[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015129455A1 - モータユニット - Google Patents

モータユニット Download PDF

Info

Publication number
WO2015129455A1
WO2015129455A1 PCT/JP2015/053695 JP2015053695W WO2015129455A1 WO 2015129455 A1 WO2015129455 A1 WO 2015129455A1 JP 2015053695 W JP2015053695 W JP 2015053695W WO 2015129455 A1 WO2015129455 A1 WO 2015129455A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
gear
worm
frame
motor unit
Prior art date
Application number
PCT/JP2015/053695
Other languages
English (en)
French (fr)
Inventor
酒井 大輔
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Publication of WO2015129455A1 publication Critical patent/WO2015129455A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/108Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/112Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction clutches in combination with brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
    • H02K7/1166Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel

Definitions

  • the present invention relates to a motor unit, and more particularly, to a motor unit provided with clutch means for cutting off and connecting transmission of motor power to a driven body.
  • a first transmission train that is a gear mechanism that transmits motor power to a driven body, and transmission of motor power by the first transmission train is in a “joint” state (the power of the motor by the transmission train). Is switched to the driven state (hereinafter the same), or “disconnected” state (the state in which the power of the motor is not transmitted to the driven body (cut off) by the transmission train; the same applies hereinafter).
  • a motor actuator comprising a clutch means.
  • the motor actuator 1 of Patent Document 1 switches the clutch means between the “disengaged” state and the “joined” state by moving the driven gear 43 in the axial direction.
  • the second tooth portion 431 that is the helical tooth portion of the driven gear 43 meshes with the first tooth portion 422 that is the helical tooth portion of the other gear, and the third tooth portion 432 that is the worm wheel portion.
  • the driven gear 43 is always urged in a direction to bring the clutch means to the “disengaged” state, and the axial force is generated by the thrust force generated from the meshing of the helical teeth and the load applied from the fourth tooth portion 51. It moves to the other side and puts the clutch means in the “joining” state.
  • FIG. 9 is FIG. 11 of Patent Document 1, and is a perspective view of the load applying means 50 ′ included in the motor actuator of Patent Document 1.
  • symbol shown by FIG. 9 is also attached
  • the fourth tooth 51 which is a worm provided with a centrifugal brake mechanism, constitutes a part of the load applying means 50 '. Both ends in the axial direction of the fourth tooth portion 51 are supported by bearings, and these bearings are connected via a frame portion. A load portion 52 is attached to one end of the fourth tooth portion 51, and a drum 83 is formed on the bearing on the load portion 52 side. A centrifugal brake mechanism is realized by the fourth tooth portion 51, the load portion 52, and the drum 83.
  • the problem to be solved by the present invention is to provide a motor unit capable of preventing the worm portion from being damaged or deformed even when the load applying means is manually attached.
  • a motor unit of the present invention includes a motor that rotates in one direction, a first transmission train that includes one or more power transmission members that transmit power of the motor to a driven body, A clutch means for switching the power transmission by the first transmission train to a "continuous" state or a “disengaged” state, and a transmission train for transmitting the power of the motor to the clutch means, wherein the first helical tooth portion A second transmission train having a first gear formed and a second gear formed with a second helical gear meshing with the first tooth; and rotation of the second gear.
  • Load applying means for applying a load and the second gear is supported so as to be movable in the axial direction, and is always urged in a direction that is one of the axial directions and that causes the clutch means to be in the “disengaged” state.
  • meshing with the first gear from the load applying means A motor unit that moves to the other side in the axial direction against the urging force by a thrust force generated when a load is applied, and puts the clutch means in a “engaged” state.
  • the worm wheel portion is formed, and the load applying means includes a worm portion meshing with the worm wheel portion, a first bearing and a second bearing that rotatably support the worm portion, and the first bearing.
  • the upper frame which is the upper end of the first, connects the first bearing and the second bearing above the support position of the worm portion.
  • the upper part of the first bearing and the second bearing (hereinafter also referred to as “bearing”) is sandwiched between fingers for the convenience of work. . Therefore, by providing the upper frame, which is the upper end of the frame part, above the worm part, and connecting the first bearing and the second bearing with such an upper frame, much of the force for holding the bearing is increased. Therefore, the load on the worm portion can be reduced.
  • the frame portion connects the first bearing and the second bearing by the upper frame and a lower frame which is an opposite end portion of the upper frame.
  • the upper frame is formed to connect the first bearing and the second bearing in parallel with the worm portion at a position above the worm portion
  • the lower frame is The first bearing and the second bearing can be connected in parallel with the worm portion at a position below the worm portion. Since the bearings are supported at both the upper and lower ends of the frame part, the wobble when the bearings are clamped with fingers is reduced, so that the frame part can support the bearings stably and the efficiency of the installation work Can increase the sex.
  • the first bearing and the second bearing is formed separately from the frame part, and the joint surface of the upper frame and the lower frame with the bearing formed separately from the frame is provided. Is formed with a convex portion projecting on the bearing formed by the separate body, and the convex portion is fitted with a concave portion formed on the bearing formed by the separate body, thereby the frame portion and the By connecting to a separately molded bearing, it is possible to easily attach the worm part to the bearing while reducing wobbling of the bearing.
  • the frame portion is integrally formed with the second bearing
  • the first bearing is formed with a drum for storing the brake portion
  • the upper frame and the lower frame are provided with the drum. Projections projecting toward the first bearing are formed on the joint surface with the first bearing, and the projections are respectively fitted into recesses formed on the first bearing.
  • the frame portion and the first bearing can be connected to each other.
  • the said frame part has a reinforcement part between the said upper frame and the said lower frame, and the rigidity of a frame part can be improved by forming a recessed part or a through-hole in this reinforcement part.
  • the occurrence of sink marks can be prevented, and the frame portion can be formed linearly without distortion.
  • the reinforcing portion may be configured by providing the through hole so as to reinforce the upper frame and the lower frame in a bracing manner.
  • first bearing or the second bearing tilts toward the worm part on the surface of the worm part side of at least one of the frame part, the first bearing, and the second bearing.
  • a grip portion made of a plane is formed on the surface opposite to the surface supporting the worm portion of at least one of the first bearing and the second bearing, so that the bearing can be held with a finger. Since it becomes easy to hold and it is possible to perform the attachment work efficiently with a light force, the force applied to the worm portion can be further reduced.
  • an insertion portion which is one or a plurality of convex portions protruding toward the case half body is formed on a joint surface of at least one of the first bearing and the second bearing with the case half body.
  • an introduction portion having a smaller diameter than the root portion is formed at at least one tip portion of the fitting portion, and the introduction portion has a convex portion whose diameter is reduced perpendicularly to the axial direction or an axial length of the root portion. Because it is a taper-shaped convex part whose diameter becomes longer toward the case half body side than the part, it becomes easy to position the case half body, and it becomes possible to press-fit with a smaller pressing force, The force applied to the worm portion can be further reduced.
  • fitting portions that are a plurality of convex portions protruding toward the case half are formed on the joint surfaces of the first bearing and the second bearing with the case half.
  • the leading portion of each of the insertion portions may be formed with the introduction portion.
  • the plurality of insertion portions provided in the first bearing and the second bearing If the plurality of provided insertion portions are arranged in a direction orthogonal to the axial direction of the worm portion, the attachment to the case half is also stable.
  • the motor unit according to the present invention can prevent the worm part from being damaged or deformed even when the load applying means is manually attached.
  • FIG. 1 It is the figure which showed the whole motor unit (state which removed the case) concerning this embodiment. It is a system diagram for demonstrating the power system of the motor unit concerning this embodiment. It is explanatory drawing of the gear mechanism which transmits motor motive power to a to-be-driven body. It is a front view which shows the engagement mechanism of two rotor gears. It is a disassembled perspective view of the differential gear mechanism which is a clutch means. It is a top view which shows the member which comprises a shift means. It is a front view which shows the biasing mechanism of a 2nd gearwheel and a lock lever. It is a perspective view which shows the bottom face of a sector lever. It is a perspective view of the load provision means of patent document 1. FIG. It is the perspective view (a) and exploded view (b) of the load provision means concerning this embodiment.
  • the “original position” refers to the position of each constituent member in a state where the motor 10 is not driven.
  • the power system of the motor unit 1 includes an output system (first transmission train) that transmits the power of the motor 10 to the driven body 90, and a clutch operation system (second transmission system) that operates the clutch means 30. Transmission train).
  • the clutch means 30 switches the transmission of power by the output system to the “joining” state or the “disconnected” state. That is, if the clutch means 30 is in the “joined” state, the power of the motor 10 is transmitted to the driven body 90 through the output system.
  • the clutch means 30 If the clutch means 30 is in the “disconnected” state, the output system is disconnected, and the power of the motor 10 is not transmitted to the driven body 90.
  • the driven body As shown in the figure, in this embodiment, the driven body is used as the power of the clutch operating system for operating the clutch means 30 in this way (the power transmission by the first transmission train is set to the “joining” state). A part of the power of the motor 10 for driving 90 is used.
  • the load application means 50 in this embodiment includes a worm portion 51 that meshes with a driven side tooth portion 442 that is a worm wheel portion of a second gear 44 described later, and a first bearing 53 that rotatably supports the worm portion 51. And a second bearing 54, a frame portion 55 that connects the first bearing 53 and the second bearing 54, and a load portion 52 that is a centrifugal brake that provides resistance to rotation of the worm portion 51.
  • the frame portion 55 is formed integrally with the second bearing 54 and is formed separately from the first bearing 53.
  • the first bearing 53 is formed with a drum 531 for storing the load portion 52.
  • the upper frame 551 that is the upper end portion of the frame portion 55 is located above the worm portion 51, and is formed in parallel with the worm portion 51 at a position above the worm portion 51. 54 is connected.
  • a convex portion 5511 and a convex portion 5521 projecting toward the first bearing 53 are formed on the joint surface of the upper frame 551 and the lower frame 552, which is the opposite end thereof, with the first bearing 53.
  • the lower frame 552 is formed to connect the first bearing 53 and the second bearing 54 in parallel with the worm portion 51 at a position below the worm portion 51.
  • the lower frame 552 is formed to connect the first bearing 53 and the second bearing 54 in parallel with the worm portion 51 at a position below the worm portion 51.
  • the frame portion 55 has a reinforcing portion 553 between the upper frame 551 and the lower frame 552, and the reinforcing portion 553 is provided with a through hole 5531 and is formed in a brace shape.
  • the reinforcing portion 553 does not necessarily have a bracing shape, and it is sufficient if the concave portion and the through hole are formed to such an extent that sink marks can be prevented.
  • a rib portion 57 that prevents the second bearing 54 from tilting toward the worm portion 51 is formed on the surface of the frame portion 55 and the second bearing 54 on the worm portion 51 side. Such a rib may be formed at a position that prevents the first bearing 53 from tilting toward the worm portion 51, and may naturally be formed on both.
  • a grip portion 541 made of a flat surface is formed so that the operator can stably hold the load applying member 50 with a light force.
  • the back surface of the first bearing 53 has a substantially flat surface.
  • the bottom surfaces of the first bearing 53 and the second bearing 54 are each provided with a plurality of insertion portions 56 that are convex portions protruding toward the lower case 82 that is the case half, and at the tip of the insertion portion 56
  • An introduction portion having a smaller diameter than the root portion is formed, and these introduction portions are convex portions whose diameters are reduced perpendicularly to the axial direction, or the axial length is longer than the root portion and the diameter thereof toward the lower case 82 side. Since it becomes the taper-shaped convex part which becomes small, the positioning at the time of attaching the load provision member 50 to the lower case 82 becomes easy, and it can be press-fitted with a small pressing force.
  • a plurality of insertion portions 56 are provided on the bottom surfaces of the first bearing 53 and the second bearing 54, and a plurality of insertion portions 56 provided on the bottom surface of the first bearing 53 and a bottom surface of the second bearing 54 are provided. Since the plurality of fitting portions 56 are arranged in a direction orthogonal to the axial direction of the worm portion 51, the load applying member 50 can be attached to the lower case 82 together with the second bearing 54 in a stable state. it can.
  • the load applying means 50 in the present embodiment has the above-described configurations, so that when the operator attaches the load applying means 50 to the lower case 82, the back surfaces of the first bearing 53 and the second bearing 54 are held by fingers. The load to be applied reaches the worm portion 51, and the worm portion 51 is prevented from being damaged or deformed.
  • the motor 10 that is a drive source of the driven body 90 is an AC synchronous motor.
  • a motor other than the AC synchronous motor can also be applied.
  • the motor 10 has a rotating shaft that protrudes from its upper end surface.
  • the first transmission train constitutes an output system that transmits the power of the synchronous motor 10 to the driven body 90.
  • the first transmission train includes the second rotor gear 21, the input side gear 22 meshing with the second rotor gear 21, and the rotation of the input side gear 22 when the clutch means is in the "joint" state.
  • the output side gear 23 that rotates, the composite gear 24 that meshes with the output side gear 23, the cam gear 25 that meshes with the composite gear 24, the pulley 26 that rotates integrally with the cam gear 25, and the pulley 26 is wound up by rotation.
  • the input side gear 22 and the output side gear 23 are also gears constituting clutch means (differential gear mechanism based on a planetary gear train) whose details will be described later.
  • the second rotor gear 21 is a spur gear supported so as to be rotatable on the same axis as the synchronous motor 10 and movable in the axial direction.
  • the second rotor gear 21 is arranged on the first rotor gear 41 rotating integrally with the rotor 11 (rotation). It is supported on the tip side of the shaft.
  • the second rotor gear 21 is urged upward in the axial direction by a coil spring 28.
  • the position of the second rotor gear 21 in a state where the lower engagement portion 412 and the upper engagement portion 212 are engaged is referred to as a first position.
  • the position of the second rotor gear 21 in a state where the lower engagement portion 412 and the upper engagement portion 212 are not engaged is referred to as a second position.
  • the second rotor gear 21 is moved to the rotor 11 side by an inclined cam 63 (see FIG. 8) of the sector lever 60 described later, and the second rotor gear 21 has an upper engagement portion 212 and a first rotor gear 41 below.
  • the engaging portion 412 is engaged (the second rotor gear 21 is in the first position)
  • the second rotor gear 21 and the first rotor gear 41 rotate integrally. That is, the power of the synchronous motor 10 is also transmitted to the second rotor gear 21.
  • the input side gear 22 meshes with the second rotor gear 21.
  • the input side gear 22 is one gear constituting a planetary gear train.
  • the input side gear 22 has a relatively large diameter large diameter tooth portion 221 and a relatively small diameter small diameter tooth portion 222 which is a so-called sun gear.
  • the large-diameter tooth portion 221 of the input side gear 22 meshes with the second rotor gear 21, and the input side gear 22 rotates as the second rotor gear 21 rotates.
  • a locked projection 223 is formed on the upper surface of the input side gear 22.
  • An input side gear lock projection 62 of the sector lever 60 described later acts on the locked projection 223.
  • the power of the synchronous motor 10 is transmitted to the output side gear 23 via the second rotor gear 21.
  • the output side gear 23 in this embodiment corresponds to the three planetary gears 231 and the planetary support gear 232 that are gears constituting the planetary gear train.
  • the planetary gears 231 are rotatably supported on three planetary gear support shafts that protrude from the upper end surface of the planetary support gear 232 and are provided at equal intervals in the circumferential direction.
  • a retaining ring 233 is fixed to the upper end of the planetary gear support shaft to prevent the planetary gear 231 from falling off.
  • the planetary support gear 232 has a gear portion 2321 on the side opposite to the surface to which the planetary gear 231 is attached.
  • the planetary gear 231 meshes with the small diameter tooth portion 222 of the input side gear 22.
  • the planetary gear 231 revolves around the small-diameter tooth portion 222 of the input side gear 22 as the input side gear 22 rotates.
  • the planetary support gear 232 that supports the planetary gear 231 rotates. In this way, power is transmitted from the input side gear 22 to the output side gear 23.
  • the compound gear 24 meshes with the planetary support gear 232 (output side gear 23).
  • the compound gear 24 has a relatively small diameter tooth portion 241 and a relatively large diameter tooth portion 242, and the large diameter tooth portion 242 meshes with the gear portion 2321 of the planetary support gear 232. .
  • the compound gear 24 rotates as the planetary support gear 232 rotates.
  • the cam gear 25 meshes with the compound gear 24.
  • a gear portion 251 of the cam gear 25 meshes with a small diameter tooth portion 241 of the compound gear 24.
  • the cam gear 25 rotates as the compound gear 24 rotates.
  • a cam groove 252 is formed on the upper end surface of the portion where the gear portion 251 is formed on the outer periphery.
  • a fan-shaped lever 60 described later is engaged with the cam groove 252. The configuration and operation of the sector lever 60 will be described later.
  • a pulley 26 is fixed to the cam gear 25.
  • the fixing method is not particularly limited as long as the pulley 26 rotates integrally with the cam gear 25. Thereby, the pulley 26 rotates with the rotation of the cam gear 25.
  • the pulley 26 is exposed outside the case.
  • a wire groove 261 is formed on the outer periphery of the pulley 26.
  • One end of a wire 27 is fixed to the pulley 26.
  • the fixing method is not particularly limited as long as it can reliably prevent the wire 27 from falling off.
  • the pulley 26 rotates in the direction in which the wire 27 is drawn, the wire 27 is wound up so as to fit into the wire groove 261 of the pulley 26.
  • a driven body 90 (for example, a valve body that opens and closes the drain port) is fixed to the other end side of the wire 27, and the driven body 90 is always returned to the original position (position where the valve body is closed).
  • a load in the direction of pulling out that is, the direction of pulling out the wire 27 is acting.
  • the driven body 90 performs a predetermined operation.
  • the wire 27 is wound around the pulley 26, the power of the synchronous motor 10 is transmitted to the driven body 90 via the first transmission train.
  • the wire 27 is formed of a non-stretchable material.
  • the clutch means plays a role of switching the power transmission (output system) by the first transmission train to the “joining” state or the “disconnection” state.
  • the operation of the clutch means in the present embodiment includes the input side gear 22 (small gear tooth portion 222 that is a sun gear), the output side gear 23 (the planetary gear 231 and the planetary support gear 232), and the fixed gear 31 (ring gear).
  • the differential gear mechanism based on the planetary gear train is used.
  • the input side gear 22 meshes with the second rotor gear 21 and rotates as the second rotor gear 21 rotates.
  • Three planetary gears 231 arranged at equal intervals in the circumferential direction mesh with the small-diameter tooth portion 222 of the input side gear 22.
  • the planetary gear 231 is supported on the planetary support gear 232.
  • the planetary support gear 232 rotates with the revolution of the planetary gear 231.
  • the fixed gear 31 that is a ring gear constituting the planetary gear train has an outer tooth portion 311 and an inner tooth portion 312.
  • the external tooth portion 311 of the fixed gear 31 is located below the large-diameter tooth portion 221 of the input side gear 22 and meshes with a lock gear 47 that is one gear constituting a second transmission train described later. . That is, when the rotation of the lock gear 47 is blocked, the rotation of the fixed gear 31 is blocked.
  • the internal gear portion 312 of the fixed gear 31 meshes with the three planetary gears 231.
  • the first transmission train is in the “join” state, and if the rotation of the fixed gear 31 is not blocked, the first transmission train is in the “disconnected” state. . If the first transmission train is in the “joining” state by the clutch means, that is, if the output system is in the “joining” state, the power of the synchronous motor 10 is transmitted to the driven body 90 via the first transmission train.
  • the second transmission train constitutes a clutch operating system that transmits the power of the synchronous motor 10 to the clutch means.
  • the second transmission train includes a first rotor gear 41, a first gear 42 meshing with the first rotor gear 41, a second gear 44 meshing with the first gear 42, and a second gear. It has a lock lever 45 that is pushed down when 44 moves downward in the axial direction, and a lock gear 47 that is locked by the pushed down lock lever 45.
  • the first rotor gear 41 is a spur gear formed integrally with the rotor 11 of the synchronous motor 10. It is provided under the second rotor gear 21 described above (on the main body side of the synchronous motor 10).
  • a first gear 42 meshes with the first rotor gear 41. It has a driving side tooth part 421 and a first helical tooth part 422 having a relatively smaller diameter than the driving side tooth part 421.
  • the first helical tooth portion 422 is a portion formed into a “helical tooth” as described above.
  • the first gear 42 has a drive-side tooth portion 421 meshed with the first rotor gear 41. Therefore, the first gear 42 rotates as the first rotor gear 41 rotates.
  • the second gear 44 meshes with the first gear 42.
  • the second gear 44 includes a second helical tooth portion 441 having a relatively large diameter and a driven side tooth portion 442 having a relatively small diameter.
  • the second gear 44 is supported by the second gear support shaft 86 so as to be rotatable and movable in the axial direction.
  • the second helical tooth portion 441 is a portion formed into a “helical tooth”.
  • the driven side tooth portion 442 is a so-called worm wheel portion that meshes with the worm portion 51 included in the load applying means 50.
  • the driven tooth portion 442 may be a helical tooth or a spur gear.
  • the second gear 44 In the second gear 44, the second helical tooth portion 441 is engaged with the first helical tooth portion 422 of the first gear 42. Therefore, the second gear 44 rotates as the first gear 42 rotates.
  • a load in the direction opposite to the rotation direction is applied to the second gear 44 by the load applying means 50, so that a downward thrust force in the axial direction is generated. Therefore, when the first gear 42 rotates, the second gear 44 moves downward in the axial direction while rotating.
  • the lock lever 45 is a flat member and is disposed under the second gear 44. Specifically, it is supported by a second gear support shaft 86 that is the same as the second gear 44 and is movable in the axial direction. A recess 452 is formed in the lock lever 45, and the recess 452 is engaged with a not-shown protrusion formed along the axial direction inside the side wall of the lower case 82. Due to the engagement between the convex portion and the concave portion 452, the lock lever 45 is supported by the second gear support shaft 86 while being prevented from rotating and movable in the axial direction. At one end portion of the lock lever 45, a lock portion 451 is formed that is thicker than the other portions.
  • a biasing member 46 that biases the lock lever 45 upward is disposed below the lock lever 45. Due to the urging member 46, the lock lever 45 is positioned above the locked portion 471 of the lock gear 47 during normal times (when the synchronous motor 10 is not driven). Further, since the second gear 44 is disposed on the lock lever 45, the second gear 44 is also urged upward in the axial direction.
  • the urging force of the urging member 46 is smaller than the axially downward thrust force generated in the second gear 44 when the second gear 44 rotates as the first gear 42 rotates. That is, when the second gear 44 rotates, the second gear 44 moves downward in the axial direction against the biasing force of the biasing member 46.
  • the lock lever 45 underneath also moves downward.
  • the lock portion 451 of the lock lever 45 moved downward is positioned at substantially the same height as the locked portion 471 of the lock gear 47.
  • the lock gear 47 includes a locked portion 471 and a lock tooth portion 472 on a flat plate on which the locked portion 471 is formed.
  • the locked portion 471 is formed so as to protrude outward from the circular flat plate.
  • the lock gear 47 has a brake portion 473 that is a centrifugal brake.
  • the brake unit 473 applies a load in a direction that prevents the lock gear 47 from rotating, and prevents the lock gear 47 from rotating at a higher speed than necessary.
  • action of this brake part 473 is mentioned later.
  • the worm part 51 extending in the direction orthogonal to the axial direction of the second gear 44 meshes with the driven side tooth part 442 (worm wheel part).
  • the worm part 51 is one line, and the driven side tooth part 442 and the worm part 51 constitute a speed increasing gear mechanism (when the driven side tooth part 442 rotates by one tooth, the worm part 51 makes one rotation). Therefore, the rotation of the second gear 44 is increased and transmitted to the worm portion 51.
  • a sector lever 60 is arranged on the compound gear 24.
  • the sector lever 60 is rotatably supported on the same shaft as the shaft on which the compound gear 24 is rotatably supported.
  • An engaging protrusion 61 is formed on the lower surface of the sector lever 60.
  • the engaging protrusion 61 is engaged with a cam groove 252 formed on the upper surface of the cam gear 25.
  • the sector lever 60 is formed with an input side gear lock projection 62 and an inclined cam 63.
  • the sector lever 60 When the cam gear 25 rotates in the direction in which the wire 27 is wound up, the sector lever 60 is rotated toward the input side gear 22 by the engagement protrusion 61 that engages with the cam groove 252.
  • the input side gear lock projection 62 acts on the locked projection 223 of the input side gear 22 to stop the winding of the wire 27, and the input side The rotation of the gear 22 is prevented.
  • the second rotor gear 21 pressed downward in the axial direction by the inclined cam 63 is released and moved upward in the axial direction by the coil spring 28 (the second rotor gear 21 is positioned at the second position). (See FIG. 4).
  • the engagement between the upper engagement portion 212 of the second rotor gear 21 and the lower engagement portion 412 of the first rotor gear 41 is released. That is, the power of the synchronous motor 10 is not transmitted to the second rotor gear 21.
  • the second gear 44 When the first gear 42 rotates, the second gear 44 having the second helical gear portion 441 that meshes with the first helical gear portion 422 of the first gear 42 rotates.
  • the second gear 44 has a driven side tooth portion 442 (worm wheel portion) meshed with the worm portion 51 of the load applying means 50, and the load portion of the load applying means 50 is rotated by the rotation of the second gear 44. 52 also rotates.
  • a load torque
  • the load is transmitted from the worm portion 51 to the second gear 44 having the driven side tooth portion 442 and the first gear 42 meshing with the second gear 44. In this way, the first gear 42 and the second gear 44 are subjected to loads opposite to their rotational directions.
  • the transmission of power between the first gear 42 and the second gear 44 is based on meshing of “helical teeth”. Therefore, the second gear 44 that has received a load opposite to the rotation direction from the load applying means 50 receives a downward thrust force in the axial direction due to the rotation of the first gear 42. In other words, the second gear 44 moves downward in the axial direction while rotating by a load opposite to the meshing of the “helical teeth” and the rotation direction.
  • the meshing between the second gear 44 and the load applying means 50 is also based on “helical teeth”, a large axial downward thrust force is generated with respect to the second gear 44. That is, the load generated by the load portion 52 is transmitted to the second gear 44 by meshing between the worm portion 51 and the driven side tooth portion 442, and therefore the axial downward thrust force due to the transmission of the load is also the second. Is generated in the gear 44.
  • the lock lever 45 disposed under the second gear 44 moves downward in the axial direction against the biasing force of the biasing member 46.
  • the lock portion 451 provided on the lock lever 45 is substantially the same height as the locked portion 471 of the lock gear 47 and faces the lock gear 47 in the circumferential direction. To position. Accordingly, in this state, the rotation of the lock gear 47 is prevented by the lock portion 451 of the lock lever 45. That is, the lock gear 47 is prevented from rotating.
  • the lock gear 47 has its lock tooth portion 472 meshed with the external tooth portion 311 of the fixed gear 31 constituting the planetary gear train of the clutch means. Therefore, when the rotation of the lock gear 47 is blocked, the rotation of the fixed gear 31 is also blocked. As a result, the transmission of power by the first transmission train by the clutch means is in the “joint” state, and the power of the synchronous motor 10 can be transmitted to the driven body 90 through the first transmission train. In this way, the second gear 44 moves downward in the axial direction thereof, thereby bringing the power transmission by the first transmission train into the “joining” state via the clutch means.
  • the second rotor gear 21 that rotates together with the first rotor gear 41 by driving the synchronous motor 10 meshes with the large-diameter tooth portion 221 of the input-side gear 22 that constitutes the planetary gear train. Accordingly, the input side gear 22 rotates with the rotation of the second rotor gear 21.
  • the three planetary gears 231 constituting the output side gear 23 are meshed with the outside of the small-diameter tooth portion 222 of the input side gear 22.
  • An inner tooth portion 312 of the fixed gear 31 meshes with the outside of the planetary gears 231 arranged at equal intervals in the circumferential direction.
  • the fixed gear 31 is prevented from rotating by the lock gear 47. Therefore, when the input side gear 22 rotates, the planetary gear 231 revolves around the small diameter tooth portion 222.
  • the planetary support gear 232 that supports the planetary gear 231 rotates. That is, all the rotational power of the input side gear 22 is transmitted to the output side gear 23.
  • the fixed gear 31 rotates idle via the planetary gear 231. Since the power transmission train after the planetary support gear 232 includes a load on the transmission train itself and a load on the driven body 90, all the rotational power of the input side gear 22 is transmitted to the fixed gear 31 side. It is. As described above, in the present embodiment, the “transmission” state and the “disconnection” state of the first transmission train by the clutch means are switched by the differential gear mechanism using the planetary gear train.
  • the large-diameter tooth portion 242 of the compound gear 24 meshes with the gear portion 2321 of the planetary support gear 232. Therefore, the compound gear 24 rotates as the planetary support gear 232 rotates.
  • the gear portion 251 of the cam gear 25 meshes with the small diameter tooth portion 241 of the composite gear 24. Therefore, the cam gear 25 rotates with the rotation of the compound gear 24.
  • the driven body 90 is fixed to the tip of the wire 27, the driven body 90 operates to be pulled up by the wire 27.
  • the driven body 90 is a valve body that opens and closes the drain port of the washing machine, the valve body is pulled up by the wire 27 so that the drain port is opened and drainage is started.
  • the rotational power of the synchronous motor 10 is transmitted to the driven body 90 via the first transmission train.
  • the first transmission train is put into the “engaged” state by the clutch means, but a part of the rotational power of the synchronous motor 10 is also used for the power to put the clutch means in the “joined” state.
  • the winding of the wire 27 by the pulley 26 is stopped as follows.
  • the cam gear 25 rotates to a predetermined position (when the wire 27 is wound up by a predetermined amount)
  • the sector lever 60 having the engaging protrusion 61 that engages with the cam groove 252 rotates toward the input side gear 22.
  • the input side gear lock protrusion 62 of the sector lever 60 contacts the locked protrusion 223 of the input side gear 22 from the circumferential direction. As a result, the input side gear 22 is prevented from rotating.
  • the second rotor gear 21 pressed downward in the axial direction by the inclined cam 63 of the sector lever 60 is released and moved upward in the axial direction by the coil spring (the second rotor gear 21 is moved to the second position). To position).
  • the upper engagement portion 212 of the second rotor gear 21 and the lower engagement portion 412 of the first rotor gear 41 are disengaged, and the power of the synchronous motor 10 is transmitted to the second rotor gear 21. It will be in a state that is not.
  • the operation of each member constituting the first transmission train also stops.
  • the winding of the wire 27 by the pulley 26 is stopped, and the pulley 26 is held at the winding position (when the driven body 90 is a valve body that opens and closes the drain of the washing machine, the drain is opened). Is maintained).
  • the synchronous motor 10 continues to be driven, but the power is not transmitted to the second rotor gear 21 (first transmission train). Therefore, the load applied to the synchronous motor 10 is small, and the power consumption can be reduced.
  • the lock lever 45 also moves in this direction and returns to the original position. Since the force of the urging member 46 to return the second gear 44 to the original position is small, the rotation speed of the second gear 44 and the load portion 52 is low, and the weight of the load portion 52 contacts the drum 531. do not do. Therefore, the magnitude of the load acting on the second gear 44 by the load applying means 50 does not increase, and the second gear 44 returns smoothly to the original position.
  • the height direction position of the lock portion 451 of the lock lever 45 becomes higher than the height direction position of the locked portion 471 of the lock gear 47.
  • the lock portion 451 and the locked portion 471 are positioned so as not to overlap in the circumferential direction. Therefore, the state in which the rotation of the lock gear 47 is prevented is eliminated, and the lock gear 47 can be freely rotated. That is, the fixed gear 31 of the clutch means (planetary gear train) can freely rotate, that is, the clutch means is in the “disengaged” state. In this way, the second gear 44 moves upward in the axial direction thereof, thereby bringing the power transmission by the first transmission train into the “disconnected” state via the clutch means.
  • the driven body 90 is always going to return to its original position by an external load acting on itself.
  • the driven body 90 is a valve body that opens and closes a drain port of a washing machine, and the valve body is operated in a direction to open the drain port by driving the motor unit 1, the valve body always opens the drain port. It is biased in the closing direction. Therefore, when the clutch means that can freely rotate the fixed gear 31 is in the “disengaged” state, the load applied to the driven body 90 reverses the first transmission train so that the output side gear 23 (planet support) To the gear 232). The energy based on the load applied to the driven body 90 thus transmitted is output (consumed) by the idling of the output side gear 23 because the clutch means is in the “disengaged” state. Thereby, the driven body 90 returns to the original position.
  • the sector lever 60 having the engaging protrusion 61 that engages with the cam groove 252 rotates in a direction approaching the cam gear 25.
  • the sector lever 60 rotates in this way, the input side gear lock projection 62 of the sector lever 60 is separated from the locked projection 223 of the input side gear 22.
  • the input side gear 22 is allowed to rotate.
  • the second rotor gear 21 urged upward in the axial direction by the coil spring is pressed against the inclined cam 63 and moves downward in the axial direction (the second rotor gear 21 is located at the first position). ).
  • the brake portion 473 of the lock gear 47 brakes the operation of the driven body 90 to return to the original position, and softens the impact applied to the first transmission train. Therefore, it is possible to prevent damage to the power transmission member, which is an individual member constituting the first transmission train.
  • the driven body 90 returns to the original position, an impact sound that collides with each other (when the driven body 90 is a valve body that opens and closes the drain port of the washing machine, the valve body is connected to the drain port. (Impact sound that collides with the surroundings) can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Gear Transmission (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

歯車列の回転に負荷を与えるウォームギア機構である負荷付与手段(50)のケース(82)への取り付けを人手により行う場合であっても、ウォームの破損・変形を防止することができるモータユニット(1)を提供する。具体的には、ウォーム部(51)と、該ウォーム部(51)を回転可能に支持する第一の軸受(53)及び第二の軸受(54)と、該第一の軸受(53)と該第二の軸受(54)とを連結するフレーム部(55)と、該ウォーム部(51)の回転に抵抗を与えるブレーキ部(52)とを有する負荷付与手段(50)について、フレーム部(55)の上端部である上部フレーム(551)により、ウォーム部(51)の支持位置よりも上方で第一の軸受(53)と第二の軸受(54)とを連結することで、作業者が負荷付与手段(50)を指で挟持した際の負荷が上部フレーム(551)により支持され、ウォームの破損・変形が防止される。

Description

モータユニット
 本発明はモータユニットに関し、さらに詳しくは、被駆動体へのモータ動力の伝達を遮断及び接続するクラッチ手段を備えたモータユニットに関する。
 下記特許文献1には、モータの動力を被駆動体に伝達する歯車機構である第一の伝達列と、第一の伝達列によるモータ動力の伝達を「継」状態(伝達列によってモータの動力が被駆動体に伝達される状態をいう。以下同じ。)もしくは「断」状態(伝達列によってモータの動力が被駆動体に伝達されない(遮断された)状態をいう。以下同じ。)に切り替えるクラッチ手段と、を備えたモータアクチュエータが記載されている。
 特許文献1のモータアクチュエータ1は、従動側歯車43を軸線方向に移動させることによりクラッチ手段の「断」状態と「継」状態とを切り替えている。従動側歯車43のはす歯部である第二の歯部431は、他の歯車のはす歯部である第一の歯部422と噛合し、ウォームホイール部である第三の歯部432は、遠心ブレーキ機構を備えるウォームである第四の歯部51と噛合している。
 従動側歯車43は、クラッチ手段を「断」状態とする方向へ常時付勢されており、上記はす歯同士の噛合及び第四の歯部51から与えられる負荷から生じるスラスト力により軸線方向の他方側へと移動し、クラッチ手段を「継」状態とする。
特開2012-80757号公報
 図9は特許文献1の図11であり、特許文献1のモータアクチュエータが備える負荷付与手段50’の斜視図である。図9に示される符号も特許文献1の図11で付されているものである。
 遠心ブレーキ機構を備えるウォームである第四の歯部51は、負荷付与手段50’の一部を構成している。第四の歯部51は軸方向の両端が軸受により支持され、これら軸受はフレーム部を介して連結されている。第四の歯部51の一端には負荷部52が取り付けられ、負荷部52側の軸受にはドラム83が形成されている。これら第四の歯部51、負荷部52、及びドラム83により遠心ブレーキ機構が実現されている。
 このような、ウォーム及びウォーム支持部材からなるユニットを人手によりケースへ組み込む場合、作業者はこれら軸受のウォーム支持面の反対側の面(以下、「背面」ともいう。)を指で挟持し、ケース内へ圧入することとなる。この場合、作業者により軸受を挟持する力にばらつきが生じることは当然であり、不意に過剰な力が加えられることも予想される。よって、ウォーム支持部材の剛性が不十分な場合、一定以上の力で軸受が挟持されると、その力をウォームが支持することとなり、ウォームに破損や変形をきたすおそれがある。
 上記問題に鑑み、本発明が解決しようとする課題は、負荷付与手段が人手により取り付けられる場合であっても、ウォーム部の破損・変形を防止することができるモータユニットを提供することにある。
 上記課題を解決するため、本発明のモータユニットは、一方向に回転するモータと、前記モータの動力を被駆動体に伝達する一または複数の動力伝達部材を有する第一の伝達列と、前記第一の伝達列による動力の伝達を「継」状態もしくは「断」状態に切り替えるクラッチ手段と、前記モータの動力を前記クラッチ手段に伝達する伝達列であって、第一のはす歯部が形成された第一の歯車、及び該第一の歯部に噛合する第二のはす歯部が形成された第二の歯車を有する第二の伝達列と、前記第二の歯車の回転に負荷を与える負荷付与手段と、を備え、前記第二の歯車は、軸方向に移動可能に支持され、該軸方向の一方であって前記クラッチ手段を「断」状態とする方向に常時付勢されており、前記第一の歯車と噛合し前記負荷付与手段から負荷を与えられることで生ずるスラスト力により該付勢力に抗して該軸方向の他方側へと移動し、前記クラッチ手段を「継」状態とするモータユニットであって、前記第二の歯車にはウォームホイール部が形成され、前記負荷付与手段は、前記ウォームホイール部に噛合するウォーム部と、該ウォーム部を回転可能に支持する第一の軸受及び第二の軸受と、該第一の軸受と該第二の軸受とを連結するフレーム部と、該ウォーム部の回転に抵抗を与えるブレーキ部とを有し、前記負荷付与手段のケース半体への接合面側を下として、前記フレーム部の上端部である上部フレームは、前記ウォーム部の支持位置よりも上方で前記第一の軸受と前記第二の軸受とを連結することを要旨とする。
 負荷付与手段をケース半体へ組み込む際には、作業の便宜上、第一の軸受と第二の軸受(以下、「軸受」ともいう。)の比較的上部を指で挟持することが想定される。よって、フレーム部の上端部である上部フレームをウォーム部よりも上方に設け、かかる上部フレームで第一の軸受と第二の軸受とを連結することにより、軸受を挟持する力の多くが上部フレームにより支持されることとなり、ウォーム部へ及ぶ負荷を低減することができる。
 また、前記フレーム部は、前記上部フレーム、及び前記上部フレームの反対側端部である下部フレームにより、前記第一の軸受と前記第二の軸受とを連結することが好ましい。この場合、前記上部フレームは、前記ウォーム部に対して上方の位置で前記ウォーム部と平行に前記第一の軸受と前記第二の軸受とを連結するように形成し、前記下部フレームは、前記ウォーム部に対して下方の位置で前記ウォーム部と平行に前記第一の軸受と前記第二の軸受とを連結するように形成することができる。フレーム部の上下両端部において軸受が支持されることにより、指で軸受を挟持した際のぐらつきが低減されるため、フレーム部が安定的に軸受を支持することができ、また、取付作業の効率性を高めることができる。
 また、前記第一の軸受及び前記第二の軸受のうち少なくとも一方は前記フレーム部と別体で成形され、前記上部フレーム及び前記下部フレームの、前記別体で成形された軸受との接合面には、前記別体で成形された軸受側に突出した凸部が形成され、該凸部が前記別体で成形された軸受に形成された凹部と嵌合されることにより、前記フレーム部と前記別体で成形された軸受とが連結されることにより、軸受のぐらつきを低減しつつ、軸受へのウォーム部の取り付けを容易にすることができる。具体的には、前記フレーム部は前記第二の軸受と一体成型されており、前記第一の軸受には前記ブレーキ部を格納するドラムが形成されており、前記上部フレーム及び前記下部フレームの前記第一の軸受との接合面には、前記第一の軸受側に突出した凸部がそれぞれ形成され、前記凸部が前記第一の軸受側に形成された凹部にそれぞれ嵌合されることにより、前記フレーム部と前記第一の軸受とが連結されているように構成することができる。
 また、前記フレーム部は、前記上部フレームと前記下部フレームとの間に補強部を有し、該補強部には凹部または貫通孔が形成されていることにより、フレーム部の剛性を高めることができるとともに、ヒケの発生を防止し、フレーム部を歪みなく直線的に成形することができる。具体的には、前記補強部は、前記上部フレームと前記下部フレームとを筋交い状に補強するように前記貫通孔が設けられて構成することができる。
 また、前記フレーム部、前記第一の軸受、及び前記第二の軸受のうち少なくとも一つの前記ウォーム部側の面には、前記第一の軸受又は前記第二の軸受が前記ウォーム部側へ傾倒することを阻止するリブ部が形成されていることにより、軸受の挟持によりウォーム部へかかる負荷をさらに低減することができる。
 また、前記第一の軸受及び前記第二の軸受のうち少なくとも一方の前記ウォーム部を支持する面の反対側の面には、平面からなる把持部が形成されていることにより、指で軸受を持ちやすくなり、軽い力で効率的に取付作業を行うことが可能となるため、ウォーム部にかかる力をさらに低減することができる。
 また、前記第一の軸受及び前記第二の軸受のうち少なくとも一方の前記ケース半体との接合面には、前記ケース半体側へ突出した一つ又は複数の凸部である嵌入部が形成され、前記嵌入部のうち少なくとも一つの先端部には根元部よりも小径の導入部が形成され、前記導入部は、軸方向に直角に径を小さくした凸部、又は軸方向長さが前記根元部よりも長く前記ケース半体側に向かって径が小さくなるテーパ形状の凸部であることにより、ケース半体への位置決めがしやすくなり、さらに小さな押圧力で圧入することが可能となるため、ウォーム部にかかる力をさらに低減することができる。具体的には、前記第一の軸受及び前記第二の軸受のそれぞれの前記ケース半体との接合面には、前記ケース半体側へ突出した複数の凸部である嵌入部が形成され、複数の前記嵌入部のそれぞれの先端部には前記導入部が形成されているようにすることができ、この場合、前記第一の軸受に設けた複数の前記嵌入部と、前記第二の軸受に設けた複数の前記嵌入部とは、前記ウォーム部の軸方向に対して直交する方向に配置しておけば、ケース半体への取り付けも安定したものとなる。
 本発明にかかるモータユニットによれば、負荷付与手段が人手により取り付けられる場合であっても、ウォーム部の破損・変形を防止することができる。
本実施形態にかかるモータユニットの全体(ケースを取り外した状態)を示した図である。 本実施形態にかかるモータユニットの動力系統を説明するための系統図である。 モータ動力を被駆動体へ伝達する歯車機構の説明図である。 二つのロータ歯車の係合機構を示す正面図である。 クラッチ手段である差動歯車機構の分解斜視図である。 シフト手段を構成する部材を示す平面図である。 第二の歯車及びロックレバーの付勢機構を示す正面図である。 扇形レバーの底面を示す斜視図である。 特許文献1の負荷付与手段の斜視図である。 本実施形態にかかる負荷付与手段の斜視図(a)及び分解図(b)である。
 以下、本発明の実施形態について図面を用いて詳細に説明する。なお、以下の説明における上下とは、図1における上下をいうものとする。また、「原位置」とは、モータ10が駆動していない状態における各構成部材の位置をいう。
 本実施形態にかかるモータユニット1の各構成を説明する前に、モータユニット1の概略を図2の系統図を参照して簡単に説明する。図2に示すようにモータユニット1の動力系統は、モータ10の動力を被駆動体90に伝達する出力系統(第一の伝達列)と、クラッチ手段30を動作させるクラッチ作動系統(第二の伝達列)とからなる。クラッチ手段30は、出力系統による動力の伝達を「継」状態もしくは「断」状態に切り替える。つまり、クラッチ手段30が「継」状態であれば、モータ10の動力は出力系統を通じて被駆動体90に伝達される。クラッチ手段30が「断」状態であれば、出力系統は遮断され、モータ10の動力は被駆動体90に伝達されない。図示されるように、本実施形態では、このようにクラッチ手段30を動作させる(第一の伝達列による動力の伝達を「継」状態とする)ためのクラッチ作動系統の動力として、被駆動体90を駆動させるためのモータ10の動力の一部を利用するものである。
(負荷付与手段)
 図10を参照して、本実施形態における負荷付与手段50の構成について詳細に説明する。
 本実施形態における負荷付与手段50は、後述する第二の歯車44のウォームホイール部である従動側歯部442に噛合するウォーム部51と、ウォーム部51を回転可能に支持する第一の軸受53及び第二の軸受54と、第一の軸受53と第二の軸受54とを連結するフレーム部55と、ウォーム部51の回転に抵抗を与える遠心ブレーキである負荷部52とを有する。
 フレーム部55は、第二の軸受54と一体成型されており、第一の軸受53とは別体で成形されている。第一の軸受53には負荷部52を格納するドラム531が形成されている。フレーム部55の上端部である上部フレーム551はウォーム部51よりも上方にあり、ウォーム部51に対して上方の位置でウォーム部51と平行に形成されて第一の軸受53と第二の軸受54とを連結している。上部フレーム551及びその反対側端部である下部フレーム552の第一の軸受53との接合面には、第一の軸受53側に突出した凸部5511及び凸部5521が形成され、かかる凸部が第一の軸受53側に形成された凹部532及び凹部533にそれぞれ嵌合されることにより、フレーム部55と第一の軸受53とが連結されている。下部フレーム552は、ウォーム部51に対して下方の位置でウォーム部51と平行に第一の軸受53と第二の軸受54とを連結するように形成されている。ここで、凹部532及び凹部533のクリアランスを詰めることにより、フレーム部55に連結された第一の軸受53の可動域を狭め、第一の軸受53のウォーム部51側への傾倒に対する剛性を高めることができる。
 フレーム部55は、上部フレーム551と下部フレーム552との間に補強部553を有し、補強部553は貫通孔5531が設けられ筋交い状に形成されている。補強部553を筋交い状にすることにより、フレーム部55の、上下方向及びウォーム部51の軸線方向から加えられる負荷に対する剛性を維持しつつ、ヒケの発生を防止し、歪みのない直線的な成形を可能としている。ただし、補強部553は必ずしも筋交い状である必要はなく、ヒケを防止することができる程度に凹部や貫通孔が形成されていれば足りる。
 フレーム部55及び第二の軸受54のウォーム部51側の面には、第二の軸受54がウォーム部51側へ傾倒することを阻止するリブ部57が形成されている。かかるリブは第一の軸受53がウォーム部51側に傾倒することを阻止する位置に形成されていてもよく、当然両方に形成されてもよい。
 第二の軸受54の背面には、作業者が軽い力で安定して負荷付与部材50を挟持できるよう、平面からなる把持部541が形成されている。尚、第一の軸受53の背面は略全面が平面となっている。
 第一の軸受53及び第二の軸受54の底面には、ケース半体である下ケース82側へ突出した凸部である嵌入部56が複数ずつ設けられ、この嵌入部56の先端部には根元部よりも小径の導入部が形成されており、これら導入部は軸方向に直角に径を小さくした凸部、又は軸方向長さが根元部よりも長く下ケース82側に向かって径が小さくなるテーパ形状の凸部となっているため、負荷付与部材50を下ケース82へ取り付ける際の位置決めが容易となり、小さな押圧力で圧入することが可能となっている。嵌入部56は、第一の軸受53及び第二の軸受54の底面に複数ずつ設けられ、第一の軸受53の底面に設けた複数の嵌入部56と、第二の軸受54の底面に設けた複数の嵌入部56とは、ウォーム部51の軸線方向に対して直交する方向に配置されているので、第二の軸受54とともに負荷付与部材50を下ケース82へ安定した状態で取り付けることができる。
 本実施形態における負荷付与手段50は上記各構成を備えることにより、作業者が負荷付与手段50を下ケース82へ取り付ける際の、第一の軸受53及び第二の軸受54の背面を指で挟持する負荷がウォーム部51へ及び、ウォーム部51が破損・変形することを防止している。
(モータ10)
 被駆動体90の駆動源であるモータ10は、AC同期モータである。なお、AC同期モータ以外のモータを適用することも可能である。モータ10は、その上端面から突出した回転軸を有する。
(第一の伝達列)
 以下に第一の伝達列について図3~図5を用いて詳細に説明する。第一の伝達列は、同期モータ10の動力を被駆動体90まで伝達する出力系統を構成する。かかる第一の伝達列は、第二のロータ歯車21と、第二のロータ歯車21に噛合する入力側歯車22と、クラッチ手段が「継」の状態のとき入力側歯車22の回転に伴って回転する出力側歯車23と、出力側歯車23に噛合する複合歯車24と、複合歯車24に噛合するカム歯車25と、カム歯車25と一体的に回転するプーリ26と、プーリ26の回転によって巻き上げられるワイヤ27と、を有する。なお、入力側歯車22および出力側歯車23は、詳細を後述するクラッチ手段(遊星歯車列に基づく差動歯車機構)を構成する歯車でもある。
 第二のロータ歯車21は、同期モータ10と同軸線上で回転可能かつ軸線方向に移動可能に支持された平歯車であり、ロータ11と一体的に回転する第一のロータ歯車41の上(回転軸の先端側)に支持されている。また、第二のロータ歯車21は、コイルばね28で軸線方向上向きに付勢されている。第二のロータ歯車21の下面には、第二のロータ歯車21がロータ11側(下側)に位置するときには第一のロータ歯車41の下係合部412と係合する上係合部212が形成されている。なお、この下係合部412と上係合部212が係合した状態における第二のロータ歯車21の位置を第一の位置と称する。下係合部412と上係合部212が係合していない状態における第二のロータ歯車21の位置を第二の位置と称する。
 後述する扇形レバー60の傾斜カム63(図8参照)によって第二のロータ歯車21がロータ11側に移動し、第二のロータ歯車21の上係合部212と第一のロータ歯車41の下係合部412とが係合した状態(第二のロータ歯車21が第一の位置)にあるとき、第二のロータ歯車21と第一のロータ歯車41は一体的に回転する。すなわち、同期モータ10の動力が第二のロータ歯車21にも伝達される。
 第二のロータ歯車21には、入力側歯車22が噛合している。入力側歯車22は、遊星歯車列を構成する一の歯車である。入力側歯車22は、相対的に大径の大径歯部221と相対的に小径のいわゆる太陽歯車である小径歯部222とを有する。入力側歯車22の大径歯部221が第二のロータ歯車21と噛合しており、第二のロータ歯車21の回転に伴って入力側歯車22が回転する。また、入力側歯車22の上面には、被ロック突起223が形成されている。かかる被ロック突起223には、後述する扇形レバー60の入力側歯車ロック突起62が作用する。
 同期モータ10の動力は第二のロータ歯車21を介して、出力側歯車23に伝達される。本実施形態における出力側歯車23には、遊星歯車列を構成する歯車である、三つの遊星歯車231および遊星支持歯車232が該当する。遊星支持歯車232の上端面から突出して周方向等間隔に設けられた三つの遊星歯車支持軸にはそれぞれ遊星歯車231が回転自在に支持されている。遊星歯車支持軸の上端には、抜け止めリング233が固定され、遊星歯車231の脱落が防止されている。遊星支持歯車232は、遊星歯車231が取り付けられた面とは反対側に歯車部2321を有する。遊星歯車231は、入力側歯車22の小径歯部222と噛合している。詳細は後述するが、クラッチ手段が「継」状態にある場合、入力側歯車22の回転に伴って遊星歯車231は入力側歯車22の小径歯部222の周りを公転する。かかる遊星歯車231の公転に伴って、遊星歯車231を支持している遊星支持歯車232が回転する。このようにして、入力側歯車22から出力側歯車23へ動力が伝達される。
 遊星支持歯車232(出力側歯車23)には、複合歯車24が噛合している。複合歯車24は、相対的に小径の小径歯部241および相対的に大径の大径歯部242を有し、この大径歯部242が遊星支持歯車232の歯車部2321と噛合している。これにより、遊星支持歯車232の回転に伴って複合歯車24が回転する。
 複合歯車24には、カム歯車25が噛合している。カム歯車25の歯車部251が、複合歯車24の小径歯部241に噛合している。これにより、複合歯車24の回転に伴ってカム歯車25が回転する。外周に歯車部251が形成された部分の上端面には、カム溝252が形成されている。かかるカム溝252には後述する扇形レバー60が係合している。扇形レバー60の構成ならびにその作用については後述する。
 カム歯車25には、プーリ26が固定されている。カム歯車25と一体的にプーリ26が回転するものであれば、その固定方法は特に限定されない。これにより、カム歯車25の回転に伴ってプーリ26が回転する。また、プーリ26は、ケース外側に露出している。また、プーリ26の外周には、ワイヤ溝261が形成されている。
 プーリ26には、ワイヤ27の一端が固定されている。ワイヤ27の脱落を確実に防止することができるものであれば、その固定方法は特に限定されない。プーリ26がワイヤ27を引き込む方向に回転すると、ワイヤ27はプーリ26のワイヤ溝261にはまり込むように巻き上げられる。ワイヤ27の他端側には、被駆動体90(例えば排水口を開閉する弁体)が固定されており、被駆動体90には、常に原位置(弁体が閉となる位置)に戻ろうとする方向、つまりワイヤ27を引き出す方向の負荷が作用している。ワイヤ27がプーリ26に巻き上げられることによって、被駆動体90が所定の動作を行う。つまり、ワイヤ27がプーリ26に巻き上げられることにより、同期モータ10の動力が第一の伝達列を介して被駆動体90まで伝達されることになる。なお、被駆動体90を正確に動作させるため、ワイヤ27は伸縮性のない材料で形成されている。
(クラッチ手段)
 以下にクラッチ手段について図5を用いて詳細に説明する。クラッチ手段は、第一の伝達列による動力の伝達(出力系統)を「継」状態もしくは「断」状態に切り替える役割を果たす。本実施形態におけるクラッチ手段の動作は、入力側歯車22(太陽歯車である小径歯部222)、出力側歯車23(遊星歯車231および遊星支持歯車232)、および、固定歯車31(リング歯車)を有する遊星歯車列に基づく差動歯車機構を利用したものである。
 既に説明したように、入力側歯車22は、第二のロータ歯車21に噛合し、第二のロータ歯車21の回転に伴って回転する。入力側歯車22の小径歯部222には、周方向等間隔に配された三つの遊星歯車231が噛合している。遊星歯車231は、遊星支持歯車232上に支持されている。遊星支持歯車232は、遊星歯車231の公転に伴って回転する。
 遊星歯車列を構成するリング歯車である固定歯車31は、外歯部311および内歯部312を有する。固定歯車31の外歯部311は、入力側歯車22の大径歯部221の下側に位置し、後述する第二の伝達列を構成する一の歯車であるロック歯車47と噛合している。つまり、ロック歯車47の回転が阻止されている場合、固定歯車31の回転は阻止される。固定歯車31の内歯部312は、三つの遊星歯車231と噛合している。
 かかる構成を備えるクラッチ手段において、遊星歯車231が公転し、遊星支持歯車232が回転するか否かは、固定歯車31の回転が阻止されているか否かによって決まる。
固定歯車31の回転が阻止されている場合、入力側歯車22が回転すると、固定歯車31の内歯部312が動くことはないから、かかる内歯部312に沿って入力側歯車22の小径歯部222に噛合する遊星歯車231が公転し、遊星支持歯車232が回転する。一方、固定歯車31の回転が阻止されていない場合、入力側歯車22が回転し、遊星歯車231が公転しようとしても、固定歯車31が空回りするため、遊星支持歯車232が回転することはない。
 つまり、固定歯車31の回転が阻止されていれば、第一の伝達列が「継」状態となり、固定歯車31の回転が阻止されていなければ、第一の伝達列が「断」状態となる。クラッチ手段によって第一の伝達列が「継」状態、すなわち出力系統が「継」状態にあれば、同期モータ10の動力は、第一の伝達列を介して被駆動体90まで伝達される。一方、クラッチ手段によって第一の伝達列が「断」状態、すなわち出力系統が「断」状態にあれば、同期モータ10の動力はクラッチ手段で切断(入力側歯車22と出力側歯車23との間で切断)され、被駆動体90まで伝達されることはない。
(第二の伝達列)
 以下に第二の伝達列について図6、図7を用いて詳細に説明する。第二の伝達列は、同期モータ10の動力をクラッチ手段まで伝達するクラッチ作動系統を構成する。第二の伝達列は、第一のロータ歯車41と、第一のロータ歯車41に噛合する第一の歯車42と、第一の歯車42に噛合する第二の歯車44と、第二の歯車44が軸線方向下向きに移動すると押し下げられるロックレバー45と、押し下げられたロックレバー45によってロックされるロック歯車47と、を有する。
 第一のロータ歯車41は、同期モータ10のロータ11と一体的に形成された平歯車である。上述した第二のロータ歯車21の下(同期モータ10の本体側)に設けられている。
 第一のロータ歯車41には、第一の歯車42が噛合している。駆動側歯部421とこの駆動側歯部421よりも相対的に小径の第一のはす歯部422とを有する。第一のはす歯部422は、上述したように「はす歯」に形成された部分である。第一の歯車42は、その駆動側歯部421が第一のロータ歯車41と噛合している。したがって、第一の歯車42は、第一のロータ歯車41の回転に伴って回転する。
 第一の歯車42には、第二の歯車44が噛合している。第二の歯車44は、相対的に大径の第二のはす歯部441と、相対的に小径の従動側歯部442を有する。第二の歯車44は、第二の歯車支持軸86に回転自在かつ軸線方向に移動可能に支持されている。上述したように、第二のはす歯部441は「はす歯」に形成された部分である。従動側歯部442は、負荷付与手段50が有するウォーム部51と噛合するいわゆるウォームホイール部である。なお、従動側歯部442ははす歯であってもよいし、平歯車であってもよい。
 第二の歯車44は、その第二のはす歯部441が、第一の歯車42の第一のはす歯部422と噛合している。したがって、第二の歯車44は、第一の歯車42の回転に伴って回転する。同期モータ10が正転したとき、第二の歯車44には、負荷付与手段50により、その回転方向と反対方向の負荷が掛かるため、軸線方向下向きのスラスト力が発生する。よって、第一の歯車42が回転すると、第二の歯車44は回転しつつ軸線方向下向きに移動する。
 ロックレバー45は、平板状の部材であり、第二の歯車44の下に配されている。詳しくは、軸線方向に移動可能な状態で、第二の歯車44と同じ第二の歯車支持軸86に支持されている。ロックレバー45には、凹部452が形成されており、この凹部452が下ケース82の側壁の内側に軸線方向に沿って形成された図示されない凸部に係合されている。かかる凸部と凹部452の係合により、ロックレバー45は、回転が阻止されるとともに軸線方向に移動可能な状態で第二の歯車支持軸86に支持されている。ロックレバー45の一方の端部には、他の部分に比べて肉厚に形成されたロック部451が形成されている。ロックレバー45の下には、ロックレバー45を上向きに付勢する付勢部材46(コイルばね)が配されている。この付勢部材46により、通常時(同期モータ10が駆動していないとき)には、ロックレバー45はロック歯車47の被ロック部471より上に位置する。また、ロックレバー45の上には第二の歯車44が配されているため、第二の歯車44も軸線方向上向きに付勢された状態にある。付勢部材46の付勢力は、第一の歯車42の回転に伴って第二の歯車44が回転する際に、第二の歯車44に発生する軸線方向下向きのスラスト力より小さい。つまり、第二の歯車44が回転すると、付勢部材46の付勢力に抗して、第二の歯車44は軸線方向下向きに移動する。第二の歯車44が軸線方向下向きに移動すると、その下にあるロックレバー45も下向きに移動する。下向きに移動したロックレバー45のロック部451は、ロック歯車47の被ロック部471と略同じ高さに位置する。
 ロック歯車47は、被ロック部471と、その被ロック部471が形成された平板上のロック歯部472とを有する。被ロック部471は、円形の平板から外向きに突出するように形成されている。ロックレバー45が下向きに移動すると、ロックレバー45のロック部451とロック歯車47の被ロック部471とが向かい合うように位置するため、ロック歯車47の回転が所定位置(ロック部451と被ロック部471とが当接する位置)で阻止される。一方、ロック歯部472は、クラッチ手段を構成する固定歯車31の外歯部311と噛合している。したがって、ロック歯車47の回転が阻止されると、それに噛合する固定歯車31の回転も阻止される。なお、本実施形態では、ロック歯車47は遠心ブレーキであるブレーキ部473を有する。ブレーキ部473は、ロック歯車47の回転を妨げる方向に負荷を掛け、ロック歯車47が必要以上に高速で回転しないようにする。
かかるブレーキ部473の作用については後述する。
 第二の歯車44の軸線方向と直交する方向に延びるウォーム部51は、従動側歯部442(ウォームホイール部)と噛合している。ウォーム部51は一条であり、従動側歯部442とウォーム部51とは、増速歯車機構を構成する(従動側歯部442が一歯分回転するとウォーム部51が一回転する)。よって、第二の歯車44の回転は増速されてウォーム部51に伝達される。
(その他の構成)
 図1、図8に示すように、複合歯車24の上には、扇形レバー60が配されている。扇形レバー60は、複合歯車24が回転自在に支持された軸と同じ軸に回転自在に支持されている。扇形レバー60の下面には、係合突起61が形成されている。かかる係合突起61は、カム歯車25の上面に形成されたカム溝252に係合している。また、同じく扇形レバー60には入力側歯車ロック突起62と、傾斜カム63が形成されている。かかる係合突起61、カム溝252、入力側歯車ロック突起62、および、傾斜カム63の詳細については省略するが、各部材の機能は次の通りである。カム歯車25がワイヤ27を巻き上げる方向へ回転すると、カム溝252に係合する係合突起61によって扇形レバー60が入力側歯車22側へ回動する。扇形レバー60が所定位置まで動く(ワイヤ27を所定位置まで巻き上げる)と、ワイヤ27の巻き込みを停止すべく、入力側歯車ロック突起62が入力側歯車22の被ロック突起223に作用し、入力側歯車22の回転を阻止する。
これと同時に傾斜カム63によって軸線方向下向きに押さえつけられていた第二のロータ歯車21が解放され、コイルばね28によって軸線方向上向きに移動する(第二のロータ歯車21が第二の位置に位置する)(図4参照)。これにより、第二のロータ歯車21の上係合部212と、第一のロータ歯車41の下係合部412の係合が解かれる。つまり、同期モータ10の動力が第二のロータ歯車21に伝達されない状態となる。
(モータユニットの動作)
 以上の構成を備えるモータユニット1の通常動作について以下詳細に説明する。以下の説明では、原位置にある被駆動体90に対し同期モータ10の動力を伝達する1)動力伝達動作と、同期モータ10の動力の伝達を遮断し被駆動体90を原位置に戻す2)動力遮断動作に分けて説明する。
1)動力伝達動作
 被駆動体90が原位置にある状態(ワイヤ27がプーリ26に巻き上げられていない状態、すなわち、同期モータ10の動力が被駆動体90に作用していない状態)から同期モータ10を一方に駆動させる(正転させる)と、第二のロータ歯車21および第一のロータ歯車41が回転する。このとき、同期モータ10が逆転した場合には、図示しない逆転防止機構が働き、即座に同期モータ10は正転する。同期モータ10が駆動すると、第一のロータ歯車41の回転により、その第一のロータ歯車41に噛合する駆動側歯部421を有する第一の歯車42が回転する。
 第一の歯車42が回転すると、第一の歯車42の第一のはす歯部422と噛合する第二のはす歯部441を有する第二の歯車44が回転する。この第二の歯車44は、その従動側歯部442(ウォームホイール部)に、負荷付与手段50のウォーム部51が噛合しており、第二の歯車44の回転によって負荷付与手段50の負荷部52も回転する。負荷部52が回転し、その速度が大きくなると、回転を停止させようとする方向に負荷(トルク)が生ずる。かかる負荷は、ウォーム部51から従動側歯部442を有する第二の歯車44およびそれに噛合する第一の歯車42に伝達される。このようにして、第一の歯車42および第二の歯車44は、その回転方向とは反対の負荷を受ける。
 上述のように、第一の歯車42と第二の歯車44の間の動力の伝達は、「はす歯」の噛合によるものである。したがって、負荷付与手段50から回転方向とは反対の負荷を受けた第二の歯車44は、第一の歯車42の回転により、軸線方向下向きのスラスト力を受ける。つまり、第二の歯車44は、「はす歯」の噛合および回転方向とは反対の負荷により、回転しながら軸線方向下向きに移動する。
 また、本実施形態では、第二の歯車44と負荷付与手段50の噛合も「はす歯」によるものであるため、第二の歯車44に対し大きな軸線方向下向きのスラスト力が発生する。
つまり、負荷部52によって発生した負荷は、ウォーム部51と従動側歯部442の噛合によって第二の歯車44に伝達されるものであるため、当該負荷の伝達による軸線方向下向きのスラスト力も第二の歯車44に発生する。
 第二の歯車44が軸線方向下向きに移動すると、その下に配されたロックレバー45が付勢部材46の付勢力に抗して軸線方向下向きに移動する。このようにしてロックレバー45が押し下げられると、ロックレバー45に設けられたロック部451は、ロック歯車47の被ロック部471と略同じ高さで、ロック歯車47の周方向で対向するように位置する。したがって、この状態になると、ロック歯車47の回転はロックレバー45のロック部451によって妨げられる。つまり、ロック歯車47の回転が阻止された状態となる。
 ロック歯車47は、そのロック歯部472が、クラッチ手段の遊星歯車列を構成する固定歯車31の外歯部311に噛合している。したがって、ロック歯車47の回転が阻止されると、固定歯車31の回転も阻止される。これにより、クラッチ手段によって第一の伝達列による動力の伝達が「継」状態となり、同期モータ10の動力が第一の伝達列を介して被駆動体90まで伝達可能な状態となる。このように、第二の歯車44は、その軸線方向下向きに移動することで、クラッチ手段を介して、第一の伝達列による動力の伝達を「継」状態とする。
 一方、同期モータ10の駆動によって第一のロータ歯車41とともに回転する第二のロータ歯車21は、遊星歯車列を構成する入力側歯車22の大径歯部221と噛合している。したがって、第二のロータ歯車21の回転に伴い、入力側歯車22が回転する。
 入力側歯車22の小径歯部222の外側には、出力側歯車23を構成する三つの遊星歯車231が噛合している。周方向に等間隔に並んだ遊星歯車231の外側には、固定歯車31の内歯部312が噛合している。上述のように、固定歯車31は、ロック歯車47によって回転が阻止された状態にある。したがって、入力側歯車22が回転すると、その小径歯部222の周りを遊星歯車231が公転する。遊星歯車231が公転すると、遊星歯車231を支持する遊星支持歯車232が回転する。つまり、入力側歯車22の回転動力が、全て出力側歯車23に伝達される。
 なお、仮に、固定歯車31の回転が阻止された状態にない場合に入力側歯車22が回転すると、遊星歯車231を介して固定歯車31が空回りする。遊星支持歯車232以降の動力伝達列には、伝達列自体の負荷や、被駆動体90にかかる負荷が存在するため、入力側歯車22の回転動力が全て固定歯車31側に伝達されてしまうからである。このように本実施形態では、遊星歯車列を利用した差動歯車機構により、クラッチ手段による第一の伝達列の「継」状態と「断」状態を切り替えている。
 遊星支持歯車232の歯車部2321には、複合歯車24の大径歯部242が噛合している。したがって、遊星支持歯車232の回転に伴い、複合歯車24が回転する。
 複合歯車24の小径歯部241には、カム歯車25の歯車部251が噛合している。したがって、複合歯車24の回転に伴い、カム歯車25が回転する。
 カム歯車25が回転すると、カム歯車25の上端に固定されたプーリ26が回転する。
プーリ26が回転すると、プーリ26に固定されたワイヤ27がワイヤ溝261に沿って巻き上げられる。ワイヤ27の先端には、被駆動体90が固定されているため、被駆動体90はワイヤ27に引き上げられるように動作する。例えば、被駆動体90が洗濯機の排水口を開閉する弁体である場合には、ワイヤ27によって弁体が引き上げられることで排水口が開放され、排水が開始される。
 このように、同期モータ10の回転動力は、第一の伝達列を介して被駆動体90に伝達される。第一の伝達列はクラッチ手段によって「継」状態とされるが、そのクラッチ手段を「継」状態とする動力にも同期モータ10の回転動力の一部が利用される。
 なお、プーリ26によるワイヤ27の巻き上げは次のように停止する。カム歯車25が所定位置まで回転すると(ワイヤ27が所定量巻き上げられると)、カム溝252に係合する係合突起61を有する扇形レバー60が入力側歯車22側に回動する。このように扇形レバー60が回動すると、扇形レバー60が有する入力側歯車ロック突起62が、入力側歯車22の被ロック突起223に周方向から当接する。これにより、入力側歯車22の回転が阻止された状態となる。また、扇形レバー60の傾斜カム63によって軸線方向下向きに押さえつけられていた第二のロータ歯車21が解放され、コイルばねによって軸線方向上向きに移動する(第二のロータ歯車21が第二の位置に位置する)。これにより、第二のロータ歯車21の上係合部212と、第一のロータ歯車41の下係合部412の係合が解かれ、同期モータ10の動力が第二のロータ歯車21に伝達されない状態となる。
入力側歯車22の回転が停止すると、第一の伝達列を構成する各部材の動作も停止する。
すなわち、プーリ26によるワイヤ27の巻き上げが停止し、当該巻き上げ位置でプーリ26が保持された状態(被駆動体90が洗濯機の排水口を開閉する弁体である場合には、排水口の開放が維持される状態)となる。このように、排水口の開放が維持された状態では、同期モータ10は駆動し続けているが、その動力は第二のロータ歯車21(第一の伝達列)に伝わらない状態である。したがって、同期モータ10にかかる負荷が小さく、消費電力を低減できる。
 このようにして、被駆動体90に対し同期モータ10の動力を伝達する動力伝達動作が完了する。
2)動力遮断動作
 上記動力伝達動作が完了した状態から被駆動体90を原位置に戻す場合、同期モータ10の駆動を停止(同期モータ10への通電を停止)する。そうすると、第一のロータ歯車41、第一の歯車42の回転が停止するため、第二の歯車44の回転も停止する。第二の歯車44の回転が停止すると、「はす歯」の噛合および負荷付与手段50が与える負荷によって生じていた、第二の歯車44に対する軸線方向下向きのスラスト力が消滅する。第二の歯車44は、その下に配されたロックレバー45とともに付勢部材46によって軸線方向上向きに付勢されているから、当該スラスト力が消滅すると第二の歯車44は回転しながら軸線方向上向きに移動し、原位置に戻る。当然ロックレバー45も当該方向に移動し、原位置に戻る。なお、付勢部材46による第二の歯車44を原位置に戻そうとする力は小さいから、第二の歯車44および負荷部52の回転速度は低く、負荷部52のおもりはドラム531に接触しない。そのため、負荷付与手段50によって第二の歯車44に作用する負荷の大きさは大きくならず、第二の歯車44がスムーズに原位置に戻る。
 ロックレバー45が付勢部材46によって上向きに移動すると、ロックレバー45のロック部451の高さ方向位置は、ロック歯車47の被ロック部471の高さ方向位置より高くなる。具体的には、ロック部451と被ロック部471とは周方向で重ならないように位置する。したがって、ロック歯車47の回転が阻止された状態は解消され、ロック歯車47は自在に回転することができる状態となる。つまり、クラッチ手段(遊星歯車列)の固定歯車31が自在に回転することができる状態、すなわちクラッチ手段が「断」状態となる。このように、第二の歯車44は、その軸線方向上向きに移動することで、クラッチ手段を介して、第一の伝達列による動力の伝達を「断」状態とする。
 被駆動体90は、自身に作用する外部負荷により、常に原位置に戻ろうとしている。例えば、被駆動体90が洗濯機の排水口を開閉する弁体であって、モータユニット1の駆動により排水口を開放する方向に弁体を動作させる場合には、弁体は常に排水口を閉鎖する方向に付勢されている。したがって、固定歯車31が自在に回転することができるクラッチ手段が「断」状態となると、被駆動体90にかかる負荷は、第一の伝達列を逆行するようにして出力側歯車23(遊星支持歯車232)まで伝達される。このようにして伝達された被駆動体90にかかる負荷に基づくエネルギは、クラッチ手段が「断」状態となっているため、出力側歯車23の空転によって出力(消費)される。これにより、被駆動体90は原位置に戻る。
 さらに、カム歯車25が原位置に戻ると、カム溝252に係合する係合突起61を有する扇形レバー60がカム歯車25に近づく方向に回動する。このように扇形レバー60が回動すると、扇形レバー60が有する入力側歯車ロック突起62が、入力側歯車22の被ロック突起223から離れる。これにより、入力側歯車22の回転が許容された状態となる。また、コイルばねで軸線方向上向きに付勢されていた第二のロータ歯車21は、傾斜カム63に押さえつけられ、軸線方向下向きに移動する(第二のロータ歯車21が第一の位置に位置する)。これにより、第二のロータ歯車21の上係合部212と、第一のロータ歯車41の下係合部412が係合し、同期モータ10の動力が第二のロータ歯車21にも伝達される状態となる。
 この際、ロック歯車47のブレーキ部473は、被駆動体90が原位置に戻ろうとする動作にブレーキをかけ、第一の伝達列にかかる衝撃をやわらげる。そのため、第一の伝達列を構成する個々の部材である動力伝達部材の破損を防ぐことができる。また、被駆動体90が原位置に戻る際、度当たりに衝突する衝撃音(被駆動体90が、洗濯機の排水口を開閉する弁体である場合には、かかる弁体が排水口の周囲に衝突する衝撃音)を低減することができる。
 このように、同期モータ10を停止すれば、付勢部材46の作用によって遊星歯車列を構成する固定歯車31のロックが解除され、クラッチ手段が第一の伝達列を「断」状態とする。これにより、被駆動体90は原位置に戻る。
 以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
1 モータユニット
10 同期モータ
21 第二のロータ歯車
41 第一のロータ歯車
22 入力側歯車
23 出力側歯車
231 遊星歯車
24 複合歯車
25 カム歯車
42 第一の歯車
44 第二の歯車
45 ロックレバー
47 ロック歯車
50 負荷付与手段
60 扇形レバー

 

Claims (18)

  1.  一方向に回転するモータと、
     前記モータの動力を被駆動体に伝達する一または複数の動力伝達部材を有する第一の伝達列と、
     前記第一の伝達列による動力の伝達を「継」状態もしくは「断」状態に切り替えるクラッチ手段と、
     前記モータの動力を前記クラッチ手段に伝達する伝達列であって、第一のはす歯部が形成された第一の歯車、及び該第一の歯部に噛合する第二のはす歯部が形成された第二の歯車を有する第二の伝達列と、
     前記第二の歯車の回転に負荷を与える負荷付与手段と、を備え、
     前記第二の歯車は、軸方向に移動可能に支持され、該軸方向の一方であって前記クラッチ手段を「断」状態とする方向に常時付勢されており、前記第一の歯車と噛合し前記負荷付与手段から負荷を与えられることで生ずるスラスト力により該付勢力に抗して該軸方向の他方側へと移動し、前記クラッチ手段を「継」状態とするモータユニットであって、
     前記第二の歯車にはウォームホイール部が形成され、
     前記負荷付与手段は、前記ウォームホイール部に噛合するウォーム部と、該ウォーム部を回転可能に支持する第一の軸受及び第二の軸受と、該第一の軸受と該第二の軸受とを連結するフレーム部と、該ウォーム部の回転に抵抗を与えるブレーキ部とを有し、
     前記負荷付与手段のケース半体への接合面側を下として、前記フレーム部の上端部である上部フレームは、前記ウォーム部の支持位置よりも上方で前記第一の軸受と前記第二の軸受とを連結することを特徴とするモータユニット。
  2.  前記フレーム部は、前記上部フレーム、及び前記上部フレームの反対側端部である下部フレームにより、前記第一の軸受と前記第二の軸受とを連結することを特徴とする請求項1に記載のモータユニット。
  3.  前記第一の軸受及び前記第二の軸受のうち少なくとも一方は前記フレーム部と別体で成形され、
     前記上部フレーム及び前記上部フレームの反対側端部である下部フレームの、前記別体で成形された軸受との接合面には、前記別体で成形された軸受側に突出した凸部が形成され、該凸部が前記別体で成形された軸受に形成された凹部と嵌合されることにより、前記フレーム部と前記別体で成形された軸受とが連結されることを特徴とする請求項1に記載のモータユニット。
  4.  前記フレーム部は、前記上部フレームと前記下部フレームとの間に補強部を有し、該補強部には凹部または貫通孔が形成されていることを特徴とする請求項2または請求項3に記載のモータユニット。
  5.  前記フレーム部、前記第一の軸受、及び前記第二の軸受のうち少なくとも一つの前記ウォーム部側の面には、前記第一の軸受又は前記第二の軸受が前記ウォーム部側へ傾倒することを阻止するリブ部が形成されていることを特徴とする請求項1から請求項4のいずれか一項に記載のモータユニット。
  6.  前記第一の軸受及び前記第二の軸受のうち少なくとも一方の前記ウォーム部を支持する面の反対側の面には、平面からなる把持部が形成されていることを特徴とする請求項1から請求項5のいずれか一項に記載のモータユニット。
  7.  前記第一の軸受及び前記第二の軸受のうち少なくとも一方の前記ケース半体との接合面には、前記ケース半体側へ突出した一つ又は複数の凸部である嵌入部が形成され、
     前記嵌入部のうち少なくとも一つの先端部には根元部よりも小径の導入部が形成され、 前記導入部は、軸方向に直角に径を小さくした凸部、又は軸方向長さが前記根元部よりも長く前記ケース半体側に向かって径が小さくなるテーパ形状の凸部であることを特徴とする請求項1から請求項6のいずれか一項に記載のモータユニット。
  8.  前記上部フレームは、前記ウォーム部に対して上方の位置で前記ウォーム部と平行に前記第一の軸受と前記第二の軸受とを連結するように形成され、
    前記下部フレームは、前記ウォーム部に対して下方の位置で前記ウォーム部と平行に前記第一の軸受と前記第二の軸受とを連結するように形成されており、
    前記上部フレームと前記下部フレームとは、凹部または貫通孔を前記上部フレームと前記下部フレームとの間に有する補強部を介して連結されていることを特徴とする請求項2に記載のモータユニット。
  9. 前記補強部は、前記上部フレームと前記下部フレームとを筋交い状に補強するように前記貫通孔が設けられてなることを特徴とする請求項8に記載のモータユニット。
  10. 前記フレーム部は前記第二の軸受と一体成型されており、前記第一の軸受には前記ブレーキ部を格納するドラムが形成されており、
    前記上部フレーム及び前記下部フレームの前記第一の軸受との接合面には、前記第一の軸受側に突出した凸部がそれぞれ形成され、前記凸部が前記第一の軸受側に形成された凹部にそれぞれ嵌合されることにより、前記フレーム部と前記第一の軸受とが連結されていることを特徴とする請求項3に記載のモータユニット。
  11. 前記下部フレーム及び前記第二の軸受の前記ウォーム部側の面には、前記第二の軸受が前記ウォーム部側へ傾倒することを阻止するリブ部が形成されていることを特徴とする請求項10に記載のモータユニット。
  12. 前記フレーム部は前記第二の軸受と一体成型されており、前記第一の軸受には前記ブレーキ部を格納するドラムが形成され、
    前記フレーム部及び前記第二の軸受の前記ウォーム部側の面には、前記第二の軸受が前記ウォーム部側へ傾倒することを阻止するリブ部が形成されていることを特徴とする請求項5に記載のモータユニット。
  13.  前記フレーム部は、前記上部フレーム、及び前記上部フレームの反対側端部である下部フレームにより、前記第一の軸受と前記第二の軸受とが連結されており、
    前記上部フレームは、前記ウォーム部に対して上方の位置で前記ウォーム部と平行に前記第一の軸受と前記第二の軸受とを連結するように形成され、
    前記下部フレームは、前記ウォーム部に対して下方の位置で前記ウォーム部と平行に前記第一の軸受と前記第二の軸受とを連結するように形成されており、
    前記上部フレームと前記下部フレームとは、凹部または貫通孔を前記上部フレームと前記下部フレームとの間に有する補強部を介して連結されていることを特徴とする請求項12に記載のモータユニット。
  14.  前記フレーム部は、前記上部フレーム、及び前記上部フレームの反対側端部である下部フレームにより、前記第一の軸受と前記第二の軸受とが連結されており、
    前記上部フレームは、前記ウォーム部に対して上方の位置で前記ウォーム部と平行に前記第一の軸受と前記第二の軸受とを連結するように形成され、
    前記下部フレームは、前記ウォーム部に対して下方の位置で前記ウォーム部と平行に前記第一の軸受と前記第二の軸受とを連結するように形成されており、
    前記上部フレーム、前記下部フレームは、前記第一の軸受と前記第二の軸受とを、前記ウォーム部に対して前記第二の歯車の前記ウォームホイール部が配置されている側とは逆側で連結していることを特徴とする請求項6に記載のモータユニット。
  15. 前記第一の軸受及び前記第二の軸受のそれぞれの前記ケース半体との接合面には、前記ケース半体側へ突出した複数の凸部である嵌入部が形成され、
    複数の前記嵌入部のそれぞれの先端部には前記導入部が形成されていることを特徴とする請求項7に記載のモータユニット。
  16. 前記第一の軸受に設けた複数の前記嵌入部と、前記第二の軸受に設けた複数の前記嵌入部とは、前記ウォーム部の軸線方向に対して直交する方向に配置されていることを特徴とする請求項15に記載のモータユニット。
  17.  前記上部フレームは、前記ウォーム部に対して上方の位置で前記ウォーム部と平行に前記第一の軸受と前記第二の軸受とを連結するように形成され、
    前記上部フレームの反対側端部である下部フレームは、前記ウォーム部に対して下方の位置で前記ウォーム部と平行に前記第一の軸受と前記第二の軸受とを連結するように形成されており、
    前記上部フレームと前記下部フレームとは、凹部または貫通孔を前記上部フレームと前記下部フレームとの間に有する補強部を介して連結されていることを特徴とする請求項3に記載のモータユニット。
  18. 前記補強部は、前記上部フレームと前記下部フレームとを筋交い状に補強するように前記貫通孔が設けられていることを特徴とする請求項17に記載のモータユニット。
PCT/JP2015/053695 2014-02-28 2015-02-10 モータユニット WO2015129455A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014038065A JP2015163012A (ja) 2014-02-28 2014-02-28 モータユニット
JP2014-038065 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129455A1 true WO2015129455A1 (ja) 2015-09-03

Family

ID=53947061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053695 WO2015129455A1 (ja) 2014-02-28 2015-02-10 モータユニット

Country Status (4)

Country Link
JP (1) JP2015163012A (ja)
KR (1) KR101673074B1 (ja)
CN (2) CN104879447A (ja)
WO (1) WO2015129455A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163012A (ja) * 2014-02-28 2015-09-07 日本電産サンキョー株式会社 モータユニット
JP6481121B1 (ja) * 2018-05-02 2019-03-13 株式会社センシンロボティクス 飛行体の制御に関する情報表示方法
JP7268293B2 (ja) * 2018-05-28 2023-05-08 京セラドキュメントソリューションズ株式会社 画像形成装置
CN110000591A (zh) * 2019-05-17 2019-07-12 福建成和光电科技有限公司 一种钻孔攻牙加工设备
CN110388418A (zh) * 2019-08-23 2019-10-29 善思科技(宁波)有限公司 一种升降系统用传动结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181474A (ja) * 1985-02-02 1986-08-14 アウエルゲゼルシヤフト・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 呼吸防護装置
JP2012080757A (ja) * 2010-09-06 2012-04-19 Nidec Sankyo Corp モータアクチュエータ
EP2609963A1 (en) * 2011-12-29 2013-07-03 Cresto AB Descending device with direct drive centrifugal brake

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106044B2 (ja) * 1990-11-16 1995-11-13 マブチモーター株式会社 モータ出力軸位置決め装置
FR2830895B1 (fr) * 2001-10-12 2004-02-20 Meritor Light Vehicle Sys Ltd Motoreducteur, leve-vitre et procede de fonctionnement de leve-vitre
GB0820001D0 (en) * 2008-10-31 2008-12-10 Warke William L Worm gear clutch mechanism
CN102403831B (zh) * 2010-09-06 2015-04-01 日本电产三协株式会社 电动机致动器
JP2015163012A (ja) * 2014-02-28 2015-09-07 日本電産サンキョー株式会社 モータユニット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181474A (ja) * 1985-02-02 1986-08-14 アウエルゲゼルシヤフト・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 呼吸防護装置
JP2012080757A (ja) * 2010-09-06 2012-04-19 Nidec Sankyo Corp モータアクチュエータ
EP2609963A1 (en) * 2011-12-29 2013-07-03 Cresto AB Descending device with direct drive centrifugal brake

Also Published As

Publication number Publication date
JP2015163012A (ja) 2015-09-07
KR101673074B1 (ko) 2016-11-04
CN104879447A (zh) 2015-09-02
CN204921856U (zh) 2015-12-30
KR20150102702A (ko) 2015-09-07

Similar Documents

Publication Publication Date Title
TWI363483B (en) Transmission for motor and controlling device thereof
WO2015129455A1 (ja) モータユニット
JP5514139B2 (ja) 電動工具
JP5201756B2 (ja) モータ用一方向変速機
JP2015175404A (ja) 排水弁駆動装置
JP5751971B2 (ja) モータユニット
JP6025704B2 (ja) モータ式アクチュエータ
JP2012016760A (ja) 電動工具
JP5872282B2 (ja) 自動変速装置およびモータ駆動工具
KR102057293B1 (ko) 모터용 다단 변속기
JP4784363B2 (ja) 変速機におけるパーキングロック装置
JP5926843B1 (ja) 空転歯車を備えたフリータイプ双方向クラッチ
JP2015177558A (ja) モータユニット
WO2015133444A1 (ja) 排水弁駆動装置
JP5280592B1 (ja) 変速装置
TW201303181A (zh) 具後段離合器裝置之動力傳輸系統
JP5842121B2 (ja) 電動工具
JP5842122B2 (ja) 電動工具
JP2007143448A (ja) 魚釣用電動リール
JP2002242998A (ja) 遊星歯車装置
JP6625455B2 (ja) 動力装置
EP3652842A1 (en) Motor arrangement and pressure washer with such motor arrangement
JP4565565B2 (ja) 魚釣用電動リール
JP6181521B2 (ja) トランスミッションにおけるリダクションギヤノイズ抑制構造
KR101075565B1 (ko) 헬리컬 감속기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755873

Country of ref document: EP

Kind code of ref document: A1