[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015125755A1 - Hollow fiber membrane element and hollow fiber membrane module - Google Patents

Hollow fiber membrane element and hollow fiber membrane module Download PDF

Info

Publication number
WO2015125755A1
WO2015125755A1 PCT/JP2015/054204 JP2015054204W WO2015125755A1 WO 2015125755 A1 WO2015125755 A1 WO 2015125755A1 JP 2015054204 W JP2015054204 W JP 2015054204W WO 2015125755 A1 WO2015125755 A1 WO 2015125755A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
core tube
membrane
membrane element
Prior art date
Application number
PCT/JP2015/054204
Other languages
French (fr)
Japanese (ja)
Inventor
一成 丸井
功次 徳永
泰樹 寺島
肇 末永
熊野 淳夫
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2016504096A priority Critical patent/JP6565898B2/en
Publication of WO2015125755A1 publication Critical patent/WO2015125755A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/025Bobbin units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements

Definitions

  • the present invention relates to a hollow fiber membrane element and a hollow fiber membrane module.
  • Separation and concentration of liquid mixtures by membrane separation is an energy-saving method because it does not involve phase changes compared to conventional separation techniques such as distillation, and it does not involve changes in the state of substances. It is widely used in many fields such as food separation such as separation of organic matter and recovery of organic matter from industrial wastewater. Membrane water treatment has become established as an indispensable process that supports state-of-the-art technology.
  • Such a water treatment using a membrane is used as a membrane module in which membranes are assembled into a pressure vessel by assembling membranes into one constituent element.
  • a hollow fiber membrane element is a spiral membrane element.
  • the water permeability per unit membrane area is not large, but since the membrane area per membrane module volume can be increased, the overall water permeability can be increased and the volume efficiency is very high. Excellent compactness. Further, when both the high-concentration aqueous solution and the fresh water are supplied into the module and brought into contact via the semipermeable membrane, the concentration polarization on the membrane surface can be kept small.
  • a both-end opening type is used as a hollow fiber membrane for forward osmosis.
  • the flow of the membrane permeate flows from the inside (inside the hollow portion) to the outside of the hollow fiber membrane, as shown in FIG.
  • DS high osmotic pressure draw solution
  • FS low osmotic pressure feed solution
  • the membrane permeated water which is fresh water, flows out to the outside of the hollow fiber membrane, thereby reducing the concentration of the outer surface of the hollow fiber membrane.
  • a low concentration layer concentration polarization layer
  • the effective concentration difference that is, the osmotic pressure difference becomes small, and the membrane permeation amount by the normal osmosis treatment obtained originally may not be obtained.
  • FS is not fresh water but a solution having a lower concentration than DS.
  • the solution flowing outside the hollow fiber membrane flows from the distribution pipe at the center of the columnar hollow fiber membrane layer to the entire hollow fiber membrane layer, but the fluid is the length of the hollow fiber membrane layer.
  • the flow of liquid passing through the hollow fiber membrane layer (outside of the hollow fiber membrane) is small because the fluid flows in the direction and the radial direction, and the fluid drifts due to slight unevenness of the hollow fiber membrane density in the hollow fiber membrane layer.
  • concentration polarization is likely to occur on the outer surface of the hollow fiber membrane.
  • a so-called counter-current type (the flow outside the hollow fiber membrane and the flow inside the hollow fiber membrane are in opposite directions), which is said to be efficient in the separation operation, cannot be performed.
  • Patent Document 1 Japanese Patent Publication No. 7-29029 discloses a module configuration for guiding the flow outside the hollow fiber membrane in the axial direction of the module in order to eliminate such drawbacks.
  • the hollow fiber membrane module described in Patent Document 1 is, for example, from the vicinity of an opening provided only at one end of a core tube (supply tube) located at the center of the module, to the other end of the hollow fiber membrane layer.
  • the flow velocity outside the hollow fiber membrane is increased to try to suppress concentration polarization occurring on the outer surface of the hollow fiber membrane Is.
  • the volume of containers, connection parts, etc. attached to the module is small, so it is required to increase the module size to some extent. Since the diameter is increased, the flow resistance in the radial direction perpendicular to the axial direction of the module is increased, and the water to be treated is hardly distributed in the radial direction. Particularly in such a case, it is considered that the problem of the dead space as described above becomes remarkable.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-38162 discloses a module configuration for solving the problem of dead space due to an increase in module size in the case of a cross flow. That is, Patent Document 2 discloses a cross arrangement in which a hollow fiber membrane bundle is wound on a porous core material at an angle with the vertical axis of the hollow fiber membrane bundle group, and crosses alternately for each hollow fiber membrane bundle.
  • the cross-point group with low packing density where the hollow fiber membranes intersect is concentratedly arranged near the supply part opposite to the concentrated water discharge part, and the outer periphery from the center of the cross section perpendicular to the vertical axis of the hollow fiber membrane bundle group
  • a hollow fiber membrane module that is continuously aligned in the direction of the part is disclosed.
  • the present invention was devised in view of the current state of the prior art described above, and its purpose is that the flow rate of the liquid passing through the outside of the hollow fiber membrane is high and liquid stagnation hardly occurs in the element. It is to provide a yarn membrane element and a hollow fiber membrane module.
  • the present inventor has determined the flow direction of the fluid flowing outside the hollow fiber membrane for forward osmosis as the axis.
  • the element structure to be oriented can reduce the concentration polarization of the outer surface of the hollow fiber membrane and reduce the loss of the permeated water amount due to forward osmosis, so that the permeated water amount can be obtained efficiently, leading to the completion of the present invention. It was.
  • the present invention has the following configurations (1) to (6).
  • a core tube connected to a supply port or a discharge port;
  • a group of hollow fiber membranes comprising a plurality of hollow fiber membranes;
  • a hollow fiber membrane element comprising a resin wall for fixing the core tube and the hollow fiber membrane group at both ends thereof,
  • the core tube has a hole only in the vicinity of the first end which is one end of the hollow fiber membrane group,
  • the plurality of hollow fiber membranes are spirally wound around the core tube so as to cross each other, and have a cross point group including a plurality of cross points that are intersections of the hollow fiber membranes,
  • a hollow fiber membrane module comprising the hollow fiber membrane element according to any one of (1) to (5) and a container loaded with at least one hollow fiber membrane element.
  • the present invention it is possible to provide a hollow fiber membrane element and a hollow fiber membrane module in which the flow rate of liquid passing through the outside of the hollow fiber membrane is high and liquid stagnation does not easily occur in the element.
  • the concentration polarization on the outer surface of the hollow fiber membrane can be reduced in the entire element, and the loss of the amount of permeated water can be reduced, so that membrane separation can be performed efficiently.
  • a so-called counter-current type separation operation that is said to be efficient in the separation operation can be performed.
  • the hollow fiber membrane element of the present embodiment includes a core tube 20 connected to a supply port 10, a hollow fiber membrane group including a plurality of hollow fiber membranes 21, a core tube 20 and a hollow fiber membrane. And resin walls 51 and 52 for fixing the group at both ends thereof.
  • the core tube 20 has a hole 20a only in the vicinity of the first end 4a which is one end of the hollow fiber membrane group.
  • the fluid flowing out from the hole 20a is dispersed in the radial direction of the hollow fiber membrane element in the vicinity of the resin wall, and then flows in the axial direction of the element (core tube) on the outer side 3 of the hollow fiber membrane.
  • the flow velocity of the fluid on the outer side (outer surface) 3 of the hollow fiber membrane can be increased, so that the concentration polarization of the outer surface of the hollow fiber membrane can be reduced, and the loss of the amount of permeated water due to forward osmosis is reduced. By reducing, it becomes possible to obtain the amount of permeate efficiently.
  • fresh water can be taken out from the low-concentration feed liquid, or the fresh water can be taken out to concentrate the low-concentration feed liquid or recover energy from the osmotic flow.
  • a high pressure osmotic aqueous solution (seawater) and a low pressure, low osmotic pressure fresh water are brought into contact with each other through a forward osmosis membrane, so that the low pressure fresh water has a high pressure and high osmosis through the membrane.
  • the energy can be recovered by flowing into the pressurized aqueous solution and rotating the turbine or the like with the pressurized aqueous solution.
  • the hollow fiber membrane group is covered with a cylindrical impermeable film 6 except for the vicinity in the vicinity of the second end 4b which is one end opposite to the first end 4a.
  • the above-described hollow fiber membrane element can be made into a hollow fiber membrane module by loading one or more of them into a container, particularly a pressure vessel having pressure resistance that can withstand the operating pressure.
  • the hollow fiber membrane module shown in FIG. 1 includes at least the hollow fiber membrane element described above and a container 1 loaded with at least one hollow fiber membrane element.
  • the resin walls 51 and 52 of the hollow fiber membrane element are liquid-tightly fixed to the inner wall of the container 1 by O-rings 51a and 52a.
  • This hollow fiber membrane module has a supply port 10 connected to the core tube 20, a supply port 11 and a discharge port 12 communicating with the inside of the hollow fiber membrane 21, and is fixed by wall members 14 and 15. . Further, a discharge port 13 communicating with the outside of the hollow fiber membrane 21 through a portion not covered with the surrounding non-permeable film 6 in the vicinity of the second end 4 b is provided on the side surface of the container 1.
  • the hollow fiber membrane 21 is drawn so as to be parallel to the core tube 20, but in practice, a plurality of hollow fibers are used so that the plurality of hollow fiber membranes cross each other.
  • a hollow fiber membrane bundle made of a membrane is spirally wound around the core tube 20. This point will be described with reference to FIG.
  • the plurality of hollow fiber membrane bundles 22a and 22b are spirally wound around the core tube 20 so that the plurality of hollow fiber membrane bundles 22a and 22b intersect each other. It is wound in a shape.
  • being wound spirally means that the array of hollow fiber membranes is wound at an angle with the axis of the core tube.
  • it has the cross point group 24 containing two or more cross points 23 which are the crossing parts of the hollow fiber membranes 21 which comprise the hollow fiber membrane bundles 22a and 22b.
  • voids are regularly formed in the cross point group including a plurality of intersections (cross points) of the hollow fiber membranes. Due to the existence of the regular voids, the pressure loss of the fluid flowing on the outer side 3 of the hollow fiber membrane is small in the cross point group. In addition, since non-dissolved components and particle components in the fluid flowing on the outer side 3 of the hollow fiber membrane are rarely trapped between the hollow fiber membranes, it is difficult for pressure loss to increase.
  • the gap between the hollow fiber membranes is likely to vary, and the pressure loss of the fluid flowing outside the hollow fiber membrane 3 Since the fluid flows only in the portion where the pressure loss is small, the drift is likely to occur. In addition, non-dissolved components and particle components in the fluid are trapped between the hollow fiber membranes, and the pressure loss is likely to increase.
  • the pressure loss of the fluid flowing on the outer side 3 of the hollow fiber membrane is small, so that it is difficult for drift to occur.
  • the allowable amount of contaminants composed of non-dissolved components of the fluid flowing on the outer side 3 of the hollow fiber membrane is larger than that in the parallel arrangement, and the contamination resistance of the hollow fiber membrane element is improved. To do.
  • the hollow fiber membrane element of this embodiment is characterized in that the cross point group 24 exists at least in the vicinity of the first end 4a of the hollow fiber membrane group. In addition, it is preferable that the cross point group 24 exists in the vicinity of a surface perpendicular to the axis of the core tube 20 passing through the hole 20a of the core tube 20.
  • the cross point group In the cross point group, a large distance is secured between the hollow fiber membranes, and the fluid to be treated flowing outside the hollow fiber membrane is easily dispersed in the radial direction of the hollow fiber membrane group (hollow fiber membrane element) from the vicinity of the core tube. For this reason, by adjusting so that the cross point group is positioned in the vicinity of the first end 4a of the hollow fiber membrane group, for example, the fluid flowing out from the hole 20a of the core tube 20 can flow in the radial direction of the hollow fiber membrane element. It becomes easy to disperse
  • the core tube is connected to the supply port (when the liquid is supplied from the hole of the core tube to the outer surface of the hollow fiber membrane) has been described, but the core tube is connected to the discharge port.
  • the liquid on the outer surface of the hollow fiber membrane is discharged through the hole in the core tube, the fluid on the outer peripheral side of the hollow fiber membrane element easily flows into the hole in the core tube, Generation of dead space on the outer peripheral side of the yarn membrane element is suppressed.
  • the cross point group 24 also exists in the vicinity of the second end 4b that is one end opposite to the first end 4a of the hollow fiber membrane group.
  • the core tube 20 having the hole 20a only in the vicinity of the first end 4a is used, the dead space is likely to occur not only in the outer peripheral portion on the first end 4a side but also in the vicinity of the core tube 20 at the second end 4b.
  • the cross point group 24 also exists in the vicinity of the second end 4b, it is possible to suppress the occurrence of dead space in the vicinity of the core tube 20 of the second end 4b.
  • the cross points 23 are preferably continuously aligned in a plane direction perpendicular to the axis of the core tube 20. Thereby, the radial fluid resistance in the cross point group 24 can be further reduced, and the occurrence of dead space can be more reliably suppressed.
  • the hollow fiber membrane element of the present embodiment is formed by, for example, spirally winding a hollow fiber membrane around a core tube and laminating the hollow fiber membranes in a radial direction with the hollow fiber membranes arranged in a cross shape. After sealing both ends of the hollow fiber membrane wound body with resin, a part of the resin (resin wall) is cut to open both ends of the hollow fiber membrane.
  • the hollow fiber membrane is formed into a cross shape by winding the hollow fiber membrane bundle of a plurality of hollow fiber membranes in a cross shape. You may arrange in.
  • the core tube is a tubular member having a function of distributing the fluid supplied from the supply port to the outer side 3 (outer surface) of the hollow fiber membrane in the hollow fiber membrane element when connected to the supply port. It is preferable that the core tube is positioned substantially at the center of the hollow fiber membrane element.
  • the diameter of the core tube When the diameter of the core tube is too large, the area occupied by the hollow fiber membrane in the membrane module is reduced, and as a result, the membrane area of the membrane element or the membrane module is reduced, so that the water permeability per volume may be lowered. Further, if the diameter of the core tube is too small, pressure loss increases when the supply fluid flows in the core tube, and as a result, the effective differential pressure applied to the hollow fiber membrane may be decreased and the processing efficiency may be reduced. In addition, the core tube may be damaged due to the strength of the hollow fiber membrane that is reduced when the supply fluid flows through the hollow fiber membrane layer due to a decrease in strength. It is important to set an optimum diameter in consideration of these influences comprehensively.
  • the area ratio of the cross-sectional area of the core tube to the cross-sectional area of the hollow fiber membrane element is preferably 4 to 20%.
  • the material of the hollow fiber membrane is not particularly limited as long as the desired separation performance (preferably high separation performance equivalent to the reverse osmosis membrane) can be expressed.
  • Polyvinyl alcohol resins can be used.
  • sulfonated polysulfone resins such as cellulose acetate resin, sulfonated polysulfone, and sulfonated polyethersulfone are resistant to chlorine as a fungicide, and can easily suppress the growth of microorganisms. preferable.
  • cellulose acetates cellulose triacetate is preferable from the viewpoint of durability.
  • the outer diameter of the hollow fiber membrane is not particularly limited as long as it is used for a forward osmosis membrane.
  • the outer diameter is 160 to 320 ⁇ m. If the outer diameter is smaller than the above range, the inner diameter is inevitably small, and thus the flow pressure loss of the fluid flowing through the hollow portion of the hollow fiber membrane becomes large, which may cause a problem. On the other hand, if the outer diameter is larger than the above range, the membrane area per unit volume in the module cannot be increased, and the compactness that is one of the merits of the hollow fiber membrane module is impaired.
  • the hollow rate of the hollow fiber membrane is not particularly limited as long as it is used for the forward osmosis membrane. For example, 15 to 45%.
  • the hollow ratio is smaller than the above range, the flow pressure loss of the hollow portion is increased, and a desired amount of permeated water may not be obtained.
  • the hollow ratio is larger than the above range, there is a possibility that sufficient pressure resistance cannot be ensured even when used in forward osmosis treatment.
  • the non-permeable film is not particularly limited as long as it does not substantially permeate the fluid flowing outside the hollow fiber membrane (liquid to be treated) or has a large pressure loss when the fluid permeates, It is preferable to use a commercially available resinous film, rubber sheet, cloth with small eyes, and the like.
  • a support member may be wound on the non-permeable film.
  • the support member linear materials such as natural fibers, synthetic polymer fibers, inorganic fibers, or woven fabrics themselves, or those in which an adhesive is attached thereto are used. This support member maintains the pressure difference between the inside and outside of the hollow fiber membrane assembly.
  • a rectifying member such as a rectifying plate may be provided in the hollow fiber membrane layer.
  • the outer diameter of the hollow fiber membrane wound body is preferably 130 to 420 mm. If the outer diameter is too large, operability in maintenance management such as membrane exchange work may be deteriorated. If the outer diameter is too small, the membrane area per unit membrane element is reduced, the processing amount is reduced, and this is not preferable from the viewpoint of economy.
  • the length of the hollow fiber membrane wound body is preferably 0.2 to 1.6 m.
  • this length is too long, the flow pressure loss inside the hollow of the hollow fiber membrane increases, and the forward osmosis performance can be lowered. For this reason, it is preferable to shorten the length, particularly when the module is enlarged.
  • the membrane area per unit membrane element is reduced and the amount of treatment is reduced, which is not preferable in terms of economy.
  • the ratio with the outer diameter of the hollow fiber membrane winding body is small, the fluid to be treated is difficult to flow in the axial direction.
  • the number of windings (winding number) of the hollow fiber membrane is not particularly limited.
  • the number of crosspoint groups (including both ends) is 5, 4, and 3. If the number of winds is 0.5 or more, the cross point group can be formed at two or more places including both ends, so that both the vicinity of the first end and the vicinity of the second end are crossed.
  • a point group can be arranged and can be suitably used in the present invention.
  • a membrane-forming solution composed of cellulose triacetate, ethylene glycol (EG), and N-methyl-2-pyrrolidone (NMP) is obtained from a three-part nozzle.
  • a hollow fiber membrane is obtained by discharging, passing through the air running part, and immersed in a coagulating liquid consisting of water / EG / NMP, and then the hollow fiber membrane is washed with water and then heat treated to produce a cellulose acetate-based hollow fiber membrane. can do.
  • the copolymer polyamide obtained by low-temperature solution polymerization method from terephthalic acid dichloride, 4,4'-diaminodiphenylsulfone, and piperazine, it is dissolved in a dimethylacetamide solution containing CaCl 2 and diglycerin to form a film-forming solution.
  • the polyamide-based hollow fiber membrane can be produced by discharging this solution from the three-divided nozzle through the aerial running section into the coagulating liquid, washing the resulting hollow fiber membrane with water, and then heat-treating it.
  • the hollow fiber membrane obtained as described above is incorporated into the hollow fiber membrane element by a conventionally known method. Incorporation of the hollow fiber membrane is, for example, 45 to 90 hollow fiber membranes as described in Japanese Patent No. 4421486, Japanese Patent No. 4277147, Japanese Patent No. 3591618, Japanese Patent No. 3008886 or the like. More than that is collected into one hollow fiber membrane assembly, and a plurality of these hollow fiber membrane assemblies are arranged side by side as a flat hollow fiber membrane bundle and wound around a core tube having a large number of holes while traversing. By adjusting the length and rotation speed of the core tube and the traverse speed of the hollow fiber membrane bundle at this time, the core tube is wound up so that an intersection is formed on the peripheral surface at a specific position.
  • the wound body is cut at a predetermined position by adjusting the length and the position of the intersection.
  • the non-permeable film is arranged, leaving the opposite side of the core tube with the hole, and after bonding both ends of the wound body, both sides are cut.
  • a hollow fiber membrane opening is formed to produce a hollow fiber membrane element.
  • the hollow fiber membrane element of the present invention can take a larger membrane area per element than a spiral flat membrane, and depending on the size of the hollow fiber membrane, A membrane area approximately 10 times that of the spiral type can be obtained. Therefore, the hollow fiber membrane may have a very small amount of treatment per unit membrane area when obtaining the same water permeation amount, and can reduce the contamination of the membrane surface that occurs when the supply water permeates the membrane as compared to the spiral type. The operation time until the membrane is washed can be increased. Furthermore, since the drift in the element is difficult to occur, it is suitable for water treatment using a concentration difference as a driving force.
  • the hollow fiber membrane module of the present invention ensures a radial flow even when the module size is increased (particularly when the module diameter is increased and the length is shortened). It eliminates the dead space inside and realizes a uniform distribution flow from the supply side to the drainage side, can effectively use the membrane without causing uneven flow, can increase the separation efficiency, and can continuously operate stably, The detergency can also be improved.
  • Membrane area (m 2 ) ⁇ ⁇ Outer diameter of hollow fiber membrane (m) ⁇ Number of hollow fiber membranes ⁇ Average effective length of hollow fiber membrane (m) Determined by
  • the number of winds was determined from the number of times (the number of rotations) the hollow fiber membrane was wound on the central axis (core tube) from one end to the other end of the hollow fiber membrane roll-up body.
  • Filling factor (%) ⁇ ⁇ (outer diameter of the hollow fiber membrane) 2/4 (m 2) ⁇ total overall length (m) / hollow fiber membrane winding body volume of the hollow fiber membrane (m 3) ⁇ 100%
  • hollow fiber membrane rolled-up body volume ⁇ ⁇ DO 2 ⁇ LE
  • Total length of hollow fiber membranes average effective length ⁇ number of hollow fiber membranes.
  • the supply pressure of the high concentration aqueous solution is PDS1 (MPa)
  • the supply flow rate is QDS1 (L / min)
  • the amount of discharged water of the high concentration aqueous solution is QDS2 (L / min)
  • the supply flow rate of fresh water is QFS1 (L / min)
  • the flow rate increment (QDS2-QDS1) of the high-concentration aqueous solution under the conditions was measured as the water permeability of the module. The temperature was adjusted to 25 ° C.
  • PDS1 2.2 MPa
  • the inlet pressure of fresh water was set to 0.1 MPa, and when it exceeded 0.1 MPa, QFS1 was set to be 0.1 MPa.
  • the hollow fiber membrane was washed by a multistage inclined submerged washing method and shaken off in a wet state.
  • the obtained hollow fiber membrane was immersed in water at 90 ° C. and subjected to hot water treatment for 20 minutes.
  • the obtained hollow fiber membrane had an inner diameter of 85 ⁇ m and an outer diameter of 175 ⁇ m.
  • the obtained hollow fiber membranes were arranged in a crossing manner around a core tube having a hole radially about 20 cm from one end to form an aggregate of hollow fiber membranes.
  • the bundle of hollow fiber membranes was traversed while rotating the core tube about its axis, and the hollow fiber membranes were arranged in a crossing manner by being wound around the core tube.
  • both ends of the hollow fiber membrane assembly were fixed by potting with an epoxy resin, the both ends of the resin portion were cut to open the hollow portion of the hollow fiber membrane, thereby producing a hollow fiber membrane element.
  • the outer peripheral part except the part about 30 cm center side from the other edge part was covered with the non-permeable film.
  • the obtained hollow fiber membrane element had a wind number of 2, a length of about 110 cm, an outer diameter of 130 mm, a hollow fiber membrane filling rate of 51%, and a membrane area of 105 m 2 .
  • the intersection part (cross point group) of this hollow fiber membrane existed in the part of about 1/4 length of element length from both ends, respectively. That is, in Comparative Example 1, the hollow fiber membrane group is crossed both near the first end (near the core tube hole) and near the second end (near the position where the non-permeable film is not covered). There was no point group.
  • This hollow fiber membrane element was loaded into a pressure vessel to produce a hollow fiber membrane module.
  • the water permeability of said (7) was measured.
  • the test was performed in a direction in which the flow direction of fresh water and the flow direction of salt water face each other, that is, in a countercurrent state. The results are shown in Table 1.
  • Comparative Example 2 Using the same module as in Comparative Example 1, the same test as in Comparative Example 1 was performed, except that the flow direction of fresh water and the flow direction of salt water were the same direction, that is, a parallel flow state. The results are shown in Table 1.
  • Example 1 A hollow fiber membrane similar to Comparative Example 1 was used in the same manner as in Comparative Example 1 except that the intersection of the hollow fiber membranes was present only near the first end (near the hole in the core tube). A membrane element was prepared. This hollow fiber membrane element was loaded into a pressure vessel and tested as a module in the same manner as in Comparative Example 1. The results are shown in Table 1.
  • Example 2 Comparative Example 1 except that the same hollow fiber membrane as in Comparative Example 1 was used and the intersection of the hollow fiber membranes was present only in the vicinity of the second end (near the position where the non-permeable film was not covered).
  • a hollow fiber membrane element was produced in the same manner as described above. This hollow fiber membrane element was loaded into a pressure vessel and tested as a module in the same manner as in Comparative Example 1. The results are shown in Table 1.
  • Example 3 A hollow fiber membrane was used in the same manner as in Comparative Example 1 except that the same hollow fiber membrane as in Comparative Example 1 was used and the intersection of the hollow fiber membranes was present in the vicinity of the first end and in the vicinity of the second end. An element was produced. This hollow fiber membrane element was loaded into a pressure vessel and tested as a module in the same manner as in Comparative Example 1. The results are shown in Table 1.
  • Comparative Example 3 Using the same hollow fiber membrane as in Comparative Example 1, the hollow fiber membranes were arranged in a crossing manner around the porous core tube to form an aggregate of hollow fiber membranes. The bundle of hollow fiber membranes was traversed while rotating the porous core tube about its axis, and the hollow fiber membranes were arranged in a crossing manner by being wound around the porous core tube. After both ends of the hollow fiber membrane assembly were fixed by potting with an epoxy resin, the both ends of the resin portion were cut to open the hollow portion of the hollow fiber membrane, thereby producing a hollow fiber membrane element.
  • the obtained hollow fiber membrane element had a wind number of 1, a length of about 110 cm, an outer diameter of 130 mm, a hollow fiber membrane filling rate of 51%, and a membrane area of 105 m 2 .
  • the hollow fiber membrane element was loaded into a pressure vessel and various tests were conducted as a module. The results are shown in Table 1 together with details of the hollow fiber membrane and elements.
  • Example 3 in which the cross point group is arranged near the first end or the second end, the comparative example in which the cross point group is not arranged near the first end or the second end, the amount of permeate increases more than 1 and 2.
  • Example 3 in which the cross point group is arranged in both the vicinity of the first end and the vicinity of the second end, the permeated water amount is increased as compared with Examples 1 and 2.
  • measurements are performed using a relatively small hollow fiber membrane module, but when similar measurements are performed using a larger module, the difference between the examples and comparative examples, The difference between the third embodiment and the first and second embodiments is predicted to be more remarkable.
  • the hollow fiber membrane element of the present invention has a high water permeability of the membrane, and is extremely useful in the field of generating energy by using water treatment or a concentration difference as a driving force.
  • fresh water is permeated using the difference in concentration between the low concentration aqueous solution and the high concentration pressurized aqueous solution as a driving force, and the turbine is operated with the flow rate and pressure of the high concentration aqueous solution in the pressurized state increased by the permeated fresh water.
  • It can be used to generate energy by turning it.
  • it can be suitably used for fresh water treatment for generating energy such as electric power by utilizing osmotic pressure due to a difference in concentration between seawater or concentrated seawater and fresh water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

[Problem] To provide a hollow fiber membrane element and a hollow fiber membrane module wherein the flow rate of liquid passing through the outside of the hollow fiber membrane is rapid and stagnation of the liquid within the element does not arise easily. [Solution] A hollow fiber membrane element is provided with: a core tube connected to a supply opening or a discharge opening; a hollow fiber membrane group formed from a plurality of hollow fiber membranes; and resin walls affixing the core tube and the hollow fiber membrane group at both ends thereof. The hollow fiber membrane element is characterized by the core tube having a hole only in the vicinity of a first end, which is one end of the hollow fiber membrane group, by the plurality of hollow fiber membranes being twisted in a spiral shape around the core tube so as to cross each other, by having a cross point group that includes a plurality of cross points which are the crossing points for the hollow fiber membranes with each other, and by having the cross point group at least in the vicinity of the first end of the hollow fiber membrane group.

Description

中空糸膜エレメントおよび中空糸膜モジュールHollow fiber membrane element and hollow fiber membrane module
 本発明は、中空糸膜エレメントおよび中空糸膜モジュールに関する。 The present invention relates to a hollow fiber membrane element and a hollow fiber membrane module.
 膜分離法による液状混合物の分離・濃縮は、蒸留などの従来の分離技術に比べて相変化を伴わないため省エネルギー法であり、かつ物質の状態変化を伴わないことから、果汁の濃縮、ビール酵母の分離などの食品分野、あるいは工業排水からの有機物の回収といった多分野において幅広く利用されており、膜による水処理は、最先端技術を支える不可欠のプロセスとして定着している。 Separation and concentration of liquid mixtures by membrane separation is an energy-saving method because it does not involve phase changes compared to conventional separation techniques such as distillation, and it does not involve changes in the state of substances. It is widely used in many fields such as food separation such as separation of organic matter and recovery of organic matter from industrial wastewater. Membrane water treatment has become established as an indispensable process that supports state-of-the-art technology.
 このような膜を用いた水処理は、膜を集合させて一つの構成要素とした膜エレメントを圧力容器に装填した膜モジュールとして用いられており、特に、中空糸膜エレメントは、スパイラル型膜エレメントに比べ単位膜面積当たりの透水量は大きくないが、膜モジュール容積当たりの膜面積を大きくとることができるため、全体として透水量を大きくとることができ、容積効率が非常に高いという利点があり、コンパクト性に優れる。また、高濃度水溶液と淡水の両方をモジュール内に供給して半透膜を介して接触させる場合に、膜表面の濃度分極を小さく抑えられる。 Such a water treatment using a membrane is used as a membrane module in which membranes are assembled into a pressure vessel by assembling membranes into one constituent element. In particular, a hollow fiber membrane element is a spiral membrane element. Compared with, the water permeability per unit membrane area is not large, but since the membrane area per membrane module volume can be increased, the overall water permeability can be increased and the volume efficiency is very high. Excellent compactness. Further, when both the high-concentration aqueous solution and the fresh water are supplied into the module and brought into contact via the semipermeable membrane, the concentration polarization on the membrane surface can be kept small.
 例えば、正浸透用の中空糸膜として、両端開口型のものが用いられている。その場合の膜透過水の流れは、図4に示されるように、中空糸膜の内側(中空部内)から外側に流れる。例えば、高浸透圧のドローソリューション(DS)(海水)が中空糸膜の外側を流れ、低浸透圧のフィードソリューション(FS)(淡水)が中空糸膜の中空部を流れる場合は、膜透過水は中空糸膜の内側から外側に向かって流れる。 For example, as a hollow fiber membrane for forward osmosis, a both-end opening type is used. In this case, the flow of the membrane permeate flows from the inside (inside the hollow portion) to the outside of the hollow fiber membrane, as shown in FIG. For example, when the high osmotic pressure draw solution (DS) (seawater) flows outside the hollow fiber membrane and the low osmotic pressure feed solution (FS) (fresh water) flows through the hollow part of the hollow fiber membrane, the permeated water Flows from the inside to the outside of the hollow fiber membrane.
 この場合、淡水である膜透過水が中空糸膜の外側に流出して、中空糸膜外表面の濃度を低下させる。中空糸膜外表面を流れるDSの流速が十分速くないと、中空糸膜外表面に低濃度の層(濃度分極層)が形成される場合がある。その場合、有効な濃度差、すなわち浸透圧差が小さくなり、本来得られる正浸透処理による膜透過水量が得られないことがある。FSが淡水ではなく、DSより低濃度の溶液である場合も同様である。 In this case, the membrane permeated water, which is fresh water, flows out to the outside of the hollow fiber membrane, thereby reducing the concentration of the outer surface of the hollow fiber membrane. If the flow rate of DS flowing on the outer surface of the hollow fiber membrane is not sufficiently high, a low concentration layer (concentration polarization layer) may be formed on the outer surface of the hollow fiber membrane. In that case, the effective concentration difference, that is, the osmotic pressure difference becomes small, and the membrane permeation amount by the normal osmosis treatment obtained originally may not be obtained. The same applies when FS is not fresh water but a solution having a lower concentration than DS.
 逆に、高浸透圧のDS(海水)が中空糸膜の中空部を流れ、低浸透圧のFS(淡水)が中空糸膜の外側を流れる場合は、膜透過水は中空糸膜の外側から内側に向かって流れる。この場合、中空糸膜の外表面の溶液から膜透過水として淡水が除かれるため、中空糸膜の外表面の濃度が増加する。中空糸膜外表面を流れるFSの流速が十分速くないと、中空糸膜外表面に高濃度の層(濃度分極層)が形成される場合がある。その場合、有効な濃度差、すなわち浸透圧差が小さくなり、本来得られる正浸透処理による膜透過水量が得られないことがある。 Conversely, when high osmotic pressure DS (seawater) flows through the hollow portion of the hollow fiber membrane and low osmotic pressure FS (fresh water) flows outside the hollow fiber membrane, the membrane permeate flows from the outside of the hollow fiber membrane. It flows inward. In this case, since fresh water is removed as membrane permeated water from the solution on the outer surface of the hollow fiber membrane, the concentration of the outer surface of the hollow fiber membrane increases. If the flow rate of FS flowing on the outer surface of the hollow fiber membrane is not sufficiently high, a high concentration layer (concentration polarization layer) may be formed on the outer surface of the hollow fiber membrane. In that case, the effective concentration difference, that is, the osmotic pressure difference becomes small, and the membrane permeation amount by the normal osmosis treatment obtained originally may not be obtained.
 正浸透用の中空糸膜モジュールの場合、芯管に設けられた多数の孔から生じる中空糸膜の外側の流れが、中空糸膜内部の流れとほぼ直交する、所謂クロス流が用いられている場合が多い。 In the case of a hollow fiber membrane module for forward osmosis, a so-called cross flow is used in which the flow outside the hollow fiber membrane generated from a large number of holes provided in the core tube is substantially orthogonal to the flow inside the hollow fiber membrane. There are many cases.
 クロス流の場合、中空糸膜の外側を流れる溶液が、柱状の中空糸膜層の中心部の分配管より中空糸膜層全体に流れるものであるが、流体が、中空糸膜層の長さ方向および径方向に分散して流れるため、中空糸膜層(中空糸膜の外側)を通過する液の流速が小さく、中空糸膜層における中空糸膜密度のわずかな斑によって流体が偏流したり、中空糸膜の外表面に濃度分極が発生したりし易いという欠点があった。また、分離操作で効率的といわれる所謂向流型(中空糸膜の外側の流れと中空糸膜内部の流れとがお互い逆方向である)の分離操作が出来ないという欠点もあった。 In the case of cross flow, the solution flowing outside the hollow fiber membrane flows from the distribution pipe at the center of the columnar hollow fiber membrane layer to the entire hollow fiber membrane layer, but the fluid is the length of the hollow fiber membrane layer. The flow of liquid passing through the hollow fiber membrane layer (outside of the hollow fiber membrane) is small because the fluid flows in the direction and the radial direction, and the fluid drifts due to slight unevenness of the hollow fiber membrane density in the hollow fiber membrane layer. There is a drawback that concentration polarization is likely to occur on the outer surface of the hollow fiber membrane. In addition, there is a disadvantage that a so-called counter-current type (the flow outside the hollow fiber membrane and the flow inside the hollow fiber membrane are in opposite directions), which is said to be efficient in the separation operation, cannot be performed.
 特許文献1(特公平7-29029号公報)には、かかる欠点を解消すべく、中空糸膜の外側の流れをモジュールの軸方向に誘導するためのモジュールの構成が開示されている。具体的に、特許文献1に記載の中空糸膜モジュールは、例えば、モジュールの中心に位置する芯管(供給管)の一端部のみに設けられた開口の近傍から、中空糸膜層の他端側に設けられた排出口へ向けて、モジュールの軸方向に液を流すことにより、中空糸膜の外側の流れの速度を高めて、中空糸膜の外表面に生じる濃度分極を抑制しようとするものである。 Patent Document 1 (Japanese Patent Publication No. 7-29029) discloses a module configuration for guiding the flow outside the hollow fiber membrane in the axial direction of the module in order to eliminate such drawbacks. Specifically, the hollow fiber membrane module described in Patent Document 1 is, for example, from the vicinity of an opening provided only at one end of a core tube (supply tube) located at the center of the module, to the other end of the hollow fiber membrane layer. By flowing the liquid in the axial direction of the module toward the discharge port provided on the side, the flow velocity outside the hollow fiber membrane is increased to try to suppress concentration polarization occurring on the outer surface of the hollow fiber membrane Is.
 しかし、特許文献1のモジュールにおいても、供給管の開口から排出口への最短距離から外れる部分(液供給部である開口の外周端部付近など)では、淀みが生じて液の流速が低下する。このような淀み部分では、水の浸透によって生じる膜表面の濃度分極が解消されず、分離効率が著しく低下して、分離に寄与しないデッドスペースが生じ、有効に膜を利用出来なくなる。 However, also in the module of Patent Document 1, stagnation occurs in a portion (such as the vicinity of the outer peripheral end of the opening that is the liquid supply unit) that is out of the shortest distance from the opening of the supply pipe to the discharge port, and the liquid flow rate decreases. . In such a stagnation part, the concentration polarization on the membrane surface caused by the permeation of water is not eliminated, the separation efficiency is remarkably lowered, a dead space that does not contribute to the separation occurs, and the membrane cannot be used effectively.
 モジュール設置スペースに対する処理効率を考えると、モジュールに付属する容器、接続部品等の容積は少ない方が良いため、モジュールサイズをある程度大きくすることが求められるが、膜モジュールサイズが大きくなるとそれに伴い膜モジュール径が大きくなるため、モジュールの軸方向に垂直な半径方向の流動抵抗が大きくなり、被処理水が径方向に分配されにくくなる。特にこのような場合において、上記のようなデッドスペースの問題は顕著になると考えられる。 Considering the processing efficiency for the module installation space, it is better that the volume of containers, connection parts, etc. attached to the module is small, so it is required to increase the module size to some extent. Since the diameter is increased, the flow resistance in the radial direction perpendicular to the axial direction of the module is increased, and the water to be treated is hardly distributed in the radial direction. Particularly in such a case, it is considered that the problem of the dead space as described above becomes remarkable.
 一方で、特許文献2(特開2001-38162号公報)では、クロス流の場合において、モジュールサイズの大型化によるデッドスペースの問題を解消するためのモジュール構成が開示されている。すなわち、特許文献2には、多孔質の芯材の上に中空糸膜束が、中空糸膜束群の捲上軸線と角度をもって巻回され、中空糸膜束ごとに交互にクロスする交差配置を持ち、中空糸膜が交差する充填密度の低いクロスポイント群を濃縮水排出部と反対側の供給部付近に集中配置させ、中空糸膜束群の捲上軸線と垂直な断面の中心から外周部の方向に連続的に整列させた中空糸膜モジュールが開示されている。 On the other hand, Patent Document 2 (Japanese Patent Application Laid-Open No. 2001-38162) discloses a module configuration for solving the problem of dead space due to an increase in module size in the case of a cross flow. That is, Patent Document 2 discloses a cross arrangement in which a hollow fiber membrane bundle is wound on a porous core material at an angle with the vertical axis of the hollow fiber membrane bundle group, and crosses alternately for each hollow fiber membrane bundle. The cross-point group with low packing density where the hollow fiber membranes intersect is concentratedly arranged near the supply part opposite to the concentrated water discharge part, and the outer periphery from the center of the cross section perpendicular to the vertical axis of the hollow fiber membrane bundle group A hollow fiber membrane module that is continuously aligned in the direction of the part is disclosed.
 しかしながら、特許文献2のモジュールでは、クロス流の場合においては、基本的に中空糸膜の外側を通過する液の流速が小さいといった問題を解消することはできていない。 However, in the module of Patent Document 2, in the case of the cross flow, the problem that the flow rate of the liquid passing through the outside of the hollow fiber membrane is basically small cannot be solved.
特公平7-29029号公報Japanese Patent Publication No. 7-29029 特開2001-38162号公報JP 2001-38162 A
 本発明は、上記の従来技術の現状に鑑み創案されたものであり、その目的は、中空糸膜の外側を通過する液の流速が速く、かつ、エレメント内で液の淀みが生じ難い、中空糸膜エレメントおよび中空糸膜モジュールを提供することである。 The present invention was devised in view of the current state of the prior art described above, and its purpose is that the flow rate of the liquid passing through the outside of the hollow fiber membrane is high and liquid stagnation hardly occurs in the element. It is to provide a yarn membrane element and a hollow fiber membrane module.
 本発明者は、上記目的を達成するために中空糸型逆浸透膜エレメントで採用されている交差配置についてさらに鋭意検討した結果、正浸透用の中空糸膜の外側を流れる流体の流れ方向を軸方向にするエレメント構造が、中空糸膜外表面の濃度分極を低減でき、正浸透による膜透過水量のロスを低減することで、効率よく透過水量を得ることできることを見出し、本発明の完成に至った。 As a result of further diligent investigations on the crossing arrangement employed in the hollow fiber type reverse osmosis membrane element in order to achieve the above object, the present inventor has determined the flow direction of the fluid flowing outside the hollow fiber membrane for forward osmosis as the axis. The element structure to be oriented can reduce the concentration polarization of the outer surface of the hollow fiber membrane and reduce the loss of the permeated water amount due to forward osmosis, so that the permeated water amount can be obtained efficiently, leading to the completion of the present invention. It was.
 即ち、本発明は、以下の(1)~(6)の構成を有するものである。
(1) 供給口または排出口に接続された芯管と、
 複数の中空糸膜からなる中空糸膜群と、
 前記芯管および前記中空糸膜群をそれらの両端で固定する樹脂壁とを備える中空糸膜エレメントであって、
 前記芯管は、前記中空糸膜群の一端である第1端の近傍のみに孔を有し、
 複数の前記中空糸膜は、互いに交差するように前記芯管の周りに螺旋状に巻回されており、前記中空糸膜同士の交差部であるクロスポイントを複数含むクロスポイント群を有し、
 少なくとも前記中空糸膜群の前記第1端の近傍に前記クロスポイント群が存在していることを特徴とする、中空糸膜エレメント。
(2) さらに、前記中空糸膜群の前記第1端と反対側の一端である第2端の近傍に前記クロスポイント群が存在している、(1)に記載の中空糸膜エレメント。
(3) 前記クロスポイントが前記芯管の軸線と垂直な面方向に連続的に整列されている、(1)または(2)に記載の中空糸膜エレメント。
(4) 前記中空糸膜群は、前記第2端の近傍の周囲を除き、円筒状の非透過性フィルムで被覆されている、(1)~(3)のいずれかに記載の中空糸膜エレメント。
(5) 正浸透用または逆浸透用である、(1)~(4)のいずれかに記載の中空糸膜エレメント。
(6) (1)~(5)のいずれかに記載の中空糸膜エレメントと、該中空糸膜エレメントが少なくとも1本装填された容器とを備える中空糸膜モジュール。
That is, the present invention has the following configurations (1) to (6).
(1) a core tube connected to a supply port or a discharge port;
A group of hollow fiber membranes comprising a plurality of hollow fiber membranes;
A hollow fiber membrane element comprising a resin wall for fixing the core tube and the hollow fiber membrane group at both ends thereof,
The core tube has a hole only in the vicinity of the first end which is one end of the hollow fiber membrane group,
The plurality of hollow fiber membranes are spirally wound around the core tube so as to cross each other, and have a cross point group including a plurality of cross points that are intersections of the hollow fiber membranes,
The hollow fiber membrane element, wherein the cross point group exists at least in the vicinity of the first end of the hollow fiber membrane group.
(2) The hollow fiber membrane element according to (1), wherein the cross point group is present in the vicinity of a second end that is one end opposite to the first end of the hollow fiber membrane group.
(3) The hollow fiber membrane element according to (1) or (2), wherein the cross points are continuously aligned in a plane direction perpendicular to the axis of the core tube.
(4) The hollow fiber membrane group according to any one of (1) to (3), wherein the hollow fiber membrane group is covered with a cylindrical non-permeable film except for the vicinity in the vicinity of the second end. element.
(5) The hollow fiber membrane element according to any one of (1) to (4), which is used for forward osmosis or reverse osmosis.
(6) A hollow fiber membrane module comprising the hollow fiber membrane element according to any one of (1) to (5) and a container loaded with at least one hollow fiber membrane element.
 本発明によれば、中空糸膜の外側を通過する液の流速が速く、かつ、エレメント内で液の淀みが生じ難い、中空糸膜エレメントおよび中空糸膜モジュールを提供することができる。 According to the present invention, it is possible to provide a hollow fiber membrane element and a hollow fiber membrane module in which the flow rate of liquid passing through the outside of the hollow fiber membrane is high and liquid stagnation does not easily occur in the element.
 これにより、エレメント内の全体において中空糸膜の外表面の濃度分極を低減でき、膜透過水量のロスが低減されるため、効率よく膜分離を行うことが可能となる。また、分離操作で効率的といわれる所謂向流型の分離操作が可能となる。 Thereby, the concentration polarization on the outer surface of the hollow fiber membrane can be reduced in the entire element, and the loss of the amount of permeated water can be reduced, so that membrane separation can be performed efficiently. In addition, a so-called counter-current type separation operation that is said to be efficient in the separation operation can be performed.
本発明の中空糸膜モジュールの一実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one Embodiment of the hollow fiber membrane module of this invention. 本発明の中空糸膜エレメントの一実施形態を示す別の模式図である。It is another schematic diagram which shows one Embodiment of the hollow fiber membrane element of this invention. 本発明の中空糸膜エレメントにおけるワインド数と交差部の関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the number of winds and the cross | intersection part in the hollow fiber membrane element of this invention. 正浸透用の中空糸膜を用いた場合における膜透過水の流れを説明するための模式図である。It is a schematic diagram for demonstrating the flow of membrane permeated water at the time of using the hollow fiber membrane for forward osmosis | permeation.
 以下、本発明の中空糸膜エレメントおよび中空糸膜モジュールの一実施形態について、図面を参照して説明する。 Hereinafter, an embodiment of the hollow fiber membrane element and the hollow fiber membrane module of the present invention will be described with reference to the drawings.
 図1を参照して、本実施形態の中空糸膜エレメントは、供給口10と接続された芯管20と、複数の中空糸膜21を含む中空糸膜群と、芯管20および中空糸膜群をそれらの両端で固定する樹脂壁51,52とを備える。芯管20は、中空糸膜群の一端である第1端4aの近傍のみに孔20aを有している。 Referring to FIG. 1, the hollow fiber membrane element of the present embodiment includes a core tube 20 connected to a supply port 10, a hollow fiber membrane group including a plurality of hollow fiber membranes 21, a core tube 20 and a hollow fiber membrane. And resin walls 51 and 52 for fixing the group at both ends thereof. The core tube 20 has a hole 20a only in the vicinity of the first end 4a which is one end of the hollow fiber membrane group.
 孔20aから流出した流体は、樹脂壁近傍で中空糸膜エレメントの径方向に分散した後に、中空糸膜の外側3をエレメント(芯管)の軸方向へ流れる。かかる中空糸膜エレメントにおいては、中空糸膜の外側(外表面)3での流体の流速を大きくできるため、中空糸膜の外表面の濃度分極を低減でき、正浸透による膜透過水量のロスを低減することで、効率よく透過水量を得ることが可能となる。また、分離操作で効率的といわれるDSとFSがその流れ方向がお互い逆方向である、所謂向流型の分離操作が可能となる。また、特に逆浸透の場合において、被処理流体中に含有される微細な懸濁物質も中空糸層内に滞留することなく、押し流してしまう、自浄効果がある。 The fluid flowing out from the hole 20a is dispersed in the radial direction of the hollow fiber membrane element in the vicinity of the resin wall, and then flows in the axial direction of the element (core tube) on the outer side 3 of the hollow fiber membrane. In such a hollow fiber membrane element, the flow velocity of the fluid on the outer side (outer surface) 3 of the hollow fiber membrane can be increased, so that the concentration polarization of the outer surface of the hollow fiber membrane can be reduced, and the loss of the amount of permeated water due to forward osmosis is reduced. By reducing, it becomes possible to obtain the amount of permeate efficiently. In addition, a so-called counter-current type separation operation in which the flow directions of DS and FS, which are said to be efficient in the separation operation, are opposite to each other, is possible. In particular, in the case of reverse osmosis, there is a self-cleaning effect in which fine suspended substances contained in the fluid to be treated are swept away without staying in the hollow fiber layer.
 これにより、低濃度供給液から淡水を取出したり、淡水を取出すことにより、低濃度供給液を濃縮したり、浸透流からエネルギーを回収することができる。具体的には、加圧状態の高浸透圧水溶液(海水)と低圧の低浸透圧の淡水を正浸透膜を介して接触させることで、低圧の淡水が、膜を介して高い圧力の高浸透圧水溶液へ流入し、その加圧状態の水溶液でタービン等を回転させてエネルギーを回収することができる。 Thus, fresh water can be taken out from the low-concentration feed liquid, or the fresh water can be taken out to concentrate the low-concentration feed liquid or recover energy from the osmotic flow. Specifically, a high pressure osmotic aqueous solution (seawater) and a low pressure, low osmotic pressure fresh water are brought into contact with each other through a forward osmosis membrane, so that the low pressure fresh water has a high pressure and high osmosis through the membrane. The energy can be recovered by flowing into the pressurized aqueous solution and rotating the turbine or the like with the pressurized aqueous solution.
 また、中空糸膜群は、第1端4aと反対側の一端である第2端4bの近傍の周囲を除き、円筒状の非透過性フィルム6で被覆されている。これにより、中空糸膜群と容器との間隙に短絡流が生じることを抑制し、供給液を中空糸膜間での軸流として効率的に利用することができる。 Further, the hollow fiber membrane group is covered with a cylindrical impermeable film 6 except for the vicinity in the vicinity of the second end 4b which is one end opposite to the first end 4a. Thereby, it can suppress that a short circuit flow arises in the clearance gap between a hollow fiber membrane group and a container, and can utilize a supply liquid efficiently as an axial flow between hollow fiber membranes.
 上述の中空糸膜エレメントは、1本以上を容器、特に運転圧力に耐える耐圧性を有する圧力容器に装填することにより、中空糸膜モジュールとすることができる。 The above-described hollow fiber membrane element can be made into a hollow fiber membrane module by loading one or more of them into a container, particularly a pressure vessel having pressure resistance that can withstand the operating pressure.
 図1に示される中空糸膜モジュールは、上記の中空糸膜エレメントと、該中空糸膜エレメントが少なくとも1本装填された容器1とを少なくとも備える。なお、中空糸膜エレメントの樹脂壁51,52はO-リング51a,52aによって容器1の内壁に液密に固着されている。 The hollow fiber membrane module shown in FIG. 1 includes at least the hollow fiber membrane element described above and a container 1 loaded with at least one hollow fiber membrane element. The resin walls 51 and 52 of the hollow fiber membrane element are liquid-tightly fixed to the inner wall of the container 1 by O- rings 51a and 52a.
 この中空糸膜モジュールは、芯管20に接続された供給口10や、中空糸膜21内に連通した供給口11および排出口12を有しており、壁部材14,15によって固定されている。また、第2端4bの近傍の周囲の非透過性フィルム6で被覆されていない部分を介して中空糸膜21の外側に連通した排出口13が、容器1の側面に設けられている。 This hollow fiber membrane module has a supply port 10 connected to the core tube 20, a supply port 11 and a discharge port 12 communicating with the inside of the hollow fiber membrane 21, and is fixed by wall members 14 and 15. . Further, a discharge port 13 communicating with the outside of the hollow fiber membrane 21 through a portion not covered with the surrounding non-permeable film 6 in the vicinity of the second end 4 b is provided on the side surface of the container 1.
 ただし、図1では、簡略化のために中空糸膜21が芯管20と平行であるように描いているが、実際には、複数の中空糸膜が互いに交差するように、複数の中空糸膜からなる中空糸膜束が芯管20の周りに螺旋状に巻回されている。この点については、図2を用いて説明する。 However, in FIG. 1, for the sake of simplicity, the hollow fiber membrane 21 is drawn so as to be parallel to the core tube 20, but in practice, a plurality of hollow fibers are used so that the plurality of hollow fiber membranes cross each other. A hollow fiber membrane bundle made of a membrane is spirally wound around the core tube 20. This point will be described with reference to FIG.
 図2を参照して、本実施形態の中空糸膜エレメントにおいて、複数の中空糸膜束22a,22bは、複数の中空糸膜束22a,22bが互いに交差するように芯管20の周りに螺旋状に巻回されている。螺旋状に巻回されているとは、言い換えれば、中空糸膜の配列が芯管の軸線と角度をもつように巻回されていることである。ここで、中空糸膜束22a,22bを構成する中空糸膜21同士の交差部であるクロスポイント23を複数含むクロスポイント群24を有している。 Referring to FIG. 2, in the hollow fiber membrane element of the present embodiment, the plurality of hollow fiber membrane bundles 22a and 22b are spirally wound around the core tube 20 so that the plurality of hollow fiber membrane bundles 22a and 22b intersect each other. It is wound in a shape. In other words, being wound spirally means that the array of hollow fiber membranes is wound at an angle with the axis of the core tube. Here, it has the cross point group 24 containing two or more cross points 23 which are the crossing parts of the hollow fiber membranes 21 which comprise the hollow fiber membrane bundles 22a and 22b.
 複数の中空糸膜が互いに交差するように配置されることにより、中空糸膜の交差部(クロスポイント)を複数含むクロスポイント群においては、空隙が規則的に形成される。この規則的な空隙が存在するため、このクロスポイント群においては、中空糸膜の外側3を流れる流体の圧力損失が小さい。また、中空糸膜の外側3を流れる流体中の非溶解成分や粒子成分等が、中空糸膜間に捕捉されることが少ないため、圧力損失の増大も生じにくい。 By arranging the plurality of hollow fiber membranes so as to intersect with each other, voids are regularly formed in the cross point group including a plurality of intersections (cross points) of the hollow fiber membranes. Due to the existence of the regular voids, the pressure loss of the fluid flowing on the outer side 3 of the hollow fiber membrane is small in the cross point group. In addition, since non-dissolved components and particle components in the fluid flowing on the outer side 3 of the hollow fiber membrane are rarely trapped between the hollow fiber membranes, it is difficult for pressure loss to increase.
 一方、中空糸膜が芯管に平行に配置されている場合(特に、最密充填でない場合)は、中空糸膜の間隙にばらつきが生じやすく、中空糸膜の外側3を流れる流体の圧力損失が大きいため、流体が圧力損失の小さい部分のみに流れることにより、偏流を生じ易い。また、流体中の非溶解成分や粒子成分等が中空糸膜間に捕捉されて、圧力損失が増大し易いため、さらに偏流を生じ易くなる。 On the other hand, when the hollow fiber membrane is arranged in parallel to the core tube (particularly when it is not closest packed), the gap between the hollow fiber membranes is likely to vary, and the pressure loss of the fluid flowing outside the hollow fiber membrane 3 Since the fluid flows only in the portion where the pressure loss is small, the drift is likely to occur. In addition, non-dissolved components and particle components in the fluid are trapped between the hollow fiber membranes, and the pressure loss is likely to increase.
 従って、中空糸膜を交差状に配置することで、中空糸膜の外側3を流れる流体の圧力損失が小さいため、偏流を生じ難い。また、特に逆浸透の場合において、中空糸膜の外側3を流れる流体の非溶解成分からなる汚染物質の許容量が平行配置の場合に比べて大きくなり、中空糸膜エレメントの耐汚染性が向上する。 Therefore, by arranging the hollow fiber membranes in an intersecting manner, the pressure loss of the fluid flowing on the outer side 3 of the hollow fiber membrane is small, so that it is difficult for drift to occur. In particular, in the case of reverse osmosis, the allowable amount of contaminants composed of non-dissolved components of the fluid flowing on the outer side 3 of the hollow fiber membrane is larger than that in the parallel arrangement, and the contamination resistance of the hollow fiber membrane element is improved. To do.
 そして、本実施形態の中空糸膜エレメントは、少なくとも中空糸膜群の第1端4aの近傍にクロスポイント群24が存在していることを特徴とする。なお、芯管20の孔20aを通る芯管20の軸線と垂直な面の近傍にクロスポイント群24が存在していることが好ましい。 The hollow fiber membrane element of this embodiment is characterized in that the cross point group 24 exists at least in the vicinity of the first end 4a of the hollow fiber membrane group. In addition, it is preferable that the cross point group 24 exists in the vicinity of a surface perpendicular to the axis of the core tube 20 passing through the hole 20a of the core tube 20.
 クロスポイント群では中空糸膜間の距離が大きく確保されており、中空糸膜外側を流れる被処理流体が芯管近傍から中空糸膜群(中空糸膜エレメント)の径方向に分散されやすくなる。このため、クロスポイント群が中空糸膜群の第1端4aの近傍に位置するように調整することで、例えば、芯管20の孔20aから流出した流体は、中空糸膜エレメントの径方向に分散されやすくなり、中空糸膜エレメントの外周側におけるデッドスペースの発生が抑制される。 In the cross point group, a large distance is secured between the hollow fiber membranes, and the fluid to be treated flowing outside the hollow fiber membrane is easily dispersed in the radial direction of the hollow fiber membrane group (hollow fiber membrane element) from the vicinity of the core tube. For this reason, by adjusting so that the cross point group is positioned in the vicinity of the first end 4a of the hollow fiber membrane group, for example, the fluid flowing out from the hole 20a of the core tube 20 can flow in the radial direction of the hollow fiber membrane element. It becomes easy to disperse | distribute and generation | occurrence | production of the dead space in the outer peripheral side of a hollow fiber membrane element is suppressed.
 なお、本実施形態では、芯管が供給口に接続されている場合(芯管の孔から中空糸膜の外表面に液が供給される場合)について説明したが、芯管が排出口に接続されている場合(中空糸膜の外表面の液が芯管の孔を通って排出される場合)においては、中空糸膜エレメントの外周側の流体が芯管の孔に流入し易くなり、中空糸膜エレメントの外周側におけるデッドスペースの発生が抑制される。 In this embodiment, the case where the core tube is connected to the supply port (when the liquid is supplied from the hole of the core tube to the outer surface of the hollow fiber membrane) has been described, but the core tube is connected to the discharge port. When the liquid on the outer surface of the hollow fiber membrane is discharged through the hole in the core tube, the fluid on the outer peripheral side of the hollow fiber membrane element easily flows into the hole in the core tube, Generation of dead space on the outer peripheral side of the yarn membrane element is suppressed.
 本実施形態の中空糸膜エレメントでは、さらに、中空糸膜群の第1端4aと反対側の一端である第2端4bの近傍にもクロスポイント群24が存在している。第1端4aの近傍のみに孔20aを有する芯管20を用いた場合、デッドスペースは、第1端4a側の外周部だけでなく、第2端4bの芯管20の近傍にも生じやすい。第2端4bの近傍にもクロスポイント群24が存在していることにより、このような第2端4bの芯管20の近傍におけるデッドスペースの発生を抑制することが可能となる。 In the hollow fiber membrane element of the present embodiment, the cross point group 24 also exists in the vicinity of the second end 4b that is one end opposite to the first end 4a of the hollow fiber membrane group. When the core tube 20 having the hole 20a only in the vicinity of the first end 4a is used, the dead space is likely to occur not only in the outer peripheral portion on the first end 4a side but also in the vicinity of the core tube 20 at the second end 4b. . Since the cross point group 24 also exists in the vicinity of the second end 4b, it is possible to suppress the occurrence of dead space in the vicinity of the core tube 20 of the second end 4b.
 なお、図2に示されるように、クロスポイント23は、芯管20の軸線と垂直な面方向に連続的に整列されていることが好ましい。これにより、クロスポイント群24における径方向の流体抵抗をさらに減少させることができ、より確実にデッドスペースの発生を抑制することができる。 Note that, as shown in FIG. 2, the cross points 23 are preferably continuously aligned in a plane direction perpendicular to the axis of the core tube 20. Thereby, the radial fluid resistance in the cross point group 24 can be further reduced, and the occurrence of dead space can be more reliably suppressed.
 なお、本実施形態の中空糸膜エレメントは、例えば、芯管の周りに中空糸膜を螺旋状に巻上げ、中空糸膜が交差状に配置された状態で半径方向に積層されることによって形成される中空糸膜巻上げ体の両端部を樹脂で封止した後、樹脂(樹脂壁)の一部を切断し中空糸膜の両端部を開口させることにより作製することができる。 The hollow fiber membrane element of the present embodiment is formed by, for example, spirally winding a hollow fiber membrane around a core tube and laminating the hollow fiber membranes in a radial direction with the hollow fiber membranes arranged in a cross shape. After sealing both ends of the hollow fiber membrane wound body with resin, a part of the resin (resin wall) is cut to open both ends of the hollow fiber membrane.
 なお、中空糸膜が細く十分な強度を有していない場合は、上述のように、複数の中空糸膜からなる中空糸膜束を交差状に巻回することによって、中空糸膜を交差状に配置してもよい。 If the hollow fiber membrane is thin and does not have sufficient strength, as described above, the hollow fiber membrane is formed into a cross shape by winding the hollow fiber membrane bundle of a plurality of hollow fiber membranes in a cross shape. You may arrange in.
 以下、本実施形態の中空糸膜エレメントおよび中空糸膜モジュールの各構成部材等の具体例について説明する。 Hereinafter, specific examples of each component of the hollow fiber membrane element and the hollow fiber membrane module of the present embodiment will be described.
 芯管は、供給口に接続されている場合、該供給口から供給された流体を中空糸膜エレメント内の中空糸膜の外側3(外表面)に分配させる機能を有する管状部材である。芯管は、中空糸膜エレメントの略中心部に位置させることが好ましい。 The core tube is a tubular member having a function of distributing the fluid supplied from the supply port to the outer side 3 (outer surface) of the hollow fiber membrane in the hollow fiber membrane element when connected to the supply port. It is preferable that the core tube is positioned substantially at the center of the hollow fiber membrane element.
 芯管の径は大きすぎると、膜モジュール内の中空糸膜が占める領域が減少し、結果として膜エレメントまたは膜モジュールの膜面積が減少するため容積あたりの透水量が低下することがある。また、芯管の径が小さすぎると、供給流体が芯管内を流動する際に圧力損失が大きくなり、結果として中空糸膜にかかる有効差圧が小さくなり処理効率が低下することがある。また、強度が低下して、供給流体が中空糸膜層を流れる際に受ける中空糸膜の張力により芯管が破損する場合がある。これらの影響を総合的に考慮し、最適な径を設定することが重要である。中空糸膜エレメントの断面積に対して芯管の断面積の占める面積割合は、4~20%が好ましい。 When the diameter of the core tube is too large, the area occupied by the hollow fiber membrane in the membrane module is reduced, and as a result, the membrane area of the membrane element or the membrane module is reduced, so that the water permeability per volume may be lowered. Further, if the diameter of the core tube is too small, pressure loss increases when the supply fluid flows in the core tube, and as a result, the effective differential pressure applied to the hollow fiber membrane may be decreased and the processing efficiency may be reduced. In addition, the core tube may be damaged due to the strength of the hollow fiber membrane that is reduced when the supply fluid flows through the hollow fiber membrane layer due to a decrease in strength. It is important to set an optimum diameter in consideration of these influences comprehensively. The area ratio of the cross-sectional area of the core tube to the cross-sectional area of the hollow fiber membrane element is preferably 4 to 20%.
 中空糸膜の素材は、所望の分離性能(好ましくは逆浸透膜相当レベルの高い分離性能)を発現できる限り、特に限定されず、例えば、酢酸セルロース系樹脂、ポリアミド系樹脂、スルホン化ポリスルホン系樹脂、ポリビニルアルコール系樹脂が使用可能である。この中では、酢酸セルロース系樹脂、スルホン化ポリスルホンやスルホン化ポリエーテルスルホンなどのスルホン化ポリスルホン系樹脂が、殺菌剤である塩素に対する耐性があり、微生物の増殖を容易に抑制することができる点で好ましい。特に、膜面での微生物汚染を効果的に抑制できる特徴がある。酢酸セルロースの中では、耐久性の点で三酢酸セルロースが好ましい。 The material of the hollow fiber membrane is not particularly limited as long as the desired separation performance (preferably high separation performance equivalent to the reverse osmosis membrane) can be expressed. For example, cellulose acetate resin, polyamide resin, sulfonated polysulfone resin Polyvinyl alcohol resins can be used. Among these, sulfonated polysulfone resins such as cellulose acetate resin, sulfonated polysulfone, and sulfonated polyethersulfone are resistant to chlorine as a fungicide, and can easily suppress the growth of microorganisms. preferable. In particular, there is a feature that can effectively suppress microbial contamination on the membrane surface. Among cellulose acetates, cellulose triacetate is preferable from the viewpoint of durability.
 中空糸膜の外径は、正浸透膜に用いられるものであれば特に限定されない。例えば、外径は160~320μmである。外径が前記範囲より小さいと、必然的に内径も小さくなるため、中空糸膜の中空部を流れる流体の流動圧損が大きくなり問題が生じうる。一方、外径が前記範囲より大きいと、モジュールにおける単位容積あたりの膜面積を大きくすることができなくなり、中空糸膜モジュールのメリットの一つであるコンパクト性が損なわれる。 The outer diameter of the hollow fiber membrane is not particularly limited as long as it is used for a forward osmosis membrane. For example, the outer diameter is 160 to 320 μm. If the outer diameter is smaller than the above range, the inner diameter is inevitably small, and thus the flow pressure loss of the fluid flowing through the hollow portion of the hollow fiber membrane becomes large, which may cause a problem. On the other hand, if the outer diameter is larger than the above range, the membrane area per unit volume in the module cannot be increased, and the compactness that is one of the merits of the hollow fiber membrane module is impaired.
 中空糸膜の中空率は、正浸透膜に用いられるものであれば特に限定されない。例えば、15~45%である。中空率が前記範囲より小さいと、中空部の流動圧損が大きくなり、所望の透過水量が得られない可能性がある。また、中空率が前記範囲より大きいと、正浸透処理での使用であっても十分な耐圧性を確保できない可能性がある。なお、中空率(%)は下記式:
   中空率(%)=(内径/外径)×100
 により求めることができる。
The hollow rate of the hollow fiber membrane is not particularly limited as long as it is used for the forward osmosis membrane. For example, 15 to 45%. When the hollow ratio is smaller than the above range, the flow pressure loss of the hollow portion is increased, and a desired amount of permeated water may not be obtained. Moreover, when the hollow ratio is larger than the above range, there is a possibility that sufficient pressure resistance cannot be ensured even when used in forward osmosis treatment. The hollow ratio (%) is expressed by the following formula:
Hollow ratio (%) = (inner diameter / outer diameter) 2 × 100
It can ask for.
 非透過性フィルムとは、中空糸膜の外側を流れる流体(被処理液体)を実質的に透過しないか、あるいは、流体が透過する際の圧力損失が大きいフィルム材料であれば特に限定されないが、市販の樹脂性のフィルム、ゴムシート、目の小さな布などを用いることが好ましい。 The non-permeable film is not particularly limited as long as it does not substantially permeate the fluid flowing outside the hollow fiber membrane (liquid to be treated) or has a large pressure loss when the fluid permeates, It is preferable to use a commercially available resinous film, rubber sheet, cloth with small eyes, and the like.
 非透過性フィルムが、中空糸膜の外側を流れる流体の圧力損失に耐え得るようにするために、非透過性フィルムの上に支持部材を巻き付けてもよい。支持部材としては、天然繊維、合成高分子繊維、無機繊維などの線状物または織物自体が用いられるか、これらに接着剤を付着させた形のものが用いられる。この支持部材によって中空糸膜組立内部とその外部との圧力差が維持される。 In order for the non-permeable film to withstand the pressure loss of the fluid flowing outside the hollow fiber membrane, a support member may be wound on the non-permeable film. As the support member, linear materials such as natural fibers, synthetic polymer fibers, inorganic fibers, or woven fabrics themselves, or those in which an adhesive is attached thereto are used. This support member maintains the pressure difference between the inside and outside of the hollow fiber membrane assembly.
 本発明の中空糸膜エレメントにおいては、中空糸膜外側を流れる流体の軸方向流れの一様性を向上させるために、中空糸膜層内に、整流板などの整流部材を付与してもよい。 In the hollow fiber membrane element of the present invention, in order to improve the uniformity of the axial flow of the fluid flowing outside the hollow fiber membrane, a rectifying member such as a rectifying plate may be provided in the hollow fiber membrane layer. .
 中空糸膜巻上げ体の外径は、好ましくは130~420mmである。外径が大きすぎると、膜交換作業等の維持管理での操作性が悪くなりうる。外径が小さすぎると、単位膜エレメント当りの膜面積が減少し、処理量が小さくなり、経済性の点で好ましくない。 The outer diameter of the hollow fiber membrane wound body is preferably 130 to 420 mm. If the outer diameter is too large, operability in maintenance management such as membrane exchange work may be deteriorated. If the outer diameter is too small, the membrane area per unit membrane element is reduced, the processing amount is reduced, and this is not preferable from the viewpoint of economy.
 中空糸膜巻上げ体の長さは、好ましくは0.2~1.6mである。この長さが長すぎると、中空糸膜の中空内部の流動圧損が大きくなり正浸透性能が低下しうる。このため、特にモジュールが大型化する場合は、長さを短くすることが好ましい。ただし、短すぎると、単位膜エレメント当りの膜面積が減少し処理量が少なくなり、経済性の点で好ましくない。また、中空糸膜巻上げ体の外径との比が小さいと、被処理流体が軸方向に流れにくくなる。 The length of the hollow fiber membrane wound body is preferably 0.2 to 1.6 m. When this length is too long, the flow pressure loss inside the hollow of the hollow fiber membrane increases, and the forward osmosis performance can be lowered. For this reason, it is preferable to shorten the length, particularly when the module is enlarged. However, if it is too short, the membrane area per unit membrane element is reduced and the amount of treatment is reduced, which is not preferable in terms of economy. Moreover, when the ratio with the outer diameter of the hollow fiber membrane winding body is small, the fluid to be treated is difficult to flow in the axial direction.
 中空糸膜巻上げ体において、中空糸膜の巻回数(ワインド数)は、特に限定されないが、例えば、図3の(a)~(c)に示すように、2.0、1.5、1.0である。図3の(a)~(c)のそれぞれにおいて、クロスポイント群の数(両端を含む)は5、4、3である。なお、ワインド数が0.5以上の場合であれば、クロスポイント群が両端を含めて2箇所以上形成することができるため、上述の第1端の近傍および第2端の近傍の両方にクロスポイント群を配置することができ、本発明において好適に用いることができる。 In the hollow fiber membrane wound body, the number of windings (winding number) of the hollow fiber membrane is not particularly limited. For example, as shown in (a) to (c) of FIG. .0. In each of (a) to (c) of FIG. 3, the number of crosspoint groups (including both ends) is 5, 4, and 3. If the number of winds is 0.5 or more, the cross point group can be formed at two or more places including both ends, so that both the vicinity of the first end and the vicinity of the second end are crossed. A point group can be arranged and can be suitably used in the present invention.
 中空糸膜としては、例えば、特許3591618号公報に記載されているように、三酢酸セルロース、エチレングリコール(EG)、N-メチル-2-ピロリドン(NMP)よりなる製膜溶液を3分割ノズルより吐出し、空中走行部を経て、水/EG/NMPよりなる凝固液中に浸漬させて中空糸膜を得、次いで中空糸膜を水洗した後、熱処理することにより酢酸セルロース系中空糸膜を製造することができる。また、テレフタル酸ジクロリド及び4,4’-ジアミノジフェニルスルホン、ピペラジンより低温溶液重合法で得た共重合ポリアミドを精製した後、CaCl及びジグリセリンを含むジメチルアセトアミド溶液に溶解して製膜溶液とし、この溶液を3分割ノズルより空中走行部を経て凝固液中に吐出させ、得られた中空糸膜を水洗した後、熱処理することによりポリアミド系中空糸膜を製造することができる。 As the hollow fiber membrane, for example, as described in Japanese Patent No. 3591618, a membrane-forming solution composed of cellulose triacetate, ethylene glycol (EG), and N-methyl-2-pyrrolidone (NMP) is obtained from a three-part nozzle. A hollow fiber membrane is obtained by discharging, passing through the air running part, and immersed in a coagulating liquid consisting of water / EG / NMP, and then the hollow fiber membrane is washed with water and then heat treated to produce a cellulose acetate-based hollow fiber membrane. can do. Also, after purifying the copolymer polyamide obtained by low-temperature solution polymerization method from terephthalic acid dichloride, 4,4'-diaminodiphenylsulfone, and piperazine, it is dissolved in a dimethylacetamide solution containing CaCl 2 and diglycerin to form a film-forming solution. The polyamide-based hollow fiber membrane can be produced by discharging this solution from the three-divided nozzle through the aerial running section into the coagulating liquid, washing the resulting hollow fiber membrane with water, and then heat-treating it.
 上記のようにして得られた中空糸膜は、従来公知の方法により中空糸膜エレメントに組み込まれる。中空糸膜の組み込みは、例えば、特許第4412486号公報、特許第4277147号公報、特許第3591618号公報、特許第3008886号公報などに記載されているように、中空糸膜を45~90本またはそれ以上を集めて1つの中空糸膜集合体とし、さらにこの中空糸膜集合体を複数横に並べて偏平な中空糸膜束として、多数の孔を有する芯管にトラバースさせながら巻き付ける。この時の芯管の長さ及び回転速度、中空糸膜束のトラバース速度を調節することによって、巻き上げ体の特定位置の周面上に交差部が形成するように巻き上げる。次に、この巻上げ体を、長さと交差部の位置を調整し、所定の位置で切断する。その後、中空糸の巻上げ体の外周部に、芯管の孔のある部分と反対側を残して、非透過性フィルムを配置し、この巻き上げ体の両端部を接着した後、両側を切削して、中空糸膜開口部を形成させ中空糸膜エレメントを作製する。 The hollow fiber membrane obtained as described above is incorporated into the hollow fiber membrane element by a conventionally known method. Incorporation of the hollow fiber membrane is, for example, 45 to 90 hollow fiber membranes as described in Japanese Patent No. 4421486, Japanese Patent No. 4277147, Japanese Patent No. 3591618, Japanese Patent No. 3008886 or the like. More than that is collected into one hollow fiber membrane assembly, and a plurality of these hollow fiber membrane assemblies are arranged side by side as a flat hollow fiber membrane bundle and wound around a core tube having a large number of holes while traversing. By adjusting the length and rotation speed of the core tube and the traverse speed of the hollow fiber membrane bundle at this time, the core tube is wound up so that an intersection is formed on the peripheral surface at a specific position. Next, the wound body is cut at a predetermined position by adjusting the length and the position of the intersection. After that, on the outer periphery of the wound body of the hollow fiber, the non-permeable film is arranged, leaving the opposite side of the core tube with the hole, and after bonding both ends of the wound body, both sides are cut. Then, a hollow fiber membrane opening is formed to produce a hollow fiber membrane element.
 なお、本発明の中空糸膜エレメントは、スパイラル型の平膜と比べてエレメントあたりの膜面積を多くとることができ、中空糸膜の大きさにもよるが、ほぼ同サイズのエレメントの場合、スパイラル型のおよそ10倍の膜面積を得ることができる。従って、中空糸膜は、同じ透水量を得る際に単位膜面積あたりの処理量が極めて少なくて良く、スパイラル型に比べて供給水が膜を透水する際に生じる膜面の汚れを減少でき、膜の洗浄までの運転時間を長くとることができる。さらに、エレメント内の偏流が生じにくいため、濃度差を駆動力として水処理を行う場合に好適である。 In addition, the hollow fiber membrane element of the present invention can take a larger membrane area per element than a spiral flat membrane, and depending on the size of the hollow fiber membrane, A membrane area approximately 10 times that of the spiral type can be obtained. Therefore, the hollow fiber membrane may have a very small amount of treatment per unit membrane area when obtaining the same water permeation amount, and can reduce the contamination of the membrane surface that occurs when the supply water permeates the membrane as compared to the spiral type. The operation time until the membrane is washed can be increased. Furthermore, since the drift in the element is difficult to occur, it is suitable for water treatment using a concentration difference as a driving force.
 本発明の中空糸膜モジュールは、モジュールサイズが大型化される場合(特にモジュールの径が大型化され、かつ、長さが短縮化される場合)においても、径方向の流れを確保し、モジュール内のデッドスペースを無くし供給側から排水側に渡って均一な分配流れを実現し、偏流を起こさずに膜を有効利用し分離効率を高めることができ、連続的に安定な運転を実施でき、洗浄性も向上することが可能である。 The hollow fiber membrane module of the present invention ensures a radial flow even when the module size is increased (particularly when the module diameter is increased and the length is shortened). It eliminates the dead space inside and realizes a uniform distribution flow from the supply side to the drainage side, can effectively use the membrane without causing uneven flow, can increase the separation efficiency, and can continuously operate stably, The detergency can also be improved.
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例で測定された特性値の測定は、以下の方法に従った。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, the measurement of the characteristic value measured in the Example followed the following method.
 (1)中空糸膜の内径、外径、中空率の測定
 中空糸膜をスライドグラスの中央に開けられた直径3mmの穴に中空糸膜が抜け落ちない程度に適当本数通し、スライドグラスの上下面に沿ってカミソリにより中空糸膜をカットし、中空糸膜断面サンプルを得た。次に、投影機Nikon PROFILE PROJECTOR V-12を用いて、中空糸膜断面1個につき2方向の短径、長径を測定し、それぞれの算術平均値を中空糸膜断面1個の内径および外径とした。5つの断面について同様に測定を行い、平均値を中空糸膜の内径、外径とした。また、中空率は(内径/外径)×100で算出した。
(1) Measurement of the inner diameter, outer diameter, and hollow ratio of the hollow fiber membrane An appropriate number of hollow fiber membranes are passed through a hole of 3 mm in diameter in the center of the slide glass so that the hollow fiber membrane does not fall out, and the upper and lower surfaces of the slide glass. The hollow fiber membrane was cut along with a razor to obtain a hollow fiber membrane cross-sectional sample. Next, using a projector Nikon PROFILE PROJECTOR V-12, the short diameter and the long diameter in two directions are measured for each cross section of the hollow fiber membrane, and the respective arithmetic average values are calculated as the inner diameter and the outer diameter of the cross section of the hollow fiber membrane. It was. The same measurement was performed for the five cross sections, and the average values were defined as the inner diameter and outer diameter of the hollow fiber membrane. The hollow ratio was calculated by (inner diameter / outer diameter) 2 × 100.
 (2)エレメント長の測定
 中空糸膜巻上げ体の両端部を樹脂で封止した後、樹脂(樹脂壁)の一部を切断し中空糸膜の両端部を開口させた中空糸膜エレメントの一端から他端までの中心軸と平行な直線距離を測定して求めた。
(2) Element length measurement One end of a hollow fiber membrane element in which both ends of the hollow fiber membrane winding body are sealed with resin, and then a part of the resin (resin wall) is cut to open both ends of the hollow fiber membrane. It was obtained by measuring a linear distance parallel to the central axis from the other end to the other end.
 (3)エレメント径の測定
 中空糸膜エレメントの樹脂壁の直径を測定した。
(3) Measurement of element diameter The diameter of the resin wall of the hollow fiber membrane element was measured.
 (4)エレメントあたりの膜面積の測定
 膜面積は、中空糸膜の外径、中空糸膜エレメントに存在する中空糸膜の本数、中空糸膜の平均有効長から、下記式:
膜面積(m)=π×中空糸膜外径(m)×中空糸膜本数×中空糸膜の平均有効長(m)
 により求めた。
(4) Measurement of membrane area per element The membrane area is calculated from the following formula: from the outer diameter of the hollow fiber membrane, the number of hollow fiber membranes present in the hollow fiber membrane element, and the average effective length of the hollow fiber membranes:
Membrane area (m 2 ) = π × Outer diameter of hollow fiber membrane (m) × Number of hollow fiber membranes × Average effective length of hollow fiber membrane (m)
Determined by
 なお、中空糸膜の平均有効長は、以下のように算出した。
 エレメントの端部の樹脂の内側同士の距離、すなわち見かけの中空糸膜の有効長(LE)、エレメント胴部の外径(DO)、芯管の外径(DI)を測定し、これらの測定値をワインド数(WD)とともに下記の式:
LO2=LE+(π×DO×WD)
LI2=LE+(π×DI×WD)
平均有効長=((LO2)0.5+(LI2)0.5)/2
 に代入することにより、平均有効長を算出することができる。
The average effective length of the hollow fiber membrane was calculated as follows.
Measure the distance between the inner sides of the resin at the end of the element, that is, the apparent effective length (LE) of the hollow fiber membrane, the outer diameter (DO) of the element body, and the outer diameter (DI) of the core tube. Value with wind number (WD) in the following formula:
LO2 = LE 2 + (π × DO × WD) 2
LI2 = LE 2 + (π × DI × WD) 2
Average effective length = ((LO2) 0.5 + (LI2) 0.5 ) / 2
By substituting into, the average effective length can be calculated.
 (5)ワインド数の測定
 ワインド数は、中空糸膜捲き上げ体の一端から他端に渡るまでの中心軸(芯管)に対する中空糸膜の捲き付け回数(回転回数)から求めた。
(5) Measurement of the number of winds The number of winds was determined from the number of times (the number of rotations) the hollow fiber membrane was wound on the central axis (core tube) from one end to the other end of the hollow fiber membrane roll-up body.
 (6)充填率の測定
 中空糸膜巻き上げ体に存在する中空糸膜総容積(中空糸膜外径基準)を中空糸膜捲き上げ体の容積で除すことにより(下記式により)、充填率を求めた。
(6) Measurement of filling rate By dividing the total volume of hollow fiber membranes (hollow fiber membrane outer diameter standard) present in the hollow fiber membrane wound body by the volume of the hollow fiber membrane wound body (by the following formula), the filling rate Asked.
  充填率(%)=π×(中空糸膜の外径)/4(m)×中空糸膜の総全長(m)/中空糸膜巻上げ体容積(m)×100%
 なお、中空糸膜捲き上げ体容積=π×DO×LE
    中空糸膜の総延長=平均有効長×中空糸膜本数
 である。
Filling factor (%) = π × (outer diameter of the hollow fiber membrane) 2/4 (m 2) × total overall length (m) / hollow fiber membrane winding body volume of the hollow fiber membrane (m 3) × 100%
In addition, hollow fiber membrane rolled-up body volume = π × DO 2 × LE
Total length of hollow fiber membranes = average effective length × number of hollow fiber membranes.
 (7)透水量の測定
 中空糸膜エレメント1本を圧力容器に装填して中空糸膜モジュールを作製し、中空糸膜のそれぞれの開口部に連通するノズルのうち、一方のノズルより塩化ナトリウム濃度0.2g/Lの淡水を供給ポンプで供給し、他方のノズルから淡水を流出させた。一方、塩化ナトリウム濃度70g/Lの高濃度水溶液を中空糸膜の外側に連通する芯管に供給ポンプで供給し、中空糸膜の外側を通過させた後、中空糸膜集合体の外側に連通する圧力容器の側面に配置するノズルから流出させ、流量調整バルブで、圧力と流量を調整する。
(7) Measurement of water permeability One hollow fiber membrane element is loaded into a pressure vessel to produce a hollow fiber membrane module, and among the nozzles communicating with the respective openings of the hollow fiber membrane, the sodium chloride concentration from one nozzle 0.2 g / L of fresh water was supplied by a supply pump, and fresh water was discharged from the other nozzle. On the other hand, a high-concentration aqueous solution having a sodium chloride concentration of 70 g / L is supplied to a core tube communicating with the outside of the hollow fiber membrane by a supply pump, and after passing through the outside of the hollow fiber membrane, communicates with the outside of the hollow fiber membrane assembly. The pressure and flow rate are adjusted with a flow rate adjustment valve.
 高濃度水溶液の供給圧力をPDS1(MPa)、供給流量をQDS1(L/min)、高濃度水溶液の排出水量をQDS2(L/min)、淡水の供給流量をQFS1(L/min)、淡水の流出流量をQFS2(L/min)、淡水の流出圧力をPFS2(kPa)とした場合、その条件での高濃度水溶液の流量増分(QDS2-QDS1)をモジュールの透水量として測定した。温度は25℃に調整した。 The supply pressure of the high concentration aqueous solution is PDS1 (MPa), the supply flow rate is QDS1 (L / min), the amount of discharged water of the high concentration aqueous solution is QDS2 (L / min), the supply flow rate of fresh water is QFS1 (L / min), When the outflow flow rate was QFS2 (L / min) and the freshwater outflow pressure was PFS2 (kPa), the flow rate increment (QDS2-QDS1) of the high-concentration aqueous solution under the conditions was measured as the water permeability of the module. The temperature was adjusted to 25 ° C.
 PDS1=2.2MPa
 PFS2=10kPa以下
 QDS1/(QDS2-QDS1)=2
 QFS2/(QDS2-QDS1)=0.1
 ただし、淡水の入口圧力は0.1MPaとし、0.1MPaを越える場合は、0.1MPaとなるようにQFS1を設定した。
PDS1 = 2.2 MPa
PFS2 = 10 kPa or less QDS1 / (QDS2-QDS1) = 2
QFS2 / (QDS2-QDS1) = 0.1
However, the inlet pressure of fresh water was set to 0.1 MPa, and when it exceeded 0.1 MPa, QFS1 was set to be 0.1 MPa.
 (比較例1)
 三酢酸セルロース(CTA、ダイセル化学工業社、LT35)41重量%、N-メチル-2-ピロリドン(NMP、三菱化学社)50重量%、エチレングリコール(EG、三菱化学社)8.7重量%、安息香酸(ナカライテスク社)0.3重量%を180℃で均一に溶解して製膜原液を得た。得られた製膜原液を減圧下で脱泡した後、アーク型(三分割)ノズルより163℃で外気と遮断された空間中に吐出し、空間時間0.03秒を経て、NMP/EG/水=4.25/0.75/95からなる12℃の凝固浴に浸漬した。引続き、多段傾斜桶水洗方式で中空糸膜の洗浄を行い、湿潤状態のまま振り落した。得られた中空糸膜を90℃の水に浸漬し、20分間熱水処理を行った。得られた中空糸膜は、内径が85μm、外径が175μmであった。
(Comparative Example 1)
Cellulose triacetate (CTA, Daicel Chemical Industries, LT35) 41% by weight, N-methyl-2-pyrrolidone (NMP, Mitsubishi Chemical) 50% by weight, ethylene glycol (EG, Mitsubishi Chemical) 8.7% by weight, Benzoic acid (Nacalai Tesque) 0.3% by weight was uniformly dissolved at 180 ° C. to obtain a film forming stock solution. The obtained film-forming stock solution was degassed under reduced pressure, and then discharged from an arc-type (three-division) nozzle into a space cut off from the outside air at 163 ° C. After passing through a space time of 0.03 seconds, NMP / EG / It was immersed in a 12 ° C. coagulation bath consisting of water = 4.25 / 0.75 / 95. Subsequently, the hollow fiber membrane was washed by a multistage inclined submerged washing method and shaken off in a wet state. The obtained hollow fiber membrane was immersed in water at 90 ° C. and subjected to hot water treatment for 20 minutes. The obtained hollow fiber membrane had an inner diameter of 85 μm and an outer diameter of 175 μm.
 得られた中空糸膜を一方の端部より約20cm中心側部分に放射状に孔を有する芯管の周りに交差状に配置させ、中空糸膜の集合体を形成させた。芯管をその軸を中心に回転させながら中空糸膜の束をトラバースさせ、芯管の周りに捲きつけることにより中空糸膜を交差状に配置させた。この中空糸膜の集合体の両端部をエポキシ樹脂でポッティングさせて固定させた後、樹脂部の両端部を切断して中空糸膜の中空部を開口させて中空糸膜エレメントを作製した。その場合、他方の端部から約30cm中心側の部分を除く外周部を、非透過性フィルムで覆った。 The obtained hollow fiber membranes were arranged in a crossing manner around a core tube having a hole radially about 20 cm from one end to form an aggregate of hollow fiber membranes. The bundle of hollow fiber membranes was traversed while rotating the core tube about its axis, and the hollow fiber membranes were arranged in a crossing manner by being wound around the core tube. After both ends of the hollow fiber membrane assembly were fixed by potting with an epoxy resin, the both ends of the resin portion were cut to open the hollow portion of the hollow fiber membrane, thereby producing a hollow fiber membrane element. In that case, the outer peripheral part except the part about 30 cm center side from the other edge part was covered with the non-permeable film.
 得られた中空糸膜エレメントのワインド数は2であり、長さ約110cm、外径130mm、中空糸膜の充填率51%、膜面積は105mであった。なお、この中空糸膜の交差部(クロスポイント群)は両端部からそれぞれエレメント長の約1/4の長さの部分に存在した。すなわち、比較例1では、中空糸膜群の第1端の近傍(芯管の孔の近傍)および第2端の近傍(非透過性フィルムの被覆されていない位置の近傍)のいずれにもクロスポイント群は存在していなかった。 The obtained hollow fiber membrane element had a wind number of 2, a length of about 110 cm, an outer diameter of 130 mm, a hollow fiber membrane filling rate of 51%, and a membrane area of 105 m 2 . In addition, the intersection part (cross point group) of this hollow fiber membrane existed in the part of about 1/4 length of element length from both ends, respectively. That is, in Comparative Example 1, the hollow fiber membrane group is crossed both near the first end (near the core tube hole) and near the second end (near the position where the non-permeable film is not covered). There was no point group.
 この中空糸膜エレメントを圧力容器に装填して中空糸膜モジュールを作製した。得られた中空糸膜モジュールについて、上記(7)の透水量の測定を行なった。この場合、淡水の流れ方向と、塩水の流れ方向が向かい合う方向、すなわち、向流状態で試験を行った。その結果を表1に示す。 This hollow fiber membrane element was loaded into a pressure vessel to produce a hollow fiber membrane module. About the obtained hollow fiber membrane module, the water permeability of said (7) was measured. In this case, the test was performed in a direction in which the flow direction of fresh water and the flow direction of salt water face each other, that is, in a countercurrent state. The results are shown in Table 1.
 (比較例2)
 比較例1と同様のモジュールを用いて、淡水の流れ方向と、塩水の流れ方向が同じ方向、すなわち、並流状態とした以外は、比較例1と同様の試験を行った。その結果を表1に示す。
(Comparative Example 2)
Using the same module as in Comparative Example 1, the same test as in Comparative Example 1 was performed, except that the flow direction of fresh water and the flow direction of salt water were the same direction, that is, a parallel flow state. The results are shown in Table 1.
 (実施例1)
 比較例1と同様の中空糸膜を用いて、中空糸膜の交差部を第1端の近傍(芯管の孔の近傍)のみに存在させた以外は、比較例1と同様にして中空糸膜エレメントを作製した。この中空糸膜エレメントを圧力容器に装填してモジュールとして比較例1と同様に試験を行なった。その結果を表1に示す。
Example 1
A hollow fiber membrane similar to Comparative Example 1 was used in the same manner as in Comparative Example 1 except that the intersection of the hollow fiber membranes was present only near the first end (near the hole in the core tube). A membrane element was prepared. This hollow fiber membrane element was loaded into a pressure vessel and tested as a module in the same manner as in Comparative Example 1. The results are shown in Table 1.
 (実施例2)
 比較例1と同様の中空糸膜を用いて、中空糸膜の交差部を第2端の近傍(非透過性フィルムの被覆されていない位置の近傍)のみに存在させた以外は、比較例1と同様にして中空糸膜エレメントを作製した。この中空糸膜エレメントを圧力容器に装填してモジュールとして比較例1と同様に試験を行なった。その結果を表1に示す。
(Example 2)
Comparative Example 1 except that the same hollow fiber membrane as in Comparative Example 1 was used and the intersection of the hollow fiber membranes was present only in the vicinity of the second end (near the position where the non-permeable film was not covered). A hollow fiber membrane element was produced in the same manner as described above. This hollow fiber membrane element was loaded into a pressure vessel and tested as a module in the same manner as in Comparative Example 1. The results are shown in Table 1.
 (実施例3)
 比較例1と同様の中空糸膜を用いて、中空糸膜の交差部を第1端の近傍、および、第2端の近傍に存在させた以外は、比較例1と同様にして中空糸膜エレメントを作製した。この中空糸膜エレメントを圧力容器に装填してモジュールとして比較例1と同様に試験を行なった。その結果を表1に示す。
Example 3
A hollow fiber membrane was used in the same manner as in Comparative Example 1 except that the same hollow fiber membrane as in Comparative Example 1 was used and the intersection of the hollow fiber membranes was present in the vicinity of the first end and in the vicinity of the second end. An element was produced. This hollow fiber membrane element was loaded into a pressure vessel and tested as a module in the same manner as in Comparative Example 1. The results are shown in Table 1.
 (比較例3)
 比較例1と同様の中空糸膜を用いて、多孔芯管の周りに交差状に配置させ、中空糸膜の集合体を形成させた。多孔芯管をその軸を中心に回転させながら中空糸膜の束をトラバースさせ、多孔芯管の周りに捲きつけることにより中空糸膜を交差状に配置させた。この中空糸膜の集合体の両端部をエポキシ樹脂でポッティングさせて固定させた後、樹脂部の両端部を切断して中空糸膜の中空部を開口させて中空糸膜エレメントを作製した。
(Comparative Example 3)
Using the same hollow fiber membrane as in Comparative Example 1, the hollow fiber membranes were arranged in a crossing manner around the porous core tube to form an aggregate of hollow fiber membranes. The bundle of hollow fiber membranes was traversed while rotating the porous core tube about its axis, and the hollow fiber membranes were arranged in a crossing manner by being wound around the porous core tube. After both ends of the hollow fiber membrane assembly were fixed by potting with an epoxy resin, the both ends of the resin portion were cut to open the hollow portion of the hollow fiber membrane, thereby producing a hollow fiber membrane element.
 得られた中空糸膜エレメントのワインド数は1であり、長さ約110cm、外径130mm、中空糸膜の充填率51%、膜面積は105mであった。この中空糸膜エレメントを圧力容器に装填してモジュールとして各種試験を行なった。その結果を中空糸膜とエレメントの詳細とともに表1に示す。 The obtained hollow fiber membrane element had a wind number of 1, a length of about 110 cm, an outer diameter of 130 mm, a hollow fiber membrane filling rate of 51%, and a membrane area of 105 m 2 . The hollow fiber membrane element was loaded into a pressure vessel and various tests were conducted as a module. The results are shown in Table 1 together with details of the hollow fiber membrane and elements.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、クロスポイント群を第1端近傍または第2端近傍に配置した実施例1~3では、クロスポイント群が第1端近傍または第2端近傍に配置されていない比較例1および2よりも、透過水量が増加することが分かる。特に、クロスポイント群を第1端近傍および第2端近傍の両方に配置した実施例3では、実施例1および2よりも透過水量が増加している。なお、上記の実施例では、比較的小型の中空糸膜モジュールを使用した測定を行っているが、さらに大型のモジュールを用いて同様の測定を行った場合、実施例と比較例との差、および、実施例3と実施例1,2との差はより顕著なものとなることが予測される。 From the results shown in Table 1, in Examples 1 to 3 in which the cross point group is arranged near the first end or the second end, the comparative example in which the cross point group is not arranged near the first end or the second end It can be seen that the amount of permeate increases more than 1 and 2. In particular, in Example 3 in which the cross point group is arranged in both the vicinity of the first end and the vicinity of the second end, the permeated water amount is increased as compared with Examples 1 and 2. In the above examples, measurements are performed using a relatively small hollow fiber membrane module, but when similar measurements are performed using a larger module, the difference between the examples and comparative examples, The difference between the third embodiment and the first and second embodiments is predicted to be more remarkable.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明の中空糸膜エレメントは、膜の透水性能が高く、水処理や濃度差を駆動力としてエネルギーを生成する分野において極めて有用である。 The hollow fiber membrane element of the present invention has a high water permeability of the membrane, and is extremely useful in the field of generating energy by using water treatment or a concentration difference as a driving force.
 具体的には、有機物の濃縮および回収、排水の濃縮による減容化、海水の淡水化などに利用することができる。また、低濃度の水溶液と高濃度の加圧状態の水溶液との濃度差を駆動力として淡水を透過させ、透過した淡水により増加した加圧状態の高濃度側の水溶液の流量と圧力でタービンを回すなどしてエネルギーを生成させるために利用することができる。特に、海水または濃縮海水と淡水との濃度差による浸透圧を利用して電力などのエネルギーを生成するための造水処理などに好適に利用することができる。 Specifically, it can be used for concentration and recovery of organic substances, volume reduction by concentration of waste water, desalination of seawater, and the like. Also, fresh water is permeated using the difference in concentration between the low concentration aqueous solution and the high concentration pressurized aqueous solution as a driving force, and the turbine is operated with the flow rate and pressure of the high concentration aqueous solution in the pressurized state increased by the permeated fresh water. It can be used to generate energy by turning it. In particular, it can be suitably used for fresh water treatment for generating energy such as electric power by utilizing osmotic pressure due to a difference in concentration between seawater or concentrated seawater and fresh water.
 1 容器、10,11 供給口、12,13 排出口、14,15 壁部材、20 芯管、21 中空糸膜、22a,22b 中空糸膜束、23 クロスポイント、24 クロスポイント群、3 中空糸膜の外側、4a 第1端、4b 第2端、51,52 樹脂壁、6 非透過性フィルム。
 
1 container, 10, 11 supply port, 12, 13 discharge port, 14, 15 wall member, 20 core tube, 21 hollow fiber membrane, 22a, 22b hollow fiber membrane bundle, 23 cross point, 24 cross point group, 3 hollow fiber Outside of membrane, 4a first end, 4b second end, 51, 52 Resin wall, 6 Non-permeable film.

Claims (6)

  1.  供給口または排出口に接続された芯管と、
     複数の中空糸膜からなる中空糸膜群と、
     前記芯管および前記中空糸膜群をそれらの両端で固定する樹脂壁とを備える中空糸膜エレメントであって、
     前記芯管は、前記中空糸膜群の一端である第1端の近傍のみに孔を有し、
     複数の前記中空糸膜は、互いに交差するように前記芯管の周りに螺旋状に巻回されており、前記中空糸膜同士の交差部であるクロスポイントを複数含むクロスポイント群を有し、
     少なくとも前記中空糸膜群の前記第1端の近傍に前記クロスポイント群が存在していることを特徴とする、中空糸膜エレメント。
    A core tube connected to the supply or discharge port;
    A group of hollow fiber membranes comprising a plurality of hollow fiber membranes;
    A hollow fiber membrane element comprising a resin wall for fixing the core tube and the hollow fiber membrane group at both ends thereof,
    The core tube has a hole only in the vicinity of the first end which is one end of the hollow fiber membrane group,
    The plurality of hollow fiber membranes are spirally wound around the core tube so as to cross each other, and have a cross point group including a plurality of cross points that are intersections of the hollow fiber membranes,
    The hollow fiber membrane element, wherein the cross point group exists at least in the vicinity of the first end of the hollow fiber membrane group.
  2.  さらに、前記中空糸膜群の前記第1端と反対側の一端である第2端の近傍に前記クロスポイント群が存在している、請求項1に記載の中空糸膜エレメント。 Further, the hollow fiber membrane element according to claim 1, wherein the cross point group is present in the vicinity of a second end which is one end opposite to the first end of the hollow fiber membrane group.
  3.  前記クロスポイントが前記芯管の軸線と垂直な面方向に連続的に整列されている、請求項1または2に記載の中空糸膜エレメント。 The hollow fiber membrane element according to claim 1 or 2, wherein the cross points are continuously aligned in a plane direction perpendicular to the axis of the core tube.
  4.  前記中空糸膜群は、前記第2端の近傍の周囲を除き、円筒状の非透過性フィルムで被覆されている、請求項1~3のいずれか1項に記載の中空糸膜エレメント。 The hollow fiber membrane element according to any one of claims 1 to 3, wherein the hollow fiber membrane group is covered with a cylindrical non-permeable film except for the vicinity in the vicinity of the second end.
  5.  正浸透用または逆浸透用である、請求項1~4のいずれか1項に記載の中空糸膜エレメント。 The hollow fiber membrane element according to any one of claims 1 to 4, which is used for forward osmosis or reverse osmosis.
  6.  請求項1~5のいずれか1項に記載の中空糸膜エレメントと、該中空糸膜エレメントが少なくとも1本装填された容器とを備える中空糸膜モジュール。
     
    A hollow fiber membrane module comprising the hollow fiber membrane element according to any one of claims 1 to 5 and a container loaded with at least one hollow fiber membrane element.
PCT/JP2015/054204 2014-02-18 2015-02-17 Hollow fiber membrane element and hollow fiber membrane module WO2015125755A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016504096A JP6565898B2 (en) 2014-02-18 2015-02-17 Hollow fiber membrane element and hollow fiber membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014028714 2014-02-18
JP2014-028714 2014-02-18

Publications (1)

Publication Number Publication Date
WO2015125755A1 true WO2015125755A1 (en) 2015-08-27

Family

ID=53878257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054204 WO2015125755A1 (en) 2014-02-18 2015-02-17 Hollow fiber membrane element and hollow fiber membrane module

Country Status (2)

Country Link
JP (1) JP6565898B2 (en)
WO (1) WO2015125755A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110711498A (en) * 2018-07-12 2020-01-21 北京耐恩环保科技有限公司 Braided hollow fiber membrane
CN110958912A (en) * 2017-07-28 2020-04-03 东洋纺株式会社 Hollow fiber membrane module
CN114867691A (en) * 2019-12-25 2022-08-05 东洋纺株式会社 Hollow fiber membrane module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143974A (en) * 1976-05-26 1977-11-30 Toyobo Co Ltd Membraneous separation equipment
JPH0314492B2 (en) * 1979-12-14 1991-02-26 Toyo Boseki
JPH0729029B2 (en) * 1986-06-20 1995-04-05 東洋紡績株式会社 Hollow fiber type membrane separator
US5702601A (en) * 1996-03-29 1997-12-30 Praxiar Technology, Inc. Structure enhancing hollow fiber module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143974A (en) * 1976-05-26 1977-11-30 Toyobo Co Ltd Membraneous separation equipment
JPH0314492B2 (en) * 1979-12-14 1991-02-26 Toyo Boseki
JPH0729029B2 (en) * 1986-06-20 1995-04-05 東洋紡績株式会社 Hollow fiber type membrane separator
US5702601A (en) * 1996-03-29 1997-12-30 Praxiar Technology, Inc. Structure enhancing hollow fiber module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110958912A (en) * 2017-07-28 2020-04-03 东洋纺株式会社 Hollow fiber membrane module
CN110711498A (en) * 2018-07-12 2020-01-21 北京耐恩环保科技有限公司 Braided hollow fiber membrane
CN114867691A (en) * 2019-12-25 2022-08-05 东洋纺株式会社 Hollow fiber membrane module
CN114867691B (en) * 2019-12-25 2023-12-01 东洋纺Mc株式会社 Hollow fiber membrane module and connector

Also Published As

Publication number Publication date
JPWO2015125755A1 (en) 2017-03-30
JP6565898B2 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
CN202179933U (en) Composite porous hollow fiber membrane, membrane component and membrane filtration apparatus
US11511233B2 (en) Separation membrane element and operation method therefor
US11065580B2 (en) Separation membrane element
JP6365542B2 (en) Hollow fiber membrane element and membrane module for forward osmosis
WO2020080469A1 (en) Hollow fiber membrane element, hollow fiber membrane module and forward osmosis water treatment method
JP2017047417A (en) Separation membrane module, separation membrane element and telescope prevention sheet
JP6222237B2 (en) Hollow fiber membrane element and membrane module for forward osmosis
JP6565898B2 (en) Hollow fiber membrane element and hollow fiber membrane module
EP3107643B1 (en) Filtration element
US11331630B2 (en) Hollow fiber membrane module
JP6558199B2 (en) Reverse osmosis water treatment method
JP6264938B2 (en) Hollow fiber membrane module
JP7379835B2 (en) Hollow fiber membrane module
JP6583416B2 (en) Hollow fiber membrane element, hollow fiber membrane module, and forward osmosis water treatment method
JP6565688B2 (en) Hollow fiber type reverse osmosis membrane element and module
JP2015226864A (en) Forward osmosis hollow fiber membrane module
JP2013212456A (en) Hollow fiber membrane module
JP2019025419A (en) Separation membrane element and vessel
WO2016190166A1 (en) Immersion-type hollow-fiber-membrane module, and forward-osmosis water treatment method in which same is used
JP2018034089A (en) Separation membrane element
JP4501039B2 (en) Membrane module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504096

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752653

Country of ref document: EP

Kind code of ref document: A1