[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015122392A1 - Transparent conductor and method for producing same - Google Patents

Transparent conductor and method for producing same Download PDF

Info

Publication number
WO2015122392A1
WO2015122392A1 PCT/JP2015/053573 JP2015053573W WO2015122392A1 WO 2015122392 A1 WO2015122392 A1 WO 2015122392A1 JP 2015053573 W JP2015053573 W JP 2015053573W WO 2015122392 A1 WO2015122392 A1 WO 2015122392A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
transparent
refractive index
high refractive
index layer
Prior art date
Application number
PCT/JP2015/053573
Other languages
French (fr)
Japanese (ja)
Inventor
仁一 粕谷
一成 多田
健一郎 平田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015562819A priority Critical patent/JPWO2015122392A1/en
Publication of WO2015122392A1 publication Critical patent/WO2015122392A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a transparent conductor and a manufacturing method thereof. More specifically, the present invention relates to a transparent conductor improved in electrical connection between a transparent metal layer having a high light transmittance and a circuit board, and a method for manufacturing the transparent conductor.
  • transparent conductors have been used in various devices such as liquid crystal displays, plasma displays, display devices such as inorganic and organic EL (electroluminescence) displays, touch panels, and solar cells.
  • a transparent conductor In a touch panel type display device or the like, wiring including a transparent conductor is disposed on the image display surface of the display element. Therefore, the transparent conductor is required to have high light transmittance. In such various display devices, a transparent conductor using ITO having a high light transmittance is often used.
  • the Ag layer is formed of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium / zinc oxide), ICO (indium / cerium oxide), a It has also been proposed to sandwich the film with GIO (a film made of gallium, indium, and oxygen) (see, for example, Patent Documents 2 to 4 and Non-Patent Document 1).
  • a film having a high refractive index for example, niobium oxide (Nb 2 O 5 ), IZO (indium / zinc oxide), ICO (indium / cerium oxide), a
  • GIO a film made of gallium, indium, and oxygen
  • Patent Documents 2 to 4 a transparent conductor in which an Ag layer is sandwiched between dielectric layers such as niobium oxide and IZO has insufficient moisture resistance. As a result, when a transparent conductor is used in a high humidity environment, there is a problem that the Ag layer is easily corroded.
  • the present invention has been made in view of the above problems and situations.
  • the problem to be solved is to provide a transparent conductor improved in electrical connection between a transparent metal layer having a high light transmittance and a circuit board, and a method for manufacturing the transparent conductor.
  • the present inventor is effective in that the transparent metal layer is electrically connected to the circuit substrate through the anisotropic conductive member in the process of examining the cause of the above problems.
  • a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order; At least one of the first high refractive index layer and the second high refractive index layer is a layer containing at least zinc sulfide, The transparent conductor is patterned, and A transparent conductor, wherein the transparent metal layer is electrically connected to a circuit board via an anisotropic conductive member.
  • a sulfurization preventing layer containing at least one compound selected from a metal oxide, a metal fluoride, and a metal nitride is provided between the zinc sulfide-containing layer and the transparent metal layer.
  • the transparent conductor according to item.
  • a method for producing a transparent conductor comprising:
  • the transparent metal layer and the layer containing ZnS are formed adjacent to each other, there is a problem that metal sulfide is easily generated and the light transmittance of the transparent conductor is likely to be lowered.
  • the metal sulfide is presumed to be produced as follows.
  • a transparent metal layer is formed on the first high refractive index layer as a layer containing at least zinc sulfide (hereinafter also referred to as a zinc sulfide-containing layer) by a vapor deposition method such as sputtering, the zinc sulfide-containing layer
  • a vapor deposition method such as sputtering
  • the zinc sulfide-containing layer The unreacted sulfur component is expelled into the layer formation atmosphere by the transparent metal layer material (metal material). Then, the ejected sulfur component reacts with the metal, and metal sulfide is deposited on the zinc sulfide-containing layer.
  • the sulfur component contained in the atmosphere of layer formation of a zinc sulfide content layer remains in a transparent metal layer atmosphere. And this sulfur component and the metal derived from a transparent metal layer react, and metal sulfide deposits on a zinc sulfide content layer.
  • the metal in the transparent metal layer is expelled into the layer formation atmosphere by the material of the second high refractive index layer. .
  • the ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal layer. Furthermore, a metal sulfide is generated on the surface of the transparent metal layer also when the surface of the transparent metal layer comes into contact with the sulfur component in the layer forming atmosphere.
  • the first antisulfurization layer 5 a is laminated on the first high refractive index layer 2.
  • the sulfur component in the first high refractive index layer 2 is hardly ejected when the transparent metal layer 3 is formed.
  • the sulfur component contained in the atmosphere of the first high refractive index layer 2 is formed in the first sulfurization preventing layer 5a. It reacts with the component and is adsorbed by the component of the first antisulfurization layer 5a. Therefore, the atmosphere in which the transparent metal layer 3 is formed does not easily contain sulfur, and the generation of metal sulfide is suppressed.
  • the second sulfidation preventing layer 5 b is laminated on the transparent metal layer 3.
  • the transparent metal layer 3 is protected by the second antisulfurization layer 5b, the metal in the transparent metal layer 3 is hardly ejected when the second high refractive index layer 4 is formed.
  • the sulfur component in the atmosphere forming the second high refractive index layer 4 is difficult to come into contact with the surface of the transparent metal layer 3. Therefore, it is difficult for metal sulfides to be generated on the surface of the transparent metal layer 3.
  • the transparent conductive layer can be used as a lead-out wiring when adapted to a touch panel.
  • the lead wiring is provided after patterning the transparent conductive layer in the touch panel.
  • the step of providing the lead wiring is reduced by creating the lead wiring with the transparent conductive layer. Can do.
  • the problem that the layer containing ZnS is highly insulating and difficult to conduct is that the conductive particles enter the transparent conductive layer by heating and pressurizing the conductive particle-containing layer, and the transparent metal layer in the transparent conductive layer I found that the problem is solved by the contact between the electrode and the conduction.
  • Schematic diagram showing the entire transparent conductor of the present invention The schematic diagram which shows the arrangement
  • the transparent conductor of the present invention is a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order, the first high refractive index layer and At least one layer of the second high refractive index layer is a layer containing at least zinc sulfide, the transparent conductor is patterned, and the transparent metal layer is a circuit through an anisotropic conductive member. It is electrically connected to the substrate.
  • This feature is a technical feature common to the inventions according to claims 1 to 5.
  • At least one kind selected from a metal oxide, a metal fluoride, and a metal nitride is provided between the layer containing zinc sulfide and the transparent metal layer from the viewpoint of manifesting the effects of the present invention. It is preferable to have a sulfidation preventive layer containing the above compound. This is because the atmosphere in which the transparent metal layer is formed does not easily contain sulfur, and the generation of metal sulfide is suppressed.
  • a lead-out wiring portion formed of the transparent conductor itself is provided, and the lead-out wiring portion is electrically connected to the circuit board via the anisotropic conductive member. This is because it suitably functions as a touch panel sensor.
  • the lead-out wiring part and the touch sensor part are provided, because the transparent conductive layer can be used as the lead-out wiring, so that the process of providing the lead-out wiring can be reduced by one.
  • a step of forming a layer structure by laminating a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order on one surface of a transparent substrate It is preferable that the method further includes a step of electrically connecting the layer structure to a circuit board through an anisotropic conductive member.
  • a transparent conductor can be manufactured suitably.
  • the transparent conductor of the present invention is a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order.
  • At least one of the high refractive index layers is a layer containing at least zinc sulfide, the transparent conductor is patterned, and the transparent metal layer is electrically connected to the circuit board via the anisotropic conductive member. Connected.
  • An example of the outline of the patterned transparent conductor 100 of this invention is shown to FIG. 1A.
  • An example of the layer configuration of the transparent conductor 100 is shown in FIG. 2 (the lead wiring portion is not shown). As shown in FIG.
  • the transparent conductor of the present invention contains at least one compound selected from a metal oxide, a metal fluoride, and a metal nitride between a layer containing zinc sulfide and a transparent metal layer. It is preferable to have a sulfidation preventing layer. Moreover, it is preferable to have the lead-out wiring part 12 pulled out from the conduction
  • the lead wiring part 12 is preferably formed of the transparent conductor 100 itself.
  • the transparent conductor of the present invention preferably has a lead-out wiring portion formed of the transparent conductor itself, and the lead-out wiring portion is preferably electrically connected to the circuit board via an anisotropic conductive member.
  • the lead-out wiring portion includes a conductive particle containing layer 6 / electrode 7 / flexible substrate 8 (circuit board, flexible printed circuit board, and FPC) on the opposite surface of the transparent conductive layer 10 that the transparent substrate 1 contacts. Also referred to as a substrate). That is, the region of the lead-out wiring portion 12 that is connected to the circuit board serving as the connection terminal 11 has the conductive particle-containing layer 6, the electrode 7, and the flexible substrate 8 in the lead-out wiring portion formed of the transparent conductor itself. It is formed by pressure bonding (see FIG. 1B, the electrode 7 is not shown). In FIG. 1B, illustration of the transparent conductive layer 10 patterned in the X-axis direction is omitted for the sake of simplicity.
  • the conductive particle-containing layer 6, the electrode 7 and the flexible substrate 8 are pressure-bonded, and the display panel 16 is bonded to the transparent conductive layer 10 (transparent conductor 100) with an adhesive 15.
  • Can be manufactured see FIG. 1C.
  • a display panel 16 is bonded to the transparent conductive layer 10 (transparent conductor 100) to form a touch panel, a region surrounded by a broken line illustrated in FIG. 1A functions as the touch sensor unit 13.
  • a known method can be appropriately used as a known method.
  • the transparent conductor 100 of the present invention is provided with a transparent substrate 1 and a transparent conductive layer 10.
  • the transparent conductive layer 10 is provided with at least a first high refractive index layer 2, a transparent metal layer 3, and a second high refractive index layer 4.
  • either one or both of the first high refractive index layer 2 and the second high refractive index layer 4 are zinc sulfide-containing layers containing ZnS.
  • the sulfide prevention layer 5 the first sulfide prevention layer 5a and the second sulfide.
  • a prevention layer 5b) is preferably provided. Further, as described above, the transparent conductive layer 10 is patterned. A known method can be used as a patterning method and shape, and the patterning method and shape can be appropriately changed according to the purpose of use of the transparent conductor.
  • the transparent substrate 1 and the transparent conductive layer 10 will be described, and further, the conductive particle-containing layer 6 provided in the lead-out wiring portion will be described.
  • the electrode generally used in the range which does not inhibit the effect of this invention can be used for the electrode used by this invention.
  • a flexible substrate can be used as long as it is a flexible printed circuit board that can be greatly deformed.
  • the transparent conductive layer 10 may be provided with a layer other than the first high refractive index layer 2, the transparent metal layer 3, the second high refractive index layer 4, and the antisulfurization layer 5.
  • an underlayer that can become a growth nucleus when forming the transparent metal layer 3 may be provided adjacent to the transparent metal layer 3 between the transparent metal layer 3 and the first high refractive index layer 2.
  • the layers constituting the transparent conductive layer 10 according to the present invention are all layers made of an inorganic material. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 4, the laminated body from the first high refractive index layer 2 to the second high refractive index layer 4 is made of the transparent conductive layer 10. It is.
  • the transparent conductor 100 of the present invention has a transparent substrate 1 in addition to the transparent conductive layer 10 including a first high refractive index layer, a transparent metal layer, and a second high refractive index layer. Furthermore, the transparent metal layer is electrically connected to the circuit board via an anisotropic conductive member. After describing the layer structure of the transparent conductive layer first, the other parts will be described.
  • the first high refractive index layer 2 is a light transmitting property of the conductive region a of the transparent conductor, that is, the region where the transparent metal layer 3 is formed. And is formed at least in the conduction region a of the transparent conductor 100.
  • the first high-refractive index layer 2 may be formed also in the insulating region b of the transparent conductor 100, but from the viewpoint of making it difficult to visually recognize the pattern formed of the conductive region a and the insulating region b, only the conductive region a. It is preferable to be formed.
  • the first high refractive index layer 2 includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate 1 described later.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5, and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the first high refractive index layer 2 sufficiently adjusts the light transmittance of the conduction region a of the transparent conductor 100.
  • the refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material can be a metal oxide.
  • TiO 2 Examples of metal oxides, ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al doped ZnO), GZO (Ga doped ZnO), ATO (Sb doped SnO), ICO (indium cerium oxide) , Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (amorphous oxide composed of gallium, indium, and oxygen) and the like.
  • the first high refractive index layer 2 may contain only one kind of the metal
  • the dielectric material or the oxide semiconductor material included in the first high refractive index layer 2 may be ZnS.
  • ZnS When ZnS is contained in the first high refractive index layer 2, moisture hardly penetrates from the transparent substrate 1 side, and corrosion of the transparent metal layer 3 is suppressed.
  • the first high refractive index layer 2 may contain only ZnS, and may contain other materials together with ZnS.
  • Materials included with ZnS is a metal oxide or SiO 2 or the like, which may be the dielectric material or an oxide semiconductor material, particularly preferably SiO 2.
  • SiO 2 is contained together with ZnS, the first high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
  • the amount of ZnS is 0.1 to 95% by mass or less with respect to the total number of moles of the materials constituting the first high refractive index layer 2. It is preferably 50 to 90% by mass or less, and more preferably 60 to 85% by mass or less.
  • the ratio of ZnS is high, the sputtering rate is increased, and the formation rate of the first high refractive index layer 2 is increased.
  • the amorphous nature of the first high refractive index layer 2 is increased, and cracking of the first high refractive index layer 2 is suppressed.
  • the thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm. When the thickness of the first high refractive index layer 2 is 15 nm or more, the first high refractive index layer 2 sufficiently adjusts the light transmittance of the conductive region a of the transparent conductor 100. On the other hand, if the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease. The thickness of the first high refractive index layer 2 is measured with an ellipsometer.
  • the first high refractive index layer 2 can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method and a thermal CVD method. From the standpoint that the refractive index (density) of the first high refractive index layer 2 is increased, the first high refractive index layer 2 is preferably a layer formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, in order to increase the film density, it is desirable that there is an assist by an ion assist method (ION Assisted Deposition: IAD).
  • IAD ION Assisted Deposition
  • the patterning method is not particularly limited.
  • the first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the surface to be formed. It may be a layer patterned by.
  • (1-2) First Antisulfuration Layer When ZnS is contained in the first high refractive index layer, that is, when the first high refractive index layer 2 is a zinc sulfide-containing layer, as shown in FIG. It is preferable that a first antisulfurization layer 5 a is provided between the high refractive index layer 2 and the transparent metal layer 3.
  • the first sulfidation preventing layer 5a may be formed also in the insulating region b of the transparent conductor 100, as shown in FIG. 4 from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b. In addition, it is preferably formed only in the conduction region a.
  • the first sulfidation preventing layer 5a may be a metal oxide, metal nitride, metal fluoride, or the like, or a layer containing Zn.
  • the first sulfidation preventing layer 5a may contain only one kind or two or more kinds.
  • the metal oxide can react with sulfur or adsorb sulfur.
  • a compound is preferred.
  • the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
  • metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 and the like are included.
  • metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like.
  • metal nitride examples include Si 3 N 4 , AlN, and the like.
  • the thickness of the first sulfidation preventing layer 5a is a thickness capable of protecting the surface of the first high refractive index layer 2 from an impact when the transparent metal layer 3 is formed.
  • ZnS that can be contained in the first high refractive index layer has a high affinity with the metal contained in the transparent metal layer 3. Therefore, if the thickness of the first antisulfurization layer 5a is very thin and a part of the first high refractive index layer 2 is slightly exposed, a transparent metal layer grows around the exposed part, and the transparent metal Layer 3 tends to be dense.
  • the first antisulfurization layer 5a is preferably relatively thin, preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm.
  • the thickness of the first sulfurization preventing layer 5a is measured with an ellipsometer.
  • the first sulfidation preventing layer 5a may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
  • the first antisulfurization layer 5a is a layer patterned into a desired shape
  • the patterning method is not particularly limited.
  • the first sulfidation preventing layer 5a may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, by a known etching method. It may be a patterned layer.
  • the transparent metal layer 3 is a layer for conducting electricity in the transparent conductor 100.
  • the transparent metal layer 3 may be laminated on the entire surface of the transparent substrate 1, according to the intended use of the device. It may be patterned into a desired shape.
  • the region a where the transparent metal layer 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”).
  • the region b not including the transparent metal layer 3 is an insulating region (see FIGS. 2 and 4).
  • the pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 100.
  • the metal contained in the transparent metal layer 3 is not particularly limited as long as it is a highly conductive metal, and can be, for example, silver, copper, gold, platinum, titanium, chromium, or the like.
  • the transparent metal layer 3 may contain only one kind of these metals or two or more kinds.
  • the transparent metal layer is preferably made of silver or an alloy containing 90 at% or more of silver.
  • the metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, and the like.
  • the sulfidation resistance of the transparent metal layer is increased.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • the plasmon absorption rate of the transparent metal layer 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor 100 is likely to be colored.
  • the plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 3 is measured by the following procedure.
  • a transparent metal layer to be measured is formed on the same glass substrate. And about the said transparent metal layer, light transmittance and light reflectance are measured similarly. The reference data is subtracted from the obtained light absorption rate, and the calculated value is defined as the plasmon absorption rate.
  • the thickness of the transparent metal layer 3 is 10 nm or less, preferably 3 to 9 nm, and more preferably 5 to 8 nm.
  • the transparent conductor 100 of the present invention since the thickness of the transparent metal layer 3 is 10 nm or less, the metal inherent reflection hardly occurs in the transparent metal layer 3. Furthermore, when the thickness of the transparent metal layer 3 is 10 nm or less, the light transmittance of the transparent conductor 100 can be easily adjusted by the first high refractive index layer 2 and the second high refractive index layer 4, and the surface of the conductive region a Reflection of light at the surface is easy to be suppressed.
  • the thickness of the transparent metal layer 3 is measured with an ellipsometer.
  • the transparent metal layer 3 can be a layer formed by any of the forming methods. However, in order to change the average transmittance of the transparent metal layer, it is formed on a layer formed by a sputtering method or an underlayer described later. It is preferred that the layer be a layer.
  • the sputtering method since the material collides with the formed body at a high speed at the time of formation, a dense and smooth layer can be easily obtained, and the light transmittance of the transparent metal layer 3 is easily increased. Further, when the transparent metal layer 3 is a layer formed by sputtering, the transparent metal layer 3 is hardly corroded even in an environment of high temperature and low humidity.
  • the type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like.
  • the transparent metal layer 3 is particularly preferably a layer formed by a counter sputtering method. That is, when the transparent metal layer 3 is a layer formed by the facing sputtering method, the transparent metal layer 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent metal layer 3 becomes lower and the light transmittance is likely to increase.
  • the method for forming the transparent metal layer 3 is not particularly limited, and may be a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
  • the patterning method is not particularly limited.
  • the transparent metal layer 3 may be a layer formed by arranging a mask having a desired pattern, or may be a layer patterned by a known etching method.
  • (1-4) Second anti-sulfurization layer When the second high-refractive index layer described later is a zinc sulfide-containing layer, as shown in FIG. 2, the gap between the transparent metal layer 3 and the second high-refractive index layer 4 is It is preferable that the second antisulfurization layer 5b is formed.
  • the second sulfidation preventing layer 5b may be formed also in the insulating region b of the transparent conductor 100, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a. Preferably it is formed.
  • the second sulfidation preventing layer 5b is a layer containing metal oxide, metal nitride, metal fluoride, etc., or Zn. Only one of these may be included in the second sulfurization prevention layer 5b, or two or more thereof may be included.
  • the metal oxide, metal nitride, and metal fluoride may be the same as the metal oxide, metal nitride, and metal fluoride contained in the first high refractive index layer 2.
  • the thickness of the second antisulfurization layer 5b is preferably a thickness capable of protecting the surface of the transparent metal layer 3 from an impact when the second high refractive index layer 4 is formed.
  • the metal contained in the transparent metal layer 3 and the ZnS contained in the second high refractive index layer 4 have high affinity. Therefore, if the thickness of the second antisulfuration layer 5b is very thin and a part of the transparent metal layer 3 is slightly exposed, the transparent metal layer 3, the second antisulfurization layer 5b, and the second high refractive index layer. Adhesion with 4 tends to increase.
  • the specific thickness of the second antisulfurization layer 5b is preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm.
  • the thickness of the second sulfurization preventing layer 5b is measured with an ellipsometer.
  • the second antisulfurization layer 5b may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • the patterning method is not particularly limited.
  • the second antisulfurization layer 5b may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, and by a known etching method. It may be a patterned layer.
  • the second high refractive index layer 4 is a layer for adjusting the light transmittance of the conductive region a of the transparent conductor 100, that is, the region where the transparent metal layer 3 is formed. And formed at least in the conductive region a of the transparent conductor 100.
  • the second high-refractive index layer 4 may be formed in the insulating region b of the transparent conductor 100, but is formed only in the conductive region a from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b. It is preferable that
  • the second high refractive index layer 4 includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate 1.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the second high refractive index layer 4 is preferably larger than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the light transmittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4.
  • the refractive index of the second high refractive index layer 4 is adjusted by the refractive index of the material included in the second high refractive index layer 4 and the density of the material included in the second high refractive index layer 4.
  • the dielectric material or oxide semiconductor material included in the second high refractive index layer 4 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material can be a metal oxide.
  • the metal oxide may be the same as the metal oxide included in the first high refractive index layer.
  • the second high refractive index layer 4 may include only one kind of the metal oxide or two or more kinds.
  • the dielectric material or the oxide semiconductor material included in the second high refractive index layer 4 may be ZnS.
  • ZnS When ZnS is contained in the second high refractive index layer 4, it becomes difficult for moisture to permeate from the second high refractive index layer 4 side, and corrosion of the transparent metal layer 3 is suppressed.
  • the second high refractive index layer 4 may contain only ZnS or may contain other materials together with ZnS.
  • the material included together with ZnS is a metal oxide that can be the dielectric material or the oxide semiconductor material, or SiO 2 , and particularly preferably SiO 2 . When SiO 2 is contained together with ZnS, the second high refractive index layer 4 is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
  • the amount of ZnS is 0.1% by mass or more and 95% by mass with respect to the total number of moles of components constituting the second high refractive index layer 4.
  • % Is preferably 50% by mass or more and 90% by mass or less, and more preferably 60% by mass or more and 85% by mass or less.
  • the ratio of ZnS is high, the sputtering rate increases and the formation rate of the second high refractive index layer 4 increases.
  • the amount of components other than ZnS increases, the amorphousness of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
  • the thickness of the second high refractive index layer 4 is preferably 15 to 150 nm, and more preferably 20 to 80 nm. When the thickness of the second high refractive index layer 4 is 15 nm or more, the light transmittance of the conduction region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4. On the other hand, if the thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease. The thickness of the second high refractive index layer 4 is measured with an ellipsometer.
  • the formation method of the second high refractive index layer 4 is not particularly limited, and is a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. It can be. From the standpoint that the moisture permeability of the second high refractive index layer 4 is lowered, the second high refractive index layer 4 is particularly preferably a layer formed by a sputtering method.
  • the patterning method is not particularly limited.
  • the second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the surface to be formed.
  • the layer patterned by the well-known etching method may be sufficient.
  • first high refractive index layer 2 and the second high refractive index layer 4 When either one of the first high refractive index layer 2 and the second high refractive index layer 4 is a zinc sulfide-containing layer, the first high refractive index layer 2 or the second high refractive index layer 2 that is the zinc sulfide-containing layer.
  • An antisulfurization layer 5 is provided between the refractive index layer 4 and the transparent metal layer 3.
  • both the first high refractive index layer 2 and the second high refractive index layer 4 are zinc sulfide-containing layers, either the first high refractive index layer 2 or the second high refractive index layer 4 and the transparent metal
  • the sulfidation prevention layer 5 may be provided between the layer 3 and the first high refractive index layer 2 that is each zinc sulfide-containing layer, and from the viewpoint of sufficiently increasing the light transmittance of the transparent conductor 100 and It is preferable that an antisulfurization layer 5 is provided between the second high refractive index layer 4 and the transparent metal layer 3. In other words, it is preferable that the antisulfurization layer 5 is provided between the first high refractive index layer 2 and the transparent metal layer 3 and between the transparent metal layer 3 and the second high refractive index layer 4.
  • the transparent conductor 100 may be provided with an underlayer serving as a growth nucleus when the transparent metal layer 3 is formed.
  • the underlayer is a layer formed on the transparent substrate 1 side of the transparent metal layer 3 and adjacent to the transparent metal layer 3, that is, between the first high refractive index layer 2 and the transparent metal layer 3, or the first sulfide. It may be a layer formed between the prevention layer 5a and the transparent metal layer 3.
  • the underlayer is preferably formed at least in the conductive region a of the transparent conductor, and may be formed in the insulating region b of the transparent conductor 100.
  • the smoothness of the surface of the transparent metal layer 3 is increased even if the transparent metal layer 3 is thin. The reason is as follows.
  • the material of the transparent metal layer 3 is deposited, for example, on the first high refractive index layer 2 by a general vapor deposition method
  • atoms attached to the first high refractive index layer 2 are initially deposited at the initial stage of formation. It moves (move) and atoms gather together to form a lump (island structure). And a film grows clinging to this lump. Therefore, in the layer at the initial stage of formation, there is a gap between the lumps and it does not conduct.
  • a lump further grows from this state, a part of the lump is connected and barely conducted. However, since there is still a gap between the lumps, plasmon absorption occurs. As the formation proceeds further, the lumps are completely connected and plasmon absorption is reduced.
  • the intrinsic reflection of the metal occurs and the light transmittance of the layer is reduced.
  • the transparent metal layer 3 grows using the base layer as a growth nucleus. That is, the material of the transparent metal layer 3 is difficult to migrate, and the film grows without forming the island-like structure described above. As a result, a smooth transparent metal layer 3 can be easily obtained even if the thickness is small.
  • the base layer contains palladium, molybdenum, zinc, germanium, niobium or indium, an alloy of these metals with another metal, an oxide or a sulfide of these metals (for example, ZnS). Is preferred.
  • the underlayer may contain only one kind, or two or more kinds.
  • the amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more.
  • the metal is contained in the base layer in an amount of 20% by mass or more, the affinity between the base layer and the transparent metal layer 3 is increased, and the adhesion between the base layer and the transparent metal layer 3 is likely to be increased. It is particularly preferable that the underlayer contains palladium or molybdenum.
  • the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, but may be a platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, chromium, or the like.
  • the thickness of the underlayer is 3 nm or less, preferably 0.5 nm or less, and more preferably a monoatomic film.
  • the underlayer can also be a film in which metal atoms adhere to the transparent substrate 1 with a distance therebetween.
  • the adhesion amount of the underlayer is 3 nm or less, the underlayer hardly affects the light transmission property and optical admittance of the transparent conductor 100.
  • the presence or absence of the underlayer is confirmed by the ICP-MS method. Further, the thickness of the underlayer is calculated from the product of the formation speed and the formation time.
  • the underlayer can be a layer formed by sputtering or vapor deposition.
  • the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method.
  • the sputtering time for forming the underlayer is appropriately selected according to the desired average thickness and formation rate of the underlayer.
  • the sputter formation rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • examples of the vapor deposition method include vacuum vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method and the like.
  • the deposition time is appropriately selected according to the desired thickness and formation rate of the underlayer.
  • the deposition rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • the underlayer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the surface to be formed, or a layer patterned by a known etching method It may be.
  • the transparent conductor 100 of the present invention has a low refractive index layer (not shown) for adjusting the light transmittance of the conductive region a of the transparent conductor on the second high refractive index layer 4. May be provided.
  • the low refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
  • the refractive index of light having a wavelength of 570 nm is higher than the refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material included in the first high refractive index layer 2 and the second high refractive index layer 4.
  • a dielectric material or oxide semiconductor material having a low rate is included.
  • the refractive index of the light of wavelength 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is the light of wavelength 570 nm of the material contained in the first high refractive index layer 2 and the second high refractive index layer 4.
  • the refractive index is preferably 0.2 or more lower and more preferably 0.4 or more lower.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is preferably less than 1.8, more preferably 1.30 to 1.6, Particularly preferred is 1.35 to 1.5.
  • the refractive index of the low refractive index layer is mainly adjusted by the refractive index of the material included in the low refractive index layer and the density of the material included in the low refractive index layer.
  • the dielectric material or the oxide semiconductor material included in the low refractive index layer is MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, NdF 3 , YF 3 , YbF 3. , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO, and ThO 2 .
  • Dielectric material or oxide semiconductor materials among others MgF 2, SiO 2, CaF 2, CeF 3, LaF 3, LiF, NaF, NdF 3, Na 3 AlF 6, Al 2 O 3, MgO, or is ThO 2
  • MgF 2 and SiO 2 are particularly preferable.
  • the low refractive index layer may contain only one kind of these materials or two or more kinds.
  • the thickness of the low refractive index layer is preferably 10 to 150 nm, more preferably 20 to 100 nm.
  • the thickness of the low refractive index layer is measured with an ellipsometer.
  • the low refractive index layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. From the viewpoint of ease of formation and the like, the low refractive index layer is preferably a layer formed by electron beam evaporation or sputtering.
  • the low refractive index layer is a patterned layer
  • the patterning method is not particularly limited.
  • the low refractive index layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, and is patterned by a known etching method. It may be a layer.
  • the transparent conductor 100 of the present invention further includes a third that adjusts the light transmittance of the conductive region a of the transparent conductor on the low refractive index layer.
  • a high refractive index layer may be provided.
  • the third high refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
  • the third high refractive index layer preferably includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 and the refractive index of the low refractive index layer.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably larger than 1.5, more preferably 1.7 to 2.5. Preferably, it is 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the light transmittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the third high refractive index layer.
  • the refractive index of the third high refractive index layer is adjusted by the refractive index of the material included in the third high refractive index layer and the density of the material included in the third high refractive index layer.
  • the dielectric material or oxide semiconductor material contained in the third high refractive index layer may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material is preferably a metal oxide or ZnS.
  • the metal oxide include the metal oxide contained in the first high refractive index layer 2 or the second high refractive index layer 4 described above.
  • the third high refractive index layer may contain only one kind of the metal oxide or ZnS, or two or more kinds.
  • a dielectric material such as SiO 2 may be included together with the metal oxide and ZnS.
  • the thickness of the third high refractive index layer is not particularly limited, and is preferably 1 to 40 nm, and more preferably 5 to 20 nm. When the thickness of the third high refractive index layer is in the above range, the light transmittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted. The thickness of the third high refractive index layer is measured with an ellipsometer.
  • the formation method of the third high refractive index layer is not particularly limited, and may be a layer formed by the same method as the first high refractive index layer 2 and the second high refractive index layer 4.
  • the transparent substrate 1 included in the transparent conductor 100 can be the same as the transparent substrate of various display devices.
  • the transparent substrate 1 includes a glass substrate, a cellulose ester resin (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), a cycloolefin resin (for example, ZEONOR (manufactured by Nippon Zeon), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, "Acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical)) , Polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PET),
  • the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polycarbonate resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin,
  • a film made of polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable.
  • the transparent substrate 1 preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1.
  • Average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. .
  • the refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
  • the haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. When the haze value of the transparent substrate is 2.5 or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
  • the thickness of the transparent substrate 1 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent substrate is 1 ⁇ m or more, the strength of the transparent substrate 1 is increased, and it is difficult to crack or tear the first high refractive index layer 2.
  • the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient.
  • the thickness of the apparatus using the transparent conductor 100 can be reduced.
  • the apparatus using the transparent conductor 100 can also be reduced in weight.
  • the anisotropic conductive member is used to electrically connect the transparent metal layer and the circuit board.
  • the anisotropic conductive member include fine conductive particles having conductivity mixed with a thermosetting resin.
  • the conductive particles that are anisotropic conductive members included in the anisotropic conductive material are positioned between the electrodes arranged at a predetermined interval and the transparent conductive layer 10. When pressurized, the conductive particles are pressed. Thereby, for example, the conductive layer P3 included in the conductive particles P1 shown in FIG. 3A is in contact with the electrode 7 and the transparent metal layer 3, thereby providing a conductive path.
  • FIG. 4 schematically shows a case where there is one particle between the electrode and the transparent conductive layer, but a conduction path may be formed in the conduction direction 9 by having a plurality of particles.
  • anisotropic conductive material containing an anisotropic conductive member an anisotropic conductive film (hereinafter also referred to as ACF), an anisotropic conductive paste, or the like can be used.
  • ACF anisotropic conductive film
  • anisotropic conductive paste an anisotropic conductive paste
  • the conductive particle-containing layer that can be used in the present invention is not particularly limited as long as it is a layer containing conductive particles as an anisotropic conductive member. It can be appropriately selected according to the purpose. For example, it contains at least conductive particles, a layer-forming resin, a radical polymerizable compound, a polymerization initiator, and, if necessary, other components such as a silane coupling agent.
  • the layer to contain is mentioned.
  • the layer forming resin is not particularly limited and can be appropriately selected depending on the purpose.
  • phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin examples thereof include polyolefin resins.
  • Layer forming resin may be used individually by 1 type, and may use 2 or more types together. Among these, phenoxy resin is particularly preferable from the viewpoints of film formability, processability, and connection reliability.
  • the phenoxy resin is a resin synthesized from bisphenol A and epichlorohydrin, and an appropriately synthesized resin or a commercially available product may be used.
  • the radical polymerizable compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include acrylic compounds and liquid acrylates. Specific examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, and isobutyl.
  • the said acrylate the methacrylate can also be used. These may be used individually by 1 type and may use 2 or more types together. There is no restriction
  • the polymerization initiator is not particularly limited as long as it can polymerize a radical polymerizable compound, and can be appropriately selected according to the purpose. However, the polymerization initiator generates a free radical by heat or light. Is preferred. As a polymerization initiator that generates free radicals by heat or light, an organic peroxide is preferable, and a half-life temperature of 1 minute is 90 to 180 ° C. from the viewpoint of reactivity and storage stability, and a 10-hour half-life temperature. An organic peroxide having a temperature of 40 ° C. or higher is more preferable. In order to perform bonding in 10 seconds or less, the half-life temperature for 1 minute is preferably 180 ° C. or less.
  • the 10-hour half-life temperature is 40 ° C. or lower, it may be difficult to store at 5 ° C. or lower.
  • the polymerization initiator that generates free radicals by heat include organic peroxides and azo compounds.
  • the organic peroxide include benzoyl peroxide and tertiary butyl peroxide.
  • Examples of the azo compound include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile) (V-65), 2 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis (2-methylbutyronitrile), 1,1-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis [ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide], dimethyl-2,2′-azobis (2-methoxypropionate) and the like. These may be used individually by 1 type and may use 2 or more types together.
  • Examples of the polymerization initiator that generates free radicals by light include alkylphenone, benzoin, benzophenone, dicarbonyl compounds, thioxanthone, acylphosphine oxide, and derivatives thereof. These may be used individually by 1 type and may use 2 or more types together. There is no restriction
  • silane coupling agent there is no restriction
  • the average thickness of the conductive particle-containing layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 to 100 ⁇ m, and more preferably 4 to 30 ⁇ m. When the average thickness is less than 1 ⁇ m, the conductive particle-containing layer may not be sufficiently filled between the circuits. When the average thickness exceeds 100 ⁇ m, the conductive particle-containing layer cannot be sufficiently eliminated, resulting in poor conduction. There is. When the average thickness is within the particularly preferable range, the conductive particle-containing layer is appropriately filled, which is advantageous in terms of adhesion and conduction reliability.
  • the average thickness is an average value when arbitrarily measuring five locations.
  • the conductive particles that can be used as the anisotropic conductive member according to the present invention are not particularly limited and may be appropriately selected depending on the intended purpose.
  • metal particles And metal-coated resin particles examples include nickel, cobalt, silver, copper, gold, and palladium. These may be used individually by 1 type and may use 2 or more types together. Among these, nickel, silver, and copper are preferable. In order to prevent these surface oxidations, particles having gold or palladium on the surface may be used. Furthermore, you may use what gave the metal film and the insulating film with the organic substance on the surface.
  • the metal-coated resin particles include particles in which the surface of the resin core is coated with any metal of nickel, copper, gold, and palladium. Similarly, particles obtained by applying gold or palladium to the outermost surface of the resin core may be used. Further, a resin core whose surface is coated with a metal protrusion or an organic material may be used. In the case of particles coated with nickel, the curing temperature is as high as 200 ° C., but the hardness is high and it is easy to break through. In the case of particles coated with gold, the hardness is low, but the curing temperature is preferably as low as 140 ° C.
  • the material for the resin core is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include styrene-divinylbenzene copolymer, benzoguanamine resin, cross-linked polystyrene resin, acrylic resin, and styrene-silica composite resin. Can be mentioned.
  • FIG. 3 an example of the electroconductive particle contained in the electroconductive particle content layer used for this invention is shown with sectional drawing.
  • the conductive particles P1 have resin particles P2 and a conductive layer P3 covering the surface P2a of the resin particles P2.
  • the conductive particles P1 are coated particles in which the surface P2a of the resin particles P2 is coated with the conductive layer P3. Therefore, the conductive particles P1 have the conductive layer P3 on the surface P1a.
  • the conductive layer P3 includes a first conductive layer P4 covering the surface P2a of the resin particle P2, and a solder layer P5 (second conductive layer) covering the surface P4a of the first conductive layer P4.
  • a solder layer P5 second conductive layer covering the surface P4a of the first conductive layer P4.
  • the outer surface layer of the conductive layer P3 is a solder layer P5.
  • the conductive layer P3 may have a multilayer structure, or may have a multilayer structure of two layers or three or more layers.
  • the conductive layer P3 has a two-layer structure.
  • the conductive particles P11 may have a solder layer P12 as a single conductive layer.
  • the surface layer on the outer side of the conductive layer in the conductive particles may be a solder layer.
  • conductive particles P1 are preferable among the conductive particles P1 and the conductive particles P11 because the production of the conductive particles is easy.
  • the method for forming the conductive layer P3 on the surface P2a of the resin particle P2 and the method for forming the solder layers P5 and P12 on the surface P2a of the resin particle P2 are not particularly limited.
  • Examples of the method for forming the conductive layer P3 and the solder layers P5 and P12 include a method by electroless plating, a method by electroplating, a method by physical collision, a method by physical vapor deposition, and metal powder or metal powder and a binder. And the like, and a method of coating the surface of the resin particles. Of these, electroless plating or electroplating is preferable.
  • Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, in the method based on the physical collision, for example, a theta composer or the like is used.
  • the method of forming the solder layers P5 and P12 is preferably a method by physical collision.
  • the solder layers P5 and P12 are preferably formed by physical impact.
  • the particle diameter of conductive particles having a solder layer on the outer surface layer of the conductive layer has been about several hundred ⁇ m. This is because the solder layer could not be formed uniformly even if conductive particles having a particle size of several tens of ⁇ m and the surface layer being a solder layer were obtained.
  • a theta composer even when conductive particles having a particle size of several tens of ⁇ m, particularly a particle size of 0.1 ⁇ m or more and a particle size of 50 ⁇ m or less are obtained, A solder layer can be uniformly formed on the surface of the conductive layer.
  • the conductive layer P3 other than the solder layer is preferably made of metal.
  • the metal constituting the conductive layer P3 other than the solder layer is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof.
  • tin-doped indium oxide (ITO) can also be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.
  • the first conductive layer P4 is preferably a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably a nickel layer, a copper layer, or a gold layer, and even more preferably a copper layer.
  • the conductive particles preferably have a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably have a nickel layer, a copper layer, or a gold layer, and still more preferably have a copper layer.
  • the connection resistance between the electrodes can be further reduced.
  • a solder layer can be more easily formed on the surface of these preferable conductive layers.
  • the first conductive layer P4 may be a solder layer.
  • the conductive particles may have a plurality of solder layers.
  • the thickness of the solder layers P5 and P12 is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more, preferably 70 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less. is there.
  • the thickness of the solder layers P5 and P12 is equal to or greater than the above lower limit, the conductivity is sufficiently high. If the thickness of the solder layers P5 and P12 is equal to or less than the above upper limit, the difference in thermal expansion coefficient between the resin particles P2 and the solder layers P5 and P12 becomes small, and peeling of the solder layers P5 and P12 hardly occurs.
  • the total thickness of the conductive layer is preferably 10 nm or more, more preferably 20 nm or more, still more preferably 30 nm or more, preferably 70 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably It is 10 ⁇ m or less, particularly preferably 5 ⁇ m or less.
  • the resin for forming the resin particles P2 examples include polyolefin resin, acrylic resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, and polyphenylene. Examples thereof include oxides, polyacetals, polyimides, polyamideimides, polyetheretherketones, and polyethersulfones. Since the hardness of the resin particle P2 can be easily controlled within a suitable range, the resin for forming the resin particle P2 is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferable that
  • the average particle diameter of the conductive particles P1 and P11 is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 50 ⁇ m or less, and particularly preferably 40 ⁇ m or less.
  • the contact area between the conductive particles P1, P11 and the electrode can be sufficiently increased, and a conductive layer is formed. It is difficult to form the conductive particles P1 and P11 aggregated together. Further, the distance between the electrodes connected via the conductive particles P1 and P11 does not become too large, and the conductive layer is difficult to peel from the surface P2a of the resin particle P2.
  • the size is suitable as the conductive particles, and the distance between the electrodes can be further reduced. Therefore, the average particle diameter of the conductive particles P1 and P11 is 0.1 ⁇ m. As mentioned above, it is especially preferable that it is 50 micrometers or less.
  • the “average particle diameter” of the conductive particles P1 and P11 indicates a number average particle diameter.
  • the average particle diameter of the conductive particles P1 and P11 can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
  • the CV value (coefficient of variation of particle size distribution) of the conductive particles is preferably 10% or less, and more preferably 3% or less. When the CV value exceeds 10%, it is difficult to cause variations in the distance between the electrodes connected by the conductive particles.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : standard deviation of diameter of conductive particles Dn: average particle diameter
  • the method for producing a transparent conductor of the present invention includes at least a film forming step and a joining step, and further includes other steps such as a patterning step as necessary.
  • the transparent conductor of the present invention is produced by the method for producing a transparent conductor of the present invention.
  • a layer structure is formed by laminating a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order on one surface of a transparent substrate.
  • a transparent conductor is manufactured by providing a step, a step of patterning the transparent conductive layer, and a step of electrically connecting a predetermined region of the layer structure to the circuit board via an anisotropic conductive member. Is done. Below, the manufacturing method of a transparent conductor is demonstrated in detail. Details of the patterning will be described later.
  • the film forming step is not particularly limited as long as it is a step of forming a layer structure by laminating the first high refractive index layer, the transparent metal layer, and the second high refractive index layer in this order on one surface of the transparent substrate. It can be appropriately selected depending on the purpose. For example, it is preferable to provide an antisulfurization layer between at least one of the transparent metal layer and the first high refractive index layer and between the transparent metal layer and the second high refractive index layer.
  • the connecting step is not particularly limited as long as the predetermined region of the layer structure is electrically connected to the circuit board via the anisotropic conductive member, and can be appropriately selected according to the purpose. However, it is preferable because the conductive particle-containing layer can be more appropriately flowed at the portion of the connection terminal which is a predetermined region by heating and pressing the circuit board with the heating pressing member.
  • a heating press member the press member which has a heating mechanism is mentioned, for example. Examples of the pressing member having a heating mechanism include heat sealing.
  • the heating temperature is not particularly limited as long as it is a temperature at which the conductive particle-containing layer and the insulating adhesive layer are cured, and can be appropriately selected according to the purpose, but is preferably 140 to 200 ° C.
  • the pressing pressure is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 to 10 MPa.
  • the heating and pressing time is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 0.5 to 120 seconds.
  • FIG. 4 is a schematic cross-sectional view showing before and after pressure-bonding an anisotropic conductive member of a transparent conductor.
  • the first high refractive index layer 2, the first antisulfurization layer 5a, the transparent metal layer 3, the second antisulfurization layer 5b, and the second high refractive index layer 4 are laminated in this order on one surface of the transparent substrate 1. To form a layered structure.
  • the circuit board is heated and pressed by a heating and pressing member (not shown) to join the conductive particle-containing layer containing conductive particles and the connection terminal as a predetermined region of the layer structure.
  • a heating and pressing member not shown
  • the wiring material of the circuit board and the wiring material of the layer structure composed of the transparent conductive layer and the transparent substrate are electrically connected via the conductive particles contained in the conductive particle-containing layer, and transparent conductive A body is obtained (FIG. 4).
  • An arrow shown along the direction in which the transparent conductive layer is laminated on the transparent substrate represents the conduction direction 9.
  • the average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor of the present invention is preferably 83% or more, more preferably 85% in both the conduction region a and the insulation region b. Or more, more preferably 88% or more.
  • the transparent conductor can be applied to applications requiring high transparency to visible light.
  • the average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor is preferably 80% or more in both the conduction region a and the insulation region b, more preferably 83% or more, and still more preferably 85%. That's it.
  • the transparent conductor can also be applied to applications requiring transparency with respect to light in a wide wavelength range, for example, solar cells.
  • the average absorptance of light having a wavelength of 400 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and even more preferably in both the conduction region a and the insulation region b. 7% or less.
  • the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 to 800 nm is preferably 15% or less, more preferably 10% or less, both in the conduction region a and the insulation region b. Preferably it is 9% or less.
  • the average reflectance of light having a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less.
  • the average transmittance, average reflectance, and average reflectance are preferably the average transmittance, average reflectance, and average reflectance under the usage environment of the transparent conductor.
  • the transparent conductor when the transparent conductor is used by being bonded to an organic resin, it is preferable to prepare a layer made of the organic resin on the transparent conductor and measure the average transmittance and the average reflectance.
  • the transparent conductor when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air.
  • the transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor.
  • the absorptance is calculated from a calculation formula of 100 ⁇ (transmittance + reflectance).
  • the reflectance of the conduction region a and the reflectance of the insulation region b are approximated.
  • the difference ⁇ R between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and still more preferably It is 1% or less, particularly preferably 0.3% or less.
  • the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less.
  • the luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
  • the a * value and the b * value in the L * a * b * color system are preferably within ⁇ 30 in any region. More preferably, it is within ⁇ 5, more preferably within ⁇ 3.0, and particularly preferably within ⁇ 2.0. If the a * value and the b * value in the L * a * b * color system are within ⁇ 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electric resistance of the conductive region a of the transparent conductor is preferably 50 ⁇ / ⁇ or less, more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the conduction region a is adjusted by the thickness of the transparent metal layer and the like.
  • the surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194-1994, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
  • the transparent conductor of the present invention can be applied as a touch sensor part (hereinafter also referred to as “touch sensor electrode part”) of various types of touch panels.
  • touch sensor electrode part can be used in a surface capacitive touch panel, a projected capacitive touch panel, a resistive touch panel, and the like.
  • the layer structure of the touch sensor unit is a bonding method in which two transparent conductors are bonded as a transparent electrode, a method in which a transparent conductor is provided as a transparent electrode on both surfaces of a single substrate, a single-sided jumper or a through-hole method Or it is preferable that it is either a one area layer system.
  • the projected capacitive touch sensor is preferably AC driven rather than DC driven, and more preferably is a drive system that requires less time to apply voltage to the electrodes.
  • the transparent conductor of the present invention when applied to a touch sensor, as shown in FIG. 1A, it has a pattern including a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. It can be molded and used as a transparent electrode.
  • Method for Forming Transparent Conductor Having Electrode Pattern A method for forming a pattern comprising a conductive region a and an insulating region b as shown in FIG. 1A will be described for the transparent conductor of the present invention.
  • the transparent conductor of the present invention at least the first high refractive index layer, the transparent metal layer, and the second high refractive index layer are laminated in this order on the transparent substrate 1 by the method described above.
  • an electrode pattern as shown in FIG. 4 is preferably formed by photolithography using an etching solution.
  • the line width of the electrode to be formed is preferably 50 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • the silver thin film layer can be processed into a pattern as shown in FIG. 1A, for example, and the shape of the pattern can be changed as appropriate.
  • a conventionally known general photolithography method can be appropriately used.
  • the resist either positive or negative resist can be used.
  • preheating or prebaking can be performed as necessary.
  • a pattern mask having a predetermined pattern may be disposed, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated thereon.
  • development is performed with a developer suitable for the resist used.
  • the resist pattern is formed by stopping the development with a rinse solution such as water and washing.
  • the formed resist pattern is pretreated or post-baked as necessary, and then is etched with an etching solution containing an organic solvent to dissolve the intermediate layer in a region not protected by the resist and to form a silver thin film electrode Remove. After etching, the remaining resist is peeled to obtain a transparent electrode having a predetermined pattern.
  • the photolithography method applied to the present invention is a method generally recognized by those skilled in the art, and a specific application mode thereof can be easily selected by a person skilled in the art according to a predetermined purpose. Can do.
  • an electrode pattern forming method applicable to the present invention will be described with reference to the drawings.
  • the first high refractive index layer 2, the first antisulfurization layer 5a, the transparent metal layer 3, the second antisulfurization layer 5b, and the second high refractive index layer 4 are laminated on the transparent substrate 1 in this order.
  • the transparent conductive layer 10 thus prepared is prepared.
  • a resist film composed of a photosensitive resin composition or the like is uniformly coated on the transparent conductive layer 10.
  • the photosensitive resin composition a negative photosensitive resin composition or a positive photosensitive resin composition can be used.
  • a coating method it is applied on the transparent conductive layer 10 by a known method such as micro gravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, etc., and heated by a hot plate, an oven or the like. It can be pre-baked in the apparatus. Pre-baking can be performed, for example, using a hot plate or the like within a range of 50 to 150 ° C. for 30 seconds to 30 minutes.
  • the exposure step through a mask manufactured by predetermined electrode patterns, a stepper, a mirror projection mask aligner (MPA), using an exposure apparatus, such as a parallel light mask aligner, 10 ⁇ 4000J / m 2 approximately (wavelength 365nm
  • An exposure apparatus such as a parallel light mask aligner, 10 ⁇ 4000J / m 2 approximately (wavelength 365nm
  • the resist film to be removed in the next step is irradiated with light in terms of exposure amount.
  • the exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
  • the exposed transparent conductor is immersed in a developing solution to dissolve the resist film in the region irradiated with light.
  • a developing method it is preferable to immerse in a developing solution for 5 seconds to 10 minutes by a method such as showering, dipping or paddle.
  • the developer a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include aqueous solutions containing one or more quaternary ammonium salts such as side and choline.
  • an etching process using an etching solution is performed.
  • a solution containing an inorganic acid or an organic acid is preferable, and oxalic acid, hydrochloric acid, acetic acid, and phosphoric acid can be mentioned, and oxalic acid, acetic acid, and phosphoric acid are particularly preferable.
  • the transparent conductive layer 10 having a resist film is immersed in an etching solution containing an organic acid, and the transparent conductive layer 10 in the insulating region b not protected by the resist film is dissolved.
  • the transparent conductive layer 10 in the protected conductive region a is formed as a predetermined electrode pattern.
  • the resist film is removed by immersing in a resist film stripping solution, for example, N-300 manufactured by Nagase ChemteX Corporation, so that a transparent conductor having an electrode pattern can be produced.
  • a resist film stripping solution for example, N-300 manufactured by Nagase ChemteX Corporation.
  • the image display device used for the touch sensor according to the present invention is not particularly limited, and a liquid crystal display device or an organic EL device that is usually used for a small electronic terminal can be used.
  • transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescent dimming elements, etc. It can be preferably used for a substrate of an optoelectronic device.
  • a PET film with a clear hard coat As a transparent substrate, a PET film with a clear hard coat (G1SBF, referred to as “HCPET”, thickness: 125 ⁇ m) manufactured by Kimoto Co., Ltd. is used. ZnS—SiO 2 ) / first antisulfation layer (ZnO) / transparent metal layer (Ag) / second antisulfation layer (ZnO) / second high refractive index layer (ZnS—SiO 2 ) were laminated in this order. Next, the laminate was patterned by the following method to produce a transparent conductor 101 having wiring in a batch method. The thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • a vacuum sputtering apparatus As a vacuum sputtering apparatus, a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. is used. Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, film formation rate 3.8 ⁇ / sec. 2 ) was RF sputtered. The target-substrate distance was 90 mm. The film thickness was 40 nm.
  • the volume ratio of ZnS to SiO 2 in the first high refractive index layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, the volume ratio of ZnS to SiO 2 was 80:20. It was confirmed that.
  • ZnO first antisulfurization layer
  • ZnO second anti-sulfurization layer
  • the target (ZnS—SiO 2 fired body) was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.8 ⁇ / sec.
  • the target-substrate distance was 90 mm.
  • the film thickness was 40 nm.
  • the volume ratio of ZnS to SiO 2 in the second high refractive index layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, the volume ratio of ZnS to SiO 2 was 80:20. It was confirmed that.
  • a pattern having a conductive region a and an insulating region b is formed in accordance with the patterning method described above on the transparent conductive layer having at least the first high refractive index layer, the transparent metal layer, and the second high refractive index layer produced above. did.
  • a resist layer is formed in a pattern on the transparent conductive layer by a photolithography method, and a first high refractive index layer, a first antisulfurization layer, a transparent metal layer, a second antisulfurization layer, and a second high refractive index layer are formed. Etching was used to etch into a pattern including a plurality of conductive regions a and line-shaped insulating regions b separating the conductive regions a.
  • etching solution “mixed liquid SEA-5” (phosphoric acid: 55 mass%, acetic acid: 30 mass%, water and other components: 15 mass%) manufactured by Kanto Chemical Co., Ltd. was used.
  • the insulating region b includes only a transparent substrate.
  • the width of the line-shaped insulating region b was 16 ⁇ m.
  • transparent conductors 101 to 103 were produced through the following steps. A specific manufacturing method will be described.
  • Example 1 A case of the transparent conductor 101 in which conductive particles are contained by pressure bonding up to the transparent metal layer will be described (see FIG. 5A).
  • an ACF thermocompression bonding machine TCW-125C manufactured by Nippon Avionics Co., Ltd.
  • An anisotropic conductive film is sandwiched between the transparent conductive layer and the transparent conductive layer formed on one surface. Pressure bonding was performed at 140 ° C. for 5 seconds at 3 N / MPa.
  • an electrode and a flexible substrate were provided.
  • An anisotropic conductive film (CP920CM-25AC manufactured by Dexerials Co., Ltd.) containing gold / nickel plated resin particles as conductive particles was used.
  • the conduction resistance after 10 seconds under the conditions of a temperature of 24 ° C. and a humidity of 30% RH was measured by a two-terminal method using CDM-20 manufactured by Custom. Specifically, it was confirmed that there is continuity by applying CDM-20 to the connection terminals 11a and 11b shown in FIG. 1A among the plurality of connection terminals.
  • the touch panel 201 as shown to FIG. 1C was produced by combining a display panel with the transparent conductor 101.
  • ITO indium tin oxide
  • a region surrounded by a broken line is the touch sensor unit 13.
  • the conduction resistance after 10 seconds under the conditions of a temperature of 24 ° C. and a humidity of 30% RH is obtained by using the CDM-20 manufactured by Custom Co. It measured similarly and it confirmed that there was conduction.
  • Example 2 The case of the transparent conductor 102 in which conductive particles are contained by pressure bonding up to the base layer (ZnS—SiO 2 ) is shown (see FIG. 5B).
  • an ACF thermocompression bonding machine TCW-125C manufactured by Nippon Avionics Co., Ltd.
  • an anisotropic conductive film is sandwiched between the transparent conductive layer and the transparent conductive layer formed on one surface. Crimping was performed at 140 ° C. for 5 seconds at 4 N / MPa. On top of that, an electrode and a flexible substrate were provided.
  • As the anisotropic conductive film a film containing gold-plated (CP920CM-25AC manufactured by Dexerials Corporation) resin particles as conductive particles was used.
  • the conduction resistance after 10 seconds under the conditions of a temperature of 24 ° C. and a humidity of 30% RH was measured by a two-terminal method using CDM-20 manufactured by Custom. Specifically, it was confirmed that there is continuity by applying CDM-20 to the connection terminals 11a and 11b shown in FIG. 1A among the plurality of connection terminals.
  • the touch panel 202 as shown to FIG. 1C was produced by combining a display panel with the transparent conductor 102.
  • ITO indium tin oxide
  • a region surrounded by a broken line is the touch sensor unit 13.
  • the conduction resistance after 10 seconds under the conditions of a temperature of 24 ° C. and a humidity of 30% RH is measured with the transparent conductor 102 by a two-terminal method using CDM-20 manufactured by Custom. It measured similarly and it confirmed that there was conduction.
  • Example 3 The case of the transparent conductor 103 containing conductive particles up to the transparent metal layer by pressure bonding will be described (see FIG. 5A).
  • an ACF thermocompression bonding machine TCW-125C manufactured by Nippon Avionics Co., Ltd.
  • an anisotropic conductive film is sandwiched between the transparent conductive layer and the transparent conductive layer formed on one surface. Crimping was performed at 180 ° C. for 5 seconds at 4 N / MPa. On top of that, an electrode and a flexible substrate were provided.
  • the anisotropic conductive film a film containing gold-plated resin particles (CP920CM-25AC manufactured by Dexerials Corporation) as conductive particles was used.
  • the conduction resistance after 10 seconds under the conditions of a temperature of 24 ° C. and a humidity of 30% RH was measured by a two-terminal method using CDM-20 manufactured by Custom. Specifically, it was confirmed that there is continuity by applying CDM-20 to the connection terminals 11a and 11b shown in FIG. 1A among the plurality of connection terminals.
  • the touch panel 203 as shown to FIG. 1C was produced by combining a transparent conductor 103 with a display panel.
  • a touch panel was manufactured by bonding a display panel including a substrate, a metal layer, an insulating layer, an indium tin oxide (ITO) layer, and a protective layer to a transparent conductor using an adhesive.
  • ITO indium tin oxide
  • a region surrounded by a broken line is the touch sensor unit 13.
  • the conduction resistance after 10 seconds under the conditions of a temperature of 24 ° C. and a humidity of 30% RH is obtained by using the CDM-20 manufactured by Custom Co. It measured similarly and it confirmed that there was conduction.
  • the transparent conductor according to the present invention is confirmed to be electrically conductive because the transparent metal layer is electrically connected to the circuit board via an anisotropic conductive member.
  • the light transmittance of the transparent conductor of the present invention produced in Examples 1 to 3 was measured using a spectrophotometer (U-3300 manufactured by Hitachi High-Technologies Corporation). Specifically, measurement light is incident from an angle inclined by 5 ° with respect to the normal line of the surface of the metal film of each transparent conductor, and the light transmittance and light reflectance of the metal film are measured.
  • light absorptivity 100 ⁇ (light transmittance + light reflectance) is calculated from the light transmittance and light reflectance at each wavelength, and this is used as reference data. And it preserve
  • a transparent conductive layer having at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer on a transparent substrate which is a common process.
  • the composition of the ZnS compound 1 is as shown in Table 1.
  • ZnS Compound 1 Formation of First High Refractive Index Layer (ZnS Compound 1)
  • a vacuum sputtering apparatus a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. was used, and the target (ZnS compound) was prepared at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, and deposition rate 3.8 ⁇ / sec. 1) was DC sputtered.
  • the target-substrate distance was 90 mm.
  • the film thickness was 40 nm.
  • GZO first antisulfurization layer
  • GZO second anti-sulfurization layer
  • the target (ZnS compound 1 fired body) was DC-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.8 ⁇ / sec.
  • the target-substrate distance was 90 mm.
  • the film thickness was 40 nm.
  • the transparent conductive material having at least the first high refractive index layer, the transparent metal layer, and the second high refractive index layer on the transparent substrate, which is a common process.
  • the composition of the ZnS compound 2 is as shown in Table 1.
  • a transparent conductor can be prepared by the same method as in Examples 1 to 3, and the performance is also equivalent. I was able to confirm.
  • the present invention is used in the field of various optoelectronic devices such as liquid crystal, plasma, organic electroluminescence, field emission display, touch panel, mobile phone, electronic paper, various solar cells, various electroluminescence dimming elements there is a possibility.
  • Transparent conductor 10 Transparent conductive layer 1 Transparent substrate 2 First high refractive index layer 3 Transparent metal layer 4 Second high refractive index layer 5 Antisulfuration layer 5a First antisulfuration layer 5b Second antisulfation Layer 6 Conductive particle-containing layer 7 Electrode 8 Flexible substrate (circuit board) 9 Conduction direction 11, 11a, 11b Connection terminal 12 Drawer wiring part 13 Touch sensor part 14 Wiring pattern 15 Adhesive 16 Display panel 200, 201, 202, 203 Touch panel a Conductive area b Insulating area P1 Conductive particles (anisotropic conductivity) Element) P1a surface P2 resin particle P2a surface P3 conductive layer P4 first conductive layer P4a surface P5 solder layer (second conductive layer) P11 Conductive particle P12 Solder layer

Landscapes

  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The objective of the present invention is to provide: a transparent conductor which has high light transmittance and achieves improved electrical connection between a transparent metal layer and a circuit board; and a method for producing the transparent conductor. A transparent conductor according to the present invention comprises at least a transparent substrate, a first high-refractive-index layer, a transparent metal layer and a second high-refractive-index layer in this order, and is characterized in that: the first high-refractive-index layer and/or the second high-refractive-index layer contains at least zinc sulfide; the transparent conductor is patterned; and the transparent metal layer is electrically connected to a circuit board via an anisotropic conductive member.

Description

透明導電体とその製造方法Transparent conductor and method for producing the same
 本発明は、透明導電体とその製造方法に関する。より詳しくは、高い光透過率を有する透明金属層と回路基板との電気的な接続が改良された透明導電体とその製造方法に関する。 The present invention relates to a transparent conductor and a manufacturing method thereof. More specifically, the present invention relates to a transparent conductor improved in electrical connection between a transparent metal layer having a high light transmittance and a circuit board, and a method for manufacturing the transparent conductor.
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置、タッチパネル、太陽電池等の各種装置に透明導電体が使用されている。 In recent years, transparent conductors have been used in various devices such as liquid crystal displays, plasma displays, display devices such as inorganic and organic EL (electroluminescence) displays, touch panels, and solar cells.
 タッチパネル型の表示装置等では、表示素子の画像表示面上に、透明導電体を含む配線が配置される。したがって、透明導電体には、光の透過性が高いことが求められる。このような各種表示装置には、光透過性の高いITOを用いた透明導電体が多用されている。 In a touch panel type display device or the like, wiring including a transparent conductor is disposed on the image display surface of the display element. Therefore, the transparent conductor is required to have high light transmittance. In such various display devices, a transparent conductor using ITO having a high light transmittance is often used.
 近年、静電容量方式のタッチパネル表示装置が開発され、透明導電体の表面電気抵抗をさらに低くすることが求められている。しかし、従来のITO膜では、表面電気抵抗を十分に下げられないという問題があった。 In recent years, a capacitive touch panel display device has been developed, and it is required to further reduce the surface electrical resistance of the transparent conductor. However, the conventional ITO film has a problem that the surface electric resistance cannot be sufficiently lowered.
 そこで、銀を蒸着して形成する層(以下、Ag層又は透明金属層ともいう。)を透明導電層に用いることが検討されている(例えば、特許文献1参照。)。また、透明導電体の光透過性を高めるため、Ag層を屈折率の高い膜(例えば酸化ニオブ(Nb)、IZO(酸化インジウム・酸化亜鉛)、ICO(インジウム・セリウムオキサイド)、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等からなる膜)で挟み込むことも提案されている(例えば、特許文献2~4及び非特許文献1参照。)。さらに、Ag層を、硫化亜鉛を含有する層(以下、ZnS層又は硫化亜鉛含有層ともいう。)で挟み込むことが提案されている(例えば、非特許文献2及び3参照。)。 Then, using the layer (henceforth Ag layer or a transparent metal layer) formed by vapor-depositing silver is examined for a transparent conductive layer (for example, refer patent document 1). In order to increase the light transmittance of the transparent conductor, the Ag layer is formed of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium / zinc oxide), ICO (indium / cerium oxide), a It has also been proposed to sandwich the film with GIO (a film made of gallium, indium, and oxygen) (see, for example, Patent Documents 2 to 4 and Non-Patent Document 1). Further, it has been proposed to sandwich the Ag layer with a layer containing zinc sulfide (hereinafter also referred to as a ZnS layer or a zinc sulfide-containing layer) (see, for example, Non-Patent Documents 2 and 3).
 しかし、特許文献2~4に示されるように、酸化ニオブやIZO等の誘電体層でAg層が挟み込まれた透明導電体では、耐湿性が十分でなかった。その結果、高湿度環境下で透明導電体を使用すると、Ag層が腐食しやすい等の問題があった。 However, as shown in Patent Documents 2 to 4, a transparent conductor in which an Ag layer is sandwiched between dielectric layers such as niobium oxide and IZO has insufficient moisture resistance. As a result, when a transparent conductor is used in a high humidity environment, there is a problem that the Ag layer is easily corroded.
 一方、Ag層がZnS層に挟み込まれた透明導電体では、透明導電体の耐湿性が十分に高いものの、Ag層を形成する際、若しくはZnS層を形成する際に、銀が硫化されて硫化銀が生じやすい。その結果、透明導電体の光透過性が低くなるという問題があった。 On the other hand, in the transparent conductor in which the Ag layer is sandwiched between the ZnS layers, although the moisture resistance of the transparent conductor is sufficiently high, silver is sulfided and sulfided when forming the Ag layer or forming the ZnS layer. Silver is likely to occur. As a result, there is a problem that the light transmittance of the transparent conductor is lowered.
 また、ZnS層に含有されるZnSの絶縁性が高いため、Ag層との電気的接続が安定しないという問題が生じていた。 In addition, since the insulating property of ZnS contained in the ZnS layer is high, there is a problem that the electrical connection with the Ag layer is not stable.
特表2011-508400号公報Special table 2011-508400 gazette 特開2006-184849号公報JP 2006-184849 A 特開2002-15623号公報JP 2002-15623 A 特開2008-226581号公報JP 2008-226581 A
 本発明は、上記問題・状況に鑑みてなされたものである。その解決課題は、高い光透過率を有する透明金属層と回路基板との電気的な接続が改良された透明導電体とその製造方法を提供することである。 The present invention has been made in view of the above problems and situations. The problem to be solved is to provide a transparent conductor improved in electrical connection between a transparent metal layer having a high light transmittance and a circuit board, and a method for manufacturing the transparent conductor.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、透明金属層が異方性導電部材を介して回路基材と電気的に接続されていることが有効であることを見いだし、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above problems, the present inventor is effective in that the transparent metal layer is electrically connected to the circuit substrate through the anisotropic conductive member in the process of examining the cause of the above problems. We found out that there was a present invention.
That is, the said subject which concerns on this invention is solved by the following means.
 1.少なくとも、透明基板、第1高屈折率層、透明金属層及び第2高屈折率層を、この順に有する透明導電体であって、
 前記第1高屈折率層及び前記第2高屈折率層のうち少なくとも一層が、少なくとも硫化亜鉛を含有する層であり、
 前記透明導電体が、パターニングされていて、かつ、
 前記透明金属層が、異方性導電部材を介して回路基板と電気的に接続されていることを特徴とする透明導電体。
1. A transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order;
At least one of the first high refractive index layer and the second high refractive index layer is a layer containing at least zinc sulfide,
The transparent conductor is patterned, and
A transparent conductor, wherein the transparent metal layer is electrically connected to a circuit board via an anisotropic conductive member.
 2.前記硫化亜鉛を含有する層と前記透明金属層の間に、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種類の化合物を含有する硫化防止層を有することを特徴とする第1項に記載の透明導電体。 2. A sulfurization preventing layer containing at least one compound selected from a metal oxide, a metal fluoride, and a metal nitride is provided between the zinc sulfide-containing layer and the transparent metal layer. The transparent conductor according to item.
 3.前記透明導電体自体で形成された引き出し配線部を有し、
 当該引き出し配線部が、前記異方性導電部材を介して前記回路基板と電気的に接続されていることを特徴とする第1項又は第2項に記載の透明導電体。
3. It has a lead-out wiring part formed of the transparent conductor itself,
3. The transparent conductor according to claim 1 or 2, wherein the lead-out wiring portion is electrically connected to the circuit board through the anisotropic conductive member.
 4.前記引き出し配線部と、更にタッチセンサー部とを備えていることを特徴とする第1項から第3項までのいずれか一項に記載の透明導電体。 4. The transparent conductor according to any one of claims 1 to 3, further comprising a lead wiring part and a touch sensor part.
 5.第1項から第4項までのいずれか一項に記載の透明導電体の製造方法であって、
 透明基板の一方の面上に第1高屈折率層、透明金属層及び第2高屈折率層をこの順に積層して層構造体を形成する工程と、
 前記層構造体を、異方性導電部材を介して回路基板と電気的に接続する工程と、
 を備えることを特徴とする透明導電体の製造方法。
5. It is a manufacturing method of the transparent conductor given in any 1 paragraph from the 1st term to the 4th term,
Forming a layer structure by laminating a first high refractive index layer, a transparent metal layer and a second high refractive index layer in this order on one surface of the transparent substrate;
Electrically connecting the layer structure to a circuit board through an anisotropic conductive member;
A method for producing a transparent conductor, comprising:
 本発明の上記手段により、高い光透過率を有する透明金属層と回路基板との電気的な接続が改良された透明導電体とその製造方法を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
By the above means of the present invention, it is possible to provide a transparent conductor improved in electrical connection between a transparent metal layer having high light transmittance and a circuit board, and a method for manufacturing the transparent conductor.
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 前述のように、透明金属層とZnSを含有する層とが隣接して形成されると、金属硫化物が生成しやすく、透明導電体の光透過性が低下しやすいとの問題があった。金属硫化物は、以下のように生成すると推察される。 As described above, when the transparent metal layer and the layer containing ZnS are formed adjacent to each other, there is a problem that metal sulfide is easily generated and the light transmittance of the transparent conductor is likely to be lowered. The metal sulfide is presumed to be produced as follows.
 少なくとも硫化亜鉛を含有する層(以下、硫化亜鉛含有層ともいう。)として第1高屈折率層上にスパッタ法等の気相成膜法で透明金属層を形成する場合、硫化亜鉛含有層中の未反応の硫黄成分が、透明金属層の材料(金属材料)によって層形成の雰囲気中に弾き出される。そして、弾き出された硫黄成分と金属とが反応し、金属硫化物が硫化亜鉛含有層上に堆積する。また、硫化亜鉛含有層と透明金属層とを連続的に形成する場合、硫化亜鉛含有層の層形成の雰囲気に含まれる硫黄成分が透明金属層雰囲気内に残存する。そして、この硫黄成分と透明金属層由来の金属とが反応し、金属硫化物が硫化亜鉛含有層上に堆積する。 When a transparent metal layer is formed on the first high refractive index layer as a layer containing at least zinc sulfide (hereinafter also referred to as a zinc sulfide-containing layer) by a vapor deposition method such as sputtering, the zinc sulfide-containing layer The unreacted sulfur component is expelled into the layer formation atmosphere by the transparent metal layer material (metal material). Then, the ejected sulfur component reacts with the metal, and metal sulfide is deposited on the zinc sulfide-containing layer. Moreover, when forming a zinc sulfide content layer and a transparent metal layer continuously, the sulfur component contained in the atmosphere of layer formation of a zinc sulfide content layer remains in a transparent metal layer atmosphere. And this sulfur component and the metal derived from a transparent metal layer react, and metal sulfide deposits on a zinc sulfide content layer.
 一方、透明金属層上に第2高屈折率層(硫化亜鉛含有層)を形成する場合、透明金属層中の金属が、第2高屈折率層の材料によって、層形成の雰囲気中に弾き出される。そして、弾き出された金属と硫黄成分とが反応し、金属硫化物が透明金属層表面に堆積する。さらに、透明金属層の表面と、層形成の雰囲気中の硫黄成分とが接触することでも、透明金属層表面に金属硫化物が生成する。 On the other hand, when the second high refractive index layer (zinc sulfide-containing layer) is formed on the transparent metal layer, the metal in the transparent metal layer is expelled into the layer formation atmosphere by the material of the second high refractive index layer. . The ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal layer. Furthermore, a metal sulfide is generated on the surface of the transparent metal layer also when the surface of the transparent metal layer comes into contact with the sulfur component in the layer forming atmosphere.
 これに対し、例えば図2に示されるように、本発明に係る透明導電層10では、第1高屈折率層2上に、第1硫化防止層5aが積層されることが好ましい。当該構成では、第1高屈折率層2が第1硫化防止層5aで保護されるため、透明金属層3を形成する際に第1高屈折率層2中の硫黄成分が弾き出され難い。また、第1高屈折率層2と透明金属層3とを連続的に形成したとしても、第1高屈折率層2の層形成の雰囲気に含まれる硫黄成分が、第1硫化防止層5aの構成成分と反応したり、第1硫化防止層5aの構成成分に吸着される。したがって、透明金属層3を形成する雰囲気には硫黄が含まれ難くなり、金属硫化物の生成が抑制される。 On the other hand, for example, as shown in FIG. 2, in the transparent conductive layer 10 according to the present invention, it is preferable that the first antisulfurization layer 5 a is laminated on the first high refractive index layer 2. In this configuration, since the first high refractive index layer 2 is protected by the first sulfidation preventing layer 5a, the sulfur component in the first high refractive index layer 2 is hardly ejected when the transparent metal layer 3 is formed. Further, even if the first high refractive index layer 2 and the transparent metal layer 3 are continuously formed, the sulfur component contained in the atmosphere of the first high refractive index layer 2 is formed in the first sulfurization preventing layer 5a. It reacts with the component and is adsorbed by the component of the first antisulfurization layer 5a. Therefore, the atmosphere in which the transparent metal layer 3 is formed does not easily contain sulfur, and the generation of metal sulfide is suppressed.
 また、本発明に係る透明導電層10では、透明金属層3上に第2硫化防止層5bが積層される。当該構成では、透明金属層3が第2硫化防止層5bで保護されるため、第2高屈折率層4を形成する際に透明金属層3中の金属が弾き出され難い。また、第2高屈折率層4を形成する雰囲気中の硫黄成分が、透明金属層3の表面と接触し難い。したがって、透明金属層3表面に金属硫化物が生成し難い。 Further, in the transparent conductive layer 10 according to the present invention, the second sulfidation preventing layer 5 b is laminated on the transparent metal layer 3. In this configuration, since the transparent metal layer 3 is protected by the second antisulfurization layer 5b, the metal in the transparent metal layer 3 is hardly ejected when the second high refractive index layer 4 is formed. Further, the sulfur component in the atmosphere forming the second high refractive index layer 4 is difficult to come into contact with the surface of the transparent metal layer 3. Therefore, it is difficult for metal sulfides to be generated on the surface of the transparent metal layer 3.
 さらに、低抵抗であるためタッチパネルに適応した場合、透明導電層を引き出し配線にすることが可能となる。従来は、タッチパネルにおける透明導電層をパターニングした後、引き出し配線を設けているが、透明導電層をパターニングする際に引き出し配線を透明導電層で作製することで引き出し配線を設ける工程を一つ減らすことができる。
 また、ZnSを含む層は絶縁性が高く導通が取りづらいという問題は、導電性粒子含有層を加熱、加圧することにより、導電性粒子が透明導電層に侵入し、透明導電層における透明金属層と電極が接し導通が可能となることで解決することを見いだした。
Furthermore, since the resistance is low, the transparent conductive layer can be used as a lead-out wiring when adapted to a touch panel. Conventionally, the lead wiring is provided after patterning the transparent conductive layer in the touch panel. However, when the transparent conductive layer is patterned, the step of providing the lead wiring is reduced by creating the lead wiring with the transparent conductive layer. Can do.
In addition, the problem that the layer containing ZnS is highly insulating and difficult to conduct is that the conductive particles enter the transparent conductive layer by heating and pressurizing the conductive particle-containing layer, and the transparent metal layer in the transparent conductive layer I found that the problem is solved by the contact between the electrode and the conduction.
本発明の透明導電体の全体を示す模式図Schematic diagram showing the entire transparent conductor of the present invention 本発明の透明導電体と回路基板との接続の配置態様を示す模式図The schematic diagram which shows the arrangement | positioning aspect of the connection of the transparent conductor of this invention, and a circuit board タッチパネルの一例を示す概略断面図Schematic sectional view showing an example of a touch panel 透明導電体の層構成の一例を示す概略断面図Schematic sectional view showing an example of the layer structure of a transparent conductor 導電性粒子の一例を示す概略断面図Schematic sectional view showing an example of conductive particles 導電性粒子の一例を示す概略断面図Schematic sectional view showing an example of conductive particles 本発明の透明導電体の異方性導電部材を介して回路基板と電気的に接続する製造方法を示す概略図Schematic which shows the manufacturing method electrically connected with a circuit board through the anisotropic conductive member of the transparent conductor of this invention 本発明の透明導電体の一例を示す概略断面図Schematic sectional view showing an example of the transparent conductor of the present invention 本発明の透明導電体の一例を示す概略断面図Schematic sectional view showing an example of the transparent conductor of the present invention
 本発明の透明導電体は、少なくとも、透明基板、第1高屈折率層、透明金属層及び第2高屈折率層を、この順に有する透明導電体であって、前記第1高屈折率層及び前記第2高屈折率層のうち少なくとも一層が、少なくとも硫化亜鉛を含有する層であり、前記透明導電体がパターニングされていて、かつ、前記透明金属層が、異方性導電部材を介して回路基板と電気的に接続されていることを特徴とする。この特徴は、請求項1から請求項5までの請求項に係る発明に共通する技術的特徴である。 The transparent conductor of the present invention is a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order, the first high refractive index layer and At least one layer of the second high refractive index layer is a layer containing at least zinc sulfide, the transparent conductor is patterned, and the transparent metal layer is a circuit through an anisotropic conductive member. It is electrically connected to the substrate. This feature is a technical feature common to the inventions according to claims 1 to 5.
 本発明の実施態様としては、本発明の効果発現の観点から、前記硫化亜鉛を含有する層と前記透明金属層の間に、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種類の化合物を含有する硫化防止層を有することが好ましい。
 これにより、透明金属層を形成する雰囲気には硫黄が含まれ難くなり、金属硫化物の生成が抑制されるためである。
As an embodiment of the present invention, at least one kind selected from a metal oxide, a metal fluoride, and a metal nitride is provided between the layer containing zinc sulfide and the transparent metal layer from the viewpoint of manifesting the effects of the present invention. It is preferable to have a sulfidation preventive layer containing the above compound.
This is because the atmosphere in which the transparent metal layer is formed does not easily contain sulfur, and the generation of metal sulfide is suppressed.
 また、前記透明導電体自体で形成された引き出し配線部を有し、当該引き出し配線部が、前記異方性導電部材を介して前記回路基板と電気的に接続されていることが好ましい。これにより、タッチパネルセンサーとして好適に機能するためである。 Further, it is preferable that a lead-out wiring portion formed of the transparent conductor itself is provided, and the lead-out wiring portion is electrically connected to the circuit board via the anisotropic conductive member. This is because it suitably functions as a touch panel sensor.
 また、前記引き出し配線部と、更にタッチセンサー部とを備えていることが、前記透明導電層を引き出し配線とすることができるため、引き出し配線を設ける工程を一つ削減でき好ましい。 Further, it is preferable that the lead-out wiring part and the touch sensor part are provided, because the transparent conductive layer can be used as the lead-out wiring, so that the process of providing the lead-out wiring can be reduced by one.
 また、透明導電体の製造方法としては、透明基板の一方の面上に第1高屈折率層、透明金属層及び第2高屈折率層をこの順に積層して層構造体を形成する工程と、前記層構造体を、異方性導電部材を介して回路基板と電気的に接続する工程と、を備えることが好ましい。これにより、好適に透明導電体を製造することができる。 Moreover, as a method for producing a transparent conductor, a step of forming a layer structure by laminating a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order on one surface of a transparent substrate; It is preferable that the method further includes a step of electrically connecting the layer structure to a circuit board through an anisotropic conductive member. Thereby, a transparent conductor can be manufactured suitably.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used in the sense of including the numerical values described before and after it as lower and upper limits.
 本発明の透明導電体は、少なくとも、透明基板、第1高屈折率層、透明金属層及び第2高屈折率層を、この順に有する透明導電体であって、第1高屈折率層及び第2高屈折率層のうち少なくとも一層が、少なくとも硫化亜鉛を含有する層であり、透明導電体が、パターニングされていて、かつ、透明金属層が、異方性導電部材を介して回路基板と電気的に接続されている。
 本発明のパターニングされた透明導電体100の概略の一例を図1A示す。透明導電体100の層構成の例を図2に示す(引き出し配線部は図示略)。図1Aに示すように、透明導電体100の透明導電層10は、パターニングにより、導通領域aと絶縁領域bが形成されている。
 本発明の透明導電体は、図2に示すように、硫化亜鉛を含有する層と透明金属層の間に、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種類の化合物を含有する硫化防止層を有することが好ましい。
 また、導通領域aから引き出されている引き出し配線部12を有していることが好ましい。引き出し配線部12は、透明導電体100自体で形成されていることが好ましい。
The transparent conductor of the present invention is a transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order. (2) At least one of the high refractive index layers is a layer containing at least zinc sulfide, the transparent conductor is patterned, and the transparent metal layer is electrically connected to the circuit board via the anisotropic conductive member. Connected.
An example of the outline of the patterned transparent conductor 100 of this invention is shown to FIG. 1A. An example of the layer configuration of the transparent conductor 100 is shown in FIG. 2 (the lead wiring portion is not shown). As shown in FIG. 1A, a conductive region a and an insulating region b are formed in the transparent conductive layer 10 of the transparent conductor 100 by patterning.
As shown in FIG. 2, the transparent conductor of the present invention contains at least one compound selected from a metal oxide, a metal fluoride, and a metal nitride between a layer containing zinc sulfide and a transparent metal layer. It is preferable to have a sulfidation preventing layer.
Moreover, it is preferable to have the lead-out wiring part 12 pulled out from the conduction | electrical_connection area a. The lead wiring part 12 is preferably formed of the transparent conductor 100 itself.
 本発明の透明導電体は、透明導電体自体で形成された引き出し配線部を有し、当該引き出し配線部が、異方性導電部材を介して回路基板と電気的に接続されていることが好ましい。
 具体的には、当該引き出し配線部には、透明導電層10の透明基板1が接する反対側の面上に導電性粒子含有層6/電極7/フレキシブル基板8(回路基板、フレキシブルプリント基板及びFPC基板ともいう。)が圧着されている。
 すなわち、引き出し配線部12のうち、接続端子11となる回路基板に接続されている領域は、透明導電体自体で形成された引き出し配線部に導電性粒子含有層6、電極7及びフレキシブル基板8を圧着させて形成される(図1B参照、電極7は図示略)。なお、図1Bにおいては、説明の簡単のため、X軸方向のパターニングされた透明導電層10の図示を省略している。
The transparent conductor of the present invention preferably has a lead-out wiring portion formed of the transparent conductor itself, and the lead-out wiring portion is preferably electrically connected to the circuit board via an anisotropic conductive member. .
Specifically, the lead-out wiring portion includes a conductive particle containing layer 6 / electrode 7 / flexible substrate 8 (circuit board, flexible printed circuit board, and FPC) on the opposite surface of the transparent conductive layer 10 that the transparent substrate 1 contacts. Also referred to as a substrate).
That is, the region of the lead-out wiring portion 12 that is connected to the circuit board serving as the connection terminal 11 has the conductive particle-containing layer 6, the electrode 7, and the flexible substrate 8 in the lead-out wiring portion formed of the transparent conductor itself. It is formed by pressure bonding (see FIG. 1B, the electrode 7 is not shown). In FIG. 1B, illustration of the transparent conductive layer 10 patterned in the X-axis direction is omitted for the sake of simplicity.
 図1Bに示す状態から、導電性粒子含有層6、電極7及びフレキシブル基板8を圧着させ、さらに接着剤15によってディスプレイパネル16を透明導電層10(透明導電体100)に貼り合わせることで、タッチパネルを製造することができる(図1C参照)。
 透明導電層10(透明導電体100)にディスプレイパネル16を貼り合わせることで、タッチパネルとした場合、図1Aに示す破線で囲まれた領域がタッチセンサー部13として機能する。
 透明導電層10(透明導電体100)にディスプレイパネル16を貼り合わせてタッチパネルを製造する方法については、公知の方法を適宜利用することができる。
From the state shown in FIG. 1B, the conductive particle-containing layer 6, the electrode 7 and the flexible substrate 8 are pressure-bonded, and the display panel 16 is bonded to the transparent conductive layer 10 (transparent conductor 100) with an adhesive 15. Can be manufactured (see FIG. 1C).
When a display panel 16 is bonded to the transparent conductive layer 10 (transparent conductor 100) to form a touch panel, a region surrounded by a broken line illustrated in FIG. 1A functions as the touch sensor unit 13.
As a method for manufacturing the touch panel by bonding the display panel 16 to the transparent conductive layer 10 (transparent conductor 100), a known method can be appropriately used.
 また、図2に示すように、本発明の透明導電体100には、透明基板1及び透明導電層10が設けられる。透明導電層10は、少なくとも、第1高屈折率層2、透明金属層3、第2高屈折率層4が設けられる。
 そして、本発明の透明導電体100では、当該第1高屈折率層2又は第2高屈折率層4のいずれか一方、若しくは両方が、ZnSを含む硫化亜鉛含有層である。
 また、当該硫化亜鉛含有層(第1高屈折率層2及び第2高屈折率層4)と透明金属層3との間には、硫化防止層5(第1硫化防止層5a及び第2硫化防止層5b)が設けられることが好ましい。
 また、上述のとおり、透明導電層10は、パターニングされている。パターニングの方法及び形状等は、公知の方法を用いることができ、透明導電体の使用目的に合わせて適宜変更することができる。
As shown in FIG. 2, the transparent conductor 100 of the present invention is provided with a transparent substrate 1 and a transparent conductive layer 10. The transparent conductive layer 10 is provided with at least a first high refractive index layer 2, a transparent metal layer 3, and a second high refractive index layer 4.
In the transparent conductor 100 of the present invention, either one or both of the first high refractive index layer 2 and the second high refractive index layer 4 are zinc sulfide-containing layers containing ZnS.
Further, between the zinc sulfide-containing layer (the first high refractive index layer 2 and the second high refractive index layer 4) and the transparent metal layer 3, the sulfide prevention layer 5 (the first sulfide prevention layer 5a and the second sulfide). A prevention layer 5b) is preferably provided.
Further, as described above, the transparent conductive layer 10 is patterned. A known method can be used as a patterning method and shape, and the patterning method and shape can be appropriately changed according to the purpose of use of the transparent conductor.
 以下に透明基板1及び透明導電層10を説明し、さらに、引き出し配線部に設けられる導電性粒子含有層6について説明する。本発明で用いられる電極は、本発明の効果を阻害しない範囲で一般的に用いられている電極を使用することができる。同様に、フレキシブル基板についても、柔軟性があり大きく変形させることが可能なプリント基板であれば、公知のものを使用することができる。 Hereinafter, the transparent substrate 1 and the transparent conductive layer 10 will be described, and further, the conductive particle-containing layer 6 provided in the lead-out wiring portion will be described. The electrode generally used in the range which does not inhibit the effect of this invention can be used for the electrode used by this invention. Similarly, a flexible substrate can be used as long as it is a flexible printed circuit board that can be greatly deformed.
 なお、透明導電層10には、第1高屈折率層2、透明金属層3、第2高屈折率層4及び硫化防止層5以外の層が設けられてもよい。例えば、透明金属層3の形成時に成長核になり得る下地層が、透明金属層3と第1高屈折率層2との間に、透明金属層3に隣接して設けられてもよい。ただし、本発明に係る透明導電層10を構成する層は、いずれも無機材料からなる層である。例えば、第2高屈折率層4上に有機樹脂からなる接着層が積層されていたとしても、第1高屈折率層2から第2高屈折率層4までの積層体が、透明導電層10である。 The transparent conductive layer 10 may be provided with a layer other than the first high refractive index layer 2, the transparent metal layer 3, the second high refractive index layer 4, and the antisulfurization layer 5. For example, an underlayer that can become a growth nucleus when forming the transparent metal layer 3 may be provided adjacent to the transparent metal layer 3 between the transparent metal layer 3 and the first high refractive index layer 2. However, the layers constituting the transparent conductive layer 10 according to the present invention are all layers made of an inorganic material. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 4, the laminated body from the first high refractive index layer 2 to the second high refractive index layer 4 is made of the transparent conductive layer 10. It is.
 本発明の透明導電体100は、第1高屈折率層、透明金属層及び第2高屈折率層を含む透明導電層10に加え、透明基板1を有している。さらに、透明金属層は、異方性導電部材を介して回路基板と電気的に接続されている。
 透明導電層の層構成を先に説明した後、その他の部分について説明する。
The transparent conductor 100 of the present invention has a transparent substrate 1 in addition to the transparent conductive layer 10 including a first high refractive index layer, a transparent metal layer, and a second high refractive index layer. Furthermore, the transparent metal layer is electrically connected to the circuit board via an anisotropic conductive member.
After describing the layer structure of the transparent conductive layer first, the other parts will be described.
 1.透明導電層の層構成について
 (1-1)第1高屈折率層
 第1高屈折率層2は、透明導電体の導通領域a、つまり透明金属層3が形成されている領域の光透過性を調整する層であり、少なくとも透明導電体100の導通領域aに形成される。第1高屈折率層2は、透明導電体100の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
1. 1. Layer structure of transparent conductive layer (1-1) First high refractive index layer The first high refractive index layer 2 is a light transmitting property of the conductive region a of the transparent conductor, that is, the region where the transparent metal layer 3 is formed. And is formed at least in the conduction region a of the transparent conductor 100. The first high-refractive index layer 2 may be formed also in the insulating region b of the transparent conductor 100, but from the viewpoint of making it difficult to visually recognize the pattern formed of the conductive region a and the insulating region b, only the conductive region a. It is preferable to be formed.
 第1高屈折率層2には、後述する透明基板1の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれる。当該誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。
 一方、第1高屈折率層2に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第1高屈折率層2によって、透明導電体100の導通領域aの光透過性が十分に調整される。
 なお、第1高屈折率層2の屈折率は、第1高屈折率層2に含まれる材料の屈折率や、第1高屈折率層2に含まれる材料の密度で調整される。
The first high refractive index layer 2 includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate 1 described later. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5, and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the first high refractive index layer 2 sufficiently adjusts the light transmittance of the conduction region a of the transparent conductor 100.
The refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
 第1高屈折率層2に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料は、金属酸化物でありうる。金属酸化物の例にはTiO、ITO(酸化インジウム・スズ)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウム・セリウムオキサイド)、Bi、Ga、GeO、WO、HfO、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が含まれる。第1高屈折率層2には、当該金属酸化物が一種のみ含まれてもよく、二種以上が含まれてもよい。 The dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material can be a metal oxide. TiO 2 Examples of metal oxides, ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2, CeO 2, Ta 2 O 5, Ti 3 O 5, Ti 4 O 7, Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al doped ZnO), GZO (Ga doped ZnO), ATO (Sb doped SnO), ICO (indium cerium oxide) , Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (amorphous oxide composed of gallium, indium, and oxygen) and the like. The first high refractive index layer 2 may contain only one kind of the metal oxide or two or more kinds.
 また、第1高屈折率層2に含まれる誘電性材料又は酸化物半導体材料は、ZnSでもありうる。第1高屈折率層2にZnSが含まれると、透明基板1側から水分が透過し難くなり、透明金属層3の腐食が抑制される。第1高屈折率層2には、ZnSのみが含まれてもよく、ZnSとともに他の材料が含まれてもよい。ZnSとともに含まれる材料は、上記誘電性材料又は酸化物半導体材料でありうる金属酸化物やSiO等であり、特に好ましくはSiOである。ZnSとともにSiOが含まれると、第1高屈折率層が非晶質になりやすく、透明導電体のフレキシブル性が高まりやすい。 Further, the dielectric material or the oxide semiconductor material included in the first high refractive index layer 2 may be ZnS. When ZnS is contained in the first high refractive index layer 2, moisture hardly penetrates from the transparent substrate 1 side, and corrosion of the transparent metal layer 3 is suppressed. The first high refractive index layer 2 may contain only ZnS, and may contain other materials together with ZnS. Materials included with ZnS is a metal oxide or SiO 2 or the like, which may be the dielectric material or an oxide semiconductor material, particularly preferably SiO 2. When SiO 2 is contained together with ZnS, the first high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
 第1高屈折率層2にZnSとともに他の材料が含まれる場合、ZnSの量は、第1高屈折率層2を構成する材料の総モル数に対して、0.1~95質量%以下であることが好ましく、50~90質量%以下であることがより好ましく、さらに好ましくは60~85質量%以下である。
 ZnSの比率が高いとスパッタ速度が速くなり、第1高屈折率層2の形成速度が速くなる。一方、ZnS以外の成分が多く含まれると、第1高屈折率層2の非晶質性が高まり、第1高屈折率層2の割れが抑制される。
When the first high refractive index layer 2 contains other materials together with ZnS, the amount of ZnS is 0.1 to 95% by mass or less with respect to the total number of moles of the materials constituting the first high refractive index layer 2. It is preferably 50 to 90% by mass or less, and more preferably 60 to 85% by mass or less.
When the ratio of ZnS is high, the sputtering rate is increased, and the formation rate of the first high refractive index layer 2 is increased. On the other hand, when many components other than ZnS are contained, the amorphous nature of the first high refractive index layer 2 is increased, and cracking of the first high refractive index layer 2 is suppressed.
 第1高屈折率層2の厚さは、15~150nmであることが好ましく、より好ましくは20~80nmである。第1高屈折率層2の厚さが15nm以上であると、第1高屈折率層2によって、透明導電体100の導通領域aの光透過性が十分に調整される。一方、第1高屈折率層2の厚さが150nm以下であれば、第1高屈折率層2が含まれる領域の光透過性が低下し難い。第1高屈折率層2の厚さは、エリプソメーターで測定される。 The thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm. When the thickness of the first high refractive index layer 2 is 15 nm or more, the first high refractive index layer 2 sufficiently adjusts the light transmittance of the conductive region a of the transparent conductor 100. On the other hand, if the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease. The thickness of the first high refractive index layer 2 is measured with an ellipsometer.
 第1高屈折率層2は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法及び熱CVD法等の一般的な気相成膜法で形成された層でありうる。第1高屈折率層2の屈折率(密度)が高まるとの観点から、第1高屈折率層2は、電子ビーム蒸着法又はスパッタ法で形成された層であることが好ましい。電子ビーム蒸着法の場合は膜密度を高めるため、イオンアシスト法(Ion Assisted Deposition:IAD)などによるアシストがあることが望ましい。 The first high refractive index layer 2 can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method and a thermal CVD method. From the standpoint that the refractive index (density) of the first high refractive index layer 2 is increased, the first high refractive index layer 2 is preferably a layer formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, in order to increase the film density, it is desirable that there is an assist by an ion assist method (ION Assisted Deposition: IAD).
 また、第1高屈折率層2が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第1高屈折率層2は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 Further, when the first high refractive index layer 2 is a layer patterned into a desired shape, the patterning method is not particularly limited. The first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the surface to be formed. It may be a layer patterned by.
 (1-2)第1硫化防止層
 第1高屈折率層にZnSが含まれる場合、つまり第1高屈折率層2が硫化亜鉛含有層である場合、図2に示されるように、第1高屈折率層2と透明金属層3との間に第1硫化防止層5aが設けられることが好ましい。第1硫化防止層5aは、透明導電体100の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、図4に示すように、導通領域aのみに形成されていることが好ましい。
(1-2) First Antisulfuration Layer When ZnS is contained in the first high refractive index layer, that is, when the first high refractive index layer 2 is a zinc sulfide-containing layer, as shown in FIG. It is preferable that a first antisulfurization layer 5 a is provided between the high refractive index layer 2 and the transparent metal layer 3. Although the first sulfidation preventing layer 5a may be formed also in the insulating region b of the transparent conductor 100, as shown in FIG. 4 from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b. In addition, it is preferably formed only in the conduction region a.
 当該第1硫化防止層5aは、金属酸化物、金属窒化物、金属フッ化物等、又はZnを含む層でありうる。第1硫化防止層5aには、これらが一種のみ含まれてもよく、二種以上含まれてもよい。ただし、第1高屈折率層2と、第1硫化防止層5aと、透明金属層3とが連続的に形成される場合には、金属酸化物が硫黄と反応可能、若しくは硫黄を吸着可能な化合物であることが好ましい。金属酸化物が、硫黄と反応する化合物である場合、金属酸化物と硫黄との反応物は、可視光の透過性が高いことが好ましい。 The first sulfidation preventing layer 5a may be a metal oxide, metal nitride, metal fluoride, or the like, or a layer containing Zn. The first sulfidation preventing layer 5a may contain only one kind or two or more kinds. However, when the first high refractive index layer 2, the first sulfidation preventing layer 5a, and the transparent metal layer 3 are continuously formed, the metal oxide can react with sulfur or adsorb sulfur. A compound is preferred. In the case where the metal oxide is a compound that reacts with sulfur, the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
 金属酸化物の例には、TiO、ITO、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO、GZO、ATO、ICO、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO等が含まれる。
 金属フッ化物の例には、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等が含まれる。
 金属窒化物の例には、Si、AlN等が含まれる。
Examples of metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 and the like are included.
Examples of metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. .
Examples of the metal nitride include Si 3 N 4 , AlN, and the like.
 ここで、第1硫化防止層5aの厚さは、透明金属層3の形成時の衝撃から、第1高屈折率層2の表面を保護可能な厚さであることが好ましい。一方で、第1高屈折率層に含まれ得るZnSは、透明金属層3に含まれる金属との親和性が高い。そのため、第1硫化防止層5aの厚さが非常に薄く、第1高屈折率層2の一部が僅かに露出していると、当該露出部分を中心に透明金属層が成長し、透明金属層3が緻密になりやすい。つまり、第1硫化防止層5aは比較的薄いことが好ましく、0.1~10nmであることが好ましく、より好ましくは0.5~5nmであり、さらに好ましくは1~3nmである。第1硫化防止層5aの厚さは、エリプソメーターで測定される。 Here, it is preferable that the thickness of the first sulfidation preventing layer 5a is a thickness capable of protecting the surface of the first high refractive index layer 2 from an impact when the transparent metal layer 3 is formed. On the other hand, ZnS that can be contained in the first high refractive index layer has a high affinity with the metal contained in the transparent metal layer 3. Therefore, if the thickness of the first antisulfurization layer 5a is very thin and a part of the first high refractive index layer 2 is slightly exposed, a transparent metal layer grows around the exposed part, and the transparent metal Layer 3 tends to be dense. That is, the first antisulfurization layer 5a is preferably relatively thin, preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm. The thickness of the first sulfurization preventing layer 5a is measured with an ellipsometer.
 第1硫化防止層5aは、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層でありうる。 The first sulfidation preventing layer 5a may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
 第1硫化防止層5aが、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第1硫化防止層5aは、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 When the first antisulfurization layer 5a is a layer patterned into a desired shape, the patterning method is not particularly limited. The first sulfidation preventing layer 5a may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, by a known etching method. It may be a patterned layer.
 (1-3)透明金属層
 透明金属層3は、透明導電体100において電気を導通させるための層である。本発明の透明導電体に設けられる透明導電層10では、図1Aに示されるように、透明金属層3が透明基板1の全面に積層されていてもよく、目的とするデバイスの用途に合わせて所望の形状にパターニングされていてもよい。本発明の透明導電体において、透明金属層3が積層されている領域aが、電気が導通する領域(以下、「導通領域」とも称する。)である。一方、透明金属層3が含まれない領域bが絶縁領域である(図2及び図4参照)。
(1-3) Transparent Metal Layer The transparent metal layer 3 is a layer for conducting electricity in the transparent conductor 100. In the transparent conductive layer 10 provided in the transparent conductor of the present invention, as shown in FIG. 1A, the transparent metal layer 3 may be laminated on the entire surface of the transparent substrate 1, according to the intended use of the device. It may be patterned into a desired shape. In the transparent conductor of the present invention, the region a where the transparent metal layer 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”). On the other hand, the region b not including the transparent metal layer 3 is an insulating region (see FIGS. 2 and 4).
 導通領域a及び絶縁領域bからなるパターンは、透明導電体100の用途に応じて、適宜選択される。例えば透明導電体100が静電方式のタッチパネルに適用される場合には、図1Aに示されるように、複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターン等でありうる。 The pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 100. For example, when the transparent conductor 100 is applied to an electrostatic touch panel, as shown in FIG. 1A, a pattern including a plurality of conductive regions a and a line-shaped insulating region b that divides the conductive regions a. sell.
 透明金属層3に含まれる金属は、導電性の高い金属であれば特に制限されず、例えば、銀、銅、金、白金、チタン、クロム等でありうる。透明金属層3には、これらの金属が一種のみ含まれてもよく、二種以上含まれてもよい。導電性が高いとの観点から、透明金属層は銀、又は銀が90at%以上含まれる合金からなることが好ましい。銀と組み合わされる金属は、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム、モリブデン等でありうる。例えば銀と亜鉛とが組み合わされると、透明金属層の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。 The metal contained in the transparent metal layer 3 is not particularly limited as long as it is a highly conductive metal, and can be, for example, silver, copper, gold, platinum, titanium, chromium, or the like. The transparent metal layer 3 may contain only one kind of these metals or two or more kinds. From the viewpoint of high conductivity, the transparent metal layer is preferably made of silver or an alloy containing 90 at% or more of silver. The metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, and the like. For example, when silver and zinc are combined, the sulfidation resistance of the transparent metal layer is increased. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases.
 透明金属層3のプラズモン吸収率は、波長400~800nmにわたって(全範囲で)10%以下であることが好ましく、7%以下であることがより好ましく、さらに好ましくは5%以下である。波長400~800nmの一部にプラズモン吸収率が大きい領域があると、透明導電体100の導通領域aの透過光が着色しやすくなる。 The plasmon absorption rate of the transparent metal layer 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor 100 is likely to be colored.
 透明金属層3の波長400~800nmにおけるプラズモン吸収率は、以下の手順で測定される。
 (i)ガラス基板上に、白金パラジウムをマグネトロンスパッタ装置にて0.1nm成膜する。白金パラジウムの平均厚さは、スパッタ装置のメーカー公称値の成膜速度等から算出する。その後、白金パラジウムが付着した基板上にスパッタ法にて金属からなる膜を20nm形成する。
The plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 3 is measured by the following procedure.
(I) A platinum palladium film is formed to a thickness of 0.1 nm on a glass substrate using a magnetron sputtering apparatus. The average thickness of platinum-palladium is calculated from the film formation rate of the manufacturer's nominal value of the sputtering apparatus. After that, a 20 nm thick metal film is formed by sputtering on the substrate to which platinum palladium is attached.
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の光透過率及び光反射率を測定する。そして各波長における光透過率及び光反射率から、光吸収率=100-(光透過率+光反射率)を算出し、これをリファレンスデータとする。光透過率及び光反射率は、分光光度計で測定する。 (Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the light transmittance and light reflectance of the metal film are measured. Then, light absorptivity = 100− (light transmittance + light reflectance) is calculated from the light transmittance and light reflectance at each wavelength, and this is used as reference data. The light transmittance and light reflectance are measured with a spectrophotometer.
 (iii)続いて、測定対象の透明金属層を同様のガラス基板上に形成する。そして、当該透明金属層について、同様に光透過率及び光反射率を測定する。得られた光吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 (Iii) Subsequently, a transparent metal layer to be measured is formed on the same glass substrate. And about the said transparent metal layer, light transmittance and light reflectance are measured similarly. The reference data is subtracted from the obtained light absorption rate, and the calculated value is defined as the plasmon absorption rate.
 透明金属層3の厚さは10nm以下であり、好ましくは3~9nmであり、さらに好ましくは5~8nmである。本発明の透明導電体100では、透明金属層3の厚さが10nm以下であるため、透明金属層3に金属本来の反射が生じ難い。さらに、透明金属層3の厚さが10nm以下であると、第1高屈折率層2及び第2高屈折率層4によって、透明導電体100の光透過性が調整されやすく、導通領域a表面での光の反射が抑制されやすい。透明金属層3の厚さは、エリプソメーターで測定される。 The thickness of the transparent metal layer 3 is 10 nm or less, preferably 3 to 9 nm, and more preferably 5 to 8 nm. In the transparent conductor 100 of the present invention, since the thickness of the transparent metal layer 3 is 10 nm or less, the metal inherent reflection hardly occurs in the transparent metal layer 3. Furthermore, when the thickness of the transparent metal layer 3 is 10 nm or less, the light transmittance of the transparent conductor 100 can be easily adjusted by the first high refractive index layer 2 and the second high refractive index layer 4, and the surface of the conductive region a Reflection of light at the surface is easy to be suppressed. The thickness of the transparent metal layer 3 is measured with an ellipsometer.
 透明金属層3は、いずれかの形成方法で形成された層でありうるが、透明金属層の平均透過率を変えるためには、スパッタ法で形成された層、若しくは後述する下地層上に形成された層であることが好ましい。 The transparent metal layer 3 can be a layer formed by any of the forming methods. However, in order to change the average transmittance of the transparent metal layer, it is formed on a layer formed by a sputtering method or an underlayer described later. It is preferred that the layer be a layer.
 スパッタ法では、形成時に材料が被形成体に高速で衝突するため、緻密かつ平滑な層が得られやすく、透明金属層3の光透過性が高まりやすい。また、透明金属層3がスパッタ法により形成された層であると、透明金属層3が高温かつ低湿度な環境においても腐食し難くなる。スパッタ法の種類は特に制限されず、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法、対向スパッタ法等でありうる。透明金属層3は、特に対向スパッタ法で形成された層であることが好ましい。すなわち、透明金属層3が、対向スパッタ法で形成された層であると、透明金属層3が緻密になり、表面平滑性が高まりやすい。その結果、透明金属層3の表面電気抵抗がより低くなり、光の透過率も高まりやすい。 In the sputtering method, since the material collides with the formed body at a high speed at the time of formation, a dense and smooth layer can be easily obtained, and the light transmittance of the transparent metal layer 3 is easily increased. Further, when the transparent metal layer 3 is a layer formed by sputtering, the transparent metal layer 3 is hardly corroded even in an environment of high temperature and low humidity. The type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like. The transparent metal layer 3 is particularly preferably a layer formed by a counter sputtering method. That is, when the transparent metal layer 3 is a layer formed by the facing sputtering method, the transparent metal layer 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent metal layer 3 becomes lower and the light transmittance is likely to increase.
 一方、透明金属層3が後述する下地層上に形成された層である場合、透明金属層3の形成時に下地層が成長核となるため、透明金属層3が平滑な層になりやすい。その結果、透明金属層3が薄くとも、プラズモン吸収が生じ難くなる。この場合、透明金属層3の形成方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法でありうる。 On the other hand, when the transparent metal layer 3 is a layer formed on the underlayer described later, the underlayer becomes a growth nucleus when the transparent metal layer 3 is formed, so that the transparent metal layer 3 tends to be a smooth layer. As a result, even if the transparent metal layer 3 is thin, plasmon absorption hardly occurs. In this case, the method for forming the transparent metal layer 3 is not particularly limited, and may be a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
 また、透明金属層3が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。透明金属層3は、例えば、所望のパターンを有するマスクを配置して形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 Further, when the transparent metal layer 3 is a layer patterned into a desired shape, the patterning method is not particularly limited. For example, the transparent metal layer 3 may be a layer formed by arranging a mask having a desired pattern, or may be a layer patterned by a known etching method.
 (1-4)第2硫化防止層
 後述する第2高屈折率層が硫化亜鉛含有層である場合、図2に示されるように、透明金属層3と第2高屈折率層4との間に第2硫化防止層5bが形成されることが好ましい。第2硫化防止層5bは、透明導電体100の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
(1-4) Second anti-sulfurization layer When the second high-refractive index layer described later is a zinc sulfide-containing layer, as shown in FIG. 2, the gap between the transparent metal layer 3 and the second high-refractive index layer 4 is It is preferable that the second antisulfurization layer 5b is formed. The second sulfidation preventing layer 5b may be formed also in the insulating region b of the transparent conductor 100, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a. Preferably it is formed.
 当該第2硫化防止層5bは、金属酸化物、金属窒化物、金属フッ化物等、又はZnを含む層である。第2硫化防止層5bには、これらが一種のみ含まれてもよく、二種以上が含まれてもよい。金属酸化物、金属窒化物、金属フッ化物は、第1高屈折率層2に含まれる金属酸化物、金属窒化物、金属フッ化物と同様でありうる。 The second sulfidation preventing layer 5b is a layer containing metal oxide, metal nitride, metal fluoride, etc., or Zn. Only one of these may be included in the second sulfurization prevention layer 5b, or two or more thereof may be included. The metal oxide, metal nitride, and metal fluoride may be the same as the metal oxide, metal nitride, and metal fluoride contained in the first high refractive index layer 2.
 一方、第2硫化防止層5bの厚さは、第2高屈折率層4の形成時の衝撃から、透明金属層3の表面を保護可能な厚さであることが好ましい。一方で、透明金属層3に含まれる金属と、第2高屈折率層4に含まれるZnSは、親和性が高い。そのため、第2硫化防止層5bの厚さが非常に薄く、透明金属層3の一部が僅かに露出していると、透明金属層3や第2硫化防止層5bと第2高屈折率層4との密着性が高まりやすい。したがって、第2硫化防止層5bの具体的な厚さは0.1~10nmであることが好ましく、より好ましくは0.5~5nmであり、さらに好ましくは1~3nmである。第2硫化防止層5bの厚さは、エリプソメーターで測定される。 On the other hand, the thickness of the second antisulfurization layer 5b is preferably a thickness capable of protecting the surface of the transparent metal layer 3 from an impact when the second high refractive index layer 4 is formed. On the other hand, the metal contained in the transparent metal layer 3 and the ZnS contained in the second high refractive index layer 4 have high affinity. Therefore, if the thickness of the second antisulfuration layer 5b is very thin and a part of the transparent metal layer 3 is slightly exposed, the transparent metal layer 3, the second antisulfurization layer 5b, and the second high refractive index layer. Adhesion with 4 tends to increase. Accordingly, the specific thickness of the second antisulfurization layer 5b is preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm. The thickness of the second sulfurization preventing layer 5b is measured with an ellipsometer.
 第2硫化防止層5bは、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層でありうる。 The second antisulfurization layer 5b may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
 第2硫化防止層5bが、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第2硫化防止層5bは、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 When the second antisulfurization layer 5b is a layer patterned into a desired shape, the patterning method is not particularly limited. The second antisulfurization layer 5b may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, and by a known etching method. It may be a patterned layer.
 (1-5)第2高屈折率層
 第2高屈折率層4は、透明導電体100の導通領域a、つまり透明金属層3が形成されている領域の光透過性を調整するための層であり、少なくとも透明導電体100の導通領域aに形成される。第2高屈折率層4は、透明導電体100の絶縁領域bに形成されてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
(1-5) Second High Refractive Index Layer The second high refractive index layer 4 is a layer for adjusting the light transmittance of the conductive region a of the transparent conductor 100, that is, the region where the transparent metal layer 3 is formed. And formed at least in the conductive region a of the transparent conductor 100. The second high-refractive index layer 4 may be formed in the insulating region b of the transparent conductor 100, but is formed only in the conductive region a from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b. It is preferable that
 第2高屈折率層4には透明基板1の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれる。当該誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第2高屈折率層4に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第2高屈折率層4によって、透明導電体100の導通領域aの光透過性が十分に調整される。なお、第2高屈折率層4の屈折率は、第2高屈折率層4に含まれる材料の屈折率や、第2高屈折率層4に含まれる材料の密度で調整される。 The second high refractive index layer 4 includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate 1. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable. On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the second high refractive index layer 4 is preferably larger than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the light transmittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4. The refractive index of the second high refractive index layer 4 is adjusted by the refractive index of the material included in the second high refractive index layer 4 and the density of the material included in the second high refractive index layer 4.
 第2高屈折率層4に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料は、金属酸化物でありうる。当該金属酸化物は、第1高屈折率層に含まれる金属酸化物と同様でありうる。第2高屈折率層4には、当該金属酸化物が一種のみ含まれてもよく、二種以上が含まれてもよい。 The dielectric material or oxide semiconductor material included in the second high refractive index layer 4 may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material can be a metal oxide. The metal oxide may be the same as the metal oxide included in the first high refractive index layer. The second high refractive index layer 4 may include only one kind of the metal oxide or two or more kinds.
 また、第2高屈折率層4に含まれる誘電性材料又は酸化物半導体材料は、ZnSでもありうる。第2高屈折率層4にZnSが含まれると、第2高屈折率層4側から水分が透過し難くなり、透明金属層3の腐食が抑制される。第2高屈折率層4には、ZnSのみが含まれてもよく、ZnSとともに他の材料が含まれてもよい。ZnSとともに含まれる材料は、上記誘電性材料又は酸化物半導体材料でありうる金属酸化物、若しくはSiOであり、特に好ましくはSiOである。ZnSとともにSiOが含まれると、第2高屈折率層4が非晶質になりやすく、透明導電体のフレキシブル性が高まりやすい。 Further, the dielectric material or the oxide semiconductor material included in the second high refractive index layer 4 may be ZnS. When ZnS is contained in the second high refractive index layer 4, it becomes difficult for moisture to permeate from the second high refractive index layer 4 side, and corrosion of the transparent metal layer 3 is suppressed. The second high refractive index layer 4 may contain only ZnS or may contain other materials together with ZnS. The material included together with ZnS is a metal oxide that can be the dielectric material or the oxide semiconductor material, or SiO 2 , and particularly preferably SiO 2 . When SiO 2 is contained together with ZnS, the second high refractive index layer 4 is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
 第2高屈折率層4にZnSとともに他の材料が含まれる場合、ZnSの量は、第2高屈折率層4を構成する成分の総モル数に対して、0.1質量%以上95質量%以下であることが好ましく、50質量%以上90質量%以下であることがより好ましく、さらに好ましくは60質量%以上85質量%以下である。ZnSの比率が高いとスパッタ速度が速くなり、第2高屈折率層4の形成速度が早くなる。一方、ZnS以外の成分が多くなると、第2高屈折率層4の非晶質性が高まり、第2高屈折率層4の割れが抑制される。 When the second high refractive index layer 4 contains other materials together with ZnS, the amount of ZnS is 0.1% by mass or more and 95% by mass with respect to the total number of moles of components constituting the second high refractive index layer 4. % Is preferably 50% by mass or more and 90% by mass or less, and more preferably 60% by mass or more and 85% by mass or less. When the ratio of ZnS is high, the sputtering rate increases and the formation rate of the second high refractive index layer 4 increases. On the other hand, when the amount of components other than ZnS increases, the amorphousness of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
 第2高屈折率層4の厚さは、好ましくは15~150nmであり、さらに好ましくは20~80nmである。第2高屈折率層4の厚さが15nm以上であると、第2高屈折率層4によって、透明導電体100の導通領域aの光透過性が十分に調整される。一方、第2高屈折率層4の厚さが150nm以下であれば、第2高屈折率層4が含まれる領域の光透過性が低下し難い。第2高屈折率層4の厚さは、エリプソメーターで測定される。 The thickness of the second high refractive index layer 4 is preferably 15 to 150 nm, and more preferably 20 to 80 nm. When the thickness of the second high refractive index layer 4 is 15 nm or more, the light transmittance of the conduction region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4. On the other hand, if the thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease. The thickness of the second high refractive index layer 4 is measured with an ellipsometer.
 第2高屈折率層4の形成方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層であり得る。第2高屈折率層4の透湿性が低くなるとの観点から、第2高屈折率層4はスパッタ法で形成された層であることが特に好ましい。 The formation method of the second high refractive index layer 4 is not particularly limited, and is a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. It can be. From the standpoint that the moisture permeability of the second high refractive index layer 4 is lowered, the second high refractive index layer 4 is particularly preferably a layer formed by a sputtering method.
 また、第2高屈折率層4が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第2高屈折率層4は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよい。また、公知のエッチング法によってパターニングされた層であってもよい。 Further, when the second high refractive index layer 4 is a layer patterned into a desired shape, the patterning method is not particularly limited. The second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the surface to be formed. Moreover, the layer patterned by the well-known etching method may be sufficient.
 なお、第1高屈折率層2及び第2高屈折率層4のいずれか一方が硫化亜鉛含有層である場合には、当該硫化亜鉛含有層である第1高屈折率層2又は第2高屈折率層4と透明金属層3との間に、硫化防止層5が設けられる。一方、第1高屈折率層2及び第2高屈折率層4の両方が硫化亜鉛含有層である場合、いずれか一方の第1高屈折率層2又は第2高屈折率層4と透明金属層3との間に、硫化防止層5が設けられればよいが、透明導電体100の光透過性を十分に高めるとの観点から、各硫化亜鉛含有層である第1高屈折率層2及び第2高屈折率層4と透明金属層3との間に、それぞれ硫化防止層5が設けられることが好ましい。つまり、第1高屈折率層2と透明金属層3との間、及び透明金属層3と第2高屈折率層4との間に、それぞれ硫化防止層5が設けられることが好ましい。 When either one of the first high refractive index layer 2 and the second high refractive index layer 4 is a zinc sulfide-containing layer, the first high refractive index layer 2 or the second high refractive index layer 2 that is the zinc sulfide-containing layer. An antisulfurization layer 5 is provided between the refractive index layer 4 and the transparent metal layer 3. On the other hand, when both the first high refractive index layer 2 and the second high refractive index layer 4 are zinc sulfide-containing layers, either the first high refractive index layer 2 or the second high refractive index layer 4 and the transparent metal The sulfidation prevention layer 5 may be provided between the layer 3 and the first high refractive index layer 2 that is each zinc sulfide-containing layer, and from the viewpoint of sufficiently increasing the light transmittance of the transparent conductor 100 and It is preferable that an antisulfurization layer 5 is provided between the second high refractive index layer 4 and the transparent metal layer 3. In other words, it is preferable that the antisulfurization layer 5 is provided between the first high refractive index layer 2 and the transparent metal layer 3 and between the transparent metal layer 3 and the second high refractive index layer 4.
 (1-6)下地層
 前述のように、透明導電体100には、透明金属層3の形成時に成長核となる下地層が設けられてもよい。下地層は、透明金属層3より透明基板1側、かつ透明金属層3に隣接して形成された層、つまり、第1高屈折率層2と透明金属層3との間、若しくは第1硫化防止層5aと透明金属層3との間に形成された層でありうる。下地層は、少なくとも透明導電体の導通領域aに形成されていることが好ましく、透明導電体100の絶縁領域bに形成されていてもよい。
(1-6) Underlayer As described above, the transparent conductor 100 may be provided with an underlayer serving as a growth nucleus when the transparent metal layer 3 is formed. The underlayer is a layer formed on the transparent substrate 1 side of the transparent metal layer 3 and adjacent to the transparent metal layer 3, that is, between the first high refractive index layer 2 and the transparent metal layer 3, or the first sulfide. It may be a layer formed between the prevention layer 5a and the transparent metal layer 3. The underlayer is preferably formed at least in the conductive region a of the transparent conductor, and may be formed in the insulating region b of the transparent conductor 100.
 透明導電体100に下地層が設けられると、透明金属層3の厚さが薄くとも、透明金属層3の表面の平滑性が高まる。その理由は以下のとおりである。 When the transparent conductor 100 is provided with a base layer, the smoothness of the surface of the transparent metal layer 3 is increased even if the transparent metal layer 3 is thin. The reason is as follows.
 一般的な気相成膜法で透明金属層3の材料を、例えば第1高屈折率層2上に堆積させると、形成初期には、第1高屈折率層2上に付着した原子がマイグレート(移動)し、原子が寄り集まって塊(島状構造)を形成する。そして、この塊にまとわりつきながら膜が成長する。そのため、形成初期の層では、塊同士の間に隙間があり、導通しない。この状態からさらに塊が成長すると、塊同士の一部が繋がり、辛うじて導通する。しかし、塊同士の間にいまだ隙間があるため、プラズモン吸収が生じる。そして、さらに形成が進むと、塊同士が完全に繋がって、プラズモン吸収が少なくなる。しかしその一方で、金属本来の反射が生じ、層の光透過性が低下する。 When the material of the transparent metal layer 3 is deposited, for example, on the first high refractive index layer 2 by a general vapor deposition method, atoms attached to the first high refractive index layer 2 are initially deposited at the initial stage of formation. It moves (move) and atoms gather together to form a lump (island structure). And a film grows clinging to this lump. Therefore, in the layer at the initial stage of formation, there is a gap between the lumps and it does not conduct. When a lump further grows from this state, a part of the lump is connected and barely conducted. However, since there is still a gap between the lumps, plasmon absorption occurs. As the formation proceeds further, the lumps are completely connected and plasmon absorption is reduced. However, on the other hand, the intrinsic reflection of the metal occurs and the light transmittance of the layer is reduced.
 これに対し、第1高屈折率層2上をマイグレートし難い金属からなる下地層が形成されていると、当該下地層を成長核として、透明金属層3が成長する。つまり、透明金属層3の材料がマイグレートし難くなり、前述の島状構造を形成せずに膜が成長する。その結果、厚さが薄くとも平滑な透明金属層3が得られやすくなる。 On the other hand, when a base layer made of a metal that is difficult to migrate is formed on the first high refractive index layer 2, the transparent metal layer 3 grows using the base layer as a growth nucleus. That is, the material of the transparent metal layer 3 is difficult to migrate, and the film grows without forming the island-like structure described above. As a result, a smooth transparent metal layer 3 can be easily obtained even if the thickness is small.
 ここで、下地層には、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウム、あるいはこれらの金属と他の金属との合金や、これらの金属の酸化物や硫化物(例えばZnS)が含まれることが好ましい。下地層には、これらが一種のみ含まれてもよく、二種以上が含まれてもよい。 Here, the base layer contains palladium, molybdenum, zinc, germanium, niobium or indium, an alloy of these metals with another metal, an oxide or a sulfide of these metals (for example, ZnS). Is preferred. The underlayer may contain only one kind, or two or more kinds.
 下地層に含まれるパラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウムの量は、20質量%以上であることが好ましく、より好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。下地層に上記金属が20質量%以上含まれると、下地層と透明金属層3との親和性が高まり、下地層と透明金属層3との密着性が高まりやすい。下地層にはパラジウム又はモリブデンが含まれることが特に好ましい。 The amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more. When the metal is contained in the base layer in an amount of 20% by mass or more, the affinity between the base layer and the transparent metal layer 3 is increased, and the adhesion between the base layer and the transparent metal layer 3 is likely to be increased. It is particularly preferable that the underlayer contains palladium or molybdenum.
 一方、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウムと合金を形成する金属は特に制限されないが、例えばパラジウム以外の白金族、金、コバルト、ニッケル、チタン、アルミニウム、クロム等でありうる。 On the other hand, the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, but may be a platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, chromium, or the like.
 下地層の厚さは、3nm以下であり、好ましくは0.5nm以下であり、より好ましくは単原子膜である。下地層は、透明基板1上に金属原子が互いに離間して付着している膜でもありうる。下地層の付着量が3nm以下であれば、下地層が透明導電体100の光透過性や光学アドミッタンスに影響を及ぼし難い。下地層の有無はICP-MS法で確認される。また、下地層の厚さは、形成速度と形成時間との積から算出される。 The thickness of the underlayer is 3 nm or less, preferably 0.5 nm or less, and more preferably a monoatomic film. The underlayer can also be a film in which metal atoms adhere to the transparent substrate 1 with a distance therebetween. When the adhesion amount of the underlayer is 3 nm or less, the underlayer hardly affects the light transmission property and optical admittance of the transparent conductor 100. The presence or absence of the underlayer is confirmed by the ICP-MS method. Further, the thickness of the underlayer is calculated from the product of the formation speed and the formation time.
 下地層は、スパッタ法又は蒸着法で形成された層でありうる。スパッタ法の例には、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等が含まれる。下地層形成時のスパッタ時間は、所望の下地層の平均厚さ、及び形成速度に合わせて適宜選択される。スパッタ形成速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 The underlayer can be a layer formed by sputtering or vapor deposition. Examples of the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method. The sputtering time for forming the underlayer is appropriately selected according to the desired average thickness and formation rate of the underlayer. The sputter formation rate is preferably 0.1 to 15 Å / second, more preferably 0.1 to 7 Å / second.
 一方、蒸着法の例には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着時間は、所望の下地層の厚さ及び形成速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 On the other hand, examples of the vapor deposition method include vacuum vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method and the like. The deposition time is appropriately selected according to the desired thickness and formation rate of the underlayer. The deposition rate is preferably 0.1 to 15 Å / second, more preferably 0.1 to 7 Å / second.
 下地層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。下地層は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 When the ground layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The underlayer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the surface to be formed, or a layer patterned by a known etching method It may be.
 (1-7)低屈折率層
 本発明の透明導電体100には、第2高屈折率層4上に、透明導電体の導通領域aの光透過性を調整する低屈折率層(図示せず)が設けられてもよい。低屈折率層は、透明導電体100の導通領域aにのみ形成されていてもよく、透明導電体100の導通領域a及び絶縁領域bの両方に形成されていてもよい。
(1-7) Low Refractive Index Layer The transparent conductor 100 of the present invention has a low refractive index layer (not shown) for adjusting the light transmittance of the conductive region a of the transparent conductor on the second high refractive index layer 4. May be provided. The low refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
 低屈折率層には、第1高屈折率層2及び第2高屈折率層4に含まれる誘電性材料又は酸化物半導材料の波長570nmの光の屈折率より、波長570nmの光の屈折率が低い誘電性材料又は酸化物半導体材料が含まれる。低屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、第1高屈折率層2及び第2高屈折率層4に含まれる上記材料の波長570nmの光の屈折率より、それぞれ0.2以上低いことが好ましく、0.4以上低いことがより好ましい。 In the low refractive index layer, the refractive index of light having a wavelength of 570 nm is higher than the refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material included in the first high refractive index layer 2 and the second high refractive index layer 4. A dielectric material or oxide semiconductor material having a low rate is included. The refractive index of the light of wavelength 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is the light of wavelength 570 nm of the material contained in the first high refractive index layer 2 and the second high refractive index layer 4. The refractive index is preferably 0.2 or more lower and more preferably 0.4 or more lower.
 低屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.8未満であることが好ましく、より好ましくは1.30~1.6であり、特に好ましくは1.35~1.5である。なお、低屈折率層の屈折率は主に、低屈折率層に含まれる材料の屈折率や、低屈折率層に含まれる材料の密度で調整される。 The specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is preferably less than 1.8, more preferably 1.30 to 1.6, Particularly preferred is 1.35 to 1.5. The refractive index of the low refractive index layer is mainly adjusted by the refractive index of the material included in the low refractive index layer and the density of the material included in the low refractive index layer.
 低屈折率層に含まれる誘電性材料又は酸化物半導体材料は、MgF、SiO、AlF、CaF、CeF、CdF、LaF、LiF、NaF、NdF、YF、YbF、Ga、LaAlO、NaAlF、Al、MgO、及びThO等でありうる。誘電性材料又は酸化物半導体材料は中でも、MgF、SiO、CaF、CeF、LaF、LiF、NaF、NdF、NaAlF、Al、MgO、又はThOであることが好ましく、屈折率が低いとの観点から、MgF及びSiOが特に好ましい。低屈折率層には、これらの材料が一種のみ含まれてもよく、二種以上含まれてもよい。 The dielectric material or the oxide semiconductor material included in the low refractive index layer is MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, NdF 3 , YF 3 , YbF 3. , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO, and ThO 2 . Dielectric material or oxide semiconductor materials among others, MgF 2, SiO 2, CaF 2, CeF 3, LaF 3, LiF, NaF, NdF 3, Na 3 AlF 6, Al 2 O 3, MgO, or is ThO 2 In view of low refractive index, MgF 2 and SiO 2 are particularly preferable. The low refractive index layer may contain only one kind of these materials or two or more kinds.
 低屈折率層の厚さは、10~150nmであることが好ましく、より好ましくは20~100nmである。低屈折率層の厚さが10nm以上であると、透明導電体表面の光透過性が微調整されやすい。一方、低屈折率層の厚さが150nm以下であれば、透明導電体の厚さが薄くなる。低屈折率層の厚さは、エリプソメーターで測定される。 The thickness of the low refractive index layer is preferably 10 to 150 nm, more preferably 20 to 100 nm. When the thickness of the low refractive index layer is 10 nm or more, the light transmittance on the surface of the transparent conductor is easily finely adjusted. On the other hand, if the thickness of the low refractive index layer is 150 nm or less, the thickness of the transparent conductor is reduced. The thickness of the low refractive index layer is measured with an ellipsometer.
 低屈折率層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層であり得る。形成の容易性等の観点から、低屈折率層は、電子ビーム蒸着法又はスパッタ法で形成された層であることが好ましい。 The low refractive index layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. From the viewpoint of ease of formation and the like, the low refractive index layer is preferably a layer formed by electron beam evaporation or sputtering.
 また、低屈折率層がパターニングされた層である場合、パターニング方法は特に制限されない。低屈折率層は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法でパターニングされた層であってもよい。 Further, when the low refractive index layer is a patterned layer, the patterning method is not particularly limited. The low refractive index layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, and is patterned by a known etching method. It may be a layer.
 (1-8)第3高屈折率層
 前述のように、本発明の透明導電体100には、低屈折率層上にさらに、透明導電体の導通領域aの光透過性を調整する第3高屈折率層が設けられてもよい。第3高屈折率層は、透明導電体100の導通領域aにのみ形成されていてもよく、透明導電体100の導通領域a及び絶縁領域bの両方に形成されていてもよい。
(1-8) Third High Refractive Index Layer As described above, the transparent conductor 100 of the present invention further includes a third that adjusts the light transmittance of the conductive region a of the transparent conductor on the low refractive index layer. A high refractive index layer may be provided. The third high refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
 第3高屈折率層には、前述の透明基板1の屈折率及び前記低屈折率層の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれることが好ましい。
 第3高屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第3高屈折率層によって、透明導電体100の導通領域aの光透過性が十分に調整される。なお、第3高屈折率層の屈折率は、第3高屈折率層に含まれる材料の屈折率や、第3高屈折率層に含まれる材料の密度で調整される。
The third high refractive index layer preferably includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 and the refractive index of the low refractive index layer.
The specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably larger than 1.5, more preferably 1.7 to 2.5. Preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the light transmittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the third high refractive index layer. The refractive index of the third high refractive index layer is adjusted by the refractive index of the material included in the third high refractive index layer and the density of the material included in the third high refractive index layer.
 第3高屈折率層に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料は、金属酸化物又はZnSであることが好ましい。金属酸化物の例には、前述の第1高屈折率層2又は第2高屈折率層4に含まれる金属酸化物が含まれる。第3高屈折率層には、当該金属酸化物又はZnSが一種のみ含まれてもよく、二種以上が含まれてもよい。また、金属酸化物やZnSとともに、SiO等の誘電性材料が含まれてもよい。 The dielectric material or oxide semiconductor material contained in the third high refractive index layer may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material is preferably a metal oxide or ZnS. Examples of the metal oxide include the metal oxide contained in the first high refractive index layer 2 or the second high refractive index layer 4 described above. The third high refractive index layer may contain only one kind of the metal oxide or ZnS, or two or more kinds. A dielectric material such as SiO 2 may be included together with the metal oxide and ZnS.
 第3高屈折率層の厚さは特に制限されず、好ましくは1~40nmであり、さらに好ましくは5~20nmである。第3高屈折率層の厚さが上記範囲であると、透明導電体100の導通領域aの光透過性が十分に調整される。第3高屈折率層の厚さは、エリプソメーターで測定される。 The thickness of the third high refractive index layer is not particularly limited, and is preferably 1 to 40 nm, and more preferably 5 to 20 nm. When the thickness of the third high refractive index layer is in the above range, the light transmittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted. The thickness of the third high refractive index layer is measured with an ellipsometer.
 第3高屈折率層の形成方法は特に制限されず、第1高屈折率層2や第2高屈折率層4と同様の方法で形成された層でありうる。 The formation method of the third high refractive index layer is not particularly limited, and may be a layer formed by the same method as the first high refractive index layer 2 and the second high refractive index layer 4.
 2.透明導電体のその他の構成について
 透明導電体に設けられるその他の構成について説明する。
2. About other structure of a transparent conductor The other structure provided in a transparent conductor is demonstrated.
 (2-1)透明基板
 透明導電体100が有する透明基板1は、各種表示デバイスの透明基板と同様でありうる。透明基板1は、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、「アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムでありうる。透明基板1が透明樹脂フィルムである場合、当該フィルムには二種以上の樹脂が含まれてもよい。
(2-1) Transparent substrate The transparent substrate 1 included in the transparent conductor 100 can be the same as the transparent substrate of various display devices. The transparent substrate 1 includes a glass substrate, a cellulose ester resin (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), a cycloolefin resin (for example, ZEONOR (manufactured by Nippon Zeon), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, "Acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical)) , Polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PET), polyethylene naphthalate), polyethersulfone, ABS / AS resin, MBS resin, police It may be a transparent resin film made of len, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, etc. When the transparent substrate 1 is a transparent resin film, the film includes two or more kinds. Resin may be included.
 透明性の観点から、透明基板1はガラス基板、若しくはセルロースエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、又はスチレン系ブロックコポリマー樹脂からなるフィルムであることが好ましい。 From the viewpoint of transparency, the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polycarbonate resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin, A film made of polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable.
 透明基板1は、可視光に対する透明性が高いことが好ましく、波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基板1の光の平均透過率が70%以上であると、透明導電体100の光透過性が高まりやすい。また、透明基板1の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent substrate 1 preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 上記平均透過率は、透明基板1の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板1の平均反射率を測定し、平均吸収率=100-(平均透過率+平均反射率)として算出する。平均透過率及び平均反射率は分光光度計で測定される。 The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1. On the other hand, the average absorptance is calculated as the average absorptivity = 100− (average transmissivity + average reflectivity) by making light incident from the same angle as the average transmissivity and measuring the average reflectivity of the transparent substrate 1. . Average transmittance and average reflectance are measured with a spectrophotometer.
 透明基板1の波長570nmの光の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。透明基板の屈折率は、通常、透明基板の材質によって定まる。透明基板の屈折率は、エリプソメーターで測定される。 The refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. . The refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
 透明基板1のヘイズ値は0.01~2.5であることが好ましく、より好ましくは0.1~1.2である。透明基板のヘイズ値が2.5以下であると、透明導電体のヘイズ値が抑制される。ヘイズ値は、ヘイズメーターで測定される。 The haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. When the haze value of the transparent substrate is 2.5 or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
 透明基板1の厚さは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明基板の厚さが1μm以上であると、透明基板1の強度が高まり、第1高屈折率層2の作製時に割れたり、裂けたりし難くなる。一方、透明基板1の厚さが20mm以下であれば、透明導電体100のフレキシブル性が十分となる。さらに透明導電体100を用いた機器の厚さを薄くできる。また、透明導電体100を用いた機器を軽量化することもできる。 The thickness of the transparent substrate 1 is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm. When the thickness of the transparent substrate is 1 μm or more, the strength of the transparent substrate 1 is increased, and it is difficult to crack or tear the first high refractive index layer 2. On the other hand, if the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient. Furthermore, the thickness of the apparatus using the transparent conductor 100 can be reduced. Moreover, the apparatus using the transparent conductor 100 can also be reduced in weight.
 (2-2)異方性導電部材
 異方性導電部材は、透明金属層と回路基板を電気的に接続するために用いる。異方性導電部材とは、例えば、熱硬化性樹脂に混ぜ合わせた導電性を持つ微細な導電性粒子を挙げることができる。例えば、図4に示すように、異方性導電材料に含まれる異方性導電部材である導電性粒子が、所定の間隔で配置された電極と、透明導電層10の間に位置することで、加圧等した場合に導電性粒子が押し付けられる。
 これにより、例えば、図3Aに示す導電性粒子P1が有する導電層P3が、電極7及び透明金属層3と接触し、導電する経路となる。
 一方、圧力がかからなかった部分に位置する導電性粒子P1は、絶縁層を保持しているため、横に並ぶ電極間の絶縁性が保持されることとなる。すなわち、図4に示す導通方向9には導電経路が形成し、導通方向9と直交する方向には絶縁性が保たれる異方性が形成される。
 なお、図4は、概略図として、粒子が電極及び透明導電層の間に一つある場合を示しているが、複数あることにより、導通方向9に導通経路が形成されてもよい。
 異方性導電部材を含有する異方性導電材料として、異方性導電フィルム(Anisotropic Conductive Film、以下ACFともいう。)や、異方性導電ペースト等を使用することができる。
 これらの異方性導電部材について、導電性粒子と導電性粒子含有層に分けて説明する。
(2-2) Anisotropic Conductive Member The anisotropic conductive member is used to electrically connect the transparent metal layer and the circuit board. Examples of the anisotropic conductive member include fine conductive particles having conductivity mixed with a thermosetting resin. For example, as shown in FIG. 4, the conductive particles that are anisotropic conductive members included in the anisotropic conductive material are positioned between the electrodes arranged at a predetermined interval and the transparent conductive layer 10. When pressurized, the conductive particles are pressed.
Thereby, for example, the conductive layer P3 included in the conductive particles P1 shown in FIG. 3A is in contact with the electrode 7 and the transparent metal layer 3, thereby providing a conductive path.
On the other hand, since the conductive particles P1 located in the portion where no pressure is applied hold the insulating layer, the insulating property between the electrodes arranged side by side is held. That is, a conductive path is formed in the conduction direction 9 shown in FIG. 4, and anisotropy that maintains insulation is formed in a direction orthogonal to the conduction direction 9.
Note that FIG. 4 schematically shows a case where there is one particle between the electrode and the transparent conductive layer, but a conduction path may be formed in the conduction direction 9 by having a plurality of particles.
As an anisotropic conductive material containing an anisotropic conductive member, an anisotropic conductive film (hereinafter also referred to as ACF), an anisotropic conductive paste, or the like can be used.
These anisotropic conductive members will be described separately for conductive particles and conductive particle-containing layers.
 (2-2-1)導電性粒子含有層
 本発明に用いることができる導電性粒子含有層としては、異方性導電部材としての導電性粒子を含有する層であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、導電性粒子を少なくとも含有し、層形成樹脂、ラジカル重合性化合物、重合開始剤、更に必要に応じて、シランカップリング剤などのその他の成分を含有する層が挙げられる。
(2-2-1) Conductive particle-containing layer The conductive particle-containing layer that can be used in the present invention is not particularly limited as long as it is a layer containing conductive particles as an anisotropic conductive member. It can be appropriately selected according to the purpose. For example, it contains at least conductive particles, a layer-forming resin, a radical polymerizable compound, a polymerization initiator, and, if necessary, other components such as a silane coupling agent. The layer to contain is mentioned.
 層形成樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えばフェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などが挙げられる。層形成樹脂は、一種単独で使用してもよいし、二種以上を併用してもよい。これらの中でも、製膜性、加工性、接続信頼性の点からフェノキシ樹脂が特に好ましい。
 フェノキシ樹脂とは、ビスフェノールAとエピクロルヒドリンより合成される樹脂であって、適宜合成したものを使用してもよいし、市販品を使用してもよい。
 導電性粒子含有層における層形成樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
The layer forming resin is not particularly limited and can be appropriately selected depending on the purpose. For example, phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, Examples thereof include polyolefin resins. Layer forming resin may be used individually by 1 type, and may use 2 or more types together. Among these, phenoxy resin is particularly preferable from the viewpoints of film formability, processability, and connection reliability.
The phenoxy resin is a resin synthesized from bisphenol A and epichlorohydrin, and an appropriately synthesized resin or a commercially available product may be used.
There is no restriction | limiting in particular as content of layer forming resin in an electroconductive particle content layer, According to the objective, it can select suitably.
 ラジカル重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル化合物、液状アクリレート等が例示され、具体的には、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、リン酸基含有アクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ジメチロールトリシクロデカンジアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレート、エポキシアクリレートなどが挙げられる。なお、前記アクリレートをメタクリレートにしたものを用いることもできる。これらは、一種単独で使用してもよいし、二種以上を併用してもよい。
 導電性粒子含有層における前記ラジカル重合性化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
The radical polymerizable compound is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include acrylic compounds and liquid acrylates. Specific examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, and isobutyl. Acrylate, phosphate group-containing acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylolpropane triacrylate, dimethyloltricyclodecane diacrylate, tetramethylene glycol tetraacrylate, 2-hydroxy-1,3-diaacryloxypropane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2,2-bis [4- (acryloxyethoxy) phenyl] propane, dicyclopentenyl acrylate, Li tricyclodecanyl acrylate, tris (acryloxyethyl) isocyanurate, urethane acrylate, epoxy acrylate. In addition, what made the said acrylate the methacrylate can also be used. These may be used individually by 1 type and may use 2 or more types together.
There is no restriction | limiting in particular as content of the said radically polymerizable compound in an electroconductive particle content layer, According to the objective, it can select suitably.
 重合開始剤としては、ラジカル重合性化合物を重合させることができるものであれば、特に制限はなく、目的に応じて適宜選択することができるが、熱又は光によって遊離ラジカルを発生する重合開始剤が好ましい。
 熱又は光によって遊離ラジカルを発生する重合開始剤としては、有機過酸化物が好ましく、反応性と保存安定性の観点から1分間半減期温度が90~180℃であり、かつ10時間半減期温度が40℃以上である有機過酸化物がより好ましい。
 10秒間以下で接合を行うためには1分間半減期温度が180℃以下であることが好ましい。10時間半減期温度が40℃以下であると冷蔵5℃以下の保管が困難となることがある。
 熱によって遊離ラジカルを発生する重合開始剤としては、例えば、有機過酸化物、アゾ化合物などが挙げられる。前記有機過酸化物としては、例えば、過酸化ベンゾイル、ターシャリーブチルパーオキシドなどが挙げられる。前記アゾ化合物としては、例えば、2,2′-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2′-アゾビス(2,4-ジメチルバレロニトリル)(V-65)、2,2′-アゾビスイソブチロニトリル(AIBN)、2,2′-アゾビス(2-メチルブチロニトリル)、1,1-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2′-アゾビス〔2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド〕、ジメチル-2,2′-アゾビス(2-メトキシプロピオネート)などが挙げられる。これらは、一種単独で使用してもよいし、二種以上を併用してもよい。
 光によって遊離ラジカルを発生する重合開始剤としては、例えば、アルキルフェノン、ベンゾイン、ベンゾフェノン、ジカルボニル化合物、チオキサントン、アシルホスフィンオキサイド、又はこれらの誘導体などが挙げられる。これらは、一種単独で使用してもよいし、二種以上を併用してもよい。
 導電性粒子含有層における重合開始剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
The polymerization initiator is not particularly limited as long as it can polymerize a radical polymerizable compound, and can be appropriately selected according to the purpose. However, the polymerization initiator generates a free radical by heat or light. Is preferred.
As a polymerization initiator that generates free radicals by heat or light, an organic peroxide is preferable, and a half-life temperature of 1 minute is 90 to 180 ° C. from the viewpoint of reactivity and storage stability, and a 10-hour half-life temperature. An organic peroxide having a temperature of 40 ° C. or higher is more preferable.
In order to perform bonding in 10 seconds or less, the half-life temperature for 1 minute is preferably 180 ° C. or less. When the 10-hour half-life temperature is 40 ° C. or lower, it may be difficult to store at 5 ° C. or lower.
Examples of the polymerization initiator that generates free radicals by heat include organic peroxides and azo compounds. Examples of the organic peroxide include benzoyl peroxide and tertiary butyl peroxide. Examples of the azo compound include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile) (V-65), 2 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis (2-methylbutyronitrile), 1,1-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis [ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide], dimethyl-2,2′-azobis (2-methoxypropionate) and the like. These may be used individually by 1 type and may use 2 or more types together.
Examples of the polymerization initiator that generates free radicals by light include alkylphenone, benzoin, benzophenone, dicarbonyl compounds, thioxanthone, acylphosphine oxide, and derivatives thereof. These may be used individually by 1 type and may use 2 or more types together.
There is no restriction | limiting in particular as content of the polymerization initiator in an electroconductive particle content layer, According to the objective, it can select suitably.
 シランカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ系シランカップリング剤、アクリル系シランカップリング剤、チオール系シランカップリング剤、アミン系シランカップリング剤などが挙げられる。
 導電性粒子含有層におけるシランカップリング剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
There is no restriction | limiting in particular as a silane coupling agent, According to the objective, it can select suitably, For example, an epoxy-type silane coupling agent, an acrylic-type silane coupling agent, a thiol-type silane coupling agent, an amine-type silane cup A ring agent etc. are mentioned.
There is no restriction | limiting in particular as content of the silane coupling agent in an electroconductive particle content layer, According to the objective, it can select suitably.
 導電性粒子含有層の平均厚さとしては、特に制限はなく、目的に応じて適宜選択することができるが、1~100μmが好ましく、4~30μmがより好ましい。前記平均厚さが、1μm未満であると、回路間に導電性粒子含有層が十分充填されないことがあり、100μmを超えると、導電性粒子含有層が十分に排除できずに導通不良が生じることがある。前記平均厚さが、前記特に好ましい範囲であると、適度に導電性粒子含有層が充填され、接着性、及び導通信頼性の点で有利である。
 ここで、平均厚さは、任意に5か所を測定した際の平均値である。
The average thickness of the conductive particle-containing layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 to 100 μm, and more preferably 4 to 30 μm. When the average thickness is less than 1 μm, the conductive particle-containing layer may not be sufficiently filled between the circuits. When the average thickness exceeds 100 μm, the conductive particle-containing layer cannot be sufficiently eliminated, resulting in poor conduction. There is. When the average thickness is within the particularly preferable range, the conductive particle-containing layer is appropriately filled, which is advantageous in terms of adhesion and conduction reliability.
Here, the average thickness is an average value when arbitrarily measuring five locations.
 (2-2-2)導電性粒子
 本発明に係る異方性導電部材として用いることができる導電性粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属粒子、金属被覆樹脂粒子などが挙げられる。
 金属粒子としては、例えば、ニッケル、コバルト、銀、銅、金、パラジウムなどが挙げられる。これらは、一種単独で使用してもよいし、二種以上を併用してもよい。これらの中でも、ニッケル、銀、銅が好ましい。これらの表面酸化を防ぐ目的で、表面に金、パラジウムを施した粒子を用いてもよい。更に、表面に金属突起や有機物で絶縁被膜を施したものを用いてもよい。
 金属被覆樹脂粒子としては、例えば、樹脂コアの表面をニッケル、銅、金、及びパラジウムのいずれかの金属を被覆した粒子が挙げられる。同様に、樹脂コアの最外表面に金、パラジウムを施した粒子を用いてもよい。更に、樹脂コアの表面に金属突起や有機物で絶縁皮膜を施したものを用いてもよい。
 ニッケルを被覆した粒子の場合は、硬化温度が200℃と高いが、硬度が高く、突き破ることが容易となる点が好ましい。
 また、金を被覆した粒子の場合は、硬度は低いが、硬化温度が140℃と低めにすることができる点が好ましい。
(2-2-2) Conductive Particles The conductive particles that can be used as the anisotropic conductive member according to the present invention are not particularly limited and may be appropriately selected depending on the intended purpose. For example, metal particles And metal-coated resin particles.
Examples of the metal particles include nickel, cobalt, silver, copper, gold, and palladium. These may be used individually by 1 type and may use 2 or more types together. Among these, nickel, silver, and copper are preferable. In order to prevent these surface oxidations, particles having gold or palladium on the surface may be used. Furthermore, you may use what gave the metal film and the insulating film with the organic substance on the surface.
Examples of the metal-coated resin particles include particles in which the surface of the resin core is coated with any metal of nickel, copper, gold, and palladium. Similarly, particles obtained by applying gold or palladium to the outermost surface of the resin core may be used. Further, a resin core whose surface is coated with a metal protrusion or an organic material may be used.
In the case of particles coated with nickel, the curing temperature is as high as 200 ° C., but the hardness is high and it is easy to break through.
In the case of particles coated with gold, the hardness is low, but the curing temperature is preferably as low as 140 ° C.
 樹脂コアへの金属の被覆方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無電解めっき法、スパッタリング法などが挙げられる。
 樹脂コアの材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン-ジビニルベンゼン共重合体、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂、アクリル樹脂、スチレン-シリカ複合樹脂などが挙げられる。
 導電性粒子含有層における導電性粒子の含有量としては、特に制限はなく、回路部材の配線ピッチや、接続面積などによって適宜調整することができる。
There is no restriction | limiting in particular as a metal coating method to a resin core, According to the objective, it can select suitably, For example, an electroless-plating method, sputtering method, etc. are mentioned.
The material for the resin core is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include styrene-divinylbenzene copolymer, benzoguanamine resin, cross-linked polystyrene resin, acrylic resin, and styrene-silica composite resin. Can be mentioned.
There is no restriction | limiting in particular as content of the electroconductive particle in an electroconductive particle content layer, According to the wiring pitch of a circuit member, a connection area, etc., it can adjust suitably.
 導電性粒子の構造について説明する。
 図3に、本発明に用いられる導電性粒子含有層に含まれている導電性粒子の一例を断面図で示す。
The structure of the conductive particles will be described.
In FIG. 3, an example of the electroconductive particle contained in the electroconductive particle content layer used for this invention is shown with sectional drawing.
 図3Aに示すように、導電性粒子P1は、樹脂粒子P2と、該樹脂粒子P2の表面P2aを被覆している導電層P3とを有する。導電性粒子P1は、樹脂粒子P2の表面P2aが導電層P3により被覆された被覆粒子である。したがって、導電性粒子P1は導電層P3を表面P1aに有する。 As shown in FIG. 3A, the conductive particles P1 have resin particles P2 and a conductive layer P3 covering the surface P2a of the resin particles P2. The conductive particles P1 are coated particles in which the surface P2a of the resin particles P2 is coated with the conductive layer P3. Therefore, the conductive particles P1 have the conductive layer P3 on the surface P1a.
 導電層P3は、樹脂粒子P2の表面P2aを被覆している第1の導電層P4と、該第1の導電層P4の表面P4aを被覆しているはんだ層P5(第2の導電層)とを有する。導電層P3の外側の表面層が、はんだ層P5である。このように、導電層P3は、多層構造を有していてもよく、2層又は3層以上の多層構造を有していてもよい。 The conductive layer P3 includes a first conductive layer P4 covering the surface P2a of the resin particle P2, and a solder layer P5 (second conductive layer) covering the surface P4a of the first conductive layer P4. Have The outer surface layer of the conductive layer P3 is a solder layer P5. Thus, the conductive layer P3 may have a multilayer structure, or may have a multilayer structure of two layers or three or more layers.
 上記のように、導電層P3は2層構造を有する。図3Bに示す変形例のように、導電性粒子P11は、単層の導電層として、はんだ層P12を有していてもよい。導電性粒子における導電層の少なくとも外側の表面層が、はんだ層であればよい。ただし、導電性粒子の作製が容易であるので、導電性粒子P1と導電性粒子P11とのうち、導電性粒子P1が好ましい。 As described above, the conductive layer P3 has a two-layer structure. As in the modification shown in FIG. 3B, the conductive particles P11 may have a solder layer P12 as a single conductive layer. The surface layer on the outer side of the conductive layer in the conductive particles may be a solder layer. However, conductive particles P1 are preferable among the conductive particles P1 and the conductive particles P11 because the production of the conductive particles is easy.
 樹脂粒子P2の表面P2aに導電層P3を形成する方法、並びに樹脂粒子P2の表面P2aにはんだ層P5、P12を形成する方法は特に限定されない。導電層P3及びはんだ層P5、P12を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、物理的蒸着による方法、並びに金属粉末若しくは金属粉末とバインダーとを含むペーストを樹脂粒子の表面にコーティングする方法等が挙げられる。なかでも、無電解めっき又は電気めっきが好適である。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シータコンポーザ等が用いられる。 The method for forming the conductive layer P3 on the surface P2a of the resin particle P2 and the method for forming the solder layers P5 and P12 on the surface P2a of the resin particle P2 are not particularly limited. Examples of the method for forming the conductive layer P3 and the solder layers P5 and P12 include a method by electroless plating, a method by electroplating, a method by physical collision, a method by physical vapor deposition, and metal powder or metal powder and a binder. And the like, and a method of coating the surface of the resin particles. Of these, electroless plating or electroplating is preferable. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. Further, in the method based on the physical collision, for example, a theta composer or the like is used.
 はんだ層P5、P12を形成する方法は、物理的な衝突による方法であることが好ましい。はんだ層P5、P12は、物理的な衝撃により形成されていることが好ましい。 The method of forming the solder layers P5 and P12 is preferably a method by physical collision. The solder layers P5 and P12 are preferably formed by physical impact.
 従来、導電層の外側の表面層にはんだ層を有する導電性粒子の粒子径は、数百μm程度であった。これは、粒子径が数十μmであり、かつ表面層がはんだ層である導電性粒子を得ようとしても、はんだ層を均一に形成できなかったためである。これに対して、シータコンポーザを用いることによって、導電性粒子の粒子径が数十μm、特に粒子径が0.1μm以上、粒子径が50μm以下である導電性粒子を得る場合であっても、導電層の表面上にはんだ層を均一に形成できる。 Conventionally, the particle diameter of conductive particles having a solder layer on the outer surface layer of the conductive layer has been about several hundred μm. This is because the solder layer could not be formed uniformly even if conductive particles having a particle size of several tens of μm and the surface layer being a solder layer were obtained. On the other hand, by using a theta composer, even when conductive particles having a particle size of several tens of μm, particularly a particle size of 0.1 μm or more and a particle size of 50 μm or less are obtained, A solder layer can be uniformly formed on the surface of the conductive layer.
 はんだ層以外の導電層P3は、金属により形成されていることが好ましい。はんだ層以外の導電層P3を構成する金属は、特に限定されない。該金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、スズドープ酸化インジウム(ITO)も用いることができる。上記金属は一種のみが用いられてもよく、二種以上が併用されてもよい。 The conductive layer P3 other than the solder layer is preferably made of metal. The metal constituting the conductive layer P3 other than the solder layer is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium and cadmium, and alloys thereof. In addition, tin-doped indium oxide (ITO) can also be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.
 第1の導電層P4は、ニッケル層、パラジウム層、銅層又は金層であることが好ましく、ニッケル層、銅層又は金層であることがより好ましく、銅層であることが更に好ましい。導電性粒子は、ニッケル層、パラジウム層、銅層又は金層を有することが好ましく、ニッケル層、銅層又は金層を有することがより好ましく、銅層を有することが更に好ましい。これらの好ましい導電層を有する導電性粒子を電極間の接続に用いることにより、電極間の接続抵抗をより一層低くすることができる。また、これらの好ましい導電層の表面には、はんだ層をより一層容易に形成できる。なお、第1の導電層P4は、はんだ層であってもよい。導電性粒子は、複数層のはんだ層を有していてもよい。 The first conductive layer P4 is preferably a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably a nickel layer, a copper layer, or a gold layer, and even more preferably a copper layer. The conductive particles preferably have a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably have a nickel layer, a copper layer, or a gold layer, and still more preferably have a copper layer. By using the conductive particles having these preferable conductive layers for the connection between the electrodes, the connection resistance between the electrodes can be further reduced. In addition, a solder layer can be more easily formed on the surface of these preferable conductive layers. Note that the first conductive layer P4 may be a solder layer. The conductive particles may have a plurality of solder layers.
 はんだ層P5、P12の厚さは、好ましくは5nm以上、より好ましくは10nm以上、更に好ましくは20nm以上、好ましくは70μm以下、より好ましくは40μm以下、更に好ましくは10μm以下、特に好ましくは5μm以下である。はんだ層P5、P12の厚さが上記下限以上であると、導電性が十分に高くなる。はんだ層P5、P12の厚さが上記上限以下であると、樹脂粒子P2とはんだ層P5、P12との熱膨張率の差が小さくなり、はんだ層P5、P12の剥離が生じ難くなる。 The thickness of the solder layers P5 and P12 is preferably 5 nm or more, more preferably 10 nm or more, still more preferably 20 nm or more, preferably 70 μm or less, more preferably 40 μm or less, still more preferably 10 μm or less, and particularly preferably 5 μm or less. is there. When the thickness of the solder layers P5 and P12 is equal to or greater than the above lower limit, the conductivity is sufficiently high. If the thickness of the solder layers P5 and P12 is equal to or less than the above upper limit, the difference in thermal expansion coefficient between the resin particles P2 and the solder layers P5 and P12 becomes small, and peeling of the solder layers P5 and P12 hardly occurs.
 導電層が多層構造を有する場合には、導電層の合計厚さは、好ましくは10nm以上、より好ましくは20nm以上、更に好ましくは30nm以上、好ましくは70μm以下、より好ましくは40μm以下、更に好ましくは10μm以下、特に好ましくは5μm以下である。 When the conductive layer has a multilayer structure, the total thickness of the conductive layer is preferably 10 nm or more, more preferably 20 nm or more, still more preferably 30 nm or more, preferably 70 μm or less, more preferably 40 μm or less, still more preferably It is 10 μm or less, particularly preferably 5 μm or less.
 樹脂粒子P2を形成するための樹脂としては、例えば、ポリオレフィン樹脂、アクリル樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン及びポリエーテルスルホン等が挙げられる。樹脂粒子P2の硬度を好適な範囲に容易に制御できるので、樹脂粒子P2を形成するための樹脂は、エチレン性不飽和基を有する重合性単量体を一種又は二種以上重合させた重合体であることが好ましい。 Examples of the resin for forming the resin particles P2 include polyolefin resin, acrylic resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, and polyphenylene. Examples thereof include oxides, polyacetals, polyimides, polyamideimides, polyetheretherketones, and polyethersulfones. Since the hardness of the resin particle P2 can be easily controlled within a suitable range, the resin for forming the resin particle P2 is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferable that
 導電性粒子P1、P11の平均粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上、好ましくは100μm以下、より好ましくは80μm以下、更に好ましくは50μm以下、特に好ましくは40μm以下である。導電性粒子P1、P11の平均粒子径が上記下限以上及び上記上限以下であると、導電性粒子P1、P11と電極との接触面積を充分に大きくすることができ、かつ導電層を形成する際に凝集した導電性粒子P1、P11が形成されにくくなる。また、導電性粒子P1、P11を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が樹脂粒子P2の表面P2aから剥離し難くなる。 The average particle diameter of the conductive particles P1 and P11 is preferably 0.1 μm or more, more preferably 1 μm or more, preferably 100 μm or less, more preferably 80 μm or less, still more preferably 50 μm or less, and particularly preferably 40 μm or less. When the average particle diameter of the conductive particles P1, P11 is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles P1, P11 and the electrode can be sufficiently increased, and a conductive layer is formed. It is difficult to form the conductive particles P1 and P11 aggregated together. Further, the distance between the electrodes connected via the conductive particles P1 and P11 does not become too large, and the conductive layer is difficult to peel from the surface P2a of the resin particle P2.
 異方性導電ペーストを用いる場合に導電性粒子として適した大きさであり、かつ電極間の間隔をより一層小さくすることができるので、導電性粒子P1、P11の平均粒子径は、0.1μm以上、50μm以下であることが特に好ましい。 When the anisotropic conductive paste is used, the size is suitable as the conductive particles, and the distance between the electrodes can be further reduced. Therefore, the average particle diameter of the conductive particles P1 and P11 is 0.1 μm. As mentioned above, it is especially preferable that it is 50 micrometers or less.
 導電性粒子P1、P11の「平均粒子径」は、数平均粒子径を示す。導電性粒子P1、P11の平均粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。 The “average particle diameter” of the conductive particles P1 and P11 indicates a number average particle diameter. The average particle diameter of the conductive particles P1 and P11 can be obtained by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
 導電性粒子のCV値(粒度分布の変動係数)は、10%以下であることが好ましく、3%以下であることがより好ましい。CV値が10%を超えると、導電性粒子により接続された電極間の間隔にばらつきが生じ難くなる。 The CV value (coefficient of variation of particle size distribution) of the conductive particles is preferably 10% or less, and more preferably 3% or less. When the CV value exceeds 10%, it is difficult to cause variations in the distance between the electrodes connected by the conductive particles.
 上記CV値は下記式で表される。
 CV値(%)=(ρ/Dn)×100
 ρ:導電性粒子の直径の標準偏差
 Dn:平均粒子径
The CV value is represented by the following formula.
CV value (%) = (ρ / Dn) × 100
ρ: standard deviation of diameter of conductive particles Dn: average particle diameter
 3.透明導電体の製造方法
 本発明の透明導電体の製造方法は、成膜工程と、接合工程とを少なくとも含み、更に必要に応じて、パターニングをする工程等のその他の工程を含む。
 本発明の透明導電体の製造方法により、本発明の透明導電体が製造される。具体的な透明導電体の製造方法の一例として、透明基板の一方の面上に第1高屈折率層、透明金属層及び第2高屈折率層をこの順に積層して層構造体を形成する工程と、透明導電層をパターニングする工程と、層構造体の所定の領域を、異方性導電部材を介して回路基板と電気的に接続する工程と、を備えることにより、透明導電体が製造される。
 以下に、透明導電体の製造方法をより詳細に説明する。パターニングについての詳細は後述する。
3. Method for Producing Transparent Conductor The method for producing a transparent conductor of the present invention includes at least a film forming step and a joining step, and further includes other steps such as a patterning step as necessary.
The transparent conductor of the present invention is produced by the method for producing a transparent conductor of the present invention. As an example of a specific method for producing a transparent conductor, a layer structure is formed by laminating a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order on one surface of a transparent substrate. A transparent conductor is manufactured by providing a step, a step of patterning the transparent conductive layer, and a step of electrically connecting a predetermined region of the layer structure to the circuit board via an anisotropic conductive member. Is done.
Below, the manufacturing method of a transparent conductor is demonstrated in detail. Details of the patterning will be described later.
<成膜工程>
 成膜工程としては、透明基板の一方の面上に第1高屈折率層、透明金属層及び第2高屈折率層をこの順に積層して層構造体を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。例えば、透明金属層と第1高屈折率層の間及び透明金属層と第2高屈折率層の間の少なくとも一方に硫化防止層を設けることが好ましい。
<Film formation process>
The film forming step is not particularly limited as long as it is a step of forming a layer structure by laminating the first high refractive index layer, the transparent metal layer, and the second high refractive index layer in this order on one surface of the transparent substrate. It can be appropriately selected depending on the purpose. For example, it is preferable to provide an antisulfurization layer between at least one of the transparent metal layer and the first high refractive index layer and between the transparent metal layer and the second high refractive index layer.
<接続工程>
 接続工程としては、層構造体の所定の領域を、異方性導電部材を介して回路基板と電気的に接続する工程であれば、特に制限はなく、目的に応じて適宜選択することができるが、回路基板を加熱押圧部材により加熱及び押圧することで、所定の領域である接続端子の部分に導電性粒子含有層が、より適度な流動が得られるため好ましい。
 加熱押圧部材としては、例えば、加熱機構を有する押圧部材が挙げられる。加熱機構を有する押圧部材としては、例えば、ヒートシールなどが挙げられる。
 加熱の温度としては、導電性粒子含有層及び絶縁性接着層が硬化する温度であれば、特に制限はなく、目的に応じて適宜選択することができるが、140~200℃が好ましい。
 押圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1~10MPaが好ましい。
 加熱及び押圧の時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.5~120秒間が挙げられる。
<Connection process>
The connecting step is not particularly limited as long as the predetermined region of the layer structure is electrically connected to the circuit board via the anisotropic conductive member, and can be appropriately selected according to the purpose. However, it is preferable because the conductive particle-containing layer can be more appropriately flowed at the portion of the connection terminal which is a predetermined region by heating and pressing the circuit board with the heating pressing member.
As a heating press member, the press member which has a heating mechanism is mentioned, for example. Examples of the pressing member having a heating mechanism include heat sealing.
The heating temperature is not particularly limited as long as it is a temperature at which the conductive particle-containing layer and the insulating adhesive layer are cured, and can be appropriately selected according to the purpose, but is preferably 140 to 200 ° C.
The pressing pressure is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 to 10 MPa.
The heating and pressing time is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 0.5 to 120 seconds.
 ここで、図4を用いて本発明の透明導電体の製造方法の一例を示す。図4は、透明導電体の異方性導電部材を圧着する前後を示す概略断面図である。
 まず、透明基板1の一方の面上に第1高屈折率層2、第1硫化防止層5a、透明金属層3、第2硫化防止層5b、第2高屈折率層4をこの順に積層して層構造体を形成する。
Here, an example of the manufacturing method of the transparent conductor of this invention is shown using FIG. FIG. 4 is a schematic cross-sectional view showing before and after pressure-bonding an anisotropic conductive member of a transparent conductor.
First, the first high refractive index layer 2, the first antisulfurization layer 5a, the transparent metal layer 3, the second antisulfurization layer 5b, and the second high refractive index layer 4 are laminated in this order on one surface of the transparent substrate 1. To form a layered structure.
 続いて、接続工程として、回路基板を加熱押圧部材(不図示)により加熱及び押圧して導電性粒子を含有する導電性粒子含有層と、層構造体の所定の領域として接続端子とを接合することにより、回路基板の配線材と、透明導電層と透明基板からなる層構造体の配線材とが、導電性粒子含有層に含有される導電性粒子を介して電気的に接続され、透明導電体が得られる(図4)。透明基板上に透明導電層が積層する方向に沿って示されている矢印は、導通方向9を表している。 Subsequently, as a connection step, the circuit board is heated and pressed by a heating and pressing member (not shown) to join the conductive particle-containing layer containing conductive particles and the connection terminal as a predetermined region of the layer structure. As a result, the wiring material of the circuit board and the wiring material of the layer structure composed of the transparent conductive layer and the transparent substrate are electrically connected via the conductive particles contained in the conductive particle-containing layer, and transparent conductive A body is obtained (FIG. 4). An arrow shown along the direction in which the transparent conductive layer is laminated on the transparent substrate represents the conduction direction 9.
 4.透明導電体の物性について
 本発明の透明導電体の波長450~800nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても83%以上であることが好ましく、より好ましくは85%以上であり、さらに好ましくは88%以上である。上記波長範囲における平均透過率が83%以上であると、透明導電体を、可視光に対して高い透明性が要求される用途に適用することができる。
4). Regarding the physical properties of the transparent conductor The average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor of the present invention is preferably 83% or more, more preferably 85% in both the conduction region a and the insulation region b. Or more, more preferably 88% or more. When the average transmittance in the above wavelength range is 83% or more, the transparent conductor can be applied to applications requiring high transparency to visible light.
 一方、透明導電体の波長400~1000nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても80%以上であることが好ましく、より好ましくは83%以上、さらに好ましくは85%以上である。波長400~1000nmの光の平均透過率が80%以上であると、広い波長範囲の光に対して透明性が要求される用途、例えば太陽電池にも透明導電体を適用することができる。 On the other hand, the average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor is preferably 80% or more in both the conduction region a and the insulation region b, more preferably 83% or more, and still more preferably 85%. That's it. When the average transmittance of light having a wavelength of 400 to 1000 nm is 80% or more, the transparent conductor can also be applied to applications requiring transparency with respect to light in a wide wavelength range, for example, solar cells.
 一方、透明導電体の波長400~800nmの光の平均吸収率は、導通領域a及び絶縁領域bのいずれにおいても10%以下であることが好ましく、より好ましくは8%以下であり、さらに好ましくは7%以下である。また、透明導電体の波長450~800nmの光の吸収率の最大値は、導通領域a及び絶縁領域bのいずれにおいても15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは9%以下である。一方、透明導電体の波長500~700nmの光の平均反射率は、導通領域a及び絶縁領域bのいずれにおいても、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明導電体の平均吸収率及び平均反射率が低いほど、前述の平均透過率が高まる。 On the other hand, the average absorptance of light having a wavelength of 400 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and even more preferably in both the conduction region a and the insulation region b. 7% or less. In addition, the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 to 800 nm is preferably 15% or less, more preferably 10% or less, both in the conduction region a and the insulation region b. Preferably it is 9% or less. On the other hand, the average reflectance of light having a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less. The lower the average absorptance and average reflectance of the transparent conductor, the higher the aforementioned average transmittance.
 上記平均透過率、平均反射率、及び平均反射率は、透明導電体の使用環境下での平均透過率、平均反射率、及び平均反射率であることが好ましい。具体的には、透明導電体が有機樹脂と貼り合わせて使用される場合には、透明導電体上に有機樹脂からなる層を作製して平均透過率及び平均反射率測定することが好ましい。一方、透明導電体が大気中で使用される場合には、大気中での平均透過率及び平均反射率を測定することが好ましい。透過率及び反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を入射させて分光光度計で測定する。吸収率は、100-(透過率+反射率)の計算式より算出される。 The average transmittance, average reflectance, and average reflectance are preferably the average transmittance, average reflectance, and average reflectance under the usage environment of the transparent conductor. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to prepare a layer made of the organic resin on the transparent conductor and measure the average transmittance and the average reflectance. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air. The transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. The absorptance is calculated from a calculation formula of 100− (transmittance + reflectance).
 また、透明導電体100が導通領域a及び絶縁領域bを有する場合、導通領域aの反射率及び絶縁領域bの反射率がそれぞれ近似することが好ましい。具体的には、導通領域aの視感反射率と、絶縁領域bの視感反射率との差ΔRが5%以下であることが好ましく、3%以下であることがより好ましく、さらに好ましくは1%以下であり、特に好ましくは0.3%以下である。一方、導通領域a及び絶縁領域bの視感反射率は、それぞれ5%以下であることが好ましく、より好ましくは3%以下であり、さらに好ましくは1%以下である。視感反射率は、分光光度計(U4100;日立ハイテクノロジーズ社製)で測定されるY値である。 Further, when the transparent conductor 100 has the conduction region a and the insulation region b, it is preferable that the reflectance of the conduction region a and the reflectance of the insulation region b are approximated. Specifically, the difference ΔR between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and still more preferably It is 1% or less, particularly preferably 0.3% or less. On the other hand, the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less. The luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
 また、透明導電体100が導通領域a及び絶縁領域bを有する場合、いずれの領域においても、L表色系におけるa値及びb値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L表色系におけるa値及びb値が±30以内であれば、導通領域a及び絶縁領域bのいずれの領域も無色透明に観察される。L表色系におけるa値及びb値は、分光光度計で測定される。 Further, when the transparent conductor 100 has the conduction region a and the insulation region b, the a * value and the b * value in the L * a * b * color system are preferably within ± 30 in any region. More preferably, it is within ± 5, more preferably within ± 3.0, and particularly preferably within ± 2.0. If the a * value and the b * value in the L * a * b * color system are within ± 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の導通領域aの表面電気抵抗は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。導通領域の表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。導通領域aの表面電気抵抗値は、透明金属層の厚さ等によって調整される。導通領域aの表面電気抵抗値は、例えばJIS K7194-1994、ASTM D257等に準拠して測定される。また、市販の表面電気抵抗率計によっても測定される。 The surface electric resistance of the conductive region a of the transparent conductor is preferably 50Ω / □ or less, more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50 Ω / □ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value of the conduction region a is adjusted by the thickness of the transparent metal layer and the like. The surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194-1994, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
 5.タッチパネルへの適用
 本発明の透明導電体は、種々の方式のタッチパネルのタッチセンサー部(以下において、「タッチセンサー電極部」ともいう。)として適用され得る。例えば、表面型静電容量方式タッチパネル、投影型静電容量方式タッチパネル、抵抗膜式タッチパネルなどにおいて用いることができる。
 タッチセンサー部の層構成が、透明電極として二枚の透明導電体を貼合する貼合方式、一枚の基材の両面に透明電極として透明導電体を具備する方式、片面ジャンパー若しくはスルーホール方式又は片面積層方式のいずれかであることが好ましい。
 また、投影型静電容量式タッチセンサーは、DC駆動よりAC駆動が好ましく、電極への電圧印加時間が少ない駆動方式がより好ましい。
 なお、例えば、本発明の透明導電体をタッチセンサーに適用する場合には、図1Aに示されるように、複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターンを有する透明電極として成形して用いることができる。
5. Application to Touch Panel The transparent conductor of the present invention can be applied as a touch sensor part (hereinafter also referred to as “touch sensor electrode part”) of various types of touch panels. For example, it can be used in a surface capacitive touch panel, a projected capacitive touch panel, a resistive touch panel, and the like.
The layer structure of the touch sensor unit is a bonding method in which two transparent conductors are bonded as a transparent electrode, a method in which a transparent conductor is provided as a transparent electrode on both surfaces of a single substrate, a single-sided jumper or a through-hole method Or it is preferable that it is either a one area layer system.
In addition, the projected capacitive touch sensor is preferably AC driven rather than DC driven, and more preferably is a drive system that requires less time to apply voltage to the electrodes.
For example, when the transparent conductor of the present invention is applied to a touch sensor, as shown in FIG. 1A, it has a pattern including a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. It can be molded and used as a transparent electrode.
 6.電極パターンを有する透明導電体の形成方法
 本発明の透明導電体に対し、図1Aで示すような導通領域a及び絶縁領域bからなるパターンの形成方法について説明する。
 本発明の透明導電体においては、上記のような方法で透明基板1上に、少なくとも、第1高屈折率層と、透明金属層と、第2高屈折率層とをこの順で積層して製造した後、透明金属層を所定の形状にパターニングして、金属パターン電極を形成することが好ましい。
 具体的には、フォトリソグラフィー法により、エッチング液を用いて、例えば、図4に示すような電極パターンを形成することが好ましい。形成する電極の線幅としては、50μm以下であることが好ましく、特に好ましくは、20μm以下である。
6). Method for Forming Transparent Conductor Having Electrode Pattern A method for forming a pattern comprising a conductive region a and an insulating region b as shown in FIG. 1A will be described for the transparent conductor of the present invention.
In the transparent conductor of the present invention, at least the first high refractive index layer, the transparent metal layer, and the second high refractive index layer are laminated in this order on the transparent substrate 1 by the method described above. After the production, it is preferable to form a metal pattern electrode by patterning the transparent metal layer into a predetermined shape.
Specifically, for example, an electrode pattern as shown in FIG. 4 is preferably formed by photolithography using an etching solution. The line width of the electrode to be formed is preferably 50 μm or less, and particularly preferably 20 μm or less.
 (製造工程)
 以下、フォトリソグラフィー法による電極パターンの形成方法について説明する。
 本発明に適用するフォトリソグラフィー法とは、硬化性樹脂等のレジスト塗布、予備加熱、露光、現像(未硬化樹脂の除去)、リンス、エッチング液によるエッチング処理、レジスト剥離の各工程を経ることにより、銀薄膜層を、例えば、図1Aに示すようなパターンに加工することができ、パターンの形状は適宜変更することができる。
 本発明では、従来公知の一般的なフォトリソグラフィー法を適宜利用することができる。例えば、レジストとしてはポジ型又はネガ型のいずれのレジストでも使用可能である。また、レジスト塗布後、必要に応じて予備加熱又はプリベークを実施することができる。露光に際しては、所定のパターンを有するパターンマスクを配置し、その上から、用いたレジストに適合する波長の光、一般には紫外線や電子線等を照射すればよい。露光後、用いたレジストに適合する現像液で現像を行う。現像後、水等のリンス液で現像を止めるとともに洗浄を行うことで、レジストパターンが形成される。次いで、形成されたレジストパターンを、必要に応じて前処理又はポストベークを実施してから、有機溶媒を含むエッチング液によるエッチングで、レジストで保護されていない領域の中間層の溶解及び銀薄膜電極の除去を行う。エッチング後、残留するレジストを剥離することによって、所定のパターンを有する透明電極が得られる。このように、本発明に適用されるフォトリソグラフィー法は、当業者に一般に認識されている方法であり、その具体的な適用態様は当業者であれば所定の目的に応じて容易に選定することができる。
 次いで、図を交えて、本発明に適用可能な電極パターンの形成方法について説明する。
(Manufacturing process)
Hereinafter, a method for forming an electrode pattern by photolithography will be described.
The photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping. The silver thin film layer can be processed into a pattern as shown in FIG. 1A, for example, and the shape of the pattern can be changed as appropriate.
In the present invention, a conventionally known general photolithography method can be appropriately used. For example, as the resist, either positive or negative resist can be used. In addition, after applying the resist, preheating or prebaking can be performed as necessary. At the time of exposure, a pattern mask having a predetermined pattern may be disposed, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated thereon. After the exposure, development is performed with a developer suitable for the resist used. After the development, the resist pattern is formed by stopping the development with a rinse solution such as water and washing. Next, the formed resist pattern is pretreated or post-baked as necessary, and then is etched with an etching solution containing an organic solvent to dissolve the intermediate layer in a region not protected by the resist and to form a silver thin film electrode Remove. After etching, the remaining resist is peeled to obtain a transparent electrode having a predetermined pattern. As described above, the photolithography method applied to the present invention is a method generally recognized by those skilled in the art, and a specific application mode thereof can be easily selected by a person skilled in the art according to a predetermined purpose. Can do.
Next, an electrode pattern forming method applicable to the present invention will be described with reference to the drawings.
 第1ステップとして、透明基板1上に、第1高屈折率層2、第1硫化防止層5a、透明金属層3、第2硫化防止層5b及び第2高屈折率層4をこの順で積層した透明導電層10を作製する。
 次いで、レジスト膜の形成工程で、透明導電層10上に感光性樹脂組成物等から構成されるレジスト膜を均一に塗設する。感光性樹脂組成物としては、ネガ型感光性樹脂組成物あるいはポジ型感光性樹脂組成物を用いることができる。
 塗布方法としては、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどの公知の方法によって、透明導電層10上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークすることができる。プリベークは、例えば、ホットプレート等を用いて、50~150℃の範囲内で30秒~30分間行うことができる。
As a first step, the first high refractive index layer 2, the first antisulfurization layer 5a, the transparent metal layer 3, the second antisulfurization layer 5b, and the second high refractive index layer 4 are laminated on the transparent substrate 1 in this order. The transparent conductive layer 10 thus prepared is prepared.
Next, in the resist film forming step, a resist film composed of a photosensitive resin composition or the like is uniformly coated on the transparent conductive layer 10. As the photosensitive resin composition, a negative photosensitive resin composition or a positive photosensitive resin composition can be used.
As a coating method, it is applied on the transparent conductive layer 10 by a known method such as micro gravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, etc., and heated by a hot plate, an oven or the like. It can be pre-baked in the apparatus. Pre-baking can be performed, for example, using a hot plate or the like within a range of 50 to 150 ° C. for 30 seconds to 30 minutes.
 次いで、露光工程で、所定の電極パターンにより作製したマスクを介して、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナーなどの露光機を用いて、10~4000J/m程度(波長365nm露光量換算)の光を、次工程で除去するレジスト膜に照射する。露光光源に制限はなく、紫外線、電子線や、KrF(波長248nm)レーザー、ArF(波長193nm)レーザーなどを用いることができる。 Then, in the exposure step, through a mask manufactured by predetermined electrode patterns, a stepper, a mirror projection mask aligner (MPA), using an exposure apparatus, such as a parallel light mask aligner, 10 ~ 4000J / m 2 approximately (wavelength 365nm The resist film to be removed in the next step is irradiated with light in terms of exposure amount. The exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
 次いで、現像工程で、露光済みの透明導電体を、現像液に浸漬して、光照射した領域のレジスト膜を溶解する。
 現像方法としては、シャワー、ディッピング、パドルなどの方法で現像液に5秒~10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体例としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミンなどのアミン類、テトラメチルアンモニウムヒドロキサイド、コリンなどの4級アンモニウム塩を一種あるいは二種以上含む水溶液などが挙げられる。現像後、水でリンスすることが好ましく、続いて50~150℃の範囲内で乾燥ベークを行ってもよい。
Next, in the developing step, the exposed transparent conductor is immersed in a developing solution to dissolve the resist film in the region irradiated with light.
As a developing method, it is preferable to immerse in a developing solution for 5 seconds to 10 minutes by a method such as showering, dipping or paddle. As the developer, a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include aqueous solutions containing one or more quaternary ammonium salts such as side and choline. After the development, it is preferable to rinse with water, followed by dry baking within a range of 50 to 150 ° C.
 次いで、エッチング液を用いたエッチング処理を行う。
 本発明に適用可能なエッチング液としては、無機酸あるいは有機酸を含有する液が好ましく、シュウ酸、塩酸、酢酸、リン酸を挙げることができ、特に、シュウ酸、酢酸、リン酸が好ましい。
 具体的には、例えば、有機酸等を含むエッチング液に、レジスト膜を有する透明導電層10を浸漬し、レジスト膜で保護されていない絶縁領域bの透明導電層10を溶解し、レジスト膜で保護している導電領域aの透明導電層10を所定の電極パターンとして形成する。
Next, an etching process using an etching solution is performed.
As the etching solution applicable to the present invention, a solution containing an inorganic acid or an organic acid is preferable, and oxalic acid, hydrochloric acid, acetic acid, and phosphoric acid can be mentioned, and oxalic acid, acetic acid, and phosphoric acid are particularly preferable.
Specifically, for example, the transparent conductive layer 10 having a resist film is immersed in an etching solution containing an organic acid, and the transparent conductive layer 10 in the insulating region b not protected by the resist film is dissolved. The transparent conductive layer 10 in the protected conductive region a is formed as a predetermined electrode pattern.
 最後に、レジスト膜剥離液、例えば、ナガセケムテックス社製のN-300に浸漬して、レジスト膜を除去して、電極パターンを有する透明導電体を作製することができる。
 なお、本発明に係るタッチセンサーに使用する画像表示装置は、特に制限されず、小型電子端末に通常使用される液晶表示装置や、有機EL装置などが使用できる。
Finally, the resist film is removed by immersing in a resist film stripping solution, for example, N-300 manufactured by Nagase ChemteX Corporation, so that a transparent conductor having an electrode pattern can be produced.
The image display device used for the touch sensor according to the present invention is not particularly limited, and a liquid crystal display device or an organic EL device that is usually used for a small electronic terminal can be used.
 7.透明導電体の用途
 前述の透明導電体は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。
7). Applications of transparent conductors The above-mentioned transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescent dimming elements, etc. It can be preferably used for a substrate of an optoelectronic device.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。
 実施例1~3の透明導電体101~103の作製においては、透明基板上に少なくとも第1高屈折率層、透明金属層及び第2高屈折率層を有する透明導電層を形成し、パターニングを形成させる工程までは共通であるため、以下に作製方法の一例を挙げる。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
In the production of the transparent conductors 101 to 103 of Examples 1 to 3, a transparent conductive layer having at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer is formed on a transparent substrate, and patterning is performed. Since the steps up to the formation are common, an example of a manufacturing method is given below.
 透明基板として、きもと株式会社製クリアハードコート付きPETフィルム(G1SBF、「HCPET」と称する。厚さ125μm)を用い、HCPETフィルム上に、下記の方法に従って、スパッタ法により第1高屈折率層(ZnS-SiO)/第1硫化防止層(ZnO)/透明金属層(Ag)/第2硫化防止層(ZnO)/第2高屈折率層(ZnS-SiO)をこの順に積層した。次いで、当該積層体を下記の方法でパターニングして、配線を有する透明導電体101を、バッチ方式で作製した。なお、各層の厚さは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。 As a transparent substrate, a PET film with a clear hard coat (G1SBF, referred to as “HCPET”, thickness: 125 μm) manufactured by Kimoto Co., Ltd. is used. ZnS—SiO 2 ) / first antisulfation layer (ZnO) / transparent metal layer (Ag) / second antisulfation layer (ZnO) / second high refractive index layer (ZnS—SiO 2 ) were laminated in this order. Next, the laminate was patterned by the following method to produce a transparent conductor 101 having wiring in a batch method. The thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
 (第1高屈折率層(ZnS-SiO)の形成)
 真空スパッタ装置として、大阪真空社製のマグネトロンスパッタ装置を用い、Ar 20sccm、O2 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/秒でターゲット(ZnS-SiOの焼成体)をRFスパッタした。ターゲット-基板間距離は90mmであった。膜厚は40nmであった。
(Formation of First High Refractive Index Layer (ZnS—SiO 2 ))
As a vacuum sputtering apparatus, a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. is used. Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, film formation rate 3.8 Å / sec. 2 ) was RF sputtered. The target-substrate distance was 90 mm. The film thickness was 40 nm.
 なお、第1高屈折率層におけるZnSとSiOの体積比率は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いて測定した結果、ZnSとSiOの体積比率が80:20であることを確認した。 The volume ratio of ZnS to SiO 2 in the first high refractive index layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, the volume ratio of ZnS to SiO 2 was 80:20. It was confirmed that.
 (第1硫化防止層(ZnO)の形成)
 次いで、Ar 20sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/秒でZnOをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnO層の膜厚は1nmであった。
(Formation of first antisulfurization layer (ZnO))
Next, ZnO was RF-sputtered at Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 liters / second. The target-substrate distance was 90 mm. The thickness of the ZnO layer was 1 nm.
 (透明金属層(Ag)の形成)
 次いで、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、成膜レート14Å/秒でAgをRFスパッタした。ターゲット-基板間距離は90mmであった。Ag層の層厚は7nmであった。
(Formation of transparent metal layer (Ag))
Next, Ag was RF-sputtered at Ar 20 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power 150 W, and deposition rate 14 Å / sec. The target-substrate distance was 90 mm. The layer thickness of the Ag layer was 7 nm.
 (第2硫化防止層(ZnO)の形成)
 次いで、Ar 20sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/秒でZnOをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnO層の膜厚は1nmであった。
(Formation of second anti-sulfurization layer (ZnO))
Next, ZnO was RF-sputtered at Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 liters / second. The target-substrate distance was 90 mm. The thickness of the ZnO layer was 1 nm.
 (第2高屈折率層(ZnS-SiO)の形成)
 次いで、Ar 20sccm、O2 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/秒でターゲット(ZnS-SiOの焼成体)をRFスパッタした。ターゲット-基板間距離は90mmであった。膜厚は40nmであった。
(Formation of Second High Refractive Index Layer (ZnS—SiO 2 ))
Next, the target (ZnS—SiO 2 fired body) was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.8 Å / sec. The target-substrate distance was 90 mm. The film thickness was 40 nm.
 なお、第2高屈折率層におけるZnSとSiOの体積比率は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いて測定した結果、ZnSとSiOの体積比率が80:20であることを確認した。 The volume ratio of ZnS to SiO 2 in the second high refractive index layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, the volume ratio of ZnS to SiO 2 was 80:20. It was confirmed that.
 (透明導電層のパターニング)
 次いで、上記作製した少なくとも第1高屈折率層、透明金属層及び第2高屈折率層を有する透明導電層に対し、前述したパターニング方法に従って、導通領域aと、絶縁領域bを有するパターンを形成した。
(Patterning of transparent conductive layer)
Next, a pattern having a conductive region a and an insulating region b is formed in accordance with the patterning method described above on the transparent conductive layer having at least the first high refractive index layer, the transparent metal layer, and the second high refractive index layer produced above. did.
 透明導電層上に、フォトリソグラフィー法でレジスト層をパターン状に形成し、第1高屈折率層、第1硫化防止層、透明金属層、第2硫化防止層及び第2高屈折率層を、エッチング液を用いて、複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターン状にエッチングした。 A resist layer is formed in a pattern on the transparent conductive layer by a photolithography method, and a first high refractive index layer, a first antisulfurization layer, a transparent metal layer, a second antisulfurization layer, and a second high refractive index layer are formed. Etching was used to etch into a pattern including a plurality of conductive regions a and line-shaped insulating regions b separating the conductive regions a.
 エッチング液としては、関東化学社製の「混液 SEA-5」(リン酸:55質量%、酢酸:30質量%、水その他の成分:15質量%)を用いた。絶縁領域bには、透明基板のみが含まれるものとした。また、ライン状の絶縁領域bの幅は16μmとした。 As an etching solution, “mixed liquid SEA-5” (phosphoric acid: 55 mass%, acetic acid: 30 mass%, water and other components: 15 mass%) manufactured by Kanto Chemical Co., Ltd. was used. The insulating region b includes only a transparent substrate. The width of the line-shaped insulating region b was 16 μm.
 さらに以下の工程を経ることにより、透明導電体101~103を作製した。具体的な作製方法を説明する。 Further, transparent conductors 101 to 103 were produced through the following steps. A specific manufacturing method will be described.
 [実施例1]
 透明金属層まで導電性粒子を圧着により含有させた透明導電体101の場合について示す(図5A参照)。
 ACF熱圧着装置 TCW-125C(日本アビオニクス株式会社製)を使用し、透明導電層を一方の面上に形成させた透明基板に対して、透明導電層を挟み込むように、異方性導電フィルムを140℃で5秒間、3N/MPaにて圧着した。その上に、電極及びフレキシブル基板を設けた。
 異方性導電フィルム(デクセリアルズ株式会社製CP920CM-25AC)は、金/ニッケルメッキ樹脂粒子を導電性粒子として含有するものを使用した。
[Example 1]
A case of the transparent conductor 101 in which conductive particles are contained by pressure bonding up to the transparent metal layer will be described (see FIG. 5A).
Using an ACF thermocompression bonding machine TCW-125C (manufactured by Nippon Avionics Co., Ltd.), an anisotropic conductive film is sandwiched between the transparent conductive layer and the transparent conductive layer formed on one surface. Pressure bonding was performed at 140 ° C. for 5 seconds at 3 N / MPa. On top of that, an electrode and a flexible substrate were provided.
An anisotropic conductive film (CP920CM-25AC manufactured by Dexerials Co., Ltd.) containing gold / nickel plated resin particles as conductive particles was used.
 温度24℃、湿度30%RHの条件で10秒後の導通抵抗を、カスタム社製のCDM-20を用いて2端子法にて測定した。具体的には、複数の接続端子のうち、例えば、図1Aで示す接続端子11aと11bとにCDM-20をあてることにより導通があることを確認した。 The conduction resistance after 10 seconds under the conditions of a temperature of 24 ° C. and a humidity of 30% RH was measured by a two-terminal method using CDM-20 manufactured by Custom. Specifically, it was confirmed that there is continuity by applying CDM-20 to the connection terminals 11a and 11b shown in FIG. 1A among the plurality of connection terminals.
 また、透明導電体101にディスプレイパネルを組み合わせることにより、図1Cに示すような、タッチパネル201を作製した。
 具体的には、基板、金属層、絶縁層、インジウム・スズ酸化物(ITO)層及び保護層を含むディスプレイパネルを、接着剤を用いて、タッチセンサーに貼り合わせることによりタッチパネルを作製した。タッチパネルとした場合、図1Aに示すように、破線で囲まれた領域がタッチセンサー部13となる。
 透明導電体101を備えるタッチパネル201についても、温度24℃、湿度30%RHの条件で10秒後の導通抵抗をカスタム社製のCDM-20を用いて、2端子法にて透明導電体101と同様に測定し、導通があることを確認した。
Moreover, the touch panel 201 as shown to FIG. 1C was produced by combining a display panel with the transparent conductor 101. FIG.
Specifically, a touch panel was manufactured by attaching a display panel including a substrate, a metal layer, an insulating layer, an indium tin oxide (ITO) layer, and a protective layer to a touch sensor using an adhesive. In the case of a touch panel, as shown in FIG. 1A, a region surrounded by a broken line is the touch sensor unit 13.
For the touch panel 201 including the transparent conductor 101, the conduction resistance after 10 seconds under the conditions of a temperature of 24 ° C. and a humidity of 30% RH is obtained by using the CDM-20 manufactured by Custom Co. It measured similarly and it confirmed that there was conduction.
 [実施例2]
 下地層(ZnS-SiO)まで導電性粒子を圧着により含有させた透明導電体102の場合について示す(図5B参照)。
 ACF熱圧着装置 TCW-125C(日本アビオニクス株式会社製)を使用し、透明導電層を一方の面上に形成させた透明基板に対して、透明導電層を挟み込むように、異方性導電フィルムを140℃で5秒間、4N/MPaにて圧着した。その上に、電極及びフレキシブル基板を設けた。
 異方性導電フィルムは、金メッキ(デクセリアルズ株式会社製CP920CM-25AC)樹脂粒子を導電性粒子として含有するものを使用した。
[Example 2]
The case of the transparent conductor 102 in which conductive particles are contained by pressure bonding up to the base layer (ZnS—SiO 2 ) is shown (see FIG. 5B).
Using an ACF thermocompression bonding machine TCW-125C (manufactured by Nippon Avionics Co., Ltd.), an anisotropic conductive film is sandwiched between the transparent conductive layer and the transparent conductive layer formed on one surface. Crimping was performed at 140 ° C. for 5 seconds at 4 N / MPa. On top of that, an electrode and a flexible substrate were provided.
As the anisotropic conductive film, a film containing gold-plated (CP920CM-25AC manufactured by Dexerials Corporation) resin particles as conductive particles was used.
 温度24℃、湿度30%RHの条件で10秒後の導通抵抗を、カスタム社製のCDM-20を用いて2端子法にて測定した。具体的には、複数の接続端子のうち、例えば、図1Aで示す接続端子11aと11bとにCDM-20をあてることにより導通があることを確認した。 The conduction resistance after 10 seconds under the conditions of a temperature of 24 ° C. and a humidity of 30% RH was measured by a two-terminal method using CDM-20 manufactured by Custom. Specifically, it was confirmed that there is continuity by applying CDM-20 to the connection terminals 11a and 11b shown in FIG. 1A among the plurality of connection terminals.
 また、透明導電体102にディスプレイパネルを組み合わせることにより、図1Cに示すような、タッチパネル202を作製した。
 具体的には、基板、金属層、絶縁層、インジウム・スズ酸化物(ITO)層及び保護層を含むディスプレイパネルを、接着剤を用いて、タッチセンサーに貼り合わせることによりタッチパネルを作製した。タッチパネルとした場合、図1Aに示すように、破線で囲まれた領域がタッチセンサー部13となる。
 透明導電体102を備えるタッチパネル202についても、温度24℃、湿度30%RHの条件で10秒後の導通抵抗をカスタム社製のCDM-20を用いて、2端子法にて透明導電体102と同様に測定し、導通があることを確認した。
Moreover, the touch panel 202 as shown to FIG. 1C was produced by combining a display panel with the transparent conductor 102. FIG.
Specifically, a touch panel was manufactured by attaching a display panel including a substrate, a metal layer, an insulating layer, an indium tin oxide (ITO) layer, and a protective layer to a touch sensor using an adhesive. In the case of a touch panel, as shown in FIG. 1A, a region surrounded by a broken line is the touch sensor unit 13.
For the touch panel 202 including the transparent conductor 102, the conduction resistance after 10 seconds under the conditions of a temperature of 24 ° C. and a humidity of 30% RH is measured with the transparent conductor 102 by a two-terminal method using CDM-20 manufactured by Custom. It measured similarly and it confirmed that there was conduction.
 [実施例3]
 透明金属層まで導電性粒子を圧着により含有させた透明導電体103の場合について示す(図5A参照)。
 ACF熱圧着装置 TCW-125C(日本アビオニクス株式会社製)を使用し、透明導電層を一方の面上に形成させた透明基板に対して、透明導電層を挟み込むように、異方性導電フィルムを180℃で5秒間、4N/MPaにて圧着した。その上に、電極及びフレキシブル基板を設けた。
 異方性導電フィルムは、金メッキ樹脂粒子(デクセリアルズ株式会社製CP920CM-25AC)を導電性粒子として含有するものを使用した。
[Example 3]
The case of the transparent conductor 103 containing conductive particles up to the transparent metal layer by pressure bonding will be described (see FIG. 5A).
Using an ACF thermocompression bonding machine TCW-125C (manufactured by Nippon Avionics Co., Ltd.), an anisotropic conductive film is sandwiched between the transparent conductive layer and the transparent conductive layer formed on one surface. Crimping was performed at 180 ° C. for 5 seconds at 4 N / MPa. On top of that, an electrode and a flexible substrate were provided.
As the anisotropic conductive film, a film containing gold-plated resin particles (CP920CM-25AC manufactured by Dexerials Corporation) as conductive particles was used.
 温度24℃、湿度30%RHの条件で10秒後の導通抵抗を、カスタム社製のCDM-20を用いて2端子法にて測定した。具体的には、複数の接続端子のうち、例えば、図1Aで示す接続端子11aと11bとにCDM-20をあてることにより導通があることを確認した。 The conduction resistance after 10 seconds under the conditions of a temperature of 24 ° C. and a humidity of 30% RH was measured by a two-terminal method using CDM-20 manufactured by Custom. Specifically, it was confirmed that there is continuity by applying CDM-20 to the connection terminals 11a and 11b shown in FIG. 1A among the plurality of connection terminals.
 また、透明導電体103にディスプレイパネルを組み合わせることにより、図1Cに示すような、タッチパネル203を作製した。
 具体的には、基板、金属層、絶縁層、インジウム・スズ酸化物(ITO)層及び保護層を含むディスプレイパネルを、接着剤を用いて、透明導電体に貼り合わせることによりタッチパネルを作製した。タッチパネルとした場合、図1Aに示すように、破線で囲まれた領域がタッチセンサー部13となる。
 透明導電体103を備えるタッチパネル203についても、温度24℃、湿度30%RHの条件で10秒後の導通抵抗をカスタム社製のCDM-20を用いて、2端子法にて透明導電体103と同様に測定し、導通があることを確認した。
Moreover, the touch panel 203 as shown to FIG. 1C was produced by combining a transparent conductor 103 with a display panel.
Specifically, a touch panel was manufactured by bonding a display panel including a substrate, a metal layer, an insulating layer, an indium tin oxide (ITO) layer, and a protective layer to a transparent conductor using an adhesive. In the case of a touch panel, as shown in FIG. 1A, a region surrounded by a broken line is the touch sensor unit 13.
As for the touch panel 203 including the transparent conductor 103, the conduction resistance after 10 seconds under the conditions of a temperature of 24 ° C. and a humidity of 30% RH is obtained by using the CDM-20 manufactured by Custom Co. It measured similarly and it confirmed that there was conduction.
 実施例1~3に示したとおり、本発明の透明導電体は、透明金属層が、異方性導電部材を介して、回路基板に電気的に接続されていることにより、良好に導通を確認することができた。
 また、実施例1~3で作製した本発明の透明導電体について、光透過率を、分光光度計(日立ハイテクノロジーズ社製U-3300)を用いて測定した。具体的には、各透明導電体の金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の光透過率及び光反射率を測定する。そして各波長における光透過率及び光反射率から、光吸収率=100-(光透過率+光反射率)を算出し、これをリファレンスデータとする。そして、温度80℃/相対湿度90%RH雰囲気において保存し、測定光波長550nmにおける光透過率(%)を測定し、試験開始前と比較して、500時間経過後の光透過率変化を評価した。実施例1~3の透明導電体全てが85%以上であることを確認した。
As shown in Examples 1 to 3, the transparent conductor according to the present invention is confirmed to be electrically conductive because the transparent metal layer is electrically connected to the circuit board via an anisotropic conductive member. We were able to.
Further, the light transmittance of the transparent conductor of the present invention produced in Examples 1 to 3 was measured using a spectrophotometer (U-3300 manufactured by Hitachi High-Technologies Corporation). Specifically, measurement light is incident from an angle inclined by 5 ° with respect to the normal line of the surface of the metal film of each transparent conductor, and the light transmittance and light reflectance of the metal film are measured. Then, light absorptivity = 100− (light transmittance + light reflectance) is calculated from the light transmittance and light reflectance at each wavelength, and this is used as reference data. And it preserve | saved in temperature 80 degreeC / relative humidity 90% RH atmosphere, measures the light transmittance (%) in the measurement light wavelength 550nm, and evaluates the light transmittance change after progress of 500 hours compared with the test start. did. It was confirmed that all the transparent conductors of Examples 1 to 3 were 85% or more.
 実施例1~3の透明導電体101~103の作製のうち、共通の工程である透明基板上に少なくとも第1高屈折率層、透明金属層及び第2高屈折率層を有する透明導電層を形成し、パターニングを形成させる工程については、以下の作製方法によって作製してもよい。ZnS化合物1の組成は、表1に示すとおりである。 In the production of the transparent conductors 101 to 103 of Examples 1 to 3, a transparent conductive layer having at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer on a transparent substrate, which is a common process. About the process of forming and patterning, you may produce by the following preparation methods. The composition of the ZnS compound 1 is as shown in Table 1.
 (第1高屈折率層(ZnS化合物1)の形成)
 真空スパッタ装置として、大阪真空社製のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/秒でターゲット(ZnS化合物1の焼成体)をDCスパッタした。ターゲット-基板間距離は90mmであった。膜厚は40nmであった。
(Formation of First High Refractive Index Layer (ZnS Compound 1))
As a vacuum sputtering apparatus, a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. was used, and the target (ZnS compound) was prepared at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, and deposition rate 3.8 Å / sec. 1) was DC sputtered. The target-substrate distance was 90 mm. The film thickness was 40 nm.
 (第1硫化防止層(GZO)の形成)
 次いで、Ar 20sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/秒でGZOをDCスパッタした。ターゲット-基板間距離は90mmであった。GZO層の膜厚は1nmであった。
(Formation of first antisulfurization layer (GZO))
Next, GZO was DC sputtered at Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 liters / second. The target-substrate distance was 90 mm. The thickness of the GZO layer was 1 nm.
 (透明金属層(Ag)の形成)
 次いで、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、成膜レート14Å/秒でAgをDCスパッタした。ターゲット-基板間距離は90mmであった。Ag層の層厚は7nmであった。
(Formation of transparent metal layer (Ag))
Next, Ag was DC sputtered at Ar 20 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power 150 W, and deposition rate 14 Å / sec. The target-substrate distance was 90 mm. The layer thickness of the Ag layer was 7 nm.
 (第2硫化防止層(GZO)の形成)
 次いで、Ar 20sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/秒でGZOをDCスパッタした。ターゲット-基板間距離は90mmであった。GZO層の膜厚は1nmであった。
(Formation of second anti-sulfurization layer (GZO))
Next, GZO was DC sputtered at Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 liters / second. The target-substrate distance was 90 mm. The thickness of the GZO layer was 1 nm.
 (第2高屈折率層(ZnS化合物1)の形成)
 次いで、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/秒でターゲット(ZnS化合物1の焼成体)をDCスパッタした。ターゲット-基板間距離は90mmであった。膜厚は40nmであった。
(Formation of Second High Refractive Index Layer (ZnS Compound 1))
Next, the target (ZnS compound 1 fired body) was DC-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.8 Å / sec. The target-substrate distance was 90 mm. The film thickness was 40 nm.
 また、実施例1~3の透明導電体101~103の作製のうち、共通の工程である透明基板上に少なくとも第1高屈折率層、透明金属層及び第2高屈折率層を有する透明導電層を形成し、パターニングを形成させる工程については、上記の作製方法のZnS化合物1をZnS化合物2に変更して作製してもよい。ZnS化合物2の組成は、表1に示すとおりである。 Further, in the production of the transparent conductors 101 to 103 of Examples 1 to 3, the transparent conductive material having at least the first high refractive index layer, the transparent metal layer, and the second high refractive index layer on the transparent substrate, which is a common process. About the process of forming a layer and forming patterning, you may change the ZnS compound 1 of said preparation method into the ZnS compound 2, and may produce it. The composition of the ZnS compound 2 is as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 前記のとおり、ZnS化合物1又はZnS化合物2を用いて作製した透明導電層については、実施例1~3と同様の方法により透明導電体を作製することができ、性能についても同等であることを確認することができた。 As described above, for the transparent conductive layer prepared using ZnS compound 1 or ZnS compound 2, a transparent conductor can be prepared by the same method as in Examples 1 to 3, and the performance is also equivalent. I was able to confirm.
 本発明は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの分野において利用可能性がある。 The present invention is used in the field of various optoelectronic devices such as liquid crystal, plasma, organic electroluminescence, field emission display, touch panel, mobile phone, electronic paper, various solar cells, various electroluminescence dimming elements there is a possibility.
100、101、102、103 透明導電体
10 透明導電層
1 透明基板
2 第1高屈折率層
3 透明金属層
4 第2高屈折率層
5 硫化防止層
5a 第1硫化防止層
5b 第2硫化防止層
6 導電性粒子含有層
7 電極
8 フレキシブル基板(回路基板)
9 導通方向
11、11a、11b 接続端子
12 引き出し配線部
13 タッチセンサー部
14 配線パターン
15 接着剤
16 ディスプレイパネル
200、201、202、203 タッチパネル
a 導通領域
b 絶縁領域
P1 導電性粒子(異方性導電部材)
P1a 表面
P2 樹脂粒子
P2a 表面
P3 導電層
P4 第1の導電層
P4a 表面
P5 はんだ層(第2の導電層)
P11 導電性粒子
P12 はんだ層
100, 101, 102, 103 Transparent conductor 10 Transparent conductive layer 1 Transparent substrate 2 First high refractive index layer 3 Transparent metal layer 4 Second high refractive index layer 5 Antisulfuration layer 5a First antisulfuration layer 5b Second antisulfation Layer 6 Conductive particle-containing layer 7 Electrode 8 Flexible substrate (circuit board)
9 Conduction direction 11, 11a, 11b Connection terminal 12 Drawer wiring part 13 Touch sensor part 14 Wiring pattern 15 Adhesive 16 Display panel 200, 201, 202, 203 Touch panel a Conductive area b Insulating area P1 Conductive particles (anisotropic conductivity) Element)
P1a surface P2 resin particle P2a surface P3 conductive layer P4 first conductive layer P4a surface P5 solder layer (second conductive layer)
P11 Conductive particle P12 Solder layer

Claims (5)

  1.  少なくとも、透明基板、第1高屈折率層、透明金属層及び第2高屈折率層を、この順に有する透明導電体であって、
     前記第1高屈折率層及び前記第2高屈折率層のうち少なくとも一層が、少なくとも硫化亜鉛を含有する層であり、
     前記透明導電体が、パターニングされていて、かつ、
     前記透明金属層が、異方性導電部材を介して回路基板と電気的に接続されていることを特徴とする透明導電体。
    A transparent conductor having at least a transparent substrate, a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order;
    At least one of the first high refractive index layer and the second high refractive index layer is a layer containing at least zinc sulfide,
    The transparent conductor is patterned, and
    A transparent conductor, wherein the transparent metal layer is electrically connected to a circuit board via an anisotropic conductive member.
  2.  前記硫化亜鉛を含有する層と前記透明金属層の間に、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種類の化合物を含有する硫化防止層を有することを特徴とする請求項1に記載の透明導電体。 The antisulfurization layer containing at least one compound selected from a metal oxide, a metal fluoride, and a metal nitride is provided between the layer containing zinc sulfide and the transparent metal layer. The transparent conductor according to 1.
  3.  前記透明導電体自体で形成された引き出し配線部を有し、
     当該引き出し配線部が、前記異方性導電部材を介して前記回路基板と電気的に接続されていることを特徴とする請求項1又は請求項2に記載の透明導電体。
    It has a lead-out wiring part formed of the transparent conductor itself,
    The transparent conductor according to claim 1, wherein the lead-out wiring part is electrically connected to the circuit board through the anisotropic conductive member.
  4.  前記引き出し配線部と、更にタッチセンサー部とを備えていることを特徴とする請求項1から請求項3までのいずれか一項に記載の透明導電体。 The transparent conductor according to any one of claims 1 to 3, further comprising the lead-out wiring portion and a touch sensor portion.
  5.  請求項1から請求項4までのいずれか一項に記載の透明導電体の製造方法であって、
     透明基板の一方の面上に第1高屈折率層、透明金属層及び第2高屈折率層をこの順に積層して層構造体を形成する工程と、
     前記層構造体を、異方性導電部材を介して回路基板と電気的に接続する工程と、
     を備えることを特徴とする透明導電体の製造方法。
    It is a manufacturing method of the transparent conductor according to any one of claims 1 to 4,
    Forming a layer structure by laminating a first high refractive index layer, a transparent metal layer and a second high refractive index layer in this order on one surface of the transparent substrate;
    Electrically connecting the layer structure to a circuit board through an anisotropic conductive member;
    A method for producing a transparent conductor, comprising:
PCT/JP2015/053573 2014-02-13 2015-02-10 Transparent conductor and method for producing same WO2015122392A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015562819A JPWO2015122392A1 (en) 2014-02-13 2015-02-10 Transparent conductor and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014025106 2014-02-13
JP2014-025106 2014-02-13

Publications (1)

Publication Number Publication Date
WO2015122392A1 true WO2015122392A1 (en) 2015-08-20

Family

ID=53800135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053573 WO2015122392A1 (en) 2014-02-13 2015-02-10 Transparent conductor and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2015122392A1 (en)
WO (1) WO2015122392A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109976047B (en) * 2018-01-02 2021-03-16 京东方科技集团股份有限公司 Touch electrode structure, touch substrate, preparation method, display panel and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196523A (en) * 2006-01-26 2007-08-09 Sony Corp Optical recording medium and its manufacturing method
JP2008084378A (en) * 2006-09-26 2008-04-10 Nec Corp Optical information recording medium
JP2011253546A (en) * 2009-12-10 2011-12-15 Toppan Printing Co Ltd Conductive substrate and method for manufacturing the same and touch panel
JP2012079135A (en) * 2010-10-01 2012-04-19 Optrex Corp Touch panel
WO2013081106A1 (en) * 2011-11-30 2013-06-06 東洋紡株式会社 Transparent conductive film
WO2013141292A1 (en) * 2012-03-21 2013-09-26 京セラ株式会社 Input device, display device, electronic device, and mobile terminal
WO2014010433A1 (en) * 2012-07-11 2014-01-16 コニカミノルタ株式会社 Transparent electrode for touch panel, touch panel, and display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196523A (en) * 2006-01-26 2007-08-09 Sony Corp Optical recording medium and its manufacturing method
JP2008084378A (en) * 2006-09-26 2008-04-10 Nec Corp Optical information recording medium
JP2011253546A (en) * 2009-12-10 2011-12-15 Toppan Printing Co Ltd Conductive substrate and method for manufacturing the same and touch panel
JP2012079135A (en) * 2010-10-01 2012-04-19 Optrex Corp Touch panel
WO2013081106A1 (en) * 2011-11-30 2013-06-06 東洋紡株式会社 Transparent conductive film
WO2013141292A1 (en) * 2012-03-21 2013-09-26 京セラ株式会社 Input device, display device, electronic device, and mobile terminal
WO2014010433A1 (en) * 2012-07-11 2014-01-16 コニカミノルタ株式会社 Transparent electrode for touch panel, touch panel, and display device

Also Published As

Publication number Publication date
JPWO2015122392A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6292225B2 (en) Transparent conductor
WO2017010521A1 (en) Transparent electrode film, dimming element, and method for manufacturing transparent electrode film
JP6319302B2 (en) Transparent conductor and method for producing the same
JP6206262B2 (en) Transparent conductor, method for producing the same, and conductive paste
JP6344095B2 (en) Transparent conductor and touch panel
WO2015122392A1 (en) Transparent conductor and method for producing same
WO2015068738A1 (en) Transparent conductive body
JP2015156270A (en) Method of forming transparent electrode pattern
JP6390395B2 (en) Transparent conductor and touch panel
JP6536575B2 (en) Transparent conductor and touch panel
JP2016115638A (en) Transparent conductive film and method for producing the same
JP2016152182A (en) Transparent conductive film, method for producing transparent conductive film, and electronic apparatus
JP2016091071A (en) Transparent conductive film and method for producing the same
JPWO2016052158A1 (en) Transparent conductor and touch panel including the same
WO2015190227A1 (en) Transparent conductor manufacturing method
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
WO2015125677A1 (en) Transparent conductor
JP6493225B2 (en) Transparent conductive film
WO2015107968A1 (en) Method for manufacturing transparent conductor and transparent conductor
WO2015053371A1 (en) Transparent conductor
JP6586738B2 (en) Transparent conductive member and method for manufacturing transparent conductive member
WO2015025525A1 (en) Transparent conductive body
JP2016177940A (en) Method for producing transparent conductive body
JP2016171226A (en) Etchant and patterning method of transparent conductor
JP6256253B2 (en) Transparent conductor and touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748986

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748986

Country of ref document: EP

Kind code of ref document: A1