WO2015125590A1 - 外界認識システム、車両、及びカメラの汚れ検出方法 - Google Patents
外界認識システム、車両、及びカメラの汚れ検出方法 Download PDFInfo
- Publication number
- WO2015125590A1 WO2015125590A1 PCT/JP2015/052778 JP2015052778W WO2015125590A1 WO 2015125590 A1 WO2015125590 A1 WO 2015125590A1 JP 2015052778 W JP2015052778 W JP 2015052778W WO 2015125590 A1 WO2015125590 A1 WO 2015125590A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- observation
- line
- reference line
- camera
- dirt
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R11/00—Arrangements for holding or mounting articles, not otherwise provided for
- B60R11/04—Mounting of cameras operative during drive; Arrangement of controls thereof relative to the vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/188—Capturing isolated or intermittent images triggered by the occurrence of a predetermined event, e.g. an object reaching a predetermined position
Definitions
- the present invention relates to an external recognition system that recognizes the periphery of a vehicle based on a camera image, and more particularly to an external recognition system that detects dirt on a camera.
- Patent Document 1 JP-A-2007-228448
- Japanese Patent Laid-Open Publication No. 2003-259259 discloses that "information on objects and textures such as signs and pedestrian crossings that are present in the field of view of the imaging device before the image recognition process is performed by imaging the periphery of the vehicle with an imaging device attached to the vehicle. Then, the image recognition unit recognizes the object or texture existing in the field of view, and based on the recognized object shape or texture and the previously acquired object or texture information, the recognized object shape or texture distortion. "Determines the imaging environment such as the presence or absence of water droplets, dirt, or fog on the lens based on the distortion / blurring degree calculated from the shape or texture of the recognized object” (see summary). ).
- the edge displacement of the bumper is observed from the image of the rear in-vehicle camera of the host vehicle, and the average value is calculated after each observation value is summed. Since the edge observation points are set at a predetermined interval, dirt or the like in a portion that is not an edge observation point is not reflected in the observation value. For this reason, the stain
- An object of the present invention is to provide an external recognition system that improves the accuracy of detection of dirt on a vehicle-mounted camera.
- a representative example of the present invention includes a camera mounted on a vehicle, analyzes an image of the camera, and recognizes a state around the vehicle based on an analysis result of the image of the camera.
- the system includes a dirt detection unit that detects whether or not dirt is attached to the camera, and the dirt detection unit is at least one of objects that do not change on the image of the camera even when the vehicle moves.
- Some lines are set as at least one reference line, an observation line corresponding to the reference line is calculated from an image of the camera, a displacement amount of the observation line from the reference line is calculated, and the displacement amount is calculated. Based on this, it is detected whether or not dirt is attached to the camera.
- FIG. 6 is an explanatory diagram of observation line calculation processing according to the first embodiment.
- FIG. 3 is a flowchart of processing by the external environment recognition system according to the first embodiment. It is explanatory drawing of the vehicle carrying the external field recognition system of Example 2.
- FIG. 1 is an explanatory diagram of an external environment recognition system 100 according to the first embodiment.
- the external environment recognition system 100 receives an image of the in-vehicle camera 111 installed in the vehicle, executes predetermined image signal processing on the input image, recognizes the state of the vehicle, and recognizes the recognition result as the vehicle's own vehicle. Notify the control unit 114 and the driver (driver).
- the recognition of the state of the surroundings of the vehicle means that the external environment recognition system 100 analyzes the image of the in-vehicle camera 111, and the presence or absence of other vehicles and pedestrians including motorcycles or bicycles in the vicinity of the host vehicle and in the surrounding peripheral space. It is to recognize the presence or absence of an obstacle that hinders driving or parking of the vehicle, and a traveling lane or the like for allowing the host vehicle to stably travel on the road.
- the recognition of the state of the surroundings of the vehicle by detecting the sudden approach of other vehicles and pedestrians (approaching objects) including motorcycles or bicycles in the vicinity and distant from the own vehicle, And predicting a collision between the host vehicle and an obstacle.
- the external environment recognition system 100 is connected to the in-vehicle camera 111, the control unit 112, the memory 113, and the host vehicle control unit 114 via a signal bus.
- the in-vehicle camera 111 is installed, for example, on the rear side of the vehicle, and more specifically, is installed between a finisher that is a part of the vehicle body and a bumper that exists below the finisher.
- the in-vehicle camera 111 captures the state around the vehicle, and the captured image is temporarily stored in the memory 113.
- the installation position of the in-vehicle camera 111 is not limited to the rear side of the vehicle, and may be, for example, the front side of the vehicle or at least one side of the left and right sides.
- the control unit 112 controls input / output of images stored in the control unit 112 and input / output of alarm signals between the external environment recognition system 100 and the host vehicle control unit 114.
- the memory 113 stores an image captured by the in-vehicle camera 111 and various programs executed by the control unit 112.
- the own vehicle control unit 114 controls vehicle operations such as vehicle engine control and brake control.
- the external environment recognition system 100 includes a dirt detection unit 101, a surrounding state recognition unit 106, an alarm processing unit 110, and a driver notification unit 109.
- the external environment recognition system 100 includes a processor and a memory (not shown), and programs corresponding to the dirt detection unit 101, the peripheral state recognition unit 106, the alarm processing unit 110, and the driver notification unit 109 are stored in the memory. When the processor executes these programs, the functions of the dirt detection unit 101, the surrounding state recognition unit 106, the alarm processing unit 110, and the driver notification unit 109 are implemented in the external environment recognition system 100.
- the dirt detection unit 101 analyzes the image of the in-vehicle camera 111 and detects whether or not dirt is attached to the lens of the in-vehicle camera 111. More specifically, the dirt detection unit 101 calculates the displacement of a predetermined reference line that does not change due to the movement of the vehicle on the image input from the in-vehicle camera 111, so that dirt is attached to the lens of the in-vehicle camera 111. Detect whether or not. For example, when dirt such as raindrops adheres to the lens of the in-vehicle camera 111, the image of the in-vehicle camera 111 corresponding to a predetermined reference line on the image of the in-vehicle camera 111 that does not change due to the movement of the vehicle. This is based on the fact that the lines are distorted.
- the stain detection unit 101 includes an observation point setting unit 102, an edge displacement observation unit 103, a stain score calculation unit 104, and a stain determination unit 105.
- the observation point setting unit 102 sets a plurality of observation points on the reference line.
- the subject imaged by the in-vehicle camera 111 includes a finisher and a bumper, which are a part of the vehicle, and therefore do not change depending on the movement of the vehicle on the image input from the in-vehicle camera 111. Therefore, in this embodiment, the finisher edge line is the upper reference line (finisher reference line (first reference line)), and the bumper edge line is the lower reference line (bumper reference line (second reference line)).
- the edge displacement observation unit 103 calculates a displacement amount (edge displacement) on the image of the in-vehicle camera 111 of the observation point set by the observation point setting unit 102, calculates a displacement point corresponding to each observation point, and calculates The observation line corresponding to the reference line is calculated by complementing between the displacement points.
- An observation line corresponding to the finisher reference line is called a finisher observation line
- an observation line corresponding to the bumper reference line is called a bumper observation line.
- the dirt score calculation unit 104 calculates the amount of displacement of the observation line from the reference line.
- the dirt score calculation unit 104 calculates the area of a predetermined region using the first method or the second method in order to calculate the displacement amount of the observation line from the reference line.
- the dirt score calculation unit 104 calculates the area of the region between the observation line and the reference line in the first method, and calculates the area of the region between the finisher observation line and the bumper observation line in the second method. .
- the dirt determination unit 105 compares the amount of displacement of the observation line from the reference line with a threshold value, determines whether or not dirt is attached to the lens of the in-vehicle camera 111, and the determination result is determined by the surrounding state recognition unit 106. The result is output to the dirt diagnosis unit 108.
- the surrounding state recognition unit 106 includes a dirt diagnosis unit 108 and a surrounding recognition unit 107.
- the dirt diagnosis unit 108 diagnoses whether or not dirt is attached to the lens of the in-vehicle camera 111 based on the determination result. In 107, it is difficult to perform accurate image recognition processing and misrecognition is likely to occur. Therefore, FAIL information indicating that the recognition of the state of the surroundings of the vehicle is stopped is output to the periphery recognition unit 107, and the periphery recognition unit 107 is contaminated.
- the dirt notification information for notifying the driver that the recognition is stopped is output to the driver notification unit 109.
- the periphery recognition unit 107 analyzes the image of the in-vehicle camera 111, recognizes the state of the periphery of the vehicle, and outputs a recognition result and alarm information to the alarm processing unit 110.
- the periphery recognition unit 107 stops recognizing the state around the vehicle.
- the warning processing unit 110 transmits the recognition result and the warning signal input from the periphery recognition unit 107 to the host vehicle control unit 114 as a warning signal.
- the own vehicle control unit 114 controls the vehicle based on the received warning signal, and outputs a warning to the driver.
- the driver notification unit 109 When the dirt notification information is input from the dirt diagnosis unit 108, the driver notification unit 109 notifies the driver that dirt is attached to the lens of the in-vehicle camera 111 and the recognition processing of the periphery recognition unit 107 is stopped.
- the fact may be displayed on a display installed outside the external world recognition system 100, or a voice to that effect may be output from a speaker installed outside the external world recognition system 100. .
- the dirt detection unit 101 of the present embodiment can detect not only raindrops but also dirt such as snow, mud, and cloudiness of the lens of the in-vehicle camera 111.
- FIG. 2 is an explanatory diagram of an image of the in-vehicle camera 111 according to the first embodiment.
- the in-vehicle camera 111 is installed between a finisher that is a part of a body on the rear side of the vehicle and a bumper that exists below the finisher.
- the subject of the image of the in-vehicle camera 111 includes a light shielding plate 201, a finisher 202, a bumper 203, a number plate 204, and a road surface 205.
- the light shielding plate 201 is an image of the light shielding plate attached to the upper part of the lens of the in-vehicle camera 111 so that unnecessary external light such as sunlight is not reflected.
- the finisher 202 is an image of the finisher above the in-vehicle camera 111.
- the bumper 203 is an image of a bumper below the in-vehicle camera 111.
- the license plate 204 is an image of a vehicle license plate.
- the road surface 205 is an image of the road surface behind the host vehicle including other vehicles and scenery behind the vehicle.
- the subject of the road surface 205 of the image of the in-vehicle camera 111 changes with time as the vehicle moves.
- the light shielding plate 201, the finisher 202, the bumper 203, and the The license plate 204 does not change with the movement of the host vehicle and always appears as a stationary subject.
- the reference line is not limited to this as long as it is a stationary subject, and the light shielding plate 201 is used.
- the license plate 204 may be used.
- the first method is used to calculate the amount of displacement of the observation line from the reference line
- at least one reference line is set from among the light shielding plate 201, the finisher 202, the bumper 203, and the license plate 204.
- the second method for calculating the amount of displacement of the observation line from the reference line at least two reference lines are set from among the light shielding plate 201, the finisher 202, the bumper 203, and the license plate 204. Just do it.
- the subject may be used as a reference line.
- FIG. 3A is an explanatory diagram of the finisher reference line and the bumper reference line.
- the observation point setting unit 102 reflects the finisher on the image of the in-vehicle camera 111 when the lens of the in-vehicle camera 111 is not contaminated, and sets the edge line of the finisher image as the finisher reference line 301. Similarly, the observation point setting unit 102 reflects the bumper on the image of the in-vehicle camera 111 when the lens of the in-vehicle camera 111 is not contaminated, and sets the edge line of the bumper image as the bumper reference line 302. To do.
- the observation point setting unit 102 sets the finisher reference line and the bumper reference line based on the design information of the shape of the host vehicle, the installation position information of the in-vehicle camera 111, and the parameter information of the in-vehicle camera 111.
- the installation position information of the in-vehicle camera 111 includes the height and depth of the position where the in-vehicle camera 111 is installed.
- the parameter information of the in-vehicle camera 111 includes internal parameter information and external parameter information.
- the internal parameter information includes the focal length, the pixel center position (center position of the image sensor), the lens distortion count, and the like of the in-vehicle camera 111.
- the information is an installation angle of the in-vehicle camera 111.
- the installation angle of the in-vehicle camera 111 is represented by three axis angle values of pitch (X axis), yaw (Y axis), and roll (Z axis).
- the pitch is the vertical axis rotation
- the yaw is the horizontal axis rotation
- the roll is the axial rotation of the in-vehicle camera 111 in the shooting direction.
- FIG. 3B is an explanatory diagram of a plurality of observation points set on each reference line.
- the observation point setting unit 102 sets a plurality of observation points (finisher observation points) 303 at predetermined intervals on the finisher reference line 301, and a plurality of observation points (bumper observation points 304) at predetermined intervals on the bumper reference line 302. ) Is set.
- the number of observation points set for each reference line is arbitrary, but in order to improve the accuracy of the observation line calculated from the displacement points corresponding to the observation points, the observation points are set as many as possible. It is desirable.
- FIG. 4 is an explanatory diagram of changes in the bumper observation line due to raindrops adhering to the lens of the in-vehicle camera 111 according to the first embodiment.
- the finisher observation line and the bumper observation line tend to change greatly when dirt such as raindrops adheres to the lens of the in-vehicle camera 111 compared to before the dirt adheres.
- FIG. 4B shows a bumper observation line 401 before raindrops are attached to the lens of the in-vehicle camera 111.
- FIG. 4C shows a bumper observation line 403 when raindrops are attached to the lens of the in-vehicle camera 111.
- the bumper observation line 403 at the spot 402 where the raindrops are attached is greatly deformed due to the light refraction phenomenon when light rays pass through the waterdrops (or water film). It should be noted that the observation line with respect to the reference line such as the bumper observation line 403 is greatly deformed in this way, not only for raindrops, but also for dirt such as snow, mud, and cloudiness.
- FIG. 5 is an explanatory diagram of a method for calculating the displacement point of the observation point 304 with the bumper reference line 302 according to the first embodiment.
- the edge displacement observation unit 103 is a luminance value of pixels located within a predetermined range (pixel acquisition range) 501 (H1 to H3) from the observation point 304 set on the bumper reference line 302 in a direction orthogonal to the bumper reference line 302. For example, 0 to 255) is acquired. Then, the edge displacement observation unit 103 calculates the position of the pixel where the gradient of the brightness value of the adjacent pixel is maximum as the displacement point.
- the pixel acquisition range 501 is arbitrarily set within a range in which the gradient of the luminance value can be calculated. Further, the pixel acquisition range 501 may be set to a different value for each observation point.
- the center of the pixel acquisition range 501 is set at the observation point 304 so that the observation can be performed regardless of whether the displacement point is displaced in the vertical direction of the observation point 304. May be set to be shifted upward or downward in the observation point 304.
- the bumper reference line 302 is a line extending in the left-right direction
- the pixel acquisition range 501 is set in a direction (vertical direction) orthogonal to the bumper reference line 302.
- the reference line extends in the vertical direction.
- the pixel acquisition range 501 is set in the left-right direction.
- FIG. 6 is an explanatory diagram of changes in luminance values of pixels in the pixel acquisition range 501 at the observation point 304 according to the first embodiment.
- the horizontal axis 600 indicates the pixel position of the pixel in the pixel acquisition range 501
- the vertical axis 601 indicates the luminance value of each pixel.
- the change in the luminance value when the lower side of the bumper reference line 302 is darker than the upper side and no dirt is attached to the lens of the in-vehicle camera 111 is shown by a curve A602. become that way. That is, in the curve A602, the luminance value of the pixel whose pixel position is in the H1 direction is large, and the luminance value of the pixel is small when the pixel position is in the H2 direction from the position P1.
- the pixel position where the gradient of the luminance value of the curve A602 is maximum is the position (maximum gradient position) P1, and corresponds to the observation point 304 when the pixel at the position P1 is not contaminated with the lens of the in-vehicle camera 111. This is the displacement point.
- the maximum gradient position of curve B603 changes from position P1 to position P2. This is presumed that the maximum gradient position has changed from the position P1 to the position P2 due to dirt such as raindrops attached to the lens of the in-vehicle camera 111.
- FIG. 7 is an explanatory diagram of the observation line calculation process of the first embodiment.
- observation points 304A to 304D are set on the bumper reference line 302, and the edge displacement observation unit 103 performs displacement points 701A to 701D corresponding to all the observation points 304A to 304D by the method described in FIG. Is calculated. Then, the edge displacement observation unit 103 generates a line passing through the coordinates of the calculated displacement points 701A to 701D as the bumper observation line 702.
- the dirt score calculation unit 104 calculates the amount of displacement of the bumper observation line 702 from the bumper reference line 302 as a score.
- the displacement of the bumper observation line 702 from the bumper reference line 302 is calculated by, for example, the area between the bumper observation line 702 and the bumper reference line 302.
- the bumper observation line 702 When dirt (for example, raindrops, etc.) is not attached to the lens of the in-vehicle camera 111, the bumper observation line 702 is not displaced from the bumper reference line 302, so the area between the bumper observation line 702 and the bumper reference line 302 is 0. Become.
- a finisher observation line (not shown) of the finisher reference line 301 can be calculated using the same method.
- the displacements from the observation points 304A to 304D to the displacement points 701A to 701D are displacement amounts D1 to D4.
- the edge displacement observation unit 103 complements the region between the displacement points using the least square method with these displacement amounts D1 to D4 as inputs, and calculates the observation line 702 as a quadratic function curve.
- the least squares method uses a difference (residual) between an estimated value (corresponding to a reference line) and a measured value (corresponding to an observation line) to minimize the sum of the squares of the residuals.
- This is a method for calculating a count. Specifically, a quadratic function curve serving as an observation line is calculated by Equation 1.
- Equation 1 W2, W1, and W0 are quadratic function counts, and X is the X coordinate of each observation point 304A to 304D.
- Equation 2 a total value T of values obtained by squaring all the displacement amounts D1 to D4 is calculated using Equation 2.
- T in Equation 2 is the sum of squares of the displacement amounts D1 to D4, x is the X coordinate of each observation point 304A to 304D, f (x) is the y coordinate of the displacement points 701A to 701D, and Y Is the y coordinate of the observation points 304A to 304D at the x position.
- Equation 3 Since T in Equation 3 can be regarded as a function of the coefficients W2, W1, and W0, T becomes minimum when the equation obtained by differentiating T in Equation 3 with the coefficients W2, W1, and W0 becomes zero.
- Equation 3 when the simultaneous equations under the condition that T is minimum is expressed by a determinant, Equation 4 is obtained.
- the quadratic function curve connecting the displacement points 701A to 701D of the observation points 304A to 304D is calculated using the least square method.
- the method of calculating the observation line from the displacement point is not limited to the least square method, and other methods may be used.
- the first method and the second method will be described as the score calculation method by the stain score calculation unit 104.
- the stain score calculation unit 104 calculates the score using at least one of the first method and the second method. Good.
- FIG. 8A is an explanatory diagram of a score calculation process using the first method by the dirt score calculation unit 104.
- the score that is the displacement of the observation line from the reference line is calculated by calculating the area between the observation line and the reference line.
- the area of the region (dirt score region 801) between the finisher observation line 703 and the finisher reference line is calculated as a score.
- the area of the region between the bumper observation line 702 and the bumper reference line 302 can be calculated.
- FIG. 8B is an explanatory diagram of a score calculation process using the second method by the dirt score calculation unit 104.
- the score that is the displacement of the observation line from the reference line is calculated by calculating the area between the two observation lines. Specifically, the area of the region (dirt score region 802) between the finisher observation line 703 and the bumper observation line 702 is calculated as a score.
- the area of the dirt score region 802 from ⁇ to ⁇ is calculated.
- ⁇ and ⁇ are intersections of the finisher observation line 703 and the bumper observation line 702.
- the area of the dirt score area 802 of the second method is larger than the area of the dirt score area 801 of the first method, it corresponds to a threshold value for determining that dirt is attached to the lens of the in-vehicle camera 111.
- the margin becomes large, and it becomes easy to compare the area by the dirt determination unit 105 with the threshold value. This improves the accuracy of determining whether or not dirt is attached to the lens of the in-vehicle camera 111.
- FIG. 9 is an explanatory diagram of the displacement point correction process by the edge displacement observation unit 103 according to the first embodiment.
- the displacement point correction process is executed after the edge displacement observation unit 103 calculates the displacement point when the dirt score calculation unit 104 calculates the score using the second method.
- the displacement points 701E and 701G are calculated above the finisher reference line 301, and the displacement point 701F is calculated below the finisher reference line 301.
- the areas are offset by the displacement in the different displacement directions. Therefore, the displacement of the observation line from the reference line cannot be calculated accurately. For example, if one of the two displacement points of a reference line is displaced upward, the other displacement point is displaced downward, and these displacements are the same, the two observation lines If the area of the area in between is calculated, the area becomes 0, and the observation line is not changed from the reference line.
- the displacement direction of the displacement point from a certain reference line is corrected to either the direction in which the area decreases or the direction in which the area increases.
- the displacement point 701E is displaced downward by the amount of displacement of the displacement point 701E, and the displacement point 701E is corrected to the displacement point 701E ′.
- the displacement point 701G is displaced downward by the amount of displacement of the displacement point 701G, and the displacement point 701G is corrected to the displacement point 701G ′.
- the displacement point is displaced upward by the amount of displacement.
- the area between the finisher observation line 703 and the bumper observation line 702 decreases (the correction direction of the displacement point above the finisher reference line 301 is downward).
- the correction point of the displacement point below the bumper reference line 302 is corrected upward), thereby preventing the area from being canceled by the displacement point having a different displacement direction, and the reference line of the observation line It is possible to accurately calculate the displacement from.
- FIG. 10 is an explanatory diagram of the relationship between the score calculated by the dirt score calculation unit 104 according to the first embodiment and a threshold value.
- the dirt determination unit 105 determines whether or not dirt is attached to the lens of the in-vehicle camera 111 by comparing the magnitude relationship between the score calculated by the dirt score calculation unit 104 and the threshold value.
- FIG. 10A is an explanatory diagram of the relationship between the score and the threshold value according to the first method.
- the area (finisher score value SC1 (1000)) between the finisher observation line 703 and the finisher reference line 301 and the area between the bumper observation line 702 and the bumper reference line 302 are calculated.
- at least one of the areas (bumper score value SC2 (1001)) may be calculated, in this embodiment, a case where both the finisher score value SC1 (1000) and the bumper score value SC2 (1001) are calculated will be described. .
- Threshold value TH1 (1002) is set for finisher score value SC1 (1000), and threshold value TH2 (1003) is set for bumper score value SC2 (1001).
- threshold values TH1 (1002) and threshold value TH2 (1003) are initially set to predetermined values when the own vehicle starts ignition and the outside recognition system 100 starts.
- the same value is set for the threshold value TH1 (1002) and the threshold value TH2 (1003), but different values may be set.
- the finisher score value SC1 (1000) and the bumper score value SC2 (1001) are calculated, for example, the sum of the finisher score value SC1 (1000) and the bumper score value SC2 (1001) is calculated.
- one threshold value may be set.
- FIG. 10B is an explanatory diagram of the relationship between the score and the threshold value according to the second method.
- Threshold value TH (1005) is initially set to a predetermined value when the vehicle starts ignition and external environment recognition system 100 starts.
- FIG. 11 is an explanatory diagram of the determination result of the dirt determination unit 105.
- FIG. 11A is an explanatory diagram of a stain determination result based on the finisher score value SC1 (1000) according to the first method.
- the dirt determination unit 105 determines whether or not the score value calculated by the first method is equal to or larger than the threshold value. If the score value is equal to or larger than the threshold value, dirt is attached to the lens of the in-vehicle camera 111. It is determined that
- FIG. 11A is a graph in which the vertical axis is the finisher score value SC1 (1000) and the horizontal axis is time T1100.
- the finisher score value SC1 (1000) increases with time and becomes equal to or greater than the threshold value TH1 (1002) at time T2. For this reason, the determination result of the contamination determination unit 105 is no contamination from time T1 to time T2, and there is contamination from time T2 to time T3.
- FIG. 11B is an explanatory diagram of a stain determination result based on the score value SC (1004) according to the second method.
- the dirt determination unit 105 determines whether or not the score value calculated by the second method is equal to or less than the threshold value. If the score value is equal to or less than the threshold value, dirt is attached to the lens of the in-vehicle camera 111. It is determined that
- FIG. 11B is a graph in which the vertical axis is score value SC (1004) and the horizontal axis is time T1100.
- the score value SC (1004) decreases with time and becomes equal to or less than the threshold value TH (1005) at time T2. For this reason, the determination result of the contamination determination unit 105 is no contamination from time T1 to time T2, and there is contamination from time T2 to time T3.
- the dirt determination unit 105 determines whether or not the score value calculated by the second method is equal to or greater than the threshold value. If the score value is equal to or greater than the threshold value, dirt is attached to the lens of the in-vehicle camera 111. It is determined that
- FIG. 12 is a flowchart of processing performed by the external environment recognition system 100 according to the first embodiment.
- the external environment recognition system 100 determines whether or not the ignition of the host vehicle is turned on (S1).
- the external recognition system 100 when it is determined that the ignition is not turned on, the external recognition system 100 repeatedly executes the process of S1 until it is determined that the ignition is turned on.
- the observation point setting unit 102 sets the finisher observation point 303 and the bumper observation point 304 (S2).
- the observation point setting unit 102 sets the finisher reference line and the bumper reference line based on the design information of the shape of the own vehicle, the installation position information of the in-vehicle camera 111, and the parameter information of the in-vehicle camera 111. Also good.
- the observation point setting unit 102 sets a threshold used by the dirt determination unit 105 (S3).
- the observation point setting unit 102 may acquire the current weather information by a predetermined method, and set a threshold based on the acquired weather information. For example, when the weather information is rain or snow, the observation point setting unit 102 may set a threshold value that makes it difficult to determine that the dirt is attached, and when the weather information is clear, the dirt is attached. A threshold value that can be easily determined may be set. In the threshold value corresponding to the score value according to the first method and the score value according to the second method in which the area is increased in the direction of increasing the area, the threshold value that is difficult to determine that the dirt has adhered is a value that is larger than the normal threshold value.
- the threshold value that is easily determined to be attached is a value smaller than the normal threshold value.
- the threshold value that is difficult to determine that dirt has adhered is a value smaller than the normal threshold value, and the threshold value that is likely to determine that dirt has adhered is less than the normal threshold value. Large value.
- the current weather information may be determined based on the image of the in-vehicle camera 111, the weather information of the current location may be acquired via another Internet or the like, or the driver may input manually. Good.
- the edge displacement observation unit 103 calculates a displacement point 701 corresponding to the finisher observation point 303 based on the input image (S4).
- the calculation of the displacement point 701 has been described in detail with reference to FIG.
- the edge displacement observation unit 103 calculates the finisher observation line 703 based on the displacement point 701 calculated in the process of S4 (S5).
- the calculation of the finisher observation line 703 has been described with reference to FIG. Note that when the score is calculated using the second method, the edge displacement observation unit 103 performs the displacement point correction described in FIGS. 9A and 9B on the displacement point 701 calculated in the process of S4. After executing the processing, the finisher observation line 703 is calculated.
- the edge displacement observation unit 103 calculates a displacement point 701 corresponding to the bumper observation point 304 based on the input image (S6).
- the calculation of the displacement point has also been described in detail with reference to FIG.
- the edge displacement observation unit 103 calculates the bumper observation line 702 by complementing the region between the displacement points 701 based on the displacement points 701 calculated in the process of S4 (S7).
- the calculation of the bumper observation line 702 has been described with reference to FIG.
- the edge displacement observation unit 103 explains the displacement point 701 calculated in the process of S5 with reference to FIGS. 9A and 9B.
- the bumper observation line 702 is calculated.
- the dirt score calculation unit 104 calculates the area of the region between the finisher observation line 703 and the finisher reference line 301 as the finisher score value SC1 (1000), and the bumper observation line 702 Is calculated as a bumper score value SC2 (1001) (S8).
- the dirt score calculation unit 104 calculates the area of the region between the finisher observation line 703 and the bumper observation line 702 as the score value SC (1004) in the case of the second method.
- the finisher score value SC1 (1000), the bumper score value SC2 (1001), and the score value SC (1004) are calculated.
- the dirt determination unit 105 determines whether or not the finisher score value SC1 (1000) according to the first method is equal to or greater than the threshold value TH1 (1002), and the bumper score value SC2 (1001) according to the first method is equal to the threshold value TH2 (1003). ) It is determined whether or not it is above (S9A).
- the score value according to the first method is determined. It may be determined that it is equal to or greater than the threshold value, and dirt is attached to the lens of the in-vehicle camera 111, the finisher score value SC1 (1000) is equal to or greater than the threshold value TH1 (1002), and the bumper score value SC2 (1001) is the threshold value.
- TH2 1003
- the dirt determination unit 105 determines whether or not dirt is attached to the lens of the in-vehicle camera 111 by determining whether or not the score value SC (1004) is equal to or less than the threshold value TH (1005) (S9B). ).
- the dirt determination unit 105 determines that dirt is attached to the lens of the in-vehicle camera 111. (S10), the determination result is output to the stain diagnosis unit 108.
- the dirt diagnosis unit 108 When the determination result indicating that dirt has adhered to the lens of the in-vehicle camera 111 is input, the dirt diagnosis unit 108 outputs FAIL information indicating that the operation is stopped to the periphery recognition unit 107 (S11). In order to notify the driver that the periphery recognizing unit 107 has stopped operating due to dirt on the lens, dirt notification information is output to the driver notifying unit 109 (S12). Note that when the dirt notification information is input, the driver notification unit 109 notifies the driver to that effect. As a mode of notification, the fact may be displayed on a display screen mounted on the host vehicle, or a voice indicating that may be output from a speaker mounted on the host vehicle.
- the external environment recognition system 100 determines whether or not to end the process by determining whether or not the ignition is turned off (S15). If it is determined in step S15 that the ignition is turned off, the process is terminated. If it is determined that the ignition is not turned off, the process returns to step S3.
- the dirt determination unit 105 determines that dirt is not attached to the lens of the in-vehicle camera 111. A determination is made (S13), and the determination result is output to the dirt diagnosis unit.
- the stain diagnosis unit 108 When the determination result indicating that dirt is not attached to the lens of the in-vehicle camera 111 is input, the stain diagnosis unit 108 does not output the FAIL information to the periphery recognition unit 107 and causes the periphery recognition unit 107 to continue the operation ( The process proceeds to S14) and S15.
- the process proceeds to S10. However, if it is determined that both the processing in S9A and the processing in S9B indicate that the lens of the in-vehicle camera 111 is contaminated, the processing may proceed to S10. In addition, as described with reference to FIG. 8, the area calculated by the second method is larger than the area calculated by the first method and the margin with the threshold value is increased, so that dirt is attached to the lens of the in-vehicle camera 111. Considering that the determination of whether or not it has been performed is accurate, at least the process of S9B may proceed to the process of S10 when it is determined that dirt is attached to the lens of the in-vehicle camera 111.
- both the score value by the first method and the score value by the second method are calculated, but either one of the score values may be calculated.
- the score value by the first method it is not necessary to calculate both the finisher score value SC1 (1000) and the bumper score value SC2 (1001), and only one of them may be calculated.
- the finisher score value SC1 (1000) it is not necessary to set the bumper observation point 304 in the process of S2, and it is not necessary to execute the processes of S6 and S7.
- only the bumper score value SC2 (1001) is calculated, it is not necessary to set the finisher observation point 303 in the process of S2, and it is not necessary to execute the processes of S4 and S5.
- the external environment recognition system 100 calculates the amount of displacement of the observation line from the reference line, and whether or not dirt is attached to the lens of the in-vehicle camera 111 based on the calculated amount of displacement. Determine.
- the dirt of the lens of the in-vehicle camera 111 can be detected more accurately than in Patent Document 1 in which dirt or the like that is not an edge observation point is not reflected in the observed value.
- the external environment recognition system 100 calculates the area of the region between the observation line and the reference line by the first method, thereby shifting the observation line from the reference line.
- the amount may be calculated, or, as described with reference to FIG. 8B, between the first observation line (finisher observation line 703) and the second observation line (bumper observation line 702) by the second method.
- the amount of displacement of each observation line from each reference line may be calculated by calculating the area of the region. In this way, by using the area, it is possible to calculate the total displacement amount of the observation line from the reference line, and thus it is possible to accurately detect the contamination of the lens of the in-vehicle camera 111.
- the external environment recognition system 100 is a displacement point corresponding to the observation point of the first reference line (finisher reference line 301).
- the displacement direction of the displacement point corresponding to the observation point of the second reference line (bumper reference line 302) are unified to either the direction in which the area increases or the direction in which the area decreases. Therefore, it is possible to prevent a situation where the dirt cannot be detected even though the area is canceled by the displacement points having different displacement directions, and the dirt of the lens of the in-vehicle camera 111 is attached.
- the external environment recognition system 100 calculates the observation line by interpolating between the displacement points using, for example, the least square method or the like.
- the displacement from the reference line can be calculated more accurately.
- the external environment recognition system 100 acquires the luminance value of the pixel in the pixel acquisition range 501 at the observation point set as the reference line, and selects the pixel having the maximum gradient of the acquired luminance value. Calculated as the displacement point. Thereby, the point corresponding to the observation point in the image of the in-vehicle camera 111 can be accurately calculated as the displacement point.
- the external environment recognition system 100 sets the reference line based on the design information of the shape of the own vehicle, the installation position information of the in-vehicle camera 111, and the parameter information of the in-vehicle camera 111.
- the position of an object to be a reference line on the image of the in-vehicle camera 111 can be accurately set as the reference line.
- FIG. 13 is an explanatory diagram of the vehicle 10 on which the external environment recognition system 100 according to the second embodiment is mounted. Among the configurations shown in FIG. 13, the same configurations as the configurations shown in FIG.
- the vehicle 10 includes an external environment recognition system 100, an in-vehicle camera 111, a control unit 112, a memory 113, a host vehicle control unit 114, an LED 1200, a speaker 1201, a display 1202, and a car navigation (navigation device) 1203.
- the driver notification unit 109 When the dirt notification information is input from the dirt diagnosis unit 108, the driver notification unit 109 notifies the driver that dirt is attached to the lens of the in-vehicle camera 111 and the recognition processing of the periphery recognition unit 107 is stopped. Is transmitted to at least one of the LED 1200, the speaker 1201, the display 1202, and the car navigation system 1203.
- the LED 1200 When the LED 1200 receives the notification signal, the LED 1200 is turned on to notify the driver that the lens of the in-vehicle camera 111 is contaminated and the recognition processing of the periphery recognition unit 107 is stopped.
- the LED 1200 may be installed outside the vehicle 10 or may be installed inside.
- the speaker 1201 When the speaker 1201 receives the notification signal, it outputs sound information indicating that the lens of the in-vehicle camera 111 is contaminated and the recognition processing of the periphery recognition unit 107 is stopped, and notifies the driver of that.
- the display 1202 When the display 1202 receives the notification signal, it indicates that the lens of the in-vehicle camera 111 is contaminated and the recognition processing of the periphery recognition unit 107 is stopped, and notifies that to the driver.
- the lens of the in-vehicle camera 111 is soiled, and the recognition processing of the periphery recognition unit 107 is stopped on the display of the car navigation system 1203, and that is notified to the driver. .
- this invention is not limited to the above-mentioned Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
- each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
- Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
- Information such as programs, tables, and files for realizing each function can be stored in a recording device such as a memory, a hard disk, or SSD (Solid State Drive), or a recording medium such as an IC card, SD card, or DVD.
- control lines and information lines are those that are considered necessary for explanation, and not all control lines and information lines on the product are shown. In fact, almost all configurations are connected to each other. You may think that it is.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Signal Processing (AREA)
- Mechanical Engineering (AREA)
- Image Analysis (AREA)
- Traffic Control Systems (AREA)
- Image Processing (AREA)
- Closed-Circuit Television Systems (AREA)
Abstract
車両に搭載されたカメラを備え、カメラの画像を解析して、カメラの画像の解析結果に基づいて車両の周辺の状態を認識する外界認識システムであって、汚れ検出部は、車両が移動してもカメラの画像上で変化がない物の少なくとも一部の線を少なくとも一つの基準線として設定し、カメラの画像から基準線に対応する観測線を算出し、観測線の基準線からの変位量を算出し、変位量に基づいてカメラに汚れが付着しているか否かを検出することを特徴とする。
Description
本出願は、平成26年(2014年)2月18日に出願された日本出願である特願2014-28414の優先権を主張し、その内容を参照することにより、本出願に取り込む。
カメラの画像に基づいて車両の周辺を認識する外界認識システムに関し、特に、カメラの汚れを検出する外界認識システムに関する。
車両同士の衝突及び人と車両との衝突等の事故を未然に避けるため、車両の周辺の状況を車載カメラでモニタし、危険が感知された場合、その旨をドライバーに警報を出力すると共に、車両の挙動を自動で制御する技術が進展している。
車載カメラを車両の外部に設置したシステムでは、悪天候、泥、及び粉塵等によって車載カメラのレンズに汚れが付着しやすい。この汚れが原因となり、誤った警報を出力し、安全性の低下を招く可能性がある。
そこで、車載カメラのレンズの汚れを自動的に検出し、エアー又は水等を吹きかけて車載カメラのレンズの汚れを除去するシステムも実用化されている。
例えば、車載カメラのレンズの汚れを検出する技術として、特開2007-228448号公報(特許文献1)がある。
特許文献1の公報には、「車両に取り付けられた撮像装置により自車周辺を撮像し、画像認識処理を実行前に撮像装置の視野内に存在する標識や横断歩道などの物体やテクスチャの情報を取得する。そして、視野内に存在する物体やテクスチャを画像認識部で認識し、認識した物体の形状あるいはテクスチャと予め取得した物体やテクスチャの情報に基づき、認識した物体の形状あるいはテクスチャの歪み、ボケ度合いを算出する。認識した物体の形状あるいはテクスチャから算出した歪み・ボケ度合いに基づきレンズについた水滴や汚れ,霧の有無等の撮像環境を認識する。」と記載されている(要約参照)。
特許文献1に記載された技術では、自車両のリアの車載カメラの画像からバンパーのエッジ変位が点群観測され、各観測値が合計された後に平均値が算出される。エッジ観測点は所定間隔で設定されるため、エッジ観測点でない部分の汚れ等が観測値に反映されない。このため、車載カメラの汚れを正確に検出できない。
本発明は、車載カメラの汚れの検出の正確性を向上させた外界認識システムを提供することを目的とする。
本発明の代表的な一例を示せば、車両に搭載されたカメラを備え、前記カメラの画像を解析して、前記カメラの画像の解析結果に基づいて前記車両の周辺の状態を認識する外界認識システムであって、前記カメラに汚れが付着しているか否かを検出する汚れ検出部を備え、前記汚れ検出部は、前記車両が移動しても前記カメラの画像上で変化がない物の少なくとも一部の線を少なくとも一つの基準線として設定し、前記カメラの画像から前記基準線に対応する観測線を算出し、前記観測線の前記基準線からの変位量を算出し、前記変位量に基づいて前記カメラに汚れが付着しているか否かを検出することを特徴とする。
本願において開示される発明のうち代表的なものによって得られる効果を簡潔に説明すれば、下記の通りである。すなわち、車載カメラの汚れの検出の正確性を向上させた外界認識システムを提供できる。
上記した以外の課題、構成、及び効果は、以下の実施形態の説明により明らかにされる。
実施例1について図1~図12を用いて説明する。図1は、実施例1の外界認識システム100の説明図である。
外界認識システム100は、車両に設置された車載カメラ111の画像が入力され、入力された画像に所定の画像信号処理を実行し、車両の周辺の状態を認識し、認識結果を車両の自車両制御部114及びドライバー(運転手)に報知する。
車両の周辺の状態の認識とは、外界認識システム100が車載カメラ111の画像を解析し、自車両の近傍及び遠方の周辺空間において、バイク又は自転車を含む他の車両及び歩行者の有無、自車両の走行又は駐車の妨げになる障害物の有無、並びに自車両が道路を安定して走行できるための走行レーン等を認識することである。車両の周辺の状態の認識は、他にも、自車両の近傍及び遠方のバイク又は自転車を含む他の車両及び歩行者(接近物)の急接近を検知することによって、自車両と接近物との衝突を予測すること、並びに自車両と障害物との衝突を予測することを含む。
外界認識システム100は、信号バスを介して車載カメラ111、制御部112、メモリ113、及び自車両制御部114に接続される。
車載カメラ111は、例えば、車両の後方側に設置され、より詳細には、車両のボディの一部であるフィニッシャーと当該フィニッシャーの下方に存在するバンパーとの間に設置される。車載カメラ111は車両の周辺の状態を撮影し、撮影した画像はメモリ113に一時的に記憶される。なお、車載カメラ111の設置位置は車両の後方側に限定されず、例えば、車両の前方側であってもよいし、左右側方の少なくとも一方側であってもよい。
制御部112は、制御部112に記憶された画像の入出力、及び外界認識システム100と自車両制御部114との間における警報信号の入出力を制御する。メモリ113には、車載カメラ111が撮影した画像及び制御部112が実行する各種プログラムが記憶される。
自車両制御部114は、車両のエンジン制御及びブレーキ制御等の車両の動作を制御する。
外界認識システム100は、汚れ検出部101、周辺状態認識部106、警報処理部110、及びドライバー通知部109を備える。外界認識システム100は、図示しないプロセッサ及びメモリを備え、メモリには、汚れ検出部101、周辺状態認識部106、警報処理部110、及びドライバー通知部109に対応するプログラムが記憶される。プロセッサがこれらのプログラムを実行することによって、汚れ検出部101、周辺状態認識部106、警報処理部110、及びドライバー通知部109の機能が外界認識システム100に実装される。
汚れ検出部101は、車載カメラ111の画像を解析し、車載カメラ111のレンズに汚れが付着しているか否かを検出する。より詳細には、汚れ検出部101は、車載カメラ111から入力された画像上において、車両の移動によって変化しない所定の基準線の変位を算出することによって、車載カメラ111のレンズに汚れが付着しているか否かを検出する。これは、車載カメラ111のレンズに例えば雨滴等の汚れが付着している場合には、車両の移動によって変化しない車載カメラ111の画像上の所定の基準線に対応する車載カメラ111の画像上における線に歪みが生じていることに着目したものである。
汚れ検出部101は、観測点設定部102、エッジ変位観測部103、汚れスコア計算部104、及び汚れ判定部105を有する。
観測点設定部102は、基準線上に複数の観測点を設定する。車載カメラ111が撮像する被写体には、フィニッシャー及びバンパーが含まれ、これらは車両の一部であるため、車載カメラ111から入力された画像上では車両の移動によっては変化しない。このため、本実施例では、フィニッシャーのエッジ線を上方の基準線(フィニッシャー基準線(第1基準線))とし、バンパーのエッジ線を下方の基準線(バンパー基準線(第2基準線))とする。
エッジ変位観測部103は、観測点設定部102によって設定された観測点の車載カメラ111の画像上の変位量(エッジ変位)を算出し、各観測点に対応する変位点を算出し、算出した変位点間を補完して基準線に対応する観測線を算出する。なお、フィニッシャー基準線に対応する観測線をフィニッシャー観測線といい、バンパー基準線に対応する観測線をバンパー観測線という。
汚れスコア計算部104は、観測線の基準線からの変位量を算出する。汚れスコア計算部104は、観測線の基準線からの変位量の算出するために第1方式又は第2方式を用いて所定の領域の面積を算出する。汚れスコア計算部104は、第1方式では、観測線と基準線との間の領域の面積を算出し、第2方式では、フィニッシャー観測線とバンパー観測線との間の領域の面積を算出する。
汚れ判定部105は、観測線の基準線からの変位量と閾値とを比較して、車載カメラ111のレンズに汚れが付着しているか否かを判定し、判定結果を周辺状態認識部106の汚れ診断部108に出力する。
周辺状態認識部106は、汚れ診断部108及び周辺認識部107を有する。汚れ診断部108は、判定結果に基づいて、車載カメラ111のレンズに汚れが付着しているか否かを診断し、車載カメラ111のレンズに汚れが付着していると診断した場合、周辺認識部107において正確な画像認識処理の実行が困難であり、誤認識が生じやすいため、周辺認識部107に車両の周辺の状態の認識を停止させる旨のFAIL情報を出力し、汚れにより周辺認識部107の認識を停止する旨をドライバーに報知するための汚れ通知情報をドライバー通知部109に出力する。
周辺認識部107は、車載カメラ111の画像を解析し、車両の周辺の状態を認識し、認識結果及び警報情報を警報処理部110に出力する。なお、周辺認識部107は、汚れ診断部108からFAIL情報が入力された場合、車両の周辺の状態の認識を停止する。
警報処理部110は、周辺認識部107から入力された認識結果及び警報信号を警報信号として自車両制御部114に送信する。自車両制御部114は、警報信号を受信すると、受信した警報信号に基づいて車両を制御し、ドライバーに警報を出力する。
ドライバー通知部109は、汚れ診断部108から汚れ通知情報が入力された場合、車載カメラ111のレンズに汚れが付着し、周辺認識部107の認識処理が停止している旨をドライバーに報知する。報知の態様としては、外界認識システム100の外部に設置されたディスプレイにその旨を表示してもよいし、外界認識システム100の外部に設置されたスピーカからその旨の音声を出力してもよい。
なお、本実施例の汚れ検出部101は、雨滴のみならず、車載カメラ111のレンズの雪、泥、及び白濁等の汚れを検出可能である。
図2は、実施例1の車載カメラ111の画像の説明図である。
図1で説明したように、車載カメラ111は、車両の後方側のボディの一部であるフィニッシャーと当該フィニッシャーの下方に存在するバンパーとの間に設置される。
車載カメラ111の画像の被写体は、遮光板201、フィニッシャー202、バンパー203、ナンバープレート204、及び路面205を含む。
遮光板201は、太陽光等の不要な外光を映り込まないようにするために、車載カメラ111のレンズの上部に装着される遮光板の画像である。フィニッシャー202は、車載カメラ111の上方のフィニッシャーの画像である。バンパー203は、車載カメラ111の下方のバンパーの画像である。ナンバープレート204は、車両のナンバープレートの画像である。路面205は、他の車両及び後方の風景等を含む自車両の後方の路面の画像である。
車載カメラ111の画像の路面205は、自車両の移動によって時間経過とともに被写体が変化する。一方、遮光板、フィニッシャー、バンパー、及びナンバープレートと車載カメラ111との相対的な位置関係は自車両の移動によって変化しないので、車載カメラ111の画像の遮光板201、フィニッシャー202、バンパー203、及びナンバープレート204は、自車両の移動によって変化せず、常に静止した被写体として映る。
本実施例では、静止した被写体のうち、フィニッシャー202及びバンパー203を基準線として設定する例について説明するが、基準線は、静止した被写体であればこれに限定されず、遮光板201であってもよいし、ナンバープレート204であってもよい。また、観測線の基準線からの変位量の算出に第1方式を用いる場合には、基準線は、遮光板201、フィニッシャー202、バンパー203、及びナンバープレート204の中から少なくとも一つ設定されればよく、観測線の基準線からの変位量の算出に第2方式を用いる場合には、基準線は、遮光板201、フィニッシャー202、バンパー203、及びナンバープレート204の中から少なくとも二つ設定されればよい。また、車載カメラ111の画像に常に静止している被写体が映り込む場合には、当該被写体を基準線としてもよい。
図3(A)は、フィニッシャー基準線及びバンパー基準線の説明図である。
観測点設定部102は、車載カメラ111のレンズに汚れが付着していない場合の車載カメラ111の画像上でフィニッシャーが映り込み、当該フィニッシャーの画像のエッジ線をフィニッシャー基準線301に設定する。同様に、観測点設定部102は、車載カメラ111のレンズに汚れが付着していない場合の車載カメラ111の画像上でバンパーが映り込み、当該バンパーの画像のエッジ線をバンパー基準線302に設定する。
具体的には、観測点設定部102は、自車両の形状の設計情報、車載カメラ111の設置位置情報、及び車載カメラ111のパラメータ情報に基づいて、フィニッシャー基準線及びバンパー基準線を設定する。車載カメラ111の設置位置情報としては、車載カメラ111が設置された位置の高さ及び奥行き等がある。車載カメラ111のパラメータ情報は内部パラメータ情報及び外部パラメータ情報を含み、内部パラメータ情報は、車載カメラ111の焦点距離、画素中心位置(撮像素子の中心位置)、及びレンズ歪み計数等であり、外部パラメータ情報は、車載カメラ111の設置角度である。当該車載カメラ111の設置角度は、ピッチ(X軸)、ヨー(Y軸)、及びロール(Z軸)の三軸の角度値で表わされる。ピッチは上下方向の軸回転、ヨーは左右方向の軸回転、ロールは車載カメラ111の撮影方向の軸回転である。
図3(B)は、各基準線上に設定された複数の観測点の説明図である。
観測点設定部102は、フィニッシャー基準線301上に所定の間隔で複数の観測点(フィニッシャー観測点)303を設定し、バンパー基準線302上に所定の間隔で複数の観測点(バンパー観測点304)を設定する。
なお、各基準線に設定される観測点の数は任意であるが、観測点に対応する変位点から算出される観測線の精度を向上させるために、観測点は可能な範囲で多く設定されることが望ましい。
図4は、実施例1の車載カメラ111のレンズに雨滴が付着したことによるバンパー観測線の変化の説明図である。
フィニッシャー観測線及びバンパー観測線は、車載カメラ111のレンズに雨滴等の汚れが付着すると、汚れの付着前に比べて大きく変化する傾向がある。
例えば、図4(A)の車載カメラ111の画像のバンパー203の一部の領域400に注目する。図4(B)では、車載カメラ111のレンズに雨滴が付着する前のバンパー観測線401を示す。図4(C)では、車載カメラ111のレンズに雨滴が付着した場合のバンパー観測線403を示す。雨滴が付着した箇所402のバンパー観測線403は、水滴(又は水膜)内を光線が通過する場合の光の屈折現象によって、大きく変形している。なお、このように、バンパー観測線403等の基準線に対する観測線が大きく変形するのは、雨滴にかぎらず、雪、泥、及び白濁等の汚れであっても同様である。
図5は、実施例1のバンパー基準線302のある観測点304の変位点の算出方法の説明図である。
エッジ変位観測部103は、バンパー基準線302と直交する方向でバンパー基準線302に設定された観測点304から所定の範囲(画素取得範囲)501(H1~H3)に位置する画素の輝度値(例えば、0~255)を取得する。そして、エッジ変位観測部103は、隣接する画素の輝度値の大きさの勾配が最大となる画素の位置を変位点として算出する。なお、画素取得範囲501は、輝度値の勾配を算出可能な範囲で任意に設定される。また、観測点毎に画素取得範囲501が異なった値に設定されてもよい。
図5では、変位点が観測点304の上下方向のどちらに変位しても観測できるようにするために、画素取得範囲501の中心が観測点304に設定されるが、画素取得範囲501の中心は観測点304の上方向又は下方向にずらして設定されてもよい。
図5では、バンパー基準線302が左右方向に渡る線であり、画素取得範囲501はバンパー基準線302と直交する方向(上下方向)に設定されているが、例えば、基準線が上下方向に渡る線である場合には、画素取得範囲501は左右方向に設定されることになる。
図6は、実施例1の観測点304の画素取得範囲501の画素の輝度値の変化の説明図である。
図6に示すグラフの横軸600は画素取得範囲501の画素の画素位置を示し、縦軸601は各画素の輝度値を示す。
例えば、図5に示すように、バンパー基準線302の下方が上方より暗くなっている場合であって、かつ車載カメラ111のレンズに汚れが付着していない場合の輝度値の変化は、曲線A602のようになる。つまり、曲線A602は、画素位置がH1方向の画素の輝度値が大きく、画素位置が位置P1よりH2方向になると画素の輝度値が小さくなる。なお、曲線A602の輝度値の勾配が最大となる画素位置は位置(最大勾配位置)P1であり、位置P1の画素が車載カメラ111のレンズに汚れが付着していない場合の観測点304に対応する変位点となる。
一方、車載カメラ111のレンズに汚れが付着している場合、汚れによる光線の屈折現象により画像に歪みが生じるので、エッジ線の形状が変化する。このため、車載カメラ111のレンズに汚れが付着している場合の輝度値は、汚れが付着していない場合の輝度値から変化し、曲線B603のようになる。
曲線B603の最大勾配位置は位置P1から変化し位置P2となる。これは、車載カメラ111のレンズに付着した雨滴等の汚れが原因で最大勾配位置が位置P1から位置P2に変化したと推定される。
図7は、実施例1の観測線の算出処理の説明図である。
図7では、バンパー基準線302に例えば観測点304A~304Dが設定されており、エッジ変位観測部103は、図6で説明した方法で全ての観測点304A~304Dに対応する変位点701A~701Dを算出する。そして、エッジ変位観測部103は、算出した変位点701A~701Dの座標を通る線をバンパー観測線702として生成する。
汚れスコア計算部104は、バンパー観測線702のバンパー基準線302からの変位量をスコアとして算出する。バンパー観測線702のバンパー基準線302からの変位は、例えば、バンパー観測線702とバンパー基準線302との間の面積によって算出される。
車載カメラ111のレンズに汚れ(例えば雨滴等)が付着していない場合、バンパー観測線702はバンパー基準線302から変位しないので、バンパー観測線702とバンパー基準線302との間の面積は0となる。
車載カメラ111のレンズに汚れが付着していくと、バンパー観測線702のバンパー基準線302からの変位量は大きくなり、バンパー観測線702とバンパー基準線302との間の面積は大きくなる。
ここで、バンパー観測線702の算出方法について説明する。なお、フィニッシャー基準線301の図示しないフィニッシャー観測線も同じ方法を用いて算出できる。
各観測点304A~304Dから各変位点701A~701Dへの変位が変位量D1~D4であるとする。エッジ変位観測部103は、これらの変位量D1~D4を入力とする最小二乗法を用いて変位点間の領域を補完して、二次関数曲線として観測線702を算出する。
最小二乗法とは、推定値(基準線に相当)と測定値(観測線に相当)との差(残差)を用いて、残差の二乗和が最小となるように二次関数曲線の計数を算出する手法である。具体的には、式1によって観測線となる二次関数曲線が算出される。
式1のW2、W1、及びW0は二次関数の計数であり、Xは各観測点304A~304DのX座標である。
最小二乗法では、まず、式2を用いて全ての変位量D1~D4を二乗した値の合計値Tが算出される。
式2のTは、変位量D1~D4の二乗和の合計であり、xは各観測点304A~304DのX座標であり、f(x)は変位点701A~701Dのy座標であり、Yは、x位置の観測点304A~304Dのy座標である。
式1の二次関数を式2に代入すると式3となる。式3のTは、係数W2、W1及びW0の関数とみなすことができるので、式3のTを係数W2、W1及びW0で微分した式が0となるとき、Tが最小となる。
式3において、Tが最小となる条件の連立方程式を行列式で表すと式4となる。
式4の行列式を解き、係数W2、W1及びW0を算出することによって、各変位点701A~704Dに基づく二次関数曲線が算出される。
以上によって、各観測点304A~304Dの各変位点701A~701Dを結ぶ二次関数曲線が最小二乗法を用いて算出される。なお、変位点から観測線を算出する方法については、最小二乗法に限定されず他の方法を用いてもよい。
次に、図8を用いて汚れスコア計算部104によるスコアの算出処理について説明する。
汚れスコア計算部104によるスコアの算出方式として、第1方式及び第2方式を説明するが、汚れスコア計算部104は、第1方式及び第2方式の少なくとも一つを用いてスコアを計算すればよい。
図8(A)は、汚れスコア計算部104による第1方式を用いたスコアの算出処理の説明図である。
第1方式は、観測線の基準線からの変位となるスコアを、観測線と基準線との間の面積を算出することによって算出する。なお、図8(A)では、例として、フィニッシャー観測線703とフィニッシャー基準線との間の領域(汚れスコア領域801)の面積をスコアとして算出する。同様の方法で、バンパー観測線702とバンパー基準線302との間の領域の面積を算出可能である。
フィニッシャー基準線301の二次関数式をy=f(x)とし、フィニッシャー観測線703の二次関数式をy=g(x)とした場合のαからβまでの汚れスコア領域801の面積Sは、式5を用いて算出される。
図8(B)は、汚れスコア計算部104による第2方式を用いたスコアの算出処理の説明図である。
第2方式は、観測線の基準線からの変位となるスコアを二つの観測線の間の面積を算出することによって算出する。具体的には、フィニッシャー観測線703とバンパー観測線702との間の領域(汚れスコア領域802)の面積をスコアとして算出する。
図8(B)では、例として、αからβまでの汚れスコア領域802の面積が算出される。なお、α及びβは、フィニッシャー観測線703とバンパー観測線702との交点である。
フィニッシャー観測線703の二次関数式をy=ax^2+bx+cとし、バンパー観測線702の二次関数式をy=dx^2+ex+fとすると、αからβまでの汚れスコア領域802の面積Sは、式6を用いて算出される。
なお、第2方式の汚れスコア領域802の面積は、第1方式の汚れスコア領域801の面積に比べて大きくなるため、車載カメラ111のレンズに汚れが付着していると判定するための閾値に対するマージンが大きくなり、汚れ判定部105による面積と閾値とを比較しやくなる。これによって、車載カメラ111のレンズに汚れが付着したか否かの判定の正確性が向上する。
図9は、実施例1のエッジ変位観測部103による変位点補正処理の説明図である。
変位点補正処理は、汚れスコア計算部104が第2方式を用いてスコアを算出する場合に、エッジ変位観測部103が変位点を算出した後に実行される。
図9(A)では、フィニッシャー基準線301より上方に変位点701E及び701Gが算出され、フィニッシャー基準線301より下方に変位点701Fが算出される。このように、ある基準線の観測点に対応する複数の変位点の変位方向がそれぞれ異なる状態で、二つの観測線の間の領域の面積を算出すると、異なる変位方向の変位によって面積が相殺されてしまい、観測線の基準線からの変位を正確に算出できない。例えば、ある基準線の二つの変位点のうち一の変位点が上方向に変位し、他方の変位点が下方向に変位し、これらの変位量が同じである場合に、二つの観測線の間の領域の面積を算出すると、面積が0になってしまい、観測線は基準線から変化していないことになってしまう。
このような事態を防止するために、ある基準線からの変位点の変位方向を、面積が小さくなる方向及び面積が大きくなる方向のいずれか一方側に補正する。
例えば、図9(B)では、変位点701Eを当該変位点701Eの変位量の分だけ下方向に変位させ、変位点701Eを変位点701E'に補正する。また、変位点701Gを当該変位点701Gの変位量の分だけ下方向に変位させ、変位点701Gを変位点701G'に補正する。この場合、バンパー基準線302より下方に変位点が算出された場合、当該変位点を変位量の分だけ上方向に変位させる。このように、図9(A)及び(B)では、フィニッシャー観測線703とバンパー観測線702との間の面積が小さくなる方向(フィニッシャー基準線301より上方向の変位点の補正方向は下方向、及びバンパー基準線302より下方向の変位点の補正方向は上方向)に変位点を補正することによって、変位方向の異なる変位点により面積が相殺されることを防止し、観測線の基準線からの変位を正確に算出することが可能となる。
なお、図9(A)及び(B)では、フィニッシャー観測線703とバンパー観測線702との間の面積が小さくなる方向に変位点を補正することについて説明したが、フィニッシャー観測線703とバンパー観測線702との間の面積が大きくなる方向に補正してもよい。この場合、フィニッシャー基準線301より下方向の変位点は上方向に補正し、バンパー基準線302より上方向の変位点の補正方向は下方向に補正する。
図10は、実施例1の汚れスコア計算部104に算出されたスコアと閾値との関係の説明図である。
汚れ判定部105は、汚れスコア計算部104に算出されたスコアと閾値との大小関係を比較することによって、車載カメラ111のレンズに汚れが付着しているか否かを判定する。
図10(A)は、第1方式によるスコアと閾値との関係の説明図である。
第1方式によるスコアの算出では、フィニッシャー観測線703とフィニッシャー基準線301との間の領域の面積(フィニッシャースコア値SC1(1000))及びバンパー観測線702とバンパー基準線302との間の領域の面積(バンパースコア値SC2(1001))の少なくとも一方を算出すればよいが、本実施例では、フィニッシャースコア値SC1(1000)及びバンパースコア値SC2(1001)の両方が算出された場合について説明する。
フィニッシャースコア値SC1(1000)に対して閾値TH1(1002)が設定され、バンパースコア値SC2(1001)に対して閾値TH2(1003)が設定される。
これらの閾値TH1(1002)及び閾値TH2(1003)は、自車両がイグニッションを起動し、外界認識システム100が起動した場合に所定の値に初期設定される。
なお、図10(A)では、閾値TH1(1002)及び閾値TH2(1003)には同じ値が設定されているが、異なる値が設定されてもよい。
また、フィニッシャースコア値SC1(1000)及びバンパースコア値SC2(1001)の両方が算出された場合であっても、例えば、フィニッシャースコア値SC1(1000)とバンパースコア値SC2(1001)との和を閾値と比較する場合には、閾値は一つ設定されればよい。
また、フィニッシャースコア値SC1(1000)及びバンパースコア値SC2(1001)のいずれか一方だけ算出される場合、算出されるスコア値に対応する閾値のみ設定されればよい。
図10(B)は、第2方式によるスコアと閾値との関係の説明図である。
第2方式によるスコアの算出では、フィニッシャー観測線703とバンパー観測線702との間の一つの領域の面積が算出されるため、一つのスコア値SC(1004)が算出され、このスコア値SC(1004)に対応する閾値TH(1005)が設定される。
閾値TH(1005)は、自車両がイグニッション起動し、外界認識システム100が起動した場合に所定の値に初期設定される。
図11は、汚れ判定部105の判定結果の説明図である。
図11(A)は、第1方式によるフィニッシャースコア値SC1(1000)に基づく汚れ判定結果の説明図である。
第1方式では、車載カメラ111のレンズの汚れの付着が進行すると、観測線の基準線からの変位が大きくなるため、観測線と基準線との間の領域の面積も増加する。このため、汚れ判定部105は、第1方式によって算出されたスコア値が閾値以上であるか否かを判定し、スコア値が閾値以上であれば、車載カメラ111のレンズに汚れが付着していると判定する。
図11(A)では、縦軸をフィニッシャースコア値SC1(1000)とし、横軸を時刻T1100としたグラフである。フィニッシャースコア値SC1(1000)は時間経過とともに増加していき、時刻T2で閾値TH1(1002)以上となる。このため、汚れ判定部105の判定結果は、時刻T1からT2までは汚れなしであり、時刻T2から時刻T3までは汚れありとなる。
なお、バンパースコア値SC2(1001)の判定についても、図11(A)で説明した方法を用いることができる。
図11(B)は、第2方式によるスコア値SC(1004)に基づく汚れ判定結果の説明図である。
ここでは、図9(A)及び(B)で説明した面積が小さくなる方向に変位点が補正される場合について説明する。面積が小さくなる方向に変位点が補正される場合には、車載カメラ111のレンズの汚れの付着が進行すると、フィニッシャー観測線703は下方向に変位していき、バンパー観測線702は上方向に変位していき、フィニッシャー観測線703とバンパー観測線702との間の領域の面積が減少する。
このため、汚れ判定部105は、第2方式によって算出されたスコア値が閾値以下であるか否かを判定し、スコア値が閾値以下であれば、車載カメラ111のレンズに汚れが付着していると判定する。
図11(B)では、縦軸をスコア値SC(1004)とし、横軸を時刻T1100としたグラフである。スコア値SC(1004)は時間経過とともに減少していき、時刻T2で閾値TH(1005)以下となる。このため、汚れ判定部105の判定結果は、時刻T1からT2までは汚れなしであり、時刻T2から時刻T3までは汚れありとなる。
なお、面積が大きくなる方向に変位点が補正される場合には、車載カメラ111のレンズの汚れの付着が進行すると、フィニッシャー観測線703は上方向に変位していき、バンパー観測線702は下方向に変位していき、フィニッシャー観測線703とバンパー観測線702との間の領域の面積が増加する。この場合、汚れ判定部105は、第2方式によって算出されたスコア値が閾値以上であるか否かを判定し、スコア値が閾値以上であれば、車載カメラ111のレンズに汚れが付着していると判定する。
図12は、実施例1の外界認識システム100による処理のフローチャートである。
まず、外界認識システム100は、自車両のイグニッションがオンになったか否かを判定する(S1)。
S1の処理で、イグニッションがオンになっていないと判定された場合、外界認識システム100は、イグニッションがオンになったと判定されるまでS1の処理を繰り返し実行する。
一方、イグニッションがオンになったと判定された場合、観測点設定部102は、フィニッシャー観測点303及びバンパー観測点304を設定する(S2)。S2の処理で、観測点設定部102は、自車両の形状の設計情報、車載カメラ111の設置位置情報、及び車載カメラ111のパラメータ情報に基づいて、フィニッシャー基準線及びバンパー基準線を設定してもよい。
次に、観測点設定部102は、汚れ判定部105が用いる閾値を設定する(S3)。なお、観測点設定部102は、現在の天候情報を所定の方法によって取得し、取得した天候情報に基づいて、閾値を設定してもよい。観測点設定部102は、例えば、天候情報が雨及び雪等である場合、汚れが付着したと判定されにくい閾値を設定してもよいし、天候情報が晴れである場合、汚れが付着したと判定されやすい閾値を設定してもよい。第1方式によるスコア値に対応する閾値、及び面積が大きくなる方向に補正する第2方式によるスコア値では、汚れが付着したと判定されにくい閾値とは通常の閾値より大きい値であり、汚れが付着したと判定されやすい閾値とは通常の閾値より小さい値である。一方、面積が小さくなる方向に補正する第2方式では、汚れが付着したと判定されにくい閾値とは通常の閾値より小さい値であり、汚れが付着したと判定されやすい閾値とは通常の閾値より大きい値である。
また、現在の天候情報は、車載カメラ111の画像に基づき判定してもよいし、他のインターネット等を介して現在地の天候情報を取得してもよいし、ドライバーが手入力で入力してもよい。
外界認識システム100に車載カメラ111の画像が入力された場合(S4)、エッジ変位観測部103は、入力された画像に基づいてフィニッシャー観測点303に対応する変位点701を算出する(S4)。この変位点701の算出については図6で詳細に説明した。
そして、エッジ変位観測部103は、S4の処理で算出した変位点701に基づいて、フィニッシャー観測線703を算出する(S5)。フィニッシャー観測線703の算出については、図7で説明した。なお、第2方式を用いてスコアを算出する場合には、エッジ変位観測部103は、S4の処理で算出した変位点701に対して図9(A)及び(B)で説明した変位点補正処理を実行した後で、フィニッシャー観測線703を算出する。
次に、エッジ変位観測部103は、入力された画像に基づいてバンパー観測点304に対応する変位点701を算出する(S6)。この変位点の算出についても図6で詳細に説明した。
そして、エッジ変位観測部103は、S4の処理で算出した変位点701に基づいて、変位点701間の領域を補完してバンパー観測線702を算出する(S7)。バンパー観測線702の算出については、図7で説明した。なお、第2方式を用いてスコアを算出する場合には、S5と同じく、エッジ変位観測部103は、S5の処理で算出した変位点701に対して図9(A)及び(B)で説明した変位点補正処理を実行した後で、バンパー観測線702を算出する。
次に、汚れスコア計算部104は、第1方式による場合には、フィニッシャー観測線703とフィニッシャー基準線301との間の領域の面積をフィニッシャースコア値SC1(1000)として算出し、バンパー観測線702とフィニッシャー基準線301との間の領域の面積をバンパースコア値SC2(1001)として算出する(S8)。また、S8の処理では、汚れスコア計算部104は、第2方式による場合には、フィニッシャー観測線703とバンパー観測線702との間の領域の面積をスコア値SC(1004)として算出する。本実施例では、フィニッシャースコア値SC1(1000)及びバンパースコア値SC2(1001)、並びにスコア値SC(1004)が算出されるものとする。
次に、汚れ判定部105は、第1方式によるフィニッシャースコア値SC1(1000)が閾値TH1(1002)以上であるか否か、及び第1方式によるバンパースコア値SC2(1001)が閾値TH2(1003)以上であるか否かを判定する(S9A)。
S9Aの処理では、フィニッシャースコア値SC1(1000)が閾値TH1(1002)以上、及びバンパースコア値SC2(1001)が閾値TH2(1003)以上の少なくとも一方が成立する場合、第1方式によるスコア値が閾値以上であり、車載カメラ111のレンズに汚れが付着していると判定してもよいし、フィニッシャースコア値SC1(1000)が閾値TH1(1002)以上、及びバンパースコア値SC2(1001)が閾値TH2(1003)以上の両方が成立する場合、第1方式によるスコア値が閾値以上であり、車載カメラ111のレンズに汚れが付着していると判定してもよい。
また、汚れ判定部105は、スコア値SC(1004)が閾値TH(1005)以下であるか否かを判定することによって車載カメラ111のレンズに汚れが付着しているか否かを判定する(S9B)。
S9Aの処理及びS9Bの処理の少なくも一方で、車載カメラ111のレンズに汚れが付着していると判定された場合、汚れ判定部105は、車載カメラ111のレンズに汚れが付着したと判定し(S10)、当該判定結果を汚れ診断部108に出力する。
汚れ診断部108は、車載カメラ111のレンズに汚れが付着した旨の判定結果が入力された場合、周辺認識部107に動作を停止させる旨のFAIL情報を出力し(S11)、車載カメラ111のレンズに汚れが付着しているため周辺認識部107が動作を停止した旨をドライバーに通知するため、汚れ通知情報をドライバー通知部109に出力する(S12)。なお、ドライバー通知部109は、汚れ通知情報が入力された場合、その旨をドライバーに報知する。報知の態様としては、自車両に搭載された表示画面にその旨を表示してもよいし、自車両に搭載されたスピーカからその旨の音声を出力してもよい。
次に、外界認識システム100が、イグニッションがオフとなったか否かを判定することによって処理を終了するか否かを判定する(S15)。S15の処理で、イグニッションがオフとなったと判定された場合、処理を終了し、イグニッションがオフとなっていないと判定された場合、S3の処理に戻る。
一方、S9Aの処理及びS9Bの処理の両方で、車載カメラ111のレンズに汚れが付着していないと判定された場合、汚れ判定部105は、車載カメラ111のレンズに汚れが付着していないと判定し(S13)、当該判定結果を汚れ診断部108に出力する。
汚れ診断部108は、車載カメラ111のレンズに汚れが付着していない旨の判定結果が入力された場合、FAIL情報を周辺認識部107に出力せず、周辺認識部107に動作を継続させ(S14)、S15の処理に進む。
これによって、車載カメラ111のレンズに汚れが付着しているか否かを判定することができる。
なお、S9Aの処理及びS9Bの処理の少なくも一方で、車載カメラ111のレンズに汚れが付着していると判定された場合にS10の処理に進み、汚れ判定部105は、車載カメラ111のレンズに汚れが付着したと判定するとしたが、S9Aの処理及びS9Bの処理の両方で、車載カメラ111のレンズに汚れが付着していると判定された場合にS10の処理に進むようにしてもよい。また、図8で説明したように、第2方式によって算出された面積のほうが第1方式によって算出された面積より大きくなり、閾値とのマージンが大きくなるため、車載カメラ111のレンズに汚れが付着したか否かの判定が正確になることを考慮して、少なくともS9Bの処理で、車載カメラ111のレンズに汚れが付着していると判定された場合にS10の処理に進むようにしてもよい。
また、S9Aの処理では、フィニッシャースコア値SC1(1000)とバンパースコア値SC2(1001)との合計値が閾値以上であれば、車載カメラ111のレンズに汚れが付着したと判定してもよい。
さらに、上記した説明では、第1方式によるスコア値及び第2方式によるスコア値の両方を算出したが、どちらか一方のスコア値を算出してもよい。この場合、第1方式によるスコア値を算出する場合には、フィニッシャースコア値SC1(1000)及びバンパースコア値SC2(1001)の両方を算出する必要はなく、いずれか一方のみを算出してもよい。フィニッシャースコア値SC1(1000)のみを算出する場合には、S2の処理で、バンパー観測点304を設定する必要はなく、S6及びS7の処理も実行する必要はない。また、バンパースコア値SC2(1001)のみを算出する場合には、S2の処理で、フィニッシャー観測点303を設定する必要はなく、S4及びS5の処理も実行する必要はない。
以上のように、本実施例では、外界認識システム100は、観測線の基準線からの変位量を算出し、算出した変位量に基づいて車載カメラ111のレンズに汚れが付着しているか否かを判定する。エッジ観測点でない部分の汚れ等が観測値に反映されない特許文献1よりも車載カメラ111のレンズの汚れを正確に検出できる。
また、外界認識システム100は、図8(A)で説明したように、第1方式により、観測線と基準線との間の領域の面積を算出することによって、観測線の基準線からの変位量を算出してもよいし、図8(B)で説明したように、第2方式により、第1観測線(フィニッシャー観測線703)と第2観測線(バンパー観測線702)との間の領域の面積を算出することによって、各観測線の各基準線からの変位量を算出してもよい。このように、面積を用いることによって、観測線の基準線からの全体の変位量を算出できるため、車載カメラ111のレンズの汚れを正確に検出できる。
さらに、外界認識システム100は、第2方式を用いる場合には、図9(A)及び(B)で説明したように、第1基準線(フィニッシャー基準線301)の観測点に対応する変位点の変位方向と、第2基準線(バンパー基準線302)の観測点に対応する変位点の変位方向とを、面積が大きくなる方向又は小さくなる方向のいずれかに統一して変位点を補正するので、変位方向の異なる変位点により面積が相殺され、車載カメラ111のレンズに汚れが付着しているにもかかわらず、当該汚れを検出できない事態を防止できる。
さらに、外界認識システム100は、図7で説明したように、例えば、最小二乗法等を用いて、各変位点の間を補間することによって、観測線を算出するので、観測点がない領域の基準線からの変位をより正確に算出できる。
さらに、外界認識システム100は、図6で説明したように、基準線に設定された観測点の画素取得範囲501の画素の輝度値を取得し、取得した輝度値の勾配が最大となる画素を変位点として算出する。これによって、車載カメラ111の画像のうち観測点に対応する点を変位点として正確に算出できる。
さらに、外界認識システム100は、図3で説明したように、自車両の形状の設計情報、車載カメラ111の設置位置情報、及び車載カメラ111のパラメータ情報に基づいて、基準線を設定するため、車載カメラ111の画像上での基準線の対象となる物の位置を正確に基準線として設定できる。
本実施例について図13を用いて説明する。本実施例では、実施例1の外界認識システム100が搭載された車両10について説明する。
図13は、実施例2の外界認識システム100が搭載された車両10の説明図である。図13に示す構成のうち、実施例1の図1に示す構成と同じ構成は同じ符号を付与し、説明を省略する。
車両10は、外界認識システム100、車載カメラ111、制御部112、メモリ113、自車両制御部114、LED1200、スピーカ1201、ディスプレイ1202、及びカーナビ(ナビゲーション装置)1203を備える。
ドライバー通知部109は、汚れ診断部108から汚れ通知情報が入力された場合、車載カメラ111のレンズに汚れが付着し、周辺認識部107の認識処理が停止している旨をドライバーに報知するための報知信号を、LED1200、スピーカ1201、ディスプレイ1202、及びカーナビ1203の少なくとも一つに送信する。
LED1200が報知信号を受信した場合、LED1200を点灯させ、車載カメラ111のレンズに汚れが付着し、周辺認識部107の認識処理が停止している旨をドライバーに報知する。LED1200は、車両10の外部に設置されてもよいし、内部に設置されていてもよい。
スピーカ1201が報知信号を受信した場合、車載カメラ111のレンズに汚れが付着し、周辺認識部107の認識処理が停止している旨を示す音声情報を出力し、その旨をドライバーに報知する。
ディスプレイ1202が報知信号を受信した場合、車載カメラ111のレンズに汚れが付着し、周辺認識部107の認識処理が停止している旨を表示し、その旨をドライバーに報知する。
カーナビ1203が報知信号を受信した場合、車載カメラ111のレンズに汚れが付着し、周辺認識部107の認識処理が停止している旨をカーナビ1203のディスプレイに表示し、その旨をドライバーに報知する。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない、実際には殆ど全ての構成が相互に接続されていると考えてもよい。
Claims (12)
- 車両に搭載されたカメラを備え、前記カメラの画像を解析して、前記カメラの画像の解析結果に基づいて前記車両の周辺の状態を認識する外界認識システムであって、
前記カメラに汚れが付着しているか否かを検出する汚れ検出部を備え、
前記汚れ検出部は、
前記車両が移動しても前記カメラの画像上で変化がない物の少なくとも一部の線を少なくとも一つの基準線として設定し、
前記カメラの画像から前記基準線に対応する観測線を算出し、
前記観測線の前記基準線からの変位量を算出し、
前記変位量に基づいて前記カメラに汚れが付着しているか否かを検出することを特徴とする外界認識システム。 - 請求項1に記載の外界認識システムであって、
前記汚れ検出部は、前記観測線と前記基準線との間の領域の面積を算出することによって、前記観測線の前記基準線からの変位量を算出することを特徴とする外界認識システム。 - 請求項2に記載の外界認識システムであって、
前記基準線は、前記車両のボディの一部の第1基準線及び前記車両のバンパーの一部の第2基準線を含み、
前記汚れ検出部は、
前記カメラの画像から前記第1基準線に対応する第1観測線を算出し、
前記カメラの画像から前記第2基準線に対応する第2観測線を算出し、
前記第1観測線と前記第1基準線との間の領域の第1面積を算出し、
前記第2観測線と前記第2観測線との間の領域の第2面積を算出し、
前記第1面積と所定の第1閾値との大小関係、及び前記第2面積と所定の第2閾値との大小関係、又は前記第1面積と前記第2面積との合計面積と所定の第3閾値との大小関係に基づいて、前記カメラに汚れが付着しているか否かを検出することを特徴とする外界認識システム。 - 請求項1に記載の外界認識システムであって、
前記汚れ検出部は、
第1基準線及び第2基準線を前記基準線として設定し、
前記カメラの画像から前記第1基準線に対応する第1観測線を算出し、
前記カメラの画像から前記第2基準線に対応する第2観測線を算出し、
前記第1観測線と前記第2観測線との間の領域の面積を算出することによって、前記第1観測線の前記第1基準線からの変位量及び前記第2観測線の前記第2基準線からの変位量を算出することを特徴とする外界認識システム。 - 請求項4に記載の外界認識システムであって、
前記汚れ検出部は、
前記第1基準線及び前記第2基準線上にそれぞれ複数の観測点を設定する観測点設定部と、
前記カメラの画像上における前記複数の観測点に対応する複数の変位点を観測する変位観測部と、を有し、
前記変位観測部は、前記第1基準線上に設定された複数の観測点に対応する変位点の変位方向が異なり、前記第2基準線上に設定された複数の観測点に対応する変位点の変位方向が異なる場合、前記第1観測線と前記第2観測線との間の領域の面積が大きくなる方向及び小さくなる方向のいずれか一方向に統一して、前記第1基準線上に設定された複数の観測点に対応する変位点及び前記第2基準線上に設定された複数の観測点に対応する変位点を補正することを特徴とする外界認識システム。 - 請求項4に記載の外界認識システムであって、
前記第1基準線は、前記車両のボディの一部の基準線であり、
前記第2基準線は、前記車両のバンパーの一部の基準線であり、
前記第1観測線と前記第2観測線との間の領域の面積と所定の第4閾値との大小関係に基づいて、前記カメラに汚れが付着しているか否かを検出することを特徴とする外界認識システム。 - 請求項1に記載の外界認識システムであって、
前記汚れ検出部は、
前記基準線上に複数の観測点を設定する観測点設定部と、
前記カメラの画像上における前記複数の観測点に対応する複数の変位点を観測する変位観測部と、を有し、
前記変位観測部は、前記観測した複数の変位点を補間することによって、前記観測線を算出することを特徴とする外界認識システム。 - 請求項7に記載の外界認識システムであって、
前記変位観測部は、
前記観測点の前記基準線に対して直交する方向の複数の画素の輝度値を取得し、
隣接する画素の輝度値の大きさの勾配が最大となる画素を前記観測点に対応する変位点として算出することを特徴とする外界認識システム。 - 請求項1に記載の外界認識システムであって、
前記汚れ検出部は、前記車両の設計情報、前記カメラの搭載位置情報、及び前記カメラのパラメータ情報に基づいて、前記基準線を設定することを特徴とする外界認識システム。 - 請求項1に記載の外界認識システムであって、
前記汚れ検出部は、
前記カメラに汚れが付着していることを検出した場合、前記カメラの画面の解析結果に基づいて前記車両の周辺の状態を認識することを停止し、
前記カメラに汚れが付着していることを検出した旨を前記車両の運転者に報知することを特徴とする外界認識システム。 - 請求項1から請求項10のいずれか一つに記載の前記外界認識システムを搭載することを特徴とする車両。
- 車両に搭載されたカメラを備え、前記カメラの画像を解析して、前記カメラの画像の解析結果に基づいて前記車両の周辺の状態を認識する外界認識システムにおける前記カメラの汚れ検出方法であって、
前記方法は、
前記外界認識システムが、前記車両が移動しても前記カメラの画像上で変化がない物の少なくとも一部の線を少なくとも一つの基準線として設定し、
前記外界認識システムが、前記カメラの画像から前記基準線に対応する観測線を算出し、
前記外界認識システムが、前記観測線の前記基準線からの変位量を算出し、
前記外界認識システムが、前記変位量に基づいて前記カメラに汚れが付着しているか否かを検出することを特徴とする汚れ検出方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/117,777 US10268902B2 (en) | 2014-02-18 | 2015-01-30 | Outside recognition system, vehicle and camera dirtiness detection method |
EP15752457.0A EP3110145B1 (en) | 2014-02-18 | 2015-01-30 | External-environment recognition system, vehicle, and camera-dirtiness detection method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-028414 | 2014-02-18 | ||
JP2014028414A JP6246014B2 (ja) | 2014-02-18 | 2014-02-18 | 外界認識システム、車両、及びカメラの汚れ検出方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015125590A1 true WO2015125590A1 (ja) | 2015-08-27 |
Family
ID=53878102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/052778 WO2015125590A1 (ja) | 2014-02-18 | 2015-01-30 | 外界認識システム、車両、及びカメラの汚れ検出方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10268902B2 (ja) |
EP (1) | EP3110145B1 (ja) |
JP (1) | JP6246014B2 (ja) |
WO (1) | WO2015125590A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10339812B2 (en) | 2017-03-02 | 2019-07-02 | Denso International America, Inc. | Surrounding view camera blockage detection |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10126928B2 (en) * | 2014-03-31 | 2018-11-13 | Magna Electronics Inc. | Vehicle human machine interface with auto-customization |
TWI607901B (zh) * | 2015-11-06 | 2017-12-11 | 財團法人工業技術研究院 | 影像修補系統及其方法 |
WO2018008542A1 (ja) | 2016-07-05 | 2018-01-11 | 住友建機株式会社 | ショベル |
JP6832224B2 (ja) * | 2017-04-28 | 2021-02-24 | 株式会社デンソーテン | 付着物検出装置および付着物検出方法 |
JP6772113B2 (ja) * | 2017-08-02 | 2020-10-21 | クラリオン株式会社 | 付着物検出装置、および、それを備えた車両システム |
JP6970911B2 (ja) * | 2017-08-04 | 2021-11-24 | パナソニックIpマネジメント株式会社 | 汚れ検出装置の制御方法、および汚れ検出装置 |
US10710585B2 (en) * | 2017-09-01 | 2020-07-14 | Ford Global Technologies, Llc | Trailer backup assist system with predictive hitch angle functionality |
DE102017121376B4 (de) * | 2017-09-14 | 2021-01-14 | Motherson Innovations Company Limited | Verfahren zum Betreiben eines Kraftfahrzeugs mit zumindest einer Außenkamera sowie Kraftfahrzeug mit zumindest einer Außenkamera |
US10900857B2 (en) * | 2018-06-06 | 2021-01-26 | Ford Global Technologies, Llc | Methods and systems for fluid leak determination |
KR102634349B1 (ko) * | 2018-10-11 | 2024-02-07 | 현대자동차주식회사 | 차량의 제어 장치 및 방법 |
JP7271908B2 (ja) * | 2018-11-08 | 2023-05-12 | 株式会社アイシン | 周辺監視装置 |
JP7230507B2 (ja) * | 2018-12-28 | 2023-03-01 | 株式会社デンソーテン | 付着物検出装置 |
US10706293B1 (en) * | 2019-04-11 | 2020-07-07 | Ford Global Technologies, Llc | Vehicle camera clearness detection and alert |
US11829128B2 (en) * | 2019-10-23 | 2023-11-28 | GM Global Technology Operations LLC | Perception system diagnosis using predicted sensor data and perception results |
JP7077356B2 (ja) * | 2020-04-21 | 2022-05-30 | 住友重機械工業株式会社 | 作業機械用周辺監視システム |
DE102020209796A1 (de) | 2020-08-04 | 2022-02-10 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren und Anordnung zum Betreiben einer kamerabasierten Sensoreinrichtung, Computerprogrammprodukt und landwirtschaftliche Vorrichtung |
US11333112B2 (en) | 2020-10-21 | 2022-05-17 | Ford Global Technologies, Llc | Method and system for a vehicle evaporative emissions control system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007318355A (ja) * | 2006-05-24 | 2007-12-06 | Matsushita Electric Ind Co Ltd | 撮像装置およびレンズ汚れ検出方法 |
JP2010273014A (ja) * | 2009-05-20 | 2010-12-02 | Toshiba Alpine Automotive Technology Corp | 移動体用カメラ装置及び付着物検出方法 |
WO2012140976A1 (ja) * | 2011-04-13 | 2012-10-18 | 日産自動車株式会社 | 走行支援装置及びその雨滴検出方法 |
WO2013136878A1 (ja) * | 2012-03-14 | 2013-09-19 | 日立オートモティブシステムズ株式会社 | 物体検出装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005162168A (ja) * | 2003-12-05 | 2005-06-23 | Calsonic Kansei Corp | リアワイパ装置 |
JP5022609B2 (ja) | 2006-02-27 | 2012-09-12 | 日立オートモティブシステムズ株式会社 | 撮像環境認識装置 |
CN104509102B (zh) * | 2012-07-27 | 2017-12-29 | 日产自动车株式会社 | 三维物体检测装置和异物检测装置 |
-
2014
- 2014-02-18 JP JP2014028414A patent/JP6246014B2/ja active Active
-
2015
- 2015-01-30 WO PCT/JP2015/052778 patent/WO2015125590A1/ja active Application Filing
- 2015-01-30 US US15/117,777 patent/US10268902B2/en active Active
- 2015-01-30 EP EP15752457.0A patent/EP3110145B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007318355A (ja) * | 2006-05-24 | 2007-12-06 | Matsushita Electric Ind Co Ltd | 撮像装置およびレンズ汚れ検出方法 |
JP2010273014A (ja) * | 2009-05-20 | 2010-12-02 | Toshiba Alpine Automotive Technology Corp | 移動体用カメラ装置及び付着物検出方法 |
WO2012140976A1 (ja) * | 2011-04-13 | 2012-10-18 | 日産自動車株式会社 | 走行支援装置及びその雨滴検出方法 |
WO2013136878A1 (ja) * | 2012-03-14 | 2013-09-19 | 日立オートモティブシステムズ株式会社 | 物体検出装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3110145A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10339812B2 (en) | 2017-03-02 | 2019-07-02 | Denso International America, Inc. | Surrounding view camera blockage detection |
Also Published As
Publication number | Publication date |
---|---|
EP3110145A1 (en) | 2016-12-28 |
US20160364620A1 (en) | 2016-12-15 |
EP3110145B1 (en) | 2023-05-17 |
JP2015153295A (ja) | 2015-08-24 |
EP3110145A4 (en) | 2017-09-13 |
JP6246014B2 (ja) | 2017-12-13 |
US10268902B2 (en) | 2019-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6246014B2 (ja) | 外界認識システム、車両、及びカメラの汚れ検出方法 | |
US10274598B2 (en) | Navigation based on radar-cued visual imaging | |
JP6174975B2 (ja) | 周囲環境認識装置 | |
JP4420011B2 (ja) | 物体検知装置 | |
JP5867273B2 (ja) | 接近物体検知装置、接近物体検知方法及び接近物体検知用コンピュータプログラム | |
JP5022609B2 (ja) | 撮像環境認識装置 | |
US11620837B2 (en) | Systems and methods for augmenting upright object detection | |
JP6416293B2 (ja) | 自動車に接近する対象車両を自動車のカメラシステムにより追跡する方法、カメラシステムおよび自動車 | |
WO2016017340A1 (ja) | 周囲環境認識装置 | |
EP2928178B1 (en) | On-board control device | |
WO2015189847A1 (en) | Top-down refinement in lane marking navigation | |
TWI531499B (zh) | Anti-collision warning method and device for tracking moving object | |
CN107004250B (zh) | 图像生成装置及图像生成方法 | |
EP3865815A1 (en) | Vehicle-mounted system | |
JP6429101B2 (ja) | 画像判定装置、画像処理装置、画像判定プログラム、画像判定方法、移動体 | |
US11417115B2 (en) | Obstacle recognition device | |
JP2011090490A (ja) | 障害物認識装置 | |
JP4381394B2 (ja) | 障害物検知装置及びその方法 | |
JP2020017184A (ja) | 車両検知装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15752457 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015752457 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15117777 Country of ref document: US Ref document number: 2015752457 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |