WO2015125377A1 - Power conversion device and power conversion device control method - Google Patents
Power conversion device and power conversion device control method Download PDFInfo
- Publication number
- WO2015125377A1 WO2015125377A1 PCT/JP2014/082190 JP2014082190W WO2015125377A1 WO 2015125377 A1 WO2015125377 A1 WO 2015125377A1 JP 2014082190 W JP2014082190 W JP 2014082190W WO 2015125377 A1 WO2015125377 A1 WO 2015125377A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- command value
- output
- inverter
- voltage
- current
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims description 10
- 238000001514 detection method Methods 0.000 claims abstract description 40
- 238000012937 correction Methods 0.000 claims description 49
- 239000003990 capacitor Substances 0.000 abstract description 9
- 238000010248 power generation Methods 0.000 description 13
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 239000013598 vector Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
- H02M7/53875—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- the present invention relates to a power converter and a control method of the power converter.
- a distributed power source using natural energy converts power generated by natural energy into grid frequency by a self-excited power converter and transmits the power to the grid.
- the output power of such a distributed power supply fluctuates due to the climate, which may impair the stability of the interconnected power system.
- the introduction of a power storage system provided with power storage means represented by a storage battery and a self-excited power converter is progressing mainly on a small scale power system.
- the circuit breaker of the power system When the circuit breaker of the power system is opened by accident detection or system switching in a state where the distributed power source using natural energy or the storage system is connected to the power system, the distributed power source connected to the lower system of the circuit breaker When the generated power of the storage system matches the power consumption of the load connected to the lower system, the voltage of the lower system may be maintained for a long time.
- the state in which the supply and demand balance is achieved is referred to as an isolated operation state.
- a self-excited power converter for distributed power and a power converter for a storage system have a function to detect an isolated operation, and after an isolated operation is detected according to the grid interconnection technology requirement guidelines in Japan and IEC 62116 overseas. It is defined that the system has a function of quickly disconnecting from the system. In particular, in the grid connection regulations in Japan, for distributed power source linked to a low voltage system, it is defined that the isolated operation is detected within 0.1 s after the isolated operation occurs, and the operation is stopped. Needs to be detected.
- Patent Document 1 discloses a method of detecting an isolated operation by generating reactive power with a change rate of frequency as a trigger.
- a power conversion device includes an inverter that converts direct current to alternating current and outputs the same to an electric power system, and a DC voltage detection unit that detects a DC voltage input to the inverter , An output current detection unit that detects an output current from the inverter, an interconnection point voltage detection unit that detects an interconnection point voltage at an interconnection point between the inverter and the electric power system, and interconnection based on the interconnection point voltage Based on a phase calculation unit that calculates a point voltage phase, an active current command value calculation unit that calculates an active current command value indicating an active current to be output to the inverter based on a DC voltage, and based on an interconnection point voltage and an output current A reactive current command value calculating unit that calculates a reactive current command value indicating a reactive current to be output to the inverter, and an output current, an interconnection point voltage phase, an active current command value, and an reactive current command value.
- a control unit that changes the phase of the output voltage of the inverter at predetermined time intervals by controlling the inverter, and a single unit that detects the isolated operation state of the power conversion device based on the change of the interconnection point voltage phase. And a driving detection unit.
- the islanding state can be detected even when the output power of the power conversion device matches the power consumption of the load, or even when the load includes a capacitor.
- FIG. 1 shows the configuration of a power conversion device according to a first embodiment.
- the configuration of the load 200 is shown.
- the structure of the main circuit of the power converter device 1 is shown.
- 1 shows the configuration of a controller 100 according to a first embodiment.
- the configuration of the phase calculator 1004 is shown.
- the structure of the islanding operation detector 1005 is shown.
- An example of an output voltage vector of inverter 10 is shown. It is a time chart which shows operation of islanding detection.
- the structure of the power converter device of a 1st modification is shown.
- the structure of the power converter device of a 2nd modification is shown.
- the structure of the power converter device 2 of Example 2 is shown.
- the structure of the controller 100 of Example 2 is shown.
- the input / output characteristics of the upper / lower limiter 1077 are shown.
- a present Example demonstrates the power converter device 1 for solar power generation.
- FIG. 1 shows the configuration of the power conversion device of the first embodiment.
- a solar panel 30 is connected to the DC circuit of the power converter 1.
- the power converter 1 converts the DC power generated by the solar panel 30 into AC power having a grid frequency of the power grid 300. , Supply the AC power to the power system 300 and the load 200.
- a connection point on the power system 300 side of the power conversion device 1 is referred to as an interconnection point (system interconnection point).
- the power conversion device 1 and the load 200 are connected in parallel to the power system 300 via the circuit breaker 400.
- the circuit breaker 400 is opened and closed by the operator of the power system 300 at the time of system fault detection and system maintenance.
- the power converter 1 includes a DC voltage sensor 71PT for detecting a DC circuit voltage connected to the solar panel 30, an inverter 10, a harmonic filter 20 for removing harmonics of the output of the inverter 10, and an interconnection point with the inverter 10.
- output current sensors 72CTu, 72CTw for detecting the output current of the power conversion device 1
- interconnection point voltage sensors 70PTuv, 70PTvw for detecting the interconnection point voltage, detected currents and voltages
- a controller 100 for calculating a contactor control signal CTTctl for controlling ON / OFF of the contactor 40 and gate signals GateUP to WN (GateUP, GateVP, GateWP, GateUN, GateVN, GateWN) of the inverter 10 on the basis of.
- the solar panel 30 is connected to the DC circuit terminals P and N, and the harmonic filter 20 is connected to the AC terminals U, V and W.
- the inverter 10 converts DC power output from the solar panel 30 into three-phase AC power and outputs it.
- the harmonic filter 20 reduces harmonics flowing out of the inverter 10 into the power system 300 by smoothing the pulse waveform output from the inverter 10 and passing the fundamental wave component.
- FIG. 2 shows the configuration of the load 200.
- the load 200 is connected in parallel to the interconnection point of the power conversion device 1.
- the load 200 has its electrical characteristics indicated by a parallel circuit of a resistor, a reactor, and a capacitor.
- FIG. 3 shows the configuration of the main circuit of the power conversion device 1.
- This figure includes DC voltage sensor 71PT, inverter 10, harmonic filter 20, output current sensors 72CTu, 72CTw, contactor 40, and interconnection point voltage sensors 70PTuv, 70PTvw among power conversion devices 1.
- the inverter 10 is an IGBT module 10 k, 10 l, 10 p, 10 m, 10 n, 10 o, 10 p, and a DC capacitor 10 C in which a diode is connected in antiparallel with a self arc extinguishing semiconductor switching device such as IGBT (Insulated Gate Bipolar Transistor).
- the harmonic filter 20 includes two three-phase reactors 20L1 and 20L2 and a three-phase capacitor 20C.
- the current sensors 72CTu and 72CTw detect the U-phase current and the W-phase current of the output current of the harmonic filter 20, respectively.
- the interconnection point voltage sensors 70PTuv and 70PTvw measure the U-phase and V-phase line voltages vsuv at the interconnection points, and the V-phase and W-phase line voltages vsvw, respectively.
- FIG. 4 shows the configuration of the controller 100 of the first embodiment.
- the line voltages vsuv and vsvw of the interconnection points respectively detected by the interconnection point voltage sensors 70PTuv and 70PTvw are input to the controller 100.
- Output current detection values isu and isw detected by the output current sensors 72CTu and 72CTw, respectively, are input to the controller 100.
- a DC voltage detection value vdc detected by the DC voltage sensor 71PT is input to the controller 100.
- the controller 100 aims to match the voltage command value and the instantaneous average value of the inverter output voltage based on the input voltage and current, as described later, to the IGBT modules 10k, 10l, 10p, 10m, 10n, Gate signals GateUP, GateVP, GateWP, GateUN, GateVN, and GateWN of 10o and 10p are respectively calculated.
- the controller 100 further calculates the contactor control signal CTTctl based on the input voltage and current.
- the controller 100 includes an interconnection point voltage phase detection unit 100a, a DC voltage control unit 100b, a reactive power control unit 100c, a current control unit 100d, and an isolated operation control unit 100e.
- connection point voltage phase detection unit 100a will be described.
- the interconnection point voltage phase detection unit 100a detects an interconnection point voltage phase that is the phase of the interconnection point voltage.
- the connection point voltage phase detection unit 100 a includes a phase voltage calculator 1001, an ⁇ - ⁇ converter 1002, a dq converter 1003, a phase calculator 1004, a cos table 1006, and a sin table 1007.
- the phase voltage calculator 1001 sets the phase voltage of the zero-phase component to zero, and calculates phase voltages vsu, vsv, vsw based on the line voltages vsuv, vsvw according to Equation 1.
- the ⁇ - ⁇ converter 1002 performs the ⁇ - ⁇ conversion of the phase voltages vsu, vsv, vsw according to Equation 2 to calculate vs_alp which is the ⁇ component of the interconnection point voltage in the fixed coordinate system and vs_bet which is the ⁇ component Do.
- the dq converter 1003 performs a dq conversion of vs_alp and vs_bet according to the equation 3 based on a cos table output value cos and a sin table output value sin, which will be described later, to thereby obtain an interconnection point voltage in the rotational coordinate system.
- D component vsd, q component vsq is calculated.
- the phase calculator 1004 calculates the connection point voltage phase theta and the angular frequency omega based on the q component vsq of the connection point voltage.
- FIG. 5 shows the configuration of the phase calculator 1004.
- the phase calculator 1004 includes a PI controller 10041, an adder 10042, and a time integrator 10043.
- the PI controller 10041 calculates del_omeg which is a correction angular frequency based on vsq.
- the adder 10042 adds the correction angular frequency del_omeg and the rated angular frequency Omeg0, and outputs the sum omega to the time integrator 10043.
- the time integrator 10043 calculates the connection point voltage phase theta by time-integrating the angular frequency omega.
- connection point voltage phase theta calculated by the controller 100 and the phase of the connection point voltage coincide with each other, the q component vsq of the connection point voltage is zero.
- the q component vsq of the interconnection point voltage becomes nonzero. Therefore, it becomes possible to detect the interconnection point voltage phase by the configuration of the phase calculator 1004 described above.
- the interconnection point voltage phase theta is input to the cos table 1006 and the sin table 1007.
- the cos table 1006 and the sin table 1007 calculate cos and sin corresponding to the connection point voltage phase theta.
- the above-mentioned dq converter 1003 performs dq conversion of the interconnection point voltage ⁇ component vs_alp and the ⁇ component vs_bet using the calculated cos and sin.
- the angular frequency omega output from the phase calculator 1004 is output to the isolated operation detector 1005 of the isolated operation detection unit 100e.
- the d component vsd and the q component vsq of the connection point voltage are output to the reactive power calculator 1070 of the reactive power control unit 100c.
- the DC voltage control unit 100 b controls the DC voltage to adjust the amount of power from the solar panel 30.
- the DC voltage control unit 100 b includes a subtractor 1050 and a DC voltage controller 1051.
- Subtractor 1050 calculates a difference by subtracting voltage command value Vdc_ref from DC voltage detection value vdc detected by DC voltage sensor 71PT, and outputs the difference to DC voltage controller 1051.
- the DC voltage controller 1051 is composed of a PI controller, performs PI operation on the difference between the DC voltage command value calculated by the subtractor 1050 and the DC voltage detection value, and uses the result as an effective current command value. It outputs to the subtractor 1013.
- the reactive power control unit 100c calculates a reactive current command value for causing the reactive power to follow the reactive power command value of the target value.
- Reactive power control unit 100 c includes reactive power calculator 1070, subtractor 1071, reactive power controller 1072, reactive current correction signal calculator 1073, and adder 1074.
- Reactive power calculator 1070 outputs reactive power to power system 300 of power conversion device 1 based on interconnection point voltage vsd, vsq, and active current isd of output current and reactive current isq described later according to Equation 4. Is calculated, and the result is output to the subtractor 1071 as the reactive power calculation value Qfb.
- Subtractor 1071 calculates a difference between predetermined reactive power command value Qref and Qfb output from reactive power calculator 1070, and outputs the difference to reactive power controller 1072.
- the reactive power controller 1072 is configured of a PI controller, performs PI control calculation on the output of the subtractor 1071, and calculates a reactive current command value iqref of the power conversion device 1. Thereby, the reactive power from the power converter device 1 can be brought close to the target value.
- the adder 1074 calculates the sum of the reactive current command value iqref and the reactive current correction signal del_iqref output from the reactive current correction signal calculator 1073 described later, and the sum is used as a new reactive current command value iqref2 for current control. It outputs to the subtractor 1014 of the part 100d.
- the current control unit 100d corrects the output voltage based on the active current command value and the reactive current command value.
- the current control unit 100d includes a subtractor 1010, an ⁇ - ⁇ converter 1011, a dq converter 1012, a subtracter 1013, a subtractor 1014, a d-axis current controller 1015, a q-axis current controller 1016, an adder 1017, It includes an inverse dq converter 1018, a two-phase to three-phase converter 1019, a carrier wave calculator 1020, and a pulse width modulation (PWM) calculator 1021.
- PWM pulse width modulation
- the subtractor 1010 calculates the v-phase component isv from the u-phase component isu and the w-phase component isw of the output current respectively detected by the output current sensors 72CTu and 72CTw.
- the ⁇ - ⁇ converter 1011 calculates the ⁇ component is_alp and the ⁇ component is_bet by ⁇ - ⁇ converting the u-phase component isu of the output current, the v-phase component isv, and the w-phase component isw. Note that this ⁇ - ⁇ conversion is equivalent to Equation 2, and thus redundant description will be omitted.
- the dq converter 1012 performs dq conversion of the ⁇ component is_alp of the AC output current and the ⁇ component is_bet using cos output from the cos table 1006 and sin output from the sin table 1007. Then, the d component isd and the q component isq of the output current are calculated. Note that this dq conversion is equivalent to Equation 3, and therefore redundant description will be omitted.
- the d component isd of the output current is output to the subtractor 1013, and the q component isq of the output current is output to the subtractor 1014.
- Subtractor 1013 calculates a deviation by subtracting d component isd of the output current from the effective current command value output from DC voltage controller 1051, and outputs the deviation to d-axis current controller 1015.
- the subtractor 1014 subtracts the q component isq of the output current from the reactive current command value iqref2 output from the adder 1074 to calculate a deviation, and outputs the deviation to the q-axis current controller 1016.
- the d-axis current controller 1015 and the q-axis current controller 1016 are composed of PI controllers and perform PI control calculation on the input deviation to reduce the deviation by using the d-axis voltage command value of the inverter 10 and q Calculate the axis voltage command value.
- the adder 1017 calculates a new d-axis voltage command value vdref by adding a predetermined fixed value Vd0 and the d-axis voltage command value output from the d-axis current controller 1015.
- Vd0 is a value at which the output voltage of the inverter 10 and the amplitude of the interconnection point voltage are equal when the amplitude of the interconnection point voltage is rated.
- the inverse dq converter 1018 includes the vdref output from the adder 1017, the q-axis voltage command value vqref output from the q-axis current controller 1016, the cos output from the cos table 1006, and the sin table 1007 And sin is output from vdref and vqref in accordance with Equation 5 to calculate voltage vectors valp and vbet of the fixed coordinate system.
- the two-phase to three-phase converter 1019 converts valp and vbet output from the inverse dq converter 1018 into voltage command values vu_ref, vv_ref and vw_ref of each phase of the inverter 10 according to Equation 6, and performs PWM operation Output to the unit 1021.
- Carrier wave calculator 1020 outputs carrier wave tri which is a triangular wave having a frequency equal to the switching frequency of inverter 10.
- the frequency of the carrier wave is, for example, several kHz.
- the PWM computing unit 1021 compares the magnitudes of the carrier wave tri with the voltage command values vu_ref, vv_ref, vw_ref of each phase to calculate gate signals GateUP to WN, and outputs the gate signals GateUP to WN to the inverter 10.
- the PWM computing unit 1021 When the voltage command value vu_ref is equal to or higher than the carrier wave tri, the PWM computing unit 1021 turns on the gate signal GateUP of the IGBT module 10k and turns off the gate signal GateUN of the IGBT module 10n. Conversely, when voltage command value vu_ref is smaller than carrier wave tri, PWM operation unit 1021 turns off gate signal GateUP of IGBT module 10k and turns on gate signal GateUN of IGBT module 10n. As a result, a pulse voltage for setting the instantaneous average voltage to the voltage command value vu_ref is output to the AC output terminal U of the inverter 10. The PWM computing unit 1021 similarly calculates gate signals for the V-phase and the W-phase, and therefore redundant description will be omitted.
- the PWM computing unit 1021 When the isolated operation detection state ISLANDING_FLG output from the isolated operation detector 1005 is 1, the PWM computing unit 1021 does not depend on the magnitude relationship between each of the voltage command values vu_ref, vv_ref, vw_ref and the carrier wave tri, and all gates Turn off the signal. Thereby, when the isolated operation is detected, the PWM computing unit 1021 can stop the switching of the inverter 10 promptly and can avoid the isolated operation state.
- the isolated operation control unit 100e detects an isolated operation of the power conversion device 1 based on the angular frequency omega of the connection point voltage, and stops the isolated operation of the power conversion device 1 when the isolated operation is detected.
- the isolated operation control unit 100e includes an isolated operation detector 1005 and a contactor control signal calculator 1008.
- the islanding operation detector 1005 receives the angular frequency omega output from the phase calculator 1004, and calculates the islanding detection state ISLANDING_FLG.
- the islanding operation detector 1005 sets the value of ISLANDING_FLG to 1 when islanding is detected, and sets the value of ISLANDING_FLG to 0 at normal interconnection.
- the contactor control signal calculator 1008 turns on the contactor control signal CTTctl when ISLANDING_FLG is 0, and turns off CTTctl when ISLANDING_FLG is 1.
- the contactor 40 is input when CTT ctl is on and released when CTT ctl is off. Thereby, when an isolated operation is detected, the isolated operation control unit 100e opens the contactor 40 in addition to the gate block of the PWM computing unit 1021, and disconnects the power conversion device 1 from the power system 300 in a power failure. be able to.
- FIG. 6 shows the configuration of the isolated operation detector 1005.
- the islanding operation detector 1005 includes low pass filters 10051, 10052, a subtractor 10053, and a comparator 10054.
- the angular frequency omega of the connection point voltage is input to the low pass filters 10051 and 10052 having different time constants.
- the time constant ⁇ 1 of the low pass filter 10051 is a value shorter than the time constant ⁇ 2 of the low pass filter 10052.
- the subtractor 10053 subtracts the output of the low pass filter 10052 from the output of the low pass filter 10051.
- the low pass filters 10051 and 10052 and the subtractor 10053 constitute a band pass filter, and output BPF_omeg. Thereby, the direct current component and the high frequency component of the omega fluctuation can be removed.
- This high frequency component is a harmonic based on the PWM signal of the inverter 10 and is sufficiently higher than the frequency of the reactive current correction signal. Malfunction can be prevented by removing high frequency components.
- the comparator 10054 compares the BPF_omeg output from the band pass filter with each of the upper limit determination value TH_H and the lower limit determination value TH_L. When BPF_omeg is equal to or greater than TH_H, or BPF_omeg is equal to or less than TH_L, the comparator 10054 outputs 1 as the isolated operation detection state ISLANDING_FLG.
- the islanding operation detector 1005 sets ISLANDING_FLG to 1 when the angular frequency omega changes more than a predetermined value.
- the band pass filter output BPF_omeg largely fluctuates, so ISLANDING_FLG can be set to 1, and an islanding operation can be avoided.
- the reactive current correction signal calculator 1073 generates a reactive current correction signal del_iqref.
- the reactive current command value iqref which is the output of the reactive power controller 1072 is added to the reactive current correction signal del_iqref by the adder 1074, and the sum is output to the current control unit 100d as a new reactive current command value iqref2.
- the reactive current correction signal del_iqref is a rectangular wave having a predetermined correction signal period Tperiod.
- the correction signal cycle Tperiod is set to be equal to or less than twice the detection upper limit time which is the upper limit of the time required from the occurrence of the islanding operation state to the detection.
- the detection upper limit time is, for example, 0.1 s defined by the grid connection rule.
- the correction signal period Tperiod is 0.2 s or less.
- the waveform of the reactive current correction signal del_iqref is not limited to this shape, and may be pulse or step.
- the q-axis current controller 1016 determines the q-axis voltage command value vqred Make a sudden change.
- FIG. 7 shows an example of an output voltage vector of the inverter 10.
- This figure shows the interconnection point voltage vector vs and the output voltage vector vind of the inverter 10.
- the interconnection point voltage is determined by the voltage of the power system 300. Therefore, even if the power converter 1 changes the output voltage vector phase of the inverter 10 by the reactive current correction signal, almost no phase change of the connection point voltage occurs. As a result, in the non-islanding state, the addition of the reactive current correction signal to the reactive current command value has almost no influence.
- phase change of the output voltage of inverter 10 is the secondary side of circuit breaker 400 (power converter 1 Side, and the q-axis voltage command value periodically and rapidly changes based on the reactive current correction signal, so that the isolated operation can be detected quickly.
- FIG. 8 is a time chart showing an operation of islanding detection.
- This time chart includes the waveforms of reactive current correction signal del_iqref and reactive current command value iqref2, the waveform of interconnection point voltage phase theta, the waveform of angular frequency band pass filter output BPF_omeg, and the waveform of islanding detection state ISLANDING_FLG
- the waveform of the contactor control signal CTTctl is shown.
- the waveform of the reactive current correction signal del_iqref is represented by a broken line
- the waveform of the reactive current command value iqref2 after correction is represented by a solid line.
- the reactive current correction signal del_iqref is a rectangular wave having a correction signal period Tperiod, and changes its value stepwise at time t1, t2, t4 for each half period.
- the current control unit 100 d changes the voltage command value of the inverter 10 so as to follow the reactive current command value iqref 2, so the reactive current and reactive power output from the power conversion device 1 change.
- the reactive current command value iqref2 When the reactive current command value iqref2 is changed into a rectangular wave by del_iqref, the reactive current output from the inverter 10 substantially matches iqref2 although the delay of the current control system remains as an error.
- the reactive power controller 1072 changes the reactive current command value iqref so that the reactive power output from the power conversion device 1 matches the reactive power command value Qref. Since the reactive power controller 1072 responds by regarding the reactive current correction signal del_iqref as a disturbance, the reactive current command value iqref also fluctuates in the same cycle as the reactive current correction signal del_iqref.
- the waveform of the reactive current command value iqref2 after correction is slightly different from the waveform of the reactive current correction signal del_iqref.
- the waveform of the reactive current output from the inverter 10 according to the reactive current command value iqref2 is not a rectangular wave itself of the reactive current correction signal del_iqref but a substantially rectangular wave due to the delay of the response of the current control unit 100d.
- the periodic phase change of the output voltage of inverter 10 based on reactive current command value iqref2 is compared to the phase change of voltage of power system 300 (the voltage at the connection point when the power conversion device is not in the isolated operation state). It becomes steep.
- the output voltage of inverter 10 based on reactive current command value iqref 2 includes a component of a higher frequency than the voltage of power system 300.
- circuit breaker 400 is opened due to an accident or the like of power system 300 at time t3.
- the load 200 and the power output from the power conversion device 1 completely match.
- no deviation occurs in the connection point voltage phase theta.
- the BPF_omeg also changes.
- BPF_omeg becomes equal to or less than the lower limit judgment value TH_L, and the islanding operation detector 1005 detects an islanding state.
- the islanding detection state ISLANDING_FLG changes from 0 to 1, all the gate signals of the inverter 10 are turned off, and the contactor control signal CTTctl changes from on to off.
- the BPF_omeg can generate a large fluctuation by periodically and rapidly changing the reactive current command value, it is possible to reliably detect an isolated operation. It is also possible to generate a change in angular frequency by changing the reactive power command value, but the control response of reactive power controller 1072 having a current control system in the minor loop is slower than the response of current control unit 100d. As the correction signal calculator 1073 changes the reactive current command value, it is possible to cause the BPF_omeg fluctuation to be larger than changing the reactive power command value.
- the reactive current correction signal suddenly changes every time the upper limit time or less. That is, the timing at which the reactive current command value suddenly changes can always be received within the upper limit time from the occurrence of the isolated operation state. As a result, the time required to detect the islanding state becomes equal to or less than the upper limit time, and the grid connection regulation can be satisfied.
- the present embodiment even if the output power of the power conversion device 1 matches the power consumption of the load 200 connected in parallel to the power conversion device 1 when the power conversion device 1 generates an isolated operation state, It is possible to detect the islanding state reliably and promptly, stop the power generation of the power conversion device 1, and disconnect from the power system 300.
- FIG. 9 shows the configuration of the power conversion device of the first modification.
- the power conversion device 1 of the first modification is a power conversion device for a storage system.
- a storage battery 31 is connected to the DC circuit of the power conversion device for a storage system.
- the power conversion device for a storage system exhibits the same effect as the above-described power conversion device 1 for solar power generation.
- FIG. 10 shows the configuration of the power conversion device of the second modification.
- the power converter 1 of the second modification is a power converter for a wind power generation system.
- a wind power generation system is connected to the DC circuit of the power conversion device for wind power generation system.
- the wind power generation system obtains rotational torque by receiving wind by the blades 32, and transmits the rotational torque to the rotor of the permanent magnet generator 34 via the shaft 33, and the stator winding of the permanent magnet generator 34.
- the induced voltage generated in the line is rectified by the diode rectifier 35 to obtain DC power.
- the power conversion device for a wind power generation system exhibits the same effect as the power conversion device 1 for solar power generation described above.
- the diode rectifier 35 for rectifying the power of the permanent magnet generator 34 may be a self-excitation converter.
- a steep phase change at the interconnection point can be generated only at the time of isolated operation without generating at the time of grid connection, and the isolated operation can be detected at an early stage. Also, by setting the change cycle of the reactive current command value to within 0.2 s, it becomes possible to detect an isolated operation within 0.1 s.
- the power conversion device of the present embodiment changes the amplitude of the reactive current correction signal in accordance with the active current output from the power conversion device. By this operation, it is possible to limit the amount of change of the reactive current in a state where the effective current is small, and to suppress the efficiency reduction of the power conversion device due to the excessive reactive current.
- the effective current when the effective current is small and matches the consumed effective current of the load, it means that the capacity of the load is small (light load).
- the effective current is small, the imbalance ratio of the reactive current becomes large even with a small change of the reactive current, and the phase change of the interconnection point voltage can be made large. Therefore, it is possible to achieve both the detection of the islanding state and the suppression of the efficiency decrease of the power converter at all times.
- FIG. 11 shows the configuration of the power conversion device 2 of the second embodiment.
- the power conversion device 2 of the present embodiment has a controller 101 instead of the controller 100.
- the same parts as those of the first embodiment are denoted by the same reference numerals, and redundant description will be omitted.
- FIG. 12 shows the configuration of the controller 100 of the second embodiment.
- the controller 101 has a reactive power control unit 101c instead of the reactive power control unit 100c.
- Reactive power control unit 101 c adjusts reactive current correction signal del_iqref in accordance with the effective current command value output from DC voltage controller 1051.
- the reactive power control unit 101 c has a multiplier 1076, an upper / lower limiter 1077, and a multiplier 1078 in addition to the elements of the reactive power control unit 100 c.
- the multiplier 1076 multiplies the effective current command value by a predetermined gain.
- the upper and lower limit limiter 1077 has an upper limit of 1.0 and limits the output of the multiplier 1076 with the ratio of the reactive current command value necessary for detecting the no-load single running state as the lower limit.
- FIG. 13 shows the input / output characteristics of the upper and lower limit limiter 1077.
- This figure shows the relationship between the direct current command value and the output of the upper / lower limiter 1077.
- the output of the upper and lower limit limiter 1077 has a characteristic of monotonically increasing with respect to the direct current command value, and limits the output to a range between a lower limit value and an upper limit value set in advance. As a result, even if the load is reduced, the reactive current command value can maintain the minimum amplitude. Further, even when the ratio of reactive power to active power is limited, reactive power can be suppressed.
- the multiplier 1078 multiplies the output of the reactive current correction signal calculator 1073 by the upper / lower limiter 1077 to calculate the reactive current correction signal del_iqref.
- the output power from the power conversion device 2 and the power consumption of the load 200 connected in parallel to the power conversion device 2 match.
- the loss due to the light load reactive current output of the power conversion device 2 is reduced. It is possible to suppress the decrease in efficiency.
- the DC voltage detection unit corresponds to the DC voltage sensor 71PT or the like.
- the output current detection unit corresponds to the output current sensors 72CTu, 72CTw, and the like.
- the interconnection point voltage detection unit corresponds to the interconnection point voltage sensors 70PTuv, 70PTvw, and the like.
- the phase calculation unit corresponds to the connection point voltage phase detection unit 100 a and the like.
- the direct current command value calculation unit corresponds to the direct current voltage control unit 100b and the like.
- the reactive current command value calculation unit corresponds to the reactive power control unit 100c and the like.
- the control unit corresponds to the current control unit 100d and the like.
- the isolated operation detection unit corresponds to the isolated operation control unit 100e and the like.
- the basic reactive current command value corresponds to the reactive current command value iqref or the like.
- the correction command value corresponds to the reactive current correction signal del_iqref or the like.
- the reactive current command value corresponds to iqref 2 or the like.
- SYMBOLS 1 Power converter, 10 ... Inverter, 10k, 10l, 10m, 10n, 10o, 10p ... IGBT module, 10C ... Capacitor, 20 ... Harmonic filter, 20L1, 20L2 ... Reactor, 20C ... Capacitor, 30 ... Solar panel , 31: storage battery, 32: blade, 33: shaft, 34: permanent magnet generator, 35: diode rectifier, 40: contactor, 70PTuv, 70PTvw: interconnection point voltage sensor, 71PT: DC voltage sensor, 72CTu, 72CTw: output Current sensor, 100, 101 ... controller, 200 ... load, 300 ... power system, 400 ... circuit breaker
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
A stand-alone operation state is detected even when the output power of a power conversion device and the power consumption of a load match each other or when the load includes a capacitor. A power conversion device comprises: a phase calculation unit for calculating, on the basis of an interconnection point voltage, an interconnection point voltage phase; an active current command value calculation unit for calculating, on the basis of a DC voltage, an active current command value indicating an active current to be output by an inverter; a reactive current command value calculation unit for calculating, on the basis of the interconnection point voltage and the output current, a reactive current command value indicating a reactive current to be output by the inverter; a control unit for controlling the inverter according to the output current, the interconnection point voltage phase, the active current command value, and the reactive current command value and thereby changing the output voltage phase of the inverter at predetermined time intervals; and a stand-alone operation detection unit for detecting, on the basis of the change of the interconnection point voltage phase, a stand-alone operation state of the power conversion device.
Description
本発明は、電力変換装置および電力変換装置の制御方法に関する。
The present invention relates to a power converter and a control method of the power converter.
近年、太陽光発電装置や風力発電装置等の自然エネルギーを利用した分散電源の導入が進んでいる。自然エネルギーを利用した分散電源は、自然エネルギーにより発電された電力を、自励式電力変換器により系統周波数に変換し電力系統に送電する。一般に、このような分散電源の出力電力は気候により変動し、連系する電力系統の安定度を損なうおそれがある。このような事情により、電力系統の安定化を目的とし、蓄電池に代表される蓄電手段と自励式電力変換器を備える蓄電システムの導入が小規模系統を中心に進んでいる。
In recent years, the introduction of distributed power sources using natural energy, such as solar power generation devices and wind power generation devices, has progressed. A distributed power source using natural energy converts power generated by natural energy into grid frequency by a self-excited power converter and transmits the power to the grid. Generally, the output power of such a distributed power supply fluctuates due to the climate, which may impair the stability of the interconnected power system. Under such circumstances, for the purpose of stabilizing the power system, the introduction of a power storage system provided with power storage means represented by a storage battery and a self-excited power converter is progressing mainly on a small scale power system.
自然エネルギーを利用した分散電源や蓄電システムが電力系統に接続されている状態で、事故検出や系統切り替えにより電力系統の遮断器が開放された場合、遮断器の下位系統に接続されている分散電源や蓄電システムの発電電力と、その下位系統に接続されている負荷の消費電力が一致すると、下位系統の電圧が長時間維持される可能性がある。この需給バランスが取れた状態を単独運転状態と呼ぶ。
When the circuit breaker of the power system is opened by accident detection or system switching in a state where the distributed power source using natural energy or the storage system is connected to the power system, the distributed power source connected to the lower system of the circuit breaker When the generated power of the storage system matches the power consumption of the load connected to the lower system, the voltage of the lower system may be maintained for a long time. The state in which the supply and demand balance is achieved is referred to as an isolated operation state.
単独運転状態が発生すると、電力系統の保守の妨げになる。そのため、国内では系統連系技術要件ガイドライン、海外ではIEC62116などにより、分散電源用の自励式電力変換器や蓄電システム用電力変換器が、単独運転を検出する機能を備えること、および単独運転検出後に速やかに系統から解列する機能を備えること、が定められている。特に日本国内の系統連系規定では、低圧系統に連系する分散電源に対しては、単独運転発生後0.1s以内に単独運転を検出し、運転を停止することが定められており、高速な単独運転検出が必要である。
The occurrence of an isolated operation interferes with the maintenance of the power system. Therefore, a self-excited power converter for distributed power and a power converter for a storage system have a function to detect an isolated operation, and after an isolated operation is detected according to the grid interconnection technology requirement guidelines in Japan and IEC 62116 overseas. It is defined that the system has a function of quickly disconnecting from the system. In particular, in the grid connection regulations in Japan, for distributed power source linked to a low voltage system, it is defined that the isolated operation is detected within 0.1 s after the isolated operation occurs, and the operation is stopped. Needs to be detected.
単独運転検出方法として、周波数の変化率をトリガとして無効電力を発生させることにより単独運転を検出する方法が、特許文献1で開示されている。
As a method of detecting an isolated operation, Patent Document 1 discloses a method of detecting an isolated operation by generating reactive power with a change rate of frequency as a trigger.
他の単独運転検出手法として、連系点電圧の位相跳躍を検出する手法や、高調波注入による系統インピーダンスの変化を検出する手法が知られている。
As other islanding detection methods, there are known a method of detecting a phase jump of a connection point voltage and a method of detecting a change in system impedance due to harmonic injection.
しかし、負荷が消費する電力と自励式電力変換器の出力する電力が完全に一致した場合、位相跳躍により単独運転を検出することは不可能である。また、IEC62116に記載されているように大容量のコンデンサを備えるR-L-C並列回路を負荷として単独運転検出機能を試験する場合、高調波注入を用いる手法では、コンデンサによる高調波成分の吸収により単独運転の検出が困難である。
However, when the power consumed by the load completely matches the power output from the self-excited power converter, it is impossible to detect islanding by phase jump. In addition, when testing the islanding detection function with an RLC parallel circuit with a large-capacity capacitor as described in IEC 62116 as a load, the method using harmonic injection involves absorption of harmonic components by the capacitor. It is difficult to detect solitary operation.
上記課題を解決するために、本発明の一態様である電力変換装置は、直流を交流に変換して電力系統へ出力するインバータと、インバータへ入力される直流電圧を検出する直流電圧検出部と、インバータからの出力電流を検出する出力電流検出部と、インバータおよび電力系統の間の連系点における連系点電圧を検出する連系点電圧検出部と、連系点電圧に基づいて連系点電圧位相を算出する位相算出部と、直流電圧に基づいて、インバータに出力させる有効電流を示す有効電流指令値を算出する有効電流指令値算出部と、連系点電圧および出力電流に基づいて、インバータに出力させる無効電流を示す無効電流指令値を算出する無効電流指令値算出部と、出力電流、連系点電圧位相、有効電流指令値、および無効電流指令値に基づいてインバータを制御することにより、インバータの出力電圧の位相を予め定められた時間間隔毎に変化させる制御部と、連系点電圧位相の変化に基づいて、電力変換装置の単独運転状態を検出する単独運転検出部と、を備える。
In order to solve the above problems, a power conversion device according to one aspect of the present invention includes an inverter that converts direct current to alternating current and outputs the same to an electric power system, and a DC voltage detection unit that detects a DC voltage input to the inverter , An output current detection unit that detects an output current from the inverter, an interconnection point voltage detection unit that detects an interconnection point voltage at an interconnection point between the inverter and the electric power system, and interconnection based on the interconnection point voltage Based on a phase calculation unit that calculates a point voltage phase, an active current command value calculation unit that calculates an active current command value indicating an active current to be output to the inverter based on a DC voltage, and based on an interconnection point voltage and an output current A reactive current command value calculating unit that calculates a reactive current command value indicating a reactive current to be output to the inverter, and an output current, an interconnection point voltage phase, an active current command value, and an reactive current command value. A control unit that changes the phase of the output voltage of the inverter at predetermined time intervals by controlling the inverter, and a single unit that detects the isolated operation state of the power conversion device based on the change of the interconnection point voltage phase. And a driving detection unit.
本発明の一態様によれば、電力変換装置の出力電力と負荷の消費電力が一致する場合や、負荷がコンデンサを含む場合であっても、単独運転状態を検出することができる。
According to one aspect of the present invention, the islanding state can be detected even when the output power of the power conversion device matches the power consumption of the load, or even when the load includes a capacitor.
以下、本発明の実施例について図面を用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本実施例では、太陽光発電のための電力変換装置1について説明する。
A present Example demonstrates the power converter device 1 for solar power generation.
図1は、実施例1の電力変換装置の構成を示す。
FIG. 1 shows the configuration of the power conversion device of the first embodiment.
電力変換装置1の直流回路には、太陽光パネル30が接続されている、電力変換装置1は、太陽光パネル30により発電された直流電力を電力系統300の系統周波数を有する交流電力に変換し、その交流電力を電力系統300および負荷200に供給する。電力変換装置1において電力系統300側の接続点を連系点(系統連系点)と呼ぶ。
A solar panel 30 is connected to the DC circuit of the power converter 1. The power converter 1 converts the DC power generated by the solar panel 30 into AC power having a grid frequency of the power grid 300. , Supply the AC power to the power system 300 and the load 200. A connection point on the power system 300 side of the power conversion device 1 is referred to as an interconnection point (system interconnection point).
電力系統300には、電力変換装置1と負荷200が遮断器400を介して並列接続される。遮断器400は、系統事故検出時および系統メンテナンスのため電力系統300の運営者により開閉される。
The power conversion device 1 and the load 200 are connected in parallel to the power system 300 via the circuit breaker 400. The circuit breaker 400 is opened and closed by the operator of the power system 300 at the time of system fault detection and system maintenance.
電力変換装置1は、太陽光パネル30に接続されている直流回路電圧の検出用の直流電圧センサ71PT、インバータ10、インバータ10出力の高調波を除去する高調波フィルタ20、インバータ10と連系点の間を開閉するコンタクタ40、電力変換装置1の出力電流の検出用の出力電流センサ72CTu、72CTw、連系点電圧を検出するための連系点電圧センサ70PTuv、70PTvw、検出された電流および電圧を基にインバータ10のゲート信号GateUP~WN(GateUP、GateVP、GateWP、GateUN、GateVN、GateWN)、およびコンタクタ40のON/OFFを制御するコンタクタ制御信号CTTctlを算出する制御器100を含む。
The power converter 1 includes a DC voltage sensor 71PT for detecting a DC circuit voltage connected to the solar panel 30, an inverter 10, a harmonic filter 20 for removing harmonics of the output of the inverter 10, and an interconnection point with the inverter 10. Between the contactor 40, output current sensors 72CTu, 72CTw for detecting the output current of the power conversion device 1, interconnection point voltage sensors 70PTuv, 70PTvw for detecting the interconnection point voltage, detected currents and voltages And a controller 100 for calculating a contactor control signal CTTctl for controlling ON / OFF of the contactor 40 and gate signals GateUP to WN (GateUP, GateVP, GateWP, GateUN, GateVN, GateWN) of the inverter 10 on the basis of.
インバータ10において、直流回路端子P、Nには太陽光パネル30が接続され、交流端子U、V、Wには高調波フィルタ20が接続されている。インバータ10は、太陽光パネル30から出力される直流電力を三相交流電力へ変換して出力する。高調波フィルタ20は、インバータ10から出力されるパルス波形を平滑化して基本波成分を通過させることにより、インバータ10から電力系統300に流出する高調波を低減する。
In the inverter 10, the solar panel 30 is connected to the DC circuit terminals P and N, and the harmonic filter 20 is connected to the AC terminals U, V and W. The inverter 10 converts DC power output from the solar panel 30 into three-phase AC power and outputs it. The harmonic filter 20 reduces harmonics flowing out of the inverter 10 into the power system 300 by smoothing the pulse waveform output from the inverter 10 and passing the fundamental wave component.
図2は、負荷200の構成を示す。
FIG. 2 shows the configuration of the load 200.
電力変換装置1の連系点には、負荷200が並列接続される。負荷200は、抵抗、リアクトル、およびコンデンサの並列回路によりその電気特性が示されるものである。
The load 200 is connected in parallel to the interconnection point of the power conversion device 1. The load 200 has its electrical characteristics indicated by a parallel circuit of a resistor, a reactor, and a capacitor.
図3は、電力変換装置1の主回路の構成を示す。
FIG. 3 shows the configuration of the main circuit of the power conversion device 1.
この図は、電力変換装置1のうち、直流電圧センサ71PT、インバータ10、高調波フィルタ20、出力電流センサ72CTu、72CTw、コンタクタ40、および連系点電圧センサ70PTuv、70PTvwを含む。
This figure includes DC voltage sensor 71PT, inverter 10, harmonic filter 20, output current sensors 72CTu, 72CTw, contactor 40, and interconnection point voltage sensors 70PTuv, 70PTvw among power conversion devices 1.
インバータ10は、IGBT(Insulated Gate Bipolar Transistor)などの自己消弧形半導体スイッチングデバイスとダイオードとが逆並列接続されているIGBTモジュール10k、10l、10p、10m、10n、10o、10p、および直流コンデンサ10Cを含む。高調波フィルタ20は、2つの三相リアクトル20L1、20L2と三相コンデンサ20Cを含む。電流センサ72CTu、72CTwは、高調波フィルタ20の出力電流のU相電流とW相電流をそれぞれ検出する。連系点電圧センサ70PTuv、70PTvwは、連系点におけるU相およびV相の線間電圧vsuv、V相およびW相の線間電圧vsvwをそれぞれ測定する。
The inverter 10 is an IGBT module 10 k, 10 l, 10 p, 10 m, 10 n, 10 o, 10 p, and a DC capacitor 10 C in which a diode is connected in antiparallel with a self arc extinguishing semiconductor switching device such as IGBT (Insulated Gate Bipolar Transistor). including. The harmonic filter 20 includes two three-phase reactors 20L1 and 20L2 and a three-phase capacitor 20C. The current sensors 72CTu and 72CTw detect the U-phase current and the W-phase current of the output current of the harmonic filter 20, respectively. The interconnection point voltage sensors 70PTuv and 70PTvw measure the U-phase and V-phase line voltages vsuv at the interconnection points, and the V-phase and W-phase line voltages vsvw, respectively.
図4は、実施例1の制御器100の構成を示す。
FIG. 4 shows the configuration of the controller 100 of the first embodiment.
連系点電圧センサ70PTuv、70PTvwによりそれぞれ検出される連系点の線間電圧vsuv、vsvwが、制御器100へ入力される。出力電流センサ72CTu、72CTwによりそれぞれ検出される出力電流検出値isu、iswが、制御器100へ入力される。直流電圧センサ71PTにより検出される直流電圧検出値vdcが、制御器100へ入力される。制御器100は、入力される電圧および電流に基づいて、後述するように電圧指令値とインバータ出力電圧の瞬時平均値が一致させることを目標として、IGBTモジュール10k、10l、10p、10m、10n、10o、10pのゲート信号GateUP、GateVP、GateWP、GateUN、GateVN、GateWNをそれぞれ算出する。制御器100は更に、入力される電圧および電流に基づいて、コンタクタ制御信号CTTctlを算出する。
The line voltages vsuv and vsvw of the interconnection points respectively detected by the interconnection point voltage sensors 70PTuv and 70PTvw are input to the controller 100. Output current detection values isu and isw detected by the output current sensors 72CTu and 72CTw, respectively, are input to the controller 100. A DC voltage detection value vdc detected by the DC voltage sensor 71PT is input to the controller 100. The controller 100 aims to match the voltage command value and the instantaneous average value of the inverter output voltage based on the input voltage and current, as described later, to the IGBT modules 10k, 10l, 10p, 10m, 10n, Gate signals GateUP, GateVP, GateWP, GateUN, GateVN, and GateWN of 10o and 10p are respectively calculated. The controller 100 further calculates the contactor control signal CTTctl based on the input voltage and current.
制御器100は、連系点電圧位相検出部100a、直流電圧制御部100b、無効電力制御部100c、電流制御部100d、および単独運転制御部100eを含む。
The controller 100 includes an interconnection point voltage phase detection unit 100a, a DC voltage control unit 100b, a reactive power control unit 100c, a current control unit 100d, and an isolated operation control unit 100e.
まず、連系点電圧位相検出部100aについて説明する。
First, the connection point voltage phase detection unit 100a will be described.
連系点電圧位相検出部100aは、連系点電圧の位相である連系点電圧位相を検出する。連系点電圧位相検出部100aは、相電圧算出器1001、α-β変換器1002、d-q変換器1003、位相算出器1004、cosテーブル1006、およびsinテーブル1007を含む。
The interconnection point voltage phase detection unit 100a detects an interconnection point voltage phase that is the phase of the interconnection point voltage. The connection point voltage phase detection unit 100 a includes a phase voltage calculator 1001, an α-β converter 1002, a dq converter 1003, a phase calculator 1004, a cos table 1006, and a sin table 1007.
相電圧算出器1001は、零相成分の相電圧をゼロとし、数式1に従い線間電圧vsuv、vsvwに基づいて相電圧vsu、vsv、vswを算出する。
The phase voltage calculator 1001 sets the phase voltage of the zero-phase component to zero, and calculates phase voltages vsu, vsv, vsw based on the line voltages vsuv, vsvw according to Equation 1.
α-β変換器1002は、数式2に従い、相電圧vsu、vsv、vswをα-β変換することにより、固定座標系における連系点電圧のα成分であるvs_alpとβ成分であるvs_betを算出する。
The α-β converter 1002 performs the α-β conversion of the phase voltages vsu, vsv, vsw according to Equation 2 to calculate vs_alp which is the α component of the interconnection point voltage in the fixed coordinate system and vs_bet which is the β component Do.
d-q変換器1003は、後述するcosテーブル出力値cos、およびsinテーブル出力値sinに基づいて、数式3に従い、vs_alp、vs_betをd-q変換することにより、回転座標系における連系点電圧のd成分vsd、q成分vsqを算出する。
The dq converter 1003 performs a dq conversion of vs_alp and vs_bet according to the equation 3 based on a cos table output value cos and a sin table output value sin, which will be described later, to thereby obtain an interconnection point voltage in the rotational coordinate system. D component vsd, q component vsq is calculated.
位相算出器1004は、連系点電圧のq成分vsqに基づいて連系点電圧位相thetaおよび角周波数omegaを算出する。
The phase calculator 1004 calculates the connection point voltage phase theta and the angular frequency omega based on the q component vsq of the connection point voltage.
図5は、位相算出器1004の構成を示す。
FIG. 5 shows the configuration of the phase calculator 1004.
位相算出器1004は、PI制御器10041、加算器10042、および時間積分器10043を含む。
The phase calculator 1004 includes a PI controller 10041, an adder 10042, and a time integrator 10043.
PI制御器10041は、vsqに基づいて補正角周波数であるdel_omegを算出する。
The PI controller 10041 calculates del_omeg which is a correction angular frequency based on vsq.
加算器10042は、補正角周波数del_omegと定格角周波数Omeg0を加算し、その和であるomegaを時間積分器10043に出力する。
The adder 10042 adds the correction angular frequency del_omeg and the rated angular frequency Omeg0, and outputs the sum omega to the time integrator 10043.
時間積分器10043は、角周波数omegaを時間積分することにより、連系点電圧位相thetaを算出する。
The time integrator 10043 calculates the connection point voltage phase theta by time-integrating the angular frequency omega.
制御器100により算出される連系点電圧位相thetaと連系点電圧の位相が一致している場合、連系点電圧のq成分vsqは0となる。一方、連系点電圧位相thetaと連系点電圧位相が一致しない場合、連系点電圧のq成分vsqは非零となる。そのため、以上の位相算出器1004の構成により連系点電圧位相を検出することが可能となる。
When the connection point voltage phase theta calculated by the controller 100 and the phase of the connection point voltage coincide with each other, the q component vsq of the connection point voltage is zero. On the other hand, when the interconnection point voltage phase theta and the interconnection point voltage phase do not match, the q component vsq of the interconnection point voltage becomes nonzero. Therefore, it becomes possible to detect the interconnection point voltage phase by the configuration of the phase calculator 1004 described above.
連系点電圧位相thetaは、cosテーブル1006およびsinテーブル1007に入力される。cosテーブル1006およびsinテーブル1007は、連系点電圧位相thetaに対応したcos、およびsinを算出する。前述のd-q変換器1003は、算出されたcos、sinを用いて連系点電圧α成分vs_alp、β成分vs_betをd-q変換する。
The interconnection point voltage phase theta is input to the cos table 1006 and the sin table 1007. The cos table 1006 and the sin table 1007 calculate cos and sin corresponding to the connection point voltage phase theta. The above-mentioned dq converter 1003 performs dq conversion of the interconnection point voltage α component vs_alp and the β component vs_bet using the calculated cos and sin.
位相算出器1004から出力される角周波数omegaは、単独運転検出部100eの単独運転検出器1005に出力される。連系点電圧のd成分vsdおよびq成分vsqは、無効電力制御部100cの無効電力算出器1070に出力される。
The angular frequency omega output from the phase calculator 1004 is output to the isolated operation detector 1005 of the isolated operation detection unit 100e. The d component vsd and the q component vsq of the connection point voltage are output to the reactive power calculator 1070 of the reactive power control unit 100c.
次に、直流電圧制御部100bについて説明する。
Next, the DC voltage control unit 100b will be described.
直流電圧制御部100bは、太陽光パネル30からの電力量を調節するために直流電圧を制御する。直流電圧制御部100bは、減算器1050および直流電圧制御器1051を含む。
The DC voltage control unit 100 b controls the DC voltage to adjust the amount of power from the solar panel 30. The DC voltage control unit 100 b includes a subtractor 1050 and a DC voltage controller 1051.
減算器1050は、直流電圧センサ71PTにより検出される直流電圧検出値vdcから電圧指令値Vdc_refを減ずることにより差を算出し、その差を直流電圧制御器1051に出力する。直流電圧制御器1051は、PI制御器により構成されており、減算器1050で算出された直流電圧指令値と直流電圧検出値の差に対してPI演算を施し、その結果を有効電流指令値として減算器1013に出力する。
Subtractor 1050 calculates a difference by subtracting voltage command value Vdc_ref from DC voltage detection value vdc detected by DC voltage sensor 71PT, and outputs the difference to DC voltage controller 1051. The DC voltage controller 1051 is composed of a PI controller, performs PI operation on the difference between the DC voltage command value calculated by the subtractor 1050 and the DC voltage detection value, and uses the result as an effective current command value. It outputs to the subtractor 1013.
次に、無効電力制御部100cについて説明する。
Next, the reactive power control unit 100c will be described.
無効電力制御部100cは、無効電力を目標値の無効電力指令値に追従させるための無効電流指令値を算出する。無効電力制御部100cは、無効電力算出器1070、減算器1071、無効電力制御器1072、無効電流補正信号算出器1073、および加算器1074を含む。
The reactive power control unit 100c calculates a reactive current command value for causing the reactive power to follow the reactive power command value of the target value. Reactive power control unit 100 c includes reactive power calculator 1070, subtractor 1071, reactive power controller 1072, reactive current correction signal calculator 1073, and adder 1074.
無効電力算出器1070は、数式4に従い、連系点電圧vsd、vsq、および後述する出力電流の有効電流isd、無効電流isqに基づいて、電力変換装置1の電力系統300側に出力する無効電力を算出し、その結果を無効電力算出値Qfbとして減算器1071に出力する。
Reactive power calculator 1070 outputs reactive power to power system 300 of power conversion device 1 based on interconnection point voltage vsd, vsq, and active current isd of output current and reactive current isq described later according to Equation 4. Is calculated, and the result is output to the subtractor 1071 as the reactive power calculation value Qfb.
減算器1071は、所定の無効電力指令値Qrefと無効電力算出器1070から出力されたQfbとの差を算出し、その差を無効電力制御器1072に出力する。
Subtractor 1071 calculates a difference between predetermined reactive power command value Qref and Qfb output from reactive power calculator 1070, and outputs the difference to reactive power controller 1072.
無効電力制御器1072は、PI制御器により構成され、減算器1071の出力に対しPI制御演算を施し、電力変換装置1の無効電流指令値iqrefを算出する。これにより、電力変換装置1からの無効電力を目標値に近づけることができる。
The reactive power controller 1072 is configured of a PI controller, performs PI control calculation on the output of the subtractor 1071, and calculates a reactive current command value iqref of the power conversion device 1. Thereby, the reactive power from the power converter device 1 can be brought close to the target value.
加算器1074は、無効電流指令値iqrefと、後述する無効電流補正信号算出器1073から出力される無効電流補正信号del_iqrefとの和を算出し、その和を新たな無効電流指令値iqref2として電流制御部100dの減算器1014に出力する。
The adder 1074 calculates the sum of the reactive current command value iqref and the reactive current correction signal del_iqref output from the reactive current correction signal calculator 1073 described later, and the sum is used as a new reactive current command value iqref2 for current control. It outputs to the subtractor 1014 of the part 100d.
次に、電流制御部100dについて説明する。
Next, the current control unit 100d will be described.
電流制御部100dは、有効電流指令値および無効電流指令値に基づいて、出力電圧を補正する。電流制御部100dは、減算器1010、α-β変換器1011、d-q変換器1012、減算器1013、減算器1014、d軸電流制御器1015、q軸電流制御器1016、加算器1017、逆d-q変換器1018、2相-3相変換器1019、搬送波算出器1020、およびPWM(Pulse Width Modulation)演算器1021を含む。
The current control unit 100d corrects the output voltage based on the active current command value and the reactive current command value. The current control unit 100d includes a subtractor 1010, an α-β converter 1011, a dq converter 1012, a subtracter 1013, a subtractor 1014, a d-axis current controller 1015, a q-axis current controller 1016, an adder 1017, It includes an inverse dq converter 1018, a two-phase to three-phase converter 1019, a carrier wave calculator 1020, and a pulse width modulation (PWM) calculator 1021.
まず、出力電流のd成分isd、q成分isqの算出方法について説明する。
First, a method of calculating the d component isd and the q component isq of the output current will be described.
減算器1010は、出力電流センサ72CTu、72CTwによりそれぞれ検出される出力電流のu相成分isu、w相成分iswから、v相成分isvを算出する。α-β変換器1011は、出力電流のu相成分isu、v相成分isv、w相成分iswをα-β変換することにより、α成分is_alp、およびβ成分is_betを算出する。なお、このα-β変換は数式2と等しいものであるため、重複説明を省略する。
The subtractor 1010 calculates the v-phase component isv from the u-phase component isu and the w-phase component isw of the output current respectively detected by the output current sensors 72CTu and 72CTw. The α-β converter 1011 calculates the α component is_alp and the β component is_bet by α-β converting the u-phase component isu of the output current, the v-phase component isv, and the w-phase component isw. Note that this α-β conversion is equivalent to Equation 2, and thus redundant description will be omitted.
d-q変換器1012は、cosテーブル1006から出力されるcosと、sinテーブル1007から出力されるsinとを用いて、交流出力電流のα成分is_alp、β成分is_betを、d-q変換することにより、出力電流のd成分isdおよびq成分isqを算出する。なお、このd-q変換は数式3と等しいものであるため、重複説明を省略する。出力電流のd成分isdは減算器1013に出力され、出力電流のq成分isqは減算器1014に出力される。
The dq converter 1012 performs dq conversion of the α component is_alp of the AC output current and the β component is_bet using cos output from the cos table 1006 and sin output from the sin table 1007. Then, the d component isd and the q component isq of the output current are calculated. Note that this dq conversion is equivalent to Equation 3, and therefore redundant description will be omitted. The d component isd of the output current is output to the subtractor 1013, and the q component isq of the output current is output to the subtractor 1014.
減算器1013は、直流電圧制御器1051から出力される有効電流指令値から、出力電流のd成分isdを減ずることにより偏差を算出し、その偏差をd軸電流制御器1015に出力する。減算器1014は、加算器1074から出力される無効電流指令値iqref2から、出力電流のq成分isqを減ずることにより偏差を算出し、その偏差をq軸電流制御器1016に出力する。
Subtractor 1013 calculates a deviation by subtracting d component isd of the output current from the effective current command value output from DC voltage controller 1051, and outputs the deviation to d-axis current controller 1015. The subtractor 1014 subtracts the q component isq of the output current from the reactive current command value iqref2 output from the adder 1074 to calculate a deviation, and outputs the deviation to the q-axis current controller 1016.
d軸電流制御器1015、およびq軸電流制御器1016は、PI制御器で構成され、入力される偏差にPI制御演算を施し、偏差を低減するためのインバータ10のd軸電圧指令値とq軸電圧指令値を算出する。
The d-axis current controller 1015 and the q-axis current controller 1016 are composed of PI controllers and perform PI control calculation on the input deviation to reduce the deviation by using the d-axis voltage command value of the inverter 10 and q Calculate the axis voltage command value.
加算器1017は、予め設定された固定値であるVd0とd軸電流制御器1015から出力されるd軸電圧指令値を加算することにより、新たなd軸電圧指令値vdrefを算出する。Vd0は、連系点電圧の振幅が定格である場合に、インバータ10の出力電圧と連系点電圧の振幅が等しくなる値である。d軸電圧指令値をVd0と加算することにより、インバータ10のゲートデブロック時に電力系統300から電力変換装置1に過大な電流が流入することを防ぐことができる。
The adder 1017 calculates a new d-axis voltage command value vdref by adding a predetermined fixed value Vd0 and the d-axis voltage command value output from the d-axis current controller 1015. Vd0 is a value at which the output voltage of the inverter 10 and the amplitude of the interconnection point voltage are equal when the amplitude of the interconnection point voltage is rated. By adding the d-axis voltage command value to Vd0, it is possible to prevent an excessive current from flowing from the power system 300 into the power conversion device 1 at the gate deblocking of the inverter 10.
逆d-q変換器1018は、加算器1017から出力されるvdrefと、q軸電流制御器1016から出力されるq軸電圧指令値vqrefと、cosテーブル1006から出力されるcosと、sinテーブル1007から出力されるsinとを入力し、数式5に従いvdref、vqrefを固定座標系の電圧ベクトルvalp、vbetを算出する。
The inverse dq converter 1018 includes the vdref output from the adder 1017, the q-axis voltage command value vqref output from the q-axis current controller 1016, the cos output from the cos table 1006, and the sin table 1007 And sin is output from vdref and vqref in accordance with Equation 5 to calculate voltage vectors valp and vbet of the fixed coordinate system.
2相-3相変換器1019は、数式6に従い、逆d-q変換器1018から出力されるvalp、vbetを、インバータ10の各相の電圧指令値vu_ref、vv_ref、vw_refに変換し、PWM演算器1021に出力する。
The two-phase to three-phase converter 1019 converts valp and vbet output from the inverse dq converter 1018 into voltage command values vu_ref, vv_ref and vw_ref of each phase of the inverter 10 according to Equation 6, and performs PWM operation Output to the unit 1021.
搬送波算出器1020はインバータ10のスイッチング周波数と等しい周波数を持つ三角波である搬送波triを出力する。搬送波の周波数は例えば数kHzである。
Carrier wave calculator 1020 outputs carrier wave tri which is a triangular wave having a frequency equal to the switching frequency of inverter 10. The frequency of the carrier wave is, for example, several kHz.
PWM演算器1021は、各相の電圧指令値vu_ref、vv_ref、vw_refのそれぞれと搬送波triの大小比較をすることによりゲート信号GateUP~WNを算出し、インバータ10に出力する。
The PWM computing unit 1021 compares the magnitudes of the carrier wave tri with the voltage command values vu_ref, vv_ref, vw_ref of each phase to calculate gate signals GateUP to WN, and outputs the gate signals GateUP to WN to the inverter 10.
U相を例に、ゲート信号GateUP、GateUNの算出方法を説明する。
The method of calculating the gate signals GateUP and GateUN will be described by taking the U phase as an example.
電圧指令値vu_refが搬送波tri以上である場合、PWM演算器1021は、IGBTモジュール10kのゲート信号GateUPをオンとし、IGBTモジュール10nのゲート信号GateUNをオフとする。逆に電圧指令値vu_refが搬送波triより小さい場合、PWM演算器1021は、IGBTモジュール10kのゲート信号GateUPをオフ、IGBTモジュール10nのゲート信号GateUNをオンとする。これにより、インバータ10の交流出力端子Uには、瞬時平均電圧を電圧指令値vu_refにするためのパルス電圧が出力される。PWM演算器1021は、V相、W相についても同様にしてゲート信号を算出するため、重複説明を省く。
When the voltage command value vu_ref is equal to or higher than the carrier wave tri, the PWM computing unit 1021 turns on the gate signal GateUP of the IGBT module 10k and turns off the gate signal GateUN of the IGBT module 10n. Conversely, when voltage command value vu_ref is smaller than carrier wave tri, PWM operation unit 1021 turns off gate signal GateUP of IGBT module 10k and turns on gate signal GateUN of IGBT module 10n. As a result, a pulse voltage for setting the instantaneous average voltage to the voltage command value vu_ref is output to the AC output terminal U of the inverter 10. The PWM computing unit 1021 similarly calculates gate signals for the V-phase and the W-phase, and therefore redundant description will be omitted.
単独運転検出器1005から出力される単独運転検出状態ISLANDING_FLGが1の場合、PWM演算器1021は、電圧指令値vu_ref、vv_ref、vw_refのそれぞれと搬送波triとの大小関係に依存せず、すべてのゲート信号をオフにする。これにより単独運転を検出した場合、PWM演算器1021は、速やかにインバータ10のスイッチングを停止させ、単独運転状態を回避できる。
When the isolated operation detection state ISLANDING_FLG output from the isolated operation detector 1005 is 1, the PWM computing unit 1021 does not depend on the magnitude relationship between each of the voltage command values vu_ref, vv_ref, vw_ref and the carrier wave tri, and all gates Turn off the signal. Thereby, when the isolated operation is detected, the PWM computing unit 1021 can stop the switching of the inverter 10 promptly and can avoid the isolated operation state.
次に単独運転制御部100eについて説明する。
Next, the isolated operation control unit 100e will be described.
単独運転制御部100eは、連系点電圧の角周波数omegaに基づいて電力変換装置1の単独運転を検出し、単独運転を検出した場合に電力変換装置1の単独運転を停止させる。単独運転制御部100eは、単独運転検出器1005およびコンタクタ制御信号算出器1008を含む。
The isolated operation control unit 100e detects an isolated operation of the power conversion device 1 based on the angular frequency omega of the connection point voltage, and stops the isolated operation of the power conversion device 1 when the isolated operation is detected. The isolated operation control unit 100e includes an isolated operation detector 1005 and a contactor control signal calculator 1008.
単独運転検出器1005は、位相算出器1004から出力される角周波数omegaを入力し、単独運転検出状態ISLANDING_FLGを算出する。単独運転検出器1005は、単独運転を検出した場合にISLANDING_FLGの値を1とし、通常連系時にISLANDING_FLGの値を0とする。
The islanding operation detector 1005 receives the angular frequency omega output from the phase calculator 1004, and calculates the islanding detection state ISLANDING_FLG. The islanding operation detector 1005 sets the value of ISLANDING_FLG to 1 when islanding is detected, and sets the value of ISLANDING_FLG to 0 at normal interconnection.
コンタクタ制御信号算出器1008は、ISLANDING_FLGが0の場合にコンタクタ制御信号CTTctlをオンとし、ISLANDING_FLGが1の場合にCTTctlをオフとする。コンタクタ40は、CTTctlがオンである場合に投入され、CTTctlがオフである場合に開放される。これにより、単独運転を検出した場合、単独運転制御部100eは、PWM演算器1021のゲートブロックに加え、コンタクタ40を開放し、停電となっている電力系統300から電力変換装置1を解列することができる。
The contactor control signal calculator 1008 turns on the contactor control signal CTTctl when ISLANDING_FLG is 0, and turns off CTTctl when ISLANDING_FLG is 1. The contactor 40 is input when CTT ctl is on and released when CTT ctl is off. Thereby, when an isolated operation is detected, the isolated operation control unit 100e opens the contactor 40 in addition to the gate block of the PWM computing unit 1021, and disconnects the power conversion device 1 from the power system 300 in a power failure. be able to.
図6は、単独運転検出器1005の構成を示す。
FIG. 6 shows the configuration of the isolated operation detector 1005.
単独運転検出器1005は、ローパスフィルタ10051、10052、減算器10053、および比較器10054を含む。
The islanding operation detector 1005 includes low pass filters 10051, 10052, a subtractor 10053, and a comparator 10054.
連系点電圧の角周波数omegaは、時定数の異なるローパスフィルタ10051と10052に入力される。ローパスフィルタ10051の時定数τ1は、ローパスフィルタ10052の時定数τ2より短い値である。減算器10053は、ローパスフィルタ10051の出力からローパスフィルタ10052の出力を減ずる。ローパスフィルタ10051、10052および減算器10053は、バンドパスフィルタを構成し、BPF_omegを出力する。これにより、omegaの変動の直流成分および高周波成分を除去することができる。この高周波成分は、インバータ10のPWM信号に基づく高調波であり、無効電流補正信号の周波数に比べて十分高い。高周波成分を除去することにより誤動作を防ぐことができる。
The angular frequency omega of the connection point voltage is input to the low pass filters 10051 and 10052 having different time constants. The time constant τ1 of the low pass filter 10051 is a value shorter than the time constant τ2 of the low pass filter 10052. The subtractor 10053 subtracts the output of the low pass filter 10052 from the output of the low pass filter 10051. The low pass filters 10051 and 10052 and the subtractor 10053 constitute a band pass filter, and output BPF_omeg. Thereby, the direct current component and the high frequency component of the omega fluctuation can be removed. This high frequency component is a harmonic based on the PWM signal of the inverter 10 and is sufficiently higher than the frequency of the reactive current correction signal. Malfunction can be prevented by removing high frequency components.
比較器10054は、バンドパスフィルタから出力されるBPF_omegを、上限判定値TH_Hおよび下限判定値TH_Lのそれぞれと比較する。BPF_omegがTH_H以上である、もしくはBPF_omegがTH_L以下である場合、比較器10054は、単独運転検出状態ISLANDING_FLGとして1を出力する。
The comparator 10054 compares the BPF_omeg output from the band pass filter with each of the upper limit determination value TH_H and the lower limit determination value TH_L. When BPF_omeg is equal to or greater than TH_H, or BPF_omeg is equal to or less than TH_L, the comparator 10054 outputs 1 as the isolated operation detection state ISLANDING_FLG.
この演算により、単独運転検出器1005は、角周波数omegaに所定値以上の変動が発生した場合、ISLANDING_FLGを1に設定する。連系点電圧の位相跳躍や位相急変が発生した場合、バンドパスフィルタ出力BPF_omegが大きく変動するため、ISLANDING_FLGを1に設定でき、単独運転状態を回避できる。
By this calculation, the islanding operation detector 1005 sets ISLANDING_FLG to 1 when the angular frequency omega changes more than a predetermined value. When a phase jump or a sudden phase change of the connection point voltage occurs, the band pass filter output BPF_omeg largely fluctuates, so ISLANDING_FLG can be set to 1, and an islanding operation can be avoided.
次に、無効電力制御部100cにおける無効電流補正信号算出器1073について説明する。
Next, the reactive current correction signal calculator 1073 in the reactive power control unit 100c will be described.
無効電流補正信号算出器1073は、無効電流補正信号del_iqrefを生成する。無効電力制御器1072の出力である無効電流指令値iqrefは、加算器1074により無効電流補正信号del_iqrefと加算され、その和は新たな無効電流指令値iqref2として電流制御部100dに出力される。
The reactive current correction signal calculator 1073 generates a reactive current correction signal del_iqref. The reactive current command value iqref which is the output of the reactive power controller 1072 is added to the reactive current correction signal del_iqref by the adder 1074, and the sum is output to the current control unit 100d as a new reactive current command value iqref2.
無効電流補正信号del_iqrefは、所定の補正信号周期Tperiodを持つ矩形波である。補正信号周期Tperiodは、単独運転状態の発生から検出までに要する時間の上限である検出上限時間の2倍以下に設定される。検出上限時間は、例えば、系統連系規定で定められた0.1sである。この場合、補正信号周期Tperiodは、0.2s以下である。なお、無効電流補正信号del_iqrefの波形は、この形状に限らず、パルス状やステップ状であってもよい。
The reactive current correction signal del_iqref is a rectangular wave having a predetermined correction signal period Tperiod. The correction signal cycle Tperiod is set to be equal to or less than twice the detection upper limit time which is the upper limit of the time required from the occurrence of the islanding operation state to the detection. The detection upper limit time is, for example, 0.1 s defined by the grid connection rule. In this case, the correction signal period Tperiod is 0.2 s or less. The waveform of the reactive current correction signal del_iqref is not limited to this shape, and may be pulse or step.
無効電流補正信号del_iqrefの矩形波の立ち上がりもしくは立ち下がりにおいて、出力電流のq成分isqと無効電流指令値iqref2との差が大きくなるため、q軸電流制御器1016は、q軸電圧指令値vqredを急峻に変化させる。無効電流補正信号del_iqrefを周期Tperiodの矩形波にすることにより、インバータ10の出力電圧をTperiodの半分の時間間隔毎にステップ状に変化させることができる。
Since the difference between the q component isq of the output current and the reactive current command value iqref2 becomes large at the rising or falling of the rectangular wave of the reactive current correction signal del_iqref, the q-axis current controller 1016 determines the q-axis voltage command value vqred Make a sudden change. By making the reactive current correction signal del_iqref into a rectangular wave of period Tperiod, the output voltage of the inverter 10 can be changed stepwise every half time period of T period.
図7は、インバータ10の出力電圧ベクトルの一例を示す。
FIG. 7 shows an example of an output voltage vector of the inverter 10.
この図は、連系点電圧ベクトルvsと、インバータ10の出力電圧ベクトルvinvとを示す。q軸電圧指令値が急変することにより、出力電圧ベクトルvinvのq成分が変動し、連系点電圧との位相差Δθが変動する。
This figure shows the interconnection point voltage vector vs and the output voltage vector vind of the inverter 10. When the q-axis voltage command value suddenly changes, the q component of the output voltage vector vinv changes, and the phase difference Δθ with the connection point voltage changes.
電力系統300が正常で、遮断器400が投入されている場合、連系点電圧は電力系統300の電圧により決まる。したがって、電力変換装置1が無効電流補正信号によりインバータ10の出力電圧ベクトル位相を変動させても、連系点電圧の位相変動はほとんど発生しない。これにより、単独運転状態でない場合には、無効電流指令値に無効電流補正信号を加えることによる影響はほとんどない。一方、遮断器400が開放された単独運転状態においては、連系点電圧位相を安定化する要素がなくなるため、インバータ10の出力電圧の位相変化が遮断器400の二次側(電力変換装置1側)に発生し、無効電流補正信号に基づいてq軸電圧指令値が定期的に急変することにより、素早く単独運転を検出できる。
When the power system 300 is normal and the circuit breaker 400 is turned on, the interconnection point voltage is determined by the voltage of the power system 300. Therefore, even if the power converter 1 changes the output voltage vector phase of the inverter 10 by the reactive current correction signal, almost no phase change of the connection point voltage occurs. As a result, in the non-islanding state, the addition of the reactive current correction signal to the reactive current command value has almost no influence. On the other hand, in the isolated operation state in which circuit breaker 400 is opened, there is no element for stabilizing the connection point voltage phase, so the phase change of the output voltage of inverter 10 is the secondary side of circuit breaker 400 (power converter 1 Side, and the q-axis voltage command value periodically and rapidly changes based on the reactive current correction signal, so that the isolated operation can be detected quickly.
図8は、単独運転検出の動作を示すタイムチャートである。
FIG. 8 is a time chart showing an operation of islanding detection.
このタイムチャートは、無効電流補正信号del_iqrefおよび無効電流指令値iqref2の波形と、連系点電圧位相thetaの波形と、角周波数バンドパスフィルタ出力BPF_omegの波形と、単独運転検出状態ISLANDING_FLGの波形と、コンタクタ制御信号CTTctlの波形とを示す。ここで、無効電流補正信号del_iqrefの波形は、破線で表されており、補正後の無効電流指令値iqref2の波形は実線で表されている。
This time chart includes the waveforms of reactive current correction signal del_iqref and reactive current command value iqref2, the waveform of interconnection point voltage phase theta, the waveform of angular frequency band pass filter output BPF_omeg, and the waveform of islanding detection state ISLANDING_FLG The waveform of the contactor control signal CTTctl is shown. Here, the waveform of the reactive current correction signal del_iqref is represented by a broken line, and the waveform of the reactive current command value iqref2 after correction is represented by a solid line.
無効電流補正信号del_iqrefは補正信号周期Tperiodを持つ矩形波であり、半周期毎の時刻t1、t2、t4でステップ状に値を変える。電流制御部100dは、無効電流指令値iqref2に追従するようにインバータ10の電圧指令値を変化させるため、電力変換装置1から出力される無効電流および無効電力が変化する。
The reactive current correction signal del_iqref is a rectangular wave having a correction signal period Tperiod, and changes its value stepwise at time t1, t2, t4 for each half period. The current control unit 100 d changes the voltage command value of the inverter 10 so as to follow the reactive current command value iqref 2, so the reactive current and reactive power output from the power conversion device 1 change.
del_iqrefにより無効電流指令値iqref2が矩形波状に変更されると、インバータ10から出力される無効電流は、電流制御系の遅れが誤差として残るものの、iqref2にほぼ一致する。一方、無効電力制御器1072は、電力変換装置1から出力される無効電力を無効電力指令値Qrefに一致させるように無効電流指令値iqrefを変化させる。無効電力制御器1072が無効電流補正信号del_iqrefを外乱と見なして応答するため、無効電流指令値iqrefも無効電流補正信号del_iqrefと同じ周期で変動する。
When the reactive current command value iqref2 is changed into a rectangular wave by del_iqref, the reactive current output from the inverter 10 substantially matches iqref2 although the delay of the current control system remains as an error. On the other hand, the reactive power controller 1072 changes the reactive current command value iqref so that the reactive power output from the power conversion device 1 matches the reactive power command value Qref. Since the reactive power controller 1072 responds by regarding the reactive current correction signal del_iqref as a disturbance, the reactive current command value iqref also fluctuates in the same cycle as the reactive current correction signal del_iqref.
したがって、補正後の無効電流指令値iqref2の波形は、無効電流補正信号del_iqrefの波形とわずかに異なる。無効電流指令値iqref2に従ってインバータ10から出力される無効電流の波形は、電流制御部100dの応答の遅延により、無効電流補正信号del_iqrefの矩形波そのものではなく、略矩形波状である。これにより、無効電流指令値iqref2に基づくインバータ10の出力電圧の定期的な位相変化は、電力系統300の電圧(電力変換装置が単独運転状態でないときの連系点電圧)の位相変化に比べて急峻になる。言い換えれば、無効電流指令値iqref2に基づくインバータ10の出力電圧は、電力系統300の電圧より高周波の成分を含む。
Therefore, the waveform of the reactive current command value iqref2 after correction is slightly different from the waveform of the reactive current correction signal del_iqref. The waveform of the reactive current output from the inverter 10 according to the reactive current command value iqref2 is not a rectangular wave itself of the reactive current correction signal del_iqref but a substantially rectangular wave due to the delay of the response of the current control unit 100d. Thus, the periodic phase change of the output voltage of inverter 10 based on reactive current command value iqref2 is compared to the phase change of voltage of power system 300 (the voltage at the connection point when the power conversion device is not in the isolated operation state). It becomes steep. In other words, the output voltage of inverter 10 based on reactive current command value iqref 2 includes a component of a higher frequency than the voltage of power system 300.
時刻t3において、電力系統300の事故などにより遮断器400が開放されたとする。ここで、負荷200と電力変換装置1の出力する電力が完全に一致したとする。この場合、連系点電圧位相thetaの波形に示されるように、連系点電圧位相thetaには偏差が生じない。
It is assumed that circuit breaker 400 is opened due to an accident or the like of power system 300 at time t3. Here, it is assumed that the load 200 and the power output from the power conversion device 1 completely match. In this case, as shown in the waveform of the connection point voltage phase theta, no deviation occurs in the connection point voltage phase theta.
時刻t3の後の無効電流補正信号del_iqrefの最初の変化点である時刻t4において、無効電流補正信号del_iqrefの変化により、連系点電圧位相thetaに脈動が発生し、角周波数にも変動が生じ、BPF_omegにも変動が生じる。ここで、BPF_omegが下限判定値TH_L以下となり、単独運転検出器1005は、単独運転状態を検出する。単独運転検出器1005が単独運転状態を検出すると、単独運転検出状態ISLANDING_FLGが0から1に変わり、インバータ10のゲート信号がすべてオフになり、コンタクタ制御信号CTTctlがONからOFFに変わる。
At time t4, which is the first change point of the reactive current correction signal del_iqref after time t3, a change occurs in the interconnection point voltage phase theta due to a change in the reactive current correction signal del_iqref, and a change occurs in the angular frequency, The BPF_omeg also changes. Here, BPF_omeg becomes equal to or less than the lower limit judgment value TH_L, and the islanding operation detector 1005 detects an islanding state. When the islanding operation detector 1005 detects the islanding state, the islanding detection state ISLANDING_FLG changes from 0 to 1, all the gate signals of the inverter 10 are turned off, and the contactor control signal CTTctl changes from on to off.
無効電流指令値を定期的に急峻に変化させることにより、BPF_omegに大きな変動を発生させることができるため、確実に単独運転の検出が可能となる。無効電力指令値を変化させることでも角周波数の変化を発生させることも可能だが、電流制御系をマイナーループに持つ無効電力制御器1072の制御応答は電流制御部100dの応答より遅いため、無効電流補正信号算出器1073が無効電流指令値を変化することにより、無効電力指令値を変化させることに比べて大きなBPF_omegの変動を生じさせることが可能となる。
Since the BPF_omeg can generate a large fluctuation by periodically and rapidly changing the reactive current command value, it is possible to reliably detect an isolated operation. It is also possible to generate a change in angular frequency by changing the reactive power command value, but the control response of reactive power controller 1072 having a current control system in the minor loop is slower than the response of current control unit 100d. As the correction signal calculator 1073 changes the reactive current command value, it is possible to cause the BPF_omeg fluctuation to be larger than changing the reactive power command value.
補正信号周期Tperiodを上限時間の2倍以下とすることにより、無効電流補正信号は、上限時間以下毎に急変する。すなわち、単独運転状態の発生から上限時間以内に、無効電流指令値が急変するタイミングを必ず迎えることができる。これにより、単独運転状態の検出に要する時間が上限時間以下となり、系統連系規定を満足することができる。
By setting the correction signal cycle Tperiod to be twice or less of the upper limit time, the reactive current correction signal suddenly changes every time the upper limit time or less. That is, the timing at which the reactive current command value suddenly changes can always be received within the upper limit time from the occurrence of the isolated operation state. As a result, the time required to detect the islanding state becomes equal to or less than the upper limit time, and the grid connection regulation can be satisfied.
本実施例によれば、電力変換装置1は単独運転状態が発生したとき、電力変換装置1の出力電力と、電力変換装置1に並列接続される負荷200の消費電力とが一致した場合でも、確実かつ速やかに単独運転状態を検出し、電力変換装置1の発電を停止し、電力系統300から解列することが可能となる。
According to the present embodiment, even if the output power of the power conversion device 1 matches the power consumption of the load 200 connected in parallel to the power conversion device 1 when the power conversion device 1 generates an isolated operation state, It is possible to detect the islanding state reliably and promptly, stop the power generation of the power conversion device 1, and disconnect from the power system 300.
以下、本実施例の変形例について説明する。
Hereinafter, the modification of a present Example is demonstrated.
図9は、第一変形例の電力変換装置の構成を示す。
FIG. 9 shows the configuration of the power conversion device of the first modification.
第一変形例の電力変換装置1は、蓄電システム用電力変換装置である。この蓄電システム用電力変換装置の直流回路には、蓄電池31が接続されている。この蓄電システム用電力変換装置は、前述の太陽光発電の電力変換装置1と同様の効果を奏す。
The power conversion device 1 of the first modification is a power conversion device for a storage system. A storage battery 31 is connected to the DC circuit of the power conversion device for a storage system. The power conversion device for a storage system exhibits the same effect as the above-described power conversion device 1 for solar power generation.
図10は、第二変形例の電力変換装置の構成を示す。
FIG. 10 shows the configuration of the power conversion device of the second modification.
第二変形例の電力変換装置1は、風力発電システム用電力変換装置である。この風力発電システム用電力変換装置の直流回路には、風力発電システムが接続されている。風力発電システムは、ブレード32で風を受けることで回転トルクを得て、その回転トルクを、シャフト33を介して永久磁石発電機34の回転子に伝達し、永久磁石発電機34の固定子巻線に発生する誘起電圧をダイオード整流器35で整流し、直流電力を得る。この風力発電システム用電力変換装置は、前述の太陽光発電の電力変換装置1と同様の効果を奏す。なお、永久磁石発電機34の電力を整流するダイオード整流器35は、自励式コンバータであっても良い。
The power converter 1 of the second modification is a power converter for a wind power generation system. A wind power generation system is connected to the DC circuit of the power conversion device for wind power generation system. The wind power generation system obtains rotational torque by receiving wind by the blades 32, and transmits the rotational torque to the rotor of the permanent magnet generator 34 via the shaft 33, and the stator winding of the permanent magnet generator 34. The induced voltage generated in the line is rectified by the diode rectifier 35 to obtain DC power. The power conversion device for a wind power generation system exhibits the same effect as the power conversion device 1 for solar power generation described above. The diode rectifier 35 for rectifying the power of the permanent magnet generator 34 may be a self-excitation converter.
本実施例によれば、連系点における急峻な位相変化を系統連系時には生じさせず単独運転時だけに生じさせることができ、単独運転を早期に検出することができる。また、その無効電流指令値の変化周期を0.2s以内とすることにより、0.1s以内に単独運転を検出することが可能となる。
According to this embodiment, a steep phase change at the interconnection point can be generated only at the time of isolated operation without generating at the time of grid connection, and the isolated operation can be detected at an early stage. Also, by setting the change cycle of the reactive current command value to within 0.2 s, it becomes possible to detect an isolated operation within 0.1 s.
本実施例の電力変換装置は、無効電流補正信号の振幅を、電力変換装置から出力される有効電流に応じて変化させる。この動作により、有効電流が小さい状態では無効電流の変化量を制限し、過大な無効電流による電力変換装置の効率低下を抑制することができる。ここで、有効電流が小さく、負荷の消費有効電流と一致する場合は、負荷の容量が小さい(軽負荷である)ことを意味する。有効電流が小さい場合は、無効電流の小さな変化でも、無効電流のアンバランス比率は大きくなり、連系点電圧の位相変化を大きくすることができる。ゆえに、単独運転状態の検出と、常時の電力変換装置の効率低下抑制とを両立することができる。
The power conversion device of the present embodiment changes the amplitude of the reactive current correction signal in accordance with the active current output from the power conversion device. By this operation, it is possible to limit the amount of change of the reactive current in a state where the effective current is small, and to suppress the efficiency reduction of the power conversion device due to the excessive reactive current. Here, when the effective current is small and matches the consumed effective current of the load, it means that the capacity of the load is small (light load). When the effective current is small, the imbalance ratio of the reactive current becomes large even with a small change of the reactive current, and the phase change of the interconnection point voltage can be made large. Therefore, it is possible to achieve both the detection of the islanding state and the suppression of the efficiency decrease of the power converter at all times.
図11は、実施例2の電力変換装置2の構成を示す。
FIG. 11 shows the configuration of the power conversion device 2 of the second embodiment.
実施例1の電力変換装置1と比較すると、本実施例の電力変換装置2は、制御器100に代えて制御器101を有する。本実施例において、実施例1と同一部分については、同一の符号で示し、重複説明を省く。
Compared to the power conversion device 1 of the first embodiment, the power conversion device 2 of the present embodiment has a controller 101 instead of the controller 100. In the present embodiment, the same parts as those of the first embodiment are denoted by the same reference numerals, and redundant description will be omitted.
図12は、実施例2の制御器100の構成を示す。
FIG. 12 shows the configuration of the controller 100 of the second embodiment.
制御器100と比較すると、制御器101は、無効電力制御部100cに代えて無効電力制御部101cを有する。無効電力制御部101cは、直流電圧制御器1051から出力される有効電流指令値に応じて無効電流補正信号del_iqrefを調整する。無効電力制御部101cは、無効電力制御部100cの要素に加え、乗算器1076と、上下限リミッタ1077と、乗算器1078とを有する。
Compared to the controller 100, the controller 101 has a reactive power control unit 101c instead of the reactive power control unit 100c. Reactive power control unit 101 c adjusts reactive current correction signal del_iqref in accordance with the effective current command value output from DC voltage controller 1051. The reactive power control unit 101 c has a multiplier 1076, an upper / lower limiter 1077, and a multiplier 1078 in addition to the elements of the reactive power control unit 100 c.
乗算器1076は、有効電流指令値に所定のゲインを乗算する。上下限リミッタ1077は、1.0を上限とし、無負荷時の単独運転状態の検出に必要な無効電流指令値の比率を下限として乗算器1076の出力を制限する。
The multiplier 1076 multiplies the effective current command value by a predetermined gain. The upper and lower limit limiter 1077 has an upper limit of 1.0 and limits the output of the multiplier 1076 with the ratio of the reactive current command value necessary for detecting the no-load single running state as the lower limit.
図13は、上下限リミッタ1077の入出力特性を示す。
FIG. 13 shows the input / output characteristics of the upper and lower limit limiter 1077.
この図は、直流電流指令値と上下限リミッタ1077の出力の関係を示す。上下限リミッタ1077の出力は、直流電流指令値に対して単調増加な特性を有し、出力を予め設定された下限値および上限値の間の範囲に制限する。これにより、負荷が軽くなっても無効電流指令値は最低限の振幅を維持することができる。また、有効電力に対する無効電力の比率が制限される場合であっても、無効電力を抑えることができる。
This figure shows the relationship between the direct current command value and the output of the upper / lower limiter 1077. The output of the upper and lower limit limiter 1077 has a characteristic of monotonically increasing with respect to the direct current command value, and limits the output to a range between a lower limit value and an upper limit value set in advance. As a result, even if the load is reduced, the reactive current command value can maintain the minimum amplitude. Further, even when the ratio of reactive power to active power is limited, reactive power can be suppressed.
乗算器1078は、無効電流補正信号算出器1073の出力と上下限リミッタ1077を乗算することにより、無効電流補正信号del_iqrefを算出する。
The multiplier 1078 multiplies the output of the reactive current correction signal calculator 1073 by the upper / lower limiter 1077 to calculate the reactive current correction signal del_iqref.
本実施例では乗算器1078の出力を無効電流補正信号とすることで有効電流に応じた無効電流補正信号を出力することができる。これにより、電力変換装置2の軽負荷時の無効電流を低減できるため、無効電流出力による効率低下を抑制でき、なおかつ単独運転状態検出に必要な無効電流を出力可能である。
In this embodiment, by using the output of the multiplier 1078 as a reactive current correction signal, it is possible to output a reactive current correction signal according to the active current. Thereby, since the reactive current at the time of light load of the power conversion device 2 can be reduced, it is possible to suppress the efficiency decrease due to reactive current output, and it is possible to output the reactive current necessary for the islanding state detection.
本実施例によれば、電力変換装置2は単独運転状態が発生したとき、電力変換装置2からの出力電力と、電力変換装置2に並列接続される負荷200の消費電力とが一致した場合でも、確実かつ速やかに単独運転状態を検出し、電力変換装置2の出力を停止し、電力系統300から解列することが可能となる。
According to this embodiment, even when the power conversion device 2 generates an isolated operation state, the output power from the power conversion device 2 and the power consumption of the load 200 connected in parallel to the power conversion device 2 match. Thus, it becomes possible to detect the islanding state reliably and promptly, to stop the output of the power conversion device 2, and to disconnect the power system 300.
さらに、無効電流補正信号の範囲を制限するとともに無効電流補正信号を有効電流指令値に対して単調増加の特性とすることにより、電力変換装置2の軽負荷時無効電流出力による損失を低減し、効率低下を抑制することが可能となる。
Furthermore, by limiting the range of the reactive current correction signal and making the reactive current correction signal a monotonically increasing characteristic with respect to the active current command value, the loss due to the light load reactive current output of the power conversion device 2 is reduced. It is possible to suppress the decrease in efficiency.
本実施例では、電力変換装置2を太陽光発電用インバータに適用した例を説明したが、実施例1の変形例と同様に、蓄電システム用インバータや風力発電用インバータに適用しても同様の効果を奏す。
Although the example which applied the power converter device 2 to the inverter for solar power generation was demonstrated in the present Example, it is the same even if it applies to the inverter for electrical storage systems and the inverter for wind power generation similarly to the modification of Example 1. Play an effect.
本発明の一態様における用語について説明する。直流電圧検出部は、直流電圧センサ71PT等に対応する。出力電流検出部は、出力電流センサ72CTu、72CTw等に対応する。連系点電圧検出部は、連系点電圧センサ70PTuv、70PTvw等に対応する。位相算出部は、連系点電圧位相検出部100a等に対応する。直流電流指令値算出部は、直流電圧制御部100b等に対応する。無効電流指令値算出部は、無効電力制御部100c等に対応する。制御部は、電流制御部100d等に対応する。単独運転検出部は、単独運転制御部100e等に対応する。基本無効電流指令値は、無効電流指令値iqref等に対応する。補正指令値は、無効電流補正信号del_iqref等に対応する。無効電流指令値は、iqref2等に対応する。
The terms in one embodiment of the present invention will be described. The DC voltage detection unit corresponds to the DC voltage sensor 71PT or the like. The output current detection unit corresponds to the output current sensors 72CTu, 72CTw, and the like. The interconnection point voltage detection unit corresponds to the interconnection point voltage sensors 70PTuv, 70PTvw, and the like. The phase calculation unit corresponds to the connection point voltage phase detection unit 100 a and the like. The direct current command value calculation unit corresponds to the direct current voltage control unit 100b and the like. The reactive current command value calculation unit corresponds to the reactive power control unit 100c and the like. The control unit corresponds to the current control unit 100d and the like. The isolated operation detection unit corresponds to the isolated operation control unit 100e and the like. The basic reactive current command value corresponds to the reactive current command value iqref or the like. The correction command value corresponds to the reactive current correction signal del_iqref or the like. The reactive current command value corresponds to iqref 2 or the like.
本発明は、以上の実施例に限定されるものでなく、その趣旨から逸脱しない範囲で、他の様々な形に変更することができる。
The present invention is not limited to the embodiments described above, and can be modified in other various forms without departing from the scope of the present invention.
1…電力変換器、10…インバータ、10k、10l、10m、10n、10o、10p…IGBTモジュール、10C…コンデンサ、20…高調波フィルタ、20L1、20L2…リアクトル、20C…コンデンサ、30…太陽光パネル、31…蓄電池、32…ブレード、33…シャフト、34…永久磁石発電機、35…ダイオード整流器、40…コンタクタ、70PTuv、70PTvw…連系点電圧センサ、71PT…直流電圧センサ、72CTu、72CTw…出力電流センサ、100、101…制御器、200…負荷、300…電力系統、400…遮断器
DESCRIPTION OF SYMBOLS 1 ... Power converter, 10 ... Inverter, 10k, 10l, 10m, 10n, 10o, 10p ... IGBT module, 10C ... Capacitor, 20 ... Harmonic filter, 20L1, 20L2 ... Reactor, 20C ... Capacitor, 30 ... Solar panel , 31: storage battery, 32: blade, 33: shaft, 34: permanent magnet generator, 35: diode rectifier, 40: contactor, 70PTuv, 70PTvw: interconnection point voltage sensor, 71PT: DC voltage sensor, 72CTu, 72CTw: output Current sensor, 100, 101 ... controller, 200 ... load, 300 ... power system, 400 ... circuit breaker
Claims (9)
- 直流を交流に変換して電力系統へ出力するインバータと、
前記インバータへ入力される直流電圧を検出する直流電圧検出部と、
前記インバータからの出力電流を検出する出力電流検出部と、
前記インバータおよび前記電力系統の間の連系点における連系点電圧を検出する連系点電圧検出部と、
前記連系点電圧に基づいて連系点電圧位相を算出する位相算出部と、
前記直流電圧に基づいて、前記インバータに出力させる有効電流を示す有効電流指令値を算出する有効電流指令値算出部と、
前記出力電流および前記連系点電圧に基づいて、前記インバータに出力させる無効電流を示す無効電流指令値を算出する無効電流指令値算出部と、
前記出力電流、前記連系点電圧位相、前記有効電流指令値、および前記無効電流指令値に基づいて前記インバータを制御することにより、前記インバータの出力電圧の位相を予め定められた時間間隔毎に変化させる制御部と、
前記連系点電圧位相の変化に基づいて、前記電力変換装置の単独運転状態を検出する単独運転検出部と、
を備える電力変換装置。 An inverter that converts direct current into alternating current and outputs it to the power system;
A DC voltage detection unit that detects a DC voltage input to the inverter;
An output current detection unit that detects an output current from the inverter;
An interconnection point voltage detection unit that detects an interconnection point voltage at an interconnection point between the inverter and the power system;
A phase calculation unit that calculates an interconnection point voltage phase based on the interconnection point voltage;
An active current command value calculation unit that calculates an active current command value indicating an active current to be output to the inverter based on the DC voltage;
A reactive current command value calculation unit that calculates a reactive current command value indicating a reactive current to be output to the inverter based on the output current and the interconnection point voltage;
By controlling the inverter based on the output current, the connection point voltage phase, the effective current command value, and the reactive current command value, the phase of the output voltage of the inverter is determined at predetermined time intervals. A control unit to change
An isolated operation detection unit that detects an isolated operation state of the power conversion device based on a change in the connection point voltage phase;
Power converter comprising: - 前記時間間隔毎に発生する前記出力電圧の位相変化は、前記電力系統における電圧の位相変化に比べて急峻である、
請求項1に記載の電力変換装置。 The phase change of the output voltage generated at each time interval is sharper than the phase change of the voltage in the power system.
The power converter device according to claim 1. - 前記時間間隔は、前記単独運転状態の発生から検出までの時間の上限として予め定められた上限時間以下である、
請求項2に記載の電力変換装置。 The time interval is equal to or less than an upper limit time predetermined as an upper limit of time from occurrence of the islanding state to detection.
The power converter device according to claim 2. - 前記インバータから出力される無効電流は、前記時間間隔の2倍を周期として周期的に変化し、
請求項3に記載の電力変換装置。 The reactive current output from the inverter periodically changes with a period of twice the time interval,
The power converter device according to claim 3. - 前記無効電流指令値算出部は、前記出力電流および前記連系点電圧位相に基づいて、前記電力変換装置からの無効電力を目標値に近づける制御による無効電流を示す基本無効電流指令値を算出し、前記時間間隔で変化する補正指令値を算出し、前記基本無効電流指令値に前記補正指令値を加えることにより前記無効電流指令値を算出する、
請求項4に記載の電力変換装置。 The reactive current command value calculation unit calculates, based on the output current and the interconnection point voltage phase, a basic reactive current command value indicating reactive current by control to bring reactive power from the power conversion device closer to a target value. Calculating the reactive current command value by calculating a correction command value that changes at the time interval, and adding the correction command value to the basic reactive current command value;
The power converter device according to claim 4. - 前記補正指令値の波形は、前記時間間隔の2倍を周期とする矩形波である、
請求項5に記載の電力変換装置。 The waveform of the correction command value is a rectangular wave having a cycle of twice the time interval,
The power converter device according to claim 5. - 前記インバータの出力電圧の位相の変化は、前記インバータから出力される有効電流に応じて変化する、
請求項1乃至6の何れか一項に記載の電力変換装置。 The change in the phase of the output voltage of the inverter changes in accordance with the active current output from the inverter.
The power converter device according to any one of claims 1 to 6. - 前記無効電流指令値算出部は、前記有効電流指令値の増加に応じて前記補正指令値を増加させる、
請求項5または6に記載の電力変換装置。 The reactive current command value calculation unit increases the correction command value according to an increase of the active current command value.
The power converter device according to claim 5 or 6. - 直流を交流に変換して電力系統へ出力するインバータを含む電力変換装置の制御方法であって、
前記インバータへ入力される直流電圧を検出し、
前記インバータからの出力電流を検出し、
前記インバータおよび前記電力系統の間の連系点における連系点電圧を検出し、
前記連系点電圧に基づいて連系点電圧位相を算出し、
前記直流電圧に基づいて、前記インバータに出力させる有効電流を示す有効電流指令値を算出し、
前記連系点電圧および前記出力電流に基づいて、前記インバータに出力させる無効電流を示す無効電流指令値を算出し、
前記出力電流、前記連系点電圧位相、前記有効電流指令値、および前記無効電流指令値に基づいて前記インバータを制御することにより、前記インバータの出力電圧の位相を予め定められた時間間隔毎に変化させ、
前記連系点電圧位相の変化に基づいて、前記電力変換装置の単独運転状態を検出する、ことを備える制御方法。
A control method of a power conversion device including an inverter which converts direct current into alternating current and outputs it to a power system,
Detecting a DC voltage input to the inverter;
Detecting the output current from the inverter,
Detecting an interconnection point voltage at an interconnection point between the inverter and the power system;
The interconnection point voltage phase is calculated based on the interconnection point voltage,
Based on the DC voltage, an active current command value indicating an active current to be output to the inverter is calculated;
A reactive current command value indicating a reactive current to be output to the inverter is calculated based on the connection point voltage and the output current,
By controlling the inverter based on the output current, the connection point voltage phase, the effective current command value, and the reactive current command value, the phase of the output voltage of the inverter is determined at predetermined time intervals. Change,
Detecting the islanding state of the power conversion device based on a change in the connection point voltage phase.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-031456 | 2014-02-21 | ||
JP2014031456A JP6159271B2 (en) | 2014-02-21 | 2014-02-21 | Power converter and control method of power converter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015125377A1 true WO2015125377A1 (en) | 2015-08-27 |
Family
ID=53877906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/082190 WO2015125377A1 (en) | 2014-02-21 | 2014-12-05 | Power conversion device and power conversion device control method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6159271B2 (en) |
WO (1) | WO2015125377A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016103902A (en) * | 2014-11-28 | 2016-06-02 | 株式会社日立製作所 | Power conversion device and control method therefor |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6583922B2 (en) * | 2016-08-05 | 2019-10-02 | 東芝三菱電機産業システム株式会社 | Power converter |
KR101785496B1 (en) | 2016-08-16 | 2017-10-17 | 디아이케이(주) | System for detecting islanding and method for detecting islanding |
JP6345311B1 (en) * | 2017-05-24 | 2018-06-20 | 三菱電機株式会社 | Power converter |
JP7034873B2 (en) * | 2018-09-26 | 2022-03-14 | シャープ株式会社 | Power conditioner, power system and judgment method |
EP3961903A4 (en) | 2019-04-25 | 2022-04-06 | Mitsubishi Electric Corporation | Control device |
EP4184779A1 (en) | 2019-04-25 | 2023-05-24 | Mitsubishi Electric Corporation | Control device and power conversion device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0923660A (en) * | 1995-07-10 | 1997-01-21 | Fuji Electric Co Ltd | Method for detecting isolated operation of distributed power supply |
JP2005278253A (en) * | 2004-03-23 | 2005-10-06 | Matsushita Electric Works Ltd | System interconnection inverter |
JP2009044839A (en) * | 2007-08-08 | 2009-02-26 | Panasonic Corp | Grid-connected inverter device |
JP2013099230A (en) * | 2011-11-07 | 2013-05-20 | Daihen Corp | Independent operation detection device for system interaction inverter device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4819375B2 (en) * | 2005-03-04 | 2011-11-24 | 河村電器産業株式会社 | System connection method and system connection inverter for distributed power supply |
JP5398233B2 (en) * | 2008-11-10 | 2014-01-29 | 株式会社東芝 | Independent operation detection device for inverter and isolated operation detection method |
JP5502558B2 (en) * | 2010-03-31 | 2014-05-28 | 株式会社ダイヘン | Isolated operation detection device, isolated operation detection method, and grid-connected inverter system provided with an isolated operation detection device |
CN103326350B (en) * | 2012-03-23 | 2016-03-16 | 通用电气公司 | Inverter controller, energy conversion system, photovoltaic energy conversion system and method |
-
2014
- 2014-02-21 JP JP2014031456A patent/JP6159271B2/en active Active
- 2014-12-05 WO PCT/JP2014/082190 patent/WO2015125377A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0923660A (en) * | 1995-07-10 | 1997-01-21 | Fuji Electric Co Ltd | Method for detecting isolated operation of distributed power supply |
JP2005278253A (en) * | 2004-03-23 | 2005-10-06 | Matsushita Electric Works Ltd | System interconnection inverter |
JP2009044839A (en) * | 2007-08-08 | 2009-02-26 | Panasonic Corp | Grid-connected inverter device |
JP2013099230A (en) * | 2011-11-07 | 2013-05-20 | Daihen Corp | Independent operation detection device for system interaction inverter device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016103902A (en) * | 2014-11-28 | 2016-06-02 | 株式会社日立製作所 | Power conversion device and control method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP6159271B2 (en) | 2017-07-05 |
JP2015156772A (en) | 2015-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015125377A1 (en) | Power conversion device and power conversion device control method | |
JP5542609B2 (en) | Reactive power compensator | |
JP4845904B2 (en) | Wind power generation system | |
US8570003B2 (en) | Double fed induction generator converter and method for suppressing transient in deactivation of crowbar circuit for grid fault ridethrough | |
US8848400B2 (en) | System and method for reactive power regulation | |
US20090278354A1 (en) | Wind turbine generator system | |
US11183946B2 (en) | Integrated rectifier-generator system for AC-to-DC conversion | |
US9548690B2 (en) | System and method for adjusting current regulator gains applied within a power generation system | |
JP6022711B2 (en) | Gas turbine power generation system | |
Yin et al. | Experimental comparison of DPC and VOC control of a three-level NPC grid connected converter | |
JP2011015493A (en) | Distributed power supply device | |
US20240275165A1 (en) | Control device and power conversion device | |
JP5961932B2 (en) | Electric power leveling device | |
JP7136368B2 (en) | power converter | |
JP2012231606A (en) | System interconnection power conversion device | |
WO2018020666A1 (en) | Power conversion device and control method therefor | |
JP6258806B2 (en) | Power converter for grid connection | |
JP6041250B2 (en) | Grid interconnection device | |
JP2017163659A (en) | Wind power generation system | |
JP2016167900A (en) | Control apparatus of wind generator system | |
US20230188030A1 (en) | Power conversion device and control device | |
JP6392708B2 (en) | Self-excited power converter | |
JP2016103902A (en) | Power conversion device and control method therefor | |
JP5693337B2 (en) | Generator control device | |
KR20090100704A (en) | Inverters for Solar Power Systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14882886 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14882886 Country of ref document: EP Kind code of ref document: A1 |