[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015122369A1 - 脳内電流シミュレーション方法とその装置,及び脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム - Google Patents

脳内電流シミュレーション方法とその装置,及び脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム Download PDF

Info

Publication number
WO2015122369A1
WO2015122369A1 PCT/JP2015/053390 JP2015053390W WO2015122369A1 WO 2015122369 A1 WO2015122369 A1 WO 2015122369A1 JP 2015053390 W JP2015053390 W JP 2015053390W WO 2015122369 A1 WO2015122369 A1 WO 2015122369A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
coil
brain
patient
intracerebral
Prior art date
Application number
PCT/JP2015/053390
Other languages
English (en)
French (fr)
Inventor
洋一 齋藤
正樹 関野
善弘 瀧山
啓太 山本
Original Assignee
国立大学法人東京大学
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 国立大学法人大阪大学 filed Critical 国立大学法人東京大学
Priority to CA2939681A priority Critical patent/CA2939681A1/en
Priority to EP15749544.1A priority patent/EP3106204B1/en
Priority to KR1020167022185A priority patent/KR20160122733A/ko
Priority to JP2015562804A priority patent/JP6384816B2/ja
Priority to AU2015216287A priority patent/AU2015216287B2/en
Priority to CN201580008420.7A priority patent/CN105980009B/zh
Priority to ES15749544T priority patent/ES2747623T3/es
Priority to DK15749544.1T priority patent/DK3106204T3/da
Priority to US15/118,704 priority patent/US10292645B2/en
Publication of WO2015122369A1 publication Critical patent/WO2015122369A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4848Monitoring or testing the effects of treatment, e.g. of medication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4058Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
    • A61B5/4064Evaluating the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/08Volume rendering
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • the present invention relates to a method and apparatus for simulating a current or electric field induced in the brain.
  • the present invention also relates to a transcranial magnetic stimulation system incorporating the device.
  • Transcranial magnetic stimulation is a method of stimulating neurons by generating an electric current or electric field in the brain by electromagnetic induction.
  • a fluctuating magnetic field is formed by applying an electric current (for example, alternating current) to a stimulation coil placed on the skin of the head, and is affected by the fluctuating magnetic field.
  • an electric current for example, alternating current
  • an eddy current or electric field opposite to the coil current is induced in the brain, and an action potential is generated by stimulating neurons with the eddy current or electric field.
  • Fig. 3 shows an example of a stimulation coil drive circuit.
  • a principle of generating an instantaneous current in the coil first, electric charges are accumulated in a capacitor from a power supply (including an AC power supply, a power supply circuit, and a booster circuit). Thereafter, a current is passed through the stimulation coil by turning on the thyristor. The thyristor is turned off after a current flows through the diode through the resonance circuit of the stimulation coil and capacitor. As a result, a current corresponding to one cycle of the sine wave shown in FIG. 4 flows through the stimulation coil.
  • Transcranial magnetic stimulation is used for clinical tests such as measurement of nerve conduction velocity and brain function research.
  • the conventional magnetic stimulation device weighs about 70 kg and requires electrical work for installation, so it can only be used in well-equipped medical institutions.
  • treatment by a skilled medical worker is necessary.
  • the coil is positioned in units of 1 mm on the target primary motor area.
  • the present inventors have developed the magnetic stimulation apparatus shown in FIG. 5 and have already filed patent applications regarding the magnetic field generating coil and positioning improved to the 8-character type (WO2010 / 147064, Patent Publication 2012-125546).
  • the present invention uses a brain model obtained by extracting a brain shape from a tomographic image of an individual patient and a coil, and a method for performing an eddy current analysis after determining the positional relationship between an arbitrary brain model and a coil.
  • the purpose of this study is to establish a method and apparatus for simulating the magnitude and distribution of eddy currents generated in the brain of patients who are undergoing transcranial magnetic stimulation therapy with an accuracy very close to the measured values.
  • SPFD method scalar potential finite difference method
  • the SPFD method can significantly reduce the time compared to the conventional finite element method, so that it is possible to efficiently respond to doctors' research and treatment.
  • the analysis of the eddy current distribution in the brain uses the SPFD method instead of the finite element method used in commercially available eddy current analysis software, and the analysis target including the brain is divided into micropolyhedral units of microelements (for example, cubes). ), And the eddy current generated in each micropolyhedron unit was obtained.
  • Software (program) for analysis using SPFD method was developed independently. In implementing the present invention, it goes without saying that other simulation algorithms such as the finite element method may be used, but the advantages of the original software using the SPFD method are the following three.
  • the first advantage is that the number of elements of the division model is limited to about 1 million in commercially available software using the finite element method, but the number of elements is not limited in the original software. Since the number of divisions and the voxel size can be specified arbitrarily, the model can be divided into finer elements and fine analysis can be performed.
  • a second advantage is that no air layer needs to be created. Commercially available software needed to create an air layer around the brain model that matched the mesh of the brain model. However, since the present invention creates only the brain model, the time required to create the analysis model is significantly reduced. Become.
  • the third advantage is that the calculation time has been reduced to about 1/20 of commercially available software by changing the calculation method.
  • the electric field E induced in the brain and the external magnetic flux density B satisfy Equation (1).
  • the magnetic vector potential A and the electric scalar potential ⁇ are selected so as to satisfy the equations (2) and (3), the electric and magnetic fields obtained from these potentials satisfy the equation (1).
  • Equation (3) the total electric field E of Equation (3) can be decomposed into an electric field E 1 derived from the vector potential and an electric field E 2 derived from the scalar potential, as shown in Equations (4) to (6).
  • Equation (5) the transformation from the first row to the second row was based on Bio-Savart's law.
  • ⁇ 0 is the vacuum permeability
  • r is a space position vector
  • r ′ is a position vector on the magnetic field generating coil
  • I (r ′) is a coil current at the position r ′.
  • the electric field E 1 derived from the vector potential is determined only by the winding shape and current of the coil, and can be calculated relatively easily using Equation (5).
  • the magnetic field E 2 derived from the scalar potential depends on the shape of the subject's head, and advanced numerical analysis methods such as the SPFD method and the finite element method are required to obtain this. Similarly, the total electric field E must be determined using advanced numerical analysis techniques.
  • Equation (3) J represents the induced current density and ⁇ represents the electrical conductivity of the living body.
  • Equation (10) ⁇ n is an electrical scalar potential at contact n
  • An is an external magnetic vector potential component parallel to side n of the voxel connecting contact 0 and contact n, and a value at the center of the side
  • l n is a side n the length of
  • the S n is the conductance of sides n.
  • Electric scalar potential by solving equation by applying equation (11) to equation (10) where a n is the area of a rectangular parallelepiped plane perpendicular to side n and ⁇ n is the average conductivity of four rectangular parallelepipeds in contact with side n Asked.
  • the eddy current density was obtained using equations (3) and (7).
  • the SPFD method can be used to analyze both the total electric field E and eddy current density J depending on the subject's head shape.
  • the electric field E 1 determined by the coil winding shape and current can also be obtained during the analysis process.
  • the inventor of the present application In order to verify the accuracy of the calculation by the SPFD method, the inventor of the present application generates a superposed 8-character coil for each of the spherical model with a radius of 75 mm shown in FIG. 21A and the cubic model with a side length of 120 mm shown in FIG. 21B.
  • the induced current was simulated.
  • the “superimposed 8-character coil” is a coil arranged in an 8-character shape so that two spiral coils partially overlap each other.
  • the reason for using the sphere model and the cubic model is that there is no influence (error etc.) on the geometric properties of the simulation target due to the difference in the calculation algorithm (modeling concept) of the finite element method and the SPFD method. This is in order to find out.
  • the coil was set at a current of 5.3 kA and 3.4 kHz at a position 1 cm from the model surface.
  • the elements included in the sphere within a certain length from the model surface compared to the calculation result by the finite element method. It was confirmed that the average amount of induced current was calculated with almost no difference in the SPFD method.
  • FIG. 7 shows a model in which three brain tissues, gray matter, white matter, and cerebrospinal fluid, are extracted from brain MRI data as shown in FIG. Blue represents gray matter, green represents white matter, and red represents cerebrospinal fluid.
  • FIG. 8 shows the analysis result of the eddy current density on the gray matter surface. As can be seen, there is no significant difference in current density between the two models, and the distribution of eddy current density is similar. From the above, it was found that the analysis that extracted only gray matter, white matter, and cerebrospinal fluid was effective.
  • the exercise threshold is a magnetic field intensity at which a muscle reaction is observed with a probability of 50% or more when a coil is placed at the optimal stimulation position of the subject and magnetic stimulation is applied to the brain.
  • MRI images of the head were acquired for multiple subjects, and a coil was placed at the optimal stimulation position for the subjects to examine the motion threshold.
  • an 8-shaped coil with an inner diameter of 25 mm, an outer diameter of 97 mm, a height of 6 mm, 10 turns and a pulse width of 280 mm was used.
  • coils are installed at 30 locations inside the elliptical area with a radius of about 25 mm on the left and right (in the direction along the center groove) and about 15 mm on the front and back (in the direction perpendicular to the center groove) with the optimum stimulation position as the center.
  • the motion threshold and the three-dimensional position information of the coil corresponding to the MRI data were recorded.
  • the optimal stimulation position and the motion threshold at two or three locations within the elliptical area described above were examined.
  • FIG. 9 shows the results of analysis performed on six subjects.
  • Each result shows the distribution of the eddy current J and the electric field E on the gray matter surface when the coil is placed at the optimum position for 6 subjects and a stimulus corresponding to the motion threshold is given.
  • the eddy current and the electric field are in a proportional relationship.
  • the color scale of the analysis result is the same for all subjects. From this result, it can be seen that there are places where a high current density also appears around the primary motor area, and that the current density corresponding to the stimulation threshold of the primary motor area varies depending on the subject.
  • Table 1 shows the results of calculating the average eddy current density at a radius of 5 mm with the target site as the center, based on the analysis results for six subjects.
  • the eddy current density at which the brain tissue reached excitement (subject average value) was 17.19 A / m 2 . It was also found that the eddy current density in the brain corresponding to the stimulation threshold varies from subject to subject.
  • FIG. 10 shows the stimulation threshold (measured value of the voltage amplitude observed with a probability of a muscle response of 50% or more) when the coil is placed at a position deviated from the optimal stimulation position, and the exercise threshold at the optimal stimulation position.
  • a graph expressed as 100 is shown. From this result, the magnetic field stimulation intensity required to produce twitch (muscle spasm, twitch) increased as the coil deviated from the optimal stimulation position.
  • FIG. 11 shows the result of calculating the difference in current density at the optimum stimulation position when the coil position is changed according to the simulation method of the present invention.
  • the origin is the optimum stimulation position, and the “deviation (movement amount)” from the optimum stimulation position is shown in the graph with the X-axis direction parallel to the central groove and the Y-axis perpendicular to the central groove.
  • the optimal stimulus position and “deviation” are measured values, and the current density is an analytical value. From this figure, the direction parallel to the central groove has a large effect on the change in the eddy current density at the optimal stimulation position due to the shift of the coil position with respect to the vertical direction. It turns out that the size is about half.
  • FIG. 12 shows the eddy current distribution in the brain when the optimal stimulation position is stimulated and when it is 20 mm away. This figure also shows that a large difference in the current distribution in the brain occurs when the 20 mm coil position shifts.
  • the distribution of the eddy current density over the entire brain or the eddy current density at a specific position in the brain is calculated using the simulation method according to the present invention.
  • the eddy current density at a specific position in the brain may be calculated using the simulation method according to the present invention described above. A specific configuration for calculating or displaying the simulation result will be described separately.
  • the difference between the two may be due to the large area in which the eddy current density was obtained. Therefore, in order to generate an eddy current that reaches the motion threshold at the target site when the coil is placed around the optimal stimulation position when the radius of the region of interest for obtaining the average eddy current density is changed from 2 mm to 10 mm.
  • FIG. 14 shows the eddy current distribution (analysis result) in the brain.
  • the dotted line in the figure represents the region of interest with a radius of 5 mm, and a larger eddy current is generated in the red part. From this figure, it can be seen that the region of interest includes not only the gray matter where the eddy current density is large, but also the portion where the eddy current is not so much generated. Therefore, it may be possible to further reduce the difference between the actual measurement value and the analysis result by comparing the results of the region of interest only where the eddy current is large when the coil is placed at the optimum position. .
  • a threshold value (a twitch (muscle spasm, twitch)) is generated that stimulates the primary motor cortex and moves, for example, a finger. It is necessary to obtain a motion threshold).
  • twitch muscle spasm, twitch
  • sites other than the primary motor area may be the target of stimulation, and twitch cannot be observed with stimulation to such sites, so the stimulation intensity had to be determined by an indirect method. .
  • the original software it can be applied to such patients.
  • the stimulation intensity can be presented by computer simulation so that 17.19 A / m 2 , which is the average nerve excitation threshold, can be guided to the primary motor area.
  • 17.19 A / m 2 which is the average nerve excitation threshold
  • the stimulation of the motor cortex is performed in advance to determine the magnetic field strength corresponding to the motion threshold, and the treatment conditions in the prefrontal cortex are determined based on the magnetic field strength. Since the software according to the present invention can be estimated by analyzing the eddy current density generated in the prefrontal cortex, the treatment conditions can be determined so that the eddy current to the prefrontal cortex becomes an appropriate value. become.
  • FIG. 15 shows an analysis result of the eddy current distribution when the brain model of the subject D in Table 1 is actually stimulated on the dorsolateral region of the left prefrontal cortex under the same conditions as in Table 1 (current amplitude is 3431 A).
  • the red frame in the figure shows the area where the stimulus was actually given.
  • the average eddy current density at a peripheral radius of 5 mm at the stimulation position was 21.49 A / m 2 .
  • Table 1 by giving an amplitude of 3233 A (see Equation (8)), an eddy current that is the same as the eddy current density corresponding to the movement threshold value is generated in the dorsolateral region of the left frontal cortex. I understand that I can do it.
  • FIG. 23A is a head MRI image of the subject, and an arrow indicates a stimulation position in the prefrontal cortex.
  • the brain is obtained by the simulation method described above (however, the radius of the sphere for calculating the sphere average is 10 mm). As a result, the distribution shown in FIG. 23B was obtained.
  • the average eddy current density within a radius of 10 mm at the stimulation position was 19.9 A / m 2 .
  • a similar simulation was performed under the condition that the current value of the treatment coil was also 3430A, with the prefrontal cortex as the stimulation position, and the brain-induced current had the distribution shown in FIG. 23C. .
  • the average eddy current density within a radius of 10 mm at the stimulation position was 17.6 A / m 2 . In this way, when the same subject is stimulated with the same coil current, the induced current distribution and the eddy current value at the stimulation site differ when the brain stimulation site is different.
  • the stimulus intensity is 110% or 120%
  • a stimulus different from the intended stimulus intensity is applied to the prefrontal cortex.
  • the possibility of being added can be estimated. From these facts, it is possible to examine a new stimulation intensity that can contribute to therapeutic effectiveness by using the intracerebral induced current simulation method of the present invention in advance for a target region other than the primary motor area.
  • Transcranial magnetic stimulation is one of the most widely used methods for treating neurological and psychiatric diseases in recent years.
  • repetitive transcranial magnetic stimulation rTMS
  • rTMS repetitive transcranial magnetic stimulation
  • the stimulation intensity of the coil used for transcranial magnetic stimulation should be kept as small as possible while obtaining the same therapeutic effect in order to prevent unintended side effects and unnecessary heating of the coil.
  • the present inventor has paid attention to the fact that several studies that have actually performed transcranial magnetic stimulation have shown the existence of “appropriate coil stimulation angle for each individual subject”. did.
  • the optimal coil stimulation angle is clarified by electromagnetic calculation, so that stimulation can be performed with less current, and this can be used as a support for the operation.
  • the inventor of the present application has set a hypothesis that Based on the results of the study by the present inventor shown below, first, in a simple transcranial magnetic stimulation model with cerebrospinal fluid in the sulcus and cerebral sulcus, It became clear whether it was working. Furthermore, based on these results, a new method for calculating an appropriate stimulation angle at each stimulation site of the brain by simple calculation has been newly established, and will be described below.
  • the inventor of the present application first created a simple brain model including the sulcus shown in FIG. 24A and simulated the effect of the rotation angle of the transcranial magnetic stimulation coil on the sulcus.
  • the brain model consisted of gray matter with a conductivity of 0.11 S / m and 2 mm cerebrospinal fluid with a conductivity of 1.79 S / m, and the sulcus was created with a depth of 2 cm and a width of 2 mm.
  • the stimulation coil had an 8-letter shape with an outer diameter of 5.1 cm and an inner diameter of 1.1 cm, and a current of 5.3 kA was applied thereto.
  • the coil is fixed 1 cm above the surface of the brain model and stimulates at 0, 30, 45, 60, and 90 degrees to the sulcus, and the result is placed in the sphere from the center point of the coil.
  • the comparison was made by averaging the induced currents of the elements included.
  • the present inventor formed brain shape data obtained as an MRI image from the subject as three elements of gray matter, white matter, and cerebrospinal fluid, and simulated transcranial magnetic stimulation on this.
  • a hollow model consisting essentially of cerebrospinal fluid is created, although the brain shape such as the sulcus is the same as the real brain, and the same simulation is performed. went.
  • the magnetic stimulation coil is rotated from the initial stimulation direction by 10 degrees to 180 degrees, and the average of the induced currents of the elements contained in the sphere from the coil center in each of “gray matter + white matter trap” and “cerebrospinal fluid” in the three-element model , And the same average of “cerebrospinal fluid” in the hollow model was calculated and compared.
  • coil is parallel to the sulcus means that the main flow direction of the induced current generated by the coil is the sulcus. Similarly, it means that the coil is parallel to the groove direction. Similarly, “the coil is perpendicular to the brain groove” means that the main flow direction of the induced current generated by the coil is perpendicular to the groove direction of the brain groove. Means.
  • FIG. 25B shows the sphere for calculating the average of the induced current
  • the induced currents in gray matter and white matter are also shown.
  • the shape is the shape of the real brain derived from the patient's brain MRI image, but the shape of the induced current in the cerebrospinal fluid in a hollow model consisting essentially of cerebrospinal fluid.
  • the optimal coil stimulation angle can be estimated with sufficient accuracy even by the calculation using the hollow model described above. As a result, the amount of calculation is reduced by 70% compared to the case of using the three-element model. I knew it was possible.
  • the neural excitation threshold value in the region other than the motor area can be estimated. Furthermore, by analyzing the eddy current density distribution in the brain due to the shift of the coil position, it is confirmed that the eddy current density in the brain changes due to the difference in the coil position, and the movement threshold changes accordingly. The distribution of eddy current density in the brain was found to be anisotropic. In addition to the analysis of the eddy current distribution in the brain, it is considered necessary to measure at a position closer to the optimal stimulus position in measuring the movement threshold.
  • the present invention has been made on the basis of the above knowledge.
  • the brain current simulation method having such a configuration, a model corresponding to the brain shape of each patient is formed, and the brain current is analyzed based on the model. It is possible to accurately grasp the eddy current or electric field distribution. In addition, the eddy current distribution in the brain when the coil position deviates from the optimal stimulation position can be grasped more accurately. Then, a transcranial magnetic stimulation system that can stimulate the brain more efficiently can be designed using the analysis results of the eddy current distribution or electric field distribution.
  • the brain current simulation method includes a fifth step of visually displaying the eddy current or electric field distribution calculated in the fourth step. According to this method, the distribution of eddy current or electric field in the brain can be visually grasped.
  • the micropolyhedral units are preferably assigned so as to have a conductivity of gray matter, white matter, or cerebrospinal fluid. Further, it is preferable that the first information includes at least one of a current value or a voltage value of the current. Furthermore, the eddy current or electric field is preferably calculated by the scalar potential finite difference method.
  • the intracerebral current simulation device and the transcranial magnetic stimulation system also include a fifth means for visually displaying the eddy current or electric field distribution calculated by the fourth means.
  • the intracranial current simulation apparatus and the transcranial magnetic stimulation system incorporating the apparatus include: First means for providing head image data including at least a part of the brain among the tomographic image data of the patient; A second forming a three-dimensional brain model comprising each micropolyhedral unit obtained by dividing at least one region constituting the brain of the head image data provided by the first means into microelements; Means of Of the conditions for applying magnetic stimulation to the patient's brain by placing a coil on the patient's head and applying an electric current to the coil, at least the position and orientation of the coil and the coil applied to the coil A third means for providing first information including a current condition and a structural condition relating to the magnetic field generated by the coil; The eddy current or electric field induced in each of the micropolyhedral units of the three-dimensional brain model, the first information provided by the third means, and the conductivity assigned to each micropolyhedral unit. 4th means to calculate based on the 2nd information containing are included.
  • the current applied to the coil may be either alternating current or pulsating flow.
  • the eddy current induced in the brain by the magnetic field of the coil and the electric field (electric field) intensity are in a proportional relationship. Therefore, in the description related to the present invention, “eddy current” can be read as “electric field” or “electric field”, and it is understood that the contents thus read also belong to the technical scope of the present invention. Should.
  • FIG. 23A It is a figure which shows distribution of the electric current induced
  • the shape is a shape of a real brain derived from a patient's brain MRI image, and is a diagram showing a sphere for calculation that averages induced currents in a hollow model virtually consisting only of cerebrospinal fluid. It is a figure which shows the relationship between the induced current and stimulation angle in gray matter, white matter, and cerebrospinal fluid.
  • a transcranial magnetic stimulation system (hereinafter simply referred to as “system”) 1 is a magnetic stimulation device that applies magnetic stimulation to the brain of a patient 3 supported by a support mechanism (for example, a chair 2 or a bed). 4.
  • the magnetic stimulation device 4 has a coil unit (coil device) 5 and a control unit 6 in order to form a dynamic magnetic field that applies magnetic stimulation to the brain of the patient 3.
  • the coil unit 5 is preferably supported by an appropriate positioning unit 7 so that it can freely move along the head surface of the patient 3 and can be positioned at an arbitrary position.
  • the coil unit 5 includes a coil 8 and a casing 9 made of an electrically insulating material surrounding the coil 8.
  • the casing 9 includes a holder 10 formed integrally with the casing 9, and is held by the positioning unit 7 via the holder 10.
  • any known coil such as one annular coil and an 8-character coil in which conductive wires are arranged in an 8-character shape (for example, a coil disclosed in Japanese Patent Application Laid-Open No. 2012-125546) can be used.
  • the casing 9 is integrally provided with three or more observation objects (for example, a target such as a mark 11 or a protrusion). These observation objects are used to determine the relative position and direction of the coil 8 with respect to the patient's head.
  • the control unit 6 includes a box-shaped housing 12.
  • the housing 12 includes an input unit 13 and an output unit 14.
  • the input unit 13 is generated by a driving condition setting unit 15 that sets driving conditions (for example, voltage, current, and frequency applied to the coil 8) of the system 1; a tomography apparatus (for example, MRI, CT, and PET)] 16
  • a data receiving unit 20 for receiving is provided.
  • the camera 19 is attached to a fixed part of a living room in which the positioning unit 7 or the system 1 is accommodated.
  • the current applied to the coil is not only a current (AC) whose flow direction changes periodically with time, but also a current whose flow direction is constant and whose magnitude varies periodically (so-called “ It should be understood to include pulsatile flow)).
  • the output unit 14 is connected to a display 21 such as a liquid crystal display device or a computer (not shown) having a display, and outputs data (for example, image data) output from the control unit 6 to the display 21 to output the data. It is comprised so that the image corresponding to can be displayed.
  • a display 21 such as a liquid crystal display device or a computer (not shown) having a display, and outputs data (for example, image data) output from the control unit 6 to the display 21 to output the data. It is comprised so that the image corresponding to can be displayed.
  • a coil drive circuit 25 shown in FIG. 17 is accommodated in the housing 12, and the coil drive circuit 25 is electrically connected to the coil 8 via a cable 26.
  • a control circuit 30 shown in FIG. 18 is also accommodated in the housing 12.
  • the control circuit 30 includes a central processing unit (hereinafter referred to as “CPU”) 31, a first storage unit 32, a second storage unit 33, and a calculation unit 34 connected to the CPU 31.
  • CPU central processing unit
  • the first storage unit 32 stores various software.
  • 3D mapping software 41 for creating a 3D brain model (3D map) based on tomographic image data (for example, medical image processing software “Real INTAGE” sold by Cybernet System Co., Ltd.);
  • Coil driving condition determination software 42 for determining the current to be applied to the coil based on the driving conditions input via 13; marks included in the image photographed by the camera 19 (marks provided on the coil unit and patient-worn items)
  • coil positioning software 43 for determining the relative direction and position of the coil with respect to the patient's head (patient brain) based on the information of the mark provided on the patient; Based on the direction and position, and the coil driving conditions determined by the coil driving condition determination software 42
  • the eddy current density map is created by calculating the eddy current density generated in the cell and superimposing the calculated eddy current density information on the 3D brain model created by the 3D mapping software.
  • Software 43 is included.
  • the relative position and direction of the coil with respect to the patient's brain can be determined, for example, by the technique disclosed in WO2007 / 123147A.
  • at least three targets are attached to a mark fixed to the patient's head or a device (for example, chair, bed) for fixing the patient.
  • the relative position of the patient target relative to the patient's head (brain) is determined. Therefore, the position information of the patient target is synthesized with the patient's head tomographic image data (three-dimensional coordinate data).
  • the camera images a patient target and at least three targets (coil targets) fixed to the coil unit 5.
  • the captured image is processed by the coil positioning software to determine the relative position and orientation of the coil target relative to the patient target, and based on that information, the relative position of the coil relative to the patient's head (brain) A direction is required.
  • the relative position of the coil with respect to the patient's head (brain) can be calculated in real time, and the calculated result can be displayed on the display 21.
  • the calculation unit 34 has a function of executing the above-described software based on an instruction from the CPU 31.
  • the second storage unit 33 stores various data. For example, human (head) tomographic image data 51 and coil driving conditions 52 input via the input unit 13, three-dimensional brain model data 53 obtained by executing the three-dimensional mapping software 41, coil driving The coil drive current data 54 obtained by executing the condition determining software 42, the coil direction and position data 55 obtained by executing the coil position determining software 43, and the eddy current density mapping software 43 are executed. The obtained eddy current density data 56 and eddy current map data 57 obtained by mapping the data 56 are stored.
  • the second storage unit 33 also includes conditions for applying magnetic stimulation to the patient's brain using the system 1 (current / voltage / frequency applied to the coil, relative position and direction of the coil with respect to the head), and the like.
  • the magnetic stimulation information 58 of the motion threshold observed at that time (the voltage amplitude at which a muscle reaction is observed with a probability of 50% or more when a coil is placed at the optimal stimulation position and magnetic stimulation is applied to the brain) is stored. Has been.
  • the position of the coil 8 relative to the patient's head is obtained by the coil position determination software based on the image taken by the camera 19.
  • the relative position of the coil 8 with respect to the patient's head is displayed on the display 21.
  • the coil 8 can be installed in the target location (for example, optimal stimulation position) of a patient's head.
  • the coil drive circuit 25 is driven based on the coil drive condition input through the input unit 15 to give magnetic stimulation to the brain of the patient 3. As shown in FIG.
  • the coil drive circuit 25 uses the output from the power supply circuit 62 that converts the output voltage of the power supply 61 to a desired voltage, the booster circuit 63 that boosts the output of the power supply circuit 62, and the output from the booster circuit 63.
  • the tomographic image data 51 (for example, MRI data) of the patient 3 or the subject is input through the input unit 13 (step # 1).
  • the input head tomographic image data 51 is stored in the second storage unit 33.
  • the brain of the patient 3 is obtained using the three-dimensional mapping software 41 stored in the first storage unit 32 and the tomographic image data 51 stored in the second storage unit 33.
  • 3D brain model 53 is created (step # 2).
  • the three-dimensional brain model 53 created at this time does not need to target all parts of the brain, and may be at least one of gray matter, white matter, and cerebrospinal fluid.
  • the created three-dimensional brain model 53 is stored in the second storage unit 33.
  • the three-dimensional brain model can be output and displayed on the display 21 through the output unit 14 as necessary.
  • the CPU 31 stores the magnetic stimulation information 58 [the current applied to the coil, which is stored in the second storage unit 33 and previously obtained when the system 1 was used to apply magnetic stimulation to the brain of the patient 3. Voltage and frequency, relative position and direction of the coil with respect to the head) and coil winding shape data 59 (see FIG. 20), and the motion threshold value observed at that time (the coil is placed at the optimal stimulation position and the brain (The voltage amplitude at which a muscle reaction was observed with a probability of 50% or more when a magnetic stimulus was applied to) was read out (step # 3).
  • the CPU 31 reads the eddy current density mapping software 43 stored in the first storage unit 32 and the three-dimensional brain model 53 of the brain stored in the second storage unit 33, and refers to the magnetic stimulation information 58.
  • the eddy current density mapping software 43 is used to calculate the eddy current density induced in each micropolyhedron unit of the three-dimensional brain model (step # 4). This calculation is performed by the above-described scalar potential finite difference method.
  • the calculated eddy current density data 56 is stored in the second storage unit 33.
  • the CPU 31 creates an eddy current density map 57 (see FIG. 14) based on the calculated eddy current density data 56. As shown in FIG. 15, it is preferable to add color information corresponding to the level to the calculated eddy current density data 56 and display the eddy current density level on the display 21 with this color information.
  • the magnetic stimulation information 58 [applied to the coil, which is stored in the second storage unit 33 described above and obtained when the magnetic stimulation is applied to the brain of the patient 3 using the system 1 before.
  • the position of the treatment coil that performs setting input using a predetermined setting means The distribution of eddy current density overlooking the entire brain, or the eddy current density at a specific position in the brain calculated using the simulation method according to the present invention, in addition to or independently of the coil Eddy current density distribution overlooking the entire brain, or eddy at a specific position in the brain when changing at least one of the direction information, coil applied current information, or applied voltage information
  • the flow density, calculated using the above simulation method may be displayed.
  • the eddy current density at a specific position in the brain can be displayed in real time as the coil moves.
  • the eddy current density is calculated for the three-dimensional brain model that reproduces the patient's brain based on the magnetic stimulation information obtained by actually stimulating the patient's brain.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Neurosurgery (AREA)
  • Psychology (AREA)
  • Physiology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • General Business, Economics & Management (AREA)
  • Business, Economics & Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Computer Graphics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Magnetic Treatment Devices (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

脳内電流シミュレーション方法は,患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の工程;第1の工程で提供された頭部画像データのうち脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる3次元脳モデルを形成する第2の工程;患者の頭部上にコイルを配置し,コイルに電流を印加することによって患者の脳に磁気刺激を与え,磁気刺激に対する患者の反応が観察されたときの条件のうち,少なくともコイルの位置及び向きの条件と,コイルに印加された電流の条件と,コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の工程;3次元脳モデルのそれぞれの微小多面体単位内に誘導される渦電流又は電界を,第3の工程で提供された第1の情報,及び微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の工程を含む。

Description

脳内電流シミュレーション方法とその装置,及び脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム
 本発明は,脳内に誘導される電流又は電界をシミュレーションする方法と装置に関する。本発明はまた,その装置を組み入れた経頭蓋磁気刺激システムに関する。
 経頭蓋磁気刺激は,電磁誘導によって脳内に電流又は電界を生じさせ,ニューロンを刺激する手法である。この手法によれば,図1,2に示すように,頭部の皮膚上に置いた刺激コイルに電流(例えば,交流)を印加することで変動磁場を形成するとともにその変動磁場の影響を受けて脳内にコイル電流とは逆向きの渦電流又は電界を誘導し,その渦電流又は電界でニューロンを刺激することによって活動電位を発生させる。
 図3に刺激コイル駆動回路の一例を示す。瞬間的な電流をコイルに発生させる原理としては,まず電源(交流電源,電源回路,昇圧回路を含む。)からコンデンサへ電荷を蓄積する。その後,サイリスタをターンオンすることにより刺激コイルに電流を流す。刺激コイルとコンデンサの共振回路にダイオードを通して電流が流れたのち,サイリスタがオフになる。これにより,図4に示す正弦波1周期分の電流が刺激コイルに流れる。
 経頭蓋磁気刺激は神経伝導速度の計測を始めとした臨床検査や脳機能研究に用いられている。
 近年においては,神経障害性疼痛やパーキンソン病,うつ病などの治療的応用として磁気刺激が注目されている。このような病気においては薬剤による治療では効果が見られないケースがあり,そのような場合電極を脳に埋め込むことで脳に電気刺激を与えるという治療法がある。しかしその場合,開頭手術を必要とすることから希望しない患者が多い。そこで,手術を要さない非侵襲的な磁気刺激を反復して行う反復経頭蓋磁気刺激が治療法として研究されている。例えば難治性神経障害性疼痛において,大脳の一次運動野に磁気刺激を行った後1日間ほど除痛効果をえられたことが報告されている。
 しかし,従来の磁気刺激装置は約70Kgの重量があり,また設置のために電気工事が必要となるため,設備の整った医療機関でのみ利用可能となっている。また,実際の治療時には患者のMRIデータを参照しながら刺激位置を決定するため,熟練した医療従事者による治療が必要である。難治性神経障害性疼痛の治療では,標的となる一次運動野の上に,1mmの単位でコイルの位置決めを行う。しかし,除痛効果を継続して得るためには医療機関に毎日通う必要がある。そこで,図5に示す,非医療従事者による操作のみで利用可能な,在宅治療に用いる新たな磁気刺激装置の開発が行われている。
 本発明者らは,図5に示す磁気刺激装置を開発し,8字型を改良した磁場発生コイルや位置決めに関しては既に特許出願を行っている(WO2010/147064,特許公開公報2012-125546)。
 経頭蓋磁気刺激療法では,脳内のターゲット部位に誘起される渦電流によりニューロンを刺激する。
 この渦電流の強度や分布は,コイルの構造や特性,印加電流等の磁場生成能と,患者に対するコイルの位置により決定されると考えられる。
 しかしながら,磁気治療中の対象患者の脳内に実際に生成された渦電流を電極などを用いて実測することは,現実的ではない。
 そこで,コイルにより生成される磁場分布から,脳内に誘起される渦電流をシミュレーションにより解析する試みがなされている。
 これまでの脳内渦電流分布シミュレーションは,標準モデルを用いた計算であり,脳を一様な導電体と見なし電流分布を求めるものであった。
 しかし,実際の脳は患者個人毎に大きさや,形状が異なると共に,組織により導電率が異なるため,患者個別の電流強度分布の計算は困難であると共に,シミュレーション計算自体も複雑で時間を要する点が問題であった。
 そこで,本発明は,個々の患者の断層像から脳形状を抽出した脳モデル,及びコイルをモデル化し,任意の脳モデルとコイルの位置関係を決定した上で,渦電流解析を行う手法を用いることにより,経頭蓋磁気刺激治療を行おうとしている患者の,脳内で生成される渦電流の大きさや分布を実測値に極めて近い正確さでシミュレートする方法,装置を確立することを目的とする。
 この手法では,電磁界解析にスカラーポテンシャル有限差分法(Scalar Potential Finite Difference)(以下,「SPFD法」という。)を利用することが好ましい。
 この手法によれば,刺激コイルの装着位置に伴う電流強度分布をシミュレーションにより観察することが可能となり,刺激強度と刺激部位における渦電流強度や,刺激を加えたい部位に対するコイルの最適位置を,実際に刺激を加えることなく検証が可能となる。
 また,SPFD法を使用することにより従来の有限要素法に比して大幅に時間短縮が可能となるため医師の研究,治療において効率的な対応が可能となる。
 さらに,疾患に応じて最適な誘導電流分布のコイルを選定することも容易となり,治療上の意義は大きい。
 脳内の渦電流分布の解析には,市販の渦電流解析ソフトにおいて用いられている有限要素法ではなくSPFD法を用い,脳を含む解析対象の立体を微小要素の微小多面体単位(例えば,立方体)に分割し,各々の微小多面体単位に発生する渦電流を求めた。SPFD法を用いた解析用のソフトウェア(プログラム)は独自に開発した。
 本発明の実施に当たっては有限要素法など,他のシミュレーション算法を用いてもよいことは言うまでもないが,SPFD法を用いるオリジナルソフトウェアの利点は,以下の3つである。
 第1の利点は,有限要素法を用いた市販のソフトウェアでは分割モデルの要素数が100万ほどに制限されているが,オリジナルソフトウェアに要素数の制限がない,ということである。分割数,ボクセルサイズを任意に指定することができるので,モデルをより細かい要素に分割することができ,細かい解析を行うことが可能である。第2の利点は,空気層を作成する必要がないことである。市販のソフトウェアは,脳モデルのメッシュに合わせた空気層を脳モデルの周囲に作成する必要があったが,本発明は脳モデルのみを作るため,解析用モデルの作成に要する時間が大幅に短くなる。第3の利点は,計算手法を変えたことにより,計算時間が市販のソフトウェアの約1/20に短縮されたことがあげられる。
 以下,解析に用いたSPFD法の詳細を説明する。
 ファラデーの法則により,脳内に誘導される電場Eと,外部磁束密度Bは,数式(1)を満たす。
Figure JPOXMLDOC01-appb-M000001
 磁気ベクトルポテンシャルAおよび電気スカラーポテンシャルφを,数式(2)および(3)を満たすように選ぶと,これらのポテンシャルから得られる電場および磁場は,式(1)を満たす。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ここで,数式(3)の総電場Eは,式(4)から(6)に示すように,ベクトルポテンシャルに由来する電場E1と,スカラーポテンシャルに由来する電場E2に,分解できる。

Figure JPOXMLDOC01-appb-I000004
 数式(5)において,1行目から2行目への変形は,ビオ・サバールの法則によった。式中のμ0は真空の透磁率,rは空間の位置ベクトル,r'は磁場発生コイル上の位置ベクトル,I(r')は位置r'におけるコイル電流である。ベクトルポテンシャルに由来する電場E1は,コイルの巻線形状と電流のみによって決まり,数式(5)を使って,比較的容易に計算可能である。スカラーポテンシャルに由来する磁場E2は,被験者の頭部形状に依存し,これを求めるためには,SPFD法や有限要素法などの高度な数値解析手法が必要である。総電場Eも同様に,高度な数値解析手法を使って求める必要がある。
 数式(3)とオームの法則の数式(7)を電流連続の数式(8)に代入すると,数式(9)が得られる。

Figure JPOXMLDOC01-appb-I000005

 数式(7)において,Jは誘導電流密度,σは生体の導電率を表す。
 数式(9)について8個の微小多面体単位が共有する接点での離散化を行うと,数式(9)式は数式(10)になる。

Figure JPOXMLDOC01-appb-I000006
 数式(10)において,φnは接点nにおける電気スカラーポテンシャル,Anは接点0と接点nを結ぶボクセルの辺nに平行な外部磁気ベクトルポテンシャルの成分で辺の中心における値,lnは辺nの長さ,Snは辺nのコンダクタンスである。
 anを辺nに垂直な直方体の面の面積,σnを辺nで接する4つの直方体の平均導電率として数式(10)に数式(11)を適用して方程式を解くことで電気スカラーポテンシャルを求めた。求めた電気スカラーポテンシャルをもとに,数式(3),(7)を用いて渦電流密度を求めた。

Figure JPOXMLDOC01-appb-I000007
 上に述べたように,本シミュレーション方法では,SPFD法を利用することによって,被験者の頭部形状に依存する総電場Eと渦電流密度Jを,ともに解析することができる。コイルの巻線形状と電流によって決まる電場E1も,解析の過程で求めることができる。
 本願発明者は,SPFD法による計算の正確性を検証するため,図21Aに示す半径75mmの球モデルと,図21Bに示す辺長120mmの立方体モデルそれぞれに対し,重畳8字コイルにより発生される誘導電流のシミュレーションを行った。「重畳8字コイル」は、2つの渦巻コイルがそれぞれの端部で一部重なるように8字の形に配置されたコイルである。
なお,球モデルと立方体モデルとを用いた理由は,有限要素法,SPFD法の計算アルゴリズム(モデル化の考え方)の違いから,シミュレーション対象の幾何学的性質が及ぼす影響(誤差など)が無いかどうかを調べるためである。
 コイルはモデル表面より1cmの位置に,5.3kA,3.4kHzの電流を設定した。図22Aに示す,球モデルにおける結果,図22Bに示す,立方体モデルにおける結果にみられるように,有限要素法による計算結果と比較して,モデル表面部から一定長以内の球内に含まれる要素の平均誘導電流量が,SPFD法による計算結果においても,ほぼ差異無く算出されていることが確認された。
 この解析においては,各個人の頭部MRIデータ(画像データ)のうち,灰白質,白質,脳脊髄液の画像データのみを取り出して解析を行った。図6に示すような脳のMRIデータから灰白質,白質,脳脊髄液の3つの脳組織を抽出したモデルが図7である。青色が灰白質,緑色が白質,赤色が脳脊髄液を表す。実際に数値人体モデルを用いて,皮膚や筋肉などの全ての生体組織を対象としたモデルと灰白質,白質,脳脊髄液の3要素だけを取り出したモデルに同じ条件で電気刺激を与えたときの灰白質表面の渦電流密度の解析結果を図8に示す。図示するように,2つのモデルの間には電流密度に大きな差がなく,渦電流密度の分布も同様であることが分かる。以上より,灰白質,白質,脳脊髄液のみを抽出した解析が有効であることが分かった。
 個々の患者の脳形状について,大脳の一次運動野上の最適刺激位置における運動閾値と同程度の電気刺激を最適刺激位置周辺に与えたときの,一次運動野での電流密度を解析した。ここで,運動閾値は,被験者の最適刺激位置にコイルを設置して脳に磁気刺激を与えたときに筋肉の反応が50 %以上の確率で見られる磁場強度をいう。具体的には,複数人の被験者に対して頭部のMRI画像を取得し,その被験者の最適刺激位置にコイルを設置して運動閾値を調べた。この実験では,内径25 mm,外径97 mm,高さ6 mm,10回巻の8字コイルを使用し,パルス幅は280 μsとした。また,最適刺激位置を中心として左右(中心溝に沿う方向)に半径25 mm程度,前後(中心溝に垂直な方向)に半径15 mm程度の楕円形領域の内側の30箇所にコイルを設置し,それぞれの場所で運動閾値と,MRIデータに対応したコイルの3次元位置情報を記録した。次に,得られた運動閾値と同じ大きさの刺激を脳に与えたときの,最適刺激位置の周囲5 mmの平均渦電流密度を計算した。併せて,最適刺激位置と先に述べた楕円形領域内の2,3ヶ所での運動閾値を調べた。
 図9に,6人の被験者に対して解析を行った結果を示す。各結果は6人の被験者に対してコイルを最適位置に置き,運動閾値に相当する刺激を与えた際の灰白質表面における渦電流Jと電場Eの分布を示す。数式(7)に示したとおり,渦電流と電場は比例関係にある。解析結果のカラースケールは全ての被験者に対して同じである。この結果から,1次運動野の周辺にも高い電流密度が現れる箇所があり,さらに1次運動野の刺激閾値に相当する電流密度は,被験者によってばらつきがあることがわかる。実際に6人の被験者に対する解析結果に対して標的部位を中心とした半径5 mmにおける平均渦電流密度を求めた結果を表1に示す。脳組織が興奮に達する渦電流密度(被験者の平均値)は17.19 A/m2であった。また,刺激閾値に相当する脳内の渦電流密度は,被験者によってばらつきがあることが分かった。
Figure JPOXMLDOC01-appb-T000008
 図10は,最適刺激位置からずれた場所にコイルを置いた際の刺激閾値(筋肉の反応が50 %以上の確率で見られた電圧振幅の実測値)を,最適刺激位置での運動閾値を100として表したグラフを示す。この結果から,コイルが最適刺激位置からずれることにしたがってtwitch(筋のけいれん,単収縮)を出すために必要な磁場刺激強度が大きくなった。
 図11に,コイル位置を変化させたときの最適刺激位置における電流密度の違いを,本発明のシミュレーション方法に従って算出した結果を示す。原点を最適刺激位置とし,最適刺激位置からの“ずれ(移動量)”を,X軸方向を中心溝に平行方向,Y軸を中心溝に垂直方向としてグラフに示した。最適刺激位置と“ずれ”は実測値,電流密度は解析値である。この図から,中心溝に対して平行方向は垂直方向に対してコイルの位置がずれることによる最適刺激位置の渦電流密度の変化への影響が大きく,20 mm離れた場所においては渦電流密度の大きさが半分ほどになることが分かった。
 図12に最適刺激位置を刺激したときと20 mm離れたときの脳の渦電流分布を示す。この図からも20 mmコイル位置がずれることにより,脳内の電流分布に大きな差が生じることが分かる。
以上のように,治療コイルの位置を変化させた際の,脳全体を俯瞰した渦電流密度の分布,あるいは脳内特定位置における渦電流密度を本発明にかかるシミュレーション方法を用いて算出する態様の他,それに加えてあるいは独立して,コイルの向きの情報,コイル印加電流の情報,あるいは印加電圧の情報の内の少なくともいずれかを変化させた際の,脳全体を俯瞰した渦電流密度の分布,あるいは脳内特定位置における渦電流密度を,先に説明を行った本発明にかかるシミュレーション方法を用いて算出するようにしてもよい。そのようにシミュレーション結果を算出し,または表示を行うための具体的な構成は別に説明を行う。
 最適刺激位置の周囲にコイルを置いたときに運動閾値に達する渦電流密度を標的部位に発生させるために必要な電源を解析結果から求めた値と実際に測定した結果との間には数%の差があることが分かった。両者の差の原因としては,渦電流密度を求めた領域が大きかったことが考えられる。そこで,平均渦電流密度を求める関心領域の半径を2 mmから10 mmに変化させた際の,最適刺激位置の周囲にコイルを置いたときに標的部位に運動閾値に達する渦電流を発生させるために必要な電流スルーレート(磁場を発生するためにコイルに正弦波の一周期分の電流を与えるとき,この電流が立ち上がる傾斜(又は時間当たりの電流の増加)をいう。)と実測値の差を各被験者において求めた。結果を図13に示す。各曲線は各被験者を表す。この図から,関心領域(評価対象領域)の半径は結果に影響を与えないことが分かった。
 脳内の渦電流分布(解析結果)を図14に示す。図内の点線は半径5 mmの関心領域を表し,赤い色の部分にはより大きい渦電流が発生している。この図から,関心領域内には渦電流密度が大きく発生している灰白質の部分だけではなく,渦電流があまり発生していない部分も含まれていることがわかる。したがって,コイルを最適位置に置いた際に渦電流が大きく発生した部分のみを関心領域とした結果を比較することで,より実測値と解析結果との差を小さくできる可能性があると考えられる。
 ところで,個々の患者に対して磁気刺激治療の条件を決定するためには,一次運動野を刺激し,それに反応して例えば指などが動くトゥイッチtwitch(筋のけいれん,単収縮)が出る閾値(運動閾値)を求めることが必要となる。しかし,刺激装置の出力を最大まで上げてもtwitchが現れない患者が存在し,そのような場合には磁気刺激治療を実施できなかった。また,疾患によっては一次運動野以外の部位が刺激の対象となることがあり,そのような部位への刺激ではtwitchを観察できないので,刺激強度は間接的な方法で決定せざるを得なかった。オリジナルソフトウェアの応用例として,このような患者への適用が考えられる。例えば,一次運動野に対する刺激でtwitchを観察できなかった場合,平均的な神経興奮閾値にあたる17.19 A/m2を一次運動野に誘導できるように,コンピュータシミュレーションによって刺激強度を提示することができる。また,うつ病の治療においては,左前頭前野背外側部への経頭蓋磁気刺激において効果が見られるとの報告がある。しかし,前頭前野への刺激ではtwitchを観察できないため,あらかじめ運動野への刺激を行って運動閾値に当たる磁場強度を求め,その磁場強度を基準として前頭前野における治療条件が定められている。本発明によるソフトウェアを用いれば,前頭前野に発生する渦電流密度を解析することにより推定することができるため,前頭前野への渦電流が適正値になるように治療条件を決定することもできるようになる。
 実際に表1の被験者Dの脳モデルにおいて左前頭前野背外側部に表1と同じ条件(電流の振幅は3431 A)で刺激したときの渦電流分布の解析結果を図15に示す。図内の赤い枠は実際に刺激を与えた領域を示す。この結果では,先の解析と同様に,刺激位置の周囲半径5 mmにおける平均渦電流密度は21.49 A/m2であった。この結果と表1から,3233 A(数式(8)を参照)の振幅を与えることで運動野において運動閾値に相当する渦電流密度と同じ渦電流を左前頭前野背外側部に発生することができるものと理解できる。
Figure JPOXMLDOC01-appb-M000009
 同じ磁場強度の刺激を実施したとしても,刺激部位が変わると生起される誘導電流は異なる可能性がある。シミュレーションにより,予め対象部位に生起される誘導電流を評価することにより,より適正な刺激強度を設定出来る可能性がある。
 以下に,本願発明にかかるシミュレーションの方法で上記の知見を確認した例を示す。
 図23Aは当該被験者の頭部MRI画像であり,矢印は前頭前野における刺激位置を示す。一次運動野を刺激位置とし,治療コイルの電流値を3430Aとした条件の下で,先に示したシミュレーション方法(但し,球内平均を算出するための球の半径は10mmを用いた)により脳の誘導電流を算出したところ,図23Bに示す分布となった。また刺激位置における半径10mm内の平均渦電流密度は,19.9A/m2 であった。
 次に,同一の被験者について,治療コイルの電流値を同じく3430Aとした条件の下で同様のシミュレーションを,前頭前野を刺激位置として行ったところ,脳の誘導電流は図23Cに示す分布となった。また刺激位置における半径10mm内の平均渦電流密度は,17.6A/m2 であった。
 このように,同一の被験者に対し,同一のコイル電流で刺激を行った場合,脳の刺激部位が異なると,生起される誘導電流分布や,刺激部位における渦電流値が異なることがわかる。
 すなわち,一次運動野刺激により決定したRMTを基準とし,例えば刺激強度を110%や120%とする現在一般的に行われている方法では,意図した刺激強度とは異なる刺激が前頭前野に対して加えられている可能性が推測できる。
 これらのことから,一次運動野以外の対象部位に関して,予め本願発明の脳内誘導電流シミュレーション手法を用いることにより,治療有効性に貢献可能な新しい刺激強度の検討を行うことが可能となる。
<導入>
 経頭蓋磁気刺激法(TMS)は神経学及び精神医学的な疾病の治療方法として,近年広く用いられてきた手法の一つである。特に,より強度の刺激を断続的に行う反復経頭蓋磁気刺激法(rTMS)は,より明確な治療効果があることで知られている。一方,経頭蓋磁気刺激に用いられるコイルの刺激強度は,意図せぬ副作用やコイルの不要な加熱を防ぐため,同様の治療効果を得つつもできるだけ小さく抑えたい,という課題があった。
 この課題を解決する一つのアプローチとして,従来,実際に経頭蓋磁気刺激を行ったいくつかの研究において「被験者個々人に適切なコイル刺激角度」の存在が示されていることに本願発明者は着目した。
即ち,経頭蓋磁気刺激の施術前に,この最適なコイル刺激角度を電磁気的な計算によって明らかにすることで,より少ない電流で刺激を行うことができ,これを施術のサポートとすることができるのではないか,という仮説を本願発明者は設定した。
そして,以下に示す本願発明者による研究結果から,まず脳溝及び脳溝内に脳脊髄液を伴った簡易的な経頭蓋磁気刺激モデルにおいて,脳脊髄液による影響が電磁気学的にどのように作用しているのかということが明らかとなった。更に,これらの結果を元に,脳の各刺激部位における適切な刺激角度を簡易的な計算によって算出する方法を新たに確立したので,以下に説明を行う。
<方法>
 本願発明者は最初に,図24Aに示す,脳溝を含む簡易的な脳モデルを作成し,経頭蓋磁気刺激コイルの脳溝に対する回転角による影響をシミュレーションした。なお脳モデルは導電率0.11S/mの灰白質と導電率1.79S/mの2mm厚の脳脊髄液により成り,脳溝は2cmの深さ,2mmの幅として作成した。また刺激コイルは外径5.1cm内径1.1cmの8字形状とし,これに5.3kAの電流を印加した。コイルは脳モデル表面から1cm上に固定し,脳溝に対し0度,30度,45度,60度,90度の角度で刺激を行い,その結果について,コイルの中心点からの球内にふくまれるエレメントの誘導電流を平均するという形で比較を行った。
 次に,本願発明者は,被験者からのMRI画像として得られた脳形状データを灰白質,白質,脳脊髄液の3要素として形成し,これに対して経頭蓋磁気刺激のシミュレーションを行った。加えて,このMRI画像に基づいた脳形状データを用いて,脳溝など脳の形状は現実の脳と同じであるものの仮想的に脳脊髄液のみからなる中空モデルを作成し,同様のシミュレーションを行った。磁気刺激コイルは初期刺激方向より10度ずつ180度まで回転させ,3要素モデルにおける「灰白質+白質 」と「脳脊髄液」それぞれにおいてコイル中心からの球内にふくまれる要素の誘導電流の平均,及び中空モデルにおける「脳脊髄液」の同平均を算出し,比較を行った。
<結果>
 図24Aに示す簡易的な脳モデルにおいては,灰白質と脳脊髄液における誘導電流に逆相関(r=-0.99)の関係が見られた。このような関係が見られる理由は,脳脊髄液は頭部において最も導電率の高い物質であり,無視できないコイル損失を生んだことに由来すると考えて良い。特に,図24Bのようにコイルが脳溝に対し平行に当てられた際,コイルによる刺激強度の減少が引き起こされた。従って,最適なコイルの刺激方向は,図24Cのように脳溝に対し垂直な方向であることが推察できる。
 尚,上に記した,コイルと脳溝との幾何学的な配置の説明において,「コイルが脳溝に対して平行」とは,コイルが生成する誘導電流の主な流れ方向が脳溝の溝方向にして平行であることを意味し,同様に「コイルが脳溝に対して垂直」とは,コイルが生成する誘導電流の主な流れ方向が脳溝の溝方向にして垂直であることを意味している。
 また,図25Aに示す,被験者のMRI画像から生成された現実の脳モデルでのシミュレーション(図25Bに,誘導電流を平均する計算のための球を示す)においても,灰白質と白質における誘導電流と,脳脊髄液における誘導電流との間でも,逆相関の関係(r=-0.79)がみられ,刺激角度による誘導電流の変化が見られた(図25D)。
 加えて,図25Cに示すような、形状は患者の脳MRI画像に由来する現実脳の形状でありながら,仮想的に脳脊髄液のみからなる中空モデルにおける脳脊髄液内の誘導電流について,形状が脳MRI画像に由来し且つ灰白質,白質および脳脊髄液の3要素モデル(現実の脳モデル)における脳脊髄液内に発生する誘導電流とほぼ差異のない結果が得られた(ニ乗平均誤差=5.34V/m)。従って,最適なコイルの刺激角度は上記の中空モデルを用いた計算によっても十分な精度のもとで推測が可能であり,この結果,3要素モデルを用いた場合に比べ計算量を70%削減できることがわかった。
 以上の手法により,運動野以外の領域における神経興奮閾値を推定することができると考えられる。
 さらに,コイル位置のずれによる脳内の渦電流密度分布を解析したことにより,コイルの位置の違いにより脳内の渦電流密度は変化し,それにしたがって,運動閾値も変化することが確かめられると同時に,脳内の渦電流密度の分布は異方性があることが分かった。脳内渦電流分布の解析を進めると共に,運動閾値の計測においては最適刺激位置により近い位置における計測も必要であると考えられる。
 本発明は,以上の知見に基づいてなされたもので,脳内電流シミュレーション方法は,
患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の工程と,
 前記第1の工程で提供された前記頭部画像データのうち前記脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる,3次元脳モデルを形成する第2の工程と,
 前記患者の頭部上にコイルを配置し,前記コイルに電流を印加することによって前記患者の脳に磁気刺激を与え,前記磁気刺激に対する患者の反応が観察されたときの条件のうち,少なくとも前記コイルの位置及び向きの条件と,前記コイルに印加された電流の条件と,前記コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の工程と,
 前記3次元脳モデルの前記それぞれの微小多面体単位内に誘導される渦電流又は電界を,前記第3の工程で提供された前記第1の情報,及び前記微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の工程を含む。
 このような構成を備えた脳内電流シミュレーション方法によれば,個々の患者の脳形状に対応したモデルが形成され,それをもとに脳内電流が解析されるので,実際の脳内に発生する渦電流又は電界の分布を正確に把握することができる。また,コイルの位置が最適刺激位置からずれたときの脳内渦電流分布をより正確に把握できる。そして,それら渦電流分布又は電界分布の解析結果を用いて,より効率的に脳を刺激できる経頭蓋磁気刺激システムを設計できる。
 本発明の他の形態の脳内電流シミュレーション方法は,前記第4の工程で計算された渦電流又は電界の分布を視覚的に表示する第5の工程を含む。この方法によれば,脳内の渦電流又は電界の分布を視覚的に把握できる。
 前記それぞれの微小多面体単位は,灰白質,白質,及び脳脊髄液のいずれかの導電率を有するように割り付けられていることが好ましい。また,前記第1の情報は,前記電流の電流値または電圧値の少なくともいずれかを含むことが好ましい。さらに,渦電流又は電界の計算はスカラーポテンシャル有限差分法で行われることが好ましい。
 本発明に係る脳内電流シミュレーション装置及びその装置を組み入れた経頭蓋磁気刺激システムは,
 患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の手段と,
 前記第1の手段で提供された前記頭部画像データのうち前記脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる,3次元脳モデルを形成する第2の手段と,
 前記患者の頭部上にコイルを配置して前記コイルに電流を印加することによって前記患者の脳に磁気刺激を与え,前記磁気刺激に対する患者の反応が観察されたときの条件のうち,少なくとも前記コイルの位置及び向きの条件と,前記コイルに印加された電流の条件と,前記コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の手段と,
 前記3次元脳モデルの前記それぞれの微小多面体単位内に誘導される渦電流又は電界を,前記第3の手段で提供された前記第1の情報,及び前記微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の手段を含む。
 この脳内電流シミュレーション装置及び経頭蓋磁気刺激システムはまた,前記第4の手段で計算された渦電流又は電界の分布を視覚的に表示する第5の手段を含むことが好ましい。
 さらに,本発明に係る脳内電流シミュレーション装置及びその装置を組み入れた経頭蓋磁気刺激システムは,
患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の手段と,
 前記第1の手段で提供された前記頭部画像データのうち前記脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる,3次元脳モデルを形成する第2の手段と,
 前記患者の頭部上にコイルを配置して前記コイルに電流を印加することによって前記患者の脳に磁気刺激を与える条件のうち,少なくとも前記コイルの位置及び向きの条件と,前記コイルに印加された電流の条件と,前記コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の手段と,
 前記3次元脳モデルの前記それぞれの微小多面体単位内に誘導される渦電流又は電界を,前記第3の手段で提供された前記第1の情報,及び前記微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の手段を含む。
 なお,本発明において,前記コイルに印加される電流は交流又は脈流のいずれであってもよい。
 ところで,図9に示すように,コイルの磁界によって脳内に誘導される渦電流と電界(電場)強度は比例関係にある。したがって,本願発明に関連する説明において「渦電流」は「電界」又は「電場」に読み換えて読むことができ,そのように読み換えた内容も本願発明の技術的範囲に属するものと理解すべきである。
患者に磁気刺激治療を施している状態を示す図である。 8字コイルによって誘導される渦電流を示す図である。 コイルに電流を印加する駆動回路を示す図である。 駆動回路から出力される電流波形を示す図である。 磁気刺激装置の使用状態を示す図である。 人の脳のMRIデータを示す図である。 人の脳の灰白質,白質,脳脊髄液の脳組織を抽出したモデルを示す図である。 人の脳の灰白質,白質,脳脊髄液の脳組織を抽出したモデルに電気刺激を与えたときの灰白質表面の渦電流密度の解析結果を示す図である。 6人の被験者に対してコイルを最適位置に置き,運動閾値に相当する刺激を与えたときの灰白質表面の電流密度を示す図である。 最適刺激位置から移動した場所にコイルを置いたときの,刺激閾値の実測値を,最適刺激位置に対応する運動閾値を100として表したグラフである。 コイルの位置を変化させたときの最適刺激位置における電流密度を示す図である。 最適刺激位置とそこから20mm離れた位置を刺激したときの脳内の渦電流の分布を示す図。 平均渦電流密度を求める関心領域の半径を変化させたとき,標的部位に運動閾値に達する渦電流を発生させるために必要な電流スルーレートと実測値との差を各被験者について示した図である。 脳内渦電流分布の解析結果を示す図である。 被験者Dの脳モデルにおいて左前頭前野外側を刺激したときに発生する脳内渦電流密度の解析結果を示す図。 本発明に係る経頭蓋磁気刺激システムの構成を模式的に示す図である。 図16のシステムに組み込まれたコイル駆動回路を示す図である。 図16のシステムに組み込まれた制御回路を示す図である。 渦電流密度解析シミュレーションのプロセスを示す図である。 3次元脳モデルと,コイルの巻線形状,コイルの位置を示す図である。 半径75mmの球モデルについて,重畳8字コイルにより発生される誘導電流を示す図である。 辺長120mmの立方体モデルについて,重畳8字コイルにより発生される誘導電流を示す図である。 半径75mmの球モデルについて,モデル表面から1cmの位置に配置した重畳8字コイルに5.3kA,3.4kHzの電流を加えたとき,モデル表面部から一定長以内の球内に含まれる要素における平均誘導電流量を有限要素法とSPFD法でそれぞれ計算した結果を示すグラフである。 辺長120mmの立方体モデルについて,モデル表面から1cmの位置に配置した重畳8字コイルに5.3kA,3.4kHzの電流を加えたとき,モデル表面部から一定長以内の球内に含まれる要素における平均誘導電流量を有限要素法とSPFD法でそれぞれ計算した結果を示すグラフである。 被験者の頭部MRI画像を示す図である。 図23Aに示す脳の一次運動野を刺激位置として治療コイルに所定電流を流したとき,図23Aに示す脳に誘導される電流の分布を示す図である。 図23Aに示す脳の前頭前野を刺激位置として治療コイルに所定電流を流したとき,図23Aに示す脳に誘導される電流の分布を示す図である。 脳溝を含む簡易的な脳モデルを示す図。 図24Aに示す脳溝に平行にコイルを当てたときの誘導電流の流れ方向を示す図である。 図24Aに示す脳溝に垂直にコイルを当てたときの誘導電流の流れ方向を示す図である。 被験者のMRI画像から生成された現実の脳モデルを示す図である。 図25Aに示す現実の脳モデルにおいて、誘導電流を平均化する計算のための球を示す図である。 形状は患者の脳MRI画像に由来する現実脳の形状であって、仮想的に脳脊髄液のみからなる中空モデルにおいて、誘導電流を平均化する計算のための球を示す図である。 灰白質,白質,脳脊髄液における誘導電流と刺激角度との関係を示す図である。
実施形態1
 図16を参照すると,経頭蓋磁気刺激システム(以下,単に「システム」という。)1は,支持機構(例えば,椅子2又はベッド)に支持された患者3の脳に磁気刺激を与える磁気刺激装置4を有する。
 磁気刺激装置4は,患者3の脳に磁気刺激を加える動磁場を形成するために,コイルユニット(コイル装置)5と制御ユニット6を有する。
 図示するように,コイルユニット5は,患者3の頭部表面に沿って自由に移動できるとともに任意の位置に位置決めできるように,適当な位置決めユニット7で支持することが好ましい。コイルユニット5は,コイル8とこのコイル8を囲む電気絶縁材料からなるケーシング9を備えている。ケーシング9は,ケーシング9に一体的に形成されたホルダ10を備えており,ホルダ10を介して位置決めユニット7に保持されている。コイル8は,1つの環状コイル,導線を8字状に配した8字コイル(例えば,特開2012-125546号公報に開示のコイル)等の任意の公知のコイルが利用できる。ケーシング9は,3つ又はそれ以上の観察対象(例えば,マーク11又は突起などのターゲット)を一体的に備えている。これらの観察対象は,患者頭部に対するコイル8の相対的な位置と方向を求めるために利用される。
 制御ユニット6は,箱型のハウジング12を備えている。ハウジング12は入力部13と出力部14を備えている。
 入力部13は,システム1の駆動条件(例えば,コイル8に印加する電圧,電流,周波数)を設定する駆動条件設定部15;断層画像撮影装置(例えば,MRI,CT,PET)〕16で生成された人体(特に頭部)断層画像データを受信するデータ受信部17;コイルユニット5のケーシング9に設けたマーク11と患者3が装着した眼鏡等の装着品(例えば,眼鏡)又は患者3の皮膚に設けた3つ又はそれ以上の観察対象(例えば,マーク18又は突起)を同時に撮影するステレオ撮像式光学的3次元位置センシングカメラ(以下,単に「カメラ」という。)19からの画像データを受信するデータ受信部20を備えている。図示しないが,カメラ19は,位置決めユニット7又はシステム1が収容される居室の固定部に取り付けられる。
 なお,本件発明において,コイルに印加する電流は,時間とともに周期的に流れの方向が変化する電流(交流)だけでなく,流れる方向が一定で,大きさが周期的に変動する電流(いわゆる「脈流」)も含むものと理解すべきである。
 出力部14は,液晶表示装置等のディスプレイ21,又はディスプレイを備えたコンピュータ(図示せず)に接続され,制御ユニット6から出力されるデータ(例えば,画像データ)をディスプレイ21に出力してそこに対応する画像を表示することができるように構成されている。
 ハウジング12の内部には図17に示すコイル駆動回路25が収容されており,このコイル駆動回路25がケーブル26を介してコイル8と電気的に接続されている。
 ハウジング12の内部にはまた図18に示す制御回路30が収容されている。制御回路30は,中央処理装置(以下,「CPU」という。)31と,CPU31に接続された第1記憶部32,第2記憶部33,及び演算部34を備えている。
 第1記憶部32は種々のソフトウェアを格納している。例えば,断層画像データをもとに3次元脳モデル(3次元マップ)を作成する3次元マッピングソフトウェア41(例えば,サイバネットシステム株式会社から販売されている医用画像処理ソフトウェア「Real INTAGE」);入力部13を介して入力された駆動条件に基づいてコイルに印加する電流を決定するコイル駆動条件決定ソフトウェア42;カメラ19で撮影された画像に含まれるマーク(コイルユニットに設けたマークと,患者装着品又は患者に設けたマーク)の情報をもとに患者頭部(患者の脳)に対するコイルの相対的な方向と位置を決定するコイル位置決定ソフトウェア43;コイル位置決定ソフトウェア43で決定されたコイルの方向と位置,及びコイル駆動条件決定ソフトウェア42で決定されたコイルの駆動条件をもとに脳内に発生する渦電流密度を計算するとともに計算した渦電流密度の情報を3次元マッピングソフトウェアで作成された3次元脳モデルに重ねて渦電流密度マップ(図14参照)を作成する渦電流密度マッピングソフトウェア43が含まれる。
 患者の脳に対するコイルの相対的な位置と方向は,例えば,WO2007/123147Aに開示された手法により決定することができる。この手法によれば,患者の頭部に固定されたマーク又は患者を固定する器具(例えば,椅子,ベッド)に少なくとも3つのターゲット(患者ターゲット)が取り付けられる。患者の頭部(脳)に対する患者ターゲットの相対的な位置は決められている。したがって,患者ターゲットの位置情報は,患者の頭部断層画像データ(3次元座標データ)に合成される。カメラは,患者ターゲットと,コイルユニット5に固定された少なくとも3つのターゲット(コイルターゲット)を撮影する。撮影された画像はコイル位置決定ソフトウェアによって処理され,患者ターゲットに対するコイルターゲットの相対的な位置と方向が求められるとともに,その情報をもとに患者頭部(脳)に対するコイルの相対的な位置と方向が求められる。なお,患者頭部(脳)に対するコイルの相対的な位置はリアルタイムに計算し,また,計算した結果をディスプレイ21に表示できる。
 演算部34は,CPU31の指示に基づいて上述のソフトウェアを実行する機能を有する。
 第2記憶部33は種々のデータを格納する。例えば,入力部13を介して入力された人体(頭部)断層画像データ51及びコイル駆動条件52,また,3次元マッピングソフトウェア41を実行して得られた3次元脳モデルのデータ53,コイル駆動条件決定ソフトウェア42を実行して得られたコイル駆動電流のデータ54,コイル位置決定ソフトウェア43を実行して得られたコイルの方向と位置のデータ55,及び渦電流密度マッピングソフトウェア43を実行して得られた渦電流密度のデータ56とそれをマッピングした渦電流マップ用のデータ57が格納される。第2記憶部33はまた,システム1を使って患者の脳に磁気刺激を与えたときの条件等〔コイルに印加した電流・電圧・周波数,頭部に対するコイルの相対的な位置と方向)とそのとき観察された運動閾値(最適刺激位置にコイルを設置して脳に磁気刺激を与えたときに筋肉の反応が50 %以上の確率で観察された電圧振幅)〕の磁気刺激情報58が格納されている。
 以上の構成を備えたシステム1を用いて患者を治療する場合,カメラ19で撮影された画像をもとに,コイル位置決定ソフトウェアによって,患者頭部に対するコイル8の位置が求められる。患者頭部に対するコイル8の相対位置はディスプレイ21に表示される。これにより,患者頭部の目的の場所(例えば,最適刺激位置)にコイル8を設置できる。その後,入力部15を通じて入力されたコイル駆動条件をもとにコイル駆動回路25が駆動し,患者3の脳に磁気刺激を与える。コイル駆動回路25は,図17に示すように,電源61の出力電圧を所望電圧に変換する電源回路62,電源回路62の出力を昇圧する昇圧回路63,昇圧回路63から出力を利用して電荷を蓄積するコンデンサ64,コンデンサ64に流れる電流を調整する抵抗65,コンデンサ64からの出力を所定のタイミングで動作して交流を形成する半導体スイッチ66を有し,CPU31の出力に基づいて半導体スイッチ16を駆動して得られた電流がコイル8に印加される。
 次に,システム1を使って,患者の脳内に発生する渦電流密度をシミュレーションする技術を,図19に示すプロセスに従って説明する。
 まず,シミュレーションにあたって,入力部13を通じて,患者3又は被験者の頭部断層画像データ51(例えば,MRIデータ)が入力される(ステップ#1)。入力された頭部断層画像データ51は,第2記憶部33に記憶される。次に,CPU31の指示に基づいて第1記憶部32に格納されている3次元マッピングソフトウェア41と第2記憶部33に格納されている頭部断層画像データ51を利用して,患者3の脳の3次元脳モデル53を作成する(ステップ#2)。このとき作成する3次元脳モデル53は,脳のすべての部位を対象とする必要はなく,少なくとも灰白質,白質,及び脳脊髄液のいずれか1つであってもよい。作成された3次元脳モデル53は第2記憶部33に格納される。3次元脳モデルは,必要に応じて,出力部14を通じてディスプレイ21に出力して表示することができる。次に,CPU31は,第2記憶部33に格納されている,以前にシステム1を使って患者3の脳に磁気刺激を与えたときに得られた磁気刺激情報58〔コイルに印加した電流・電圧・周波数,頭部に対するコイルの相対的な位置と方向)とコイルの巻線形状データ59(図20参照),さらに,そのとき観察された運動閾値(最適刺激位置にコイルを設置して脳に磁気刺激を与えたときに筋肉の反応が50 %以上の確率で観察された電圧振幅)〕を読み出す(ステップ#3)。また,CPU31は,第1記憶部32に記憶されている渦電流密度マッピングソフトウェア43と第2記憶部33に記憶されている脳の3次元脳モデル53を読み出し,前記磁気刺激情報58を参考にして,渦電流密度マッピングソフトウェア43を使って,3次元脳モデルの各微小多面体単位に誘導される渦電流密度を計算する(ステップ#4)。この計算は,上述したスカラーポテンシャル有限差分法によって行われる。計算された渦電流密度のデータ56は第2記憶部33に記憶される。最後に,CPU31は,計算した渦電流密度のデータ56をもとに渦電流密度マップ57(図14参照)を作成する。図15に示すように,計算された渦電流密度のデータ56にはそのレベルに応じた色情報を付加し,この色情報をもって渦電流密度のレベルをディスプレイ21に表示することが好ましい。
 また,上記に説明を行った,第2記憶部33に格納されている,以前にシステム1を使って患者3の脳に磁気刺激を与えたときに得られた磁気刺激情報58〔コイルに印加した電流・電圧・周波数,頭部に対するコイルの相対的な位置と方向)を用いて渦電流密度を計算,表示する態様の他に,所定の設定手段を用いて設定入力を行う治療コイルの位置を変化させた際の,脳全体を俯瞰した渦電流密度の分布,あるいは脳内特定位置における渦電流密度を本発明にかかるシミュレーション方法を用いて算出する態様,それに加えてあるいは独立して,コイルの向きの情報,コイル印加電流の情報,あるいは印加電圧の情報の内の少なくともいずれかを変化させた際の,脳全体を俯瞰した渦電流密度の分布,あるいは脳内特定位置における渦電流密度を,上記のシミュレーション方法を用いて算出,表示するようにしてもよい。また,コイルの移動に併せて,脳内特定位置における渦電流密度をリアルタイムに表示することができる。なお,ディスプレイ21には,複数のシミュレーションの結果と条件を同時に表示することで,それらの結果と条件を対比して観察することができる。
 このように,本発明によれば,実際に患者の脳を刺激して得られた磁気刺激情報に基づいて,患者の脳を再現した3次元脳モデルについて渦電流密度を計算して渦電流密度マップを作成することで,刺激を与えた患者の脳のどの部分にどの程度の渦電流が誘導されたか,また,どれほどの渦電流が誘導されたことによって患者に反応(例えば,twitch)が表れたのかを確認できる。
1:経頭蓋磁気刺激システム
2:椅子
3:患者
4:磁気刺激装置
5:コイルユニット(コイル装置)
6:制御ユニット
7:位置決めユニット
8:コイル
9:ケーシング
10:ホルダ
11:マーク
12:ハウジング
13:入力部
14:出力部
19:カメラ
30:制御回路

Claims (20)

  1.  患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の工程と,
     前記第1の工程で提供された前記頭部画像データのうち前記脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる,3次元脳モデルを形成する第2の工程と,
     前記患者の頭部上にコイルを配置し,前記コイルに電流を印加することによって前記患者の脳に磁気刺激を与え,前記磁気刺激に対する患者の反応が観察されたときの条件のうち,少なくとも前記コイルの位置及び向きの条件と,前記コイルに印加された電流の条件と,前記コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の工程と,
     前記3次元脳モデルの前記それぞれの微小多面体単位内に誘導される渦電流又は電界を,前記第3の工程で提供された前記第1の情報,及び前記微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の工程を含む,脳内電流シミュレーション方法。
  2.  前記第4の工程で計算された渦電流又は電界の分布を視覚的に表示する第5の工程を含む,請求項1の脳内電流シミュレーション方法。
  3.  前記それぞれの微小多面体単位が,灰白質,白質,及び脳脊髄液のいずれかの導電率を有するように割り付けられた,請求項1又は2の脳内電流シミュレーション方法。
  4.  前記第1の情報が,前記電流の電流値または電圧値の少なくともいずれかを含む,請求項1~3のいずれかの脳内電流シミュレーション方法。
  5.  前記第4の工程において,前記渦電流又は電界の計算がスカラーポテンシャル有限差分法で行われることを特徴とする,請求項1~4のいずれかの脳内電流シミュレーション方法。
  6.  前記コイルに印加された電流が交流又は脈流である請求項1~5のいずれかの脳内電流シミュレーション方法。
  7.  患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の手段と,
     前記第1の手段で提供された前記頭部画像データのうち前記脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる,3次元脳モデルを形成する第2の手段と,
     前記患者の頭部上にコイルを配置し,前記コイルに電流を印加することによって前記患者の脳に磁気刺激を与え,前記磁気刺激に対する患者の反応が観察されたときの条件のうち,少なくとも前記コイルの位置及び向きの条件と,前記コイルに印加された電流の条件と,前記コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の手段と,
     前記3次元脳モデルの前記それぞれの微小多面体単位内に誘導される渦電流又は電界を,前記第3の手段で提供された前記第1の情報,及び前記微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の手段を含む,脳内電流シミュレーション装置。
  8.  前記第4の手段で計算された渦電流の分布を視覚的に表示する第5の手段を含む,請求項7の脳内電流シミュレーション装置。
  9.  前記それぞれの微小多面体単位が,灰白質,白質,及び脳脊髄液のいずれかの導電率を有するように割り付けられた,請求項7又は8の脳内電流シミュレーション装置。
  10.  前記第1の情報が,前記電流の電流値または電圧値の少なくともいずれかを含む,請求項7~9のいずれかの脳内電流シミュレーション装置。
  11.  前記第4の手段において,前記渦電流又は電界の計算がスカラーポテンシャル有限差分法で行われることを特徴とする,請求項7~10のいずれかの脳内電流シミュレーション装置。
  12.  前記コイルに印加された電流が交流又は脈流である請求項7~11のいずれかの脳内電流シミュレーション装置。
  13.  請求項7~12のいずれかの脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム。
  14.  患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の手段と,
     前記第1の手段で提供された前記頭部画像データのうち前記脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる,3次元脳モデルを形成する第2の手段と,
     前記患者の頭部上にコイルを配置して前記コイルに電流を印加することによって前記患者の脳に磁気刺激を与える条件のうち,少なくとも前記コイルの位置及び向きの条件と,前記コイルに印加された電流の条件と,前記コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の手段と,
     前記3次元脳モデルの前記それぞれの微小多面体単位内に誘導される渦電流又は電界を,前記第3の手段で提供された前記第1の情報,及び前記微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の手段を含む,脳内電流シミュレーション装置。
  15.  前記第4の手段で計算された渦電流又は電界の分布を視覚的に表示する第5の手段を含む,請求項14の脳内電流シミュレーション装置。
  16.  前記それぞれの微小多面体単位が,灰白質,白質,及び脳脊髄液のいずれかの導電率を有するように割り付けられた,請求項14又は15の脳内電流シミュレーション装置。
  17.  前記第1の情報が,前記電流の電流値または電圧値の少なくともいずれかを含む,請求項14~16のいずれかの脳内電流シミュレーション装置。
  18.  前記第4の手段において,前記渦電流又は電界の計算がスカラーポテンシャル有限差分法で行われることを特徴とする,請求項14~17のいずれかの脳内電流シミュレーション装置。
  19.  前記コイルに印加された電流が交流又は脈流である請求項14~18のいずれかの脳内電流シミュレーション装置。
  20.  請求項14~19のいずれかの脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム。
PCT/JP2015/053390 2014-02-14 2015-02-06 脳内電流シミュレーション方法とその装置,及び脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム WO2015122369A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2939681A CA2939681A1 (en) 2014-02-14 2015-02-06 Intracerebral current simulation method and device thereof, and transcranial magnetic stimulation system including intracerebral current simulation device
EP15749544.1A EP3106204B1 (en) 2014-02-14 2015-02-06 Intracerebral current simulation method and device thereof, and transcranial magnetic stimulation system including intracerebral current simulation device
KR1020167022185A KR20160122733A (ko) 2014-02-14 2015-02-06 뇌 내 전류 시뮬레이션 방법과 그 장치, 및 뇌 내 전류 시뮬레이션 장치를 포함하는 경두개 자기 자극 시스템
JP2015562804A JP6384816B2 (ja) 2014-02-14 2015-02-06 脳内電流シミュレーション方法とその装置,及び脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム
AU2015216287A AU2015216287B2 (en) 2014-02-14 2015-02-06 Intracerebral current simulation method and device thereof, and transcranial magnetic stimulation system including intracerebral current simulation device
CN201580008420.7A CN105980009B (zh) 2014-02-14 2015-02-06 脑内电流模拟方法及其装置、以及包含脑内电流模拟装置的经颅磁刺激系统
ES15749544T ES2747623T3 (es) 2014-02-14 2015-02-06 Método de simulación de corriente intracerebral y dispositivo del mismo, y sistema de estimulación magnética transcraneal que incluye un dispositivo de simulación de corriente intracerebral
DK15749544.1T DK3106204T3 (en) 2014-02-14 2015-02-06 Intracerebral current simulation method and device thereof, and transcranial magnetic stimulation system including intracerebral current simulation device
US15/118,704 US10292645B2 (en) 2014-02-14 2015-02-06 Intracerebral current simulation method and device thereof, and transcranial magnetic stimulation system including intracerebral current simulation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-026927 2014-02-14
JP2014026927 2014-02-14

Publications (1)

Publication Number Publication Date
WO2015122369A1 true WO2015122369A1 (ja) 2015-08-20

Family

ID=53800116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053390 WO2015122369A1 (ja) 2014-02-14 2015-02-06 脳内電流シミュレーション方法とその装置,及び脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム

Country Status (10)

Country Link
US (1) US10292645B2 (ja)
EP (1) EP3106204B1 (ja)
JP (1) JP6384816B2 (ja)
KR (1) KR20160122733A (ja)
CN (1) CN105980009B (ja)
AU (1) AU2015216287B2 (ja)
CA (1) CA2939681A1 (ja)
DK (1) DK3106204T3 (ja)
ES (1) ES2747623T3 (ja)
WO (1) WO2015122369A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108472494A (zh) * 2016-03-04 2018-08-31 国立大学法人东京大学 线圈以及使用其的磁刺激装置
JP2019124595A (ja) * 2018-01-17 2019-07-25 公立大学法人首都大学東京 物体内への物流入量算出方法
JP2020531228A (ja) * 2017-08-25 2020-11-05 ニューロフェット インコーポレイテッドNeurophet Inc. パッチガイド方法及びプログラム
JP2020533103A (ja) * 2017-09-11 2020-11-19 ニューロフェット インコーポレイテッドNeurophet Inc. Tms刺激ナビゲーション方法及びプログラム
JP2021045301A (ja) * 2019-09-18 2021-03-25 国立研究開発法人情報通信研究機構 脳活動刺激システム、および脳活動刺激装置
CN113350698A (zh) * 2021-05-31 2021-09-07 四川大学华西医院 用于tms线圈的电磁导航系统及方法
US11986319B2 (en) 2017-08-25 2024-05-21 NEUROPHET Inc. Patch guide method and program

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2572186A (en) * 2018-03-22 2019-09-25 The Magstim Company Ltd Apparatus and method for determining a desired coil position for magnetic stimulation
CN110491518B (zh) * 2019-07-31 2023-04-07 中国医学科学院生物医学工程研究所 一种针对任务态的经颅磁刺激建模仿真方法
WO2021059285A1 (en) * 2019-09-26 2021-04-01 Soreq Nuclear Research Center Wireless enhanced power transfer
CN112704486B (zh) * 2021-01-14 2021-10-26 中国科学院自动化研究所 基于电磁仿真计算的tms线圈位姿图谱生成方法
KR102367904B1 (ko) * 2021-02-26 2022-03-03 주식회사 에이티앤씨 코일 위치 안내용 네비게이션 장치, 이를 포함하는 뇌 자극 장치 및 바이오 네비게이션 로봇 시스템
US11610731B2 (en) 2021-03-09 2023-03-21 Hirofusa Otsubo Apparatus for assembling a non-directional free electron generating repelling magnet combination
KR102313422B1 (ko) 2021-03-15 2021-10-15 주식회사 에이티앤씨 경두개 자극기의 코일체 및 경두개 자극기
CN113077483B (zh) * 2021-04-27 2022-03-25 中国科学院自动化研究所 基于脑组织和深度回归的感应电场分布预测方法及系统
KR102577945B1 (ko) * 2021-05-14 2023-09-14 부산대학교 산학협력단 국소적 경두개 자기 자극 장치 및 방법
CN113436170B (zh) * 2021-06-25 2022-09-06 中国科学技术大学 基于磁共振影像的经颅电刺激个体化优化平台
CN115762303B (zh) * 2022-11-07 2023-08-18 深圳职业技术学院 经颅磁刺激线圈电磁场模拟系统的系统搭建方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030004392A1 (en) * 2001-06-28 2003-01-02 Philipp Tanner Method and device for transcranial magnetic stimulation
JP2003180649A (ja) * 2001-10-17 2003-07-02 Nexstim Oy 磁気刺激量の計算方法及び装置
JP2004000636A (ja) * 2002-05-31 2004-01-08 Nexstim Oy 脳の磁気刺激のターゲティング方法及び装置
JP2004511314A (ja) * 2000-10-20 2004-04-15 アメリカ合衆国 磁気刺激のためのコイルおよびそれを用いる方法
US20050256539A1 (en) * 2002-03-25 2005-11-17 George Mark S Methods and systems for using transcranial magnetic stimulation to enhance cognitive performance
JP2006255314A (ja) * 2005-03-18 2006-09-28 Tohoku Univ 磁場発生装置
JP2009536073A (ja) * 2006-05-05 2009-10-08 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ トラジェクトリに基いた脳深部定位経側頭磁気刺激システム
WO2012121341A1 (ja) * 2011-03-09 2012-09-13 国立大学法人大阪大学 画像データ処理装置および経頭蓋磁気刺激装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7711431B2 (en) 2003-08-04 2010-05-04 Brainlab Ag Method and device for stimulating the brain
JP4482660B2 (ja) * 2003-11-19 2010-06-16 広島市 神経細胞刺激部位の推定方法およびそれを用いた脳機能解析装置
US9101751B2 (en) * 2006-09-13 2015-08-11 Nexstim Oy Method and system for displaying the electric field generated on the brain by transcranial magnetic stimulation
JP5622153B2 (ja) 2009-06-15 2014-11-12 国立大学法人大阪大学 磁気刺激装置
JP5532730B2 (ja) * 2009-08-05 2014-06-25 大日本印刷株式会社 Cnr測定装置,方法及びコンピュータプログラム
CN101866485B (zh) 2010-06-10 2012-02-01 西北工业大学 三维大脑磁共振图像大脑皮层表面最大主方向场弥散方法
CN101912668B (zh) * 2010-07-26 2013-04-10 香港脑泰科技有限公司 一种导航经颅磁刺激治疗系统
JP5896109B2 (ja) 2010-11-25 2016-03-30 国立大学法人大阪大学 治療用磁気コイルユニット

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511314A (ja) * 2000-10-20 2004-04-15 アメリカ合衆国 磁気刺激のためのコイルおよびそれを用いる方法
US20030004392A1 (en) * 2001-06-28 2003-01-02 Philipp Tanner Method and device for transcranial magnetic stimulation
JP2003180649A (ja) * 2001-10-17 2003-07-02 Nexstim Oy 磁気刺激量の計算方法及び装置
US20050256539A1 (en) * 2002-03-25 2005-11-17 George Mark S Methods and systems for using transcranial magnetic stimulation to enhance cognitive performance
JP2004000636A (ja) * 2002-05-31 2004-01-08 Nexstim Oy 脳の磁気刺激のターゲティング方法及び装置
JP2006255314A (ja) * 2005-03-18 2006-09-28 Tohoku Univ 磁場発生装置
JP2009536073A (ja) * 2006-05-05 2009-10-08 ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ トラジェクトリに基いた脳深部定位経側頭磁気刺激システム
WO2012121341A1 (ja) * 2011-03-09 2012-09-13 国立大学法人大阪大学 画像データ処理装置および経頭蓋磁気刺激装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108472494A (zh) * 2016-03-04 2018-08-31 国立大学法人东京大学 线圈以及使用其的磁刺激装置
CN108472494B (zh) * 2016-03-04 2022-03-29 国立大学法人东京大学 线圈以及使用其的磁刺激装置
JP2020531228A (ja) * 2017-08-25 2020-11-05 ニューロフェット インコーポレイテッドNeurophet Inc. パッチガイド方法及びプログラム
US11116404B2 (en) 2017-08-25 2021-09-14 NEUROPHET Inc. Patch guide method and program
JP2021180866A (ja) * 2017-08-25 2021-11-25 ニューロフェット インコーポレイテッドNeurophet Inc. パッチガイド方法及びプログラム
JP7271000B2 (ja) 2017-08-25 2023-05-11 ニューロフェット インコーポレイテッド パッチガイド方法及びプログラム
US11986319B2 (en) 2017-08-25 2024-05-21 NEUROPHET Inc. Patch guide method and program
JP2020533103A (ja) * 2017-09-11 2020-11-19 ニューロフェット インコーポレイテッドNeurophet Inc. Tms刺激ナビゲーション方法及びプログラム
JP2019124595A (ja) * 2018-01-17 2019-07-25 公立大学法人首都大学東京 物体内への物流入量算出方法
JP2021045301A (ja) * 2019-09-18 2021-03-25 国立研究開発法人情報通信研究機構 脳活動刺激システム、および脳活動刺激装置
JP7266873B2 (ja) 2019-09-18 2023-05-01 国立研究開発法人情報通信研究機構 脳活動刺激システム、および脳活動刺激装置
CN113350698A (zh) * 2021-05-31 2021-09-07 四川大学华西医院 用于tms线圈的电磁导航系统及方法

Also Published As

Publication number Publication date
CA2939681A1 (en) 2015-08-20
CN105980009A (zh) 2016-09-28
JPWO2015122369A1 (ja) 2017-03-30
CN105980009B (zh) 2019-09-20
EP3106204A1 (en) 2016-12-21
KR20160122733A (ko) 2016-10-24
US10292645B2 (en) 2019-05-21
AU2015216287B2 (en) 2019-04-11
ES2747623T3 (es) 2020-03-11
EP3106204A4 (en) 2017-11-15
AU2015216287A1 (en) 2016-09-01
JP6384816B2 (ja) 2018-09-05
US20170049387A1 (en) 2017-02-23
DK3106204T3 (en) 2019-09-30
EP3106204B1 (en) 2019-09-11

Similar Documents

Publication Publication Date Title
JP6384816B2 (ja) 脳内電流シミュレーション方法とその装置,及び脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム
Wagner et al. Investigation of tDCS volume conduction effects in a highly realistic head model
US11491343B2 (en) Coil apparatus for use in transcranial magnetic stimulation apparatus provided with wound-wire coil disposed on or near head surface
Laakso et al. Electric fields of motor and frontal tDCS in a standard brain space: a computer simulation study
Richter et al. Optimal coil orientation for transcranial magnetic stimulation
Wagner et al. Three-dimensional head model simulation of transcranial magnetic stimulation
JP6668235B2 (ja) 多部位経頭蓋電流刺激、コンピュータ可読媒体、およびコンピュータプログラムの構成を最適化する方法およびシステム
Dannhauer et al. A pipeline for the simulation of transcranial direct current stimulation for realistic human head models using SCIRun/BioMesh3D
Lee et al. Electric field model of transcranial electric stimulation in nonhuman primates: correspondence to individual motor threshold
Toschi et al. A reconstruction of the conductive phenomena elicited by transcranial magnetic stimulation in heterogeneous brain tissue
Lee et al. Minimum electric field exposure for seizure induction with electroconvulsive therapy and magnetic seizure therapy
Bangera et al. Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution
Rampersad et al. Single-layer skull approximations perform well in transcranial direct current stimulation modeling
Toschi et al. Transcranial magnetic stimulation in heterogeneous brain tissue: clinical impact on focality, reproducibility and true sham stimulation
Richter Robotized transcranial magnetic stimulation
Lee et al. Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study
Gasca et al. Simulation of a conductive shield plate for the focalization of transcranial magnetic stimulation in the rat
Yang et al. Electromagnetic field simulation of 3D realistic head model during transcranial magnetic stimulation
Xie et al. Modelling of the electromagnetic field distributions induced by different transcranial magnetic stimulation coil configurations
Sabouni et al. BRAIN initiative: Fast and parallel solver for real-time monitoring of the eddy current in the brain for TMS applications
Miaskowki et al. Electromagnetic field in transcranial magnetic stimulation
Kenarangi et al. Optimal positioning of TMS coil using DTI
Petrov Virtual Neurostimulation: Computer-aided transcranial magnetic stimulation (TMS) guidance and dosimetry
Lee et al. Analysis and design of whole-head magnetic brain stimulators: a simulation study
Sabouni et al. An automated technique to determine the induced current in transcranial magnetic stimulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749544

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562804

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2939681

Country of ref document: CA

Ref document number: 20167022185

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015749544

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15118704

Country of ref document: US

Ref document number: 2015749544

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015216287

Country of ref document: AU

Date of ref document: 20150206

Kind code of ref document: A