[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015114786A1 - Light emitting apparatus - Google Patents

Light emitting apparatus Download PDF

Info

Publication number
WO2015114786A1
WO2015114786A1 PCT/JP2014/052158 JP2014052158W WO2015114786A1 WO 2015114786 A1 WO2015114786 A1 WO 2015114786A1 JP 2014052158 W JP2014052158 W JP 2014052158W WO 2015114786 A1 WO2015114786 A1 WO 2015114786A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
terminal
conductive
emitting device
layer
Prior art date
Application number
PCT/JP2014/052158
Other languages
French (fr)
Japanese (ja)
Inventor
誠 保科
田中 信介
秀隆 大峡
Original Assignee
パイオニアOledライティングデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニアOledライティングデバイス株式会社 filed Critical パイオニアOledライティングデバイス株式会社
Priority to PCT/JP2014/052158 priority Critical patent/WO2015114786A1/en
Priority to JP2015559681A priority patent/JPWO2015114786A1/en
Publication of WO2015114786A1 publication Critical patent/WO2015114786A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/05698Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/05798Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4845Details of ball bonds
    • H01L2224/48451Shape
    • H01L2224/48453Shape of the interface with the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8536Bonding interfaces of the semiconductor or solid state body
    • H01L2224/85365Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention relates to a light emitting device.
  • an organic EL element uses an organic layer as a light emitting layer, a sealing structure is required.
  • the organic EL element is sealed using a sealing member formed of glass or metal.
  • the terminal connected to an organic EL element is arrange
  • Patent Document 1 describes that a terminal of a liquid crystal display panel and a terminal of a semiconductor unit are connected through conductive particles. Specifically, the terminals of the semiconductor unit are covered with a thermosetting insulating film. The conductive particles break through this insulating coating.
  • Patent Document 2 describes that a terminal of a liquid crystal display device and an external wiring are connected through conductive particles. Specifically, the terminals of the liquid crystal display device are covered with an inorganic insulating layer. The conductive particles break through this inorganic insulating layer. In addition, as a formation method of an inorganic insulating layer, sputtering method and CVD method are illustrated.
  • Patent Document 3 describes connecting solar cells adjacent to each other using a connecting member.
  • the terminal of the photovoltaic cell and the connection member are connected using conductive particles.
  • the terminal of the photovoltaic cell is covered with the insulating layer.
  • the electroconductive particle has penetrated this insulating layer.
  • the material for the insulating layer include organic materials such as polyimide and polyamideimide, and inorganic materials such as silica and alumina.
  • methods for forming the insulating layer include painting, thermal spraying, dipping, sputtering, vapor deposition, and spraying.
  • the invention according to claim 1 is a substrate; A light emitting element formed on the substrate and having an organic layer; A terminal electrically connected to the light emitting element; A protective film covering the light emitting element and the terminal; With In the light emitting device, a conductive fiber is located on a surface of the terminal.
  • FIG. 1 is a plan view illustrating a configuration of a light emitting device according to Example 1.
  • FIG. 7 is a cross-sectional view taken along the line AA in FIG. It is a figure which shows the modification of FIG. It is a figure which shows the modification of FIG. 6 is a plan view illustrating a configuration of a light emitting device according to Example 2.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to the first embodiment.
  • the light emitting device 10 according to the present embodiment is, for example, a lighting device or a display, and includes a substrate 100, a light emitting element 102, terminals 112 and 132, and a protective film 140.
  • the light emitting element 102 is formed on the substrate 100 and has an organic layer 120.
  • the terminals 112 and 132 are formed on the substrate 100 and connected to the light emitting element 102.
  • the protective film 140 covers the light emitting element 102 and the terminals 112 and 132.
  • Conductive fibers are located on the surfaces of the terminals 112 and 132. In the example shown in this figure, the surfaces of the terminals 112 and 132 are formed of a conductive fiber layer 150 containing conductive fibers. Details will be described below.
  • the substrate 100 is a transparent substrate such as a glass substrate or a resin substrate.
  • the substrate 100 may have flexibility.
  • the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the substrate 100 may be formed of either an inorganic material or an organic material.
  • the substrate 100 is, for example, a polygon such as a rectangle.
  • the light emitting element 102 has a configuration in which the organic layer 120 is sandwiched between the first electrode 110 and the second electrode 130. At least one of the first electrode 110 and the second electrode 130 is a translucent electrode.
  • the remaining electrodes are made of, for example, a metal selected from the first group consisting of Al, Mg, Au, Ag, Pt, Sn, Zn, and In, or an alloy of a metal selected from the first group. Formed by a metal layer.
  • the material of the translucent electrode is, for example, a network using an inorganic material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), a conductive polymer such as a polythiophene derivative, or a nanowire made of silver or carbon. Electrode.
  • the first electrode 110, the organic layer 120, and the second electrode 130 are stacked on the substrate 100 in this order. It is a translucent electrode, and the second electrode 130 is an electrode that reflects light such as Al.
  • the first electrode 110 is It is an electrode that reflects light, such as Al
  • the second electrode 130 is a translucent electrode.
  • both electrodes may be translucent electrodes to form a translucent light emitting device (dual emission type).
  • the organic layer 120 has a configuration in which, for example, a hole transport layer, a light emitting layer, and an electron transport layer are stacked in this order.
  • a hole injection layer may be formed between the hole transport layer and the first electrode 110.
  • an electron injection layer may be formed between the electron transport layer and the second electrode 130.
  • the layer of the organic layer 120 may be formed by a coating method or a vapor deposition method, and a part thereof may be formed by a coating method and the rest may be formed by a vapor deposition method. Note that the organic layer 120 may be formed by a vapor deposition method using a vapor deposition material, or may be formed by an ink jet method, a printing method, or a spray method using a coating material.
  • Terminals 112 and 132 are formed on the surface of the substrate 100 where the light emitting element 102 is formed.
  • the terminal 112 is connected to the first electrode 110, and the terminal 132 is connected to the second electrode 130.
  • the organic layer 120 is not formed on a part of the first electrode 110 and serves as the terminal 112.
  • the terminal 132 has the same layer as the first electrode 110.
  • an insulating layer 160 is formed on the substrate 100.
  • the insulating layer 160 insulates the light emitting element 102.
  • the insulating layer 160 is formed before the organic layer 120 and the second electrode 130.
  • the insulating layer 160 is formed of a material such as polyimide, silicon oxide, or silicon nitride.
  • a layer for example, a metal layer
  • a material having a lower resistance than that of the first electrode 110 may be formed on the portion of the first electrode 110 that becomes the terminal 112.
  • the protective film 140 is formed using a film forming method, for example, an ALD (Atomic Layer Deposition) method or a CVD method.
  • ALD Atomic Layer Deposition
  • the protective film 140 is formed of, for example, a metal oxide film such as aluminum oxide, and the film thickness thereof is, for example, 10 nm to 200 nm, preferably 50 nm to 100 nm.
  • the protective film 140 is formed of an inorganic insulating film such as a silicon oxide film, and the thickness thereof is, for example, not less than 0.1 ⁇ m and not more than 10 ⁇ m.
  • the protective film 140 may be formed by a sputtering method.
  • the protective film 140 is formed of an insulating film such as SiO 2 or SiN.
  • the film thickness is 10 nm or more and 1000 nm or less.
  • the conductive fiber layer 150 is formed on the surface layer of the terminals 112 and 132. In the example shown in this figure, there are no other layers between the terminals 112 and 132 and the conductive fiber layer 150, and there are no other layers between the conductive fiber layer 150 and the protective film 140. Not. However, another layer may exist between the terminals 112 and 132 and the conductive fiber layer 150, or another layer may exist between the conductive fiber layer 150 and the protective film 140.
  • the thickness of the conductive fiber layer 150 is, for example, not less than 0.1 nm and not more than 500 nm.
  • FIG. 2 is a first example of an enlarged view of the terminal 112 and the conductive fiber layer 150.
  • the laminated structure of the terminal 132 and the conductive fiber layer 150 is the same as the structure shown in this figure.
  • the conductive fiber layer 150 is obtained by mixing a plurality of conductive fibers 152 in a solvent, and is formed by spin coating, slit coating, die coating, ink jetting, or the like, and then fired to form a mesh electrode. Also, patterning by a photo process can be combined.
  • the conductive fiber 152 is a nanowire made of a conductor such as metal (for example, silver) or carbon, and has a thickness of about 0.1 to 10 nm.
  • the conductive fibers 152 include nanotubes, nanoparticles, flaky graphite, and the like. Further, on the surface of the conductive fiber layer 150, a mesh is formed so that the conductive fiber 152 is folded, and unevenness of several tens to several hundreds nm is formed.
  • the conductive fiber layer 150 can also be regarded as a part of the terminals 112 and 132. For this reason, it can be said that irregularities are formed on the surfaces of the terminals 112 and 132 due to the conductive fibers 152.
  • the protective film 140 is cracked due to the unevenness. This crack is formed by heating and cooling the terminals 112 and 132. And the conductive fiber 152 is exposed from this crack. In other words, the conductive fiber 152 breaks through the protective film 140.
  • FIG. 3 is a second example of an enlarged view of the terminal 112 and the conductive fiber layer 150.
  • the laminated structure of the terminal 132 and the conductive fiber layer 150 is the same as the structure shown in this figure.
  • the conductive fiber layer 150 is formed of conductive fibers 152.
  • Such a structure can be realized, for example, by applying (for example, inkjet) a volatile solvent mixed with the conductive fibers 152.
  • the first electrode 110 and the terminal 132 are formed on the substrate 100.
  • the first electrode 110 and the terminal 132 are formed using, for example, a sputtering method.
  • the insulating layer 160 is formed between the first electrode 110 and the terminal 132.
  • the organic layer 120 is formed on the first electrode 110.
  • the second electrode 130 is formed using, for example, a sputtering method or a vapor deposition method.
  • the conductive fiber layer 150 is formed on the terminals 112 and 132.
  • the conductive fiber layer 150 is formed using a coating method such as an inkjet method.
  • the second electrode 130 may be formed after the conductive fiber layer 150 is formed.
  • the second electrode 130 is formed using, for example, a sputtering method, and the protective film 140 is formed using, for example, an ALD method or a CVD method.
  • FIG. 4 is a cross-sectional view for explaining a method of connecting the conductive member 200 to the terminal 112.
  • the conductive member 200 is a member formed of, for example, a lead frame, and connects the light emitting device 10 to the circuit board. For example, at least a part of the control circuit of the light emitting device 10 is formed on the circuit board.
  • the terminal 112 and the conductive member 200 are connected using the conductive adhesive layer 300.
  • the conductive adhesive layer 300 has a conductive member 310.
  • the conductive member 310 (for example, conductive particles) included in the conductive adhesive layer 300 penetrates the protective film 140 and connects the terminal 112 and the conductive member 200. At this time, the terminal 112 is electrically connected to the conductive member 310 via the conductive fiber 152.
  • the conductive member 310 easily breaks through the protective film 140.
  • the light emitting element 102 is sealed by the protective film 140. Since the protective film 140 is formed using a film formation method, the terminals 112 and 132 of the light emitting element 102 are also covered with the protective film 140. Here, the conductive fibers 152 are located on the surfaces of the terminals 112 and 132. For this reason, the portion of the protective film 140 located above the terminals 112 and 132 is likely to crack. When the protective film 140 is cracked, the conductive member 310 easily breaks through the protective film 140. Therefore, it becomes easy to connect the conductive member 200 and the first electrode 110 using the conductive adhesive layer 300. The same applies to the connection between the conductive member 200 and the second electrode 130.
  • FIG. 5 is a cross-sectional view showing the configuration of the light emitting device 10 according to the second embodiment, and corresponds to FIG. 4 in the first embodiment.
  • the light emitting device 10 according to the present embodiment has the same configuration as the light emitting device 10 according to the first embodiment, except that the bonding wire 210 is used instead of the conductive member 200 and the conductive adhesive layer 300. .
  • the bonding wire 210 is connected to the terminals 112 and 132 using, for example, an ultrasonic vibration method.
  • a portion of the protective film 140 located above the terminals 112 and 132 is cracked.
  • a portion of the bonding wire 210 melted by frictional heat penetrates into the crack in the protective film 140 and is connected to the terminals 112 and 132.
  • portions of the protective film 140 located on the terminals 112 and 132 may be removed. In this case, the connection area between the bonding wire 210 and the terminals 112 and 132 is increased.
  • the conductive fibers 152 are located on the surfaces of the terminals 112 and 132, the portion of the protective film 140 located above the terminals 112 and 132 is likely to crack. For this reason, the bonding wire 210 is easily connected to the terminals 112 and 132.
  • FIG. 6 is a plan view illustrating the configuration of the light emitting device 10 according to the first embodiment.
  • FIG. 7 is a cross-sectional view taken along the line AA in FIG.
  • the second electrode 130, the protective film 140, the conductive member 200, the conductive adhesive layer 300, the conductive member 310, and the terminal 132 are omitted for illustration, but these configurations are implemented. It is the same as the form.
  • the light emitting device 10 has a plurality of light emitting elements 102.
  • An insulating layer 160 is formed between the adjacent light emitting elements 102.
  • a terminal 112 is formed for each of the plurality of light emitting elements 102.
  • the plurality of terminals 112 are arranged on the edge of the substrate 100 side by side.
  • a conductive fiber 152 is disposed on each of the plurality of terminals 112. As shown in FIG. 7, the conductive adhesive layer 300 is formed across the plurality of terminals 112.
  • the terminal 112 has a configuration in which a layer 113 made of the same material as the first electrode 110 and a layer 111 made of a material (for example, metal) having a lower resistance than this layer are laminated in this order. .
  • the terminal 132 has the same configuration.
  • the method of connecting the conductive member 200 to the terminal 132 is also as described with reference to FIGS.
  • one conductive member 200 is connected to the plurality of terminals 112.
  • the plurality of terminals 112 may be connected to different conductive members 200.
  • the conductive fiber layer 150 having the conductive fibers 152 may be formed across the plurality of terminals 112.
  • the conductive fibers 152 are located on the surface layers of the terminals 112 and 132. For this reason, the portion of the protective film 140 located above the terminals 112 and 132 is likely to crack. For this reason, the conductive member 310 easily breaks through the protective film 140. Therefore, it becomes easy to connect the conductive member 200 and the first electrode 110 using the conductive adhesive layer 300.
  • the bonding wire 210 shown in the second embodiment may be used instead of the conductive adhesive layer 300 and the conductive member 200.
  • the conductive fiber layer 150 may be formed of only the conductive fibers 152.
  • FIG. 10 is a plan view illustrating a configuration of the light emitting device 10 according to the second embodiment, and corresponds to FIG. 6 in the first embodiment.
  • the light emitting device 10 is a display and has a plurality of light emitting elements 102 arranged in a matrix.
  • the plurality of first electrodes 110 extend in parallel to each other, and the plurality of second electrodes 130 extend in a direction parallel to each other and intersecting the first electrode 110 (for example, a direction orthogonal to each other). ing.
  • a light emitting element 102 is formed at each intersection of the first electrode 110 and the second electrode 130.
  • the insulating layer 160 is formed over the plurality of first electrodes 110.
  • An opening is formed in a portion of the insulating layer 160 located at the intersection of the first electrode 110 and the second electrode 130.
  • An organic layer 120 is provided in the opening.
  • the terminal 112 is provided on each of the plurality of first electrodes 110, and the terminal 132 is provided on each of the plurality of second electrodes 130.
  • the plurality of terminals 112 and 132 are all disposed along the edge of the substrate 100. In the example shown in this drawing, the plurality of terminals 112 and 132 are all disposed along the same side of the substrate 100. However, the terminal 112 and the terminal 132 may be disposed along different sides of the substrate 100.
  • the conductive fiber 152 is disposed on the plurality of terminals 112 and 132.
  • the arrangement of the conductive fiber layer 150 including the conductive fibers 152 is the same as that in the example shown in FIG.
  • the conductive fibers 152 are located on the surfaces of the terminals 112 and 132. Therefore, it becomes easy to connect the conductive member 200 and the first electrode 110 using the conductive adhesive layer 300.
  • the bonding wire 210 shown in the second embodiment may be used instead of the conductive adhesive layer 300 and the conductive member 200.
  • the conductive fiber layer 150 may be formed of only the conductive fibers 152.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A light emitting apparatus (10) is provided with a substrate (100), a light emitting element (102), terminals (112, 132), and a protection film (140). The light emitting element (102) is formed on the substrate (100), and has an organic layer (120). The terminals (112, 132) are formed on the substrate (100), and are connected to the light emitting element (102). The light emitting element (102) and the terminals (112, 132) are covered with the protection film (140). On each of the surfaces of the terminals (112, 132), a conductive fiber is positioned. For instance, each of the surfaces of the terminals (112, 132) is formed of a conductive fiber layer (150) containing the conductive fiber.

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 近年は、有機EL素子を光源として利用した発光装置の開発が進んでいる。有機EL素子は、発光層として有機層を用いているため、封止構造が必要になっている。一般的には、有機EL素子は、ガラスや金属などで形成された封止部材を用いて封止されている。そして、有機EL素子に接続する端子は、この封止部材の外部に配置されている。 In recent years, development of light-emitting devices using organic EL elements as light sources has been progressing. Since an organic EL element uses an organic layer as a light emitting layer, a sealing structure is required. Generally, the organic EL element is sealed using a sealing member formed of glass or metal. And the terminal connected to an organic EL element is arrange | positioned outside this sealing member.
 なお、特許文献1には、液晶表示パネルの端子と半導体ユニットの端子とを、導電粒子を介して接続させることが記載されている。詳細には、半導体ユニットの端子は、熱硬化性の絶縁被膜で覆われている。そして導電粒子は、この絶縁被膜を突き破っている。 Note that Patent Document 1 describes that a terminal of a liquid crystal display panel and a terminal of a semiconductor unit are connected through conductive particles. Specifically, the terminals of the semiconductor unit are covered with a thermosetting insulating film. The conductive particles break through this insulating coating.
 また特許文献2には、液晶表示装置の端子と外部配線とを、導電粒子を介して接続させることが記載されている。詳細には、液晶表示装置の端子は、無機絶縁層で覆われている。そして導電粒子は、この無機絶縁層を突き破っている。なお、無機絶縁層の形成方法としては、スパッタリング法及びCVD法が例示されている。 Patent Document 2 describes that a terminal of a liquid crystal display device and an external wiring are connected through conductive particles. Specifically, the terminals of the liquid crystal display device are covered with an inorganic insulating layer. The conductive particles break through this inorganic insulating layer. In addition, as a formation method of an inorganic insulating layer, sputtering method and CVD method are illustrated.
 さらに特許文献3には、互いに隣り合う太陽電池セルを、接続部材を用いて接続することが記載されている。ここで、太陽電池セルの端子と接続部材は、導電性粒子を用いて接続されている。詳細には、太陽電池セルの端子は、絶縁層で覆われている。そして導電性粒子は、この絶縁層を突き破っている。なお、絶縁層の材料としては、ポリイミドやポリアミドイミドなどの有機材料、及びシリカやアルミナなどの無機材料が例示されている。そして絶縁層の形成方法としては、塗装、溶射、ディッピング、スパッタリング、蒸着、スプレー法などが例示されている。 Furthermore, Patent Document 3 describes connecting solar cells adjacent to each other using a connecting member. Here, the terminal of the photovoltaic cell and the connection member are connected using conductive particles. In detail, the terminal of the photovoltaic cell is covered with the insulating layer. And the electroconductive particle has penetrated this insulating layer. Examples of the material for the insulating layer include organic materials such as polyimide and polyamideimide, and inorganic materials such as silica and alumina. Examples of methods for forming the insulating layer include painting, thermal spraying, dipping, sputtering, vapor deposition, and spraying.
特開平5-174890号公報JP-A-5-174890 特開2002-116455号公報JP 2002-116455 A 特開2009-302327号公報JP 2009-302327 A
 近年は、絶縁膜を成膜することにより有機EL素子を封止することが検討されている。絶縁膜を成膜する場合、有機EL素子の端子の上にも絶縁膜が形成されてしまう。このため、端子を外部配線などの導通部材に接続するためには、工夫が必要になる。 Recently, it has been studied to seal an organic EL element by forming an insulating film. In the case where an insulating film is formed, the insulating film is also formed on the terminal of the organic EL element. For this reason, in order to connect a terminal to conduction members, such as external wiring, a device is needed.
 本発明が解決しようとする課題としては、絶縁膜を成膜することにより有機EL素子を封止する場合において、端子を外部配線などの導通部材に接続しやすくすることが一例として挙げられる。 As an example of the problem to be solved by the present invention, when an organic EL element is sealed by forming an insulating film, it is easy to connect a terminal to a conductive member such as an external wiring.
 請求項1に記載の発明は、基板と、
 前記基板に形成され、有機層を有する発光素子と、
 前記発光素子に電気的に接続する端子と、
 前記発光素子及び前記端子を覆う保護膜と、
を備え、
 前記端子の表面には導電繊維が位置している発光装置である。
The invention according to claim 1 is a substrate;
A light emitting element formed on the substrate and having an organic layer;
A terminal electrically connected to the light emitting element;
A protective film covering the light emitting element and the terminal;
With
In the light emitting device, a conductive fiber is located on a surface of the terminal.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on 1st Embodiment. 端子及び導電繊維層の拡大図の第1例である。It is a 1st example of the enlarged view of a terminal and a conductive fiber layer. 端子及び導電繊維層の拡大図の第2例である。It is a 2nd example of the enlarged view of a terminal and a conductive fiber layer. 端子に導電部材を接続する方法を説明するための断面図である。It is sectional drawing for demonstrating the method of connecting a conductive member to a terminal. 第2の実施形態に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on 2nd Embodiment. 実施例1に係る発光装置の構成を示す平面図である。1 is a plan view illustrating a configuration of a light emitting device according to Example 1. FIG. 図6のA-A断面図である。FIG. 7 is a cross-sectional view taken along the line AA in FIG. 図7の変形例を示す図である。It is a figure which shows the modification of FIG. 図7の変形例を示す図である。It is a figure which shows the modification of FIG. 実施例2に係る発光装置の構成を示す平面図である。6 is a plan view illustrating a configuration of a light emitting device according to Example 2. FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施形態)
 図1は、第1の実施形態に係る発光装置10の構成を示す断面図である。本実施形態に係る発光装置10は、例えば照明装置やディスプレイであり、基板100、発光素子102、端子112,132、及び保護膜140を備えている。発光素子102は基板100に形成されており、有機層120を有している。端子112,132は基板100に形成されており、発光素子102に接続している。保護膜140は発光素子102及び端子112,132を覆っている。そして、端子112,132の表面には、導電繊維が位置している。本図に示す例では、端子112,132の表面は、導電繊維を含む導電繊維層150で形成されている。以下、詳細に説明する。
(First embodiment)
FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device 10 according to the first embodiment. The light emitting device 10 according to the present embodiment is, for example, a lighting device or a display, and includes a substrate 100, a light emitting element 102, terminals 112 and 132, and a protective film 140. The light emitting element 102 is formed on the substrate 100 and has an organic layer 120. The terminals 112 and 132 are formed on the substrate 100 and connected to the light emitting element 102. The protective film 140 covers the light emitting element 102 and the terminals 112 and 132. Conductive fibers are located on the surfaces of the terminals 112 and 132. In the example shown in this figure, the surfaces of the terminals 112 and 132 are formed of a conductive fiber layer 150 containing conductive fibers. Details will be described below.
 基板100は、たとえばガラス基板や樹脂基板などの透明基板である。基板100は、可撓性を有していてもよい。この場合、基板100の厚さは、例えば10μm以上1000μm以下である。この場合においても、基板100は無機材料及び有機材料のいずれで形成されていてもよい。基板100は、例えば矩形などの多角形である。 The substrate 100 is a transparent substrate such as a glass substrate or a resin substrate. The substrate 100 may have flexibility. In this case, the thickness of the substrate 100 is, for example, not less than 10 μm and not more than 1000 μm. Also in this case, the substrate 100 may be formed of either an inorganic material or an organic material. The substrate 100 is, for example, a polygon such as a rectangle.
 発光素子102は、第1電極110と第2電極130の間に有機層120を挟んだ構成を有している。第1電極110及び第2電極130のうち少なくとも一方は透光性の電極になっている。また、残りの電極は、例えばAl、Mg、Au、Ag、Pt、Sn、Zn、及びInからなる第1群の中から選択される金属、又はこの第1群から選択される金属の合金からなる金属層によって形成されている。透光性の電極の材料は、例えば、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)等の無機材料、またはポリチオフェン誘導体などの導電性高分子、又は銀もしくは炭素からなるナノワイヤを利用した網目状電極である。例えば、ボトムエミッション型の発光素子102であって、基板100の上に第1電極110、有機層120、及び第2電極130をこの順に積層した構成を有している場合、第1電極110は透光性の電極になっており、第2電極130は、Alなど光を反射する電極になっている。また、トップエミッション型の発光素子102であって、基板100の上に第1電極110、有機層120、及び第2電極130をこの順に積層した構成を有している場合、第1電極110はAlなど光を反射する電極になっており、第2電極130は透光性の電極になっている。また、両方の電極(第1電極110、第2電極130)を透光性の電極として、透光型の発光装置としても良い(デュアルエミッション型)。 The light emitting element 102 has a configuration in which the organic layer 120 is sandwiched between the first electrode 110 and the second electrode 130. At least one of the first electrode 110 and the second electrode 130 is a translucent electrode. The remaining electrodes are made of, for example, a metal selected from the first group consisting of Al, Mg, Au, Ag, Pt, Sn, Zn, and In, or an alloy of a metal selected from the first group. Formed by a metal layer. The material of the translucent electrode is, for example, a network using an inorganic material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), a conductive polymer such as a polythiophene derivative, or a nanowire made of silver or carbon. Electrode. For example, in the case of the bottom emission type light emitting element 102, the first electrode 110, the organic layer 120, and the second electrode 130 are stacked on the substrate 100 in this order. It is a translucent electrode, and the second electrode 130 is an electrode that reflects light such as Al. Further, in the case of the top emission type light emitting element 102 having a configuration in which the first electrode 110, the organic layer 120, and the second electrode 130 are stacked in this order on the substrate 100, the first electrode 110 is It is an electrode that reflects light, such as Al, and the second electrode 130 is a translucent electrode. Alternatively, both electrodes (the first electrode 110 and the second electrode 130) may be translucent electrodes to form a translucent light emitting device (dual emission type).
 有機層120は、例えば、正孔輸送層、発光層、及び電子輸送層をこの順に積層させた構成を有している。正孔輸送層と第1電極110の間に正孔注入層が形成されていてもよい。また、電子輸送層と第2電極130の間に電子注入層が形成されていてもよい。有機層120の層は、塗布法によって形成されても蒸着法によって形成されてもよく、一部を塗布法、残りを蒸着法で形成しても良い。なお、有機層120は蒸着材料を用いて蒸着法で形成してもよく、また、塗布材料を用いて、インクジェット法、印刷法、スプレー法で形成してもよい。 The organic layer 120 has a configuration in which, for example, a hole transport layer, a light emitting layer, and an electron transport layer are stacked in this order. A hole injection layer may be formed between the hole transport layer and the first electrode 110. In addition, an electron injection layer may be formed between the electron transport layer and the second electrode 130. The layer of the organic layer 120 may be formed by a coating method or a vapor deposition method, and a part thereof may be formed by a coating method and the rest may be formed by a vapor deposition method. Note that the organic layer 120 may be formed by a vapor deposition method using a vapor deposition material, or may be formed by an ink jet method, a printing method, or a spray method using a coating material.
 基板100のうち発光素子102が形成されている面には、端子112,132が形成されている。端子112は第1電極110に接続しており、端子132は第2電極130に接続している。詳細には、第1電極110の一部の上には、有機層120が形成されておらず、端子112となっている。また端子132は、第1電極110と同一の層を有している。なお、基板100には、絶縁層160が形成されている。絶縁層160は、発光素子102を絶縁区画している。絶縁層160は、有機層120及び第2電極130より前に形成されている。絶縁層160は、ポリイミドや酸化珪素、窒化珪素などの材料で形成されている。 Terminals 112 and 132 are formed on the surface of the substrate 100 where the light emitting element 102 is formed. The terminal 112 is connected to the first electrode 110, and the terminal 132 is connected to the second electrode 130. Specifically, the organic layer 120 is not formed on a part of the first electrode 110 and serves as the terminal 112. The terminal 132 has the same layer as the first electrode 110. Note that an insulating layer 160 is formed on the substrate 100. The insulating layer 160 insulates the light emitting element 102. The insulating layer 160 is formed before the organic layer 120 and the second electrode 130. The insulating layer 160 is formed of a material such as polyimide, silicon oxide, or silicon nitride.
 なお、第1電極110のうち端子112となる部分の上には、第1電極110よりも低抵抗な材料の層(例えば金属層)が形成されていてもよい。 Note that a layer (for example, a metal layer) of a material having a lower resistance than that of the first electrode 110 may be formed on the portion of the first electrode 110 that becomes the terminal 112.
 保護膜140は、成膜法、例えばALD(Atomic Layer Deposition)法又はCVD法を用いて形成されている。ALD法で形成されている場合、保護膜140は、例えば酸化アルミニウムなどの酸化金属膜によって形成されており、その膜厚は、例えば10nm以上200nm以下、好ましくは、50nm以上100nm以下である。CVD法で形成されている場合、保護膜140は、酸化シリコン膜などの無機絶縁膜によって形成されており、その膜厚は、例えば0.1μm以上10μm以下である。保護膜140が設けられることにより、発光素子102は水分等から保護される。保護膜140は、スパッタリング法で形成されても良い。この場合、保護膜140は、SiO又はSiNなどの絶縁膜によって形成される。その場合、膜厚は10nm以上1000nm以下である。 The protective film 140 is formed using a film forming method, for example, an ALD (Atomic Layer Deposition) method or a CVD method. When formed by the ALD method, the protective film 140 is formed of, for example, a metal oxide film such as aluminum oxide, and the film thickness thereof is, for example, 10 nm to 200 nm, preferably 50 nm to 100 nm. When formed by the CVD method, the protective film 140 is formed of an inorganic insulating film such as a silicon oxide film, and the thickness thereof is, for example, not less than 0.1 μm and not more than 10 μm. By providing the protective film 140, the light-emitting element 102 is protected from moisture and the like. The protective film 140 may be formed by a sputtering method. In this case, the protective film 140 is formed of an insulating film such as SiO 2 or SiN. In that case, the film thickness is 10 nm or more and 1000 nm or less.
 そして、端子112,132の表層には、導電繊維層150が形成されている。本図に示す例では、端子112,132と導電繊維層150の間には他の層は存在しておらず、また、導電繊維層150と保護膜140の間にも他の層は存在していない。ただし、端子112,132と導電繊維層150の間に他の層が存在していてもよいし、導電繊維層150と保護膜140の間に他の層が存在していてもよい。導電繊維層150の厚さは、例えば0.1nm以上500nm以下である。 The conductive fiber layer 150 is formed on the surface layer of the terminals 112 and 132. In the example shown in this figure, there are no other layers between the terminals 112 and 132 and the conductive fiber layer 150, and there are no other layers between the conductive fiber layer 150 and the protective film 140. Not. However, another layer may exist between the terminals 112 and 132 and the conductive fiber layer 150, or another layer may exist between the conductive fiber layer 150 and the protective film 140. The thickness of the conductive fiber layer 150 is, for example, not less than 0.1 nm and not more than 500 nm.
 図2は、端子112及び導電繊維層150の拡大図の第1例である。端子132及び導電繊維層150の積層構造も、本図に示す構造と同様である。導電繊維層150は、溶媒中に複数の導電繊維152を混ぜたものであり、スピンコート、スリットコート、ダイコート、インクジェットなどにより成膜したのち、焼成することで網目状電極を形成する。また、フォトプロセスによるパターニングを組み合わせることもできる。導電繊維152は、例えば金属(例えば銀)や炭素などの導電体からなるナノワイヤであり、太さは0.1から10nm程度である。導電繊維152として、ナノワイヤの他に、ナノチューブ、ナノパーティクル、フレーク状のグラファイトなどがある。そして、導電繊維層150の表面には、導電繊維152折り重なるように網目を形成して、数十~数百nmの凹凸が形成されている。導電繊維層150は、端子112,132の一部とみなすこともできる。このため、端子112,132の表面には、導電繊維152に起因して凹凸が形成されている、ということもできる。そして、保護膜140には、この凹凸に起因してクラックが形成されている。このクラックは、端子112,132を加熱及び冷却することにより、形成される。そして、このクラックから、導電繊維152が露出している。言い換えると、導電繊維152は、保護膜140を突き破っている。 FIG. 2 is a first example of an enlarged view of the terminal 112 and the conductive fiber layer 150. The laminated structure of the terminal 132 and the conductive fiber layer 150 is the same as the structure shown in this figure. The conductive fiber layer 150 is obtained by mixing a plurality of conductive fibers 152 in a solvent, and is formed by spin coating, slit coating, die coating, ink jetting, or the like, and then fired to form a mesh electrode. Also, patterning by a photo process can be combined. The conductive fiber 152 is a nanowire made of a conductor such as metal (for example, silver) or carbon, and has a thickness of about 0.1 to 10 nm. In addition to nanowires, the conductive fibers 152 include nanotubes, nanoparticles, flaky graphite, and the like. Further, on the surface of the conductive fiber layer 150, a mesh is formed so that the conductive fiber 152 is folded, and unevenness of several tens to several hundreds nm is formed. The conductive fiber layer 150 can also be regarded as a part of the terminals 112 and 132. For this reason, it can be said that irregularities are formed on the surfaces of the terminals 112 and 132 due to the conductive fibers 152. The protective film 140 is cracked due to the unevenness. This crack is formed by heating and cooling the terminals 112 and 132. And the conductive fiber 152 is exposed from this crack. In other words, the conductive fiber 152 breaks through the protective film 140.
 図3は、端子112及び導電繊維層150の拡大図の第2例である。端子132及び導電繊維層150の積層構造も、本図に示す構造と同様である。本図に示す例において、導電繊維層150は、導電繊維152によって形成されている。このような構造は、例えば導電繊維152が混入された揮発性の溶媒を塗布(例えばインクジェット)することにより、実現できる。 FIG. 3 is a second example of an enlarged view of the terminal 112 and the conductive fiber layer 150. The laminated structure of the terminal 132 and the conductive fiber layer 150 is the same as the structure shown in this figure. In the example shown in this drawing, the conductive fiber layer 150 is formed of conductive fibers 152. Such a structure can be realized, for example, by applying (for example, inkjet) a volatile solvent mixed with the conductive fibers 152.
 次に、発光装置10の製造方法について説明する。まず、基板100上に第1電極110及び端子132を形成する。第1電極110及び端子132は、例えばスパッタリング法を用いて形成される。次いで、第1電極110と端子132の間に絶縁層160を形成する。次いで、第1電極110上に有機層120を形成する。さらに、第2電極130を、例えばスパッタリング法又は蒸着法を用いて形成する。 Next, a method for manufacturing the light emitting device 10 will be described. First, the first electrode 110 and the terminal 132 are formed on the substrate 100. The first electrode 110 and the terminal 132 are formed using, for example, a sputtering method. Next, the insulating layer 160 is formed between the first electrode 110 and the terminal 132. Next, the organic layer 120 is formed on the first electrode 110. Further, the second electrode 130 is formed using, for example, a sputtering method or a vapor deposition method.
 次いで、端子112,132の上に、導電繊維層150を形成する。導電繊維層150は、例えばインクジェット法などの塗布法を用いて形成される。なお、第2電極130は、導電繊維層150を形成した後に形成されても良い。 Next, the conductive fiber layer 150 is formed on the terminals 112 and 132. The conductive fiber layer 150 is formed using a coating method such as an inkjet method. The second electrode 130 may be formed after the conductive fiber layer 150 is formed.
 次いで、保護膜140を形成する。第2電極130は、例えばスパッタリング法を用いて形成され、保護膜140は、例えばALD法又はCVD法を用いて形成される。 Next, the protective film 140 is formed. The second electrode 130 is formed using, for example, a sputtering method, and the protective film 140 is formed using, for example, an ALD method or a CVD method.
 図4は、端子112に導電部材200を接続する方法を説明するための断面図である。導電部材200は、例えばリードフレームで形成された部材であり、発光装置10を回路基板に接続している。この回路基板には、例えば発光装置10の制御回路の少なくとも一部が形成されている。そして、端子112と導電部材200は、導電性接着層300を用いて接続されている。導電性接着層300は、導通部材310を有している。 FIG. 4 is a cross-sectional view for explaining a method of connecting the conductive member 200 to the terminal 112. The conductive member 200 is a member formed of, for example, a lead frame, and connects the light emitting device 10 to the circuit board. For example, at least a part of the control circuit of the light emitting device 10 is formed on the circuit board. The terminal 112 and the conductive member 200 are connected using the conductive adhesive layer 300. The conductive adhesive layer 300 has a conductive member 310.
 上記したように、保護膜140のうち端子112の上に位置する部分には、クラックが形成されている。導電性接着層300を用いる場合、導電性接着層300に含まれる導通部材310(例えば導電粒子)が保護膜140を突き破り、端子112と導電部材200を接続する。このとき、端子112は、導電繊維152を介して導通部材310に導通する。ここで保護膜140にはクラックが入っているため、導通部材310が保護膜140を突き破りやすくなる。 As described above, cracks are formed in the portion of the protective film 140 located on the terminal 112. When the conductive adhesive layer 300 is used, the conductive member 310 (for example, conductive particles) included in the conductive adhesive layer 300 penetrates the protective film 140 and connects the terminal 112 and the conductive member 200. At this time, the terminal 112 is electrically connected to the conductive member 310 via the conductive fiber 152. Here, since the protective film 140 is cracked, the conductive member 310 easily breaks through the protective film 140.
 なお、図4を用いて説明した内容は、端子132にもあてはまる。 It should be noted that the contents described with reference to FIG.
 以上、本実施形態によれば、発光素子102は保護膜140によって封止されている。保護膜140は成膜法を用いて形成されるため、発光素子102の端子112,132も保護膜140で覆われる。ここで、端子112,132の表面には導電繊維152が位置している。このため、保護膜140のうち端子112,132の上に位置する部分にはクラックが入りやすい。保護膜140にクラックが入ると、導通部材310が保護膜140を突き破りやすくなる。従って、導電性接着層300を用いて導電部材200と第1電極110とを接続しやすくなる。導電部材200と第2電極130との接続についても同様である。 As described above, according to the present embodiment, the light emitting element 102 is sealed by the protective film 140. Since the protective film 140 is formed using a film formation method, the terminals 112 and 132 of the light emitting element 102 are also covered with the protective film 140. Here, the conductive fibers 152 are located on the surfaces of the terminals 112 and 132. For this reason, the portion of the protective film 140 located above the terminals 112 and 132 is likely to crack. When the protective film 140 is cracked, the conductive member 310 easily breaks through the protective film 140. Therefore, it becomes easy to connect the conductive member 200 and the first electrode 110 using the conductive adhesive layer 300. The same applies to the connection between the conductive member 200 and the second electrode 130.
(第2の実施形態)
 図5は、第2の実施形態に係る発光装置10の構成を示す断面図であり、第1の実施形態における図4に対応している。本実施形態に係る発光装置10は、導電部材200及び導電性接着層300の代わりにボンディングワイヤ210を用いている点を除いて、第1の実施形態に係る発光装置10と同様の構成である。
(Second Embodiment)
FIG. 5 is a cross-sectional view showing the configuration of the light emitting device 10 according to the second embodiment, and corresponds to FIG. 4 in the first embodiment. The light emitting device 10 according to the present embodiment has the same configuration as the light emitting device 10 according to the first embodiment, except that the bonding wire 210 is used instead of the conductive member 200 and the conductive adhesive layer 300. .
 ボンディングワイヤ210は、例えば超音波振動法を用いて端子112,132に接続される。ここで、保護膜140のうち端子112,132の上に位置する部分にはクラックが入っている。このため、ボンディングワイヤ210のうち摩擦熱で溶融した部分は保護膜140内のクラックに浸透し、端子112,132に接続する。また、超音波振動の際に、保護膜140のうち端子112,132の上に位置する部分は、除去されることもある。この場合、ボンディングワイヤ210と端子112,132の接続面積は広くなる。 The bonding wire 210 is connected to the terminals 112 and 132 using, for example, an ultrasonic vibration method. Here, a portion of the protective film 140 located above the terminals 112 and 132 is cracked. For this reason, a portion of the bonding wire 210 melted by frictional heat penetrates into the crack in the protective film 140 and is connected to the terminals 112 and 132. In addition, during the ultrasonic vibration, portions of the protective film 140 located on the terminals 112 and 132 may be removed. In this case, the connection area between the bonding wire 210 and the terminals 112 and 132 is increased.
 本実施形態によっても、端子112,132の表面には導電繊維152が位置しているため、保護膜140のうち端子112,132の上に位置する部分にはクラックが入りやすい。このため、ボンディングワイヤ210は端子112,132に接続しやすくなる。 Also in this embodiment, since the conductive fibers 152 are located on the surfaces of the terminals 112 and 132, the portion of the protective film 140 located above the terminals 112 and 132 is likely to crack. For this reason, the bonding wire 210 is easily connected to the terminals 112 and 132.
(実施例1)
 図6は、実施例1に係る発光装置10の構成を示す平面図である。図7は図6のA-A断面図である。なお、図6では、説明のため、第2電極130、保護膜140、導電部材200、導電性接着層300、導通部材310、及び端子132の図示を省略しているが、これらの構成は実施形態と同様である。
Example 1
FIG. 6 is a plan view illustrating the configuration of the light emitting device 10 according to the first embodiment. FIG. 7 is a cross-sectional view taken along the line AA in FIG. In FIG. 6, the second electrode 130, the protective film 140, the conductive member 200, the conductive adhesive layer 300, the conductive member 310, and the terminal 132 are omitted for illustration, but these configurations are implemented. It is the same as the form.
 本実施例において、発光装置10は複数の発光素子102を有している。隣り合う発光素子102の間には、絶縁層160が形成されている。そして、複数の発光素子102のそれぞれに対して端子112が形成されている。複数の端子112は、互いに並んで、基板100の縁に配置されている。そして、複数の端子112のそれぞれの上に、導電繊維152が配置されている。そして、図7に示すように、導電性接着層300は、複数の端子112に跨って形成されている。 In this embodiment, the light emitting device 10 has a plurality of light emitting elements 102. An insulating layer 160 is formed between the adjacent light emitting elements 102. A terminal 112 is formed for each of the plurality of light emitting elements 102. The plurality of terminals 112 are arranged on the edge of the substrate 100 side by side. A conductive fiber 152 is disposed on each of the plurality of terminals 112. As shown in FIG. 7, the conductive adhesive layer 300 is formed across the plurality of terminals 112.
 また、端子112は、第1電極110と同一の材料から形成されている層113と、この層よりも低抵抗な材料(例えば金属)からなる層111をこの順に積層した構成を有している。端子132も、同様の構成を有している。 The terminal 112 has a configuration in which a layer 113 made of the same material as the first electrode 110 and a layer 111 made of a material (for example, metal) having a lower resistance than this layer are laminated in this order. . The terminal 132 has the same configuration.
 なお、端子132に導電部材200を接続する方法も、図2及び図3を用いて説明した通りである。 The method of connecting the conductive member 200 to the terminal 132 is also as described with reference to FIGS.
 図7に示す例では、複数の端子112には一つの導電部材200が接続されている。ただし、図8に示すように、複数の端子112は、互いに異なる導電部材200に接続していてもよい。 In the example shown in FIG. 7, one conductive member 200 is connected to the plurality of terminals 112. However, as shown in FIG. 8, the plurality of terminals 112 may be connected to different conductive members 200.
 また、図9に示すように、導電繊維152を有する導電繊維層150は、複数の端子112に跨って形成されていてもよい。 Further, as shown in FIG. 9, the conductive fiber layer 150 having the conductive fibers 152 may be formed across the plurality of terminals 112.
 本実施例によっても、端子112,132の表層には、導電繊維152が位置している。このため、保護膜140のうち端子112,132の上に位置する部分にはクラックが入りやすい。このため、導通部材310が保護膜140を突き破りやすくなる。従って、導電性接着層300を用いて導電部材200と第1電極110とを接続しやすくなる。 Also in this embodiment, the conductive fibers 152 are located on the surface layers of the terminals 112 and 132. For this reason, the portion of the protective film 140 located above the terminals 112 and 132 is likely to crack. For this reason, the conductive member 310 easily breaks through the protective film 140. Therefore, it becomes easy to connect the conductive member 200 and the first electrode 110 using the conductive adhesive layer 300.
 なお、本実施例において、導電性接着層300及び導電部材200の代わりに、第2の実施形態に示したボンディングワイヤ210を用いても良い。また、図3と同様に、導電繊維層150は導電繊維152のみで形成されていても良い。 In this embodiment, the bonding wire 210 shown in the second embodiment may be used instead of the conductive adhesive layer 300 and the conductive member 200. Similarly to FIG. 3, the conductive fiber layer 150 may be formed of only the conductive fibers 152.
(実施例2)
 図10は、実施例2に係る発光装置10の構成を示す平面図であり、実施例1における図6に対応している。本実施例において、発光装置10はディスプレイであり、マトリクス状に配置された複数の発光素子102を有している。
(Example 2)
FIG. 10 is a plan view illustrating a configuration of the light emitting device 10 according to the second embodiment, and corresponds to FIG. 6 in the first embodiment. In this embodiment, the light emitting device 10 is a display and has a plurality of light emitting elements 102 arranged in a matrix.
 詳細には、複数の第1電極110が互いに平行に延在しており、かつ、複数の第2電極130が、互いに平行かつ第1電極110と交わる方向(例えば直交する方向)に延在している。そして、第1電極110と第2電極130の交点のそれぞれに、発光素子102が形成されている。具体的には、絶縁層160は、複数の第1電極110の上に跨って形成されている。絶縁層160のうち、第1電極110と第2電極130の交点に位置する部分には開口が形成されている。そして、この開口内には、有機層120が設けられている。 Specifically, the plurality of first electrodes 110 extend in parallel to each other, and the plurality of second electrodes 130 extend in a direction parallel to each other and intersecting the first electrode 110 (for example, a direction orthogonal to each other). ing. A light emitting element 102 is formed at each intersection of the first electrode 110 and the second electrode 130. Specifically, the insulating layer 160 is formed over the plurality of first electrodes 110. An opening is formed in a portion of the insulating layer 160 located at the intersection of the first electrode 110 and the second electrode 130. An organic layer 120 is provided in the opening.
 端子112は複数の第1電極110のそれぞれに設けられており、また、端子132は複数の第2電極130のそれぞれに設けられている。複数の端子112,132は、いずれも基板100の縁に沿って配置されている。本図に示す例では、複数の端子112,132は、いずれも基板100の同一の辺に沿って配置されている。ただし、端子112と端子132は、基板100のうち互いに異なる辺に沿って配置されていてもよい。 The terminal 112 is provided on each of the plurality of first electrodes 110, and the terminal 132 is provided on each of the plurality of second electrodes 130. The plurality of terminals 112 and 132 are all disposed along the edge of the substrate 100. In the example shown in this drawing, the plurality of terminals 112 and 132 are all disposed along the same side of the substrate 100. However, the terminal 112 and the terminal 132 may be disposed along different sides of the substrate 100.
 そして、複数の端子112,132の上には、導電繊維152が配置されている。本図に示す例において、導電繊維152を有する導電繊維層150の配置は図8に示した例と同様である。 The conductive fiber 152 is disposed on the plurality of terminals 112 and 132. In the example shown in this figure, the arrangement of the conductive fiber layer 150 including the conductive fibers 152 is the same as that in the example shown in FIG.
 その他の構成は、実施例1と同様である。 Other configurations are the same as those in the first embodiment.
 本実施例においても、端子112,132の表面には、導電繊維152が位置している。従って、導電性接着層300を用いて導電部材200と第1電極110とを接続しやすくなる。 Also in this embodiment, the conductive fibers 152 are located on the surfaces of the terminals 112 and 132. Therefore, it becomes easy to connect the conductive member 200 and the first electrode 110 using the conductive adhesive layer 300.
 なお、本実施例において、導電性接着層300及び導電部材200の代わりに、第2の実施形態に示したボンディングワイヤ210を用いても良い。また、図3と同様に、導電繊維層150は導電繊維152のみで形成されていても良い。 In this embodiment, the bonding wire 210 shown in the second embodiment may be used instead of the conductive adhesive layer 300 and the conductive member 200. Similarly to FIG. 3, the conductive fiber layer 150 may be formed of only the conductive fibers 152.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (7)

  1.  基板と、
     前記基板に形成され、有機層を有する発光素子と、
     前記発光素子に電気的に接続する端子と、
     前記発光素子及び前記端子を覆う保護膜と、
    を備え、
     前記端子の表面には導電繊維が位置している発光装置。
    A substrate,
    A light emitting element formed on the substrate and having an organic layer;
    A terminal electrically connected to the light emitting element;
    A protective film covering the light emitting element and the terminal;
    With
    A light emitting device in which a conductive fiber is located on a surface of the terminal.
  2.  請求項1に記載の発光装置において、
     前記保護膜は、酸化金属膜である発光装置。
    The light-emitting device according to claim 1.
    The light-emitting device, wherein the protective film is a metal oxide film.
  3.  請求項2に記載の発光装置において、
     前記端子の表面は凹凸を有しており、
     前記保護膜は、前記端子と重なる部分にクラックを有している発光装置。
    The light-emitting device according to claim 2.
    The surface of the terminal has irregularities,
    The said protective film is a light-emitting device which has a crack in the part which overlaps with the said terminal.
  4.  請求項3に記載の発光装置において、
     前記導電繊維は前記保護膜を突き破っている発光装置。
    The light emitting device according to claim 3.
    The light emitting device in which the conductive fiber breaks through the protective film.
  5.  請求項4に記載の発光装置において、
     前記保護膜の上に位置していて前記端子と重なる導電部材と、
     厚さ方向において一部が前記保護膜と重なり、前記導電部材を前記端子に接続する導電粒子と、
    を備える発光装置。
    The light-emitting device according to claim 4.
    A conductive member located on the protective film and overlapping the terminal;
    Conductive particles that partially overlap the protective film in the thickness direction and connect the conductive member to the terminals;
    A light emitting device comprising:
  6.  請求項4に記載の発光装置において、
     前記保護膜の上に位置していて前記端子に接続するボンディングワイヤを備える発光装置。
    The light-emitting device according to claim 4.
    A light emitting device comprising a bonding wire located on the protective film and connected to the terminal.
  7.  請求項5又は6に記載の発光装置において、
     前記端子は、
      導電層と、
      前記導電層の上に形成され、前記導電繊維を含む導電繊維層と、を備える発光装置。
    The light-emitting device according to claim 5 or 6,
    The terminal is
    A conductive layer;
    And a conductive fiber layer formed on the conductive layer and including the conductive fiber.
PCT/JP2014/052158 2014-01-30 2014-01-30 Light emitting apparatus WO2015114786A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/052158 WO2015114786A1 (en) 2014-01-30 2014-01-30 Light emitting apparatus
JP2015559681A JPWO2015114786A1 (en) 2014-01-30 2014-01-30 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052158 WO2015114786A1 (en) 2014-01-30 2014-01-30 Light emitting apparatus

Publications (1)

Publication Number Publication Date
WO2015114786A1 true WO2015114786A1 (en) 2015-08-06

Family

ID=53756398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052158 WO2015114786A1 (en) 2014-01-30 2014-01-30 Light emitting apparatus

Country Status (2)

Country Link
JP (1) JPWO2015114786A1 (en)
WO (1) WO2015114786A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122360A1 (en) * 2016-01-15 2017-07-20 パイオニア株式会社 Light emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193063A (en) * 2008-01-15 2009-08-27 Semiconductor Energy Lab Co Ltd Display device and electronic appliance
JP2013151644A (en) * 2005-08-12 2013-08-08 Cambrios Technologies Corp Nanowire-based transparent conductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151644A (en) * 2005-08-12 2013-08-08 Cambrios Technologies Corp Nanowire-based transparent conductor
JP2009193063A (en) * 2008-01-15 2009-08-27 Semiconductor Energy Lab Co Ltd Display device and electronic appliance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017122360A1 (en) * 2016-01-15 2017-07-20 パイオニア株式会社 Light emitting device
JPWO2017122360A1 (en) * 2016-01-15 2018-11-08 パイオニア株式会社 Light emitting device

Also Published As

Publication number Publication date
JPWO2015114786A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
CN107482042B (en) OLED display substrate, manufacturing method thereof and OLED display device
CN109301079B (en) Encapsulating structure and preparation method thereof, LED display panel
WO2015136670A1 (en) Light emitting apparatus
DE102014111345A1 (en) Optoelectronic component and method for its production
KR102378362B1 (en) Display device
US9832858B2 (en) Display device
WO2015114786A1 (en) Light emitting apparatus
KR20150136246A (en) Organic light emitting display apparatus and manufacturing the same
JP6404361B2 (en) Light emitting device
JP6595066B2 (en) Light emitting device manufacturing method and light emitting device
WO2015111130A1 (en) Light emitting apparatus
JP2015185479A (en) Light emitting device
WO2012102268A1 (en) Organic electroluminescent element and illumination device
JP7353331B2 (en) light emitting device
JP2015153740A (en) Light emitting device and method for manufacturing light emitting device
WO2017119068A1 (en) Light emitting device
WO2017163331A1 (en) Light emitting device, electronic device, and manufacturing method for light emitting device
KR102353359B1 (en) Transparent electrode and manufacturing method of the same
JP2016046141A (en) Light-emitting device
JP2016181426A (en) Light-emitting device
JP6294071B2 (en) Light emitting device
JP2018156722A (en) Organic EL panel
JP6466066B2 (en) Light emitting device
WO2017122360A1 (en) Light emitting device
JP2016178061A (en) Light emitting device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881283

Country of ref document: EP

Kind code of ref document: A1