WO2015122369A1 - 脳内電流シミュレーション方法とその装置,及び脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム - Google Patents
脳内電流シミュレーション方法とその装置,及び脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム Download PDFInfo
- Publication number
- WO2015122369A1 WO2015122369A1 PCT/JP2015/053390 JP2015053390W WO2015122369A1 WO 2015122369 A1 WO2015122369 A1 WO 2015122369A1 JP 2015053390 W JP2015053390 W JP 2015053390W WO 2015122369 A1 WO2015122369 A1 WO 2015122369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- coil
- brain
- patient
- intracerebral
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 71
- 238000004088 simulation Methods 0.000 title claims abstract description 49
- 238000011491 transcranial magnetic stimulation Methods 0.000 title claims description 24
- 210000004556 brain Anatomy 0.000 claims abstract description 157
- 230000000638 stimulation Effects 0.000 claims abstract description 104
- 230000005684 electric field Effects 0.000 claims abstract description 36
- 210000001175 cerebrospinal fluid Anatomy 0.000 claims description 27
- 210000004884 grey matter Anatomy 0.000 claims description 24
- 210000004885 white matter Anatomy 0.000 claims description 17
- 230000004044 response Effects 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 description 28
- 238000004364 calculation method Methods 0.000 description 15
- 230000036461 convulsion Effects 0.000 description 9
- 210000002442 prefrontal cortex Anatomy 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 5
- 230000002490 cerebral effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 210000003205 muscle Anatomy 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 210000005013 brain tissue Anatomy 0.000 description 4
- 210000000976 primary motor cortex Anatomy 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 210000005153 frontal cortex Anatomy 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 208000004296 neuralgia Diseases 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 208000021722 neuropathic pain Diseases 0.000 description 3
- 238000013548 repetitive transcranial magnetic stimulation Methods 0.000 description 3
- 208000007101 Muscle Cramp Diseases 0.000 description 2
- 208000005392 Spasm Diseases 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 210000004720 cerebrum Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 208000020401 Depressive disease Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007428 craniotomy Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000002653 magnetic therapy Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000000337 motor cortex Anatomy 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 230000007830 nerve conduction Effects 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 230000000541 pulsatile effect Effects 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4848—Monitoring or testing the effects of treatment, e.g. of medication
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N2/00—Magnetotherapy
- A61N2/004—Magnetotherapy specially adapted for a specific therapy
- A61N2/006—Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N2/00—Magnetotherapy
- A61N2/02—Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/08—Volume rendering
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/30—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/63—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/10—Computer-aided planning, simulation or modelling of surgical operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2210/00—Indexing scheme for image generation or computer graphics
- G06T2210/41—Medical
Definitions
- the present invention relates to a method and apparatus for simulating a current or electric field induced in the brain.
- the present invention also relates to a transcranial magnetic stimulation system incorporating the device.
- Transcranial magnetic stimulation is a method of stimulating neurons by generating an electric current or electric field in the brain by electromagnetic induction.
- a fluctuating magnetic field is formed by applying an electric current (for example, alternating current) to a stimulation coil placed on the skin of the head, and is affected by the fluctuating magnetic field.
- an electric current for example, alternating current
- an eddy current or electric field opposite to the coil current is induced in the brain, and an action potential is generated by stimulating neurons with the eddy current or electric field.
- Fig. 3 shows an example of a stimulation coil drive circuit.
- a principle of generating an instantaneous current in the coil first, electric charges are accumulated in a capacitor from a power supply (including an AC power supply, a power supply circuit, and a booster circuit). Thereafter, a current is passed through the stimulation coil by turning on the thyristor. The thyristor is turned off after a current flows through the diode through the resonance circuit of the stimulation coil and capacitor. As a result, a current corresponding to one cycle of the sine wave shown in FIG. 4 flows through the stimulation coil.
- Transcranial magnetic stimulation is used for clinical tests such as measurement of nerve conduction velocity and brain function research.
- the conventional magnetic stimulation device weighs about 70 kg and requires electrical work for installation, so it can only be used in well-equipped medical institutions.
- treatment by a skilled medical worker is necessary.
- the coil is positioned in units of 1 mm on the target primary motor area.
- the present inventors have developed the magnetic stimulation apparatus shown in FIG. 5 and have already filed patent applications regarding the magnetic field generating coil and positioning improved to the 8-character type (WO2010 / 147064, Patent Publication 2012-125546).
- the present invention uses a brain model obtained by extracting a brain shape from a tomographic image of an individual patient and a coil, and a method for performing an eddy current analysis after determining the positional relationship between an arbitrary brain model and a coil.
- the purpose of this study is to establish a method and apparatus for simulating the magnitude and distribution of eddy currents generated in the brain of patients who are undergoing transcranial magnetic stimulation therapy with an accuracy very close to the measured values.
- SPFD method scalar potential finite difference method
- the SPFD method can significantly reduce the time compared to the conventional finite element method, so that it is possible to efficiently respond to doctors' research and treatment.
- the analysis of the eddy current distribution in the brain uses the SPFD method instead of the finite element method used in commercially available eddy current analysis software, and the analysis target including the brain is divided into micropolyhedral units of microelements (for example, cubes). ), And the eddy current generated in each micropolyhedron unit was obtained.
- Software (program) for analysis using SPFD method was developed independently. In implementing the present invention, it goes without saying that other simulation algorithms such as the finite element method may be used, but the advantages of the original software using the SPFD method are the following three.
- the first advantage is that the number of elements of the division model is limited to about 1 million in commercially available software using the finite element method, but the number of elements is not limited in the original software. Since the number of divisions and the voxel size can be specified arbitrarily, the model can be divided into finer elements and fine analysis can be performed.
- a second advantage is that no air layer needs to be created. Commercially available software needed to create an air layer around the brain model that matched the mesh of the brain model. However, since the present invention creates only the brain model, the time required to create the analysis model is significantly reduced. Become.
- the third advantage is that the calculation time has been reduced to about 1/20 of commercially available software by changing the calculation method.
- the electric field E induced in the brain and the external magnetic flux density B satisfy Equation (1).
- the magnetic vector potential A and the electric scalar potential ⁇ are selected so as to satisfy the equations (2) and (3), the electric and magnetic fields obtained from these potentials satisfy the equation (1).
- Equation (3) the total electric field E of Equation (3) can be decomposed into an electric field E 1 derived from the vector potential and an electric field E 2 derived from the scalar potential, as shown in Equations (4) to (6).
- Equation (5) the transformation from the first row to the second row was based on Bio-Savart's law.
- ⁇ 0 is the vacuum permeability
- r is a space position vector
- r ′ is a position vector on the magnetic field generating coil
- I (r ′) is a coil current at the position r ′.
- the electric field E 1 derived from the vector potential is determined only by the winding shape and current of the coil, and can be calculated relatively easily using Equation (5).
- the magnetic field E 2 derived from the scalar potential depends on the shape of the subject's head, and advanced numerical analysis methods such as the SPFD method and the finite element method are required to obtain this. Similarly, the total electric field E must be determined using advanced numerical analysis techniques.
- Equation (3) J represents the induced current density and ⁇ represents the electrical conductivity of the living body.
- Equation (10) ⁇ n is an electrical scalar potential at contact n
- An is an external magnetic vector potential component parallel to side n of the voxel connecting contact 0 and contact n, and a value at the center of the side
- l n is a side n the length of
- the S n is the conductance of sides n.
- Electric scalar potential by solving equation by applying equation (11) to equation (10) where a n is the area of a rectangular parallelepiped plane perpendicular to side n and ⁇ n is the average conductivity of four rectangular parallelepipeds in contact with side n Asked.
- the eddy current density was obtained using equations (3) and (7).
- the SPFD method can be used to analyze both the total electric field E and eddy current density J depending on the subject's head shape.
- the electric field E 1 determined by the coil winding shape and current can also be obtained during the analysis process.
- the inventor of the present application In order to verify the accuracy of the calculation by the SPFD method, the inventor of the present application generates a superposed 8-character coil for each of the spherical model with a radius of 75 mm shown in FIG. 21A and the cubic model with a side length of 120 mm shown in FIG. 21B.
- the induced current was simulated.
- the “superimposed 8-character coil” is a coil arranged in an 8-character shape so that two spiral coils partially overlap each other.
- the reason for using the sphere model and the cubic model is that there is no influence (error etc.) on the geometric properties of the simulation target due to the difference in the calculation algorithm (modeling concept) of the finite element method and the SPFD method. This is in order to find out.
- the coil was set at a current of 5.3 kA and 3.4 kHz at a position 1 cm from the model surface.
- the elements included in the sphere within a certain length from the model surface compared to the calculation result by the finite element method. It was confirmed that the average amount of induced current was calculated with almost no difference in the SPFD method.
- FIG. 7 shows a model in which three brain tissues, gray matter, white matter, and cerebrospinal fluid, are extracted from brain MRI data as shown in FIG. Blue represents gray matter, green represents white matter, and red represents cerebrospinal fluid.
- FIG. 8 shows the analysis result of the eddy current density on the gray matter surface. As can be seen, there is no significant difference in current density between the two models, and the distribution of eddy current density is similar. From the above, it was found that the analysis that extracted only gray matter, white matter, and cerebrospinal fluid was effective.
- the exercise threshold is a magnetic field intensity at which a muscle reaction is observed with a probability of 50% or more when a coil is placed at the optimal stimulation position of the subject and magnetic stimulation is applied to the brain.
- MRI images of the head were acquired for multiple subjects, and a coil was placed at the optimal stimulation position for the subjects to examine the motion threshold.
- an 8-shaped coil with an inner diameter of 25 mm, an outer diameter of 97 mm, a height of 6 mm, 10 turns and a pulse width of 280 mm was used.
- coils are installed at 30 locations inside the elliptical area with a radius of about 25 mm on the left and right (in the direction along the center groove) and about 15 mm on the front and back (in the direction perpendicular to the center groove) with the optimum stimulation position as the center.
- the motion threshold and the three-dimensional position information of the coil corresponding to the MRI data were recorded.
- the optimal stimulation position and the motion threshold at two or three locations within the elliptical area described above were examined.
- FIG. 9 shows the results of analysis performed on six subjects.
- Each result shows the distribution of the eddy current J and the electric field E on the gray matter surface when the coil is placed at the optimum position for 6 subjects and a stimulus corresponding to the motion threshold is given.
- the eddy current and the electric field are in a proportional relationship.
- the color scale of the analysis result is the same for all subjects. From this result, it can be seen that there are places where a high current density also appears around the primary motor area, and that the current density corresponding to the stimulation threshold of the primary motor area varies depending on the subject.
- Table 1 shows the results of calculating the average eddy current density at a radius of 5 mm with the target site as the center, based on the analysis results for six subjects.
- the eddy current density at which the brain tissue reached excitement (subject average value) was 17.19 A / m 2 . It was also found that the eddy current density in the brain corresponding to the stimulation threshold varies from subject to subject.
- FIG. 10 shows the stimulation threshold (measured value of the voltage amplitude observed with a probability of a muscle response of 50% or more) when the coil is placed at a position deviated from the optimal stimulation position, and the exercise threshold at the optimal stimulation position.
- a graph expressed as 100 is shown. From this result, the magnetic field stimulation intensity required to produce twitch (muscle spasm, twitch) increased as the coil deviated from the optimal stimulation position.
- FIG. 11 shows the result of calculating the difference in current density at the optimum stimulation position when the coil position is changed according to the simulation method of the present invention.
- the origin is the optimum stimulation position, and the “deviation (movement amount)” from the optimum stimulation position is shown in the graph with the X-axis direction parallel to the central groove and the Y-axis perpendicular to the central groove.
- the optimal stimulus position and “deviation” are measured values, and the current density is an analytical value. From this figure, the direction parallel to the central groove has a large effect on the change in the eddy current density at the optimal stimulation position due to the shift of the coil position with respect to the vertical direction. It turns out that the size is about half.
- FIG. 12 shows the eddy current distribution in the brain when the optimal stimulation position is stimulated and when it is 20 mm away. This figure also shows that a large difference in the current distribution in the brain occurs when the 20 mm coil position shifts.
- the distribution of the eddy current density over the entire brain or the eddy current density at a specific position in the brain is calculated using the simulation method according to the present invention.
- the eddy current density at a specific position in the brain may be calculated using the simulation method according to the present invention described above. A specific configuration for calculating or displaying the simulation result will be described separately.
- the difference between the two may be due to the large area in which the eddy current density was obtained. Therefore, in order to generate an eddy current that reaches the motion threshold at the target site when the coil is placed around the optimal stimulation position when the radius of the region of interest for obtaining the average eddy current density is changed from 2 mm to 10 mm.
- FIG. 14 shows the eddy current distribution (analysis result) in the brain.
- the dotted line in the figure represents the region of interest with a radius of 5 mm, and a larger eddy current is generated in the red part. From this figure, it can be seen that the region of interest includes not only the gray matter where the eddy current density is large, but also the portion where the eddy current is not so much generated. Therefore, it may be possible to further reduce the difference between the actual measurement value and the analysis result by comparing the results of the region of interest only where the eddy current is large when the coil is placed at the optimum position. .
- a threshold value (a twitch (muscle spasm, twitch)) is generated that stimulates the primary motor cortex and moves, for example, a finger. It is necessary to obtain a motion threshold).
- twitch muscle spasm, twitch
- sites other than the primary motor area may be the target of stimulation, and twitch cannot be observed with stimulation to such sites, so the stimulation intensity had to be determined by an indirect method. .
- the original software it can be applied to such patients.
- the stimulation intensity can be presented by computer simulation so that 17.19 A / m 2 , which is the average nerve excitation threshold, can be guided to the primary motor area.
- 17.19 A / m 2 which is the average nerve excitation threshold
- the stimulation of the motor cortex is performed in advance to determine the magnetic field strength corresponding to the motion threshold, and the treatment conditions in the prefrontal cortex are determined based on the magnetic field strength. Since the software according to the present invention can be estimated by analyzing the eddy current density generated in the prefrontal cortex, the treatment conditions can be determined so that the eddy current to the prefrontal cortex becomes an appropriate value. become.
- FIG. 15 shows an analysis result of the eddy current distribution when the brain model of the subject D in Table 1 is actually stimulated on the dorsolateral region of the left prefrontal cortex under the same conditions as in Table 1 (current amplitude is 3431 A).
- the red frame in the figure shows the area where the stimulus was actually given.
- the average eddy current density at a peripheral radius of 5 mm at the stimulation position was 21.49 A / m 2 .
- Table 1 by giving an amplitude of 3233 A (see Equation (8)), an eddy current that is the same as the eddy current density corresponding to the movement threshold value is generated in the dorsolateral region of the left frontal cortex. I understand that I can do it.
- FIG. 23A is a head MRI image of the subject, and an arrow indicates a stimulation position in the prefrontal cortex.
- the brain is obtained by the simulation method described above (however, the radius of the sphere for calculating the sphere average is 10 mm). As a result, the distribution shown in FIG. 23B was obtained.
- the average eddy current density within a radius of 10 mm at the stimulation position was 19.9 A / m 2 .
- a similar simulation was performed under the condition that the current value of the treatment coil was also 3430A, with the prefrontal cortex as the stimulation position, and the brain-induced current had the distribution shown in FIG. 23C. .
- the average eddy current density within a radius of 10 mm at the stimulation position was 17.6 A / m 2 . In this way, when the same subject is stimulated with the same coil current, the induced current distribution and the eddy current value at the stimulation site differ when the brain stimulation site is different.
- the stimulus intensity is 110% or 120%
- a stimulus different from the intended stimulus intensity is applied to the prefrontal cortex.
- the possibility of being added can be estimated. From these facts, it is possible to examine a new stimulation intensity that can contribute to therapeutic effectiveness by using the intracerebral induced current simulation method of the present invention in advance for a target region other than the primary motor area.
- Transcranial magnetic stimulation is one of the most widely used methods for treating neurological and psychiatric diseases in recent years.
- repetitive transcranial magnetic stimulation rTMS
- rTMS repetitive transcranial magnetic stimulation
- the stimulation intensity of the coil used for transcranial magnetic stimulation should be kept as small as possible while obtaining the same therapeutic effect in order to prevent unintended side effects and unnecessary heating of the coil.
- the present inventor has paid attention to the fact that several studies that have actually performed transcranial magnetic stimulation have shown the existence of “appropriate coil stimulation angle for each individual subject”. did.
- the optimal coil stimulation angle is clarified by electromagnetic calculation, so that stimulation can be performed with less current, and this can be used as a support for the operation.
- the inventor of the present application has set a hypothesis that Based on the results of the study by the present inventor shown below, first, in a simple transcranial magnetic stimulation model with cerebrospinal fluid in the sulcus and cerebral sulcus, It became clear whether it was working. Furthermore, based on these results, a new method for calculating an appropriate stimulation angle at each stimulation site of the brain by simple calculation has been newly established, and will be described below.
- the inventor of the present application first created a simple brain model including the sulcus shown in FIG. 24A and simulated the effect of the rotation angle of the transcranial magnetic stimulation coil on the sulcus.
- the brain model consisted of gray matter with a conductivity of 0.11 S / m and 2 mm cerebrospinal fluid with a conductivity of 1.79 S / m, and the sulcus was created with a depth of 2 cm and a width of 2 mm.
- the stimulation coil had an 8-letter shape with an outer diameter of 5.1 cm and an inner diameter of 1.1 cm, and a current of 5.3 kA was applied thereto.
- the coil is fixed 1 cm above the surface of the brain model and stimulates at 0, 30, 45, 60, and 90 degrees to the sulcus, and the result is placed in the sphere from the center point of the coil.
- the comparison was made by averaging the induced currents of the elements included.
- the present inventor formed brain shape data obtained as an MRI image from the subject as three elements of gray matter, white matter, and cerebrospinal fluid, and simulated transcranial magnetic stimulation on this.
- a hollow model consisting essentially of cerebrospinal fluid is created, although the brain shape such as the sulcus is the same as the real brain, and the same simulation is performed. went.
- the magnetic stimulation coil is rotated from the initial stimulation direction by 10 degrees to 180 degrees, and the average of the induced currents of the elements contained in the sphere from the coil center in each of “gray matter + white matter trap” and “cerebrospinal fluid” in the three-element model , And the same average of “cerebrospinal fluid” in the hollow model was calculated and compared.
- coil is parallel to the sulcus means that the main flow direction of the induced current generated by the coil is the sulcus. Similarly, it means that the coil is parallel to the groove direction. Similarly, “the coil is perpendicular to the brain groove” means that the main flow direction of the induced current generated by the coil is perpendicular to the groove direction of the brain groove. Means.
- FIG. 25B shows the sphere for calculating the average of the induced current
- the induced currents in gray matter and white matter are also shown.
- the shape is the shape of the real brain derived from the patient's brain MRI image, but the shape of the induced current in the cerebrospinal fluid in a hollow model consisting essentially of cerebrospinal fluid.
- the optimal coil stimulation angle can be estimated with sufficient accuracy even by the calculation using the hollow model described above. As a result, the amount of calculation is reduced by 70% compared to the case of using the three-element model. I knew it was possible.
- the neural excitation threshold value in the region other than the motor area can be estimated. Furthermore, by analyzing the eddy current density distribution in the brain due to the shift of the coil position, it is confirmed that the eddy current density in the brain changes due to the difference in the coil position, and the movement threshold changes accordingly. The distribution of eddy current density in the brain was found to be anisotropic. In addition to the analysis of the eddy current distribution in the brain, it is considered necessary to measure at a position closer to the optimal stimulus position in measuring the movement threshold.
- the present invention has been made on the basis of the above knowledge.
- the brain current simulation method having such a configuration, a model corresponding to the brain shape of each patient is formed, and the brain current is analyzed based on the model. It is possible to accurately grasp the eddy current or electric field distribution. In addition, the eddy current distribution in the brain when the coil position deviates from the optimal stimulation position can be grasped more accurately. Then, a transcranial magnetic stimulation system that can stimulate the brain more efficiently can be designed using the analysis results of the eddy current distribution or electric field distribution.
- the brain current simulation method includes a fifth step of visually displaying the eddy current or electric field distribution calculated in the fourth step. According to this method, the distribution of eddy current or electric field in the brain can be visually grasped.
- the micropolyhedral units are preferably assigned so as to have a conductivity of gray matter, white matter, or cerebrospinal fluid. Further, it is preferable that the first information includes at least one of a current value or a voltage value of the current. Furthermore, the eddy current or electric field is preferably calculated by the scalar potential finite difference method.
- the intracerebral current simulation device and the transcranial magnetic stimulation system also include a fifth means for visually displaying the eddy current or electric field distribution calculated by the fourth means.
- the intracranial current simulation apparatus and the transcranial magnetic stimulation system incorporating the apparatus include: First means for providing head image data including at least a part of the brain among the tomographic image data of the patient; A second forming a three-dimensional brain model comprising each micropolyhedral unit obtained by dividing at least one region constituting the brain of the head image data provided by the first means into microelements; Means of Of the conditions for applying magnetic stimulation to the patient's brain by placing a coil on the patient's head and applying an electric current to the coil, at least the position and orientation of the coil and the coil applied to the coil A third means for providing first information including a current condition and a structural condition relating to the magnetic field generated by the coil; The eddy current or electric field induced in each of the micropolyhedral units of the three-dimensional brain model, the first information provided by the third means, and the conductivity assigned to each micropolyhedral unit. 4th means to calculate based on the 2nd information containing are included.
- the current applied to the coil may be either alternating current or pulsating flow.
- the eddy current induced in the brain by the magnetic field of the coil and the electric field (electric field) intensity are in a proportional relationship. Therefore, in the description related to the present invention, “eddy current” can be read as “electric field” or “electric field”, and it is understood that the contents thus read also belong to the technical scope of the present invention. Should.
- FIG. 23A It is a figure which shows distribution of the electric current induced
- the shape is a shape of a real brain derived from a patient's brain MRI image, and is a diagram showing a sphere for calculation that averages induced currents in a hollow model virtually consisting only of cerebrospinal fluid. It is a figure which shows the relationship between the induced current and stimulation angle in gray matter, white matter, and cerebrospinal fluid.
- a transcranial magnetic stimulation system (hereinafter simply referred to as “system”) 1 is a magnetic stimulation device that applies magnetic stimulation to the brain of a patient 3 supported by a support mechanism (for example, a chair 2 or a bed). 4.
- the magnetic stimulation device 4 has a coil unit (coil device) 5 and a control unit 6 in order to form a dynamic magnetic field that applies magnetic stimulation to the brain of the patient 3.
- the coil unit 5 is preferably supported by an appropriate positioning unit 7 so that it can freely move along the head surface of the patient 3 and can be positioned at an arbitrary position.
- the coil unit 5 includes a coil 8 and a casing 9 made of an electrically insulating material surrounding the coil 8.
- the casing 9 includes a holder 10 formed integrally with the casing 9, and is held by the positioning unit 7 via the holder 10.
- any known coil such as one annular coil and an 8-character coil in which conductive wires are arranged in an 8-character shape (for example, a coil disclosed in Japanese Patent Application Laid-Open No. 2012-125546) can be used.
- the casing 9 is integrally provided with three or more observation objects (for example, a target such as a mark 11 or a protrusion). These observation objects are used to determine the relative position and direction of the coil 8 with respect to the patient's head.
- the control unit 6 includes a box-shaped housing 12.
- the housing 12 includes an input unit 13 and an output unit 14.
- the input unit 13 is generated by a driving condition setting unit 15 that sets driving conditions (for example, voltage, current, and frequency applied to the coil 8) of the system 1; a tomography apparatus (for example, MRI, CT, and PET)] 16
- a data receiving unit 20 for receiving is provided.
- the camera 19 is attached to a fixed part of a living room in which the positioning unit 7 or the system 1 is accommodated.
- the current applied to the coil is not only a current (AC) whose flow direction changes periodically with time, but also a current whose flow direction is constant and whose magnitude varies periodically (so-called “ It should be understood to include pulsatile flow)).
- the output unit 14 is connected to a display 21 such as a liquid crystal display device or a computer (not shown) having a display, and outputs data (for example, image data) output from the control unit 6 to the display 21 to output the data. It is comprised so that the image corresponding to can be displayed.
- a display 21 such as a liquid crystal display device or a computer (not shown) having a display, and outputs data (for example, image data) output from the control unit 6 to the display 21 to output the data. It is comprised so that the image corresponding to can be displayed.
- a coil drive circuit 25 shown in FIG. 17 is accommodated in the housing 12, and the coil drive circuit 25 is electrically connected to the coil 8 via a cable 26.
- a control circuit 30 shown in FIG. 18 is also accommodated in the housing 12.
- the control circuit 30 includes a central processing unit (hereinafter referred to as “CPU”) 31, a first storage unit 32, a second storage unit 33, and a calculation unit 34 connected to the CPU 31.
- CPU central processing unit
- the first storage unit 32 stores various software.
- 3D mapping software 41 for creating a 3D brain model (3D map) based on tomographic image data (for example, medical image processing software “Real INTAGE” sold by Cybernet System Co., Ltd.);
- Coil driving condition determination software 42 for determining the current to be applied to the coil based on the driving conditions input via 13; marks included in the image photographed by the camera 19 (marks provided on the coil unit and patient-worn items)
- coil positioning software 43 for determining the relative direction and position of the coil with respect to the patient's head (patient brain) based on the information of the mark provided on the patient; Based on the direction and position, and the coil driving conditions determined by the coil driving condition determination software 42
- the eddy current density map is created by calculating the eddy current density generated in the cell and superimposing the calculated eddy current density information on the 3D brain model created by the 3D mapping software.
- Software 43 is included.
- the relative position and direction of the coil with respect to the patient's brain can be determined, for example, by the technique disclosed in WO2007 / 123147A.
- at least three targets are attached to a mark fixed to the patient's head or a device (for example, chair, bed) for fixing the patient.
- the relative position of the patient target relative to the patient's head (brain) is determined. Therefore, the position information of the patient target is synthesized with the patient's head tomographic image data (three-dimensional coordinate data).
- the camera images a patient target and at least three targets (coil targets) fixed to the coil unit 5.
- the captured image is processed by the coil positioning software to determine the relative position and orientation of the coil target relative to the patient target, and based on that information, the relative position of the coil relative to the patient's head (brain) A direction is required.
- the relative position of the coil with respect to the patient's head (brain) can be calculated in real time, and the calculated result can be displayed on the display 21.
- the calculation unit 34 has a function of executing the above-described software based on an instruction from the CPU 31.
- the second storage unit 33 stores various data. For example, human (head) tomographic image data 51 and coil driving conditions 52 input via the input unit 13, three-dimensional brain model data 53 obtained by executing the three-dimensional mapping software 41, coil driving The coil drive current data 54 obtained by executing the condition determining software 42, the coil direction and position data 55 obtained by executing the coil position determining software 43, and the eddy current density mapping software 43 are executed. The obtained eddy current density data 56 and eddy current map data 57 obtained by mapping the data 56 are stored.
- the second storage unit 33 also includes conditions for applying magnetic stimulation to the patient's brain using the system 1 (current / voltage / frequency applied to the coil, relative position and direction of the coil with respect to the head), and the like.
- the magnetic stimulation information 58 of the motion threshold observed at that time (the voltage amplitude at which a muscle reaction is observed with a probability of 50% or more when a coil is placed at the optimal stimulation position and magnetic stimulation is applied to the brain) is stored. Has been.
- the position of the coil 8 relative to the patient's head is obtained by the coil position determination software based on the image taken by the camera 19.
- the relative position of the coil 8 with respect to the patient's head is displayed on the display 21.
- the coil 8 can be installed in the target location (for example, optimal stimulation position) of a patient's head.
- the coil drive circuit 25 is driven based on the coil drive condition input through the input unit 15 to give magnetic stimulation to the brain of the patient 3. As shown in FIG.
- the coil drive circuit 25 uses the output from the power supply circuit 62 that converts the output voltage of the power supply 61 to a desired voltage, the booster circuit 63 that boosts the output of the power supply circuit 62, and the output from the booster circuit 63.
- the tomographic image data 51 (for example, MRI data) of the patient 3 or the subject is input through the input unit 13 (step # 1).
- the input head tomographic image data 51 is stored in the second storage unit 33.
- the brain of the patient 3 is obtained using the three-dimensional mapping software 41 stored in the first storage unit 32 and the tomographic image data 51 stored in the second storage unit 33.
- 3D brain model 53 is created (step # 2).
- the three-dimensional brain model 53 created at this time does not need to target all parts of the brain, and may be at least one of gray matter, white matter, and cerebrospinal fluid.
- the created three-dimensional brain model 53 is stored in the second storage unit 33.
- the three-dimensional brain model can be output and displayed on the display 21 through the output unit 14 as necessary.
- the CPU 31 stores the magnetic stimulation information 58 [the current applied to the coil, which is stored in the second storage unit 33 and previously obtained when the system 1 was used to apply magnetic stimulation to the brain of the patient 3. Voltage and frequency, relative position and direction of the coil with respect to the head) and coil winding shape data 59 (see FIG. 20), and the motion threshold value observed at that time (the coil is placed at the optimal stimulation position and the brain (The voltage amplitude at which a muscle reaction was observed with a probability of 50% or more when a magnetic stimulus was applied to) was read out (step # 3).
- the CPU 31 reads the eddy current density mapping software 43 stored in the first storage unit 32 and the three-dimensional brain model 53 of the brain stored in the second storage unit 33, and refers to the magnetic stimulation information 58.
- the eddy current density mapping software 43 is used to calculate the eddy current density induced in each micropolyhedron unit of the three-dimensional brain model (step # 4). This calculation is performed by the above-described scalar potential finite difference method.
- the calculated eddy current density data 56 is stored in the second storage unit 33.
- the CPU 31 creates an eddy current density map 57 (see FIG. 14) based on the calculated eddy current density data 56. As shown in FIG. 15, it is preferable to add color information corresponding to the level to the calculated eddy current density data 56 and display the eddy current density level on the display 21 with this color information.
- the magnetic stimulation information 58 [applied to the coil, which is stored in the second storage unit 33 described above and obtained when the magnetic stimulation is applied to the brain of the patient 3 using the system 1 before.
- the position of the treatment coil that performs setting input using a predetermined setting means The distribution of eddy current density overlooking the entire brain, or the eddy current density at a specific position in the brain calculated using the simulation method according to the present invention, in addition to or independently of the coil Eddy current density distribution overlooking the entire brain, or eddy at a specific position in the brain when changing at least one of the direction information, coil applied current information, or applied voltage information
- the flow density, calculated using the above simulation method may be displayed.
- the eddy current density at a specific position in the brain can be displayed in real time as the coil moves.
- the eddy current density is calculated for the three-dimensional brain model that reproduces the patient's brain based on the magnetic stimulation information obtained by actually stimulating the patient's brain.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Neurology (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- High Energy & Nuclear Physics (AREA)
- Neurosurgery (AREA)
- Psychology (AREA)
- Physiology (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- General Business, Economics & Management (AREA)
- Business, Economics & Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Computer Graphics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Magnetic Treatment Devices (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
この渦電流の強度や分布は,コイルの構造や特性,印加電流等の磁場生成能と,患者に対するコイルの位置により決定されると考えられる。
しかしながら,磁気治療中の対象患者の脳内に実際に生成された渦電流を電極などを用いて実測することは,現実的ではない。
そこで,コイルにより生成される磁場分布から,脳内に誘起される渦電流をシミュレーションにより解析する試みがなされている。
これまでの脳内渦電流分布シミュレーションは,標準モデルを用いた計算であり,脳を一様な導電体と見なし電流分布を求めるものであった。
しかし,実際の脳は患者個人毎に大きさや,形状が異なると共に,組織により導電率が異なるため,患者個別の電流強度分布の計算は困難であると共に,シミュレーション計算自体も複雑で時間を要する点が問題であった。
この手法では,電磁界解析にスカラーポテンシャル有限差分法(Scalar Potential Finite Difference)(以下,「SPFD法」という。)を利用することが好ましい。
この手法によれば,刺激コイルの装着位置に伴う電流強度分布をシミュレーションにより観察することが可能となり,刺激強度と刺激部位における渦電流強度や,刺激を加えたい部位に対するコイルの最適位置を,実際に刺激を加えることなく検証が可能となる。
また,SPFD法を使用することにより従来の有限要素法に比して大幅に時間短縮が可能となるため医師の研究,治療において効率的な対応が可能となる。
さらに,疾患に応じて最適な誘導電流分布のコイルを選定することも容易となり,治療上の意義は大きい。
本発明の実施に当たっては有限要素法など,他のシミュレーション算法を用いてもよいことは言うまでもないが,SPFD法を用いるオリジナルソフトウェアの利点は,以下の3つである。
ファラデーの法則により,脳内に誘導される電場Eと,外部磁束密度Bは,数式(1)を満たす。
数式(5)において,1行目から2行目への変形は,ビオ・サバールの法則によった。式中のμ0は真空の透磁率,rは空間の位置ベクトル,r'は磁場発生コイル上の位置ベクトル,I(r')は位置r'におけるコイル電流である。ベクトルポテンシャルに由来する電場E1は,コイルの巻線形状と電流のみによって決まり,数式(5)を使って,比較的容易に計算可能である。スカラーポテンシャルに由来する磁場E2は,被験者の頭部形状に依存し,これを求めるためには,SPFD法や有限要素法などの高度な数値解析手法が必要である。総電場Eも同様に,高度な数値解析手法を使って求める必要がある。
数式(10)において,φnは接点nにおける電気スカラーポテンシャル,Anは接点0と接点nを結ぶボクセルの辺nに平行な外部磁気ベクトルポテンシャルの成分で辺の中心における値,lnは辺nの長さ,Snは辺nのコンダクタンスである。
上に述べたように,本シミュレーション方法では,SPFD法を利用することによって,被験者の頭部形状に依存する総電場Eと渦電流密度Jを,ともに解析することができる。コイルの巻線形状と電流によって決まる電場E1も,解析の過程で求めることができる。
なお,球モデルと立方体モデルとを用いた理由は,有限要素法,SPFD法の計算アルゴリズム(モデル化の考え方)の違いから,シミュレーション対象の幾何学的性質が及ぼす影響(誤差など)が無いかどうかを調べるためである。
コイルはモデル表面より1cmの位置に,5.3kA,3.4kHzの電流を設定した。図22Aに示す,球モデルにおける結果,図22Bに示す,立方体モデルにおける結果にみられるように,有限要素法による計算結果と比較して,モデル表面部から一定長以内の球内に含まれる要素の平均誘導電流量が,SPFD法による計算結果においても,ほぼ差異無く算出されていることが確認された。
以上のように,治療コイルの位置を変化させた際の,脳全体を俯瞰した渦電流密度の分布,あるいは脳内特定位置における渦電流密度を本発明にかかるシミュレーション方法を用いて算出する態様の他,それに加えてあるいは独立して,コイルの向きの情報,コイル印加電流の情報,あるいは印加電圧の情報の内の少なくともいずれかを変化させた際の,脳全体を俯瞰した渦電流密度の分布,あるいは脳内特定位置における渦電流密度を,先に説明を行った本発明にかかるシミュレーション方法を用いて算出するようにしてもよい。そのようにシミュレーション結果を算出し,または表示を行うための具体的な構成は別に説明を行う。
以下に,本願発明にかかるシミュレーションの方法で上記の知見を確認した例を示す。
図23Aは当該被験者の頭部MRI画像であり,矢印は前頭前野における刺激位置を示す。一次運動野を刺激位置とし,治療コイルの電流値を3430Aとした条件の下で,先に示したシミュレーション方法(但し,球内平均を算出するための球の半径は10mmを用いた)により脳の誘導電流を算出したところ,図23Bに示す分布となった。また刺激位置における半径10mm内の平均渦電流密度は,19.9A/m2 であった。
次に,同一の被験者について,治療コイルの電流値を同じく3430Aとした条件の下で同様のシミュレーションを,前頭前野を刺激位置として行ったところ,脳の誘導電流は図23Cに示す分布となった。また刺激位置における半径10mm内の平均渦電流密度は,17.6A/m2 であった。
このように,同一の被験者に対し,同一のコイル電流で刺激を行った場合,脳の刺激部位が異なると,生起される誘導電流分布や,刺激部位における渦電流値が異なることがわかる。
すなわち,一次運動野刺激により決定したRMTを基準とし,例えば刺激強度を110%や120%とする現在一般的に行われている方法では,意図した刺激強度とは異なる刺激が前頭前野に対して加えられている可能性が推測できる。
これらのことから,一次運動野以外の対象部位に関して,予め本願発明の脳内誘導電流シミュレーション手法を用いることにより,治療有効性に貢献可能な新しい刺激強度の検討を行うことが可能となる。
経頭蓋磁気刺激法(TMS)は神経学及び精神医学的な疾病の治療方法として,近年広く用いられてきた手法の一つである。特に,より強度の刺激を断続的に行う反復経頭蓋磁気刺激法(rTMS)は,より明確な治療効果があることで知られている。一方,経頭蓋磁気刺激に用いられるコイルの刺激強度は,意図せぬ副作用やコイルの不要な加熱を防ぐため,同様の治療効果を得つつもできるだけ小さく抑えたい,という課題があった。
この課題を解決する一つのアプローチとして,従来,実際に経頭蓋磁気刺激を行ったいくつかの研究において「被験者個々人に適切なコイル刺激角度」の存在が示されていることに本願発明者は着目した。
即ち,経頭蓋磁気刺激の施術前に,この最適なコイル刺激角度を電磁気的な計算によって明らかにすることで,より少ない電流で刺激を行うことができ,これを施術のサポートとすることができるのではないか,という仮説を本願発明者は設定した。
そして,以下に示す本願発明者による研究結果から,まず脳溝及び脳溝内に脳脊髄液を伴った簡易的な経頭蓋磁気刺激モデルにおいて,脳脊髄液による影響が電磁気学的にどのように作用しているのかということが明らかとなった。更に,これらの結果を元に,脳の各刺激部位における適切な刺激角度を簡易的な計算によって算出する方法を新たに確立したので,以下に説明を行う。
本願発明者は最初に,図24Aに示す,脳溝を含む簡易的な脳モデルを作成し,経頭蓋磁気刺激コイルの脳溝に対する回転角による影響をシミュレーションした。なお脳モデルは導電率0.11S/mの灰白質と導電率1.79S/mの2mm厚の脳脊髄液により成り,脳溝は2cmの深さ,2mmの幅として作成した。また刺激コイルは外径5.1cm内径1.1cmの8字形状とし,これに5.3kAの電流を印加した。コイルは脳モデル表面から1cm上に固定し,脳溝に対し0度,30度,45度,60度,90度の角度で刺激を行い,その結果について,コイルの中心点からの球内にふくまれるエレメントの誘導電流を平均するという形で比較を行った。
図24Aに示す簡易的な脳モデルにおいては,灰白質と脳脊髄液における誘導電流に逆相関(r=-0.99)の関係が見られた。このような関係が見られる理由は,脳脊髄液は頭部において最も導電率の高い物質であり,無視できないコイル損失を生んだことに由来すると考えて良い。特に,図24Bのようにコイルが脳溝に対し平行に当てられた際,コイルによる刺激強度の減少が引き起こされた。従って,最適なコイルの刺激方向は,図24Cのように脳溝に対し垂直な方向であることが推察できる。
さらに,コイル位置のずれによる脳内の渦電流密度分布を解析したことにより,コイルの位置の違いにより脳内の渦電流密度は変化し,それにしたがって,運動閾値も変化することが確かめられると同時に,脳内の渦電流密度の分布は異方性があることが分かった。脳内渦電流分布の解析を進めると共に,運動閾値の計測においては最適刺激位置により近い位置における計測も必要であると考えられる。
患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の工程と,
前記第1の工程で提供された前記頭部画像データのうち前記脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる,3次元脳モデルを形成する第2の工程と,
前記患者の頭部上にコイルを配置し,前記コイルに電流を印加することによって前記患者の脳に磁気刺激を与え,前記磁気刺激に対する患者の反応が観察されたときの条件のうち,少なくとも前記コイルの位置及び向きの条件と,前記コイルに印加された電流の条件と,前記コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の工程と,
前記3次元脳モデルの前記それぞれの微小多面体単位内に誘導される渦電流又は電界を,前記第3の工程で提供された前記第1の情報,及び前記微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の工程を含む。
患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の手段と,
前記第1の手段で提供された前記頭部画像データのうち前記脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる,3次元脳モデルを形成する第2の手段と,
前記患者の頭部上にコイルを配置して前記コイルに電流を印加することによって前記患者の脳に磁気刺激を与え,前記磁気刺激に対する患者の反応が観察されたときの条件のうち,少なくとも前記コイルの位置及び向きの条件と,前記コイルに印加された電流の条件と,前記コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の手段と,
前記3次元脳モデルの前記それぞれの微小多面体単位内に誘導される渦電流又は電界を,前記第3の手段で提供された前記第1の情報,及び前記微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の手段を含む。
患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の手段と,
前記第1の手段で提供された前記頭部画像データのうち前記脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる,3次元脳モデルを形成する第2の手段と,
前記患者の頭部上にコイルを配置して前記コイルに電流を印加することによって前記患者の脳に磁気刺激を与える条件のうち,少なくとも前記コイルの位置及び向きの条件と,前記コイルに印加された電流の条件と,前記コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の手段と,
前記3次元脳モデルの前記それぞれの微小多面体単位内に誘導される渦電流又は電界を,前記第3の手段で提供された前記第1の情報,及び前記微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の手段を含む。
2:椅子
3:患者
4:磁気刺激装置
5:コイルユニット(コイル装置)
6:制御ユニット
7:位置決めユニット
8:コイル
9:ケーシング
10:ホルダ
11:マーク
12:ハウジング
13:入力部
14:出力部
19:カメラ
30:制御回路
Claims (20)
- 患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の工程と,
前記第1の工程で提供された前記頭部画像データのうち前記脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる,3次元脳モデルを形成する第2の工程と,
前記患者の頭部上にコイルを配置し,前記コイルに電流を印加することによって前記患者の脳に磁気刺激を与え,前記磁気刺激に対する患者の反応が観察されたときの条件のうち,少なくとも前記コイルの位置及び向きの条件と,前記コイルに印加された電流の条件と,前記コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の工程と,
前記3次元脳モデルの前記それぞれの微小多面体単位内に誘導される渦電流又は電界を,前記第3の工程で提供された前記第1の情報,及び前記微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の工程を含む,脳内電流シミュレーション方法。 - 前記第4の工程で計算された渦電流又は電界の分布を視覚的に表示する第5の工程を含む,請求項1の脳内電流シミュレーション方法。
- 前記それぞれの微小多面体単位が,灰白質,白質,及び脳脊髄液のいずれかの導電率を有するように割り付けられた,請求項1又は2の脳内電流シミュレーション方法。
- 前記第1の情報が,前記電流の電流値または電圧値の少なくともいずれかを含む,請求項1~3のいずれかの脳内電流シミュレーション方法。
- 前記第4の工程において,前記渦電流又は電界の計算がスカラーポテンシャル有限差分法で行われることを特徴とする,請求項1~4のいずれかの脳内電流シミュレーション方法。
- 前記コイルに印加された電流が交流又は脈流である請求項1~5のいずれかの脳内電流シミュレーション方法。
- 患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の手段と,
前記第1の手段で提供された前記頭部画像データのうち前記脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる,3次元脳モデルを形成する第2の手段と,
前記患者の頭部上にコイルを配置し,前記コイルに電流を印加することによって前記患者の脳に磁気刺激を与え,前記磁気刺激に対する患者の反応が観察されたときの条件のうち,少なくとも前記コイルの位置及び向きの条件と,前記コイルに印加された電流の条件と,前記コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の手段と,
前記3次元脳モデルの前記それぞれの微小多面体単位内に誘導される渦電流又は電界を,前記第3の手段で提供された前記第1の情報,及び前記微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の手段を含む,脳内電流シミュレーション装置。 - 前記第4の手段で計算された渦電流の分布を視覚的に表示する第5の手段を含む,請求項7の脳内電流シミュレーション装置。
- 前記それぞれの微小多面体単位が,灰白質,白質,及び脳脊髄液のいずれかの導電率を有するように割り付けられた,請求項7又は8の脳内電流シミュレーション装置。
- 前記第1の情報が,前記電流の電流値または電圧値の少なくともいずれかを含む,請求項7~9のいずれかの脳内電流シミュレーション装置。
- 前記第4の手段において,前記渦電流又は電界の計算がスカラーポテンシャル有限差分法で行われることを特徴とする,請求項7~10のいずれかの脳内電流シミュレーション装置。
- 前記コイルに印加された電流が交流又は脈流である請求項7~11のいずれかの脳内電流シミュレーション装置。
- 請求項7~12のいずれかの脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム。
- 患者の断層画像データのうち少なくとも脳の一部を含む頭部画像データを提供する第1の手段と,
前記第1の手段で提供された前記頭部画像データのうち前記脳を構成している少なくとも1つの領域を微小要素に分割したそれぞれの微小多面体単位からなる,3次元脳モデルを形成する第2の手段と,
前記患者の頭部上にコイルを配置して前記コイルに電流を印加することによって前記患者の脳に磁気刺激を与える条件のうち,少なくとも前記コイルの位置及び向きの条件と,前記コイルに印加された電流の条件と,前記コイルの生成磁界に関わる構造の条件と,を含む第1の情報を提供する第3の手段と,
前記3次元脳モデルの前記それぞれの微小多面体単位内に誘導される渦電流又は電界を,前記第3の手段で提供された前記第1の情報,及び前記微小多面体単位ごとに割り付けられた導電率を含む第2の情報に基づいて計算する第4の手段を含む,脳内電流シミュレーション装置。 - 前記第4の手段で計算された渦電流又は電界の分布を視覚的に表示する第5の手段を含む,請求項14の脳内電流シミュレーション装置。
- 前記それぞれの微小多面体単位が,灰白質,白質,及び脳脊髄液のいずれかの導電率を有するように割り付けられた,請求項14又は15の脳内電流シミュレーション装置。
- 前記第1の情報が,前記電流の電流値または電圧値の少なくともいずれかを含む,請求項14~16のいずれかの脳内電流シミュレーション装置。
- 前記第4の手段において,前記渦電流又は電界の計算がスカラーポテンシャル有限差分法で行われることを特徴とする,請求項14~17のいずれかの脳内電流シミュレーション装置。
- 前記コイルに印加された電流が交流又は脈流である請求項14~18のいずれかの脳内電流シミュレーション装置。
- 請求項14~19のいずれかの脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2939681A CA2939681A1 (en) | 2014-02-14 | 2015-02-06 | Intracerebral current simulation method and device thereof, and transcranial magnetic stimulation system including intracerebral current simulation device |
EP15749544.1A EP3106204B1 (en) | 2014-02-14 | 2015-02-06 | Intracerebral current simulation method and device thereof, and transcranial magnetic stimulation system including intracerebral current simulation device |
KR1020167022185A KR20160122733A (ko) | 2014-02-14 | 2015-02-06 | 뇌 내 전류 시뮬레이션 방법과 그 장치, 및 뇌 내 전류 시뮬레이션 장치를 포함하는 경두개 자기 자극 시스템 |
JP2015562804A JP6384816B2 (ja) | 2014-02-14 | 2015-02-06 | 脳内電流シミュレーション方法とその装置,及び脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム |
AU2015216287A AU2015216287B2 (en) | 2014-02-14 | 2015-02-06 | Intracerebral current simulation method and device thereof, and transcranial magnetic stimulation system including intracerebral current simulation device |
CN201580008420.7A CN105980009B (zh) | 2014-02-14 | 2015-02-06 | 脑内电流模拟方法及其装置、以及包含脑内电流模拟装置的经颅磁刺激系统 |
ES15749544T ES2747623T3 (es) | 2014-02-14 | 2015-02-06 | Método de simulación de corriente intracerebral y dispositivo del mismo, y sistema de estimulación magnética transcraneal que incluye un dispositivo de simulación de corriente intracerebral |
DK15749544.1T DK3106204T3 (en) | 2014-02-14 | 2015-02-06 | Intracerebral current simulation method and device thereof, and transcranial magnetic stimulation system including intracerebral current simulation device |
US15/118,704 US10292645B2 (en) | 2014-02-14 | 2015-02-06 | Intracerebral current simulation method and device thereof, and transcranial magnetic stimulation system including intracerebral current simulation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-026927 | 2014-02-14 | ||
JP2014026927 | 2014-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015122369A1 true WO2015122369A1 (ja) | 2015-08-20 |
Family
ID=53800116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053390 WO2015122369A1 (ja) | 2014-02-14 | 2015-02-06 | 脳内電流シミュレーション方法とその装置,及び脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム |
Country Status (10)
Country | Link |
---|---|
US (1) | US10292645B2 (ja) |
EP (1) | EP3106204B1 (ja) |
JP (1) | JP6384816B2 (ja) |
KR (1) | KR20160122733A (ja) |
CN (1) | CN105980009B (ja) |
AU (1) | AU2015216287B2 (ja) |
CA (1) | CA2939681A1 (ja) |
DK (1) | DK3106204T3 (ja) |
ES (1) | ES2747623T3 (ja) |
WO (1) | WO2015122369A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108472494A (zh) * | 2016-03-04 | 2018-08-31 | 国立大学法人东京大学 | 线圈以及使用其的磁刺激装置 |
JP2019124595A (ja) * | 2018-01-17 | 2019-07-25 | 公立大学法人首都大学東京 | 物体内への物流入量算出方法 |
JP2020531228A (ja) * | 2017-08-25 | 2020-11-05 | ニューロフェット インコーポレイテッドNeurophet Inc. | パッチガイド方法及びプログラム |
JP2020533103A (ja) * | 2017-09-11 | 2020-11-19 | ニューロフェット インコーポレイテッドNeurophet Inc. | Tms刺激ナビゲーション方法及びプログラム |
JP2021045301A (ja) * | 2019-09-18 | 2021-03-25 | 国立研究開発法人情報通信研究機構 | 脳活動刺激システム、および脳活動刺激装置 |
CN113350698A (zh) * | 2021-05-31 | 2021-09-07 | 四川大学华西医院 | 用于tms线圈的电磁导航系统及方法 |
US11986319B2 (en) | 2017-08-25 | 2024-05-21 | NEUROPHET Inc. | Patch guide method and program |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2572186A (en) * | 2018-03-22 | 2019-09-25 | The Magstim Company Ltd | Apparatus and method for determining a desired coil position for magnetic stimulation |
CN110491518B (zh) * | 2019-07-31 | 2023-04-07 | 中国医学科学院生物医学工程研究所 | 一种针对任务态的经颅磁刺激建模仿真方法 |
WO2021059285A1 (en) * | 2019-09-26 | 2021-04-01 | Soreq Nuclear Research Center | Wireless enhanced power transfer |
CN112704486B (zh) * | 2021-01-14 | 2021-10-26 | 中国科学院自动化研究所 | 基于电磁仿真计算的tms线圈位姿图谱生成方法 |
KR102367904B1 (ko) * | 2021-02-26 | 2022-03-03 | 주식회사 에이티앤씨 | 코일 위치 안내용 네비게이션 장치, 이를 포함하는 뇌 자극 장치 및 바이오 네비게이션 로봇 시스템 |
US11610731B2 (en) | 2021-03-09 | 2023-03-21 | Hirofusa Otsubo | Apparatus for assembling a non-directional free electron generating repelling magnet combination |
KR102313422B1 (ko) | 2021-03-15 | 2021-10-15 | 주식회사 에이티앤씨 | 경두개 자극기의 코일체 및 경두개 자극기 |
CN113077483B (zh) * | 2021-04-27 | 2022-03-25 | 中国科学院自动化研究所 | 基于脑组织和深度回归的感应电场分布预测方法及系统 |
KR102577945B1 (ko) * | 2021-05-14 | 2023-09-14 | 부산대학교 산학협력단 | 국소적 경두개 자기 자극 장치 및 방법 |
CN113436170B (zh) * | 2021-06-25 | 2022-09-06 | 中国科学技术大学 | 基于磁共振影像的经颅电刺激个体化优化平台 |
CN115762303B (zh) * | 2022-11-07 | 2023-08-18 | 深圳职业技术学院 | 经颅磁刺激线圈电磁场模拟系统的系统搭建方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030004392A1 (en) * | 2001-06-28 | 2003-01-02 | Philipp Tanner | Method and device for transcranial magnetic stimulation |
JP2003180649A (ja) * | 2001-10-17 | 2003-07-02 | Nexstim Oy | 磁気刺激量の計算方法及び装置 |
JP2004000636A (ja) * | 2002-05-31 | 2004-01-08 | Nexstim Oy | 脳の磁気刺激のターゲティング方法及び装置 |
JP2004511314A (ja) * | 2000-10-20 | 2004-04-15 | アメリカ合衆国 | 磁気刺激のためのコイルおよびそれを用いる方法 |
US20050256539A1 (en) * | 2002-03-25 | 2005-11-17 | George Mark S | Methods and systems for using transcranial magnetic stimulation to enhance cognitive performance |
JP2006255314A (ja) * | 2005-03-18 | 2006-09-28 | Tohoku Univ | 磁場発生装置 |
JP2009536073A (ja) * | 2006-05-05 | 2009-10-08 | ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ | トラジェクトリに基いた脳深部定位経側頭磁気刺激システム |
WO2012121341A1 (ja) * | 2011-03-09 | 2012-09-13 | 国立大学法人大阪大学 | 画像データ処理装置および経頭蓋磁気刺激装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7711431B2 (en) | 2003-08-04 | 2010-05-04 | Brainlab Ag | Method and device for stimulating the brain |
JP4482660B2 (ja) * | 2003-11-19 | 2010-06-16 | 広島市 | 神経細胞刺激部位の推定方法およびそれを用いた脳機能解析装置 |
US9101751B2 (en) * | 2006-09-13 | 2015-08-11 | Nexstim Oy | Method and system for displaying the electric field generated on the brain by transcranial magnetic stimulation |
JP5622153B2 (ja) | 2009-06-15 | 2014-11-12 | 国立大学法人大阪大学 | 磁気刺激装置 |
JP5532730B2 (ja) * | 2009-08-05 | 2014-06-25 | 大日本印刷株式会社 | Cnr測定装置,方法及びコンピュータプログラム |
CN101866485B (zh) | 2010-06-10 | 2012-02-01 | 西北工业大学 | 三维大脑磁共振图像大脑皮层表面最大主方向场弥散方法 |
CN101912668B (zh) * | 2010-07-26 | 2013-04-10 | 香港脑泰科技有限公司 | 一种导航经颅磁刺激治疗系统 |
JP5896109B2 (ja) | 2010-11-25 | 2016-03-30 | 国立大学法人大阪大学 | 治療用磁気コイルユニット |
-
2015
- 2015-02-06 WO PCT/JP2015/053390 patent/WO2015122369A1/ja active Application Filing
- 2015-02-06 AU AU2015216287A patent/AU2015216287B2/en not_active Ceased
- 2015-02-06 CN CN201580008420.7A patent/CN105980009B/zh not_active Expired - Fee Related
- 2015-02-06 DK DK15749544.1T patent/DK3106204T3/da active
- 2015-02-06 JP JP2015562804A patent/JP6384816B2/ja not_active Expired - Fee Related
- 2015-02-06 CA CA2939681A patent/CA2939681A1/en not_active Abandoned
- 2015-02-06 ES ES15749544T patent/ES2747623T3/es active Active
- 2015-02-06 US US15/118,704 patent/US10292645B2/en not_active Expired - Fee Related
- 2015-02-06 KR KR1020167022185A patent/KR20160122733A/ko not_active Application Discontinuation
- 2015-02-06 EP EP15749544.1A patent/EP3106204B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004511314A (ja) * | 2000-10-20 | 2004-04-15 | アメリカ合衆国 | 磁気刺激のためのコイルおよびそれを用いる方法 |
US20030004392A1 (en) * | 2001-06-28 | 2003-01-02 | Philipp Tanner | Method and device for transcranial magnetic stimulation |
JP2003180649A (ja) * | 2001-10-17 | 2003-07-02 | Nexstim Oy | 磁気刺激量の計算方法及び装置 |
US20050256539A1 (en) * | 2002-03-25 | 2005-11-17 | George Mark S | Methods and systems for using transcranial magnetic stimulation to enhance cognitive performance |
JP2004000636A (ja) * | 2002-05-31 | 2004-01-08 | Nexstim Oy | 脳の磁気刺激のターゲティング方法及び装置 |
JP2006255314A (ja) * | 2005-03-18 | 2006-09-28 | Tohoku Univ | 磁場発生装置 |
JP2009536073A (ja) * | 2006-05-05 | 2009-10-08 | ザ ボード オブ トラスティーズ オブ レランド スタンフォード ジュニア ユニバーシティ | トラジェクトリに基いた脳深部定位経側頭磁気刺激システム |
WO2012121341A1 (ja) * | 2011-03-09 | 2012-09-13 | 国立大学法人大阪大学 | 画像データ処理装置および経頭蓋磁気刺激装置 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108472494A (zh) * | 2016-03-04 | 2018-08-31 | 国立大学法人东京大学 | 线圈以及使用其的磁刺激装置 |
CN108472494B (zh) * | 2016-03-04 | 2022-03-29 | 国立大学法人东京大学 | 线圈以及使用其的磁刺激装置 |
JP2020531228A (ja) * | 2017-08-25 | 2020-11-05 | ニューロフェット インコーポレイテッドNeurophet Inc. | パッチガイド方法及びプログラム |
US11116404B2 (en) | 2017-08-25 | 2021-09-14 | NEUROPHET Inc. | Patch guide method and program |
JP2021180866A (ja) * | 2017-08-25 | 2021-11-25 | ニューロフェット インコーポレイテッドNeurophet Inc. | パッチガイド方法及びプログラム |
JP7271000B2 (ja) | 2017-08-25 | 2023-05-11 | ニューロフェット インコーポレイテッド | パッチガイド方法及びプログラム |
US11986319B2 (en) | 2017-08-25 | 2024-05-21 | NEUROPHET Inc. | Patch guide method and program |
JP2020533103A (ja) * | 2017-09-11 | 2020-11-19 | ニューロフェット インコーポレイテッドNeurophet Inc. | Tms刺激ナビゲーション方法及びプログラム |
JP2019124595A (ja) * | 2018-01-17 | 2019-07-25 | 公立大学法人首都大学東京 | 物体内への物流入量算出方法 |
JP2021045301A (ja) * | 2019-09-18 | 2021-03-25 | 国立研究開発法人情報通信研究機構 | 脳活動刺激システム、および脳活動刺激装置 |
JP7266873B2 (ja) | 2019-09-18 | 2023-05-01 | 国立研究開発法人情報通信研究機構 | 脳活動刺激システム、および脳活動刺激装置 |
CN113350698A (zh) * | 2021-05-31 | 2021-09-07 | 四川大学华西医院 | 用于tms线圈的电磁导航系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2939681A1 (en) | 2015-08-20 |
CN105980009A (zh) | 2016-09-28 |
JPWO2015122369A1 (ja) | 2017-03-30 |
CN105980009B (zh) | 2019-09-20 |
EP3106204A1 (en) | 2016-12-21 |
KR20160122733A (ko) | 2016-10-24 |
US10292645B2 (en) | 2019-05-21 |
AU2015216287B2 (en) | 2019-04-11 |
ES2747623T3 (es) | 2020-03-11 |
EP3106204A4 (en) | 2017-11-15 |
AU2015216287A1 (en) | 2016-09-01 |
JP6384816B2 (ja) | 2018-09-05 |
US20170049387A1 (en) | 2017-02-23 |
DK3106204T3 (en) | 2019-09-30 |
EP3106204B1 (en) | 2019-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6384816B2 (ja) | 脳内電流シミュレーション方法とその装置,及び脳内電流シミュレーション装置を含む経頭蓋磁気刺激システム | |
Wagner et al. | Investigation of tDCS volume conduction effects in a highly realistic head model | |
US11491343B2 (en) | Coil apparatus for use in transcranial magnetic stimulation apparatus provided with wound-wire coil disposed on or near head surface | |
Laakso et al. | Electric fields of motor and frontal tDCS in a standard brain space: a computer simulation study | |
Richter et al. | Optimal coil orientation for transcranial magnetic stimulation | |
Wagner et al. | Three-dimensional head model simulation of transcranial magnetic stimulation | |
JP6668235B2 (ja) | 多部位経頭蓋電流刺激、コンピュータ可読媒体、およびコンピュータプログラムの構成を最適化する方法およびシステム | |
Dannhauer et al. | A pipeline for the simulation of transcranial direct current stimulation for realistic human head models using SCIRun/BioMesh3D | |
Lee et al. | Electric field model of transcranial electric stimulation in nonhuman primates: correspondence to individual motor threshold | |
Toschi et al. | A reconstruction of the conductive phenomena elicited by transcranial magnetic stimulation in heterogeneous brain tissue | |
Lee et al. | Minimum electric field exposure for seizure induction with electroconvulsive therapy and magnetic seizure therapy | |
Bangera et al. | Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution | |
Rampersad et al. | Single-layer skull approximations perform well in transcranial direct current stimulation modeling | |
Toschi et al. | Transcranial magnetic stimulation in heterogeneous brain tissue: clinical impact on focality, reproducibility and true sham stimulation | |
Richter | Robotized transcranial magnetic stimulation | |
Lee et al. | Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study | |
Gasca et al. | Simulation of a conductive shield plate for the focalization of transcranial magnetic stimulation in the rat | |
Yang et al. | Electromagnetic field simulation of 3D realistic head model during transcranial magnetic stimulation | |
Xie et al. | Modelling of the electromagnetic field distributions induced by different transcranial magnetic stimulation coil configurations | |
Sabouni et al. | BRAIN initiative: Fast and parallel solver for real-time monitoring of the eddy current in the brain for TMS applications | |
Miaskowki et al. | Electromagnetic field in transcranial magnetic stimulation | |
Kenarangi et al. | Optimal positioning of TMS coil using DTI | |
Petrov | Virtual Neurostimulation: Computer-aided transcranial magnetic stimulation (TMS) guidance and dosimetry | |
Lee et al. | Analysis and design of whole-head magnetic brain stimulators: a simulation study | |
Sabouni et al. | An automated technique to determine the induced current in transcranial magnetic stimulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15749544 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015562804 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2939681 Country of ref document: CA Ref document number: 20167022185 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015749544 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15118704 Country of ref document: US Ref document number: 2015749544 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015216287 Country of ref document: AU Date of ref document: 20150206 Kind code of ref document: A |