[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015129748A1 - 非水系電解液及びそれを用いた非水系電解液二次電池 - Google Patents

非水系電解液及びそれを用いた非水系電解液二次電池 Download PDF

Info

Publication number
WO2015129748A1
WO2015129748A1 PCT/JP2015/055393 JP2015055393W WO2015129748A1 WO 2015129748 A1 WO2015129748 A1 WO 2015129748A1 JP 2015055393 W JP2015055393 W JP 2015055393W WO 2015129748 A1 WO2015129748 A1 WO 2015129748A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
carbonate
mass
secondary battery
less
Prior art date
Application number
PCT/JP2015/055393
Other languages
English (en)
French (fr)
Inventor
篤 渡會
竹原 雅裕
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020167023773A priority Critical patent/KR102416651B1/ko
Priority to JP2016505262A priority patent/JP6372561B2/ja
Priority to CN201580010162.6A priority patent/CN106030889A/zh
Priority to EP15755198.7A priority patent/EP3113274B1/en
Publication of WO2015129748A1 publication Critical patent/WO2015129748A1/ja
Priority to US15/244,407 priority patent/US20160359197A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery using the same.
  • Lithium non-aqueous electrolyte secondary batteries that use lithium-containing transition metal oxides as positive electrodes and non-aqueous solvents as electrolytes can achieve high energy density, so they can be used from small power sources such as mobile phones and laptop computers to automobiles. It is applied to a wide range of applications, from large power supplies for railways and road leveling. However, in recent years, the demand for higher performance of non-aqueous electrolyte batteries is increasing, and there is a strong demand for improvement of various characteristics of secondary batteries.
  • cyclic carbonates such as ethylene carbonate and propylene carbonate
  • chain carbonates such as dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate
  • cyclic carboxyls such as ⁇ -butyrolactone and ⁇ -valerolactone
  • a nonaqueous electrolytic solution containing a solute (electrolyte) such as 2 is used.
  • non-aqueous electrolyte secondary battery using a non-aqueous electrolyte the reactivity varies depending on the composition of the non-aqueous electrolyte, so that the battery characteristics greatly vary depending on the non-aqueous electrolyte.
  • battery characteristics such as load characteristics, cycle characteristics, and storage characteristics of non-aqueous electrolyte secondary batteries, and to improve battery safety during overcharge
  • non-aqueous solvents in non-aqueous electrolyte solutions Various studies have been made on electrolytes.
  • Patent Document 1 discloses a technique for improving the initial charge / discharge efficiency of a battery by using an electrolytic solution to which a specific compound is added to form a film by reacting a specific compound on an electrode in initial charging.
  • LiClO 4 is used as a solute
  • propylene carbonate is used as a solvent
  • 5-phenyl-1,3-dioxolane-2,4-dione is used as an additive.
  • the alkoxide anion generated by charging becomes a polymerization initiator, and 5-phenyl-1,3-dioxolane-2,4-dione is polymerized to form a polymer film on the electrode Therefore, it is stated that the efficiency of the first charge / discharge of the battery is improved.
  • Patent Document 2 uses an organic electrolytic solution to which 1,3-dioxolane-2,5-dione is added, particularly an organic electrolytic solution in which the mixing ratio of the compound and other solvent is 1:10 to 30:10.
  • an organic electrolytic solution in which the mixing ratio of the compound and other solvent is 1:10 to 30:10.
  • manganese dioxide is used as the positive electrode active material
  • metal Li is used as the negative electrode active material
  • the ratio of 1,3-dioxolane-2,5-dione to DME is 1:10 to 30:10 as the electrolyte solvent.
  • Patent Document 3 discloses a technique for improving the charge / discharge efficiency of the negative electrode and improving the cycle characteristics of the battery by using an organic electrolyte using LiClO 4 as a solute and propylene carbonate-3-one as a solvent. It is disclosed.
  • TiS 2 was used as the positive electrode active material
  • metal Li was used as the negative electrode active material
  • propylene carbonate-3-one was used alone as the solvent of the electrolytic solution
  • the cycle characteristics of the battery were improved. It is shown.
  • this document discloses the use of propylene carbonate-3-one as a solvent that is difficult to decompose, and the negative current due to the low reactivity of the compound with metal Li. It is stated to improve efficiency.
  • the present invention has been made in view of the above-described problems. That is, the present invention has an object to provide a secondary battery with a low initial irreversible capacity, high initial efficiency, and excellent high-temperature cycle characteristics without impairing the yield of the battery with respect to the non-aqueous electrolyte secondary battery. To do.
  • the present inventors have incorporated the compound represented by the following general formula (1) into the non-aqueous electrolyte solution in an amount within a specific range. The inventors have found that the problem can be solved and have completed the present invention.
  • a non-aqueous electrolyte secondary battery comprising a positive electrode capable of inserting and extracting metal ions, a negative electrode capable of inserting and extracting metal ions, and a non-aqueous electrolyte solution containing a non-aqueous solvent and an electrolyte dissolved in the non-aqueous solvent
  • n is an integer of 1 to 4.
  • R 1 and R 2 are each independently hydrogen, fluorine, and carbon atoms of 1 to 5 carbon atoms that may be substituted with fluorine.
  • n is 2 or more, a plurality of R 1 and R 2 may be the same as or different from each other, and R 1 and R 2 are bonded to each other.
  • R 3 is any one of a carbonyl group, a sulfinyl group, a sulfonyl group, and a group represented by the following general formula (2).
  • R 4 is either fluorine or a hydrocarbon group having 1 to 10 carbon atoms that may be substituted with fluorine.
  • R 5 and R 6 are each independently hydrogen, fluorine, or a hydrocarbon group having 1 to 5 carbon atoms that may be substituted with fluorine. R 5 and R 6 may be bonded to each other to form a ring).
  • the nonaqueous electrolytic solution according to any one of [1] to [5], which is 5 to 4: 6.
  • cyclic carbonate having fluorine atom cyclic carbonate having carbon-carbon unsaturated bond, difluorophosphate, fluorosulfate, compound having isocyanato group, compound having cyano group, cyclic sulfonate ester, and dicarboxylic acid complex
  • a non-aqueous electrolyte secondary battery comprising a positive electrode capable of occluding and releasing metal ions, a negative electrode capable of occluding and releasing metal ions, and a non-aqueous electrolyte solution
  • a non-aqueous electrolyte secondary battery wherein the non-aqueous electrolyte is the non-aqueous electrolyte according to any one of [1] to [8].
  • non-aqueous electrolyte solution of the present invention it is possible to provide a non-aqueous electrolyte secondary battery having a small initial irreversible capacity, high initial efficiency, and excellent high-temperature cycle characteristics without impairing the yield of the battery.
  • Non-aqueous electrolyte The nonaqueous electrolytic solution of the present invention contains a nonaqueous solvent and an electrolyte dissolved in the nonaqueous solvent, and further contains a specific amount of the compound represented by the general formula (1).
  • the electrolyte, the non-aqueous solvent, and the compound represented by the general formula (1) will be described in this order.
  • the electrolyte used for the non-aqueous electrolyte solution of the present invention is not particularly limited, and can be arbitrarily adopted according to the characteristics of the target non-aqueous electrolyte secondary battery.
  • the electrolyte include inorganic lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , and LiAlF 4 ; LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 2 F 5 SO 2 ), LiN ( CF 3 SO 2 ) (C 3 F 7 SO 2 ), LiN (CF 3 SO 2 ) (FSO 2 ), lithium cyclic 1,2-ethanedisulfonylimide, lithium cyclic 1,3-propanedisulfonylimide, lithium cyclic 1,2-perfluoroethanedisulfonylimide, lithium cyclic 1,3-perfluoropropane disulfonylimide, lithium cyclic 1,4-perfluorobutanedisulfonylimide, LiC (CF 3 SO 3
  • lithium salts are preferred, but LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) (FSO 2 ) , LiN (C 2 F 5 SO 2 ) 2 , lithium cyclic 1,2-perfluoroethanedisulfonylimide, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and LiN (CF 3 SO 2 ) (FSO 2 ) are more preferable, and LiPF 6 is particularly preferable.
  • the nonaqueous electrolytic solution of the present invention preferably contains hexafluorophosphate as an electrolyte.
  • Hexafluorophosphate is preferable because the hexafluorophosphate anion is electrochemically stable, whereby a non-aqueous electrolyte secondary battery (hereinafter simply referred to as a non-aqueous electrolyte solution) obtained using the non-aqueous electrolyte of the present invention is used.
  • the charge / discharge efficiency of a “non-aqueous electrolyte secondary battery” or “secondary battery”) can be improved.
  • the said salt can make the dissociation degree of a salt very high, and can make the ion density
  • the electrolytes described above may be used singly or in combination of two or more in any combination and ratio.
  • the combined use of two inorganic lithium salts and the combined use of an inorganic lithium salt and a fluorine-containing organic lithium salt are preferable because gas generation during continuous charging of the secondary battery or deterioration after high-temperature storage is effectively suppressed. .
  • LiPF 6 and LiBF 4 and the inclusion of inorganic lithium salts such as LiPF 6 and LiBF 4 and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2, etc.
  • inorganic lithium salts such as LiPF 6 and LiBF 4 and LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2, etc.
  • the combined use with a fluorine organic lithium salt is preferred.
  • the proportion of LiBF 4 in the entire electrolyte is preferably 0.001% by mass or more and 20% by mass or less. Within this range, the resistance of the non-aqueous electrolyte can be suppressed from increasing due to the low degree of dissociation of LiBF 4 .
  • the proportion of the inorganic lithium salt in the entire electrolyte is preferably 70% by mass or more and 99.9% by mass or less. Within this range, the ratio of the fluorine-containing organic lithium salt having a large molecular weight is generally too high compared to hexafluorophosphate, and the ratio of the non-aqueous solvent in the entire non-aqueous electrolyte solution is reduced. An increase in the resistance of the aqueous electrolyte can be suppressed.
  • the concentration of the electrolyte such as a lithium salt in the composition of the final secondary battery of the nonaqueous electrolytic solution of the present invention is arbitrary as long as the effects of the present invention are not significantly impaired, but preferably 0.5 mol / L or more. 3 mol / L or less. If the electrolyte concentration is above this lower limit, sufficient ionic conductivity of the non-aqueous electrolyte can be easily obtained, and if it is lower than the upper limit, it is avoided that the viscosity increases excessively. As described above, it is easy to ensure good ion conductivity and performance of the secondary battery.
  • the concentration of the electrolyte such as a lithium salt is more preferably in the range of 0.6 mol / L or more, further preferably 0.8 mol / L or more, more preferably 2 mol / L or less, still more preferably 1.5 mol / L or less. It is.
  • Nonaqueous solvent contained in the non-aqueous electrolyte of the present invention is not particularly limited as long as it is a solvent that does not adversely affect the battery characteristics when a secondary battery is formed, but one of the non-aqueous solvents listed below. The above is preferable.
  • non-aqueous solvents examples include chain carbonates and cyclic carbonates, chain carboxylic acid esters and cyclic carboxylic acid esters, chain ethers and cyclic ethers, phosphorus-containing organic solvents, sulfur-containing organic solvents, and boron-containing organic solvents. It is done.
  • the type of the chain carbonate is not particularly limited, and examples thereof include dialkyl carbonate.
  • the alkyl group constituting the dialkyl carbonate preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
  • dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, di-n-propyl carbonate, and the like are preferable dialkyl carbonates.
  • dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate are more preferable in terms of industrial availability and various characteristics in the non-aqueous electrolyte secondary battery.
  • chain carbonates having a fluorine atom can also be suitably used.
  • the number of fluorine atoms contained in the fluorinated chain carbonate is not particularly limited as long as it is 1 or more, it is usually 6 or less, preferably 4 or less, more preferably 3 or less.
  • the fluorinated chain carbonate has a plurality of fluorine atoms, they may be bonded to the same carbon or may be bonded to different carbons.
  • the fluorinated chain carbonate include fluorinated dimethyl carbonate, fluorinated ethyl methyl carbonate, and fluorinated diethyl carbonate.
  • fluorinated dimethyl carbonate examples include fluoromethyl methyl carbonate, difluoromethyl methyl carbonate, trifluoromethyl methyl carbonate, bis (fluoromethyl) carbonate, bis (difluoro) methyl carbonate, and bis (trifluoromethyl) carbonate.
  • fluorinated ethyl methyl carbonate examples include 2-fluoroethyl methyl carbonate, ethyl fluoromethyl carbonate, 2,2-difluoroethyl methyl carbonate, 2-fluoroethyl fluoromethyl carbonate, ethyl difluoromethyl carbonate, 2,2,2-trimethyl
  • fluorinated diethyl carbonate examples include ethyl- (2-fluoroethyl) carbonate, ethyl- (2,2-difluoroethyl) carbonate, bis (2-fluoroethyl) carbonate, ethyl- (2,2,2-trifluoro).
  • Ethyl) carbonate 2,2-difluoroethyl-2′-fluoroethyl carbonate, bis (2,2-difluoroethyl) carbonate, 2,2,2-trifluoroethyl-2′-fluoroethyl carbonate, 2,2, Examples include 2-trifluoroethyl-2 ′, 2′-difluoroethyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, and the like.
  • the fluorinated chain carbonate is not only a non-aqueous solvent but also the following ⁇ 1-4. Also effective as an additive described in ⁇ Additives>. There is no clear boundary in the blending amount when the fluorinated chain carbonate is used as the solvent and additive, and in this specification, the blending amount described as the blending amount as the non-aqueous solvent and the blending amount of the additive is used as it is. You can follow.
  • the type of the cyclic carbonate is not particularly limited, and examples thereof include alkylene carbonate.
  • the alkylene group constituting the alkylene carbonate preferably has 2 to 6 carbon atoms, particularly preferably 2 to 4 carbon atoms.
  • Specific examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate (2-ethylethylene carbonate, cis and trans 2,3-dimethylethylene carbonate), and the like.
  • ethylene carbonate and propylene carbonate are preferable as the cyclic carbonate, and ethylene carbonate is particularly preferable because the resistance of the non-aqueous electrolyte secondary battery can be reduced due to the high dielectric constant.
  • ethylene carbonate is particularly preferable because the resistance of the non-aqueous electrolyte secondary battery can be reduced due to the high dielectric constant.
  • propylene carbonate if propylene carbonate is used, battery characteristics may be adversely affected. Therefore, when propylene carbonate is used, the combined use of ethylene carbonate is essential, and (A) ethylene carbonate and propylene carbonate.
  • the volume ratio (ethylene carbonate: propylene carbonate) of 99: 1 to 40:60 and (B) the content of propylene carbonate in the non-aqueous solvent satisfies 10% by volume or less. There is a need to.
  • fluorinated cyclic carbonate cyclic carbonates having a fluorine atom
  • fluorinated cyclic carbonate cyclic carbonates having a fluorine atom
  • fluorinated cyclic carbonate examples include cyclic carbonates having a fluorinated alkylene group having 2 to 6 carbon atoms, and more specifically, for example, fluorinated ethylene carbonate and derivatives thereof.
  • fluorinated ethylene carbonate and derivatives thereof examples include ethylene carbonate or a fluorinated product of ethylene carbonate substituted with an alkyl group (for example, an alkyl group having 1 to 4 carbon atoms). -8 fluorinated ethylene carbonates are preferred.
  • fluorinated ethylene carbonate and derivatives thereof monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro -4-methylethylene carbonate, 4-fluoro-5-methylethylene carbonate, 4,4-difluoro-5-methylethylene carbonate, 4- (fluoromethyl) -ethylene carbonate, 4- (difluoromethyl) -ethylene carbonate, 4 -(Trifluoromethyl) -ethylene carbonate, 4- (fluoromethyl) -4-fluoroethylene carbonate, 4- (fluoromethyl) -5-fluoroethylene carbonate, 4-fluoro-4,5-dimethyl Ji Ren carbonate, 4,5-difluoro-4,5-dimethylethylene carbonate, 4,4-difluoro-5,5-dimethylethylene carbonate.
  • At least one selected from the group consisting of monofluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, and 4,5-difluoro-4,5-dimethylethylene carbonate is more preferable.
  • the 4,5-difluoroethylene carbonate is preferably a trans isomer rather than a cis isomer. This is because high ion conductivity is imparted to the nonaqueous electrolytic solution, and an interface protective film is suitably formed on the electrode in the secondary battery.
  • the fluorinated cyclic carbonate is not only a non-aqueous solvent but also the following ⁇ 1-4. Also effective as an additive described in ⁇ Additives>. There is no clear boundary in the blending amount when fluorinated cyclic carbonate is used as a solvent and additive, and in this specification, the blending amount described as the blending amount as a non-aqueous solvent and the blending amount of the additive is followed as it is. it can.
  • the type of the chain carboxylic acid ester is not particularly limited. For example, methyl acetate, ethyl acetate, acetic acid-n-propyl, acetic acid-i-propyl, acetic acid-n-butyl, acetic acid-i-butyl, acetic acid-t- Butyl, methyl propionate, ethyl propionate, propionate-n-propyl, propionate-i-propyl, propionate-n-butyl, propionate-i-butyl, propionate-t-butyl, methyl butyrate, ethyl butyrate Etc.
  • methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, and ethyl butyrate are preferable in terms of industrial availability and various characteristics in non-aqueous electrolyte secondary batteries.
  • cyclic carboxylic acid ester is not particularly limited, and examples thereof include ⁇ -butyrolactone, ⁇ -valerolactone, and ⁇ -valerolactone.
  • ⁇ -butyrolactone is preferable in terms of industrial availability and various characteristics in non-aqueous electrolyte secondary batteries.
  • the type of the chain ether is not particularly limited, and examples thereof include dimethoxymethane, dimethoxyethane, diethoxymethane, diethoxyethane, ethoxymethoxymethane, and ethoxymethoxyethane.
  • dimethoxyethane and diethoxyethane are preferable in terms of industrial availability and various characteristics in the non-aqueous electrolyte secondary battery.
  • the cyclic ether is not particularly limited, and examples thereof include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran and the like.
  • the phosphorus-containing organic solvent is not particularly limited.
  • trimethyl phosphate, triethyl phosphate, triphenyl phosphate, tris phosphate (2,2,2-trifluoroethyl), trimethyl phosphite, triethyl phosphite, phosphorous acid examples thereof include triphenyl, trimethylphosphine oxide, triethylphosphine oxide, triphenylphosphine oxide and the like.
  • the kind of the sulfur-containing organic solvent is not particularly limited, and examples thereof include ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methyl methanesulfonate, ethyl methanesulfonate, busulfan, sulfolane, sulfolene, Examples include dimethylsulfone, ethylmethylsulfone, diphenylsulfone, methylphenylsulfone, dibutyldisulfide, dicyclohexyldisulfide, tetramethylthiuram monosulfide, N, N-dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide, and the like.
  • the boron-containing organic solvent is not particularly limited, and examples thereof include boroxines such as 2,4,6-trimethylboroxine and 2,4,6-triethylboroxine.
  • linear carbonates and cyclic carbonates or linear carboxylic acid esters and cyclic carboxylic acid esters are preferable in terms of various characteristics in the non-aqueous electrolyte non-aqueous electrolyte secondary battery, Among them, ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, 2,2,2-trifluoroethyl methyl carbonate, bis (2,2,2-trifluoroethyl) carbonate, methyl acetate, Ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, ethyl butyrate, and ⁇ -butyrolactone are more preferable.
  • Ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate , 2,2,2-trifluoroethyl methyl carbonate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate are more preferred.
  • non-aqueous solvents may be used alone or in combination of two or more, but two or more of them are preferably used.
  • a high dielectric constant solvent of cyclic carbonates in combination with a low viscosity solvent such as chain carbonates or chain esters.
  • One preferred combination of non-aqueous solvents is a combination mainly composed of cyclic carbonates and chain carbonates.
  • the total of the cyclic carbonates and the chain carbonates in the whole non-aqueous solvent is preferably 80% by volume or more, more preferably 85% by volume or more, and particularly preferably 90% by volume or more.
  • the ratio by volume of chain carbonates to chain carbonates is preferably 0.5: 9.5 to 7: 3, more preferably 1: 9 to 5 : 5, more preferably 1.5: 8.5 to 4: 6, particularly preferably 2: 8 to 3.5: 6.5.
  • a secondary battery manufactured using a combination of these non-aqueous solvents is preferable because the balance between cycle characteristics and high-temperature storage characteristics (particularly, remaining capacity and high-load discharge capacity after high-temperature storage) is improved.
  • Examples of preferred combinations of cyclic carbonates and chain carbonates include combinations of ethylene carbonate and chain carbonates, such as ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and ethyl methyl carbonate, Examples thereof include ethylene carbonate, dimethyl carbonate and diethyl carbonate, ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate.
  • a combination in which propylene carbonate is further added to the combination of these ethylene carbonates and chain carbonates is also preferable.
  • the volume ratio of ethylene carbonate and propylene carbonate is 99: 1 to 40:60 as described above, the amount of propylene carbonate in the whole non-aqueous solvent is 10% by volume or less, or It is necessary to satisfy both of these requirements.
  • the volume ratio is preferably 95: 5 to 45:55, more preferably 85:15 to 50:50.
  • the amount of propylene carbonate in the entire non-aqueous solvent is 0.1% by volume or more and 10% by volume or less, further excellent discharge is maintained while maintaining the characteristics of the combination of ethylene carbonate and chain carbonates. This is preferable because load characteristics can be obtained.
  • the amount of propylene carbonate in the entire non-aqueous solvent is more preferably 1% by volume, particularly preferably 2% by volume or more, more preferably 8% by volume or less, and particularly preferably 5% by volume or less.
  • those containing asymmetric chain carbonates as chain carbonates are more preferable, In particular, ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, ethylene carbonate and diethyl carbonate and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate, Alternatively, those containing propylene carbonate in addition to these are preferable because the balance between the cycle characteristics and discharge load characteristics of the secondary battery is good.
  • the asymmetric chain carbonate is preferably ethyl methyl carbonate
  • the alkyl group constituting the dialkyl carbonate is preferably one having 1 to 2 carbon atoms.
  • non-aqueous solvents preferable in the present invention are those containing chain carboxylic acid esters.
  • those containing a chain carboxylic acid ester in the mixed solvent of cyclic carbonates and chain carbonates are preferable from the viewpoint of improving the discharge load characteristics of the secondary battery.
  • the chain carboxylic acid ester As the class, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate and ethyl butyrate are particularly preferable.
  • the volume of the chain carboxylic acid esters in the non-aqueous solvent is preferably 5% by volume or more, more preferably 8% by volume or more, particularly preferably 10% by volume or more, preferably 50% by volume or less, more preferably It is 35% by volume or less, particularly preferably 30% by volume or less, and particularly preferably 25% by volume or less.
  • the non-aqueous electrolyte solution of the present invention contains a compound represented by the following general formula (1) (hereinafter sometimes referred to as “specific ester”) as an essential component.
  • specific ester a compound represented by the following general formula (1)
  • one type of the specific ester may be used, or two or more types may be used in any combination and ratio.
  • n is an integer of 1 to 4.
  • R 1 and R 2 are each independently hydrogen, fluorine, or a hydrocarbon group having 1 to 5 carbon atoms that may be substituted with fluorine.
  • n is 2 or more, a plurality of R 1 and R 2 may be the same as or different from each other.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • R 3 is any one of a carbonyl group, a sulfinyl group, a sulfonyl group, and a group represented by the following general formula (2).
  • R 4 is any of fluorine and a hydrocarbon group having 1 to 10 carbon atoms which may be substituted with fluorine.
  • the present invention it is possible to improve the initial irreversible capacity, initial efficiency and high-temperature cycle characteristics of a non-aqueous electrolyte secondary battery by using a non-aqueous electrolyte containing a predetermined amount of a specific ester.
  • the specific ester of the present invention is considered to protect the negative electrode by reducing the compound itself on the charged negative electrode and forming a film-like structure with the reduction product.
  • This film-like structure suppresses the side reaction of electrolyte decomposition because it is an insulator, and at the same time does not inhibit the electrode reaction because it is a metal ion conductor such as lithium. Improve battery charge / discharge efficiency.
  • the reduction product is preferably compact, in other words, a compound that can be densely deposited is preferable.
  • the electrolyte solution impregnates the voids of the structure, and the structure cannot exhibit its function.
  • the specific ester used in the present invention is a hydrocarbon group having 1 to 5 carbon atoms in which R 1 and R 2 may be substituted with hydrogen, fluorine or fluorine, and a relatively compact side chain Therefore, the steric hindrance of the compound as a whole is small, and its reduction product can be densely deposited.
  • the hydrocarbon group has 1 to 5 carbon atoms, preferably 4 or less, more preferably 3 or less, and still more preferably 2 or less.
  • the total number of carbon atoms of R 1 and R 2 is preferably 5 or less, more preferably 4 or less, still more preferably 3 or less, and particularly preferably 2 or less (for example, R 1 is hydrogen And R 2 may be a methyl group).
  • R 1 and R 2 are not bonded to form a ring. This is because if the ring is not formed, the reduction product is deposited and hardly forms a steric hindrance when forming a film-like structure.
  • hydrocarbon group examples include an alkyl group, an alkenyl group, and an alkynyl group when R 1 and R 2 are not bonded to form a ring.
  • alkyl group examples include methyl group, ethyl group, propyl group, 1-methylethyl group, butyl group, 1-methylpropyl group, 2-methylpropyl group, 1,1-dimethylethyl group, pentyl group, 1 -Methylbutyl group, 2-methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group.
  • Some or all of the hydrogen may be substituted with fluorine.
  • alkenyl group examples include an ethenyl group, a propenyl group, a butenyl group, and a pentenyl group, in which some or all of the hydrogens may be substituted with fluorine.
  • alkynyl group examples include an ethynyl group, a propynyl group, a butynyl group, and a pentynyl group, in which some or all of the hydrogens may be substituted with fluorine.
  • an alkyl group is preferable, more preferably a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group, still more preferably a methyl group, an ethyl group, a propyl group, and a butyl group, More preferred are a methyl group, an ethyl group and a propyl group, and particularly preferred are a methyl group and an ethyl group.
  • the hydrocarbon group in which R 1 and R 2 are combined is an ethylene group, trimethylene group, tetramethylene group, pentamethylene group, ethylidene group, propylidene group.
  • butylidene group, pentylidene group, vinylidene group, ethylidene group, propyridine group, butyridine group, pentyridine group, etc. preferably ethylene group, trimethylene group, tetramethylene group, pentamethylene group, more preferably ethylene.
  • trimethylene group and tetramethylene group more preferably ethylene group and trimethylene group, and particularly preferably ethylene group.
  • n is an integer of 1 to 4 as described above, and is composed of a ring (carbon of the general formula (1) in which two O, R 3 , carbonyl carbon and R 1 are bonded). From the viewpoint of the structural stability of the ring), 1 is preferable.
  • R 3 is any one of a carbonyl group, a sulfinyl group, a sulfonyl group, and a group represented by the general formula (2).
  • a carbonyl group, a sulfinyl group, and a sulfonyl group are preferable, a carbonyl group or a sulfonyl group is more preferable, and a carbonyl group is most preferable. is there.
  • R 4 is either fluorine or a hydrocarbon group having 1 to 10 carbon atoms which may be substituted with fluorine, and among these, formed by a specific ester. Fluorine is preferable from the viewpoint of the denseness of the film-like structure.
  • the molecular weight of the specific ester in the present invention described above is not particularly limited and may be arbitrary as long as the effects of the present invention are not significantly impaired, but is preferably 250 or less, more preferably 200 or less, still more preferably 180 or less, particularly preferably. 150 or less, most preferably 120 or less is practical.
  • the specific ester is excellent in solubility in the non-aqueous solvent constituting the non-aqueous electrolyte solution, and more effective effects can be easily achieved.
  • Preferred examples of the specific ester represented by the general formula (1) include the following. This is because the specific ester is excellent in solubility in a non-aqueous electrolyte solution, and the productivity of the non-aqueous electrolyte solution is easily increased.
  • the specific ester used in the present invention is preferably a compound represented by the following general formula (3).
  • R 5 and R 6 are the same as those in the general formula (1). That is, they are each independently hydrogen, fluorine, or a hydrocarbon group having 1 to 5 carbon atoms that may be substituted with fluorine. R 5 and R 6 may be bonded to each other to form a ring, but from the viewpoint that the reduction product is less likely to become a steric hindrance when the reduction product is generated, no ring is formed. Is preferred.
  • More preferable examples of the specific ester include the following. This is because since only carbon, hydrogen, and oxygen are used as constituent elements, the influence on the human body and the environment can be reduced.
  • More preferable examples include the following. This is because, as described above, it can be estimated that the film-like deposit due to the reduction product can be made dense.
  • the specific ester represented by the structural formula (5) is most preferred. This is because high-purity raw materials are easily available industrially, and thus the manufacturing process of the non-aqueous electrolyte can be simplified.
  • the specific ester represented by (5) is optically active, the S form is particularly preferable. This is because the raw materials are inexpensive and easily available, and are easily purified.
  • the production method for the specific ester is not particularly limited, and any known method can be selected and produced.
  • the specific ester represented by the structural formula (4) and the specific ester represented by the structural formula (5) may be the Journal of the Chemical Society (1951), 1357. Can be synthesized according to
  • the ratio of the specific ester in the total amount (100% by mass) of the non-aqueous electrolyte solution of the present invention needs to be 0.01% by mass to 4.5% by mass in total. If the concentration of the specific ester is excessive, there are too many reduction products in the secondary battery, so that the surface of the negative electrode is excessively covered and the electrode reaction is inhibited. Moreover, the cost of a non-aqueous electrolyte solution will also increase. If it is said density
  • the ratio of the specific ester is preferably 0.1% by mass or more, preferably 3.5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, particularly preferably. Is 1.8% by mass or less, and most preferably 1.6% by mass or less.
  • the non-aqueous electrolyte obtained by disassembling and re-extracting the battery contains a very small amount of the specific ester. Even if it is not, it is often detected on the positive electrode, the negative electrode, or the separator, which is another component of the non-aqueous electrolyte secondary battery. Therefore, when the specific ester is detected from the positive electrode, the negative electrode, and the separator, it is assumed that the total amount is included in the non-aqueous electrolyte solution, and is 0.01% by mass or more and 4.5% by mass or less. Cases are considered to be included in the present invention.
  • the nonaqueous electrolytic solution of the present invention may contain various additives as long as the effects of the present invention are not significantly impaired.
  • a conventionally well-known thing can be arbitrarily used for an additive.
  • An additive may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the additive examples include an overcharge inhibitor and an auxiliary agent for improving capacity maintenance characteristics and cycle characteristics of the secondary battery after high temperature storage.
  • an auxiliary agent for suppressing capacity maintenance characteristics and resistance increase after high-temperature storage cyclic carbonate having fluorine atom, cyclic carbonate having carbon-carbon unsaturated bond, difluorophosphate, fluorosulfate, Contains at least one compound selected from the group consisting of a compound having an isocyanato group, a compound having a cyano group, a cyclic sulfonic acid ester, and a dicarboxylic acid complex salt (hereinafter sometimes abbreviated as “specific additive”) It is preferable to do.
  • specific additive a compound having an isocyanato group, a compound having a cyano group, a cyclic sulfonic acid ester, and a dicarboxylic acid complex salt
  • Cat is a cation constituting a salt.
  • Q 1 is a divalent organic group containing fluorine
  • Q 2 is a divalent organic group containing a carbon-carbon unsaturated bond
  • Q 5 and Q 6 are Monovalent organic group
  • Q 7 represents a divalent organic group
  • Q 8 represents a single bond or a divalent organic group
  • X represents a divalent organic group containing a complex center element.
  • each of the specific additives includes a nucleophilic attack accepting site, and each reaction shown is an initiation reaction, and an electrode reaction using a specific ester and a specific additive as raw materials. It is presumed that a film-like structure that favorably supports is formed in concert.
  • the molecular weight of the specific additive is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired, but those having a molecular weight of 50 or more and 250 or less are preferable. Within this range, the solubility of the specific additive in the non-aqueous electrolyte solution is good, and the effect of addition can be sufficiently exhibited.
  • the method for producing the specific additive there is no particular limitation on the method for producing the specific additive, and it can be produced by arbitrarily selecting a known method. A commercially available product may also be used.
  • the specific additive may be included alone in the nonaqueous electrolytic solution of the present invention, or two or more specific additives may be combined in any combination and ratio.
  • Cyclic carbonate having a fluorine atom > Among the specific additives, the cyclic carbonate having a fluorine atom (hereinafter sometimes abbreviated as “F-carbonate”) is not particularly limited as long as it has a fluorine atom. Can be used.
  • F-carbonate cyclic carbonate having a fluorine atom
  • the number of fluorine atoms in the fluorinated carbonate is not particularly limited as long as it is 1 or more, and 2 or less is particularly preferable.
  • fluorinated carbonates examples include fluoroethylene carbonate and its derivatives.
  • fluoroethylene carbonate and derivatives thereof include fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4- Methyl ethylene carbonate, 4-fluoro-5-methyl ethylene carbonate, 4,4-difluoro-5-methyl ethylene carbonate, 4- (fluoromethyl) -ethylene carbonate, 4- (difluoromethyl) -ethylene carbonate, 4- (tri Fluoromethyl) -ethylene carbonate, 4- (fluoromethyl) -4-fluoroethylene carbonate, 4- (fluoromethyl) -5-fluoroethylene carbonate, 4-fluoro-4,5-dimethylethylene Boneto, 4,5-difluoro-4,5-dimethylethylene carbonate, 4,4-difluoro-5,5-dimethylethylene carbonate.
  • fluoroethylene carbonate is a stable film-like film. It is possible to contribute to the formation of the structure, and is most preferably used.
  • the content of the fluorinated carbonate is not particularly limited and may be arbitrary as long as the effects of the present invention are not significantly impaired, but in 100% by mass of the nonaqueous electrolytic solution of the present invention, preferably 0.001% by mass or more. 0% by mass or less.
  • the content of fluorinated carbonate is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, particularly preferably 0.2% by mass or more, and more preferably 8.0% by mass or less. Especially preferably, it is 6.0 mass% or less.
  • the fluorinated carbonate is not only an additive, but also ⁇ 1-2. It also exhibits an effective function as a non-aqueous solvent described in Non-aqueous solvent>. There is no clear boundary in the blending amount when the fluorinated carbonate is used as the solvent and additive, and in this specification, the blending amount described as the blending amount as the non-aqueous solvent and the blending amount of the additive can be followed as it is. .
  • Cyclic carbonate having a carbon-carbon unsaturated bond Among specific additives, cyclic carbonates having a carbon-carbon unsaturated bond (hereinafter sometimes abbreviated as “unsaturated carbonate”) include carbon-carbon double bonds and carbon-carbon triple bonds, etc. If it is a carbonate which has a carbon unsaturated bond, it will not specifically limit, Arbitrary unsaturated carbonates can be used.
  • unsaturated carbonates examples include vinylene carbonates, ethylene carbonates substituted with a substituent having a carbon-carbon unsaturated bond, and the like.
  • vinylene carbonates include vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate and the like.
  • ethylene carbonates substituted with a substituent having a carbon-carbon unsaturated bond include vinyl ethylene carbonate, 4,5-divinyl ethylene carbonate, ethynyl ethylene carbonate, propargyl ethylene carbonate, and the like.
  • vinylene carbonate vinyl ethylene carbonate, and ethynyl ethylene carbonate are preferable.
  • vinylene carbonate can contribute to the formation of a stable film-like structure and is more preferably used.
  • the content of the unsaturated carbonate is not particularly limited and may be arbitrary as long as the effects of the present invention are not significantly impaired, but in 100% by mass of the nonaqueous electrolytic solution of the present invention, preferably 0.001% by mass or more. 0% by mass or less.
  • the content of the unsaturated carbonate is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, particularly preferably 0.2% by mass or more, and more preferably 4.0% by mass or less. More preferably, it is 3.0 mass% or less, Most preferably, it is 2.0 mass% or less.
  • difluorophosphate is not particularly limited as long as it is a salt having a difluorophosphate anion as a constituent element, and any difluorophosphate can be used.
  • difluorophosphate examples include lithium difluorophosphate, sodium difluorophosphate, potassium difluorophosphate, ammonium difluorophosphate, and the like.
  • lithium difluorophosphate is more preferably used because it can contribute to the formation of a stable film-like structure.
  • the content of the difluorophosphate is not particularly limited, and may be arbitrary as long as the effects of the present invention are not significantly impaired. However, in 100% by mass of the nonaqueous electrolytic solution of the present invention, preferably 0.001% by mass or more, 2 0.0 mass% or less.
  • the content of difluorophosphate is more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more, particularly preferably 0.2% by mass or more, and more preferably 1.5% by mass or less. More preferably, it is 1.2 mass% or less, Most preferably, it is 1.1 mass% or less.
  • the fluorosulfate is not particularly limited as long as it is a salt having a fluorosulfuric acid anion as a constituent element, and any fluorosulfate can be used.
  • fluorosulfate examples include lithium fluorosulfate, sodium fluorosulfate, potassium fluorosulfate, ammonium fluorosulfate, and the like.
  • lithium fluorosulfate is more preferably used because it can contribute to the formation of a stable film-like structure.
  • the content of the fluorosulfate is not particularly limited and may be arbitrary as long as the effects of the present invention are not significantly impaired, but in 100% by mass of the nonaqueous electrolytic solution of the present invention, preferably 0.001% by mass or more. 0% by mass or less.
  • the content of fluorosulfate is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, particularly preferably 0.2% by mass or more, and more preferably 3.0% by mass or less. More preferably, it is 2.5 mass% or less, Most preferably, it is 2.0 mass% or less.
  • the compound having an isocyanato group (hereinafter sometimes abbreviated as “isocyanate”) is not particularly limited, and any isocyanate can be used.
  • isocyanates include monoisocyanates, diisocyanates, triisocyanates and the like.
  • the monoisocyanates include isocyanatomethane, isocyanatoethane, 1-isocyanatopropane, 1-isocyanatobutane, 1-isocyanatopentane, 1-isocyanatohexane, 1-isocyanatoheptane, 1 Isocyanatooctane, 1-isocyanatononane, 1-isocyanatodecane, isocyanatocyclohexane, methoxycarbonyl isocyanate, ethoxycarbonyl isocyanate, propoxycarbonyl isocyanate, butoxycarbonyl isocyanate, methoxysulfonyl isocyanate, ethoxysulfonyl isocyanate, propoxysulfonyl isocyanate, butoxysulfonyl Examples thereof include isocyanate and fluorosulfonyl isocyanate.
  • diisocyanates include 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, 1,6-diisocyanatohexane, 1,7-diisocyanatoheptane, 1,8-di Isocyanatooctane, 1,9-diisocyanatononane, 1,10-diisocyanatodecane, 1,3-diisocyanatopropene, 1,4-diisocyanato-2-butene, 1,4-diisocyanato-2-fluoro Butane, 1,4-diisocyanato-2,3-difluorobutane, 1,5-diisocyanato-2-pentene, 1,5-diisocyanato-2-methylpentane, 1,6-diisocyanato-2-hexene, 1,6- Diisocyanato-3-hexene, 1,6-diis
  • the content of the isocyanate is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired, but in 100% by mass of the nonaqueous electrolytic solution of the present invention, preferably 0.001% by mass or more and 1.0% by mass. % Or less.
  • the content of isocyanate is more preferably 0.01% by mass or more, further preferably 0.1% by mass or more, particularly preferably 0.2% by mass or more, and more preferably 0.8% by mass or less, still more preferably. Is 0.7% by mass or less, particularly preferably 0.6% by mass or less.
  • nitrile the compound having a cyano group
  • any nitrile can be used.
  • nitriles examples include mononitriles and dinitriles.
  • mononitriles include acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, lauronitrile, 2-methylbutyronitrile, trimethylacetonitrile, hexanenitrile, cyclopentanecarbonitrile.
  • Cyclohexanecarbonitrile acrylonitrile, methacrylonitrile, crotononitrile, 3-methylcrotononitrile, 2-methyl-2-butenenitryl, 2-pentenenitrile, 2-methyl-2-pentenenitrile, 3-methyl- 2-pentenenitrile, 2-hexenenitrile, fluoroacetonitrile, difluoroacetonitrile, trifluoroacetonitrile, 2-fluoropropionitrile, 3-fluoropropionitrile, 2,2-di Luopropionitrile, 2,3-difluoropropionitrile, 3,3-difluoropropionitrile, 2,2,3-trifluoropropionitrile, 3,3,3-trifluoropropionitrile, 3,3'- Examples thereof include oxydipropionitrile, 3,3′-thiodipropionitrile, 1,2,3-propanetricarbonitrile, 1,3,5-pentanetricarbonitrile, pentafluoro
  • the dinitriles include malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimeonitrile, suberonitrile, azeronitrile, sebacononitrile, undecandinitrile, dodecandinitrile, methylmalononitrile, ethylmalononitrile, isopropylmalononitrile, tert -Butylmalononitrile, methylsuccinonitrile, 2,2-dimethylsuccinonitrile, 2,3-dimethylsuccinonitrile, 2,3,3-trimethylsuccinonitrile, 2,2,3,3-tetramethylsuccin Sinonitrile, 2,3-diethyl-2,3-dimethylsuccinonitrile, 2,2-diethyl-3,3-dimethylsuccinonitrile, bicyclohexyl-1,1-dicarbonitrile, bicyclohexyl-2,2 - Carbonitrile,
  • dinitriles such as malononitrile, succinonitrile, glutaronitrile, adiponitrile, pimeonitrile, suberonitrile, azeronitrile, sebacononitrile, undecandinitrile, dodecanedinitrile contribute to the formation of a stable film-like structure. Therefore, it is used more suitably.
  • the content of nitrile is not particularly limited and may be arbitrary as long as the effects of the present invention are not significantly impaired. However, in 100% by mass of the nonaqueous electrolytic solution of the present invention, preferably 0.001% by mass or more and 5.0% by mass. % Or less.
  • the nitrile content is more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more, particularly preferably 0.2% by mass or more, and more preferably 4.0% by mass or less, still more preferably. Is 3.0% by mass or less, particularly preferably 2.5% by mass or less.
  • cyclic sulfonic acid esters examples include saturated cyclic sulfonic acid esters and unsaturated cyclic sulfonic acid esters.
  • saturated cyclic sulfonate ester examples include 1,3-propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, and 3-fluoro-1,3-propane.
  • the unsaturated cyclic sulfonate ester include 1-propene-1,3-sultone, 2-propene-1,3-sultone, 1-fluoro-1-propene-1,3-sultone, 2-fluoro -1-propene-1,3-sultone, 3-fluoro-1-propene-1,3-sultone, 1-fluoro-2-propene-1,3-sultone, 2-fluoro-2-propene-1,3 -Sultone, 3-fluoro-2-propene-1,3-sultone, 1-methyl-1-propene-1,3-sultone, 2-methyl-1-propene-1,3-sultone, 3-methyl-1 -Propene-1,3-sultone, 1-methyl-2-propene-1,3-sultone, 2-methyl-2-propene-1,3-sultone, 3-methyl-2-propene-1,3-sultone , 1-butene 1,4-sultone, 2-butene-1
  • 1,3-propane sultone, 1-fluoro-1,3-propane sultone, 2-fluoro-1,3-propane sultone, 3-fluoro-1,3-propane sultone, 1-propene-1 , 3-sultone is more preferably used because it is easily available and can contribute to the formation of a stable film-like structure.
  • the content of the cyclic sulfonic acid ester is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. However, in 100% by mass of the nonaqueous electrolytic solution of the present invention, preferably 0.001% by mass or more, 3 0.0 mass% or less.
  • the content of the cyclic sulfonic acid ester is more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more, particularly preferably 0.2% by mass or more, and more preferably 2.5% by mass or less. More preferably, it is 2.0 mass% or less, Most preferably, it is 1.8 mass% or less.
  • Dicarboxylic acid complex salt is not particularly limited, and any dicarboxylic acid complex salt can be used.
  • dicarboxylic acid complex salt examples include a dicarboxylic acid complex salt whose complex central element is boron, and a dicarboxylic acid complex salt whose complex central element is phosphorus.
  • dicarboxylic acid complex salt whose complex central element is boron include lithium bis (oxalato) borate, lithium difluoro (oxalato) borate, lithium bis (malonate) borate, lithium difluoro (malonato) borate, lithium bis (methylmalonate) Examples thereof include borate, lithium difluoro (methylmalonate) borate, lithium bis (dimethylmalonate) borate, and lithium difluoro (dimethylmalonate) borate.
  • dicarboxylic acid complex salt in which the complex element is phosphorus include lithium tris (oxalato) phosphate, lithium difluorobis (oxalato) phosphate, lithium tetrafluoro (oxalato) phosphate, lithium tris (malonato) phosphate, lithium difluorobis (Malonate) phosphate, lithium tetrafluoro (malonate) phosphate, lithium tris (methylmalonate) phosphate, lithium difluorobis (methylmalonate) phosphate, lithium tetrafluoro (methylmalonate) phosphate, lithium tris (dimethylmalonate) phosphate, lithium difluorobis (dimethyl) Malonato) phosphate, lithium tetrafluoro (dimethylmalonate) phosphate, etc.
  • lithium bis (oxalato) borate, lithium difluoro (oxalato) borate, lithium tris (oxalato) phosphate, lithium difluorobis (oxalato) phosphate, lithium tetrafluoro (oxalato) phosphate are easily available and stable coatings From the point which can contribute to formation of a shaped structure, it is used more suitably.
  • the content of the dicarboxylic acid complex salt is not particularly limited, and may be arbitrary as long as the effects of the present invention are not significantly impaired. .5% by mass or less.
  • the content of the dicarboxylic acid complex salt is more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more, particularly preferably 0.2% by mass or more, and more preferably 2.0% by mass or less. More preferably, it is 1.5% by mass or less, particularly preferably 1.2% by mass or less.
  • additives other than the specific additive include an overcharge inhibitor, an auxiliary agent for improving capacity retention characteristics and cycle characteristics after high-temperature storage, and the like.
  • Overcharge prevention agent examples include toluene derivatives such as toluene and xylene; Biphenyl derivatives unsubstituted or substituted with an alkyl group, such as biphenyl, 2-methylbiphenyl, 3-methylbiphenyl, 4-methylbiphenyl; o-terphenyl, m-terphenyl, p-terphenyl and the like terphenyl derivatives which are unsubstituted or substituted with an alkyl group; Partial hydrides of terphenyl derivatives unsubstituted or substituted with alkyl groups; Cycloalkylbenzene derivatives such as cyclopentylbenzene and cyclohexylbenzene; Alkylbenzene derivatives having a tertiary carbon directly bonded to the benzene ring such as cumene, 1,3-diisopropylbenzene, 1,4-
  • overcharge inhibitors include partially fluorinated products of the above aromatic compounds such as fluorobenzene, fluorotoluene, benzotrifluoride, 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene and the like.
  • fluorinated anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole, and 1,6-difluoroanisole;
  • these overcharge inhibitors may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios. Moreover, when using together by arbitrary combinations, you may use together by the compound of the same classification illustrated above, and you may use together by a compound of a different classification
  • the amount of the overcharge inhibitor is arbitrary as long as the effects of the present invention are not significantly impaired, but the total amount of non-aqueous electrolyte is preferably 0.1%. It is the range of 001 mass% or more and 10 mass% or less.
  • an overcharge protection circuit such as an incorrect usage or an abnormality of the charging device should operate normally. It is preferable because the safety of the non-aqueous electrolyte secondary battery can be improved so that there is no problem even if the battery is overcharged.
  • auxiliary for improving capacity maintenance characteristics and cycle characteristics after high-temperature storage include the following.
  • Dicarboxylic acid anhydrides such as succinic acid, maleic acid and phthalic acid; Carbonate compounds other than those corresponding to carbonates having an unsaturated bond such as erythritan carbonate and spiro-bis-dimethylene carbonate; Cyclic sulfites such as ethylene sulfite; Chain sulfonate esters such as methyl methanesulfonate and busulfan; Cyclic sulfones such as sulfolane and sulfolene; Chain sulfones such as dimethyl sulfone, diphenyl sulfone, and methylphenyl sulfone; Sulfides such as dibutyl disulfide, dicyclohexyl disulfide, tetramethylthiuram monosulfide; Sulfur-containing compounds such as sulfonamides such as N, N-dimethylmethanesulfonamide and N, N-diethy
  • these adjuvants may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • the non-aqueous electrolyte solution of the present invention contains these auxiliaries, the content thereof is arbitrary as long as the effects of the present invention are not significantly impaired, but with respect to the entire non-aqueous electrolyte solution (100% by mass).
  • the range is preferably 0.001% by mass or more and 10% by mass or less.
  • the non-aqueous electrolyte solution of the present invention can be prepared by dissolving the electrolyte, the specific ester, and the above-mentioned “specific additive” and “other additives” in the above-described non-aqueous solvent as necessary. it can.
  • each raw material of the non-aqueous electrolyte solution that is, an electrolyte such as a lithium salt, a specific ester, a non-aqueous solvent, a specific additive, and other additives may be dehydrated in advance.
  • an electrolyte such as a lithium salt, a specific ester, a non-aqueous solvent, a specific additive, and other additives
  • the degree of dehydration is usually 50 ppm or less, preferably 30 ppm or less.
  • the dehydration means is not particularly limited.
  • a desiccant such as molecular sieve may be used.
  • the object to be dehydrated is a solid such as an electrolyte, it may be dried by heating at a temperature lower than the temperature at which decomposition occurs.
  • Non-aqueous electrolyte secondary battery includes a negative electrode and a positive electrode capable of occluding and releasing metal ions, and the non-aqueous electrolyte of the present invention described above.
  • the secondary battery will be described.
  • the non-aqueous electrolyte secondary battery of the present invention is the same as the conventionally known non-aqueous electrolyte secondary battery except for the non-aqueous electrolyte, and is usually impregnated with the non-aqueous electrolyte of the present invention.
  • the positive electrode and the negative electrode are laminated via a porous film (separator), and these are housed in a case (exterior body). Therefore, the shape of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.
  • Non-aqueous electrolyte As the non-aqueous electrolyte, the above-described non-aqueous electrolyte of the present invention is used. In addition, in the range which does not deviate from the meaning of this invention, it is also possible to mix and use other nonaqueous electrolyte solution with respect to the nonaqueous electrolyte solution of this invention.
  • the negative electrode active material used for the negative electrode is not particularly limited as long as it can electrochemically occlude and release metal ions. Specific examples thereof include carbonaceous materials, metal compound materials, lithium-containing metal composite oxide materials, and the like. One of these may be used alone, or two or more may be used in any combination.
  • carbonaceous materials and metal compound-based materials are preferable.
  • a material containing silicon is preferable. Therefore, as the negative electrode active material, a carbonaceous material and a material containing silicon are particularly preferable.
  • Carbonaceous material used as the negative electrode active material is not particularly limited, but one selected from the following (a) to (d) gives a secondary battery with a good balance between initial irreversible capacity and high current density charge / discharge characteristics. Therefore, it is preferable.
  • A Natural graphite
  • A Carbonaceous material obtained by heat-treating artificial carbonaceous material and artificial graphite material at least once in the range of 400 ° C. to 3200 ° C.
  • C There are at least two types of negative electrode active material layers Carbonaceous material composed of carbonaceous materials having different crystallinity and / or having an interface where the crystalline carbonaceous materials having different crystallinity are in contact with each other.
  • D Carbonaceous material in which the negative electrode active material layer has at least two different orientations. And / or a carbonaceous material having an interface in contact with carbonaceous materials having different orientations
  • (A) to (D) may be used alone, or two or more carbonaceous materials may be used in any combination and ratio.
  • the artificial carbonaceous material or artificial graphite material in (i) above include natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, and those obtained by oxidizing these pitches; Needle coke, pitch coke and carbon materials partially graphitized from these; Thermal decomposition products of organic substances such as furnace black, acetylene black and pitch-based carbon fiber; Carbonizable organics and their carbides; and Examples thereof include a solution-like carbide obtained by dissolving a carbonizable organic substance in a low-molecular organic solvent such as benzene, toluene, xylene, quinoline, and n-hexane.
  • a low-molecular organic solvent such as benzene, toluene, xylene, quinoline, and n-hexane.
  • carbonaceous materials (a) to (d) above are all known in the art, and their production methods are well known to those skilled in the art, and these commercial products can also be purchased.
  • the carbonaceous material as the negative electrode active material desirably satisfies one or more of the following items (1) to (8) at the same time: .
  • the d-value (interlayer distance) of the lattice plane (002 plane) obtained by X-ray diffraction by the Gakushin method of carbonaceous materials is preferably 0.335 nm or more, and is usually 0.8. It is 360 nm or less, preferably 0.350 nm or less, and more preferably 0.345 nm or less. Further, the crystallite size (Lc) of the carbonaceous material obtained by X-ray diffraction by the Gakushin method is preferably 1.0 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more.
  • the volume-based average particle diameter of the carbonaceous material is a volume-based average particle diameter (median diameter) determined by a laser diffraction / scattering method, and is usually 1 ⁇ m or more, more preferably 3 ⁇ m or more. It is more preferably 5 ⁇ m or more, particularly preferably 7 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 40 ⁇ m or less, particularly preferably 30 ⁇ m or less, and particularly preferably 25 ⁇ m or less.
  • the volume reference average particle size is within the above range, the irreversible capacity of the secondary battery does not increase excessively, and it is easy to avoid incurring loss of the initial battery capacity.
  • the volume-based average particle size is measured by dispersing the carbonaceous material powder in a 0.2% by mass aqueous solution (about 10 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and using a laser diffraction / scattering method. This is performed using a particle size distribution meter (LA-700 manufactured by Horiba, Ltd.). The median diameter determined by the measurement is defined as the volume-based average particle diameter of the carbonaceous material.
  • the Raman R value of the carbonaceous material is preferably 0.01 or more, more preferably 0.03 or more, as a value measured using an argon ion laser Raman spectrum method. It is more preferably 0.1 or more, preferably 1.5 or less, more preferably 1.2 or less, still more preferably 1 or less, and particularly preferably 0.5 or less.
  • the Raman R value is in the above range, the crystallinity of the particle surface is in an appropriate range, and the decrease in the sites where Li enters between layers due to charge / discharge can be suppressed, and the charge acceptability is hardly lowered. Also, when the negative electrode is densified by applying a negative electrode forming material (slurry), which will be described later, to the current collector, the load characteristics of the secondary battery are hardly lowered. Furthermore, it is difficult to cause a decrease in efficiency and an increase in gas generation.
  • the Raman half-width in the vicinity of 1580 cm ⁇ 1 of the carbonaceous material is not particularly limited, but is 10 cm ⁇ 1 or more, preferably 15 cm ⁇ 1 or more, and usually 100 cm ⁇ 1 or less, and 80 cm ⁇ 1 or less. 60 cm ⁇ 1 or less is more preferable, and 40 cm ⁇ 1 or less is particularly preferable.
  • the crystallinity of the particle surface is in an appropriate range, the reduction of the sites where Li enters the interlayer with charge / discharge can be suppressed, and the charge acceptability is hardly lowered. Further, even when the negative electrode is densified by applying the negative electrode forming material to the current collector and then pressing it, it is difficult to cause a reduction in load characteristics of the secondary battery. Furthermore, it is difficult to cause a decrease in efficiency and an increase in gas generation.
  • the measurement of the Raman spectrum using a Raman spectrometer (manufactured by JASCO Corporation Raman spectrometer), the sample is naturally dropped into the measurement cell and filled, and while irradiating the sample surface in the cell with argon ion laser light, This is done by rotating the cell in a plane perpendicular to the laser beam.
  • the Raman R value calculated by the measurement is defined as the Raman R value of the carbonaceous material in the present invention.
  • the half width of the peak PA near 1580 cm ⁇ 1 of the obtained Raman spectrum is measured, and this is defined as the Raman half width of the carbonaceous material in the present invention.
  • said Raman measurement conditions are as follows. Argon ion laser wavelength: 514.5nm ⁇ Laser power on the sample: 15-25mW ⁇ Resolution: 10-20cm -1 Measurement range: 1100 cm ⁇ 1 to 1730 cm ⁇ 1 ⁇ Raman R value, Raman half width analysis: Background processing ⁇ Smoothing processing: Simple average, 5 points of convolution
  • the BET specific surface area of the carbonaceous material is preferably 0.1 m 2 ⁇ g ⁇ 1 or more, preferably 0.7 m 2 ⁇ g ⁇ 1 as the value of the specific surface area measured using the BET method. or more, and still more preferably 1.0 m 2 ⁇ g -1 or more, particularly preferably 1.5 m 2 ⁇ g -1 or more, preferably not more than 100m 2 ⁇ g -1, 25m 2 ⁇ g - 1 or less is more preferable, 15 m 2 ⁇ g ⁇ 1 or less is further preferable, and 10 m 2 ⁇ g ⁇ 1 or less is particularly preferable.
  • the acceptability of cations such as lithium is good at the time of charging when the carbonaceous material is used as the negative electrode active material, and lithium and the like are difficult to precipitate on the electrode surface. It is easy to avoid a decrease in battery stability. further. The reactivity with the non-aqueous electrolyte can be suppressed, gas generation is small, and a preferable secondary battery is easily obtained.
  • the specific surface area was measured by the BET method using a surface area meter (a fully automated surface area measuring device manufactured by Okura Riken), preliminarily drying the sample at 350 ° C. for 15 minutes under nitrogen flow, Using a nitrogen helium mixed gas accurately adjusted so that the value of the relative pressure becomes 0.3, the nitrogen adsorption BET one-point method by the gas flow method is used.
  • the specific surface area determined by the measurement is defined as the BET specific surface area of the carbonaceous material in the present invention.
  • Circularity When the circularity is measured as a spherical degree of the carbonaceous material, it is preferably within the following range.
  • the degree of circularity of particles having a carbonaceous material particle size in the range of 3 to 40 ⁇ m is preferably closer to 1. Preferably it is 0.1 or more, 0.5 or more is more preferable, 0.8 or more is further more preferable, 0.85 or more is especially preferable, and 0.9 or more is especially preferable.
  • the high current density charge / discharge characteristics of a secondary battery generally improve as the circularity increases. Accordingly, when the circularity is less than the above range, the filling property of the negative electrode active material is lowered, the resistance between particles is increased, and the short-time high current density charge / discharge characteristics of the secondary battery may be lowered.
  • the measurement of the circularity of the carbonaceous material is performed using a flow type particle image analyzer (FPIA manufactured by Sysmex Corporation). Specifically, about 0.2 g of a sample is dispersed in a 0.2 mass% aqueous solution (about 50 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and an ultrasonic wave of 28 kHz is output at 60 W for 1 After irradiation for 1 minute, the detection range is specified as 0.6 to 400 ⁇ m, and the particle size is measured in the range of 3 to 40 ⁇ m.
  • the circularity obtained by the measurement is defined as the circularity of the carbonaceous material in the present invention.
  • the method for improving the degree of circularity is not particularly limited, but a spheroidized sphere is preferable because the shape of the interparticle void when the electrode body is formed is preferable.
  • spheroidizing treatment include a method of mechanically approximating a sphere by applying a shearing force and a compressive force, a mechanical / physical processing method of granulating a plurality of fine particles by an adhesive force possessed by a binder or particles, etc. Is mentioned.
  • the tap density of the tap density carbonaceous material preferably at 0.1 g ⁇ cm -3 or more, 0.5 g ⁇ cm -3 or more, and more preferably 0.7 g ⁇ cm -3 or more, 1 g ⁇ cm ⁇ 3 or more is particularly preferable. And is preferably 2 g ⁇ cm -3 or less, more preferably 1.8 g ⁇ cm -3 or less, 1.6 g ⁇ cm -3 or less are particularly preferred.
  • the tap density is within the above range, a sufficient packing density can be secured when used as a negative electrode, and a high-capacity secondary battery can be obtained. Furthermore, voids between the particles in the electrode are not reduced too much, conductivity between the particles is ensured, and preferable battery characteristics are easily obtained.
  • the tap density is measured as follows. After passing the sample through a sieve having an opening of 300 ⁇ m, dropping the sample into a 20 cm 3 tapping cell and filling the sample to the upper end surface of the cell, a powder density measuring device (for example, tap denser manufactured by Seishin Enterprise Co., Ltd.) is used. Using this, tapping with a stroke length of 10 mm is performed 1000 times, and the tap density is calculated from the volume at that time and the mass of the sample. The tap density calculated by the measurement is defined as the tap density of the carbonaceous material in the present invention.
  • a powder density measuring device for example, tap denser manufactured by Seishin Enterprise Co., Ltd.
  • the orientation ratio of the carbonaceous material is preferably 0.005 or more, more preferably 0.01 or more, still more preferably 0.015 or more, and preferably 0.67 or less. When the orientation ratio is below the above range, the high-density charge / discharge characteristics of the secondary battery may be deteriorated.
  • the upper limit of the above range is the theoretical upper limit value of the orientation ratio of the carbonaceous material.
  • the orientation ratio of the carbonaceous material is obtained by measuring by X-ray diffraction after pressure-molding the sample. Specifically, 0.47 g of a sample is filled into a molding machine having a diameter of 17 mm, and the molded body obtained by compressing with 58.8 MN ⁇ m -2 is placed on the same surface as the surface of the measurement sample holder using clay. Then, the X-ray diffraction is measured. From the (110) diffraction and (004) diffraction peak intensities of the obtained carbonaceous material, a ratio represented by (110) diffraction peak intensity / (004) diffraction peak intensity is calculated. The orientation ratio calculated by the measurement is defined as the orientation ratio of the carbonaceous material in the present invention.
  • the X-ray diffraction measurement conditions at this time are as follows. “2 ⁇ ” indicates a diffraction angle.
  • ⁇ Target Cu (K ⁇ ray) graphite monochromator
  • Light receiving slit 0.15
  • Scattering slit 0.5 degrees
  • the aspect ratio of the carbonaceous material is usually 1 or more and usually 10 or less, preferably 8 or less, more preferably 5 or less. If the aspect ratio is out of the above range, streaks of the negative electrode forming material may occur during electrode plate formation, a uniform coated surface may not be obtained, and the high current density charge / discharge characteristics of the secondary battery may deteriorate. .
  • the lower limit of the above range is the theoretical lower limit value of the aspect ratio of the carbonaceous material.
  • the measurement of the aspect ratio of the carbonaceous material is performed by magnifying the carbonaceous material particles with a scanning electron microscope. Specifically, arbitrary 50 carbonaceous material particles fixed to the end face of a metal having a thickness of 50 microns or less are selected, and the stage on which the sample is fixed is rotated and tilted, and observed three-dimensionally. Then, the longest diameter A of the carbonaceous material particles and the shortest diameter B orthogonal thereto are measured, and the average value of A / B is obtained.
  • the aspect ratio (A / B) obtained by the measurement is defined as the aspect ratio of the carbonaceous material in the present invention.
  • the metal compound-based material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium, and is a single metal or alloy that forms an alloy with lithium, or oxides, carbides, nitrides thereof, Compounds such as silicides, sulfides and phosphides can be used.
  • Examples of such metal compounds include compounds containing metals such as Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn, Sr, and Zn.
  • a single metal or an alloy that forms an alloy with lithium is preferable, and a metal / metalloid element of the periodic table group 13 or group 14 (that is, carbon is excluded.
  • metal and metalloid are collectively referred to as “ More preferably, it is a material containing “metal”. Furthermore, silicon (Si), tin (Sn) or lead (Pb) (hereinafter, these three elements are sometimes referred to as “SSP metal elements”). It is preferable that it is a single metal or an alloy containing these atoms, or a compound of these metals (SSP metal element). Most preferred is silicon. These may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • Examples of the negative electrode active material having at least one atom selected from SSP metal elements include a single metal of any one SSP metal element, an alloy composed of two or more SSP metal elements, one or more kinds Alloys composed of SSP metal elements and other one or more metal elements, and compounds containing one or more SSP metal elements, or oxides, carbides, and nitrides of the compounds And composite compounds such as silicides, sulfides and phosphides.
  • examples of the negative electrode active material in which these complex compounds are complexly bonded to several elements such as a simple metal, an alloy, or a nonmetallic element and have at least one atom selected from the SSP metal elements.
  • a simple metal, an alloy, or a nonmetallic element and have at least one atom selected from the SSP metal elements.
  • silicon and tin an alloy of these elements and a metal that does not operate as a negative electrode can be used.
  • a complex compound containing 5 to 6 kinds of elements in combination with a metal that acts as a negative electrode other than silicon, a metal that does not operate as a negative electrode, and a non-metallic element may be used. it can.
  • any one element of an SSP metal element, an alloy of two or more SSP metal elements, an SSP metal element Oxides, carbides, nitrides, and the like of silicon and / or tin are preferable, in particular, silicon and / or tin simple metals, alloys, oxides, carbides, nitrides, etc. are preferable, and silicon simple metals, alloys, oxides, carbides, etc. are the most. preferable.
  • the capacity per unit mass of the secondary battery is inferior to that of using a single metal or an alloy, the following compounds containing silicon and / or tin are also preferable because of excellent cycle characteristics.
  • the element ratio of silicon and / or tin to oxygen is usually 0.5 or more, preferably 0.7 or more, more preferably 0.9 or more, and usually 1.5 or less, preferably 1.
  • Silicon and / or tin oxide of 3 or less, more preferably 1.1 or less.
  • Silicon and / or tin and nitrogen is usually 0.5 or more, preferably 0.7 or more, more preferably 0.9 or more, and usually 1.5 or less, preferably 1.
  • Silicon and / or tin nitride of 3 or less, more preferably 1.1 or less.
  • the elemental ratio of silicon and / or tin to carbon is usually 0.5 or more, preferably 0.7 or more, more preferably 0.9 or more, and usually 1.5 or less, preferably 1. “Carbide of silicon and / or tin” of 3 or less, more preferably 1.1 or less.
  • any one of the metal compound materials described above may be used alone, or two or more of them may be used in any combination and ratio.
  • Lithium-containing metal composite oxide material The lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium, but lithium-containing composite metal oxide materials containing titanium are preferable, and lithium and titanium composite oxidation (Hereinafter sometimes abbreviated as “lithium titanium composite oxide”) is particularly preferable. That is, it is particularly preferable to use a lithium titanium composite oxide having a spinel structure in a negative electrode active material for a lithium ion non-aqueous electrolyte secondary battery because the output resistance of the secondary battery is greatly reduced.
  • lithium or titanium of the lithium titanium composite oxide is at least selected from the group consisting of other metal elements such as Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. Those substituted with one element are also preferred.
  • lithium titanium composite oxide preferable as a negative electrode active material
  • a lithium titanium composite oxide represented by the following general formula (5) can be given.
  • Li x Ti y M z O 4 (5) M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb.
  • M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb.
  • 0.7 ⁇ x ⁇ 1.5, 1.5 ⁇ y ⁇ 2.3, and 0 ⁇ z ⁇ 1.6 the structure at the time of doping / dedoping with lithium ions Is preferable because it is stable.
  • Particularly preferred representative compositions of the above compounds are Li 4/3 Ti 5/3 O 4 in (a), Li 1 Ti 2 O 4 in (b), and Li 4/5 Ti 11/5 O in (c). 4 .
  • the lithium titanium composite oxide as the negative electrode active material in the present invention further satisfies at least one of the characteristics such as physical properties and shapes shown in the following [1] to [7]. It is preferable to satisfy a plurality of items at the same time.
  • the BET specific surface area of the lithium titanium composite oxide used as the negative electrode active material is preferably 0.5 m 2 ⁇ g ⁇ 1 or more as a specific surface area value measured by the BET method. 7 m 2 ⁇ g ⁇ 1 or more is more preferable, 1.0 m 2 ⁇ g ⁇ 1 or more is more preferable, 1.5 m 2 ⁇ g ⁇ 1 or more is particularly preferable, and 200 m 2 ⁇ g ⁇ 1 or less is preferable, 100 m 2 ⁇ g ⁇ 1 or less is more preferred, 50 m 2 ⁇ g ⁇ 1 or less is more preferred, and 25 m 2 ⁇ g ⁇ 1 or less is particularly preferred.
  • the reaction area in contact with the non-aqueous electrolyte solution of the negative electrode active material is difficult to decrease, and an increase in the output resistance of the secondary battery can be prevented. Furthermore, since the increase in the surface and end face portions of the metal oxide crystal containing titanium is suppressed and the resulting crystal distortion is less likely to occur, a preferable secondary battery is easily obtained.
  • the specific surface area of the lithium-titanium composite oxide was preliminarily dried at 350 ° C. for 15 minutes under a nitrogen flow using a surface area meter (a fully automatic surface area measuring device manufactured by Rikura Okura) using a surface area meter. Thereafter, a nitrogen adsorption BET one-point method using a gas flow method is performed using a nitrogen helium mixed gas that is accurately adjusted so that the value of the relative pressure of nitrogen with respect to atmospheric pressure is 0.3.
  • the specific surface area determined by the measurement is defined as the BET specific surface area of the lithium titanium composite oxide in the present invention.
  • volume-based average particle size The volume-based average particle size of the lithium-titanium composite oxide (secondary particle size when primary particles are aggregated to form secondary particles) is determined by the laser diffraction / scattering method. It is defined by the obtained volume-based average particle diameter (median diameter).
  • the volume-based average particle diameter of the lithium titanium composite oxide is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 0.7 ⁇ m or more, more preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and 30 ⁇ m.
  • the following is more preferable, and 25 ⁇ m or less is particularly preferable.
  • the volume-based average particle diameter of the lithium-titanium composite oxide was measured by adding a lithium-titanium composite oxide to a 0.2% by mass aqueous solution (10 mL) of polyoxyethylene (20) sorbitan monolaurate as a surfactant.
  • the powder is dispersed and the measurement is performed using a laser diffraction / scattering particle size distribution analyzer (LA-700, manufactured by Horiba, Ltd.).
  • the median diameter determined by the measurement is defined as the volume-based average particle diameter of the lithium titanium composite oxide.
  • the volume average particle size of the lithium titanium composite oxide is within the above range, the amount of the binder can be suppressed during the production of the negative electrode, and as a result, it is easy to prevent the battery capacity from decreasing. Furthermore, when forming a negative electrode plate, a uniform coating surface is likely to be obtained, which is desirable in the battery manufacturing process.
  • the average primary particle diameter of the lithium titanium composite oxide is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more.
  • 0.1 ⁇ m or more is more preferable, 0.2 ⁇ m or more is particularly preferable, 2 ⁇ m or less is preferable, 1.6 ⁇ m or less is more preferable, 1.3 ⁇ m or less is further preferable, and 1 ⁇ m or less is particularly preferable.
  • the average primary particle diameter is within the above range, spherical secondary particles are easily formed and the specific surface area is easily secured, so that it is easy to prevent a decrease in battery performance such as output characteristics.
  • the average primary particle size of the lithium titanium composite oxide is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification at which particles can be confirmed, for example, a magnification of 10,000 to 100,000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to a horizontal straight line is determined for any 50 primary particles. The average primary particle diameter is obtained by obtaining the average value.
  • SEM scanning electron microscope
  • the shape of the lithium-titanium composite oxide particles may be any of lump shape, polyhedron shape, spherical shape, elliptical spherical shape, plate shape, needle shape, columnar shape, etc. as used in the past.
  • secondary particles are formed, and the shape of the secondary particles is preferably spherical or elliptical.
  • an active material in an electrode expands and contracts as the electrochemical element charges and discharges, and therefore, the active material is easily damaged due to the stress or the conductive path is broken. Therefore, it is possible to relieve the stress of expansion and contraction and prevent deterioration when the primary particles are aggregated to form secondary particles, rather than being a single particle active material consisting of only primary particles.
  • the orientation of the spherical or oval spherical particles is less during the molding of the electrode than the axially oriented particles such as a plate shape, the expansion and shrinkage of the electrode during charging and discharging is also small.
  • Mixing with a conductive material at the time of manufacturing is also preferable because it can be easily mixed uniformly.
  • the tap density of the tap density lithium-titanium composite oxide is preferably from 0.05g ⁇ cm -3, 0.1g ⁇ cm -3 or more, and more preferably 0.2 g ⁇ cm -3 or more, 0 particularly preferred .4g ⁇ cm -3 or higher, and is preferably 2.8 g ⁇ cm -3 or less, more preferably 2.4 g ⁇ cm -3 or less, particularly preferably 2 g ⁇ cm -3 or less.
  • a sufficient packing density can be secured when used as a negative electrode, and a contact area between the particles can be secured, so that the resistance between the particles hardly increases. It is easy to prevent an increase in the output resistance of the secondary battery.
  • the space between the particles in the electrode is also appropriate, the flow path of the non-aqueous electrolyte solution can be secured, so that it is easy to prevent an increase in output resistance.
  • the tap density of the lithium titanium composite oxide is measured as follows. After passing the sample through a sieve having an opening of 300 ⁇ m, dropping the sample into a 20 cm 3 tapping cell and filling the sample to the upper end surface of the cell, a powder density measuring device (for example, tap denser manufactured by Seishin Enterprise Co., Ltd.) is used. The tapping with a stroke length of 10 mm is performed 1000 times, and the density is calculated from the volume at that time and the mass of the sample. The tap density calculated by the measurement is defined as the tap density of the lithium titanium composite oxide in the present invention.
  • a powder density measuring device for example, tap denser manufactured by Seishin Enterprise Co., Ltd.
  • Circularity When the circularity is measured as the spherical degree of the lithium titanium composite oxide, it is preferably within the following range.
  • the circularity of the lithium titanium composite oxide is closer to 1.
  • it is 0.10 or more, more preferably 0.80 or more, still more preferably 0.85 or more, and particularly preferably 0.90 or more.
  • the high current density charge / discharge characteristics of the secondary battery generally improve as the circularity increases. Therefore, when the circularity is within the above range, the filling property of the negative electrode active material is not lowered, the increase in resistance between particles can be prevented, and the short time high current density charge / discharge characteristics can be prevented.
  • the circularity of the lithium titanium composite oxide is measured using a flow type particle image analyzer (FPIA manufactured by Sysmex Corporation). Specifically, about 0.2 g of a sample is dispersed in a 0.2 mass% aqueous solution (about 50 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and an ultrasonic wave of 28 kHz is output at 60 W for 1 After irradiation for 1 minute, the detection range is specified as 0.6 to 400 ⁇ m, and the particle size is measured in the range of 3 to 40 ⁇ m. The circularity obtained by the measurement is defined as the circularity of the lithium titanium composite oxide in the present invention.
  • FPIA flow type particle image analyzer
  • the aspect ratio of the lithium titanium composite oxide is preferably 1 or more, preferably 5 or less, more preferably 4 or less, still more preferably 3 or less, and particularly preferably 2 or less.
  • the lower limit of the above range is the theoretical lower limit value of the aspect ratio of the lithium titanium composite oxide.
  • the aspect ratio of the lithium titanium composite oxide is measured by magnifying and observing the particles of the lithium titanium composite oxide with a scanning electron microscope.
  • 50 arbitrary lithium-titanium composite oxide particles fixed to the end face of a metal having a thickness of 50 ⁇ m or less are selected, and the stage on which the sample is fixed is rotated and tilted, and three-dimensional observation is performed.
  • the longest diameter A of the particles and the shortest diameter B orthogonal to the same are measured, and the average value of A / B is obtained.
  • the aspect ratio (A / B) determined by the measurement is defined as the aspect ratio of the lithium titanium composite oxide in the present invention.
  • a method of obtaining an active material by uniformly mixing a titanium source material such as titanium oxide, a source material of another element and a Li source of LiOH, Li 2 CO 3 , or LiNO 3 as necessary, and firing at a high temperature.
  • a titanium source material such as titanium oxide
  • a source material of another element and a Li source of LiOH, Li 2 CO 3 , or LiNO 3 as necessary, and firing at a high temperature.
  • a titanium precursor material such as titanium oxide and, if necessary, a raw material material of another element are dissolved or pulverized and dispersed in a solvent such as water, and the pH is adjusted while stirring to create a spherical precursor.
  • a Li source such as LiOH, Li 2 CO 3 , or LiNO 3 and baking at a high temperature.
  • a titanium raw material such as titanium oxide and, if necessary, a raw material of another element are dissolved or pulverized and dispersed in a solvent such as water.
  • a Li source such as LiOH, Li 2 CO 3 , LiNO 3 and the like
  • a titanium raw material such as titanium oxide, a Li source such as LiOH, Li 2 CO 3 and LiNO 3 and a raw material of another element as necessary are dissolved or pulverized in a solvent such as water.
  • a solvent such as water.
  • elements other than Ti such as Al, Mn, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, C, Si, Sn, and Ag may be present in the metal oxide structure containing titanium and / or in contact with the oxide containing titanium.
  • Negative electrode production Any known method can be used for the production of the negative electrode as long as the effects of the present invention are not significantly limited.
  • a negative electrode active material is added with a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. to form a slurry-like negative electrode forming material, which is applied to a current collector, dried and then pressed.
  • a negative electrode active material layer can be formed.
  • (Ii) Current collector As the current collector for holding the negative electrode active material, a known material can be arbitrarily used.
  • the current collector for the negative electrode include metal materials such as aluminum, copper, nickel, stainless steel, and nickel-plated steel. Copper is particularly preferable from the viewpoint of ease of processing and cost.
  • the shape of the current collector may be, for example, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, etc. when the current collector is a metal material.
  • a metal thin film is preferable, a copper foil is more preferable, and a rolled copper foil by a rolling method and an electrolytic copper foil by an electrolytic method are more preferable.
  • Negative electrode active material layer thickness is preferably 150 or less, more preferably 20 or less, particularly preferably 10 or less, and more preferably 0.1 or more. 4 or more is more preferable, and 1 or more is particularly preferable.
  • the current collector When the ratio of the thickness of the current collector to the negative electrode active material layer exceeds the above range, the current collector may generate heat due to Joule heat during high current density charge / discharge of the secondary battery. On the other hand, below the above range, the volume ratio of the current collector to the negative electrode active material may increase, and the capacity of the secondary battery may decrease.
  • the electrode structure when the negative electrode active material is made into an electrode is not particularly limited, and the density of the negative electrode active material present on the current collector is preferably 1 g ⁇ cm ⁇ 3 or more. .2g ⁇ cm -3 or more preferably, 1.3 g ⁇ cm -3 or more, and also preferably 4g ⁇ cm -3 or less, more preferably 3 g ⁇ cm -3 or less, 2.5 g ⁇ cm - 3 or less is more preferable, and 1.7 g ⁇ cm ⁇ 3 or less is particularly preferable.
  • the density of the negative electrode active material present on the current collector is within the above range, the negative electrode active material particles are less likely to be destroyed, increasing the initial irreversible capacity of the secondary battery, and the current collector / negative electrode active material It becomes easy to prevent deterioration of high current density charge / discharge characteristics due to a decrease in permeability of the non-aqueous electrolyte to the vicinity of the interface. Further, the conductivity between the negative electrode active materials can be secured, and the capacity per unit volume can be earned without increasing the battery resistance.
  • the slurry for forming the negative electrode active material layer is usually prepared by adding a mixture of a binder (binder), a thickener, etc. to a solvent to the negative electrode active material.
  • the binder for binding the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte solution and the solvent used during electrode production.
  • resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, and nitrocellulose
  • Rubber polymers such as SBR (styrene / butadiene rubber), isoprene rubber, butadiene rubber, fluororubber, NBR (acrylonitrile / butadiene rubber), ethylene / propylene rubber; Styrene / butadiene / styrene block copolymer or hydrogenated product thereof;
  • Thermoplastic elastomeric polymers such as EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / styrene copolymer, styrene / isoprene / styrene block copolymer or hydrogenated product thereof
  • Soft resinous polymers such as syndiotactic-1,2-polybut
  • the solvent for forming the slurry is not particularly limited as long as it is a solvent capable of dissolving or dispersing the negative electrode active material, the binder, and the thickener and conductive material used as necessary. Alternatively, either an aqueous solvent or an organic solvent may be used.
  • aqueous solvent examples include water and alcohol.
  • organic solvent examples include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine.
  • N N-dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, etc. Can be mentioned.
  • a dispersant or the like in addition to the thickener and slurry it using a latex such as SBR.
  • these solvents may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
  • the ratio of the binder to 100 parts by mass of the negative electrode active material is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, further preferably 0.6 parts by mass or more, and preferably 20 parts by mass or less. 15 parts by mass or less is more preferable, 10 parts by mass or less is more preferable, and 8 parts by mass or less is particularly preferable.
  • the ratio of the binder to the negative electrode active material is within the above range, the ratio of the binder that does not contribute to the battery capacity does not increase, so that the battery capacity is hardly lowered. Furthermore, the strength of the negative electrode is hardly lowered.
  • the ratio of the binder to 100 parts by mass of the negative electrode active material is preferably 0.1 parts by mass or more. More preferably 5 parts by mass or more, more preferably 0.6 parts by mass or more, more preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and still more preferably 2 parts by mass or less.
  • the ratio of the binder to 100 parts by mass of the negative electrode active material is preferably 1 part by mass or more and more preferably 2 parts by mass or more.
  • 3 parts by mass or more is more preferable, 15 parts by mass or less is preferable, 10 parts by mass or less is more preferable, and 8 parts by mass or less is still more preferable.
  • a thickener is usually used to adjust the viscosity of the slurry.
  • the thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.
  • the ratio of the thickener to 100 parts by mass of the negative electrode active material is usually 0.1 parts by mass or more, preferably 0.5 parts by mass or more, and more preferably 0.6 parts by mass or more. Moreover, the said ratio is 5 mass parts or less normally, 3 mass parts or less are preferable, and 2 mass parts or less are more preferable.
  • the ratio of the thickener to the negative electrode active material is within the above range, the coating property of the slurry becomes good. Furthermore, the ratio of the negative electrode active material in the negative electrode active material layer is also moderate, and the problem of a decrease in battery capacity and a problem of an increase in resistance between the negative electrode active materials are less likely to occur.
  • the area of the negative electrode plate is not particularly limited, but it is preferably designed to be slightly larger than the opposing positive electrode plate so that the positive electrode plate does not protrude from the negative electrode plate.
  • the design of the area of the negative electrode plate is important.
  • Positive electrode> The positive electrode used for the non-aqueous electrolyte secondary battery of the present invention will be described below.
  • the positive electrode active material is not particularly limited as long as it can electrochemically occlude and release metal ions.
  • a material that can electrochemically occlude and release lithium ions is preferable.
  • Substances containing lithium and at least one transition metal are preferred. Specific examples include lithium transition metal composite oxides, lithium-containing transition metal phosphate compounds, lithium-containing transition metal silicate compounds, and lithium-containing transition metal borate compounds.
  • V, Ti, Cr, Mn, Fe, Co, Ni, Cu, etc. are preferable as the transition metal of the lithium transition metal composite oxide, and specific examples of the composite oxide include lithium-cobalt composite oxidation such as LiCoO 2. , Lithium / nickel composite oxides such as LiNiO 2 , lithium / manganese composite oxides such as LiMnO 2 , LiMn 2 O 4 and Li 2 MnO 4, transition metal atoms that are the main components of these lithium transition metal composite oxides Some substituted with other metals such as Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, Nb, Mo, Sn, W, etc. Is mentioned.
  • substituted ones for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiMn 2 O 4 , LiMn 1.8 Al 0.2 O 4 , Li 1.1 Mn 1.9 Al 0.1 O 4 , LiMn 1.5 Ni 0.5 O 4 and the like.
  • a composite oxide containing lithium and manganese is more preferable.
  • Cobalt or nickel is an expensive metal with a small amount of resources, and it is not preferable in terms of cost because it uses a large amount of active material in large batteries that require high capacity, such as for automobiles.
  • manganese as the main transition metal. That is, among the above specific examples, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiMn 2 O 4 , LiMn 1.8 Al 0.2 O 4 , Li 1.1 Mn 1.9 Al 0.1 O 4 , LiMn 1.5 Ni 0.5 O 4 and the like can be mentioned as more preferred specific examples.
  • lithium manganese composite oxide having a spinel structure is particularly preferable. That is, among the above specific examples, LiMn 2 O 4 , LiMn 1.8 Al 0.2 O 4 , Li 1.1 Mn 1.9 Al 0.1 O 4 , LiMn 1.5 Ni 0.5 O 4, etc. Can be mentioned as a particularly preferred specific example.
  • transition metal of the lithium-containing transition metal phosphate compound V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable, and specific examples of the phosphate compound include, for example, LiFePO 4 , Li 3 Fe 2.
  • lithium transition metal phosphate compounds such as LiFeP 2 O 7 , iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , manganese phosphates such as LiMnPO 4 , and some of transition metal atoms that are the main components of these lithium transition metal phosphate compounds Examples include those substituted with other metals such as Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, Nb, Mo, Sn, and W. .
  • transition metal of the lithium-containing transition metal silicate compound V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable, and specific examples of the silicate compound include Li 2 FeSiO 4 and the like. Iron silicates, cobalt silicates such as Li 2 CoSiO 4 , some of the transition metal atoms that are the main components of these lithium transition metal silicate compounds are Al, Ti, V, Cr, Mn, Fe, Co, Examples include those substituted with other metals such as Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, Nb, Mo, Sn, and W.
  • the transition metal of the lithium-containing transition metal borate compound V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable.
  • the borate compound include boron such as LiFeBO 3. Iron oxides, cobalt borates such as LiCoBO 3 , and some of the transition metal atoms that are the main components of these lithium transition metal borate compounds are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Examples include those substituted with other metals such as Cu, Zn, Mg, Ga, Zr, Si, Nb, Mo, Sn, and W.
  • surface adhering substance A material having a composition different from that of the main constituent of the positive electrode active material (hereinafter referred to as “surface adhering substance” as appropriate) is attached to the surface of the positive electrode active material. It can also be used as a positive electrode active material.
  • the surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate. , Sulfates such as calcium sulfate and aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate, and carbon.
  • These surface adhering substances are, for example, a method in which they are dissolved or suspended in a solvent and impregnated and added to the positive electrode active material and then dried, or a surface adhering substance precursor is dissolved or suspended in a solvent and impregnated and added to the positive electrode active material. Then, it can be made to adhere to the surface of the positive electrode active material by a method of reacting by heating or the like, a method of adding to the positive electrode active material precursor and firing simultaneously.
  • the method of attaching carbonaceous material mechanically later for example in the form of activated carbon etc. can also be used.
  • the mass of the surface adhering substance adhering to the surface of the positive electrode active material is preferably 0.1 ppm or more, more preferably 1 ppm or more, with respect to the total mass of the positive electrode active material and the mass of the surface adhering substance.
  • the above is more preferable. Further, it is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less.
  • the surface adhering substance can suppress the oxidation reaction of the nonaqueous electrolytic solution on the surface of the positive electrode active material, and can improve the battery life. Further, when the adhesion amount is within the above range, the effect can be sufficiently exhibited, and the resistance of the secondary battery is hardly increased without inhibiting the entry / exit of lithium ions.
  • the shape of the positive electrode active material particles can be a lump shape, polyhedron shape, spherical shape, elliptical spherical shape, plate shape, needle shape, columnar shape, or the like as used conventionally. Further, the primary particles may aggregate to form secondary particles, and the shape of the secondary particles may be spherical or elliptical.
  • Tap Density Tap density positive electrode active material preferably at 0.5 g ⁇ cm -3 or more, more preferably 1.0 g ⁇ cm -3 or more, 1.5 g ⁇ cm -3 or more is more preferable. Further, it is preferably 4.0 g ⁇ cm ⁇ 3 or less, and more preferably 3.7 g ⁇ cm ⁇ 3 or less.
  • a high-density positive electrode active material layer By using a positive electrode active material powder with a high tap density, a high-density positive electrode active material layer can be formed.
  • the tap density of the positive electrode active material is within the above range, the amount of the dispersion medium necessary for forming the positive electrode active material layer becomes appropriate, and the amount of the conductive material and the binder is also appropriate. For this reason, the filling rate of the positive electrode active material into the positive electrode active material layer is not restricted, and the influence on the battery capacity is reduced.
  • the tap density of the positive electrode active material is measured as follows.
  • the sample is passed through a sieve having a mesh size of 300 ⁇ m, dropped into a 20 cm 3 tapping cell to fill the cell volume, and then stroked using a powder density measuring instrument (eg, tap denser manufactured by Seishin Enterprise Co., Ltd.). Tapping with a length of 10 mm is performed 1000 times, and the density is calculated from the volume at that time and the mass of the sample.
  • the tap density calculated by the measurement is defined as the tap density of the positive electrode active material in the present invention.
  • the median diameter d50 (secondary particle diameter when primary particles are aggregated to form secondary particles) of the positive electrode active material particles can be measured using a laser diffraction / scattering particle size distribution analyzer. it can.
  • the median diameter d50 is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 1 ⁇ m or more, particularly preferably 3 ⁇ m or more, preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and more preferably 16 ⁇ m. The following is more preferable, and 15 ⁇ m or less is particularly preferable.
  • the median diameter d50 is within the above range, it becomes difficult to obtain a high bulk density product, and further, it does not take time for the diffusion of lithium in the particles, so that the battery characteristics are difficult to deteriorate.
  • a positive electrode for a secondary battery that is, when an active material, a conductive material, a binder, and the like are slurried with a solvent and applied in a thin film form, streaking is less likely to occur.
  • the filling property at the time of positive electrode preparation can be further improved by mixing two or more types of positive electrode active materials having different median diameters d50 at an arbitrary ratio.
  • the median diameter d50 of the positive electrode active material was determined with respect to the dispersion of the positive electrode active material using a 0.1% by mass sodium hexametaphosphate aqueous solution as a dispersion medium and using a particle size distribution meter (for example, LA-920 manufactured by Horiba, Ltd.). Then, after the ultrasonic dispersion for 5 minutes, the measurement refractive index is set to 1.24 and measured.
  • the average primary particle diameter of the positive electrode active material is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, It is more preferably 0.08 ⁇ m or more, particularly preferably 0.1 ⁇ m or more, and preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, still more preferably 1 ⁇ m or less, and particularly preferably 0.6 ⁇ m or less.
  • the powder filling property becomes appropriate, and a sufficient specific surface area can be secured, so that deterioration of battery performance such as output characteristics can be suppressed.
  • the average primary particle diameter of the positive electrode active material is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles, and the average value is taken. Desired.
  • SEM scanning electron microscope
  • the BET specific surface area of the positive electrode active material has a specific surface area value measured by the BET method of preferably 0.2 m 2 ⁇ g ⁇ 1 or more, and 0.3 m 2 ⁇ g ⁇ 1. or more, and further preferably 0.4 m 2 ⁇ g -1 or higher, and preferably not more than 4.0m 2 ⁇ g -1, 2.5m more preferably 2 ⁇ g -1 or less, 1.5 m 2 ⁇ g ⁇ 1 or less is more preferable.
  • the value of the BET specific surface area is within the above range, it is easy to prevent a decrease in battery performance. Furthermore, a sufficient tap density can be ensured, and the applicability when forming the positive electrode active material layer is improved.
  • the BET specific surface area of the positive electrode active material is measured using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken). Specifically, the sample was pre-dried for 30 minutes at 150 ° C. under a nitrogen flow, and then the nitrogen-helium mixed gas accurately adjusted so that the relative pressure of nitrogen to the atmospheric pressure was 0.3. The specific surface area is measured by a nitrogen adsorption BET one-point method using a gas flow method. The specific surface area determined by the measurement is defined as the BET specific surface area of the positive electrode active material in the present invention.
  • the method for producing the positive electrode active material is not particularly limited as long as it does not exceed the gist of the present invention, but there are several methods, which are common as methods for producing inorganic compounds. The method is used.
  • transition metal source materials such as transition metal nitrates and sulfates, and source materials of other elements as necessary.
  • a solvent such as water
  • the pH is adjusted while stirring to produce and recover a spherical precursor, which is dried as necessary, and then LiOH, Li 2 CO 3 , LiNO
  • an active material is obtained by adding a Li source such as 3 and baking at a high temperature.
  • transition metal raw materials such as transition metal nitrates, sulfates, hydroxides, oxides and the like, and if necessary, raw materials of other elements are dissolved or pulverized and dispersed in a solvent such as water. Then, it is dry-molded with a spray dryer or the like to obtain a spherical or oval spherical precursor, and a Li source such as LiOH, Li 2 CO 3 , LiNO 3 is added to the precursor and calcined at a high temperature to obtain an active material Is mentioned.
  • a Li source such as LiOH, Li 2 CO 3 , LiNO 3
  • transition metal source materials such as transition metal nitrates, sulfates, hydroxides, oxides, Li sources such as LiOH, Li 2 CO 3 , LiNO 3 , and other elements as necessary.
  • the raw material is dissolved or pulverized and dispersed in a solvent such as water, and then dried and molded with a spray drier or the like to obtain a spherical or elliptical precursor, which is fired at a high temperature to obtain an active material.
  • a solvent such as water
  • the positive electrode is produced by forming a positive electrode active material layer containing positive electrode active material particles and a binder on a current collector.
  • the production of the positive electrode using the positive electrode active material can be produced by any known method.
  • a positive electrode active material and a binder, and if necessary, a conductive material and a thickener mixed in a dry form into a sheet form are pressure-bonded to the positive electrode current collector, or these materials are dissolved in a liquid medium
  • a positive electrode can be obtained by forming a positive electrode active material layer on the current collector by dispersing it as a slurry, applying this to a positive electrode current collector and drying it.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and preferably 99.9% by mass or less. Yes, 99 mass% or less is more preferable.
  • the positive electrode active material powder in this invention may be used individually by 1 type, and may use together 2 or more types of a different composition or different powder physical properties by arbitrary combinations and ratios. When two or more active materials are used in combination, the composite oxide containing lithium and manganese is preferably used as a powder component.
  • cobalt or nickel is an expensive metal with a small amount of resources, and is not preferable in terms of cost because the amount of active material used is large in large batteries that require a high capacity such as automotive applications. Therefore, it is desirable to use manganese as a main component as a cheaper transition metal.
  • a known conductive material can be arbitrarily used as the conductive material.
  • Specific examples include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbonaceous materials such as amorphous carbon such as needle coke.
  • metal materials such as copper and nickel
  • graphite such as natural graphite and artificial graphite (graphite)
  • carbon black such as acetylene black
  • carbonaceous materials such as amorphous carbon such as needle coke.
  • these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the content of the conductive material in the positive electrode active material layer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, still more preferably 1% by mass or more, and preferably 50% by mass or less. 30 mass% or less is more preferable, and 15 mass% or less is still more preferable. When the content is within the above range, sufficient conductivity can be secured. Furthermore, it is easy to prevent a decrease in battery capacity.
  • the binder used for manufacturing the positive electrode active material layer is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte solution and the solvent used when manufacturing the electrode.
  • the binder is not particularly limited as long as it is a material that can be dissolved or dispersed in a liquid medium used at the time of electrode production.
  • Specific examples thereof include polyethylene, polypropylene, polyethylene terephthalate, and polymethyl.
  • Resin polymers such as methacrylate, aromatic polyamide, cellulose, nitrocellulose; Rubber polymers such as SBR (styrene butadiene rubber), NBR (acrylonitrile butadiene rubber), fluorine rubber, isoprene rubber, butadiene rubber, ethylene propylene rubber; Styrene / butadiene / styrene block copolymer or hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / ethylene copolymer, styrene / isoprene / styrene block copolymer or Thermoplastic elastomeric polymers such as hydrogenated products; Soft resinous polymers such as syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymer, propylene / ⁇ -olef
  • the binder content in the positive electrode active material layer is preferably 0.1% by mass or more, more preferably 1% by mass or more, further preferably 3% by mass or more, and preferably 80% by mass or less. 60 mass% or less is more preferable, 40 mass% or less is still more preferable, and 10 mass% or less is especially preferable.
  • the ratio of the binder is within the above range, the positive electrode active material can be sufficiently retained, and the mechanical strength of the positive electrode can be secured, so that battery performance such as cycle characteristics is improved. Furthermore, it also leads to avoiding a decrease in battery capacity and conductivity.
  • the liquid medium used for preparing the slurry for forming the positive electrode active material layer is a solvent that can dissolve or disperse the positive electrode active material, the conductive material, the binder, and the thickener used as necessary. If it exists, there is no restriction
  • aqueous medium examples include water, a mixed medium of alcohol and water, and the like.
  • organic medium examples include aliphatic hydrocarbons such as hexane; Aromatic hydrocarbons such as benzene, toluene, xylene, methylnaphthalene; Heterocyclic compounds such as quinoline and pyridine; Ketones such as acetone, methyl ethyl ketone, cyclohexanone; Esters such as methyl acetate and methyl acrylate; Amines such as diethylenetriamine and N, N-dimethylaminopropylamine; Ethers such as diethyl ether and tetrahydrofuran (THF); Amides such as N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide; Examples include aprotic polar solvents such as hexamethylphosphalamide and dimethyl sulfoxide. In addition, these may be used individually by 1 type and may use
  • Thickener When an aqueous medium is used as the liquid medium for forming the slurry, it is preferable to form a slurry using a thickener and a latex such as styrene butadiene rubber (SBR). A thickener is usually used to adjust the viscosity of the slurry.
  • SBR styrene butadiene rubber
  • the thickener is not limited as long as the effect of the present invention is not significantly limited. Specifically, carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein and salts thereof Etc. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.
  • the ratio of the thickener to the total mass of the positive electrode active material and the thickener is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, 0.6 mass% or more is still more preferable, Preferably it is 5 mass% or less, 3 mass% or less is more preferable, and 2 mass% or less is still more preferable.
  • the coating property of the slurry becomes good, and further, the ratio of the active material in the positive electrode active material layer becomes sufficient. It becomes easy to avoid the problem that the resistance increases.
  • the positive electrode active material layer obtained by applying the slurry to the current collector and drying is preferably consolidated by a hand press, a roller press or the like.
  • the density of the positive electrode active material layer is preferably 1 g ⁇ cm ⁇ 3 or more, more preferably 1.5 g ⁇ cm ⁇ 3 or more, particularly preferably 2 g ⁇ cm ⁇ 3 or more, and preferably 4 g ⁇ cm ⁇ 3 or less. 3.5 g ⁇ cm ⁇ 3 or less is more preferable, and 3 g ⁇ cm ⁇ 3 or less is particularly preferable.
  • the density of the positive electrode active material layer is within the above range, charging / discharging at a high current density of the secondary battery, in particular, does not decrease the permeability of the non-aqueous electrolyte solution to the vicinity of the current collector / active material interface. Good characteristics. Furthermore, the electrical conductivity between the active materials is difficult to decrease, and the battery resistance is difficult to increase.
  • Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, foam metal, etc.
  • a carbon thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape.
  • the thickness of the current collector is arbitrary, but is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, further preferably 5 ⁇ m or more, and preferably 1 mm or less, more preferably 100 ⁇ m or less, and further preferably 50 ⁇ m or less. preferable.
  • the thickness of the current collector is within the above range, sufficient strength required for the current collector can be ensured. Furthermore, the handleability is also improved.
  • the thickness ratio between the current collector and the positive electrode active material layer is not particularly limited, but (active material layer thickness on one side immediately before non-aqueous electrolyte injection) / (current collector thickness) is preferably 150 or less, more preferably 20 or less, particularly preferably 10 or less, preferably 0.1 or more, more preferably 0.4 or more, and particularly preferably 1 or more.
  • the current collector When the ratio of the thickness of the current collector to the positive electrode active material layer is within the above range, the current collector is unlikely to generate heat due to Joule heat during high current density charge / discharge of the secondary battery. Furthermore, it becomes difficult for the volume ratio of the current collector to the positive electrode active material to increase, and a decrease in battery capacity can be prevented.
  • the area of the positive electrode active material layer is preferably larger than the outer surface area of the battery outer case.
  • the total electrode area of the positive electrode with respect to the surface area of the exterior of the non-aqueous electrolyte secondary battery is preferably 20 times or more, more preferably 40 times or more.
  • the outer surface area of the outer case is the total area obtained by calculation from the vertical, horizontal, and thickness dimensions of the case part filled with the power generation element excluding the protruding part of the terminal in the case of a bottomed square shape. .
  • the geometric surface area approximates the case portion filled with the power generation element excluding the protruding portion of the terminal as a cylinder.
  • the total electrode area of the positive electrode is the geometric surface area of the positive electrode mixture layer facing the mixture layer containing the negative electrode active material, and in the structure in which the positive electrode mixture layer is formed on both sides via the current collector foil. , The sum of the areas where each surface is calculated separately.
  • the positive electrode plate is designed so that the discharge capacity is fully charged, preferably 3 Ah (ampere hour), more preferably 4 Ah or more, preferably 20 Ah or less, more preferably 10 Ah or less.
  • the voltage drop due to the electrode reaction resistance does not become excessive when a large current is taken out, and the deterioration of the power efficiency can be prevented. Furthermore, the temperature distribution due to the internal heat generation of the battery during pulse charge / discharge does not become too large, the durability of repeated charge / discharge is inferior, and the heat dissipation efficiency is poor against sudden heat generation during abnormalities such as overcharge and internal short circuit. The phenomenon of becoming can be avoided.
  • the thickness of the positive electrode plate is not particularly limited, but from the viewpoint of high capacity, high output, and high rate characteristics, the thickness of the positive electrode active material layer minus the thickness of the current collector is relative to one side of the current collector. 10 ⁇ m or more is preferable, 20 ⁇ m or more is more preferable, 200 ⁇ m or less is preferable, and 100 ⁇ m or less is more preferable.
  • a separator is usually interposed between the positive electrode and the negative electrode in order to prevent a short circuit.
  • the nonaqueous electrolytic solution of the present invention is usually used by impregnating the separator.
  • the material and shape of the separator are not particularly limited, and known ones can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired.
  • a resin, glass fiber, inorganic material, etc. formed of a material that is stable with respect to the non-aqueous electrolyte solution of the present invention is used, and a porous sheet or a nonwoven fabric-like material having excellent liquid retention properties is used. Is preferred.
  • polyolefins such as polyethylene and polypropylene, aramid resins, polytetrafluoroethylene, polyethersulfone, glass filters, and the like can be used. Of these, glass filters and polyolefins are preferred, and polyolefins are more preferred. These materials may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
  • the thickness of the separator is arbitrary, but is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, further preferably 10 ⁇ m or more, and preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and even more preferably 30 ⁇ m or less. .
  • the insulation and mechanical strength are good.
  • the battery performance such as rate characteristics can be prevented from being lowered, and the energy density of the non-aqueous electrolyte secondary battery as a whole can be prevented from being lowered.
  • the porosity of the separator is arbitrary, but is preferably 20% or more, more preferably 35% or more, and further 45% or more. Preferably, it is 90% or less, more preferably 85% or less, and further preferably 75% or less.
  • the porosity is within the above range, the membrane resistance does not increase excessively, and deterioration of the rate characteristics of the secondary battery can be suppressed.
  • the mechanical strength of the separator becomes appropriate, and the deterioration of the insulation can be suppressed.
  • the average pore diameter of the separator is also arbitrary, but is preferably 0.5 ⁇ m or less, more preferably 0.2 ⁇ m or less, and preferably 0.05 ⁇ m or more.
  • the average pore diameter is within the above range, short circuit is difficult to occur. Furthermore, the membrane resistance does not increase too much, and the deterioration of the rate characteristics of the secondary battery can be prevented.
  • oxides such as alumina and silicon dioxide
  • nitrides such as aluminum nitride and silicon nitride
  • sulfates such as barium sulfate and calcium sulfate are used. Things are used.
  • a thin film shape such as a nonwoven fabric, a woven fabric, or a microporous film is used.
  • a separator formed by forming a composite porous layer containing inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used.
  • a porous layer may be formed on both surfaces of the positive electrode using alumina particles having a 90% particle size of less than 1 ⁇ m and using a fluororesin as a binder.
  • the electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate are interposed via the separator, and a structure in which the positive electrode plate and the negative electrode plate are wound in a spiral shape via the separator. Either is acceptable.
  • the ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as electrode group occupancy) is preferably 40% or more, more preferably 50% or more, and preferably 95% or less, 90% The following is more preferable. When the electrode group occupancy is within the above range, the battery capacity is hardly reduced.
  • the internal pressure rises as the member expands or the vapor pressure of the liquid component of the non-aqueous electrolyte increases due to the high temperature of the battery.
  • Various characteristics such as charge / discharge repeatability and high-temperature storage characteristics can be reduced, and further, it is possible to avoid a case where the gas release valve that releases the internal pressure to the outside operates.
  • the current collecting structure is not particularly limited, but in order to more effectively realize the improvement of the discharge characteristics by the non-aqueous electrolyte solution of the present invention, it is necessary to make the structure to reduce the resistance of the wiring part and the joint part preferable. Thus, when internal resistance is reduced, the effect of using the non-aqueous electrolyte solution of this invention is exhibited especially favorable.
  • the electrode group has the above-described laminated structure
  • a structure formed by bundling the metal core portions of the electrode layers and welding them to the terminals is preferably used.
  • the area of one electrode increases, the internal resistance increases. Therefore, it is also preferable to reduce the resistance by providing a plurality of terminals in the electrode.
  • the electrode group has the winding structure described above, the internal resistance can be lowered by providing a plurality of lead structures for the positive electrode and the negative electrode, respectively, and bundling the terminals.
  • PTC Positive Temperature Coefficient
  • thermistor that increases resistance when abnormal heat generation or excessive current flows, thermal fuse, shuts off current flowing through the circuit due to sudden increase in battery internal pressure or internal temperature at abnormal heat generation
  • Examples thereof include a valve (current cutoff valve). It is preferable to select a protective element that does not operate under normal use at a high current, and it is more preferable to design a battery that does not cause abnormal heat generation or thermal runaway without a protective element.
  • the non-aqueous electrolyte secondary battery of the present invention is usually configured by housing the non-aqueous electrolyte, the negative electrode, the positive electrode, the separator, and the like in an exterior body (exterior case).
  • an exterior body exterior body
  • the material of the outer case is not particularly limited as long as it is a material that is stable to the non-aqueous electrolyte used. Specifically, a nickel-plated steel plate, stainless steel, aluminum or an aluminum alloy, a magnesium alloy, nickel, titanium, or a metal, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used.
  • the metal is welded to each other by laser welding, resistance welding, ultrasonic welding, or a sealed sealing structure, or a caulking structure using the above metals through a resin gasket To do.
  • the outer case using the laminate film include a case where a resin-sealed structure is formed by heat-sealing resin layers.
  • a resin different from the resin used for the laminate film may be interposed between the resin layers.
  • a metal and a resin are joined, so that a resin having a polar group or a modified group having a polar group introduced as an intervening resin is used.
  • Resins are preferably used.
  • the shape of the outer case is also arbitrary, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.
  • the compound used as a structural component of a non-aqueous electrolyte solution in an Example and a comparative example is the following compounds, and a compound (a), a compound (b), a compound (c), a compound (d), a compound below. It is described as (e).
  • Example 1-2 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1-1 except that the concentration of the compound (a) was 2.0% by mass, and the following evaluation was performed.
  • Example 1-3 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1-1 except that the concentration of the compound (a) was 3.0% by mass, and the following evaluation was performed.
  • Example 1-4 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1-1 except that the concentration of the compound (a) was 4.0% by mass, and the following evaluation was performed.
  • Example 1-1 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1-1 except that the compound (a) was not dissolved in the non-aqueous electrolyte, and the following evaluation was performed.
  • Example 1-2 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1-1 except that the concentration of the compound (a) was 5.0% by mass, and the following evaluation was performed.
  • Example 1-3 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1-1 except that the concentration of the compound (a) was 7.0% by mass, and the following evaluation was performed.
  • Example 1-4 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1-1 except that compound (a) was not dissolved in the non-aqueous electrolyte and compound (b) was dissolved in an amount of 1.0% by mass. The following evaluation was conducted.
  • Example 1-5 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1-1 except that compound (a) was not dissolved in the non-aqueous electrolyte and compound (b) was dissolved in an amount of 4.0% by mass. The following evaluation was conducted.
  • Example 1-6 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 1-1 except that compound (a) was not dissolved in the non-aqueous electrolyte and compound (b) was dissolved in an amount of 5.0% by mass. The following evaluation was conducted.
  • Al-substituted lithium manganate Li 1.1 Mn 1.9 Al 0.1 O 4
  • lithium nickel manganese cobalt composite oxide as the second positive electrode active material (Li 1.05 Ni 0.33 Mn 0.33 Co 0.33 O 2 ) 22.5 parts by mass
  • carbon black
  • the obtained slurry was uniformly applied to a 10 ⁇ m thick copper foil, dried, and roll-pressed to obtain a negative electrode.
  • the battery was charged at a constant current-constant voltage to 4.2 V at 0.3 C, and then discharged to 2.7 V at 0.3 C. This was performed for 2 cycles, and a total of 3 cycles of charging / discharging was performed together with 1 cycle for obtaining the 1st irreversible capacity, thereby stabilizing the non-aqueous electrolyte secondary battery.
  • Table 1 below shows the 1st irreversible capacity (the average value of the 1st irreversible capacity of the cells in which the above initial charge / discharge was possible) as a relative value when the comparative example 1-1 is 100.0%.
  • the percentage of cells in which the first charge capacity was not measured by performing the initial charge / discharge among the number of batteries is shown. That is, it can be said that the smaller the value of the 1st irreversible capacity described in Table 1, the smaller the initial irreversible capacity and the better.
  • Table 1 shows that the inclusion of a compound that is not a specific ester greatly increases the 1st irreversible capacity. From the above, as shown in the present invention, it is shown that a non-aqueous electrolyte secondary battery with a low 1st irreversible capacity and a high yield can be produced by using a specific ester and setting its content to 4.5 mass% or less. It was done.
  • Example 2-1 In a dry argon atmosphere, a sufficiently dried LiPF 6 was dissolved in a mixture of ethylene carbonate and diethyl carbonate (volume ratio 3: 7) at a concentration of 1 mol / L (as a concentration in the non-aqueous electrolyte), and The fully dried compound (a) was dissolved in an amount of 0.35% by mass (as a concentration in the non-aqueous electrolyte solution) to prepare a non-aqueous electrolyte solution. Using this non-aqueous electrolyte, a non-aqueous electrolyte secondary battery was prepared by the following method, and the following evaluation was performed.
  • Example 2-2 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 2-1, except that the concentration of the compound (a) was 0.7% by mass, and the following evaluation was performed.
  • Example 2-3 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 2-1, except that the concentration of the compound (a) was 1.0% by mass, and the following evaluation was performed.
  • Example 2-4 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 2-1, except that the concentration of the compound (a) was 2.0% by mass, and the following evaluation was performed.
  • Example 2-5 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 2-1, except that the concentration of the compound (a) was 3.0% by mass, and the following evaluation was performed.
  • Example 2-6 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 2-1, except that the concentration of the compound (a) was 4.0% by mass, and the following evaluation was performed.
  • Example 2-1 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 2-1, except that the compound (a) was not dissolved in the non-aqueous electrolyte, and the following evaluation was performed.
  • Al-substituted lithium manganate Li 1.1 Mn 1.9 Al 0.1 O 4
  • lithium nickel manganese cobalt composite oxide as the second positive electrode active material (Li 1.05 Ni 0.33 Mn 0.33 Co 0.33 O 2 ) 22.5 parts by mass
  • carbon black
  • the obtained slurry was uniformly applied to a 10 ⁇ m thick copper foil, dried, and roll-pressed to obtain a negative electrode.
  • the high-temperature cycle test was conducted in a high-temperature environment of 55 ° C, which is regarded as the actual use upper limit temperature of the non-aqueous electrolyte secondary battery.
  • a constant temperature bath at 55 ° C. a constant current-constant voltage charge at 1 C to 4.2 V was performed, and then a process of discharging to 2.7 V at a constant current of 1 C was performed as 199 cycles.
  • the ratio of the capacity at the 199th cycle to the capacity at the first cycle was defined as a “high temperature cycle capacity retention rate”.
  • Table 2 below shows the high-temperature cycle capacity retention ratio as a relative value when the value of Comparative Example 2-1 is 100.0%.
  • the non-aqueous electrolyte solution of the present invention containing a specific ester is used in the non-aqueous electrolyte solution, unlike the non-aqueous electrolyte solution not containing the ester, at a high temperature. Even when the battery is repeatedly charged and discharged, it is possible to provide a non-aqueous electrolyte secondary battery with little reduction in capacity. That is, a very excellent durability improving effect of the specific ester was shown.
  • Example 3-2 A mixture of ethylene carbonate, propylene carbonate and diethyl carbonate (volume ratio 25: 5: 70) was used as a solvent for the non-aqueous electrolyte without using a mixture of ethylene carbonate and diethyl carbonate (volume ratio 30:70).
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 3-1, except that the following evaluation was performed.
  • Example 3-3 A mixture of ethylene carbonate, propylene carbonate and diethyl carbonate (capacity ratio 18:12:70) was used as a solvent for the non-aqueous electrolyte solution without using a mixture of ethylene carbonate and diethyl carbonate (capacity ratio 30:70).
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 3-1, except that the following evaluation was performed.
  • Example 3-4 A mixture of ethylene carbonate, propylene carbonate and diethyl carbonate (capacity ratio 29.8: 0.2: 70) was not used as a solvent for the non-aqueous electrolyte solution, but a mixture of ethylene carbonate and diethyl carbonate (capacity ratio 30:70) was not used.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 3-1, except that was used, and the following evaluation was performed.
  • Example 3 except that a mixture of propylene carbonate and diethyl carbonate (volume ratio 3: 7) was used instead of a mixture of ethylene carbonate and diethyl carbonate (volume ratio 3: 7) as a solvent for the non-aqueous electrolyte solution.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in -1, and the following evaluation was performed.
  • Example 3-5 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 3-1, except that LiPF 6 was not used as the electrolyte of the non-aqueous electrolyte and LiClO 4 was used, and the following evaluation was performed.
  • Example 3-2 As a solvent for the non-aqueous electrolyte solution, a mixture of propylene carbonate and diethyl carbonate (capacity ratio 3: 7) is used instead of a mixture of ethylene carbonate and diethyl carbonate (capacity ratio 3: 7).
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 3-1, except that LiPF 6 was not used and LiClO 4 was used, and the following evaluation was performed.
  • Al-substituted lithium manganate Li 1.1 Mn 1.9 Al 0.1 O 4
  • lithium nickel manganese cobalt composite oxide as the second positive electrode active material (Li 1.05 Ni 0.33 Mn 0.33 Co 0.33 O 2 ) 22.5 parts by mass
  • carbon black
  • the obtained slurry was uniformly applied to a 10 ⁇ m thick copper foil, dried, and roll-pressed to obtain a negative electrode.
  • the non-aqueous electrolyte solution of the present invention that simultaneously contains various electrolytes such as LiPF 6 and LiClO 4 and a specific ester in the non-aqueous electrolyte solution, the first charge / discharge efficiency is excellent.
  • a nonaqueous electrolyte battery can be obtained. Further, it was shown that when propylene carbonate is contained in the non-aqueous solvent, it is necessary to contain ethylene carbonate at a predetermined ratio.
  • Example 4-2 Example 4 except that the concentration of the compound (a) was 0.5 mass%, the compound (c) was not dissolved in the nonaqueous electrolytic solution, and the compound (d) was dissolved in an amount of 0.7 mass%.
  • a non-aqueous electrolyte secondary battery was prepared in the same manner as in -1, and the following evaluation was performed.
  • Example 4-3 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 4-1, except that compound (c) was not dissolved in the non-aqueous electrolyte and compound (e) was dissolved in an amount of 1.0% by mass. The following evaluation was conducted.
  • Example 4-1 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 4-1, except that the compound (a) and the compound (c) were not dissolved in the non-aqueous electrolyte, and the following evaluation was performed.
  • Example 4-2 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 4-1, except that the compound (a) was not dissolved in the non-aqueous electrolyte, and the following evaluation was performed.
  • Example 4-3 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 4-2, except that the compound (a) was not dissolved in the non-aqueous electrolyte, and the following evaluation was performed.
  • Example 4-4 A non-aqueous electrolyte secondary battery was prepared in the same manner as in Example 4-3 except that the compound (a) was not dissolved in the non-aqueous electrolyte, and the following evaluation was performed.
  • Al-substituted lithium manganate Li 1.1 Mn 1.9 Al 0.1 O 4
  • lithium nickel manganese cobalt composite oxide as the second positive electrode active material (Li 1.05 Ni 0.33 Mn 0.33 Co 0.33 O 2 ) 22.5 parts by mass
  • carbon black
  • the obtained slurry was uniformly applied to a 10 ⁇ m thick copper foil, dried, and roll-pressed to obtain a negative electrode.
  • a high-temperature cycle was performed in a high-temperature environment of 55 ° C, which is regarded as the actual maximum use temperature of the non-aqueous electrolyte secondary battery.
  • a constant temperature bath at 55 ° C. a constant current-constant voltage charge at 1 C to 4.2 V was performed, and a process of discharging to 2.7 V at a constant current of 1 C was carried out for 99 cycles, followed by 4 at 0.33 C. After constant current-constant voltage charging to 2 V, the battery was discharged to 2.7 V with a constant current of 0.33 C.
  • the non-aqueous electrolyte containing only the specific additive is obtained by using the non-aqueous electrolyte of the present invention containing the specific ester and the specific additive simultaneously in the non-aqueous electrolyte. Unlike use, it is possible to provide a non-aqueous electrolyte secondary battery having a large rapid capacity even when repeatedly charged and discharged at a high temperature (Example 4-1 and Comparative Example 4-2, Example 4). 2 and Comparative Example 4-3, Example 4-3 and Comparative Example 4-4).
  • the non-aqueous electrolyte of the present invention a battery having a small 1st irreversible capacity (initial irreversible capacity) is obtained even when repeatedly charged and discharged at a high temperature without impairing the yield in battery production. Therefore, the electrolytic solution can be suitably used in all fields such as electronic equipment in which a non-aqueous electrolyte secondary battery is used. Moreover, the said electrolyte solution can be utilized suitably also in electrolytic capacitors, such as a lithium ion capacitor using a non-aqueous electrolyte solution.
  • non-aqueous electrolyte solution and the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and can be used for various known applications.
  • Specific examples of applications include laptop computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, mobile audio players, small video cameras, LCD TVs, handy cleaners, transceivers, electronic notebooks, calculators, and memories.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明の課題は、非水系電解液二次電池に関して、電池の歩留りを損なうことなく、初期不可逆容量が小さく、初期効率が高く、かつ高温サイクル特性に優れた二次電池を提供することである。 本発明の非水系電解液は、金属イオンを吸蔵および放出可能な正極と、金属イオンを吸蔵および放出可能な負極と、非水溶媒および該非水溶媒に溶解される電解質を含む非水系電解液とを備える非水系電解液二次電池に用いられる非水系電解液であって、下記一般式(1)で示される化合物を、前記非水系電解液全量に対して、0.01質量%以上4.5質量%以下の量で含有する、非水系電解液である: (一般式(1)において、nは1~4の整数であり、R~Rは所定の基を表す。)。

Description

非水系電解液及びそれを用いた非水系電解液二次電池
 本発明は非水系電解液及びそれを用いた非水系電解液二次電池に関するものである。
 含リチウム遷移金属酸化物を正極に用い、非水溶媒を電解液に用いるリチウム非水系電解液二次電池は、高いエネルギー密度を実現できることから、携帯電話、ラップトップコンピュータ等の小型電源から、自動車や鉄道、ロードレベリング用の大型電源まで広範な用途に適用されている。しかしながら、近年の非水系電解液電池に対する高性能化の要求はますます高まっており、二次電池の各種特性の改善が強く要求されている。
 リチウム非水系電解液二次電池においては、エチレンカーボネートやプロピレンカーボネート等の環状カーボネート類、ジメチルカーボネートやジエチルカーボネートやエチルメチルカーボネート等の鎖状カーボネート類、γ-ブチロラクトンやγ-バレロラクトン等の環状カルボン酸エステル類、酢酸メチルや酢酸エチルやプロピオン酸メチル等の鎖状カルボン酸エステル類の非水溶媒と、LiPFやLiBFやLiAsFやLiClOやLiCFSOやLiN(CFSO等の溶質(電解質)とを含有する非水系電解液が用いられる。
 このような非水系電解液を用いた非水系電解液二次電池では、その非水系電解液の組成によって反応性が異なるため、非水系電解液により電池特性が大きく変わることになる。非水系電解液二次電池の負荷特性、サイクル特性、保存特性等の電池特性を改良したり、過充電時の電池の安全性を高めたりするために、非水系電解液中の非水溶媒や電解質について種々の検討がなされている。
 例えば特許文献1には、特定の化合物を添加した電解液を用いることで、初期充電において電極上で特定の化合物を反応させて被膜を形成し、電池の初期充放電効率を向上させる技術が開示されている。当該文献では、黒鉛電極と金属Liを用いた2016型コインセルにて、溶質にLiClOを、溶媒にプロピレンカーボネートを、添加剤として5-フェニル-1,3-ジオキソラン-2,4-ジオンを5質量%添加した電解液を使用することにより、充電により生成したアルコキシドアニオンが重合開始剤となり、5-フェニル-1,3-ジオキソラン-2,4-ジオンが重合し電極上に高分子膜を形成するため、電池の最初の充放電の効率が向上すると述べられている。
 特許文献2には、1,3-ジオキソラン-2,5-ジオンを添加した有機電解液、特に前記化合物とその他の溶媒との混合割合が1:10から30:10の有機電解液を用いることで、二次電池の過放電を行っても電解液の分解が少なく、二次電池の過放電特性を向上させる技術が開示されている。当該文献には、正極活物質に二酸化マンガンを、負極活物質に金属Liを用い、電解液溶媒に1,3-ジオキソラン-2,5-ジオンとDMEの比率が1:10から30:10の混合溶媒を用いることで、電池の過放電後の放電容量が向上する結果が示されている。詳細は不明であるが、放電状態の正極との反応性が低いことにより、電池特性が向上すると述べられている。
 特許文献3には、溶質にLiClOを用い、溶媒にプロピレンカーボネート-3-オンを用いた有機電解液を用いることで、負極の充放電効率を向上させ、電池のサイクル特性を向上させる技術が開示されている。当該文献には、正極活物質にTiSを、負極活物質に金属Liを用い、電解液の溶媒としてプロピレンカーボネート-3-オンを単独で用いたところ、電池のサイクル特性が向上したとの結果が示されている。また、詳細は不明であるが、当該文献には、プロピレンカーボネート-3-オンの分解しにくい溶媒としての使用が開示されており、当該化合物の金属Liとの反応性が低いことにより、負極電流効率が向上すると述べられている。
韓国公開特許第10-2009-0082780号公報 特開平1-134873号公報 特開昭62-290069号公報
 しかしながら、近年の非水系電解液二次電池の特性改善への要求はますます高まっており、各種性能を高いレベルで併せ持つことが求められているが、上記特許文献1~3に開示の技術を含めて、そのような二次電池は未だ達成されていない。中でも、二次電池の初期不可逆容量の増加を抑え、初期効率を高く保ちつつ、高温サイクル特性を向上させることが難しいという問題があった。
 さらに、本発明の発明者らの検討により、前記したように電極上に被膜形成させるために特許文献1に記載の化合物を使用すると、電池内にてガスが大量に発生し、電池の歩留りを著しく低下させてしまうという問題や、電池が膨れてしまうため、電池としてのエネルギー密度を著しく損なってしまうという問題が見出された。
 本発明は、上述の課題に鑑みてなされたものである。即ち本発明は、非水系電解液二次電池に関して、電池の歩留りを損なうことなく、初期不可逆容量が小さく、初期効率が高く、かつ高温サイクル特性に優れた二次電池を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、非水系電解液に下記一般式(1)で表される化合物を特定範囲の量で含有させることによって、上記課題を解決できることを見出し、本発明の完成に至った。
Figure JPOXMLDOC01-appb-C000004
 すなわち本発明の要旨は、以下の通りである。
〔1〕
 金属イオンを吸蔵および放出可能な正極と、金属イオンを吸蔵および放出可能な負極と、非水溶媒および該非水溶媒に溶解される電解質を含む非水系電解液とを備える非水系電解液二次電池に用いられる非水系電解液であって、
 下記一般式(1)で示される化合物を、前記非水系電解液全量に対して、0.01質量%以上4.5質量%以下の量で含有する、非水系電解液(但し、非水系電解液がプロピレンカーボネートを含有する場合は、前記非水系電解液はエチレンカーボネート及びプロピレンカーボネートを含有し、(A)エチレンカーボネートとプロピレンカーボネートの容量比が99:1~40:60である、及び(B)プロピレンカーボネートの非水溶媒中の含有量が10容量%以下である、のうち少なくとも一方の条件を満たす。):
Figure JPOXMLDOC01-appb-C000005

(一般式(1)において、nは1~4の整数である。RおよびRはそれぞれ独立して、水素、フッ素、およびフッ素で置換されていてもよい炭素数1以上5以下の炭化水素基のいずれかである。nが2以上である場合、複数存在するR同士及びR同士は、互いに同一であっても異なっていてもよい。また、RおよびRは互いに結合し、環を形成していてもよい。Rは、カルボニル基、スルフィニル基、スルホニル基、及び下記一般式(2)で表される基のいずれかである。)
Figure JPOXMLDOC01-appb-C000006

(一般式(2)において、Rは、フッ素、およびフッ素で置換されていてもよい炭素数1以上10以下の炭化水素基のいずれかである。)。
〔2〕
 前記一般式(1)で示される化合物が、下記一般式(3)で示される化合物である、〔1〕に記載の非水系電解液:
Figure JPOXMLDOC01-appb-C000007

(式(3)中、RおよびRはそれぞれ独立して、水素、フッ素、およびフッ素で置換されていてもよい炭素数1以上5以下の炭化水素基のいずれかである。RおよびRは互いに結合し、環を形成していてもよい。)。
〔3〕
 前記電解質として、ヘキサフルオロリン酸塩を含有する、〔1〕または〔2〕に記載の非水系電解液。
〔4〕
 前記金属イオンを吸蔵および放出可能な負極が、炭素質材料またはケイ素を含む材料を含む、〔1〕ないし〔3〕のいずれか一つに記載の非水系電解液。
〔5〕
 前記一般式(3)において、Rが水素であり、Rが水素またはメチル基である、〔2〕ないし〔4〕のいずれか一つに記載の非水系電解液。
〔6〕
 前記非水溶媒として、少なくとも1種の環状カーボネートと少なくとも1種の鎖状カーボネートを含有し、その体積比が(環状カーボネートの総体積):(鎖状カーボネートの総体積)=1.5:8.5~4:6である、〔1〕ないし〔5〕のいずれか一つに記載の非水系電解液。
〔7〕
 前記非水溶媒中の環状カーボネートとして、少なくともエチレンカーボネートを含有する、〔6〕に記載の非水系電解液。
〔8〕
 さらに、フッ素原子を有する環状カーボネート、炭素―炭素不飽和結合を有する環状カーボネート、ジフルオロリン酸塩、フルオロ硫酸塩、イソシアナト基を有する化合物、シアノ基を有する化合物、環状スルホン酸エステル、及びジカルボン酸錯体塩からなる群より選ばれる少なくとも1種の化合物を含有する、〔1〕ないし〔7〕のいずれか一つに記載の非水系電解液。
〔9〕
 金属イオンを吸蔵及び放出可能な正極と、金属イオンを吸蔵及び放出可能な負極と、非水系電解液とを備えた非水系電解液二次電池であって、
 該非水系電解液が、〔1〕ないし〔8〕のいずれか一つに記載の非水系電解液である、非水系電解液二次電池。
〔10〕
 前記負極が、炭素質材料またはケイ素を含む材料を含む、〔9〕に記載の非水系電解液二次電池。
〔11〕
 前記正極中の活物質が、スピネル型構造を有するリチウムマンガン複合酸化物を含有する、〔9〕または〔10〕に記載の非水系電解液二次電池。
 本発明の非水系電解液によれば、電池の歩留りを損なうことなく、初期不可逆容量が小さく、初期効率が高く、高温サイクル特性に優れた非水系電解液二次電池を提供することができる。
 以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明は、これらの具体的内容に限定はされず、その要旨の範囲内で種々変形して実施することができる。
 [1.非水系電解液]
 本発明の非水系電解液は、非水溶媒と該非水溶媒に溶解される電解質とを含み、さらに上記一般式(1)で示される化合物を特定量含有する。以下、前記電解質、非水系溶媒、そして一般式(1)で示される化合物の順に説明する。
 <1-1.電解質>
 本発明の非水系電解液に用いる電解質は、特に限定されず、目的とする非水系電解液二次電池の特性に応じて、任意に採用することができる。
 前記電解質の具体例としては、例えば、LiClO、LiAsF、LiPF、LiBF、LiAlF等の無機リチウム塩;
LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiN(CFSO)(CSO)、LiN(CFSO)(FSO)、リチウム環状1,2-エタンジスルホニルイミド、リチウム環状1,3-プロパンジスルホニルイミド、リチウム環状1,2-パーフルオロエタンジスルホニルイミド、リチウム環状1,3-パーフルオロプロパンジスルホニルイミド、リチウム環状1,4-パーフルオロブタンジスルホニルイミド、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF)、LiBF(C)、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩;
KPF、NaPF、NaBF、CFSONa等のナトリウム塩又はカリウム塩;
等が挙げられる。
 これらのうち、リチウム塩が好ましいが、なかでもLiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CFSO)(FSO)、LiN(CSO、リチウム環状1,2-パーフルオロエタンジスルホニルイミドが好ましく、LiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CFSO)(FSO)がより好ましく、特にLiPF6が好ましい。
 また、本発明の非水系電解液は、電解質としてヘキサフルオロリン酸塩を含有していることが好ましい。ヘキサフルオロリン酸塩は、ヘキサフルオロリン酸アニオンが電気化学的に安定であるため好ましく、これにより、本発明の非水系電解液を使用して得られる非水系電解液二次電池(以下、単に「非水系電解液二次電池」や、「二次電池」ともいう)の充放電効率を向上させることができる。また、当該塩は塩の解離度を非常に高くすることができ、電解液中での電荷担体となるイオン濃度を高くすることができる。
 以上説明した電解質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。なかでも、無機リチウム塩の2種の併用、無機リチウム塩と含フッ素有機リチウム塩の併用が、二次電池の連続充電時のガス発生又は高温保存後の劣化が効果的に抑制されるので好ましい。
 特に、LiPFとLiBFとの併用や、LiPF、LiBF等の無機リチウム塩とLiCFSO、LiN(CFSO、LiN(CSO等の含フッ素有機リチウム塩との併用が好ましい。
 LiPFとLiBFとを併用する場合、電解質全体に占めるLiBFの割合が、0.001質量%以上、20質量%以下であることが好ましい。この範囲内であると、LiBFの解離度の低さのために、非水系電解液の抵抗が高くなることが抑制されうる。
 一方、LiPF、LiBF等の無機リチウム塩とLiCFSO、LiN(CFSO、LiN(CSO等の含フッ素有機リチウム塩とを併用する場合、電解質全体に占める無機リチウム塩の割合は、70質量%以上、99.9質量%以下であることが好ましい。この範囲内であると、一般にヘキサフルオロリン酸塩と比較して分子量が大きい含フッ素有機リチウム塩の割合が高くなりすぎて、非水系電解液全体に占める非水溶媒の比率が低下し、非水系電解液の抵抗が高くなることが抑制されうる。
 本発明の非水系電解液の最終的な二次電池における組成中でのリチウム塩等の電解質の濃度は、本発明の効果を著しく損なわない限り任意であるが、好ましくは0.5mol/L以上、3mol/L以下である。電解質濃度がこの下限以上であると、十分な非水系電解液のイオン伝導率が得られやすく、上限以下であると、粘度が上昇しすぎることが避けられる。以上により、良好なイオン伝導率と、二次電池の性能を確保しやすい。リチウム塩等の電解質の濃度は、より好ましくは0.6mol/L以上、更に好ましくは0.8mol/L以上、また、より好ましくは2mol/L以下、更に好ましくは1.5mol/L以下の範囲である。
 <1-2.非水溶媒>
 本発明の非水系電解液が含有する非水溶媒は、二次電池とした時に電池特性に対して悪影響を及ぼさない溶媒であれば特に制限されないが、以下に掲げる非水溶媒の内の1種以上であることが好ましい。
 非水溶媒の例としては、鎖状カーボネート及び環状カーボネート、鎖状カルボン酸エステル及び環状カルボン酸エステル、鎖状エーテル及び環状エーテル、含燐有機溶媒、含硫黄有機溶媒、含硼素有機溶媒等が挙げられる。
 前記鎖状カーボネートの種類は、特に限定されず、例えば、ジアルキルカーボネートが挙げられる。これらのなかでも、ジアルキルカーボネートを構成するアルキル基の炭素数が、それぞれ1~5のものが好ましく、1~4のものがより好ましく、1~3のものが特に好ましい。具体的には、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート、ジ-n-プロピルカーボネート、等が好ましいジアルキルカーボネートとして挙げられる。
 これらの中でも、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートが、工業的な入手性や非水系電解液二次電池における種々の特性がよい点でより好ましい。
 また、フッ素原子を有する鎖状カーボネート類(以下、「フッ素化鎖状カーボネート」と略記する場合がある)も好適に用いることができる。フッ素化鎖状カーボネートが有するフッ素原子の数は、1以上であれば特に制限されないが、通常6以下であり、好ましくは4以下、より好ましくは3以下である。フッ素化鎖状カーボネートが複数のフッ素原子を有する場合、それらは互いに同一の炭素に結合していてもよく、異なる炭素に結合していてもよい。フッ素化鎖状カーボネートとしては、フッ素化ジメチルカーボネート、フッ素化エチルメチルカーボネート、フッ素化ジエチルカーボネート等が挙げられる。
 前記フッ素化ジメチルカーボネートとしては、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネート、トリフルオロメチルメチルカーボネート、ビス(フルオロメチル)カーボネート、ビス(ジフルオロ)メチルカーボネート、ビス(トリフルオロメチル)カーボネート等が挙げられる。
 前記フッ素化エチルメチルカーボネートとしては、2-フルオロエチルメチルカーボネート、エチルフルオロメチルカーボネート、2,2-ジフルオロエチルメチルカーボネート、2-フルオロエチルフルオロメチルカーボネート、エチルジフルオロメチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、2,2-ジフルオロエチルフルオロメチルカーボネート、2-フルオロエチルジフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート等が挙げられる。
 前記フッ素化ジエチルカーボネートとしては、エチル-(2-フルオロエチル)カーボネート、エチル-(2,2-ジフルオロエチル)カーボネート、ビス(2-フルオロエチル)カーボネート、エチル-(2,2,2-トリフルオロエチル)カーボネート、2,2-ジフルオロエチル-2'-フルオロエチルカーボネート、ビス(2,2-ジフルオロエチル)カーボネート、2,2,2-トリフルオロエチル-2'-フルオロエチルカーボネート、2,2,2-トリフルオロエチル-2',2'-ジフルオロエチルカーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート等が挙げられる。
 尚、フッ素化鎖状カーボネートは、非水溶媒のみならず下記<1-4.添加剤>に記載の添加剤としても有効な機能を発現する。フッ素化鎖状カーボネートを溶媒兼添加剤として用いる場合の配合量に明確な境界は存在せず、本明細書において、非水溶媒としての配合量及び添加剤の配合量として記載した配合量をそのまま踏襲できる。
 上記環状カーボネートの種類は、特に限定されず、例えば、アルキレンカーボネートが挙げられ、なかでもアルキレンカーボネートの構成するアルキレン基の炭素数は2~6が好ましく、特に好ましくは2~4である。環状カーボネートとして具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート(2-エチルエチレンカーボネート、シス及びトランス2,3-ジメチルエチレンカーボネート)等が挙げられる。
 これらの中でも、誘電率が高いために非水系電解液二次電池の抵抗を低減させることができることから、環状カーボネートとしてエチレンカーボネートおよびプロピレンカーボネートが好ましく、特にエチレンカーボネートが好ましい。なお本発明においては、プロピレンカーボネートを使用すると、電池特性に悪影響を与える場合があるため、プロピレンカーボネートを使用する場合にはエチレンカーボネートの併用が必須であり、さらに、(A)エチレンカーボネートとプロピレンカーボネートの容量比(エチレンカーボネート:プロピレンカーボネート)が99:1~40:60、及び(B)プロピレンカーボネートの非水溶媒中の含有量が10容量%以下、のうち少なくとも一方の条件を満足するようにする必要がある。
 また、フッ素原子を有する環状カーボネート類(以下、「フッ素化環状カーボネート」と略記する場合がある)も好適に用いることができる。
 フッ素化環状カーボネートとしては、炭素原子数2~6のフッ素化アルキレン基を有する環状カーボネートが挙げられ、より具体的には、例えばフッ素化エチレンカーボネート及びその誘導体である。前記フッ素化エチレンカーボネート及びその誘導体としては、例えば、エチレンカーボネート又はアルキル基(例えば、炭素原子数1~4個のアルキル基)で置換されたエチレンカーボネートのフッ素化物が挙げられ、中でもフッ素原子が1~8個のエチレンカーボネートのフッ素化物が好ましい。
 フッ素化エチレンカーボネート及びその誘導体としてより具体的には、モノフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4-フルオロ-4-メチルエチレンカーボネート、4,5-ジフルオロ-4-メチルエチレンカーボネート、4-フルオロ-5-メチルエチレンカーボネート、4,4-ジフルオロ-5-メチルエチレンカーボネート、4-(フルオロメチル)-エチレンカーボネート、4-(ジフルオロメチル)-エチレンカーボネート、4-(トリフルオロメチル)-エチレンカーボネート、4-(フルオロメチル)-4-フルオロエチレンカーボネート、4-(フルオロメチル)-5-フルオロエチレンカーボネート、4-フルオロ-4,5-ジメチルエチレンカーボネート、4,5-ジフルオロ-4,5-ジメチルエチレンカーボネート、4,4-ジフルオロ-5,5-ジメチルエチレンカーボネート等が挙げられる。
 中でも、モノフルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート及び4,5-ジフルオロ-4,5-ジメチルエチレンカーボネートよりなる群から選ばれる少なくとも1種がより好ましい。前記4,5-ジフルオロエチレンカーボネートとしては、シス体よりもトランス体が好ましい。非水系電解液に高イオン伝導性を与え、かつ二次電池内における電極上に好適に界面保護被膜を形成するためである。
 尚、フッ素化環状カーボネートは、非水溶媒のみならず下記<1-4.添加剤>に記載の添加剤としても有効な機能を発現する。フッ素化環状カーボネートを溶媒兼添加剤として用いる場合の配合量に明確な境界は存在せず、本明細書において、非水溶媒としての配合量及び添加剤の配合量として記載した配合量をそのまま踏襲できる。
 上記鎖状カルボン酸エステルの種類も特に限定されず、例えば、酢酸メチル、酢酸エチル、酢酸-n-プロピル、酢酸-i-プロピル、酢酸-n-ブチル、酢酸-i-ブチル、酢酸-t-ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸-n-プロピル、プロピオン酸-i-プロピル、プロピオン酸-n-ブチル、プロピオン酸-i-ブチル、プロピオン酸-t-ブチル、酪酸メチル、酪酸エチル等が挙げられる。
 これらの中でも、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチルが、工業的な入手性や非水系電解液二次電池における種々の特性がよい点で好ましい。
 さらに上記環状カルボン酸エステルについても特に限定されず、例えば、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン等が挙げられる。
 これらのなかでも、γ-ブチロラクトンが、工業的な入手性や非水系電解液二次電池における種々の特性がよい点で好ましい。
 上記鎖状エーテルの種類に関しても特に限定されず、例えば、ジメトキシメタン、ジメトキシエタン、ジエトキシメタン、ジエトキシエタン、エトキシメトキシメタン、エトキシメトキシエタン等が挙げられる。
 これらのなかでも、ジメトキシエタン、ジエトキシエタンが、工業的な入手性や非水系電解液二次電池における種々の特性がよい点で好ましい。
 また、上記環状エーテルも特に限定はされず、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
 また、上記含燐有機溶媒に関しても特に限定されず、例えば、燐酸トリメチル、燐酸トリエチル、燐酸トリフェニル、燐酸トリス(2,2,2-トリフルオロエチル)、亜燐酸トリメチル、亜燐酸トリエチル、亜燐酸トリフェニル、トリメチルホスフィンオキシド、トリエチルホスフィンオキシド、トリフェニルホスフィンオキシド等が挙げられる。
 上記含硫黄有機溶媒の種類についても、特に限定されず、例えば、エチレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホラン、スルホレン、ジメチルスルホン、エチルメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン、ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフィド、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド等を挙げることができる。
 上記含硼素有機溶媒も、特に限定されず、例えば、2,4,6-トリメチルボロキシン、2,4,6-トリエチルボロキシン等のボロキシンなどが挙げられる。
 以上説明した非水溶媒のなかでも、鎖状カーボネート及び環状カーボネート又は鎖状カルボン酸エステル及び環状カルボン酸エステルが、非水系電解液非水系電解液二次電池における種々の特性がよい点で好ましく、それらのなかでも、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、ビス(2,2,2-トリフルオロエチル)カーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、γ-ブチロラクトンがより好ましく、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、2,2,2-トリフルオロエチルメチルカーボネート、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチルがより好ましい。
 これらの非水溶媒は1種を単独で用いても、2種類以上を併用してもよいが、2種以上の併用が好ましい。例えば、環状カーボネート類の高誘電率溶媒と、鎖状カーボネート類や鎖状エステル類等の低粘度溶媒とを併用するのが好ましい。
 非水溶媒の好ましい組合せの1つは、環状カーボネート類と鎖状カーボネート類を主体とする組合せである。なかでも、非水溶媒全体に占める環状カーボネート類と鎖状カーボネート類との合計が、好ましくは80容量%以上、より好ましくは85容量%以上、特に好ましくは90容量%以上であり、かつ環状カーボネート類と鎖状カーボネート類との体積比(環状カーボネート類の総体積:鎖状カーボネート類の総体積)が、好ましくは0.5:9.5~7:3、より好ましくは1:9~5:5、更に好ましくは1.5:8.5~4:6、特に好ましくは2:8~3.5:6.5の組合せである。これらの非水溶媒の組み合わせを用いて作製された二次電池では、サイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスがよくなるので好ましい。
 環状カーボネート類と鎖状カーボネート類の好ましい組み合わせの例としては、エチレンカーボネートと鎖状カーボネート類の組み合わせが挙げられ、例えば、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
 これらのエチレンカーボネートと鎖状カーボネート類との組み合わせに、更にプロピレンカーボネートを加えた組み合わせも好ましい。プロピレンカーボネートを含有する場合、前述の通りエチレンカーボネートとプロピレンカーボネートの容量比を99:1~40:60とするか、非水溶媒全体に占めるプロピレンカーボネートの量を10容量%以下とするか、またはこれら双方を満足するようにする必要がある。また、前記容量比は、好ましくは95:5~45:55であり、より好ましくは85:15~50:50である。更に、非水溶媒全体に占めるプロピレンカーボネートの量を、0.1容量%以上、10容量%以下とすると、エチレンカーボネートと鎖状カーボネート類との組み合わせの特性を維持したまま、更に、優れた放電負荷特性が得られるので好ましい。非水溶媒全体に占めるプロピレンカーボネートの量は、より好ましくは1容量%、特に好ましくは2容量%以上であり、また、より好ましくは8容量%以下、特に好ましくは5容量%以下である。
 これらの中で、鎖状カーボネート類として非対称鎖状カーボネート類を含有するものが更に好ましく、
特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートを含有するもの、
或いはこれらに加えて更にプロピレンカーボネートを含有するものが、二次電池のサイクル特性と放電負荷特性のバランスがよいので好ましい。特に、非対称鎖状カーボネート類がエチルメチルカーボネートであるものが好ましく、また、ジアルキルカーボネートを構成するアルキル基の炭素数が1~2であるものが好ましい。
 本発明において好ましい非水溶媒の他の例は、鎖状カルボン酸エステル類を含有するものである。特に、上記、環状カーボネート類と鎖状カーボネート類の混合溶媒に、鎖状カルボン酸エステル類を含有するものが、二次電池の放電負荷特性向上の観点から好ましく、この場合、鎖状カルボン酸エステル類としては、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチルが、特に好ましい。非水溶媒に占める鎖状カルボン酸エステル類の容量は、好ましくは5容量%以上、より好ましくは8容量%以上、特に好ましくは10容量%以上であり、好ましくは50容量%以下、より好ましくは35容量%以下、特に好ましくは30容量%以下、とりわけ好ましくは25容量%以下である。
 <1-3.一般式(1)で示される化合物>
 本発明の非水系電解液は、下記一般式(1)で示される化合物(以下、「特定エステル」と称する場合がある)を必須成分として含有する。本発明の非水系電解液においては、特定エステルのうち1種を用いても、2種以上を任意の組合せ及び比率で併用してもよい。
Figure JPOXMLDOC01-appb-C000008

一般式(1)において、nは1~4の整数である。
およびRはそれぞれ独立して、水素、フッ素、およびフッ素で置換されていてもよい炭素数1以上5以下の炭化水素基のいずれかである。なお、nが2以上である場合、複数存在するR同士及びR同士は、互いに同一であっても異なっていてもよい。また、RおよびRは互いに結合し、環を形成していてもよい。
は、カルボニル基、スルフィニル基、スルホニル基、及び下記一般式(2)で表される基のいずれかである。
Figure JPOXMLDOC01-appb-C000009

一般式(2)において、Rは、フッ素、およびフッ素で置換されていてもよい炭素数1以上10以下の炭化水素基のいずれかである。
 本発明では、特定エステルを所定量含有する非水系電解液を使用することで、非水系電解液二次電池の初期不可逆容量、初期効率及び高温サイクル特性を向上させることが可能である。この作用・原理は明確ではないが、本発明者らは以下のように考える。ただし、本発明は、以下に記述する作用・原理に限定されるものではない。
 本発明の特定エステルは、化合物自身が充電負極上にて還元され、その還元生成物により被膜状の構造物を形成することで、負極を保護するものと考えられる。この被膜状の構造物は、絶縁体であるがゆえに電解液の分解という副反応を抑制すると同時に、リチウム等の金属イオン伝導体であるがゆえに電極反応を阻害しないため、非水系電解液二次電池の充放電効率を向上させる。
 このように充放電効率を向上させる観点から、前記還元生成物がコンパクトであることが好ましく、これは言い換えると、緻密に堆積できる化合物が好ましい。被膜状構造物が緻密でない場合は、電解液が構造物の空隙に含浸してしまい、前記構造物がその機能を発現することができないためである。
 この点、本発明に使用される特定エステルは、RおよびRが水素、フッ素またはフッ素で置換されていてもよい炭素数1以上5以下の炭化水素基であり、比較的コンパクトな側鎖であるため、化合物全体として立体障害が少なく、その還元生成物が緻密に堆積できるところが特長である。
 上記、炭化水素基の炭素数は1以上5以下であり、好ましくは4以下、より好ましくは3以下、更に好ましくは2以下である。中でも、Rの炭素数とRの炭素数を合わせて5以下であることが好ましく、より好ましくは4以下、更に好ましくは3以下、特に好ましくは2以下である(例えば、Rが水素でRがメチル基であってもよい)。炭素数が上記範囲内であると、コンパクトな還元生成物を生成できることに加えて、特定エステルを含んだ非水系電解液の粘度が低粘度に抑えられ、非水系電解液二次電池の製造工程が短時間で済むためである。
 また、RおよびRが結合して環を形成していないことが好ましい。環を形成していないと、還元生成物が堆積して被膜状の構造物を形成する際に、立体障害になりにくいためである。
 上記炭化水素基の具体例としては、RおよびRが結合せず、環を形成していない場合、アルキル基、アルケニル基、アルキニル基が挙げられる。
 前記アルキル基の具体例として、メチル基、エチル基、プロピル基、1-メチルエチル基、ブチル基、1-メチルプロピル基、2-メチルプロピル基、1,1-ジメチルエチル基、ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、が挙げられ、これらは一部または全ての水素がフッ素で置換されていてもよい。
 前記アルケニル基の具体例としては、エテニル基、プロペニル基、ブテニル基、ペンテニル基が挙げられ、これらは一部または全ての水素がフッ素で置換されていてもよい。
 前記アルキニル基の具体例としては、エチニル基、プロピニル基、ブチニル基、ペンチニル基が挙げられ、これらは一部または全ての水素がフッ素で置換されていてもよい。
 上記炭化水素のうち好ましくはアルキル基であり、より好ましくは、メチル基、エチル基、プロピル基、ブチル基、ペンチル基であり、更に好ましくはメチル基、エチル基、プロピル基、ブチル基であり、より更に好ましくはメチル基、エチル基、プロピル基であり、特に好ましくはメチル基、エチル基である。
 RおよびRが結合し、環を形成している場合、RおよびRが一体となった炭化水素基は、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、エチリデン基、プロピリデン基、ブチリデン基、ペンチリデン基、ビニリデン基、エチリジン基、プロピリジン基、ブチリジン基、ペンチリジン基などが挙げられ、好ましくはエチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基であり、より好ましくはエチレン基、トリメチレン基、テトラメチレン基であり、更に好ましくはエチレン基、トリメチレン基であり、特に好ましくはエチレン基である。
 上記一般式(1)において、nは上記の通り1~4の整数であり、環(一般式(1)の、二つのO、R、カルボニル炭素及びRが結合した炭素により構成される環)の構造安定性の観点から、1であることが好ましい。
 上記一般式(1)で示される特定エステルにおいて、Rは、カルボニル基、スルフィニル基、スルホニル基、及び上記一般式(2)で表される基のいずれかであるが、製造の容易さ、および特定エステルによって形成される被膜状構造物の金属イオン伝導性の観点から好ましくはカルボニル基、スルフィニル基、スルホニル基であり、より好ましくはカルボニル基またはスルホニル基であり、最も好ましいのはカルボニル基である。
 さらに、上記一般式(2)において、Rは、フッ素、フッ素で置換されていてもよい炭素数1以上10以下の炭化水素基のいずれかであるが、これらの中でも、特定エステルによって形成される被膜状構造物の緻密さの観点からフッ素が好ましい。
 以上説明した本発明における特定エステルの分子量に特に制限はなく、本発明の効果を著しく損なわない限り任意であるが、好ましくは250以下、より好ましくは200以下、さらに好ましくは180以下、特に好ましくは150以下、最も好ましくは120以下が実用的である。上記分子量の範囲内にあると、特定エステルが非水系電解液を構成する非水溶媒に対する溶解性に優れ、より効果的に優れた効果を奏しやすくなる。
 一般式(1)で示される特定エステルの好ましい具体例としては、以下のものが挙げられる。特定エステルの中でも非水系電解液中での溶解性に優れ、非水系電解液の生産性を高めやすいためである。
Figure JPOXMLDOC01-appb-C000010
 また、特定エステルの反応性の観点からは、本発明に使用される特定エステルは、下記一般式(3)で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(3)において、RおよびRは上記一般式(1)と同様である。すなわち、これらはそれぞれ独立して、水素、フッ素、およびフッ素で置換されていてもよい炭素数1以上5以下の炭化水素基のいずれかである。また、RおよびRは互いに結合し、環を形成していてもよいが、還元生成物が上記還元生成物を生成する際に立体障害になりにくい観点から、環を形成していないことが好ましい。
 特定エステルのより好ましい例としては、以下のものが挙げられる。炭素、水素、酸素のみを構成元素とするため人体や環境への影響が小さく抑えられるからである。
Figure JPOXMLDOC01-appb-C000012
 さらに好ましい例としては、以下のものが挙げられる。上記の通り、還元生成物による被膜状の堆積物を緻密にすることができると推定できるためである。
Figure JPOXMLDOC01-appb-C000013
 これらの中でも特に好ましいのは、下記構造式(4)~(5)で示される特定エステル(一般式(3)において、Rが水素であり、Rが水素又はメチル基である化合物)である。これらはその製造原料が工業的に入手し易いものであり、非水系電解液の製造コストが低く抑えられるためである。
Figure JPOXMLDOC01-appb-C000014
 最も好ましいのは上記構造式(5)で表される特定エステルである。高純度の原料が工業的に入手しやすいため、非水系電解液の製造工程が簡略化できるためである。(5)で表される特定エステルは光学活性であるが、なかでもS体が好ましい。原料が安価で入手しやすく、また精製も容易であるためである。
 上記特定エステルに関して、その製造方法に特に制限はなく、公知の方法を任意に選択して製造することが可能である。例えば、上記構造式(4)で表される特定エステルや構造式(5)で表される特定エステルは、Journal of the Chemical Society(1951), 1357.に従って合成することができる。
 本発明の非水系電解液全量(100質量%)中の特定エステルの割合は、合計で0.01質量%以上4.5質量%以下である必要がある。特定エステルの濃度が過剰であると、二次電池において還元生成物が多過ぎるために負極表面を過剰に覆ってしまい、電極反応を阻害してしまう。また、非水系電解液のコストも増加してしまう。上記の濃度であれば、電極界面での金属イオンの脱溶媒和がより好適に進行するため、電池特性を最適にすることが可能となる。
 同様な観点から、前記特定エステルの割合は、好ましくは0.1質量%以上であり、好ましくは3.5質量%以下、より好ましくは3質量%以下、さらに好ましくは2質量%以下、特に好ましくは1.8質量%以下、最も好ましくは1.6質量%以下である。
 特定エステルは、非水系電解液に含有させ実際に非水系電解液二次電池の作製に供すると、その電池を解体して再び非水系電解液を抜き出しても、その中の含有量が著しく低下している場合が多い。従って、電池から抜き出した非水系電解液から、特定エステルが極少量でも検出できるものは本発明に含まれるとみなされる。また、特定エステルは、非水系電解液として実際に非水系電解液二次電池の作製に供すると、その電池を解体して再び抜き出した非水系電解液には特定エステルが極少量しか含有されていなかった場合であっても、非水系電解液二次電池の他の構成部材である正極、負極若しくはセパレータ上で検出される場合も多い。従って、正極、負極、セパレータから特定エステルが検出された場合は、その合計量を非水系電解液に含まれていたと仮定して、それが0.01質量%以上4.5質量%以下になる場合は、本発明に含まれるとみなされる。
 <1-4.添加剤>
 本発明の非水系電解液は、本発明の効果を著しく損なわない範囲において、各種の添加剤を含有していてもよい。添加剤は、従来公知のものを任意に用いることができる。添加剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 添加剤の例としては、過充電防止剤や、二次電池の高温保存後の容量維持特性やサイクル特性を改善するための助剤等が挙げられる。これらの中でも、高温保存後の容量維持特性や抵抗増加を抑制するための助剤として、フッ素原子を有する環状カーボネート、炭素―炭素不飽和結合を有する環状カーボネート、ジフルオロリン酸塩、フルオロ硫酸塩、イソシアナト基を有する化合物、シアノ基を有する化合物、環状スルホン酸エステル、及びジカルボン酸錯体塩からなる群より選ばれる少なくとも1種の化合物(以下、「特定添加剤」と略記する場合がある)を含有することが好ましい。以下、特定添加剤とその他添加剤に分けて説明する。
 <1-4-1.特定添加剤>
 特定添加剤はいずれも、負極上にて還元された特定エステルと反応し、電極反応に好適な被膜状構造物を協奏的に形成するものと考えられる。この作用・原理は、以下に記述する作用・原理に限定されるものではないが、本発明者らは以下のように推測する。(i)フッ素原子を有する環状カーボネート、(ii)炭素―炭素不飽和結合を有する環状カーボネート、(iii)ジフルオロリン酸塩、(iv)フルオロ硫酸塩、(v)イソシアナト基を有する化合物、(vi)シアノ基を有する化合物、(vii)環状スルホン酸エステル、及び(viii)ジカルボン酸錯体塩について、特定エステルの還元により負極表面にて形成された求核種Nuとの推定反応機構を以下の反応式(1)に示す。
Figure JPOXMLDOC01-appb-C000015
(反応式中、Catは塩を構成するカチオンである。Qはフッ素を含む2価の有機基、Qは炭素―炭素不飽和結合を含む2価の有機基、QおよびQは1価の有機基、Qは2価の有機基、Qは単結合または2価の有機基、Xは錯体中心元素を含む2価の有機基をそれぞれ表す。)
 上記反応式(1)に示すように、特定添加剤はいずれも求核攻撃受容部位を内包しており、示した各反応を開始反応として、特定エステルと特定添加剤を原料とする、電極反応を好適にサポートする被膜状の構造物を協奏的に形成するものと推定される。
 特定添加剤の分子量は、特に限定されず、本発明の効果を著しく損なわない限り任意であるが、50以上、250以下であるものが好ましい。この範囲であると、非水系電解液中での特定添加剤の溶解性が良好で、添加の効果を十分に発現することができる。
 また、特定添加剤の製造方法にも特に制限は無く、公知の方法を任意に選択して製造することが可能である。また、市販のものを用いてもよい。
 また、特定添加剤は、本発明の非水系電解液中に、いずれか1種を単独で含有させてもよく、2種以上を任意の組み合わせ及び比率で併有させてもよい。
 <1-4-1-1.フッ素原子を有する環状カーボネート>
 特定添加剤のうち、フッ素原子を有する環状カーボネート(以下、「F化カーボネート」と略記する場合がある)としては、フッ素原子を有するものであれば、特に限定されず、任意のF化カーボネートを用いることができる。
 F化カーボネートが有するフッ素原子の数も、1個以上であれば特に限定されず、2個以下が特に好ましい。
 F化カーボネートの例としては、フルオロエチレンカーボネート及びその誘導体等が挙げられる。
 フルオロエチレンカーボネート及びその誘導体の具体例としては、フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4-フルオロ-4-メチルエチレンカーボネート、4,5-ジフルオロ-4-メチルエチレンカーボネート、4-フルオロ-5-メチルエチレンカーボネート、4,4-ジフルオロ-5-メチルエチレンカーボネート、4-(フルオロメチル)-エチレンカーボネート、4-(ジフルオロメチル)-エチレンカーボネート、4-(トリフルオロメチル)-エチレンカーボネート、4-(フルオロメチル)-4-フルオロエチレンカーボネート、4-(フルオロメチル)-5-フルオロエチレンカーボネート、4-フルオロ-4,5-ジメチルエチレンカーボネート、4,5-ジフルオロ-4,5-ジメチルエチレンカーボネート、4,4-ジフルオロ-5,5-ジメチルエチレンカーボネート等が挙げられる。
 これらのF化カーボネートの中でも、フルオロエチレンカーボネート、4-(フルオロメチル)-エチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネートが好ましく、特にフルオロエチレンカーボネートは、安定な被膜状の構造物の形成に寄与することができ、最も好適に用いられる。
 F化カーボネートの含有量は、特に限定されず、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液100質量%中、好ましくは0.001質量%以上、10.0質量%以下である。
 F化カーボネートの含有量がこの下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の製造コストの増加を避けることができる。F化カーボネートの含有量は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.2質量%以上、また、より好ましくは8.0質量%以下、特に好ましくは6.0質量%以下である。
 尚、F化カーボネートは、添加剤のみならず、上記<1-2.非水溶媒>に記載の非水溶媒としても有効な機能を発現する。F化カーボネートを溶媒兼添加剤として用いる場合の配合量に明確な境界は存在せず、本明細書において、非水溶媒としての配合量及び添加剤の配合量として記載した配合量をそのまま踏襲できる。
 <1-4-1-2.炭素―炭素不飽和結合を有する環状カーボネート>
 特定添加剤のうち、炭素―炭素不飽和結合を有する環状カーボネート(以下、「不飽和カーボネート」と略記する場合がある)としては、炭素-炭素二重結合や炭素-炭素三重結合等の炭素-炭素不飽和結合を有するカーボネートであれば、特に限定されず、任意の不飽和カーボネートを用いることができる。
 不飽和カーボネートの例としては、ビニレンカーボネート類、炭素-炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類等が挙げられる。
 ビニレンカーボネート類の具体例としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート等が挙げられる。
 炭素-炭素不飽和結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート等が挙げられる。
 中でも、ビニレンカーボネート、ビニルエチレンカーボネート、エチニルエチレンカーボネートが好ましく、特にビニレンカーボネートは、安定な被膜状の構造物の形成に寄与することができ、より好適に用いられる。
 不飽和カーボネートの含有量は、特に限定されず、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液100質量%中、好ましくは0.001質量%以上、5.0質量%以下である。
 不飽和カーボネートの含有量がこの下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の初期の抵抗増加を避けることができる。不飽和カーボネートの含有量は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.2質量%以上、また、より好ましくは4.0質量%以下、更に好ましくは3.0質量%以下、特に好ましくは2.0質量%以下である。
 <1-4-1-3.ジフルオロリン酸塩>
 特定添加剤のうち、ジフルオロリン酸塩としては、ジフルオロリン酸アニオンを構成要素とする塩であれば、特に限定されず、任意のジフルオロリン酸塩を用いることができる。
 ジフルオロリン酸塩の例としては、ジフルオロリン酸リチウム塩、ジフルオロリン酸ナトリウム塩、ジフルオロリン酸カリウム塩、ジフルオロリン酸アンモニウム塩等が挙げられる。
 中でも、ジフルオロリン酸リチウム塩が、安定な被膜状の構造物の形成に寄与することができるため、より好適に用いられる。
 ジフルオロリン酸塩の含有量は、特に限定されず、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液100質量%中、好ましくは0.001質量%以上、2.0質量%以下である。
 ジフルオロリン酸塩の含有量がこの下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の製造コストの増加を避けることができる。ジフルオロリン酸塩の含有量は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.2質量%以上、また、より好ましくは1.5質量%以下、更に好ましくは1.2質量%以下、特に好ましくは1.1質量%以下である。
 <1-4-1-4.フルオロ硫酸塩>
 特定添加剤のうち、フルオロ硫酸塩としては、フルオロ硫酸アニオンを構成要素とする塩であれば、特に限定されず、任意のフルオロ硫酸塩を用いることができる。
 フルオロ硫酸塩の例としては、フルオロ硫酸リチウム塩、フルオロ硫酸ナトリウム塩、フルオロ硫酸カリウム塩、フルオロ硫酸アンモニウム塩等が挙げられる。
 中でも、フルオロ硫酸リチウム塩が、安定な被膜状の構造物の形成に寄与することができるため、より好適に用いられる。
 フルオロ硫酸塩の含有量は、特に限定されず、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液100質量%中、好ましくは0.001質量%以上、4.0質量%以下である。
 フルオロ硫酸塩の含有量がこの下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の製造コストの増加を避けることができ、また正極集電体に頻繁に用いられるアルミニウムや外装体に頻繁に用いられる金属缶の腐食による性能低下を避けることができる。フルオロ硫酸塩の含有量は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.2質量%以上、また、より好ましくは3.0質量%以下、更に好ましくは2.5質量%以下、特に好ましくは2.0質量%以下である。
 <1-4-1-5.イソシアナト基を有する化合物>
 特定添加剤のうち、イソシアナト基を有する化合物(以下、「イソシアネート」と略記する場合がある)としては、特に限定されず、任意のイソシアネートを用いることができる。
 イソシアネートの例としては、モノイソシアネート類、ジイソシアネート類、トリイソシアネート類等が挙げられる。
 前記モノイソシアネート類の具体例としては、イソシアナトメタン、イソシアナトエタン、1-イソシアナトプロパン、1-イソシアナトブタン、1-イソシアナトペンタン、1-イソシアナトヘキサン、1-イソシアナトヘプタン、1-イソシアナトオクタン、1-イソシアナトノナン、1-イソシアナトデカン、イソシアナトシクロヘキサン、メトキシカルボニルイソシアネート、エトキシカルボニルイソシアネート、プロポキシカルボニルイソシアネート、ブトキシカルボニルイソシアネート、メトキシスルホニルイソシアネート、エトキシスルホニルイソシアネート、プロポキシスルホニルイソシアネート、ブトキシスルホニルイソシアネート、フルオロスルホニルイソシアネート等が挙げられる。
 前記ジイソシアネート類の具体例としては、1,4-ジイソシアナトブタン、1,5-ジイソシアナトペンタン、1,6-ジイソシアナトヘキサン、1,7-ジイソシアナトヘプタン、1,8-ジイソシアナトオクタン、1,9-ジイソシアナトノナン、1,10-ジイソシアナトデカン、1,3-ジイソシアナトプロペン、1,4-ジイソシアナト-2-ブテン、1,4-ジイソシアナト-2-フルオロブタン、1,4-ジイソシアナト-2,3-ジフルオロブタン、1,5-ジイソシアナト-2-ペンテン、1,5-ジイソシアナト-2-メチルペンタン、1,6-ジイソシアナト-2-ヘキセン、1,6-ジイソシアナト-3-ヘキセン、1,6-ジイソシアナト-3-フルオロヘキサン、1,6-ジイソシアナト-3,4-ジフルオロヘキサン、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネート、1,2-ビス(イソシアナトメチル)シクロヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、1,2-ジイソシアナトシクロヘキサン、1,3-ジイソシアナトシクロヘキサン、1,4-ジイソシアナトシクロヘキサン、ジシクロヘキシルメタン-1,1’-ジイソシアネート、ジシクロヘキシルメタン-2,2’-ジイソシアネート、ジシクロヘキシルメタン-3,3’-ジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、イソホロンジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイルビス(メチル=イソシアネート)、ビシクロ[2.2.1]ヘプタン-2,6-ジイルビス(メチル=イソシアネート)、2,4,4-トリメチルヘキサメチレンジイソシアナート、2,2,4-トリメチルヘキサメチレンジイソシアナート等が挙げられる。
 前記トリイソシアネート類の具体例としては、1,6,11-トリイソシアナトウンデカン、4-イソシアナトメチル-1,8-オクタメチレンジイソシアネート、1,3,5-トリイソシアネートメチルベンゼン、1,3,5-トリス(6-イソシアナトヘキサ-1-イル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、4-(イソシアナトメチル)オクタメチレン=ジイソシアネート等が挙げられる。
 以上挙げた中でも、1,6-ジイソシアナトヘキサン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,3,5-トリス(6-イソシアナトヘキサ-1-イル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、2,4,4-トリメチルヘキサメチレンジイソシアナート、2,2,4-トリメチルヘキサメチレンジイソシアナートが、工業的に入手し易いものであり、本発明の非水系電解液の製造コストが低く抑えられる点で好ましい。また技術的な観点からも安定な被膜状の構造物の形成に寄与することができるため、これらのイソシアネートがより好適に用いられる。
 イソシアネートの含有量は、特に限定されず、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液100質量%中、好ましくは0.001質量%以上、1.0質量%以下である。
 イソシアネートの含有量がこの下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の初期の抵抗増加を避けることができる。イソシアネートの含有量は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.2質量%以上、また、より好ましくは0.8質量%以下、更に好ましくは0.7質量%以下、特に好ましくは0.6質量%以下である。
 <1-4-1-6.シアノ基を有する化合物>
 特定添加剤のうち、シアノ基を有する化合物(以下、「ニトリル」と略記する場合がある)としては、特に限定されず、任意のニトリルを用いることができる。
 ニトリルの例としては、モノニトリル類、ジニトリル類等が挙げられる。
 前記モノニトリル類の具体例としては、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ラウロニトリル、2-メチルブチロニトリル、トリメチルアセトニトリル、ヘキサンニトリル、シクロペンタンカルボニトリル、シクロヘキサンカルボニトリル、アクリロニトリル、メタクリロニトリル、クロトノニトリル、3-メチルクロトノニトリル、2-メチル-2-ブテン二トリル、2-ペンテンニトリル、2-メチル-2-ペンテンニトリル、3-メチル-2-ペンテンニトリル、2-ヘキセンニトリル、フルオロアセトニトリル、ジフルオロアセトニトリル、トリフルオロアセトニトリル、2-フルオロプロピオニトリル、3-フルオロプロピオニトリル、2,2-ジフルオロプロピオニトリル、2,3-ジフルオロプロピオニトリル、3,3-ジフルオロプロピオニトリル、2,2,3-トリフルオロプロピオニトリル、3,3,3-トリフルオロプロピオニトリル、3,3’-オキシジプロピオニトリル、3,3’-チオジプロピオニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル、ペンタフルオロプロピオニトリル等が挙げられる。
 前記ジニトリル類の具体例としては、マロノニトリル、サクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert-ブチルマロノニトリル、メチルサクシノニトリル、2,2-ジメチルサクシノニトリル、2,3-ジメチルサクシノニトリル、2,3,3-トリメチルサクシノニトリル、2,2,3,3-テトラメチルサクシノニトリル、2,3-ジエチル-2,3-ジメチルサクシノニトリル、2,2-ジエチル-3,3-ジメチルサクシノニトリル、ビシクロヘキシル-1,1-ジカルボニトリル、ビシクロヘキシル-2,2-ジカルボニトリル、ビシクロヘキシル-3,3-ジカルボニトリル、2,5-ジメチル-2,5-ヘキサンジカルボニトリル、2,3-ジイソブチル-2,3-ジメチルサクシノニトリル、2,2-ジイソブチル-3,3-ジメチルサクシノニトリル、2-メチルグルタロニトリル、2,3-ジメチルグルタロニトリル、2,4-ジメチルグルタロニトリル、2,2,3,3-テトラメチルグルタロニトリル、2,2,4,4-テトラメチルグルタロニトリル、2,2,3,4-テトラメチルグルタロニトリル、2,3,3,4-テトラメチルグルタロニトリル、マレオニトリル、フマロニトリル、1,4-ジシアノペンタン、2,6-ジシアノヘプタン、2,7-ジシアノオクタン、2,8-ジシアノノナン、1,6-ジシアノデカン、1,2-ジジアノベンゼン、1,3-ジシアノベンゼン、1,4-ジシアノベンゼン、3,3’-(エチレンジオキシ)ジプロピオニトリル、3,3’-(エチレンジチオ)ジプロピオニトリル等が挙げられる。
 以上挙げた中でも、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル等のジニトリル類が安定な被膜状の構造物の形成に寄与することができるため、より好適に用いられる。
 ニトリルの含有量は、特に限定されず、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液100質量%中、好ましくは0.001質量%以上、5.0質量%以下である。
 ニトリルの含有量がこの下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の初期の抵抗増加を避け、レート特性の悪化を抑制することができる。ニトリルの含有量は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.2質量%以上、また、より好ましくは4.0質量%以下、更に好ましくは3.0質量%以下、特に好ましくは2.5質量%以下である。
 <1-4-1-7.環状スルホン酸エステル>
 特定添加剤のうち、環状スルホン酸エステルとしては、特に限定されず、任意の環状スルホン酸エステルを用いることができる。
 環状スルホン酸エステルの例としては、飽和環状スルホン酸エステル、不飽和環状スルホン酸エステル等が挙げられる。
 前記飽和環状スルホン酸エステルの具体例としては、1,3-プロパンスルトン、1-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン、1-メチル-1,3-プロパンスルトン、2-メチル-1,3-プロパンスルトン、3-メチル-1,3-プロパンスルトン、1,4-ブタンスルトン、1-フルオロ-1,4-ブタンスルトン、2-フルオロ-1,4-ブタンスルトン、3-フルオロ-1,4-ブタンスルトン、4-フルオロ-1,4-ブタンスルトン、1-メチル-1,4-ブタンスルトン、2-メチル-1,4-ブタンスルトン、3-メチル-1,4-ブタンスルトン、4-メチル-1,4-ブタンスルトン等が挙げられる。
 前記不飽和環状スルホン酸エステルの具体例としては、1-プロペン-1,3-スルトン、2-プロペン-1,3-スルトン、1-フルオロ-1-プロペン-1,3-スルトン、2-フルオロ-1-プロペン-1,3-スルトン、3-フルオロ-1-プロペン-1,3-スルトン、1-フルオロ-2-プロペン-1,3-スルトン、2-フルオロ-2-プロペン-1,3-スルトン、3-フルオロ-2-プロペン-1,3-スルトン、1-メチル-1-プロペン-1,3-スルトン、2-メチル-1-プロペン-1,3-スルトン、3-メチル-1-プロペン-1,3-スルトン、1-メチル-2-プロペン-1,3-スルトン、2-メチル-2-プロペン-1,3-スルトン、3-メチル-2-プロペン-1,3-スルトン、1-ブテン-1,4-スルトン、2-ブテン-1,4-スルトン、3-ブテン-1,4-スルトン、1-フルオロ-1-ブテン-1,4-スルトン、2-フルオロ-1-ブテン-1,4-スルトン、3-フルオロ-1-ブテン-1,4-スルトン、4-フルオロ-1-ブテン-1,4-スルトン、1-フルオロ-2-ブテン-1,4-スルトン、2-フルオロ-2-ブテン-1,4-スルトン、3-フルオロ-2-ブテン-1,4-スルトン、4-フルオロ-2-ブテン-1,4-スルトン、1-フルオロ-3-ブテン-1,4-スルトン、2-フルオロ-3-ブテン-1,4-スルトン、3-フルオロ-3-ブテン-1,4-スルトン、4-フルオロ-3-ブテン-1,4-スルトン、1-メチル-1-ブテン-1,4-スルトン、2-メチル-1-ブテン-1,4-スルトン、3-メチル-1-ブテン-1,4-スルトン、4-メチル-1-ブテン-1,4-スルトン、1-メチル-2-ブテン-1,4-スルトン、2-メチル-2-ブテン-1,4-スルトン、3-メチル-2-ブテン-1,4-スルトン、4-メチル-2-ブテン-1,4-スルトン、1-メチル-3-ブテン-1,4-スルトン、2-メチル-3-ブテン-1,4-スルトン、3-メチル-3-ブテン-1,4-スルトン、4-メチル-3-ブテン-1,4-スルトン等が挙げられる。
 以上挙げた中でも、1,3-プロパンスルトン、1-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン、1-プロペン-1,3-スルトンが、入手の容易さや安定な被膜状の構造物の形成に寄与することができる点から、より好適に用いられる。
 環状スルホン酸エステルの含有量は、特に限定されず、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液100質量%中、好ましくは0.001質量%以上、3.0質量%以下である。
 環状スルホン酸エステルの含有量がこの下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の製造コストの増加を避けることができる。環状スルホン酸エステルの含有量は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.2質量%以上、また、より好ましくは2.5質量%以下、更に好ましくは2.0質量%以下、特に好ましくは1.8質量%以下である。
 <1-4-1-8.ジカルボン酸錯体塩>
 特定添加剤のうち、ジカルボン酸錯体塩としては、特に限定されず、任意のジカルボン酸錯体塩を用いることができる。
 ジカルボン酸錯体塩の例としては、錯体中心元素がホウ素であるジカルボン酸錯体塩、錯体中心元素がリンであるジカルボン酸錯体塩等が挙げられる。
 錯体中心元素がホウ素であるジカルボン酸錯体塩の具体例としては、リチウムビス(オキサラト)ボレート、リチウムジフルオロ(オキサラト)ボレート、リチウムビス(マロナト)ボレート、リチウムジフルオロ(マロナト)ボレート、リチウムビス(メチルマロナト)ボレート、リチウムジフルオロ(メチルマロナト)ボレート、リチウムビス(ジメチルマロナト)ボレート、リチウムジフルオロ(ジメチルマロナト)ボレート等が挙げられる。
 錯体中心元素がリンであるジカルボン酸錯体塩の具体例としては、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロ(オキサラト)ホスフェート、リチウムトリス(マロナト)ホスフェート、リチウムジフルオロビス(マロナト)ホスフェート、リチウムテトラフルオロ(マロナト)ホスフェート、リチウムトリス(メチルマロナト)ホスフェート、リチウムジフルオロビス(メチルマロナト)ホスフェート、リチウムテトラフルオロ(メチルマロナト)ホスフェート、リチウムトリス(ジメチルマロナト)ホスフェート、リチウムジフルオロビス(ジメチルマロナト)ホスフェート、リチウムテトラフルオロ(ジメチルマロナト)ホスフェート等が挙げられる。
 以上挙げた中でも、リチウムビス(オキサラト)ボレート、リチウムジフルオロ(オキサラト)ボレート、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロ(オキサラト)ホスフェートが、入手の容易さや安定な被膜状の構造物の形成に寄与することができる点から、より好適に用いられる。
 ジカルボン酸錯体塩の含有量は、特に限定されず、本発明の効果を著しく損なわない限り任意であるが、本発明の非水系電解液100質量%中、好ましくは0.001質量%以上、2.5質量%以下である。
 ジカルボン酸錯体塩の含有量がこの下限以上であると、非水系電解液二次電池に、十分なサイクル特性向上効果をもたらすことができる。また、この上限以下であると、非水系電解液二次電池の製造コストの増加を避けることができ、また、ガス発生による非水系電解液二次電池の体積膨張を避けることができる。ジカルボン酸錯体塩の含有量は、より好ましくは0.01質量%以上、更に好ましくは0.1質量%以上、特に好ましくは0.2質量%以上、また、より好ましくは2.0質量%以下、更に好ましくは1.5質量%以下、特に好ましくは1.2質量%以下である。
 <1-4-2.その他添加剤>
 特定添加剤以外の添加剤としては、過充電防止剤、高温保存後の容量維持特性やサイクル特性を改善するための助剤等が挙げられる。
 <1-4-2-1.過充電防止剤>
 過充電防止剤の具体例としては、トルエン、キシレン等のトルエン誘導体;
ビフェニル、2-メチルビフェニル、3-メチルビフェニル、4-メチルビフェニル等の無置換又はアルキル基で置換されたビフェニル誘導体;
o-ターフェニル、m-ターフェニル、p-ターフェニル等の無置換又はアルキル基で置換されたターフェニル誘導体;
無置換又はアルキル基で置換されたターフェニル誘導体の部分水素化物;
シクロペンチルベンゼン、シクロヘキシルベンゼン等のシクロアルキルベンゼン誘導体;
クメン、1,3-ジイソプロピルベンゼン、1,4-ジイソプロピルベンゼン等のベンゼン環に直接結合する第3級炭素を有するアルキルベンゼン誘導体;
t-ブチルベンゼン、t-アミルベンゼン、t-ヘキシルベンゼン等のベンゼン環に直接結合する第4級炭素を有するアルキルベンゼン誘導体;
ジフェニルエーテル、ジベンゾフラン等の酸素原子を有する芳香族化合物;
等の芳香族化合物が挙げられる。
 更に、他の過充電防止剤の具体例としては、フルオロベンゼン、フルオロトルエン、ベンゾトリフルオリド、2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、1,6-ジフルオロアニソール等の含フッ素アニソール化合物;等も挙げられる。
 なお、これらの過充電防止剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、任意の組合せで併用する場合にも上記に例示した同一の分類の化合物で併用してもよく、異なる分類の化合物で併用してもよい。
 過充電防止剤を配合する場合、過充電防止剤の配合量は、本発明の効果を著しく損なわない限り任意であるが、非水系電解液全体(100質量%)に対して、好ましくは0.001質量%以上、10質量%以下の範囲である。
 本発明の非水系電解液に過充電防止剤を、本発明の効果を著しく損なわない範囲で含有させることで、万が一、誤った使用法や充電装置の異常等の過充電保護回路が正常に動作しない状況になり過充電されたとしても問題のないように、非水系電解液二次電池の安全性を向上させることができるので好ましい。
 <1-4-2-2.助剤>
 一方、高温保存後の容量維持特性やサイクル特性を改善するための助剤の具体例としては、次のようなものが挙げられる。
 コハク酸、マレイン酸、フタル酸等のジカルボン酸の無水物;
エリスリタンカーボネート、スピロ-ビス-ジメチレンカーボネート等の不飽和結合を有するカーボネートに該当するもの以外のカーボネート化合物;
エチレンサルファイト等の環状サルファイト;
メタンスルホン酸メチル、ブスルファン等の鎖状スルホン酸エステル;
スルホラン、スルホレン等の環状スルホン;
ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン等の鎖状スルホン;
ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフィド等のスルフィド類;
N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド等のスルホンアミド類等の含硫黄化合物;
1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン等の含窒素化合物;
ヘプタン、オクタン、シクロヘプタン等の炭化水素化合物;
フルオロベンゼン、ジフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等。
 なお、これらの助剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 また、本発明の非水系電解液がこれらの助剤を含有する場合、その含有量は本発明の効果を著しく損なわない限り任意であるが、非水系電解液全体(100質量%)に対して、好ましくは0.001質量%以上、10質量%以下の範囲である。
 <1-5.非水系電解液の製造方法>
 本発明の非水系電解液は、前述の非水溶媒に、電解質と、特定エステルと、必要に応じて前述の「特定添加剤」や「その他添加剤」などを溶解することにより調製することができる。
 非水系電解液を調製するに際しては、非水系電解液の各原料、すなわち、リチウム塩等の電解質、特定エステル、非水溶媒、特定添加剤、その他添加剤等は、予め脱水しておくことが好ましい。脱水の程度としては、通常50ppm以下、好ましくは30ppm以下となるまで脱水することが望ましい。
 非水系電解液中の水分を除去することで、水の電気分解、水とリチウム金属との反応、リチウム塩の加水分解等が生じ難くなる。脱水の手段としては特に制限はないが、例えば、脱水する対象が非水溶媒等の液体の場合は、モレキュラーシーブ等の乾燥剤を用いればよい。また脱水する対象が電解質等の固体の場合は、分解が起きる温度未満で加熱して乾燥させればよい。
 [2.非水系電解液二次電池]
 本発明の非水系電解液二次電池は、金属イオンを吸蔵及び放出可能な負極及び正極と、以上説明した本発明の非水系電解液とを備えるものである。以下、当該二次電池について説明する。
 <2-1.電池構成>
 本発明の非水系電解液二次電池は、非水系電解液以外の構成については、従来公知の非水系電解液二次電池と同様であり、通常は、本発明の非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。従って、本発明の非水系電解液二次電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
 <2-2.非水系電解液>
 非水系電解液としては、上述の本発明の非水系電解液を用いる。なお、本発明の趣旨を逸脱しない範囲において、本発明の非水系電解液に対し、その他の非水系電解液を混合して用いることも可能である。
 <2-3.負極>
 負極に使用される負極活物質としては、電気化学的に金属イオンを吸蔵・放出可能なものであれば、特に制限はない。その具体例としては、炭素質材料、金属化合物系材料、リチウム含有金属複合酸化物材料等が挙げられる。これら1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
 なかでも、炭素質材料および金属化合物系材料が好ましい。金属化合物系材料の中では、ケイ素を含む材料が好ましく、したがって負極活物質としては、炭素質材料およびケイ素を含む材料が特に好ましい。
 <2-3-1.炭素質材料>
 負極活物質として用いられる炭素質材料としては、特に限定されないが、下記(ア)~(エ)から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよい二次電池を与えるので好ましい。
 (ア)天然黒鉛
 (イ)人造炭素質物質並びに人造黒鉛質物質を400℃から3200℃の範囲で1回以上熱処理して得られた炭素質材料
 (ウ)負極活物質層が少なくとも2種類の異なる結晶性を有する炭素質から成り立ち、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料
 (エ)負極活物質層が少なくとも2種類の異なる配向性を有する炭素質から成り立ち、かつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料
 (ア)~(エ)の炭素質材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 上記(イ)における人造炭素質物質又は人造黒鉛質物質の具体例としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの;
ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材;
ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物;
炭化可能な有機物及びこれらの炭化物;並びに、
炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n-へキサン等の低分子有機溶媒に溶解させた溶液状の炭化物などが挙げられる。
 その他、上記(ア)~(エ)の炭素質材料はいずれも従来公知であり、その製造方法は当業者によく知られており、またこれらの市販品を購入することもできる。そして、以上具体的に説明したものを含めて、負極活物質としての炭素質材料は、次に示す(1)~(8)のいずれか1項目又は複数の項目を同時に満たしていることが望ましい。
 (1)X線パラメータ
 炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)は、0.335nm以上であることが好ましく、また、通常0.360nm以下であり、0.350nm以下が好ましく、0.345nm以下がより好ましい。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、好ましくは1.0nm以上であり、より好ましくは1.5nm以上、更に好ましくは2nm以上である。
 (2)体積基準平均粒径
 炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で、通常1μm以上であり、3μm以上がより好ましく、5μm以上が更に好ましく、7μm以上が特に好ましく、また、好ましくは100μm以下であり、50μm以下がより好ましく、40μm以下が更に好ましく、30μm以下が特に好ましく、25μm以下がとりわけ好ましい。体積基準平均粒径が上記範囲内であると、二次電池の不可逆容量が増大しすぎることもなく、初期の電池容量の損失を招くことを回避しやすくなる。また、後述するとおり塗布により負極を作製する際に、均一に塗面しやすく、電池製作工程上望ましい。
 体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素質材料粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA-700)を用いて行なう。該測定で求められるメジアン径を、炭素質材料の体積基準平均粒径と定義する。
 (3)ラマンR値、ラマン半値幅
 炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値として、好ましくは0.01以上であり、0.03以上がより好ましく、0.1以上が更に好ましく、また、好ましくは1.5以下であり、1.2以下がより好ましく、1以下が更に好ましく、0.5以下が特に好ましい。
 ラマンR値が上記範囲にあると、粒子表面の結晶性が適度な範囲となり、充放電に伴ってLiが層間に入るサイトの減少を抑制でき、充電受入性が低下し難くなる。また、集電体に後述する負極形成材料(スラリー)を塗布した後、プレスすることによって負極を高密度化した場合にも、二次電池の負荷特性の低下を招き難くなる。さらに、効率の低下やガス発生の増加を招き難くなる。
 また、炭素質材料の1580cm-1付近のラマン半値幅は、特に限定されないが、10cm-1以上であり、15cm-1以上が好ましく、また、通常100cm-1以下であり、80cm-1以下が好ましく、60cm-1以下がより好ましく、40cm-1以下が特に好ましい。
 ラマン半値幅が上記範囲にあると、粒子表面の結晶性が適度な範囲となり、充放電に伴ってLiが層間に入るサイトの減少を抑制でき、充電受入性が低下し難くなる。また、集電体に負極形成材料を塗布した後、プレスすることによって負極を高密度化した場合にも、二次電池の負荷特性の低下を招き難くなる。さらに、効率の低下やガス発生の増加を招き難くなる。
 ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm-1付近のピークPAの強度IAと、1360cm-1付近のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出する。該測定で算出されるラマンR値を、本発明における炭素質材料のラマンR値と定義する。また、得られるラマンスペクトルの1580cm-1付近のピークPAの半値幅を測定し、これを本発明における炭素質材料のラマン半値幅と定義する。
 また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー   :15~25mW
・分解能           :10~20cm-1
・測定範囲          :1100cm-1~1730cm-1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理      :単純平均、コンボリューション5ポイント
 (4)BET比表面積
 炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値として、好ましくは0.1m・g-1以上であり、0.7m・g-1以上がより好ましく、1.0m・g-1以上が更に好ましく、1.5m・g-1以上が特に好ましく、また、好ましくは100m・g-1以下であり、25m・g-1以下がより好ましく、15m・g-1以下が更に好ましく、10m・g-1以下が特に好ましい。
 BET比表面積の値が上記範囲内にあると、炭素質材料を負極活物質として用いた場合の充電時にリチウム等のカチオンの受け入れ性がよく、リチウム等が電極表面で析出し難くなり、二次電池の安定性低下を回避しやすい。さらに。非水系電解液との反応性が抑制でき、ガス発生が少なく、好ましい二次電池が得られ易い。
 BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明における炭素質材料のBET比表面積と定義する。
 (5)円形度
 炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。 炭素質材料の粒径が3~40μmの範囲にある粒子の円形度は1に近いほど望ましい。好ましくは0.1以上であり、0.5以上がより好ましく、0.8以上が更に好ましく、0.85以上が特に好ましく、0.9以上がとりわけ好ましい。
 二次電池の高電流密度充放電特性は、一般に円形度が大きいほど向上する。従って、円形度が上記範囲を下回ると、負極活物質の充填性が低下し、粒子間の抵抗が増大して、二次電池の短時間高電流密度充放電特性が低下する場合がある。
 炭素質材料の円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行う。具体的には試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6~400μmに指定し、粒径が3~40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明における炭素質材料の円形度と定義する。
 円形度を向上させる方法は、特に限定されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダー若しくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
 (6)タップ密度
 炭素質材料のタップ密度は、好ましくは0.1g・cm-3以上であり、0.5g・cm-3以上がより好ましく、0.7g・cm-3以上が更に好ましく、1g・cm-3以上が特に好ましい。また、2g・cm-3以下が好ましく、1.8g・cm-3以下がより好ましく、1.6g・cm-3以下が特に好ましい。
 タップ密度が、上記範囲内であると、負極として用いた場合に充填密度を十分確保でき、高容量の二次電池を得ることができる。さらに、電極中の粒子間の空隙が少なくなり過ぎず、粒子間の導電性が確保され、好ましい電池特性が得易くなる。
 タップ密度の測定は、以下の通り行う。試料を目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明における炭素質材料のタップ密度として定義する。
 (7)配向比
 炭素質材料の配向比は、好ましくは0.005以上であり、0.01以上がより好ましく、0.015以上が更に好ましく、また、好ましくは0.67以下である。配向比が、上記範囲を下回ると、二次電池の高密度充放電特性が低下する場合がある。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
 炭素質材料の配向比は、試料を加圧成型してからX線回折により測定することにより求める。具体的には、試料0.47gを直径17mmの成型機に充填し、58.8MN・m-2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素質材料の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表される比を算出する。該測定で算出される配向比を、本発明における炭素質材料の配向比と定義する。
 このときのX線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
 ・ターゲット:Cu(Kα線)グラファイトモノクロメーター
 ・スリット :
    発散スリット=0.5度
    受光スリット=0.15mm
    散乱スリット=0.5度
 ・測定範囲及びステップ角度/計測時間:
   (110)面:75度≦2θ≦80度 1度/60秒
   (004)面:52度≦2θ≦57度 1度/60秒
 (8)アスペクト比(粉)
 炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下がより好ましい。アスペクト比が、上記範囲を外れると、極板化時に負極形成材料のスジ引きが起きたりし、均一な塗布面が得られず、二次電池の高電流密度充放電特性が低下する場合がある。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
 炭素質材料のアスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。具体的には厚さ50ミクロン以下の金属の端面に固定した任意の50個の炭素質材料粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明における炭素質材料のアスペクト比と定義する。
 <2-3-2.金属化合物系材料>
 負極活物質として用いられる金属化合物系材料としては、リチウムを吸蔵・放出可能であれば、特に限定されず、リチウムと合金を形成する単体金属若しくは合金、又はそれらの酸化物、炭化物、窒化物、珪化物、硫化物、燐化物等の化合物が使用できる。このような金属化合物としては、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn等の金属を含有する化合物が挙げられる。なかでも、リチウムと合金を形成する単体金属若しくは合金であることが好ましく、周期表13族又は14族の金属・半金属元素(すなわち炭素を除く。また以降では、金属及び半金属をまとめて「金属」と呼ぶ。)を含む材料であることがより好ましく、更には、ケイ素(Si)、スズ(Sn)又は鉛(Pb)(以下、これら3種の元素を「SSP金属元素」という場合がある)の単体金属若しくはこれら原子を含む合金、又は、それらの金属(SSP金属元素)の化合物であることが好ましい。最も好ましいのはケイ素である。これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
 SSP金属元素から選ばれる少なくとも1種の原子を有する負極活物質の例としては、いずれか1種のSSP金属元素の金属単体、2種以上のSSP金属元素からなる合金、1種又は2種以上のSSP金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上のSSP金属元素を含有する化合物、又は、その化合物の酸化物、炭化物、窒化物、珪化物、硫化物、燐化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、二次電池の高容量化が可能である。
 また、これらの複合化合物が、金属単体、合金、又は非金属元素等の数種の元素と複雑に結合した化合物も、前記SSP金属元素から選ばれる少なくとも1種の原子を有する負極活物質の例として挙げることができる。より具体的には、例えばケイ素やスズでは、これらの元素と負極として動作しない金属との合金を用いることができる。また例えばスズでは、スズと、ケイ素以外で負極として作用する金属と、更に負極として動作しない金属と、非金属元素との組み合わせで5~6種の元素を含むような複雑な化合物も用いることができる。
 これらの負極活物質の中でも、二次電池にしたときに単位質量当りの容量が大きいことから、いずれか1種のSSP金属元素の金属単体、2種以上のSSP金属元素の合金、SSP金属元素の酸化物や炭化物、窒化物等が好ましく、特に、ケイ素及び/又はスズの金属単体、合金、酸化物や炭化物、窒化物等が好ましく、ケイ素の金属単体、合金、酸化物や炭化物等が最も好ましい。
 また、金属単体又は合金を用いるよりは二次電池の単位質量当りの容量には劣るものの、サイクル特性に優れることから、ケイ素及び/又はスズを含有する以下の化合物も好ましい。
 ・ケイ素及び/又はスズと酸素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下の「ケイ素及び/又はスズの酸化物」。
 ・ケイ素及び/又はスズと窒素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下の「ケイ素及び/又はスズの窒化物」。
 ・ケイ素及び/又はスズと炭素との元素比が通常0.5以上であり、好ましくは0.7以上、更に好ましくは0.9以上、また、通常1.5以下であり、好ましくは1.3以下、更に好ましくは1.1以下の「ケイ素及び/又はスズの炭化物」。
 なお、以上説明した金属化合物系材料は、いずれか1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 <2-3-3.リチウム含有金属複合酸化物材料>
 負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば特に限定はされないが、チタンを含むリチウム含有複合金属酸化物材料が好ましく、リチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する場合がある。)が特に好ましい。すなわち、スピネル構造を有するリチウムチタン複合酸化物を、リチウムイオン非水系電解液二次電池用負極活物質に含有させて用いると、二次電池の出力抵抗が大きく低減するので特に好ましい。
 また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。
 負極活物質として好ましいリチウムチタン複合酸化物としては、下記一般式(5)で表されるリチウムチタン複合酸化物が挙げられる。
  LiTi     (5)
(一般式(5)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表す。また、一般式(5)中、0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であることが、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。)
 上記の一般式(5)で表される組成の中でも、
 (a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
 (b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
 (c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
 上記化合物の特に好ましい代表的な組成は、(a)ではLi4/3Ti5/3、(b)ではLiTi、(c)ではLi4/5Ti11/5である。また、z≠0の構造については、例えば、Li4/3Ti4/3Al1/3が好ましいものとして挙げられる。
 本発明における負極活物質としてのリチウムチタン複合酸化物は、上記した要件に加えて、更に、下記の[1]~[7]に示した物性及び形状等の特徴の内、少なくとも1項目を満たしていることが好ましく、複数の項目を同時に満たすことが特に好ましい。
 [1]BET比表面積
 負極活物質として用いられるリチウムチタン複合酸化物のBET比表面積は、BET法を用いて測定した比表面積の値として、0.5m・g-1以上が好ましく、0.7m・g-1以上がより好ましく、1.0m・g-1以上が更に好ましく、1.5m・g-1以上が特に好ましく、また、200m・g-1以下が好ましく、100m・g-1以下がより好ましく、50m・g-1以下が更に好ましく、25m・g-1以下が特に好ましい。
 BET比表面積が、上記範囲内であると、負極活物質の非水系電解液と接する反応面積が減少し難く、二次電池の出力抵抗を増加を防ぐことができる。さらに、チタンを含有する金属酸化物の結晶の表面や端面の部分の増加を抑え、これに起因する、結晶の歪も生じ難くなるため、好ましい二次電池が得易くなる。
 リチウムチタン複合酸化物のBET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下、350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行なう。該測定で求められる比表面積を、本発明におけるリチウムチタン複合酸化物のBET比表面積と定義する。
 [2]体積基準平均粒径
 リチウムチタン複合酸化物の体積基準平均粒径(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)で定義される。
 リチウムチタン複合酸化物の体積基準平均粒径は、0.1μm以上が好ましく、0.5μm以上がより好ましく、0.7μm以上が更に好ましく、また、50μm以下が好ましく、40μm以下がより好ましく、30μm以下が更に好ましく、25μm以下が特に好ましい。
 リチウムチタン複合酸化物の体積基準平均粒径の測定は具体的には、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(10mL)にリチウムチタン複合酸化物粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA-700)を用いて行なう。該測定で求められるメジアン径を、リチウムチタン複合酸化物の体積基準平均粒径と定義する。
 リチウムチタン複合酸化物の体積平均粒径が、上記範囲内であると、負極作製時にバインダーの量を抑えることでき、結果的に電池容量の低下を防ぎ易くなる。さらに、負極極板化時に、均一な塗面になりやすく、電池製作工程上望ましい。
 [3]平均一次粒子径
 一次粒子が凝集して二次粒子を形成している場合においては、リチウムチタン複合酸化物の平均一次粒子径は、0.01μm以上が好ましく、0.05μm以上がより好ましく、0.1μm以上が更に好ましく、0.2μm以上が特に好ましく、また、2μm以下が好ましく、1.6μm以下がより好ましく、1.3μm以下が更に好ましく、1μm以下が特に好ましい。平均一次粒子径が、上記範囲内であると、球状の二次粒子を形成し易く、比表面積を確保し易くなるために、出力特性等の電池性能の低下を防ぎ易い。
 なお、リチウムチタン複合酸化物の平均一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、粒子が確認できる倍率、例えば10000~100000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、その平均値をとることにより平均一次粒子径が求められる。
 [4]形状
 リチウムチタン複合酸化物の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等のいずれでもよいが、中でも一次粒子が凝集して二次粒子を形成しており、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。
 通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子の活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐことができる。
 また、板状等、軸配向性の粒子であるよりも、球状又は楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作製する際の導電材との混合においても、均一に混合されやすいため好ましい。
 [5]タップ密度
 リチウムチタン複合酸化物のタップ密度は、0.05g・cm-3が好ましく、0.1g・cm-3以上がより好ましく、0.2g・cm-3以上が更に好ましく、0.4g・cm-3以上が特に好ましく、また、2.8g・cm-3以下が好ましく、2.4g・cm-3以下が更に好ましく、2g・cm-3以下が特に好ましい。リチウムチタン複合酸化物のタップ密度が、上記範囲内であると、負極として用いた場合に十分な充填密度を確保でき、また粒子間の接触面積を確保できるため、粒子間の抵抗が増加し難く、二次電池の出力抵抗の増加を防ぎ易い。さらに、電極中の粒子間の空隙も適度なため、非水系電解液の流路を確保できるため、出力抵抗の増加を防ぎ易い。
 リチウムチタン複合酸化物のタップ密度の測定は、以下のようにして行う。試料を目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から密度を算出する。該測定で算出されるタップ密度を、本発明におけるリチウムチタン複合酸化物のタップ密度として定義する。
 [6]円形度
 リチウムチタン複合酸化物の球形の程度として、円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。
 リチウムチタン複合酸化物の円形度は、1に近いほど望ましい。好ましくは、0.10以上であり、0.80以上がより好ましく、0.85以上が更に好ましく、0.90以上が特に好ましい。二次電池の高電流密度充放電特性は、一般に円形度が大きいほどが向上する。従って、円形度が上記範囲内であると、負極活物質の充填性が低下することなく、粒子間の抵抗の増大を防ぎ、短時間高電流密度充放電特性の低下を予防することができる。
 リチウムチタン複合酸化物の円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行なう。具体的には試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6~400μmに指定し、粒径が3~40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明におけるリチウムチタン複合酸化物の円形度と定義する。
 [7]アスペクト比
 リチウムチタン複合酸化物のアスペクト比は、1以上が好ましく、また、5以下が好ましく、4以下がより好ましく、3以下が更に好ましく、2以下が特に好ましい。アスペクト比が、上記範囲内であると、極板化時にスジ引きが発生し難くなり、均一な塗布面が得られ易いため、二次電池の短時間高電流密度充放電特性の低下を予防することができる。なお、上記範囲の下限は、リチウムチタン複合酸化物のアスペクト比の理論下限値である。
 リチウムチタン複合酸化物のアスペクト比の測定は、リチウムチタン複合酸化物の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50μm以下の金属の端面に固定した任意の50個のリチウムチタン複合酸化物粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明におけるリチウムチタン複合酸化物のアスペクト比と定義する。
 (リチウムチタン複合酸化物の製造法)
 リチウムチタン複合酸化物の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
 例えば、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質とLiOH、LiCO、LiNOのLi源を均一に混合し、高温で焼成して活物質を得る方法が挙げられる。
 特に球状又は楕円球状の活物質を作成するには種々の方法が考えられる。一例として、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
 また、別の例として、酸化チタン等のチタン原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
 更に別の方法として、酸化チタン等のチタン原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
 また、以上挙げた各種の方法における工程中において、Ti以外の元素、例えば、Al、Mn、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、C、Si、Sn、Agを、チタンを含有する金属酸化物構造中及び/又はチタンを含有する酸化物に接する形で存在させることも可能である。これらの元素を前記の形態で存在させ、負極活物質中に含有させることで、二次電池の作動電圧、容量を制御することが可能となる。
 <2-3-4.負極の構成、物性、調製方法>
 上記活物質材料を含有する負極及び電極化手法、集電体については、公知の技術構成を採用することができるが、次に示す(i)~(vi)のいずれか1項目又は複数の項目を同時に満たしていることが望ましい。
 (i)負極作製
 負極の製造は、本発明の効果を著しく制限しない限り、公知のいずれの方法をも用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリー状の負極形成材料とし、これを集電体に塗布、乾燥した後にプレスすることによって、負極活物質層を形成することができる。
 (ii)集電体
 負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
 また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、更に好ましくは圧延法による圧延銅箔と、電解法による電解銅箔である。
 (iii)集電体と負極活物質層の厚さの比
 集電体と負極活物質層の厚さの比は特には限定されないが、「(非水系電解液の注液工程の直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下がより好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上がより好ましく、1以上が特に好ましい。
 集電体と負極活物質層の厚さの比が、上記範囲を上回ると、二次電池の高電流密度充放電時に集電体がジュール熱による発熱を生じる場合がある。また、上記範囲を下回ると、負極活物質に対する集電体の体積比が増加し、二次電池の容量が減少する場合がある。
 (iv)電極密度
 負極活物質を電極化した際の電極構造は、特には限定されず、集電体上に存在している負極活物質の密度は、1g・cm-3以上が好ましく、1.2g・cm-3以上がより好ましく、1.3g・cm-3以上が更に好ましく、また、4g・cm-3以下が好ましく、3g・cm-3以下がより好ましく、2.5g・cm-3以下が更に好ましく、1.7g・cm-3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲内であると、負極活物質粒子が破壊されにくく、二次電池の初期不可逆容量の増加や、集電体/負極活物質界面付近への非水電解液の浸透性低下による高電流密度充放電特性悪化を防ぎ易くなる。さらに、負極活物質間の導電性を確保することができ、電池抵抗が増大することなく、単位容積当たりの容量を稼ぐことができる。
 (v)バインダー・溶媒等
 負極活物質層を形成するためのスラリーは、通常、負極活物質に対して、溶媒にバインダー(結着剤)、増粘剤等を混合したものを加えて調製される。
 負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
 その具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;
SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;
スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;
EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;
シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;
ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;
アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物
等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
 前記水系溶媒の例としては水、アルコール等が挙げられ、前記有機系溶媒の例としてはN-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルフォキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
 特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。
 なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 負極活物質100質量部に対するバインダーの割合は、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、0.6質量部以上が更に好ましく、また、20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下が更に好ましく、8質量部以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲内であると、電池容量に寄与しないバインダーの割合が多くならないので、電池容量の低下を招き難くなる。さらに、負極の強度低下も招き難くなる。
 特に、負極形成材料であるスラリーがSBRに代表されるゴム状高分子を主要成分として含有する場合には、負極活物質100質量部に対するバインダーの割合は、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、0.6質量部以上が更に好ましく、また、5質量部以下が好ましく、3質量部以下がより好ましく、2質量部以下が更に好ましい。
 また、スラリーがポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分として含有する場合には、負極活物質100質量部に対するバインダーの割合は、1質量部以上が好ましく、2質量部以上がより好ましく、3質量部以上が更に好ましく、また、15質量部以下が好ましく、10質量部以下がより好ましく、8質量部以下が更に好ましい。
 増粘剤は、通常、スラリーの粘度を調整するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、燐酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 増粘剤を用いる場合、負極活物質100質量部に対する増粘剤の割合は、通常0.1質量部以上であり、0.5質量部以上が好ましく、0.6質量部以上がより好ましい。また、前記割合は通常5質量部以下であり、3質量部以下が好ましく、2質量部以下がより好ましい。負極活物質に対する増粘剤の割合が、上記範囲内にあると、スラリーの塗布性が良好となる。さらに、負極活物質層に占める負極活物質の割合も適度なものとなり、電池容量が低下する問題や負極活物質間の抵抗が増大する問題が生じ難くなる。
 (vi)負極板の面積
 負極板の面積は、特に限定されないが、対向する正極板よりもわずかに大きくして、正極板が負極板から外にはみ出すことがないように設計することが好ましい。また、二次電池の充放電を繰り返したときのサイクル寿命や高温保存による劣化を抑制する観点から、できる限り正極に等しい面積に近づけることが、より均一かつ有効に働く電極割合を高めて特性が向上するので好ましい。特に、二次電池が大電流で使用される場合には、この負極板の面積の設計が重要である。
 <2-4.正極>
 以下に本発明の非水系電解液二次電池に使用される正極について説明する。
 <2-4-1.正極活物質>
 以下に前記正極に使用される正極活物質について説明する。
 (1)組成
 正極活物質としては、電気化学的に金属イオンを吸蔵・放出可能なものであれば特に制限はないが、例えば、電気化学的にリチウムイオンを吸蔵・放出可能なものが好ましく、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属燐酸化合物、リチウム含有遷移金属ケイ酸化合物、リチウム含有遷移金属ホウ酸化合物が挙げられる。
 前記リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、前記複合酸化物の具体例としては、LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の金属で置換したもの等が挙げられる。
 置換されたものの具体例としては、例えば、LiNi0.5Mn0.5、LiNi0.85Co0.10Al0.05、LiNi0.33Co0.33Mn0.33、LiMn、LiMn1.8Al0.2、Li1.1Mn1.9Al0.1、LiMn1.5Ni0.5等が挙げられる。
 中でも、リチウムとマンガンを含有する複合酸化物がより好ましい。コバルト又はニッケルは、資源量も少なく高価な金属であり、自動車用途等の高容量が必要とされる大型電池では活物質の使用量が大きくなることから、コストの点で好ましくないため、より安価な遷移金属としてマンガンを主成分に用いることが望ましい。すなわち、上記の具体例のうち、LiNi0.5Mn0.5、LiNi0.33Co0.33Mn0.33、LiMn、LiMn1.8Al0.2、Li1.1Mn1.9Al0.1、LiMn1.5Ni0.5等をより好ましい具体例として挙げることができる。
 また、化合物としての安定性や、製造の容易さによる調達コストも鑑みると、スピネル型構造を有するリチウムマンガン複合酸化物が特に好ましい。すなわち、上記の具体例のうちLiMn、LiMn1.8Al0.2、Li1.1Mn1.9Al0.1、LiMn1.5Ni0.5等を特に好ましい具体例として挙げることができる。
 前記リチウム含有遷移金属燐酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、前記燐酸化合物の具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等の燐酸鉄類、LiCoPO等の燐酸コバルト類、LiMnPO等の燐酸マンガン類、これらのリチウム遷移金属燐酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の金属で置換したもの等が挙げられる。
 前記リチウム含有遷移金属ケイ酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、前記ケイ酸化合物の具体例としては、例えば、LiFeSiO等のケイ酸鉄類、LiCoSiO等のケイ酸コバルト類、これらのリチウム遷移金属ケイ酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の金属で置換したもの等が挙げられる。
 前記リチウム含有遷移金属ホウ酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、前記ホウ酸化合物の具体例としては、例えば、LiFeBO等のホウ酸鉄類、LiCoBO等のホウ酸コバルト類、これらのリチウム遷移金属ホウ酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Nb、Mo、Sn、W等の他の金属で置換したもの等が挙げられる。
 (2)表面被覆
 上記の正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質(以後、適宜「表面付着物質」という)が付着したものを、本発明における正極活物質として用いることもできる。前記表面付着物質の例としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素が挙げられる。
 これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて正極活物質に含浸添加させた後に加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により、正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることができる。
 正極活物質の表面に付着している表面付着物質の質量は、正極活物質の質量と表面付着物質の質量の合計に対して、好ましくは0.1ppm以上であり、1ppm以上がより好ましく、10ppm以上が更に好ましい。また、好ましくは20%以下であり、10%以下がより好ましく、5%以下が更に好ましい。
 表面付着物質により、正極活物質表面での非水系電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。また、付着量が上記範囲内にあると、その効果を十分に発現することができ、リチウムイオンの出入りを阻害することなく二次電池の抵抗も増加し難くなる。
 (3)形状
 正極活物質粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が可能である。また、一次粒子が凝集して二次粒子を形成しており、その二次粒子の形状が球状又は楕円球状であってもよい。
 (4)タップ密度
 正極活物質のタップ密度は、好ましくは0.5g・cm-3以上であり、1.0g・cm-3以上がより好ましく、1.5g・cm-3以上が更に好ましい。また、好ましくは4.0g・cm-3以下であり、3.7g・cm-3以下がより好ましい。
 タップ密度の高い正極活物質粉体を用いることにより、高密度の正極活物質層を形成することができる。正極活物質のタップ密度が上記範囲内にあると、正極活物質層形成時に必要な分散媒の量が適度なものとなるため、導電材やバインダーの量も適量となる。このため、正極活物質層への正極活物質の充填率が制約されることなく、電池容量への影響も少なくなる。
 正極活物質のタップ密度の測定は、以下のように行う。試料を目開き300μmの篩を通過させて、20cmのタッピングセルに試料を落下させてセル容積を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量から密度を算出する。該測定で算出されるタップ密度を、本発明における正極活物質のタップ密度として定義する。
 (5)メジアン径d50
 正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、レーザー回折/散乱式粒度分布測定装置を用いて測定することができる。
 メジアン径d50は、好ましくは0.1μm以上であり、0.5μm以上がより好ましく、1μm以上が更に好ましく、3μm以上が特に好ましく、また、好ましくは30μm以下であり、20μm以下がより好ましく、16μm以下が更に好ましく、15μm以下が特に好ましい。メジアン径d50が上記範囲内であると、高嵩密度品を得易くなくなり、さらに、粒子内のリチウムの拡散に時間がかかるらないため、電池特性が低下し難くなる。また、二次電池の正極作成すなわち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際には、スジ引き等も生じ難くなる。
 なお、異なるメジアン径d50をもつ正極活物質を2種類以上、任意の比率で混合することで、正極作成時の充填性を更に向上させることもできる。
 正極活物質のメジアン径d50は、0.1質量%ヘキサメタ燐酸ナトリウム水溶液を分散媒として用い、粒度分布計(例えば、堀場製作所社製LA-920)を用いて、正極活物質の分散液に対して5分間の超音波分散後に測定屈折率1.24に設定して測定する。
 (6)平均一次粒子径
 一次粒子が凝集して二次粒子を形成している場合、正極活物質の平均一次粒子径は、好ましくは0.01μm以上であり、0.05μm以上がより好ましく、0.08μm以上が更に好ましく、0.1μm以上が特に好ましく、また、好ましくは3μm以下であり、2μm以下がより好ましく、1μm以下が更に好ましく、0.6μm以下が特に好ましい。上記範囲内であると、球状の二次粒子を形成し易くなり、粉体充填性が適度なものとなり、比表面積を十分確保できるため、出力特性等の電池性能の低下を抑制することができる。
 なお、正極活物質の平均一次粒子径は、走査型電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、その平均値をとることにより求められる。
 (7)BET比表面積
 正極活物質のBET比表面積は、BET法を用いて測定した比表面積の値が、好ましくは0.2m・g-1以上であり、0.3m・g-1以上がより好ましく、0.4m・g-1以上が更に好ましく、また、好ましくは4.0m・g-1以下であり、2.5m・g-1以下がより好ましく、1.5m・g-1以下が更に好ましい。BET比表面積の値が、上記範囲内であると、電池性能の低下を防ぎ易い。さらに、十分なタップ密度を確保でき、正極活物質層形成時の塗布性が良好となる。
 正極活物質のBET比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用いて測定する。具体的には、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって比表面積を測定する。該測定で求められる比表面積を、本発明における正極活物質のBET比表面積と定義する。
 (8)正極活物質の製造法
 正極活物質の製造法としては、本発明の要旨を超えない範囲で特には制限されないが、いくつかの方法が挙げられ、無機化合物の製造法として一般的な方法が用いられる。
 特に球状ないし楕円球状の活物質を作製するには種々の方法が考えられるが、例えばその1例として、遷移金属硝酸塩、硫酸塩等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作製回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
 また、別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、必要に応じ他の元素の原料物質を水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これにLiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法が挙げられる。
 更に別の方法の例として、遷移金属硝酸塩、硫酸塩、水酸化物、酸化物等の遷移金属原料物質と、LiOH、LiCO、LiNO等のLi源と、必要に応じ他の元素の原料物質とを水等の溶媒中に溶解ないし粉砕分散して、それをスプレードライヤー等で乾燥成型して球状ないし楕円球状の前駆体とし、これを高温で焼成して活物質を得る方法が挙げられる。
 <2-4-2.正極構造と作製法>
 以下に、本発明に使用される正極の構成及びその作製法について説明する。
 (正極の作製法)
 正極は、正極活物質粒子とバインダーとを含有する正極活物質層を、集電体上に形成して作製される。正極活物質を用いる正極の製造は、公知のいずれの方法でも作製することができる。例えば、正極活物質とバインダー、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることにより正極を得ることができる。
 正極活物質の正極活物質層中の含有量は、好ましくは60質量%以上であり、70質量%以上がより好ましく、80質量%以上が更に好ましく、また、好ましくは99.9質量%以下であり、99質量%以下がより好ましい。正極活物質の含有量が、上記範囲内であると、電気容量を十分確保できる。さらに、正極の強度も十分なものとなる。なお、本発明における正極活物質粉体は、1種を単独で用いてもよく、異なる組成又は異なる粉体物性の2種以上を任意の組み合わせ及び比率で併用してもよい。2種以上の活物質を組み合わせて用いる際は、前記リチウムとマンガンを含有する複合酸化物を粉体の成分として用いることが好ましい。前記の通り、コバルト又はニッケルは、資源量も少なく高価な金属であり、自動車用途等の高容量が必要とされる大型電池では活物質の使用量が大きくなることから、コストの点で好ましくないため、より安価な遷移金属としてマンガンを主成分に用いることが望ましいためである。
 (導電材)
 導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素質材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 正極活物質層中の導電材の含有量は、好ましくは0.01質量%以上であり、0.1質量%以上がより好ましく、1質量%以上が更に好ましく、また、好ましくは50質量%以下であり、30質量%以下がより好ましく、15質量%以下が更に好ましい。含有量が上記範囲内であると、導電性を十分確保できる。さらに、電池容量の低下も防ぎやすい。
 (バインダー)
 正極活物質層の製造に用いるバインダーは、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に限定されない。
 塗布法で正極を作製する場合は、バインダーは電極製造時に用いる液体媒体に対して溶解又は分散される材料であれば特に限定されないが、その具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;
SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;
スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;
シンジオタクチック-1,2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂状高分子;
ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;
アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物
等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 正極活物質層中のバインダーの含有量は、好ましくは0.1質量%以上であり、1質量%以上がより好ましく、3質量%以上が更に好ましく、また、好ましくは80質量%以下であり、60質量%以下がより好ましく、40質量%以下が更に好ましく、10質量%以下が特に好ましい。バインダーの割合が、上記範囲内であると、正極活物質を十分保持でき、正極の機械的強度を確保できるため、サイクル特性等の電池性能が良好となる。さらに、電池容量や導電性の低下を回避することにもつながる。
 (液体媒体)
 正極活物質層を形成するためのスラリーの調製に用いる液体媒体としては、正極活物質、導電材、バインダー、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
 前記水系媒体の例としては、例えば、水、アルコールと水との混合媒等が挙げられる。前記有機系媒体の例としては、ヘキサン等の脂肪族炭化水素類;
ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;
キノリン、ピリジン等の複素環化合物;
アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;
酢酸メチル、アクリル酸メチル等のエステル類;
ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン等のアミン類;
ジエチルエーテル、テトラヒドロフラン(THF)等のエーテル類;
N-メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;
ヘキサメチルホスファルアミド、ジメチルスルフォキシド等の非プロトン性極性溶媒
等を挙げることができる。なお、これらは、1種を単独で用いてもよく、また2種以上を任意の組み合わせ及び比率で併用してもよい。
 (増粘剤)
 スラリーを形成するための液体媒体として水系媒体を用いる場合、増粘剤と、スチレンブタジエンゴム(SBR)等のラテックスとを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。
 増粘剤としては、本発明の効果を著しく制限しない限り制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、燐酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
 増粘剤を使用する場合には、正極活物質と増粘剤の質量の合計に対する増粘剤の割合は、好ましくは0.1質量%以上であり、0.5質量%以上がより好ましく、0.6質量%以上が更に好ましく、また、好ましくは5質量%以下であり、3質量%以下がより好ましく、2質量%以下が更に好ましい。上記範囲内であると、スラリーの塗布性が良好となり、さらに、正極活物質層に占める活物質の割合が十分なものとなるため、二次電池の容量が低下する問題や正極活物質間の抵抗が増大する問題を回避し易くなる。
 (圧密化)
 集電体への上記スラリーの塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、1g・cm-3以上が好ましく、1.5g・cm-3以上が更に好ましく、2g・cm-3以上が特に好ましく、また、4g・cm-3以下が好ましく、3.5g・cm-3以下が更に好ましく、3g・cm-3以下が特に好ましい。
 正極活物質層の密度が、上記範囲内であると、集電体/活物質界面付近への非水系電解液の浸透性が低下することなく、特に二次電池の高電流密度での充放電特性が良好となる。さらに、活物質間の導電性が低下し難くなり、電池抵抗が増大し難くなる。
 (集電体)
 正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素質材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
 集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素質材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。
 集電体の厚さは任意であるが、好ましくは1μm以上であり、3μm以上がより好ましく、5μm以上が更に好ましく、また、好ましくは1mm以下であり、100μm以下がより好ましく、50μm以下が更に好ましい。集電体の厚さが、上記範囲内であると、集電体として必要な強度を十分確保することができる。さらに、取り扱い性も良好となる。 
 集電体と正極活物質層の厚さの比は特には限定されないが、(非水系電解液注液直前の片面の活物質層厚さ)/(集電体の厚さ)が、好ましくは150以下であり、20以下がより好ましく、10以下が特に好ましく、また、好ましくは0.1以上であり、0.4以上がより好ましく、1以上が特に好ましい。
 集電体と正極活物質層の厚さの比が、上記範囲内であると、二次電池の高電流密度充放電時に集電体がジュール熱による発熱を生じ難くなる。さらに、正極活物質に対する集電体の体積比が増加し難くなり、電池容量の低下を防ぐことができる。
 (電極面積)
 高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、非水系電解液二次電池の外装の表面積に対する前記正極の電極面積の総和を、面積比で20倍以上とすることが好ましく、40倍以上とすることがより好ましい。外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
 (放電容量)
 本発明の非水系電解液を用いる場合、非水系電解液二次電池の1個の電池外装に収納される電池要素のもつ電気容量(電池を満充電状態から放電状態まで放電したときの電気容量)が、1アンペアーアワー(Ah)以上であると、低温放電特性の向上効果が大きくなるため好ましい。そのため、正極板は、放電容量が満充電で、好ましくは3Ah(アンペアアワー)であり、より好ましくは4Ah以上、また、好ましくは20Ah以下であり、より好ましくは10Ah以下になるように設計する。
 上記範囲内であると、大電流の取り出し時に電極反応抵抗による電圧低下が大きくなり過ぎず、電力効率の悪化を防ぐことができる。さらに、パルス充放電時の電池内部発熱による温度分布が大きくなり過ぎず、充放電繰り返しの耐久性が劣り、また、過充電や内部短絡等の異常時の急激な発熱に対して放熱効率も悪くなるといった現象を回避することができる。
 (正極板の厚さ)
 正極板の厚さは、特に限定されないが、高容量かつ高出力、高レート特性の観点から、集電体の厚さを差し引いた正極活物質層の厚さは、集電体の片面に対して、10μm以上が好ましく、20μm以上がより好ましく、また、200μm以下が好ましく、100μm以下がより好ましい。
 <2-5.セパレータ>
 本発明の非水系電解液二次電池において、正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
 セパレータの材料や形状については特に制限は無く、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
 樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、アラミド樹脂、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、更に好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 上記セパレータの厚さは任意であるが、好ましくは1μm以上であり、5μm以上がより好ましく、10μm以上が更に好ましく、また、好ましくは50μm以下であり、40μm以下がより好ましく、30μm以下が更に好ましい。セパレータの厚さが、上記範囲内であると、絶縁性や機械的強度が良好なものとなる。さらに、レート特性等の電池性能の低下を防ぐことができ、非水系電解液二次電池全体としてのエネルギー密度の低下も防ぐことができる。
 更に、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、好ましくは20%以上であり、35%以上がより好ましく、45%以上が更に好ましく、また、好ましくは90%以下であり、85%以下がより好ましく、75%以下が更に好ましい。空孔率が、上記範囲内であると、膜抵抗が大きくなり過ぎず、二次電池のレート特性の悪化を抑制できる。さらに、セパレータの機械的強度も適度なものなり、絶縁性の低下も抑制できる。
 また、セパレータの平均孔径も任意であるが、好ましくは0.5μm以下であり、0.2μm以下がより好ましく、また、好ましくは0.05μm以上である。平均孔径が、上記範囲内であると、短絡が生じ難くなる。さらに、膜抵抗も大きくなり過ぎず、二次電池のレート特性の低下を防ぐことができる。
 一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物類、窒化アルミや窒化ケイ素等の窒化物類、硫酸バリウムや硫酸カルシウム等の硫酸塩類が用いられ、粒子形状若しくは繊維形状のものが用いられる。
 セパレータの形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状のセパレータでは、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。前記の独立した薄膜形状以外に、樹脂製のバインダーを用いて前記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に、90%粒径が1μm未満のアルミナ粒子を使用し、かつフッ素樹脂をバインダーとして使用して多孔層を形成させることが挙げられる。
 <2-6.電池設計>
 (電極群)
 電極群は、前述の正極板と負極板とを前述のセパレータを介してなる積層構造のもの、及び前述の正極板と負極板とを前述のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、好ましくは40%以上であり、50%以上がより好ましく、また、好ましくは95%以下であり、90%以下がより好ましい。電極群占有率が、上記範囲内であると、電池容量が小さくなり難くなる。また、適度な空隙スペースを確保できるため、電池が高温になることによって部材が膨張したり非水系電解液の液成分の蒸気圧が高くなったりして内部圧力が上昇し、二次電池としての充放電繰り返し性能や高温保存特性等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合を回避することができる。
 (集電構造)
 集電構造は特に限定されるものではないが、本発明の非水系電解液による放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の非水系電解液を使用した効果は特に良好に発揮される。
 電極群が前述の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。1枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が前述の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
 (保護素子)
 保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)サーミスター、温度ヒューズ、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等が挙げられる。前記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない電池設計にすることがより好ましい。
 (外装体)
 本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体(外装ケース)内に収納して構成される。この外装体に制限は無く、本発明の効果を著しく損なわない限り公知のものを任意に採用することができる。
 外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に限定されるものではない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金、ニッケル、チタン等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
 上記金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、又は、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
 また、外装ケースの形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
 以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
 なお、実施例及び比較例にて非水系電解液の構成成分として使用した化合物は以下の化合物であり、以下、化合物(a)、化合物(b)、化合物(c)、化合物(d)、化合物(e)と記載する。
Figure JPOXMLDOC01-appb-C000016
 <<実施例1-1~1-4、比較例1-1~1-6>>
 [非水系電解液二次電池の作製]
 <非水系電解液の調製>
 [実施例1-1]
 乾燥アルゴン雰囲気下、エチレンカーボネートとジエチルカーボネートとの混合物(容量比3:7)に、十分に乾燥させたLiPFを1mol/L(非水系電解液中の濃度として)の濃度で溶解させ、更に、十分に乾燥させた、化合物(a)を1.0質量%(非水系電解液中の濃度として)の量で溶解させ、非水系電解液を調製した。この非水系電解液を用いて下記の方法で非水系電解液二次電池を作成し、下記評価を実施した。
 [実施例1-2]
 化合物(a)の濃度を2.0質量%とした以外は実施例1-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [実施例1-3]
 化合物(a)の濃度を3.0質量%とした以外は実施例1-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [実施例1-4]
 化合物(a)の濃度を4.0質量%とした以外は実施例1-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例1-1]
 化合物(a)を非水系電解液中に溶解させなかったこと以外は実施例1-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例1-2]
 化合物(a)の濃度を5.0質量%とした以外は実施例1-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例1-3]
 化合物(a)の濃度を7.0質量%とした以外は実施例1-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例1-4]
 化合物(a)を非水系電解液中に溶解させず、化合物(b)を1.0質量%の量で溶解させた以外は実施例1-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例1-5]
 化合物(a)を非水系電解液中に溶解させず、化合物(b)を4.0質量%の量で溶解させた以外は実施例1-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例1-6]
 化合物(a)を非水系電解液中に溶解させず、化合物(b)を5.0質量%の量で溶解させた以外は実施例1-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 <正極の作製>
 第一の正極活物質としてのアルミニウム置換マンガン酸リチウム(Li1.1Mn1.9Al0.1)67.5質量部、第二の正極活物質としてのリチウムニッケルマンガンコバルト複合酸化物(Li1.05Ni0.33Mn0.33Co0.33)22.5質量部、導電材としてのカーボンブラックを5質量部、結着剤としてのポリフッ化ビニリデン(PVdF)を5質量部とを、N-メチル-2-ピロリドン中で混合・スラリー化し、これを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、ロールプレスを行い正極とした。
 <負極の作製>
 グラファイト粉末97.5質量部に、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)150質量部と、バインダーとしてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)2質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔に均一に塗布して乾燥し、ロールプレスして負極とした。
 <非水系電解液二次電池の製造>
 上記の正極、負極、及びポリオレフィン製セパレータを、負極、セパレータ、正極の順に積層した。こうして得られた電池要素をアルミニウムラミネートフィルムで包み込み、前述の各実施例及び比較例の非水系電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。
 [非水系電解液二次電池の評価]
 ・初期充放電
 25℃の恒温槽中、シート状の非水系電解液二次電池を0.1C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする。以下同様。)で4.2Vまで定電流-定電圧充電した後、0.1Cで2.7Vまで放電した。この時の1st充電容量と1st放電容量を用いて、
  (1st不可逆容量)=(1st充電容量)-(1st放電容量)
で表される1st不可逆容量を算出した。
 続いて0.3Cで4.2Vまで定電流-定電圧充電した後、0.3Cで2.7Vまで放電した。これを2サイクル行い、1st不可逆容量を求める際の1サイクルとあわせて合計3サイクル充放電を行って、非水系電解液二次電池を安定させた。
 下記表1に、1st不可逆容量(上記初期充放電が可能だったセルの1st不可逆容量の平均値)を、比較例1-1を100.0%としたときの相対値で示し、また、試験電池数のうち上記初期充放電を行って1st放電容量を測定することができなかったセルの割合を示す。即ち、表1に記載の1st不可逆容量は、値が小さいほど、初期不可逆容量が小さく好ましいといえる。
Figure JPOXMLDOC01-appb-T000017
 表1から明らかなように、非水系電解液中に、特定エステルを5.0質量%以上含有させると、1st不可逆容量が著しく増加するまたは初期充放電すら満足に行えない不良セルの発生が著しく増加する。詳細は不明であるが、特定エステルを5.0質量%以上含有させたセルでは、試験電池が異常に膨らんでおり、発生ガスが正負極間に溜まることで充放電が妨げられたものと推測できる。中には電池の膨張がひどく、1st不可逆容量の測定が不可能なセルもあった。このような容量測定不可能なセルがあると、それに用いた非水系電解液を使用した非水系電解液二次電池は製造歩留まりが悪いといえる。
 また、特定エステルではない化合物を含有させると、1st不可逆容量が極めて増加することが表1に示されている。以上から、本発明のように、特定エステルを用い、その含有量を4.5質量%以下とすることにより、1st不可逆容量の少ない、歩留りのいい非水系電解液二次電池が製造できることが示された。
 <<実施例2-1~2-6、比較例2-1>>
 [非水系電解液二次電池の作製]
 <非水系電解液の調製>
 [実施例2-1]
 乾燥アルゴン雰囲気下、エチレンカーボネートとジエチルカーボネートとの混合物(容量比3:7)に、十分に乾燥させたLiPFを1mol/L(非水系電解液中の濃度として)の濃度で溶解させ、更に、十分に乾燥させた、化合物(a)を0.35質量%(非水系電解液中の濃度として)の量で溶解させ、非水系電解液を調製した。この非水系電解液を用いて下記の方法で非水系電解液二次電池を作成し、下記の評価を実施した。
 [実施例2-2]
 化合物(a)の濃度を0.7質量%とした以外は実施例2-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [実施例2-3]
 化合物(a)の濃度を1.0質量%とした以外は実施例2-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [実施例2-4]
 化合物(a)の濃度を2.0質量%とした以外は実施例2-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [実施例2-5]
 化合物(a)の濃度を3.0質量%とした以外は実施例2-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [実施例2-6]
 化合物(a)の濃度を4.0質量%とした以外は実施例2-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例2-1]
 化合物(a)を非水系電解液中に溶解させなかったこと以外は実施例2-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 <正極の作製>
 第一の正極活物質としてのアルミニウム置換マンガン酸リチウム(Li1.1Mn1.9Al0.1)67.5質量部、第二の正極活物質としてのリチウムニッケルマンガンコバルト複合酸化物(Li1.05Ni0.33Mn0.33Co0.33)22.5質量部、導電材としてのカーボンブラックを5質量部、結着剤としてのポリフッ化ビニリデン(PVdF)を5質量部とを、N-メチル-2-ピロリドン中で混合・スラリー化し、これを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、ロールプレスを行い正極とした。
 <負極の作製>
 グラファイト粉末97.5質量部に、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)150質量部と、バインダーとしてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)2質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔に均一に塗布して乾燥し、ロールプレスして負極とした。
 <非水系電解液二次電池の製造>
 上記の正極、負極、及びポリオレフィン製セパレータを、負極、セパレータ、正極の順に積層した。こうして得られた電池要素をアルミニウムラミネートフィルムで包み込み、前述の各実施例及び比較例の非水系電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。
 [非水系電解液二次電池の評価]
 ・初期充放電
 25℃の恒温槽中、シート状の非水系電解液二次電池を0.1Cで4.2Vまで定電流-定電圧充電した後、0.1Cで2.7Vまで放電した。続いて0.3Cで4.2Vまで定電流-定電圧充電した後、0.3Cで2.7Vまで放電した。これを2サイクル、前記の0.1Cでの充放電操作とあわせて合計3サイクル行って非水系電解液二次電池を安定させた。その後二次電池を60℃に24時間保持しエージングを実施した。
 ・高温サイクル試験
 高温サイクル試験は、非水系電解液二次電池の実使用上限温度と目される55℃の高温環境下にて実施した。55℃の恒温槽中、1Cで4.2Vまで定電流-定電圧充電した後、1Cの定電流で2.7Vまで放電する過程を1サイクルとして、199サイクル実施した。199サイクル目の容量の1サイクル目の容量に対する割合を「高温サイクル容量維持率」とした。
 下記表2に高温サイクル容量維持率を、比較例2-1の値を100.0%としたときの相対値で示す。
Figure JPOXMLDOC01-appb-T000018
 表2から明らかなように、非水系電解液中に、特定エステルを含有する本発明の非水系電解液を用いることで、当該エステルを含有しない非水系電解液を用いるのとは異なり、高温下において繰り返し充放電されても、容量低下が少ない非水系電解液二次電池を提供することができる。すなわち、特定エステルの非常に優れた耐久性向上効果が示された。
 <<実施例3-1~3-5、比較例3-1、3-2>>
 [非水系電解液二次電池の作製]
 <非水系電解液の調製>
 [実施例3-1]
 乾燥アルゴン雰囲気下、エチレンカーボネートとジエチルカーボネートとの混合物(容量比30:70)に、十分に乾燥させたLiPFを1mol/L(非水系電解液中の濃度として)の濃度で溶解させ、更に、十分に乾燥させた、化合物(a)を0.1質量%(非水系電解液中の濃度として)の量で溶解させ、非水系電解液を調製した。この非水系電解液を用いて下記の方法で非水系電解液二次電池を作成し、下記評価を実施した。
 [実施例3-2]
 非水系電解液の溶媒としてエチレンカーボネートとジエチルカーボネートとの混合物(容量比30:70)を用いず、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとの混合物(容量比25:5:70)を用いたこと以外は実施例3-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [実施例3-3]
 非水系電解液の溶媒としてエチレンカーボネートとジエチルカーボネートとの混合物(容量比30:70)を用いず、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとの混合物(容量比18:12:70)を用いたこと以外は実施例3-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [実施例3-4]
 非水系電解液の溶媒としてエチレンカーボネートとジエチルカーボネートとの混合物(容量比30:70)を用いず、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネートとの混合物(容量比29.8:0.2:70)を用いたこと以外は実施例3-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例3-1]
 非水系電解液の溶媒としてエチレンカーボネートとジエチルカーボネートとの混合物(容量比3:7)を用いず、プロピレンカーボネートとジエチルカーボネートとの混合物(容量比3:7)を用いたこと以外は実施例3-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [実施例3-5]
 非水系電解液の電解質としてLiPFを用いず、LiClOを用いたこと以外は実施例3-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例3-2]
 非水系電解液の溶媒としてエチレンカーボネートとジエチルカーボネートとの混合物(容量比3:7)を用いず、プロピレンカーボネートとジエチルカーボネートとの混合物(容量比3:7)を用い、非水系電解液の電解質としてLiPFを用いず、LiClOを用いたこと以外は実施例3-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 <正極の作製>
 第一の正極活物質としてのアルミニウム置換マンガン酸リチウム(Li1.1Mn1.9Al0.1)67.5質量部、第二の正極活物質としてのリチウムニッケルマンガンコバルト複合酸化物(Li1.05Ni0.33Mn0.33Co0.33)22.5質量部、導電材としてのカーボンブラックを5質量部、結着剤としてのポリフッ化ビニリデン(PVdF)を5質量部とを、N-メチル-2-ピロリドン中で混合・スラリー化し、これを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、ロールプレスを行い正極とした。
 <負極の作製>
 グラファイト粉末97.5質量部に、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)150質量部と、バインダーとしてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)2質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔に均一に塗布して乾燥し、ロールプレスして負極とした。
 <非水系電解液二次電池の製造>
 上記の正極、負極、及びポリオレフィン製セパレータを、負極、セパレータ、正極の順に積層した。こうして得られた電池要素をアルミニウムラミネートフィルムで包み込み、前述の各実施例及び比較例の非水系電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。
 [非水系電解液二次電池の評価]
 ・初期充放電
 25℃の恒温槽中、シート状の非水系電解液二次電池を0.1Cで4.2Vまで定電流-定電圧充電した後、0.1Cで2.7Vまで放電した。この時の1st充電容量と1st放電容量を用いて、
   (1st充放電効率)=(1st放電容量)/(1st充電容量)
で表される1st充放電効率を算出した。下記表3に、1st充放電効率を実施例3-5の値を100.0%としたときの相対値で示す。
Figure JPOXMLDOC01-appb-T000019
 表3から明らかなように、非水系電解液中に、LiPFやLiClOなどの各種電解質と特定エステルとを同時に含有する本発明の非水系電解液を用いることで、1st充放電効率に優れる非水電解液電池を得ることができる。また、非水溶媒中にプロピレンカーボネートを含有させる場合には、所定の割合でエチレンカーボネートを含有させることが必要であることが示された。
 <<実施例4-1~4-3、比較例4-1~4-4>>
 [非水系電解液二次電池の作製]
 <非水系電解液の調製>
 [実施例4-1]
 乾燥アルゴン雰囲気下、エチレンカーボネートとジエチルカーボネートとの混合物(容量比3:7)に、十分に乾燥させたLiPFを1mol/L(非水系電解液中の濃度として)の濃度で溶解させ、更に、十分に乾燥させた、化合物(a)を0.2質量%と化合物(c)を1.0質量%(非水系電解液中の濃度として)の量で溶解させ、非水系電解液を調製した。この非水系電解液を用いて下記の方法で非水系電解液二次電池を作成し、下記の評価を実施した。
 [実施例4-2]
 化合物(a)の濃度を0.5質量%とし、化合物(c)を非水系電解液中に溶解させず、化合物(d)を0.7質量%の量で溶解させた以外は実施例4-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [実施例4-3]
 化合物(c)を非水系電解液中に溶解させず、化合物(e)を1.0質量%の量で溶解させた以外は実施例4-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例4-1]
 化合物(a)と化合物(c)を非水系電解液中に溶解させなかったこと以外は実施例4-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例4-2]
 化合物(a)を非水系電解液中に溶解させなかったこと以外は実施例4-1と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例4-3]
 化合物(a)を非水系電解液中に溶解させなかったこと以外は実施例4-2と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 [比較例4-4]
 化合物(a)を非水系電解液中に溶解させなかったこと以外は実施例4-3と同様に非水系電解液二次電池を作成し、下記評価を実施した。
 <正極の作製>
 第一の正極活物質としてのアルミニウム置換マンガン酸リチウム(Li1.1Mn1.9Al0.1)67.5質量部、第二の正極活物質としてのリチウムニッケルマンガンコバルト複合酸化物(Li1.05Ni0.33Mn0.33Co0.33)22.5質量部、導電材としてのカーボンブラックを5質量部、結着剤としてのポリフッ化ビニリデン(PVdF)を5質量部とを、N-メチル-2-ピロリドン中で混合・スラリー化し、これを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、ロールプレスを行い正極とした。
 <負極の作製>
 グラファイト粉末97.5質量部に、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)150質量部と、バインダーとしてスチレン-ブタジエンゴムの水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)2質量部を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ10μmの銅箔に均一に塗布して乾燥し、ロールプレスして負極とした。
 <非水系電解液二次電池の製造>
 上記の正極、負極、及びポリオレフィン製セパレータを、負極、セパレータ、正極の順に積層した。こうして得られた電池要素をアルミニウムラミネートフィルムで包み込み、前述の各実施例及び比較例の非水系電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。
 [非水系電解液二次電池の評価]
 ・初期充放電
 25℃の恒温槽中、シート状の非水系電解液二次電池を0.1Cで4.2Vまで定電流-定電圧充電した後、0.1Cで2.7Vまで放電した。続いて0.3Cで4.2Vまで定電流-定電圧充電した後、0.3Cで2.7Vまで放電した。これを2サイクル、前記の0.1Cでの充放電操作と合わせて合計3サイクル行って非水系電解液二次電池を安定させた。その後二次電池を60℃に24時間保持しエージングを実施した。
 ・高温サイクル後急速放電試験
 高温サイクルを、非水系電解液二次電池の実使用上限温度と目される55℃の高温環境下にて実施した。55℃の恒温槽中、1Cで4.2Vまで定電流-定電圧充電した後、1Cの定電流で2.7Vまで放電する過程を1サイクルとして、99サイクル実施し、その後0.33Cで4.2Vまで定電流-定電圧充電した後、0.33Cの定電流で2.7Vまで放電した。
 上記高温サイクルを実施した後に、25℃の恒温槽中、0.3Cで4.2Vまで定電流-定電圧充電した電池を、5Cに相当する定電流値で2.7Vまで放電し、その放電容量を測定し、「高温サイクル後急速容量」とした。
 下記表4に、「高温サイクル後急速容量」を、比較例4-1の値を100.0%としたときの相対値で示す。
Figure JPOXMLDOC01-appb-T000020
 表4から明らかなように、非水系電解液中に、特定エステルと特定添加剤とを同時に含有する本発明の非水系電解液を用いることで、特定添加剤のみを含有する非水系電解液を用いるのとは異なり、高温下において繰り返し充放電されても、急速容量の大きな非水系電解液二次電池を提供することができる(実施例4-1と比較例4-2、実施例4-2と比較例4-3、実施例4-3と比較例4-4の対比)。
 本発明の非水系電解液によれば、電池製造の際の歩留りを損なうことなく、1st不可逆容量(初期不可逆容量)が小さく、高温下において繰り返し充放電されても、容量低下が少ない電池を提供することができるので、前記電解液は非水系電解液二次電池が用いられる電子機器等のあらゆる分野において好適に利用できる。また前記電解液は、非水系電解液を用いるリチウムイオンキャパシタ等の電解コンデンサにおいても好適に利用できる。
 本発明の非水系電解液及び非水系電解液二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。その用途の具体例としては、ラップトップコンピュータ、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンタ、携帯オーディオプレーヤー、小型ビデオカメラ、液晶テレビ、ハンディクリーナー、トランシーバ、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ、リチウムイオンキャパシタ等を挙げることができる。

Claims (11)

  1.  金属イオンを吸蔵および放出可能な正極と、金属イオンを吸蔵および放出可能な負極と、非水溶媒および該非水溶媒に溶解される電解質を含む非水系電解液とを備える非水系電解液二次電池に用いられる非水系電解液であって、
     下記一般式(1)で示される化合物を、前記非水系電解液全量に対して、0.01質量%以上4.5質量%以下の量で含有する、非水系電解液(但し、非水系電解液がプロピレンカーボネートを含有する場合は、前記非水系電解液はエチレンカーボネート及びプロピレンカーボネートを含有し、(A)エチレンカーボネートとプロピレンカーボネートの容量比が99:1~40:60である、及び(B)プロピレンカーボネートの非水溶媒中の含有量が10容量%以下である、のうち少なくとも一方の条件を満たす。):
    Figure JPOXMLDOC01-appb-C000001

    (一般式(1)において、nは1~4の整数である。RおよびRはそれぞれ独立して、水素、フッ素、およびフッ素で置換されていてもよい炭素数1以上5以下の炭化水素基のいずれかである。nが2以上である場合、複数存在するR同士及びR同士は、互いに同一であっても異なっていてもよい。また、RおよびRは互いに結合し、環を形成していてもよい。Rは、カルボニル基、スルフィニル基、スルホニル基、及び下記一般式(2)で表される基のいずれかである。)
    Figure JPOXMLDOC01-appb-C000002

    (一般式(2)において、Rは、フッ素、およびフッ素で置換されていてもよい炭素数1以上10以下の炭化水素基のいずれかである。)。
  2.  前記一般式(1)で示される化合物が、下記一般式(3)で示される化合物である、請求項1に記載の非水系電解液:
    Figure JPOXMLDOC01-appb-C000003

    (式(3)中、RおよびRはそれぞれ独立して、水素、フッ素、およびフッ素で置換されていてもよい炭素数1以上5以下の炭化水素基のいずれかである。RおよびRは互いに結合し、環を形成していてもよい。)。
  3.  前記電解質として、ヘキサフルオロリン酸塩を含有する、請求項1または2に記載の非水系電解液。
  4.  前記金属イオンを吸蔵および放出可能な負極が、炭素質材料またはケイ素を含む材料を含む、請求項1ないし3のいずれか一項に記載の非水系電解液。
  5.  前記一般式(3)において、Rが水素であり、Rが水素またはメチル基である、請求項2ないし4のいずれか一項に記載の非水系電解液。
  6.  前記非水溶媒として、少なくとも1種の環状カーボネートと少なくとも1種の鎖状カーボネートを含有し、その体積比が(環状カーボネートの総体積):(鎖状カーボネートの総体積)=1.5:8.5~4:6である、請求項1ないし5のいずれか一項に記載の非水系電解液。
  7.  前記非水溶媒中の環状カーボネートとして、少なくともエチレンカーボネートを含有する、請求項6に記載の非水系電解液。
  8.  さらに、フッ素原子を有する環状カーボネート、炭素―炭素不飽和結合を有する環状カーボネート、ジフルオロリン酸塩、フルオロ硫酸塩、イソシアナト基を有する化合物、シアノ基を有する化合物、環状スルホン酸エステル、及びジカルボン酸錯体塩からなる群より選ばれる少なくとも1種の化合物を含有する、請求項1ないし7のいずれか一項に記載の非水系電解液。
  9.  金属イオンを吸蔵及び放出可能な正極と、金属イオンを吸蔵及び放出可能な負極と、非水系電解液とを備えた非水系電解液二次電池であって、
     該非水系電解液が、請求項1ないし8のいずれか一項に記載の非水系電解液である、非水系電解液二次電池。
  10.  前記負極が、炭素質材料またはケイ素を含む材料を含む、請求項9に記載の非水系電解液二次電池。
  11.  前記正極中の活物質が、スピネル型構造を有するリチウムマンガン複合酸化物を含有する、請求項9または10に記載の非水系電解液二次電池。
PCT/JP2015/055393 2014-02-25 2015-02-25 非水系電解液及びそれを用いた非水系電解液二次電池 WO2015129748A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167023773A KR102416651B1 (ko) 2014-02-25 2015-02-25 비수계 전해액 및 그것을 사용한 비수계 전해액 2 차 전지
JP2016505262A JP6372561B2 (ja) 2014-02-25 2015-02-25 非水系電解液及びそれを用いた非水系電解液二次電池
CN201580010162.6A CN106030889A (zh) 2014-02-25 2015-02-25 非水电解液及使用该非水电解液的非水电解质二次电池
EP15755198.7A EP3113274B1 (en) 2014-02-25 2015-02-25 Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery using same
US15/244,407 US20160359197A1 (en) 2014-02-25 2016-08-23 Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-034395 2014-02-25
JP2014034395 2014-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/244,407 Continuation US20160359197A1 (en) 2014-02-25 2016-08-23 Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery using the same

Publications (1)

Publication Number Publication Date
WO2015129748A1 true WO2015129748A1 (ja) 2015-09-03

Family

ID=54009063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055393 WO2015129748A1 (ja) 2014-02-25 2015-02-25 非水系電解液及びそれを用いた非水系電解液二次電池

Country Status (6)

Country Link
US (1) US20160359197A1 (ja)
EP (1) EP3113274B1 (ja)
JP (1) JP6372561B2 (ja)
KR (1) KR102416651B1 (ja)
CN (1) CN106030889A (ja)
WO (1) WO2015129748A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069145A (ja) * 2015-10-02 2017-04-06 旭化成株式会社 化合物、添加剤、電解液及びリチウムイオン二次電池
WO2018212027A1 (ja) * 2017-05-18 2018-11-22 日本電気株式会社 リチウムイオン二次電池用電解液及びこれを用いたリチウムイオン二次電池
CN115692842A (zh) * 2021-07-31 2023-02-03 宁德时代新能源科技股份有限公司 二次电池、电池模块、电池包及用电装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414214B2 (ja) * 2014-06-26 2018-10-31 株式会社村田製作所 正極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP6538500B2 (ja) * 2015-09-16 2019-07-03 株式会社東芝 非水電解質電池、電池パック、及び車
JP6696692B2 (ja) * 2016-09-20 2020-05-20 株式会社東芝 電極、非水電解質電池、電池パック及び車両
CN107039643B (zh) * 2017-03-27 2019-05-24 上海应用技术大学 一种锂离子电池用正极材料及其制备方法
KR102431845B1 (ko) * 2017-04-28 2022-08-10 삼성에스디아이 주식회사 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
CN109119598B (zh) * 2017-06-22 2021-09-21 微宏动力系统(湖州)有限公司 一种非水电解液及二次电池
EP3656011A4 (en) * 2017-07-17 2021-04-21 Nohms Technologies, Inc. MODIFIED TRIAZINE FUNCTIONAL CONNECTIONS
JP6883262B2 (ja) * 2017-09-11 2021-06-09 トヨタ自動車株式会社 非水電解液二次電池
CN110120554B (zh) * 2018-02-05 2021-05-18 宁德新能源科技有限公司 一种电解液和含有该电解液的二次电池
JP7037992B2 (ja) * 2018-04-09 2022-03-17 日産自動車株式会社 電池の製造方法
CN109301330A (zh) * 2018-11-16 2019-02-01 珠海光宇电池有限公司 一种锂二次电池电解液及含有该电解液的锂二次电池
CN109638352B (zh) * 2018-11-21 2022-07-08 上海大学 基于环酰胺-异氰酸酯的组合物及其应用
EP3933997A4 (en) * 2019-02-28 2022-04-27 Mitsubishi Chemical Corporation NON-AQUEOUS ELECTROLYTIC SOLUTION FOR SODIUM-ION BATTERIES, AND SODIUM-ION BATTERIES
JP7270210B2 (ja) * 2019-03-05 2023-05-10 株式会社日立製作所 非水電解液、半固体電解質層、二次電池用シート及び二次電池
CN114094186B (zh) * 2021-11-22 2022-09-09 珠海冠宇电池股份有限公司 一种非水电解液以及包括该非水电解液的电池
CN114335719A (zh) * 2021-11-29 2022-04-12 惠州市豪鹏科技有限公司 锂离子电池电解液及锂离子电池
CN114361593B (zh) * 2021-12-30 2024-03-19 珠海鹏辉能源有限公司 电解液添加剂、锂离子电池电解液及其制备方法、锂离子电池和用电设备
CN114497746A (zh) * 2022-01-24 2022-05-13 珠海冠宇电池股份有限公司 一种电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290069A (ja) * 1986-06-09 1987-12-16 Matsushita Electric Ind Co Ltd 有機電解質二次電池
JPH01134873A (ja) * 1987-11-18 1989-05-26 Matsushita Electric Ind Co Ltd 有機電解質二次電池
JP2007123631A (ja) * 2005-10-28 2007-05-17 Tomiyama Pure Chemical Industries Ltd 電気化学キャパシタ用非水電解液
KR20090082780A (ko) * 2008-01-28 2009-07-31 삼성에스디아이 주식회사 유기 전해액 및 이를 채용한 리튬 전지
CN102074738A (zh) * 2010-09-30 2011-05-25 张家港市国泰华荣化工新材料有限公司 一种非水电解质溶液及其用途
WO2015037380A1 (ja) * 2013-09-13 2015-03-19 日本電気株式会社 新規化合物、電解液及び二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1134873A (en) * 1914-08-05 1915-04-06 Rudolph Leon Lachapelle Dairy-register.
JP2000294278A (ja) * 1999-04-02 2000-10-20 Mitsui Chemicals Inc 非水電解液およびそれを用いた二次電池
US20070232511A1 (en) * 2006-03-28 2007-10-04 Matthew Fisher Cleaning solutions including preservative compounds for post CMP cleaning processes
JP2010097756A (ja) * 2008-10-15 2010-04-30 Sony Corp 二次電池
EP2545682A4 (en) * 2010-03-10 2017-01-04 Telefonaktiebolaget LM Ericsson (publ) Sub-path e2e probing
KR20130018238A (ko) * 2010-03-30 2013-02-20 우베 고산 가부시키가이샤 비수 전해액, 그것을 이용한 전기화학 소자, 및 그것에 이용되는 1,2-다이옥시프로페인 화합물
JP5974735B2 (ja) * 2011-09-05 2016-08-23 ソニー株式会社 二次電池用非水電解液、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
CA2851830A1 (en) * 2011-10-17 2013-04-25 Ube Industries, Ltd. Non-aqueous electrolyte solution and electricity-storage device using same
CN103427117A (zh) * 2012-05-21 2013-12-04 万向电动汽车有限公司 一种锂离子动力电池的电解液及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290069A (ja) * 1986-06-09 1987-12-16 Matsushita Electric Ind Co Ltd 有機電解質二次電池
JPH01134873A (ja) * 1987-11-18 1989-05-26 Matsushita Electric Ind Co Ltd 有機電解質二次電池
JP2007123631A (ja) * 2005-10-28 2007-05-17 Tomiyama Pure Chemical Industries Ltd 電気化学キャパシタ用非水電解液
KR20090082780A (ko) * 2008-01-28 2009-07-31 삼성에스디아이 주식회사 유기 전해액 및 이를 채용한 리튬 전지
CN102074738A (zh) * 2010-09-30 2011-05-25 张家港市国泰华荣化工新材料有限公司 一种非水电解质溶液及其用途
WO2015037380A1 (ja) * 2013-09-13 2015-03-19 日本電気株式会社 新規化合物、電解液及び二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3113274A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017069145A (ja) * 2015-10-02 2017-04-06 旭化成株式会社 化合物、添加剤、電解液及びリチウムイオン二次電池
WO2018212027A1 (ja) * 2017-05-18 2018-11-22 日本電気株式会社 リチウムイオン二次電池用電解液及びこれを用いたリチウムイオン二次電池
CN110637388A (zh) * 2017-05-18 2019-12-31 日本电气株式会社 锂离子二次电池用电解液和使用其的锂离子二次电池
JPWO2018212027A1 (ja) * 2017-05-18 2020-03-12 日本電気株式会社 リチウムイオン二次電池用電解液及びこれを用いたリチウムイオン二次電池
JP7136092B2 (ja) 2017-05-18 2022-09-13 日本電気株式会社 リチウムイオン二次電池用電解液及びこれを用いたリチウムイオン二次電池
US11489202B2 (en) 2017-05-18 2022-11-01 Nec Corporation Electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using same
CN115692842A (zh) * 2021-07-31 2023-02-03 宁德时代新能源科技股份有限公司 二次电池、电池模块、电池包及用电装置
CN115692842B (zh) * 2021-07-31 2023-11-14 宁德时代新能源科技股份有限公司 二次电池、电池模块、电池包及用电装置

Also Published As

Publication number Publication date
KR102416651B1 (ko) 2022-07-04
KR20160125978A (ko) 2016-11-01
JPWO2015129748A1 (ja) 2017-03-30
CN106030889A (zh) 2016-10-12
EP3113274B1 (en) 2020-09-30
EP3113274A1 (en) 2017-01-04
US20160359197A1 (en) 2016-12-08
JP6372561B2 (ja) 2018-08-15
EP3113274A4 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6372561B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP6750716B2 (ja) フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP7186172B2 (ja) 非水系電解液、非水系電解液二次電池、及びエネルギーデバイス
JP6187566B2 (ja) 非水系電解液及び非水系電解液二次電池
JP6604014B2 (ja) 非水系電解液及び非水系電解液二次電池
JP5720325B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP6098062B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
WO2012108505A1 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP6031873B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2015164126A (ja) 非水系電解液及び非水系電解液二次電池
JP6638502B2 (ja) 非水系電解液、及びそれを用いた非水系電解液二次電池
JP6459695B2 (ja) 非水系電解液二次電池
JP2019135730A (ja) 非水系電解液及び非水系電解液二次電池
JP2018063942A (ja) 非水系電解液及びそれを用いた蓄電デバイス
JP6079264B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP6413874B2 (ja) 非水系電解液、非水系電解液二次電池および非水系電解液用添加剤
JP6582730B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
JP2015195203A (ja) 非水系電解液及び非水系電解液二次電池
JP2019040676A (ja) 非水系電解液及び非水系電解液二次電池
JP2018073738A (ja) 非水系電解液及び非水系電解液二次電池
JP2017142940A (ja) 非水系電解液及び非水系電解液二次電池
JP2014086352A (ja) 非水系電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167023773

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015755198

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015755198

Country of ref document: EP