は、当該フッ素樹脂を構成する構成単位の種類や含有割合、分子量等によって調整できる。例えば、テトラフルオロエチレンに基づく構成単位の割合が多くなるほど、結晶融点が上がる傾向がある。
 フッ素樹脂の平均分子量は、通常、2,000~1,000,000であってよい。
 フッ素樹脂は、溶融流れ速度(メルトフローレート(Melt Flow Rate):以下、「MFR」という。)が1~200g/10分であることが好ましく、2~100g/10分がより好ましく、3~50g/10分が特に好ましい。MFRが上記範囲の下限値以上であると、フッ素樹脂は、溶融流動性を示し、溶融成形が可能であるため、成形加工性に優れる。MFRが上記範囲の上限値以下であると、機械物性、耐摩耗性等に優れる。
 本発明においてMFRは、結晶融点よりも20℃以上高い温度(通常、372℃が採用される。)にて、49N荷重下で測定される値である。
 MFRは、フッ素樹脂の分子量の目安であり、MFRが大きいと分子量が小さく、MFRが小さいと分子量が大きいことを示す。フッ素樹脂の分子量、ひいてはMFRは、フッ素樹脂の製造条件によって調整できる。例えば、モノマーの重合時に重合時間を短縮すると、MFRが大きくなる傾向がある。
 フッ素樹脂は、以下の測定方法により測定される引張り強度が、5~100MPaであることが好ましく、5~60MPaがより好ましく、7~55MPaが特に好ましい。引張り強度が前記範囲の下限値以上であると耐摩耗性に優れ、上限値以下であると柔軟性に優れる。ここにおいて、引張り強度は、電子線照射前のフッ素樹脂の値である。
[引張り強度の測定方法]
 フッ素樹脂から、JIS K6251:2010に準拠してダンベル状3号形(厚み1mm)形状の試験片を作製する。5個の試験片について、温度23±2℃、湿度50%±10%に制御された恒温、恒湿環境下において、東洋精機社製「ストログラフ」を用いて、標線間距離20mm、引張り速度200m/分の条件で引張り強伸度試験を行い、最大点荷重時における応力(MPa)を求める。求めた応力の平均値を算出し、その値を引張り強度とする。
 フッ素樹脂は、カルボニル基含有基を有する構成単位(a)及びカルボニル基含有基を有する主鎖末端基(a’)のいずれか一方又は両方を含有する。フッ素樹脂中にカルボニル基含有基を有することで、フッ素樹脂の結晶融点未満の温度かつ空気中の条件下での電子線照射で、フッ素樹脂の耐摩耗性を向上させることができる。
 フッ素樹脂は、構成単位(a)及び主鎖末端基(a’)のいずれか一方のみを有してもよく両方を有してもよい。電子線により反応点が生成されやすい点では、少なくとも、構成単位(a)を有することが好ましい。
 カルボニル基含有基は、構造中にカルボニル基(-C(=O)-)を含む基である。
 カルボニル基含有基としては、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、アミド基、酸無水物残基が好ましく、ハロホルミル基、アルコキシカルボニル基、アミド基、酸無水物残基がより好ましい。
 ハロホルミル基は、-C(=O)-X(ただしXはハロゲン原子である。)で表される。ハロホルミル基におけるハロゲン原子としては、フッ素原子、塩素原子等が挙げられる。ハロホルミル基としては、フルオロホルミル基(カルボニルフルオリド基ともいう。)が好ましい。
 アルコキシカルボニル基(エステル基ともいう。)におけるアルコキシ基は、直鎖状でも分岐状でもよく、炭素数1~8のアルコキシ基が好ましい。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基等が特に好ましい。
 フッ素樹脂が有するカルボニル基含有基は、1種でも2種以上でもよい。
 カルボニル基含有基としては、所定の条件での電子線照射の操作による耐摩耗性の向上効果がより優れる点から、酸無水物残基が最も好ましい。
 構成単位(a)としては、カルボニル基含有基を有するモノマーに基づく構成単位、熱分解によりカルボニル基含有基を生成する官能基を有するモノマーに基づく構成単位を熱分解することでカルボニル基含有基を生成させてなる構成単位、反応性官能基を有するモノマーに基づく構成単位に、前記反応性官能基と反応する官能基及びカルボニル基含有基を有する化合物を反応させることでカルボニル基含有基を導入した構成単位、等が挙げられる。
 構成単位(a)としては、カルボニル基含有基を有するモノマーに基づく構成単位が好ましい。
 カルボニル基含有基を有するモノマーは、フッ素モノマーでも非フッ素モノマーでもよい。
 カルボニル基含有基を有するフッ素モノマーとしては、例えば、CF=CFORCO(ここで、Rは、炭素数1~10のペルフルオロアルキル基、又は炭素原子間に酸素原子を含む炭素数2~10のペルフルオロアルキル基であり、Xは、水素原子又は炭素数1~3のアルキル基である。)が挙げられる。
 カルボニル基含有基を有する非フッ素モノマーとしては、例えば、カルボキシ基及び酸無水物基のいずれか一方又は両方を有する炭化水素モノマー(以下「AMモノマー」ともいう。);酢酸ビニル等のビニルエステル;等が挙げられる。
 AMモノマーとしては、イタコン酸、シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸、マレイン酸等のジカルボン酸;無水イタコン酸(以下「IAH」ともいう。)、無水シトラコン酸(以下「CAH」ともいう。)、5-ノルボルネン-2,3-ジカルボン酸無水物(以下「NAH」ともいう。)、無水マレイン酸等のジカルボン酸の酸無水物;等が挙げられる。これらは、1種単独で用いても、2種以上を用いてもよい。
 カルボニル基含有基を有するモノマーとしては、熱安定性の点から、AMモノマーが好ましい。中でも、IAH、CAH、NAHからなる群から選ばれる1種以上が好ましい。IAH、CAH、NAHからなる群から選ばれる1種以上を用いると、無水マレイン酸を用いた場合に必要となる特殊な重合方法(特開平11-193312号公報参照。)を用いることなく、酸無水物残基を含有するフッ素樹脂を容易に製造できる。
 主鎖末端基(a’)としては、例えば、アルコキシカルボニル基、アルコキシカルボニルオキシ基、カルボキシ基、カルボニルフルオリド基等が挙げられる。
 フッ素樹脂の主鎖末端基は、フッ素樹脂の製造時に使用されるラジカル重合開始剤又は連鎖移動剤として、所定の官能基を有するものを用いることにより導入することができる。主鎖末端に導入される官能基としてカルボニル基含有基を有するラジカル重合開始剤又は連鎖移動剤を用いると、重合反応により直接、主鎖末端基(a’)を有するフッ素樹脂が得られる。主鎖末端に導入される官能基として熱分解によりカルボニル基含有基を生成する官能基を有するラジカル重合開始剤又は連鎖移動剤を用い、得られたフッ素樹脂の主鎖末端基を熱分解すると、主鎖末端基(a’)を有するフッ素樹脂が得られる。主鎖末端に導入される官能基として反応性官能基を有するラジカル重合開始剤又は連鎖移動剤を用い、得られたフッ素樹脂の主鎖末端基に、前記反応性官能基と反応する官能基及びカルボニル基含有基を有する化合物を反応させると、主鎖末端基(a’)を有するフッ素樹脂が得られる。
 前記主鎖末端基を導入するために使用されるラジカル重合開始剤としては、例えば、ターシャリーブチルパーオキシピバレート、ペルフルオロブチロイルパーオキシド等が挙げられる。
 前記主鎖末端基を導入するために使用される連鎖移動剤としては、例えば、エステル基、カーボネート基、水酸基、カルボキシ基、カルボニルフルオリド基等の官能基を有する連鎖移動剤が挙げられる。具体的には、酢酸、無水酢酸、酢酸メチル、エチレングリコール、プロピレングリコールが挙げられる。
 フッ素樹脂中の構成単位(a)及び/または主鎖末端基(a’)の含有量は、フッ素樹脂中のカルボニル基含有基の含有量が、フッ素樹脂の主鎖炭素数1×10個に対し10~60000個の範囲内となる量が好ましい。フッ素樹脂中のカルボニル基含有基の含有量は、フッ素樹脂の主鎖炭素数1×10個に対し100~10000個がより好ましく、300~5000個が特に好ましい。カルボニル基含有基の含有量が上記範囲の下限値以上であると、反応性に優れ、上記範囲の上限値以下であると、熱安定性に優れる。
 前記カルボニル基含有基の含有量(個数)は、核磁気共鳴(NMR)分析、赤外吸収スペクトル分析等の方法により、測定できる。例えば、特開2007-314720号公報に記載のように赤外吸収スペクトル分析等の方法を用いて、フッ素樹脂を構成する全構成単位の合計に対するカルボニル基含有基を有する構成単位の割合(モル%)を求め、該割合から、カルボニル基含有基の含有量を算出することができる。
 フッ素樹脂は、ペルフルオロモノマーに基づく構成単位(b)を含有する。
 ペルフルオロモノマーとしては、例えば、ペルフルオロオレフィン、ペルフルオロ(アルキルビニルエーテル)、ペルフルオロ(オキサアルキルビニルエーテル)、ペルフルオロ(アルキルアリルエーテル)、CF=CFORSO(ここで、Rは、炭素数1~10のペルフルオロアルキル基、又は炭素原子間に酸素原子を含む炭素数2~10のペルフルオロアルキル基であり、Xはフッ素原子又は水酸基である。)、CF=CF(CFOCF=CF(ここで、pは1又は2である。)、ペルフルオロ(2-メチレン-4-メチル-1、3-ジオキソラン)等が挙げられる。
 ペルフルオロモノマーとしては、上記の中でも、テトラフルオロエチレン(TFE)、ヘキサフルオロプロペン(HFP)及びペルフルオロ(アルキルビニルエーテル)からなる群から選ばれる1種以上が好ましい。
 ペルフルオロ(アルキルビニルエーテル)としては、例えば、CF=CFORf1(ここで、Rf1は炭素数1~10のペルフルオロアルキル基である。)が挙げられる。
 CF=CFORf1としては、CF=CFOCF(CFF(ここで、pは0~2の整数である。)が好ましい。
 CF=CFORf1の具体例としては、CF=CFOCFCF、CF=CFOCFCFCF、CF=CFOCFCFCFCF、CF=CFO(CFF等が挙げられ、CF=CFOCFCFCF(以下、「PPVE」ともいう。)が好ましい。
 ペルフルオロ(オキサアルキルビニルエーテル)としては、例えば、CF=CFORf2(ここで、Rf2は炭素原子間に酸素原子を含む炭素数2~10のペルフルオロアルキル基である。)が挙げられる。
 CF=CFORf2としては、CF=CF[OCHCFX(CFOCF(CFF(ここで、mは0又は1であり、nは1~5の整数であり、pは0~2の整数であり、Xは、mが0の場合はフッ素原子又はトリフルオロメチル基であり、mが1の場合はフッ素原子である。)が好ましい。
 フッ素樹脂は、構成単位(b)として、少なくとも、TFEに基づく構成単位(b1)を含有することが好ましく、構成単位(b1)と、ペルフルオロモノマー(ただしTFEを除く。)に基づく構成単位(b2)とを含有することがより好ましい。
 構成単位(b2)としては、ヘキサフルオロプロピレン(HFP)に基づく構成単位、及びペルフルオロ(アルキルビニルエーテル)に基づく構成単位からなる群から選択される少なくとも1種が好ましい。
 フッ素樹脂における構成単位(b)の好ましい例として、以下の(X1)~(X3)等が挙げられる。構成単位(b)が(X1)の場合、フッ素樹脂は、ポリテトラフルオロエチレン系重合体(PTFE)である。構成単位(b)が(X2)の場合、フッ素樹脂は、テトラフルオロエチレン-ヘキサフルオロプロピレン系共重合体(FEP)である。構成単位(b)が(X3)の場合、フッ素樹脂は、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル系共重合体(PFA)である。
 (X1)構成単位(b1)のみ。
 (X2)構成単位(b1)と、HFPに基づく構成単位との組み合わせ。
 (X3)構成単位(b1)と、ペルフルオロ(アルキルビニルエーテル)に基づく構成単位との組み合わせ。
 構成単位(b)としては、(X2)または(X3)が好ましく、(X3)が特に好ましい。
 (X2)において、構成単位(b1)とHFPに基づく構成単位との合計に対する構成単位(b1)の割合は、87~96質量%が好ましい。
 (X3)において、構成単位(b1)とペルフルオロ(アルキルビニルエーテル)に基づく構成単位との合計に対する構成単位(b1)の割合は、92~99質量%が好ましい。
 フッ素樹脂中の構成単位(b)の含有量は、フッ素樹脂を構成する全構成単位の合計に対し、80モル%以上が好ましく、90モル%以上がより好ましく、95モル%以上が特に好ましい。
 構成単位(b)の前記含有量の上限は、フッ素樹脂が構成単位(a)を含む場合は、構成単位(a)及び任意に含まれる他の構成単位の含有量を考慮して適宜設定できる。フッ素樹脂が主鎖末端基(a’)を含み、構成単位(a)を含まない場合は、任意に含まれる他の構成単位の含有量を考慮して適宜設定でき、100モル%であってもよい。
 フッ素樹脂は、本発明の効果を損なわない範囲で、構成単位(a)及び構成単位(b)以外の他の構成単位(以下「任意構成単位」ともいう。)をさらに含有してもよい。
 ただし、フッ素樹脂は、炭化水素モノマーに基づく構成単位(ただし前記構成単位(a)を除く。)は含有しない。前記炭化水素モノマーとしては、例えば、エチレン、プロピレン等のオレフィン等が挙げられる。
 任意構成単位としては、例えば、前述のペルフルオロモノマーのフッ素原子の一部を水素原子、塩素原子等で置換したものが挙げられる。具体例としては、フッ化ビニル、フッ化ビニリデン(以下「VdF」ともいう。)、トリフルオロエチレン、クロロトリフルオロエチレン(以下「CTFE」ともいう。)等のフルオロオレフィン(ただしペルフルオロオレフィンを除く。)に基づく構成単位、CH=CX(CF(ここで、Xは水素原子又はフッ素原子であり、qは2~10の整数である。)に基づく構成単位等が挙げられる。
 本発明の有効性の点では、フッ素樹脂は、炭素-水素結合を有するモノマーに基づく構成単位(ただし構成単位(a)を除く。)を含有しないことが好ましい。
 フッ素樹脂としては、AMモノマーに基づく構成単位(a1)と、TFEに基づく構成単位(b1)と、ペルフルオロモノマー(ただしTFEを除く。)に基づく構成単位(b2)とを含有する共重合体(以下「共重合体(I)」ともいう。)が好ましい。
 ここで、構成単位(a1)は、AMモノマーに由来して、カルボキシ基及び酸無水物基のいずれか一方又は両方を有しており、これがカルボニル基含有基に相当する。
 共重合体(I)は、主鎖末端基(b’)を有してもよく、有さなくてもよい。
 AMモノマー、ペルフルオロモノマーとしては、それぞれ前記と同様のものが挙げられる。構成単位(b2)におけるペルフルオロモノマーとしては、HFP、ペルフルオロ(アルキルビニルエーテル)が好ましい。ペルフルオロ(アルキルビニルエーテル)としては、CF=CFORf1が好ましく、PPVEが特に好ましい。
 共重合体(I)は、本発明の効果を損なわない範囲で、上述の構成単位(a1)、(b1)、(b2)以外の他の構成単位をさらに含有してもよい。前記他の構成単位としては、任意構成単位として前記で挙げたものと同様のものが挙げられる。
 共重合体(I)においては、構成単位(a1)と構成単位(b1)と構成単位(b2)との合計モル量に対して、構成単位(a1)が0.01~5モル%で、構成単位(b1)が50~99.89モル%で、構成単位(b2)が0.1~49.99モル%であることが好ましく、構成単位(a1)が0.1~3モル%で、構成単位(b1)が50~99.4モル%で、構成単位(b2)が0.5~49.9モル%であることがより好ましく、構成単位(a1)が0.1~2モル%で、構成単位(b1)が50~98.9モル%で、構成単位(b2)が1~49.9モル%であることが特に好ましい。
 各構成単位の含有量が上記範囲内であると、共重合体(I)は、耐熱性、耐薬品性に優れ、機械強度に優れる。
 特に、構成単位(a1)の含有量が上記範囲内であると、共重合体(I)の有するカルボニル基含有基の量が適切な量となり、重合時において、AMモノマーの濃度も適切な量となり、後述のように、該モノマー濃度が高まることによる重合速度の低下を回避しやすい。
 構成単位(b2)の含有量が上記範囲内であると、共重合体(I)は、成形性に優れ、共重合体(I)から得られる改質フッ素樹脂の成形品は、耐ストレスクラック性等の機械物性に優れる。
 共重合体(I)において、構成単位(a1)と構成単位(b1)と構成単位(b2)との合計モル量は、共重合体(I)を構成する全構成単位の合計モル量に対して、60モル%以上が好ましく、70モル%以上がより好ましい。好ましい上限値は、100モル%である。
 なお、共重合体(I)が構成単位(a1)と構成単位(b1)と構成単位(b2)とからなる場合、それらの構成単位の合計モル量に対して構成単位(a1)が0.01モル%とは、共重合体(I)中のカルボニル基含有基の含有量が、共重合体(I)の主鎖炭素数1×10個に対して100個であることに相当し、前記合計モル量に対して構成単位(a1)が5モル%とは、共重合体(I)中のカルボニル基含有基の含有量が、共重合体(I)の主鎖炭素数1×10個に対して50,000個であることに相当する。
 AMモノマーにおけるカルボニル基含有基が酸無水物残基のみである場合でも、AMモノマーに基づく構成単位が一部加水分解し、その結果、共重合体(I)には、酸無水物残基に対応するジカルボン酸(イタコン酸、シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸、マレイン酸等。)に基づく構成単位が含まれる場合がある。該ジカルボン酸に基づく構成単位が含まれる場合、該構成単位の含有量は、構成単位(a1)に含まれるものとする。
 各構成単位の含有量は、共重合体(I)の溶融NMR分析、フッ素含有量分析及び赤外吸収スペクトル分析等により算出できる。
 共重合体(I)の好ましい具体例としては、TFE/PPVE/NAH共重合体、TFE/PPVE/IAH共重合体、TFE/PPVE/CAH共重合体、TFE/HFP/IAH共重合体、TFE/HFP/CAH共重合体等が挙げられる。
 前述のフッ素樹脂は、所望のフッ素樹脂が市販されていればそれを用いてもよく、また、各種原料化合物から重合等の適当な方法により製造してもよい。
 フッ素樹脂の製造方法としては、例えば、以下の(1)~(4)等が挙げられる。
 (1)重合反応でフッ素樹脂を製造する際に、カルボニル基含有基を有するモノマー(例えばAMモノマー)を使用する方法。
 (2)カルボニル基含有基を有するラジカル重合開始剤や連鎖移動剤を用いて、重合反応でフッ素樹脂を製造する方法。
 (3)熱分解によりカルボニル基含有基を生成する熱分解部位を有するフッ素樹脂を加熱して、該フッ素樹脂を部分的に熱分解することで、カルボニル基含有基を生成させ、カルボニル基含有基を有するフッ素樹脂を得る方法。
 (4)カルボニル基含有基を有しないフッ素樹脂に、カルボニル基含有基を有するモノマーをグラフト重合して、該フッ素樹脂にカルボニル基含有基を導入する方法。
 フッ素樹脂の製造方法としては、(1)の方法が好ましい。
 重合反応でフッ素樹脂を製造する場合、重合方法としては、特に制限はなく、例えばラジカル重合開始剤を用いる重合方法が用いられる。
 ラジカル重合開始剤としては、その半減期が10時間である温度が、0~100℃であることが好ましく、20~90℃であることがより好ましい。具体例としては、アゾビスイソブチロニトリル等のアゾ化合物、イソブチリルペルオキシド、オクタノイルペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド等の非フッ素系ジアシルペルオキシド、ジイソプロピルペルオキシジカーボネート等のペルオキシジカーボネート、tert-ブチルペルオキシピバレート、tert-ブチルペルオキシイソブチレート、tert-ブチルペルオキシアセテート等のペルオキシエステル、(Z(CFCOO)(ここで、Zは水素原子、フッ素原子又は塩素原子であり、rは1~10の整数である。)で表される化合物等の含フッ素ジアシルペルオキシド、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等の無機過硫酸物等が挙げられる。
 重合方法としては、塊状重合、フッ化炭化水素、塩化炭化水素、フッ化塩化炭化水素、アルコール、炭化水素等の有機溶媒を使用する溶液重合、水性媒体及び必要に応じて適当な有機溶剤を使用する懸濁重合、水性媒体及び乳化剤を使用する乳化重合等が挙げられる。好ましくは、溶液重合である。
 重合条件は、特に限定されず、重合温度は、0~100℃が好ましく、20~90℃がより好ましい。重合圧力は、0.1~10MPaが好ましく、0.5~3MPaがより好ましい。重合時間は、1~30時間が好ましい。
 カルボニル基含有基を有するモノマーとしてAMモノマーを重合する場合、重合中のAMモノマーの濃度は、全モノマーの合計に対して0.01~5モル%とすることが好ましく、0.1~3モル%とすることがより好ましく、0.1~1モル%とすることが特に好ましい。AMモノマーの濃度が前記の範囲内であれば、重合速度が良好である。AMモノマーの濃度が高すぎると、重合速度が低下する傾向がある。
 重合中、AMモノマーが重合で消費されるにしたがって、消費された量を連続的又は断続的に重合槽内に供給し、AMモノマーの濃度を上記範囲内に維持することが好ましい。
 重合時には、フッ素樹脂のMFRを制御するために、連鎖移動剤を使用することができる。
 連鎖移動剤としては、メタノール、エタノール等のアルコール、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン、1,1-ジクロロ-1-フルオロエタン等のクロロフルオロハイドロカーボン、ペンタン、ヘキサン、シクロヘキサン等のハイドロカーボンが挙げられる。
 連鎖移動剤として、エステル基、カーボネート基、水酸基、カルボキシ基、カルボニルフルオリド基等の官能基を有する連鎖移動剤を用いると、前記官能基をフッ素樹脂の主鎖末端に導入することができる。そのような連鎖移動剤としては、酢酸、無水酢酸、酢酸メチル、エチレングリコール、プロピレングリコールが挙げられる。
(第二の態様)
 本発明の電線の製造方法の第二の態様は、電子線照射工程(I)での電子線の照射を、前記式(1)を満たすように行う代わりに、下式(2)を満たすように行う以外は、前記第一の態様と同様である。
  (2) 1≦Tb-Ta<6.5
 [式中、Taは、電子線照射前のフッ素樹脂(フッ素樹脂A)の結晶融点(℃)を示し、Tbは、電子線照射後のフッ素樹脂(フッ素樹脂B)の結晶融点(℃)を示す。]
 Tb-Taは、電子線の照射前後でのフッ素樹脂の結晶融点の変位を示す指標である。
 Tb-Taは、1以上、5未満が好ましく、1以上、4未満が特に好ましい。
 Tb-Taが前記範囲の上限値を超えると、フッ素樹脂Bの層の耐摩耗性が優れない。Tb-Taが前記範囲の下限値未満であると、フッ素樹脂Aの層の耐摩耗性とフッ素樹脂Bの層の耐摩耗性との間にほとんど変化は見られない。
 本態様においては、電子線の照射を、式(2)に加えて、前記式(3)を満たすように行うことが好ましい。これにより、絶縁層Bの耐摩耗性がより優れたものとなる。
 本態様においては、前記式(1)を満たすことは必須ではないが、第一の態様と同様に、式(1)を満たすことが好ましい。
(第三の態様)
 本発明の電線の製造方法の第三の態様は、電子線照射工程(I)での電子線の照射を、前記式(1)を満たすように行う代わりに、30kGy未満の照射線量で行う以外は、前記第一の態様と同様である。
 照射線量は、0.01kGy以上が好ましく、0.1kGy以上がさらに好ましい。また、照射線量は、25kGy未満が好ましく、10kGy未満がさらに好ましい。
 照射線量が30kGy以上であると、フッ素樹脂の脆化が促進され、耐摩耗性、機械強度等の物性が大きく低下する。照射線量が0.01kGy未満であると、耐摩耗性に必要な照射量の不足により、耐摩耗性に向上がみられないおそれがある。
 本態様においては、電子線の照射を、式(2)に加えて、前記式(3)を満たすように行うことが好ましい。これにより、絶縁層Bの耐摩耗性がより優れたものとなる。
 本態様においては、前記式(1)を満たすことは必須ではないが、第一の態様と同様に、式(1)を満たすことが好ましい。
 本態様においては、前記式(2)を満たすことは必須ではないが、第二の態様と同様に、式(2)を満たすことが好ましい。
≪成形品の製造方法≫
(第一の態様)
 本発明の成形品の製造方法の第一の態様は、フッ素樹脂を含む成形品に電子線を照射し、前記フッ素樹脂の少なくとも一部を改質フッ素樹脂として、前記改質フッ素樹脂を含む成形品を得る工程(以下「電子線照射工程(II)」ともいう。)を含み、
 前記フッ素樹脂は、結晶融点が260℃以上であり、カルボニル基含有基を有する構成単位(a)及びカルボニル基含有基を有する主鎖末端基(a’)のいずれか一方又は両方と、ペルフルオロモノマーに基づく構成単位(b)(ただし前記構成単位(a)を除く。)とを含有し、炭化水素モノマーに基づく構成単位(ただし前記構成単位(a)を除く。)を含有せず、
 前記電子線の照射が、前記フッ素樹脂の結晶融点未満の温度かつ空気中の条件下にて、下式(1)を満たすように行われることを特徴とする。
  (1) 0.5≦Mb/Ma<1.2
 [式中、Maは、電子線照射前のフッ素樹脂の溶融流れ速度(g/10分)を示し、Mbは、電子線照射後のフッ素樹脂の溶融流れ速度(g/10分)を示す。]
<電子線照射工程(II)>
 電子線照射工程(II)では、フッ素樹脂を含む成形品(以下、成形品Aともいう。)に電子線を照射する。これにより、成形品Aに含まれるフッ素樹脂の少なくとも一部が改質フッ素樹脂となり、改質フッ素樹脂を含む成形品(以下、成形品Bともいう。)が得られる。
 フッ素樹脂としては、前述の電線の製造方法の説明で挙げたフッ素樹脂と同様のものが挙げられる。
 成形品Aは、フッ素樹脂からなるものでもよく、フッ素樹脂に無機フィラー、有機フィラー等が添加されたものでもよい。フッ素樹脂特有の電気特性、耐薬品性、耐熱性、低溶出性等が充分に生かされる点で、成形品Aは、フッ素樹脂からなることが好ましい。ここにおいて、「フッ素樹脂からなる」とは、前述したように、フッ素樹脂を主体とすることを意味し、具体的にはフッ素樹脂を50質量%以上、好ましくは75質量%以上、より好ましくは85質量%以上含むことを意味する。
 成形品Aの具体例としては、例えば、フィルム、チューブ材、軸受け、歯車、ギア部材、摺動部材、電子機器用部材、スペーサー、ローラー、カム等が挙げられる。ただし、本発明における成形品は、これらに限定されるものではない。電子線照射により優れた耐摩耗性が得られることから、成形品Aとしては、摺動部材が好ましい。
 成形品Aは、所定のフッ素樹脂を含む成形品が市販されていればそれを用いてもよく、また、公知の方法により製造してもよい。
 成形品Aの製造方法としては、フッ素樹脂が、溶融成形が可能なものである場合は、溶融成形法が好ましい。溶融成形法としては、押出成形、射出成形、圧縮成形、ブロー成形、トランスファ成形、カレンダー成形等が挙げられる。成形品Aがフィルム、チューブ材等である場合には、押出成形が主に採用され、成形品Aが軸受け、歯車、ギア部材、摺動部材、電子機器、スペーサー、ローラー、カム等である場合には、射出成形が主に採用される。溶融成形は、溶融成形に通常用いられる溶融成形装置、例えばメルト熱プレス機「ホットプレス二連式」(テスター産業社製)等、を用いて行うことができる。
 成形品Aを製造する成形工程を行う場合、成形工程と電子線照射工程(II)とを一連のプロセスに組むことも、コストメリットが高い点で好ましい。
 本態様における電子線の照射は、前述の電線の製造方法の第一の態様における電子線の照射と同様に行われる。好ましい条件も同様である。
(第二の態様)
 本発明の成形品の製造方法の第二の態様は、電子線照射工程(II)での電子線の照射を、前記式(1)を満たすように行う代わりに、下式(2)を満たすように行う以外は前記第一の態様と同様である。
  (2) 1≦Tb-Ta<6.5
 [式中、Taは、電子線照射前のフッ素樹脂(フッ素樹脂A)の結晶融点(℃)を示し、Tbは、電子線照射後のフッ素樹脂(フッ素樹脂B)の結晶融点(℃)を示す。]
 本態様における電子線の照射は、前述の電線の製造方法の第二の態様における電子線の照射と同様に行われる。好ましい条件も同様である。
(第三の態様)
 本発明の成形品の製造方法の第三の態様は、電子線照射工程(II)での電子線の照射を、前記式(1)を満たすように行う代わりに、30kGy未満の照射線量で行う以外は前記第一の態様と同様である。
 本態様における電子線の照射は、前述の電線の製造方法の第三の態様における電子線の照射と同様に行われる。好ましい条件も同様である。
≪改質フッ素樹脂を含む樹脂材料の製造方法≫
(第一の態様)
 本発明の改質フッ素樹脂の製造方法の第一の態様は、フッ素樹脂を含む樹脂材料に電子線を照射して前記フッ素樹脂の少なくとも一部を改質フッ素樹脂とすることにより、前記改質フッ素樹脂を含む樹脂材料を得る工程(以下「電子線照射工程(III)」ともいう。)を含み、
 前記フッ素樹脂は、結晶融点が260℃以上であり、カルボニル基含有基を有する構成単位(a)及びカルボニル基含有基を有する主鎖末端基(a’)のいずれか一方又は両方と、ペルフルオロモノマーに基づく構成単位(b)(ただし前記構成単位(a)を除く。)とを含有し、炭化水素モノマーに基づく構成単位(ただし前記構成単位(a)を除く。)を含有せず、
 前記電子線の照射が、前記フッ素樹脂の結晶融点未満の温度かつ空気中の条件下にて、下式(1)を満たすように行われることを特徴とする。
  (1) 0.5≦Mb/Ma<1.2
 [式中、Maは、電子線照射前のフッ素樹脂の溶融流れ速度(g/10分)を示し、Mbは、電子線照射後のフッ素樹脂の溶融流れ速度(g/10分)を示す。]
<電子線照射工程(III)>
 電子線照射工程(III)では、フッ素樹脂を含む樹脂材料(以下、樹脂材料Aともいう。)に電子線を照射する。これにより、樹脂材料Aに含まれるフッ素樹脂の少なくとも一部が改質フッ素樹脂となり、改質フッ素樹脂を含む樹脂材料(以下、樹脂材料Bともいう。)が得られる。
 フッ素樹脂としては、前述の電線の製造方法の説明で挙げたフッ素樹脂と同様のものが挙げられる。
 樹脂材料Aは、フッ素樹脂からなるものでもよく、フッ素樹脂に無機フィラー、有機フィラー等が添加されたものでもよい。フッ素樹脂特有の電気特性、耐薬品性、耐熱性、低溶出性等が充分に生かされる点で、樹脂材料Aは、フッ素樹脂からなることが好ましい。ここにおいて、「フッ素樹脂からなる」とは、前述したように、フッ素樹脂を主体とすることを意味し、具体的にはフッ素樹脂を50質量%以上、好ましくは75質量%以上、より好ましくは85質量%以上含むことを意味する。
 本態様における電子線の照射は、前述の電線の製造方法の第一の態様における電子線の照射と同様に行われる。好ましい条件も同様である。
(第二の態様)
 本発明の改質フッ素樹脂を含む樹脂材料の製造方法の第二の態様は、電子線照射工程(III)での電子線の照射を、前記式(1)を満たすように行う代わりに、下式(2)を満たすように行う以外は前記第一の態様と同様である。
  (2) 1≦Tb-Ta<6.5
 [式中、Taは、電子線照射前のフッ素樹脂(フッ素樹脂A)の結晶融点(℃)を示し、Tbは、電子線照射後のフッ素樹脂(フッ素樹脂B)の結晶融点(℃)を示す。]
 本態様における電子線の照射は、前述の電線の製造方法の第二の態様における電子線の照射と同様に行われる。好ましい条件も同様である。
(第三の態様)
 本発明の改質フッ素樹脂を含む樹脂材料の製造方法の第三の態様は、電子線照射工程(III)での電子線の照射を、前記式(1)を満たすように行う代わりに、30kGy未満の照射線量で行う以外は、前記第一の態様と同様である。
 本態様における電子線の照射は、前述の電線の製造方法の第三の態様における電子線の照射と同様に行われる。好ましい条件も同様である。
(改質フッ素樹脂を含む樹脂材料の用途)
 本発明の改質フッ素樹脂を含む樹脂材料の製造方法により得られる樹脂材料Bの用途としては、特に限定されず、例えば、電線被覆材、フィルム、チューブ材、軸受け、歯車、ギア部材、摺動部材、電子機器、スペーサー、ローラー、カム等の様々な用途に使用できる。
 耐摩耗性に優れることから、高い耐摩耗性が要求される用途が好ましく、電線被覆材、又は摺動部材が好ましい。
 これらの用途において、樹脂材料Bは、典型的には、樹脂材料Bからなる成形品、樹脂材料Bからなる部材と他の部材とを組み合わせた構造体(例えば、電線等)等として用いられる。
 成形品としては、樹脂材料Aを目的の形状に成形した前駆成形品に所定の条件で電子線を照射し、得られた樹脂材料Bを最終形状に成形したもの、樹脂材料Aのビーズやペレットに所定の条件で電子線を照射し、得られた樹脂材料Bを成形したもの、等が挙げられる。
 樹脂材料Bからなる部材と他の部材とを組み合わせた構造体としては、樹脂材料Aからなる部材と他の部材とを組み合わせた構造体の前記樹脂材料Aからなる部材に所定の条件で電子線を照射したもの、前記樹脂材料Aのビーズやペレットに所定の条件で電子線を照射し、得られた樹脂材料Bを成形し、他の部材と組み合わせたもの、等が挙げられる。
 樹脂材料A又はBの成形方法としては、公知の成形方法を用いることができる。例えば、前述の電線の製造方法、成形品の製造方法等に示す方法を採用できる。
 電子線を照射すると樹脂材料Aの流動性が下がり、溶融成形性が下がることから、樹脂材料Aを目的の形状に成形した成形品(成形部材を含む)に対して電子線照射することが好ましい。
≪成形品の製造方法≫
(第四の態様)
 本発明の成形品の製造方法の第四の態様は、前述の本発明の改質フッ素樹脂を含む樹脂材料の製造方法により改質フッ素樹脂を含む樹脂材料を得る工程と、前記改質フッ素樹脂を含む樹脂材料を成形して成形品を得る工程とを含む。
 改質フッ素樹脂を含む樹脂材料を得る工程は、前記改質フッ素樹脂を含む樹脂材料の製造方法の第一~第三の態様のいずれにより行ってもよい。
 改質フッ素樹脂を含む樹脂材料を成形する方法としては、特に限定されず、公知の成形方法を利用できる。例えば、前述の溶融成形法により成形することができる。
≪作用効果≫
 従来、ペルフルオロ型のフッ素樹脂やその成形品を電子線照射する場合は、結晶融点以上かつ酸素不在下(例えば、真空下等)の条件下で実施されることが多い。これは、ETFE、PVdFなどの炭素-水素の結合が比較的多く含まれるフッ素樹脂と違い、炭素-フッ素の結合が大部分を占めるペルフルオロ型のフッ素樹脂は、分子間力が弱く、電子線を照射された際に、ポリマーの分解が優先的におこり、物性が大きく低下することがわかっているためである。そのため、ペルフルオロ型のフッ素樹脂を電子線照射する場合は、ポリマーの自由度を高めるために結晶融点温度以上とし、かつ酸化分解を抑制するために酸素不在下(例えば、真空下等)とされている。
 しかし、本発明では、驚くべきことに、空気中(すなわち、酸素の存在下)で電子線照射することによって、炭素-フッ素の結合が大部分を占めるフッ素樹脂であっても、機械強度の低下を引き起こすことなく、耐摩耗性を飛躍的に向上させることが可能である。具体的には、30kGy以下、あるいは上述の式(1)又は(2)を満たし得る低い照射線量であれば、電子線照射によって、前記フッ素樹脂の分子内や分子間でカルボニル基含有基同士が反応し、またはポリマー鎖が切断される際に生じる活性ラジカルがカルボニル基含有基と反応して3次元的網目構造を形成する反応が、空気中と接する表面部分において優先的に進み、表面の硬化が可能である。これにより、機械強度の低下を引き起こすことなく、表面の硬化による分子間力の向上により、フッ素樹脂の耐摩耗性が高くなる。特に、電線被覆材の摩耗性試験として一般的なブレードによる横方向の往復運動による摩擦試験である、ISO6722に準拠したスクレープ摩耗試験に特に効果がある。
 このように、本発明によれば、ペルフルオロ型のフッ素樹脂の耐摩耗性を、電子線照射のみによって向上させることが可能である。従来、耐摩耗性の向上のため、フィラー、架橋剤等の添加材を添加する場合があるが、添加材は、ペルフルオロ型のフッ素樹脂特有の優れた電気特性、耐薬品性、耐熱性、低溶出性を損なう懸念がある。本発明においては、これら添加材を加える必要がないため、優れた耐摩耗性だけでなく、フッ素樹脂特有の電気特性、耐薬品性、耐熱性、低溶出性等も充分に兼ね備える改質フッ素樹脂が得られる。
 以下、実施例により本発明をさらに詳しく説明する。ただし、本発明は、以下の実施例に限定されるものではない。
 後述する例1~10のうち、例2~4が実施例であり、例1、例5~10が比較例である。
 各例で用いた材料、測定方法を以下に示す。
(材料)
 PFA-1:TFE/ペルフルオロ(アルキルビニルエーテル)共重合体(結晶融点303℃、MFR15.2g/10分)、旭硝子社製、製品名「Fluon PFA 73PT」。
 PFA-2:後述する製造例1で得た、TFE/NAH/PPVE共重合体(結晶融点296.4℃、MFR17.0g/10分)。
(測定方法)
<フッ素樹脂の組成>
 フッ素樹脂の組成(各構成単位のモル比)は、溶融NMR分析、フッ素含有量分析、及び赤外吸収スペクトル分析により測定したデータから算出した。
<結晶融点(℃)>
 フッ素樹脂の結晶融点(Tm)は、示差走査熱量測定(DSC)により求めた。具体的には、熱分析装置「EXSTAR DSC7020」(セイコーインスツル社製)を用いて、10℃/分の速度で昇温したときの融解ピークを記録し、そのトップピークである極大値に対応する温度(℃)を結晶融点とした。結晶融点の測定に当たっては、電子線照射前のフッ素樹脂および電子線照射後のフッ素樹脂のそれぞれについて行ない、前者の結果をTaとし、後者の結果をTbとした。
<溶融流れ速度(MFR)(g/10分)>
 テクノセブン社製メルトインデクサーを用い、372℃にて49N(5kg)荷重下で、直径2mm、長さ8mmのノズルから10分間で流出するフッ素樹脂の質量(g)を測定し、その値をMFR(g/10分)とした。溶融流れ速度の測定に当たっては、電子線照射前のフッ素樹脂および電子線照射後のフッ素樹脂のそれぞれについて行ない、前者の結果をMaとし、後者の結果をMbとした。
<引張り強度、引張り伸度(強度:MPa、伸度:%)>
 フッ素樹脂から、JIS K6251:2010に準拠してダンベル状3号形(厚み1mm)形状の試験片を作製した。5個の試験片について、温度23±2℃、湿度50%±10%に制御された恒温、恒湿環境下において、東洋精機社製「ストログラフ」を用いて、標線間距離20mm、引張り速度200m/分の条件で引張り強伸度試験を行い、最大点荷重時における応力(MPa)、および初期のサンプル長さに対する破断時のサンプル長さの割合(%)を求めた。求めた応力の平均値を算出し、その値を引張り強度とした。また、求めた割合の平均値を算出し、その値を引張り強度とした。
<耐摩耗性(耐スクレープ摩耗性)>
 各例の電線サンプルを長さ2mに切り出し、安田精機社製、製品名「マグネットワイヤー摩耗試験機(往復式)」を用い、ISO6722-1に準拠した試験方法によってスクレープ摩耗試験を実施して摩耗抵抗(回数)を測定した。具体的には、ニードル直径:0.45±0.01mm、ニードル材質:SUS316(JIS G7602準拠)、摩耗距離:15.5±1mm、摩耗速度:55±5回/min、荷重:7N、試験環境:23±1℃の条件下で実施した。
 摩耗抵抗は、ニードルの往復運動によって、芯線が絶縁被覆から露出するまでに要したニードルの往復回数で表される。摩耗抵抗(回数)が多いほど、その電線被覆材の耐摩耗性は優れる。
(製造例1:PFA-2の製造)
 NAH(構成単位(a1)のモノマー)、TFE(構成単位(b1)のモノマー)、及びPPVE(ペルフルオロプロピルビニルエーテル(CF=CFO(CFF、構成単位(b2)のモノマー)を、以下のように重合してフッ素樹脂(PFA-2)を得た。
 まず、369kgの1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン「AK225cb」(旭硝子社製)(以下、「AK225cb」とも称する。)と、30kgのPPVE(旭硝子社製)とを予め脱気し、内容積430Lの重合槽に入れた。
 重合槽内を、50℃に昇温し、TFEを重合槽内に送り込むことで0.89MPa/Gまで昇圧した。重合開始剤として、0.36質量%の(ペルフルオロブチリル)ペルオキシド/AK225cb溶液を、1分間に6.25mLの速度で合計3Lを重合槽内に送り込み、重合を行った。なお、「0.89MPa/G」とは、ゲージ圧が0.89MPaであることを示す。以下、同様である。
 重合中は、重合槽内を0.89MPa/Gに維持するため、TFE(旭硝子社製)を重合槽内に送り込んだ。同時に、該TFEを100モル%とした場合に、0.1モル%のNAH(日立化成社製)を重合槽内に送り込んだ。
 重合開始8時間後、32kgのTFEを仕込んだ時点で、重合槽内を室温まで降温し、常圧まで降圧し、フッ素樹脂(PFA-2)を含有するスラリを得た。
 得られたスラリ中のフッ素樹脂(PFA-2)とAK225cbとを固液分離した後、回収した固形分を150℃で15時間乾燥し、33kgの粒状のフッ素樹脂(PFA-2)を得た。
 フッ素樹脂(PFA-2)の比重は、2.15であった。
 フッ素樹脂(PFA-2)の共重合組成は、(NAHに基づく構成単位):(TFEに基づく構成単位):(PPVEに基づく構成単位)=0.1:97.9:2.0(モル比)であった。
 フッ素樹脂(PFA-2)の結晶融点は、296.4℃であった。
 フッ素樹脂(PFA-2)のMFRは、測定温度372℃において17.0g/10分であった。
(例1)
 製造例1で得られた粒状のPFA-2を、φ15mmの二軸押し出し(テクノベル社製)によって、ダイス成型温度が340℃の条件下でペレット化した後、下記の電線押し出し成型を実施し、電線サンプルを得た。
 <電線押し出し成型>
 電線製造装置として下記の構成のものを用い、電線径の厚み精度が±0.03mmとなるように、溶融させたフッ素樹脂を芯線上に被覆させるように押し出して電線サンプルを作成した。成型温度は、340℃の条件下で実施した。
 ・押出機:アイ・ケー・ジー社製、MS30-25押し出し機。
 ・スクリュー:IKG社製、フルフライト、L/D=24、φ30mm。
 ・電線ダイスクロスヘッド:ユニテック社製、最大導体径:3mm、最大ダイス孔径:20mm。
 ・電線引き取り機、巻き取り機:聖製作所社製。
 芯線としては、安田工業社製(練り線、芯線径:1.8mm、構成:37/0.26mm(1層:右撚7本、2層:左撚12本、3層:右撚18本))のものを用意した。
 得られた電線サンプルについて、上記の方法により、スクレープ摩耗試験を実施して摩耗抵抗(回数)を測定した。別途、EB照射後の電線サンプルから、ワイヤーストリッパーを用いて、芯線から電線被覆(すなわち、フッ素樹脂の層)の引き抜きを行った。引き抜き後、得られた電線被覆を用いて、MFRおよび結晶融点の測定を実施した。結果を表1に示す。
(例2~6)
 例1で得られた電線サンプルに、空気中(すなわち、酸素の存在下)にて、表1に示す照射線量(kGy)にて電子線(以下、EBとも記す。)を照射した。
 EB照射後の電線サンプルについて、上記の方法により、スクレープ摩耗試験を実施して摩耗抵抗(回数)を測定した。別途、EB照射後の電線サンプルから、例1と同様にして、芯線から電線被覆の引き抜きを行い、得られた電線被覆を用いて、MFRおよび結晶融点の測定を実施した。結果を表1に示す。
(例7)
 ペレット化したPFA-2の代わりにPFA-1を用いた以外は、例1と同様の操作で電線押し出し成型を実施し、電線サンプルを得た。
 得られた電線サンプルについて、上記の方法により、スクレープ摩耗試験を実施して摩耗抵抗(回数)を測定した。別途、EB照射後の電線サンプルから、例1と同様にして、芯線から電線被覆の引き抜きを行い、得られた電線被覆を用いて、MFRおよび結晶融点の測定を実施した。結果を表1に示す。
(例8~10)
 例7で得られた電線サンプルに、空気中(すなわち、酸素の存在下)にて、表1に示す照射線量(kGy)にて電子線(EB)を照射した。
 EB照射後の電線サンプルについて、上記の方法により、スクレープ摩耗試験を実施して摩耗抵抗(回数)を測定した。別途、EB照射後の電線サンプルから、例1と同様にして、芯線から電線被覆の引き抜きを行い、得られた電線被覆を用いて、MFRおよび結晶融点の測定を実施した。結果を表1に示す。
 例2~6、例8~10について、Mb/Ma、Tb-Ta、Wb/Waの値を表1に併記する。例2~6のMb/Ma、Tb-Ta、Wb/Waは、それぞれ、例1のMFR、結晶融点、引張り強度をMa、Ta、Waとして求めた。例8~10のMb/Ma、Tb-Ta、Wb/Waは、それぞれ、例7のMFR、結晶融点、引張り強度をMa、Ta、Waとして求めた。
Figure JPOXMLDOC01-appb-T000001
 表1より、カルボニル基含有基を有するPFA-2に対し、30kGy未満の照射線量でEBを照射した例2~4は、EB未照射の例1に比べて、耐摩耗性に優れており、引張り強度も充分に維持されていた。
 一方、PFA-2に対し、30kGy以上の照射線量でEBを照射した例5~6の耐摩耗性は、例1よりも低くなっていた。また、例2~4に比べて引張り強度の変位も大きかった。
 カルボニル基含有基を有しないPFA-1を用いた例7~10では、EBの照射線量が多くなるにつれて耐摩耗性が低下しており、例2~4に見られたような、EB照射による耐摩耗性の向上は見られなかった。また、例7~10では、例1~6とは異なり、EBの照射線量が多くなるにつれてMFRが大きくなっていた。これらの結果は、EB照射によってPFA-1の主鎖が分解したことによると考えられる。
 本発明の製造方法によって得られた電線、成形品および樹脂材料は、耐摩耗性、引張り強度、引張り伸度、弾性率等の機械物性に優れており、これら成形品および樹脂材料は、電線被覆材の用途や、高荷重又は高温下で使用される摺動部材などして広い分野で使用される。
 なお、2014年2月26日に出願された日本特許出願2014-035140号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。

Claims (7)

  1.  導体と、前記導体の表面を被覆するフッ素樹脂を含む絶縁層とを有する電線の製造方法であって、
     導体の表面を被覆するフッ素樹脂を含む絶縁層に電子線を照射し、前記フッ素樹脂の少なくとも一部を改質フッ素樹脂として、前記改質フッ素樹脂を含む絶縁層とする工程を含み、
     前記フッ素樹脂は、結晶融点が260℃以上であり、カルボニル基含有基を有する構成単位(a)及びカルボニル基含有基を有する主鎖末端基(a’)のいずれか一方又は両方と、ペルフルオロモノマーに基づく構成単位(b)(ただし前記構成単位(a)を除く。)とを含有し、炭化水素モノマーに基づく構成単位(ただし前記構成単位(a)を除く。)を含有せず、
     前記電子線の照射が、前記フッ素樹脂の結晶融点未満の温度かつ空気中の条件下にて、下記(1)~(3)の少なくともいずれかを満たすように行われることを特徴とする電線の製造方法。
     (1) 0.5≦Mb/Ma<1.2
      [式中、Maは、電子線照射前のフッ素樹脂の溶融流れ速度(g/10分)を示し、Mbは、電子線照射後のフッ素樹脂の溶融流れ速度(g/10分)を示す。]
     (2) 1≦Tb-Ta<6.5
      [式中、Taは、電子線照射前のフッ素樹脂の結晶融点(℃)を示し、Tbは、電子線照射後のフッ素樹脂の結晶融点(℃)を示す。]
     (3)30kGy未満の照射線量。
  2.  前記フッ素樹脂が、カルボキシ基及び酸無水物基のいずれか一方又は両方を有する炭化水素モノマーに基づく構成単位(a1)と、テトラフルオロエチレンに基づく構成単位(b1)と、ペルフルオロモノマー(ただしテトラフルオロエチレンを除く。)に基づく構成単位(b2)とを含有する共重合体であり、
     前記構成単位(a1)と前記構成単位(b1)と前記構成単位(b2)との合計モル量に対して、前記構成単位(a1)が0.01~5モル%で、前記構成単位(b1)が50~99.89モル%で、前記構成単位(b2)が0.1~49.99モル%である、請求項1に記載の電線の製造方法。
  3.  フッ素樹脂を含む成形品に電子線を照射し、前記フッ素樹脂の少なくとも一部を改質フッ素樹脂として、前記改質フッ素樹脂を含む成形品を得る工程を含み、
     前記フッ素樹脂は、結晶融点が260℃以上であり、カルボニル基含有基を有する構成単位(a)及びカルボニル基含有基を有する主鎖末端基(a’)のいずれか一方又は両方と、ペルフルオロモノマーに基づく構成単位(b)(ただし前記構成単位(a)を除く。)とを含有し、炭化水素モノマーに基づく構成単位(ただし前記構成単位(a)を除く。)を含有せず、
     前記電子線の照射が、前記フッ素樹脂の結晶融点未満の温度かつ空気中の条件下にて、下記(1)~(3)の少なくともいずれか満たすように行われることを特徴とする成形品の製造方法。
     (1) 0.5≦Mb/Ma<1.2
      [式中、Maは、電子線照射前のフッ素樹脂の溶融流れ速度(g/10分)を示し、Mbは、電子線照射後のフッ素樹脂の溶融流れ速度(g/10分)を示す。]
     (2) 1≦Tb-Ta<6.5
      [式中、Taは、電子線照射前のフッ素樹脂の結晶融点(℃)を示し、Tbは、電子線照射後のフッ素樹脂の結晶融点(℃)を示す。]
     (3)30kGy未満の照射線量
  4.  前記フッ素樹脂が、カルボキシ基及び酸無水物基のいずれか一方又は両方を有する炭化水素モノマーに基づく構成単位(a1)と、テトラフルオロエチレンに基づく構成単位(b1)と、ペルフルオロモノマー(ただしテトラフルオロエチレンを除く。)に基づく構成単位(b2)とを含有する共重合体であり、
     前記構成単位(a1)と前記構成単位(b1)と前記構成単位(b2)との合計モル量に対して、前記構成単位(a1)が0.01~5モル%で、前記構成単位(b1)が50~99.89モル%で、前記構成単位(b2)が0.1~49.99モル%である、請求項3に記載の成形品の製造方法。
  5.  フッ素樹脂を含む樹脂材料に電子線を照射して前記フッ素樹脂の少なくとも一部を改質フッ素樹脂とすることにより、前記改質フッ素樹脂を含む樹脂材料を得る工程を含み、
     前記フッ素樹脂は、結晶融点が260℃以上であり、カルボニル基含有基を有する構成単位(a)及びカルボニル基含有基を有する主鎖末端基(a’)のいずれか一方又は両方と、ペルフルオロモノマーに基づく構成単位(b)(ただし前記構成単位(a)を除く。)とを含有し、炭化水素モノマーに基づく構成単位(ただし前記構成単位(a)を除く。)を含有せず、
     前記電子線の照射が、前記フッ素樹脂の結晶融点未満の温度かつ空気中の条件下にて、下記(1)~(3)の少なくともいずれか満たすように行われることを特徴とする改質フッ素樹脂を含む樹脂材料の製造方法。
     (1) 0.5≦Mb/Ma<1.2
      [式中、Maは、電子線照射前のフッ素樹脂の溶融流れ速度(g/10分)を示し、Mbは、電子線照射後のフッ素樹脂の溶融流れ速度(g/10分)を示す。]
     (2) 1≦Tb-Ta<6.5
      [式中、Taは、電子線照射前のフッ素樹脂の結晶融点(℃)を示し、Tbは、電子線照射後のフッ素樹脂の結晶融点(℃)を示す。]
     (3)前記電子線の照射が、30kGy未満の照射線量で行われる。
  6.  前記フッ素樹脂が、カルボキシ基及び酸無水物基のいずれか一方又は両方を有する炭化水素モノマーに基づく構成単位(a1)と、テトラフルオロエチレンに基づく構成単位(b1)と、ペルフルオロモノマー(ただしテトラフルオロエチレンを除く。)に基づく構成単位(b2)とを含有する共重合体であり、
     前記構成単位(a1)と前記構成単位(b1)と前記構成単位(b2)との合計モル量に対して、前記構成単位(a1)が0.01~5モル%で、前記構成単位(b1)が50~99.89モル%で、前記構成単位(b2)が0.1~49.99モル%である、請求項5に記載の改質フッ素樹脂を含む樹脂材料の製造方法。
  7.  請求項6に記載の改質フッ素樹脂を含む樹脂材料の製造方法により改質フッ素樹脂を含む樹脂材料を得る工程と、前記改質フッ素樹脂を含む樹脂材料を成形して成形品を得る工程とを含む成形品の製造方法。
PCT/JP2015/055447 2014-02-26 2015-02-25 電線の製造方法、成形品の製造方法、及び改質フッ素樹脂を含む樹脂材料の製造方法 WO2015129762A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15754580.7A EP3113193B1 (en) 2014-02-26 2015-02-25 Method for manufacturing electrical wire, method for manufacturing molded article, and method for manufacturing resin material that contains modified fluororesin
JP2016505270A JP6390694B2 (ja) 2014-02-26 2015-02-25 電線の製造方法、成形品の製造方法、及び改質フッ素樹脂を含む樹脂材料の製造方法
US15/226,356 US10144792B2 (en) 2014-02-26 2016-08-02 Method for producing electric wire, method for producing molded artile, and method for producing resin material containing modified fluororesin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-035140 2014-02-26
JP2014035140 2014-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/226,356 Continuation US10144792B2 (en) 2014-02-26 2016-08-02 Method for producing electric wire, method for producing molded artile, and method for producing resin material containing modified fluororesin

Publications (1)

Publication Number Publication Date
WO2015129762A1 true WO2015129762A1 (ja) 2015-09-03

Family

ID=54009077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055447 WO2015129762A1 (ja) 2014-02-26 2015-02-25 電線の製造方法、成形品の製造方法、及び改質フッ素樹脂を含む樹脂材料の製造方法

Country Status (4)

Country Link
US (1) US10144792B2 (ja)
EP (1) EP3113193B1 (ja)
JP (1) JP6390694B2 (ja)
WO (1) WO2015129762A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190040005A (ko) 2016-08-16 2019-04-16 다이킨 고교 가부시키가이샤 성형품 및 성형품의 제조 방법
JP2020139092A (ja) * 2019-02-28 2020-09-03 東ソー株式会社 フッ素樹脂の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114341257A (zh) * 2019-08-29 2022-04-12 Agc株式会社 组合物、天线的制造方法和成形品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292199A (ja) * 1994-04-28 1995-11-07 Asahi Glass Co Ltd フッ素系ポリマー組成物およびその架橋方法
JPH09278907A (ja) * 1996-04-11 1997-10-28 Japan Atom Energy Res Inst 摺動部材

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237113A (ja) 1988-03-18 1989-09-21 Furukawa Electric Co Ltd:The 架橋エチレン−テトラフロロエチレン共重合体成形品の押出成形方法
US6398542B1 (en) * 2000-05-01 2002-06-04 Husky Injection Molding Systems, Ltd. Sliding valve gate with inserts
EP1380036B1 (en) * 2001-04-17 2007-10-10 Judd Wire, Inc. A multi-layer insulation system for electrical conductors
US20060246371A1 (en) * 2003-07-09 2006-11-02 Akira Nishikawa Photosensitive fluororesin composition, cured film obtained from the composition, and method of forming pattern
JP4627676B2 (ja) * 2005-03-31 2011-02-09 シチズン電子株式会社 耐熱性帯電樹脂体を用いたエレクトレットコンデンサマイクロホン及びその製造方法。
JP4337773B2 (ja) * 2005-05-25 2009-09-30 日立電線株式会社 改質ふっ素樹脂組成物
US20070023690A1 (en) * 2005-07-01 2007-02-01 Yuki Tsuchiya Method of producing heat-resistant electrically charged fluororesin material and method of producing electret condenser microphone using heat-resistant electrically charged fluororesin material
JP5224315B2 (ja) 2007-03-23 2013-07-03 独立行政法人日本原子力研究開発機構 放射線架橋含フッ素共重合体
TW200912963A (en) * 2007-08-08 2009-03-16 Daikin Ind Ltd Covered electric wire and coaxial cable
JP2009252719A (ja) * 2008-04-11 2009-10-29 Asahi Glass Co Ltd リチウムイオン二次電池の絶縁シール用パッキン
US20100034919A1 (en) * 2008-08-08 2010-02-11 E. I. Du Pont De Nemours And Company Melt Processible Semicrystalline Fluoropolymer having Repeating Units Arising from Tetrafluoroethylene, Hexafluoropropylene, and Hydrocarbon Monomer Having a Carboxyl Group and a Polymerizable Carbon-Carbon Double Bond and Multi-Layer Articles Comprising a Layer of the Melt Processible Semicrystalline Fluoropolymer
KR101950055B1 (ko) 2012-01-30 2019-02-19 에이지씨 가부시키가이샤 광학 부재, 그 제조 방법 및 그 광학 부재를 구비한 물품
WO2015104974A1 (ja) * 2014-01-08 2015-07-16 ダイキン工業株式会社 耐熱電線
JP5967181B2 (ja) * 2014-01-08 2016-08-10 ダイキン工業株式会社 改質含フッ素共重合体及びフッ素樹脂成形品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292199A (ja) * 1994-04-28 1995-11-07 Asahi Glass Co Ltd フッ素系ポリマー組成物およびその架橋方法
JPH09278907A (ja) * 1996-04-11 1997-10-28 Japan Atom Energy Res Inst 摺動部材

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190040005A (ko) 2016-08-16 2019-04-16 다이킨 고교 가부시키가이샤 성형품 및 성형품의 제조 방법
US11826975B2 (en) 2016-08-16 2023-11-28 Daikin Industries, Ltd. Molded article and manufacturing method for molded article
JP2020139092A (ja) * 2019-02-28 2020-09-03 東ソー株式会社 フッ素樹脂の製造方法
JP7338169B2 (ja) 2019-02-28 2023-09-05 東ソー株式会社 フッ素樹脂の製造方法

Also Published As

Publication number Publication date
JPWO2015129762A1 (ja) 2017-03-30
EP3113193B1 (en) 2019-04-24
EP3113193A4 (en) 2017-10-25
US20160340455A1 (en) 2016-11-24
JP6390694B2 (ja) 2018-09-19
EP3113193A1 (en) 2017-01-04
US10144792B2 (en) 2018-12-04

Similar Documents

Publication Publication Date Title
JP5298853B2 (ja) 含フッ素共重合体及び成形品
JP5967181B2 (ja) 改質含フッ素共重合体及びフッ素樹脂成形品
US9328214B2 (en) Fluorinated copolymer composition
JP5295786B2 (ja) 溶融加工可能な熱可塑性フルオロポリマーを含む組成物およびその作製方法
JP2004331938A (ja) テトラフルオロエチレン/エチレン系共重合体組成物
TW201229072A (en) Crosslinkable fluororubber composition and crosslinked rubber article
JP6455367B2 (ja) 含フッ素樹脂組成物、成形品、電線および含フッ素樹脂組成物の製造方法
JP6390694B2 (ja) 電線の製造方法、成形品の製造方法、及び改質フッ素樹脂を含む樹脂材料の製造方法
US10304583B2 (en) Insulating tape for covering, and method for producing structure
JP6292093B2 (ja) 成形品の製造方法および電線の製造方法
JP5224315B2 (ja) 放射線架橋含フッ素共重合体
JP5051517B2 (ja) エチレン/テトラフルオロエチレン共重合体組成物
JP2008231330A (ja) 放射線架橋含フッ素共重合体
JP2015034278A (ja) フッ素樹脂組成物、溶融混練物、電線、溶融混練物の製造方法、及び電線用被覆材の製造方法
JP5365939B2 (ja) 自動車用シールリング、産業ガス圧縮機用シールリング及び摺動部品
JP2015095363A (ja) ワイヤまたはケーブル、それらの製造方法および絶縁テープ
US20240268020A1 (en) Composition, circuit board, and method for producing composition
JP6107613B2 (ja) 含フッ素共重合体成形品の製造方法、電線被覆材および摺動部材
JP2015096577A (ja) 電線被覆材用樹脂組成物および電線
JP2016124909A (ja) 含フッ素樹脂架橋体の製造方法、成形体の製造方法および含フッ素樹脂組成物
JP6135541B2 (ja) フッ素樹脂組成物の製造方法、成形品の製造方法及び電線の製造方法
JP2017088815A (ja) フッ素ゴムとフッ素樹脂の相溶化剤、該相溶化剤とフッ素樹脂とフッ素ゴムを含む組成物
JP7568957B2 (ja) 固体組成物、回路基板、及び、固体組成物の製造方法
WO2023286801A1 (ja) 樹脂組成物、樹脂組成物の製造方法および成形体
WO2024214812A1 (ja) 平角線及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754580

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015754580

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015754580

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016505270

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE