[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015107776A1 - 酸性ガス分離用モジュール - Google Patents

酸性ガス分離用モジュール Download PDF

Info

Publication number
WO2015107776A1
WO2015107776A1 PCT/JP2014/081202 JP2014081202W WO2015107776A1 WO 2015107776 A1 WO2015107776 A1 WO 2015107776A1 JP 2014081202 W JP2014081202 W JP 2014081202W WO 2015107776 A1 WO2015107776 A1 WO 2015107776A1
Authority
WO
WIPO (PCT)
Prior art keywords
facilitated transport
gas
group
protective layer
gas separation
Prior art date
Application number
PCT/JP2014/081202
Other languages
English (en)
French (fr)
Inventor
憲一 石塚
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015107776A1 publication Critical patent/WO2015107776A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/80Block polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to an acidic gas separation module that selectively separates acidic gas from raw material gas.
  • Patent Document 1 a multilayer body including an acidic gas separation membrane is wound around a central cylinder (a central permeate collecting pipe) for collecting separated acidic gas, in which through holes are formed in a tube wall.
  • An acid gas separation module is described.
  • the acidic gas separation module disclosed in Patent Document 1 uses a so-called dissolution diffusion membrane as the acidic gas separation membrane.
  • the dissolution diffusion membrane separates the acid gas from the raw material gas by utilizing the difference in solubility between the acidic gas and the substance to be separated in the membrane and the diffusivity in the membrane.
  • Patent Document 2 discloses an aqueous solution containing a carbon dioxide carrier on a carbon dioxide permeable support as an acidic gas separation membrane (carbon dioxide separation gel membrane) for separating carbon dioxide (carbon dioxide) from a raw material gas.
  • An acid gas separation membrane is described in which a hydrogel membrane is formed by absorbing a vinyl alcohol-acrylate copolymer having a crosslinked structure.
  • This acid gas separation membrane is an acid gas separation membrane using a so-called facilitated transport membrane.
  • the facilitated transport film has a carrier that reacts with an acidic gas such as a carbon dioxide carrier in the film, and the acidic gas is separated from the source gas by transporting the acidic gas to the opposite side of the film with this carrier.
  • a so-called laminated body having an acidic gas separation membrane is wound around a central cylinder having a through-hole on a wall surface (wrapped around the central cylinder).
  • the spiral acid gas separation module can greatly increase the area of the acid gas separation membrane. Therefore, the spiral acid gas separation module can be efficiently processed and is very effective.
  • the spiral type acidic gas separation module is separated by an acidic gas separation membrane and a central tube, a supply gas flow path member that is a raw material gas flow path for separating acidic gas, and an acidic gas separation membrane.
  • a permeated gas flow path member serving as a flow path for the acidic gas thus formed is configured.
  • a spiral acidic gas separation module made of such a member is formed by laminating one or a plurality of laminated bodies in which an acidic gas separation membrane, a supply gas flow path member, and a permeate gas flow path member are laminated, It has the structure wound around the center tube.
  • JP-A-4-215824 Japanese Patent Publication No. 7-102310
  • the facilitated transport film as shown in Patent Document 2 needs to retain a large amount of moisture in the film in order to sufficiently function the carrier. Therefore, a polymer having extremely high water absorption and water retention is used for the facilitated transport film.
  • moisture is supplied to the facilitated transport film by adding moisture to the source gas.
  • the facilitated transport membrane As the content of a carrier such as a metal carbonate increases, the amount of water absorption increases and the acid gas separation performance is improved. That is, the facilitated transport film is often a very soft (low viscosity), gel film.
  • a raw material gas having a temperature of about 100 to 130 ° C.
  • the facilitated transport membrane is rubbed between the facilitated transport membrane and a member that is in contact with the facilitated transport membrane, resulting in a defect in the facilitated transport membrane.
  • rubbing occurs between the facilitated transport film and the supply gas flow path member, resulting in a defect in the facilitated transport film.
  • a protective layer is formed on the surface of the facilitated transport film so that the facilitated transport film and the supply gas flow path member are not in direct sliding contact with each other, thereby suppressing the occurrence of defects due to friction of the facilitated transport film. It is possible.
  • the acidic gas is separated, moisture is supplied to the facilitated transport membrane and the facilitated transport membrane swells, so that the facilitated transport membrane has fluidity. Since the facilitated transport film has fluidity, it is not possible to ensure sufficient adhesion between the protective layer and the facilitated transport film simply by providing a protective layer on the surface of the facilitated transport film. As a result, the protective layer cracks or flows, so that the facilitated transport film cannot be sufficiently protected, and it has been found that there is a problem in that the generation of defects in the facilitated transport film cannot be suppressed.
  • the present invention provides an acidic gas separation module that can suppress the occurrence of defects due to rubbing between the facilitated transport membrane and other members and can stably obtain a module having the intended performance. Let it be an issue.
  • the present inventors have separated the acidic gas from the raw material gas, the carrier that reacts with the acidic gas, and the facilitated transport film containing the hydrophilic compound for supporting the carrier, and the accelerated An acidic gas separation layer having a protective layer laminated on the surface of the transport membrane, and the protective layer is formed as the uppermost layer in the acidic gas separation layer, and the gas permeability coefficient of the protective layer is 500 Barrer or more.
  • the facilitated transport film has at least one selected from the group consisting of hydroxyl groups and carboxyl groups, and the protective layer is selected from the group consisting of hydroxyl groups and carboxyl groups contained in the facilitated transport film
  • the adhesion between the protective layer and the facilitated transport film is improved, resulting in friction between the facilitated transport film and the supply gas flow path member. It found to be able to suppress the occurrence of defects, thereby completing the present invention. That is, this invention provides the module for acidic gas separation of the following structures.
  • An acidic gas separation module that selectively separates an acidic gas from a raw material gas containing 0.1 mol% or more of moisture, the carrier reacting with the acidic gas and the carrier for separating the acidic gas from the raw material gas
  • an acidic gas separation layer comprising a facilitated transport film containing a hydrophilic compound for supporting a gas and a protective layer laminated on the surface of the facilitated transport film, the protective layer being the uppermost layer in the acidic gas separated layer
  • the protective layer has a gas permeability coefficient of 500 Barrer or more
  • the facilitated transport film has at least one selected from the group consisting of a hydroxyl group and a carboxyl group
  • the protective layer comprises the above-mentioned
  • An acidic gas separation module having a functional group that reacts with at least one selected from the group consisting of a hydroxyl group and a carboxyl group contained in a facilitated transport membrane.
  • a central tube having a through-hole formed in the tube wall, a supply gas flow channel member serving as a raw material gas flow channel, and a flow channel through which acidic gas that has permeated the facilitated transport film flows to the central tube.
  • a permeate gas channel member, and the supply gas channel member is laminated on the protective layer side of the acidic gas separation layer, and the permeate gas channel member is opposite to the protective layer of the acidic gas separation layer.
  • a spiral-type module in which one or more laminated bodies each having a supply gas flow path member, an acidic gas separation layer, and a permeate gas flow path member are stacked are wound around a central cylinder (1) to (5)
  • the acid gas separation module according to any one of (5).
  • an acid gas separation module that can suppress the occurrence of defects due to rubbing between the facilitated transport membrane and other members and can stably obtain a module having a target performance. Can do.
  • FIG. 4 (A) and 4 (B) are conceptual diagrams for explaining a method for producing the acid gas separation module shown in FIG. It is a conceptual diagram for demonstrating the preparation methods of the module for acidic gas separation shown in FIG. 6 (A) and 6 (B) are conceptual diagrams for explaining a method for producing the acid gas separation module shown in FIG. It is a conceptual diagram for demonstrating the preparation methods of the module for acidic gas separation shown in FIG. It is a conceptual diagram for demonstrating the preparation methods of the module for acidic gas separation shown in FIG. It is a conceptual diagram for demonstrating the preparation methods of the module for acidic gas separation shown in FIG. It is a conceptual diagram for demonstrating the preparation methods of the module for acidic gas separation shown in FIG.
  • FIG. 1 is a schematic perspective view of a partly cutout of an example of the acid gas separation module of the present invention.
  • the acid gas separation module 10 basically includes a center tube 12, a laminate 14 having an acid gas separation membrane (facilitated transport membrane 21), and a telescope prevention plate 16. Configured.
  • the acid gas separation module is also simply referred to as a separation module.
  • the separation module 10 separates the acidic gas Gc from the raw material gas G containing 1% mol or more of moisture.
  • the carbon dioxide gas is separated as the acidic gas Gc from the raw material gas G containing carbon monoxide, carbon dioxide gas (CO 2 ), water (water vapor) and hydrogen.
  • the separation module 10 of the present invention is a so-called spiral type separation module. That is, in the separation module 10, one or a plurality of sheet-like laminates 14 are laminated and wound around the center tube 12, and the center tube 12 is inserted into both end surfaces of the wound product of the laminate 14. Thus, the telescope prevention plate 16 is provided. The outermost peripheral surface of the wound laminate 14 is covered with a gas impermeable coating layer 18.
  • a wound product of a product obtained by laminating a plurality of laminates 14 wound around the central cylinder 12 that is, a substantially cylindrical product by the laminate 14 wound by being laminated
  • a spiral laminate 14a a wound product of a product obtained by laminating a plurality of laminates 14 wound around the central cylinder 12
  • the source gas G from which the acidic gas is separated is supplied to the end face of the spiral laminate 14a through, for example, the telescope prevention plate 16 (the opening portion 16d) on the far side in FIG.
  • the acid gas Gc is separated while flowing into the laminated body 14 from the end face and flowing through the laminated body 14. Further, the acidic gas Gc separated from the raw material gas G by the stacked body 14 is discharged from the central cylinder 12.
  • the source gas G from which the acidic gas has been separated (hereinafter referred to as the residual gas Gr for convenience) is discharged from the end face on the opposite side to the supply side of the spiral laminated body 14a (laminated body 14) to prevent telescoping. It is discharged out of the separation module 10 through the plate 16 (same as above).
  • the central cylinder (permeate gas collecting pipe) 12 is a cylindrical pipe whose end face on the source gas G supply side is closed, and a plurality of through holes 12a are formed on the peripheral surface (tube wall).
  • the acidic gas Gc separated from the raw material gas G passes through a permeating gas passage member 26 described later, reaches the inside of the central cylinder 12 from the through hole 12a, and is discharged from the open end 12b of the central cylinder 12.
  • the aperture ratio (area ratio of the through-hole 12 a occupying the outer peripheral surface of the center tube 12) in a region sealed with the adhesive layer 30 described later is preferably 1.5 to 80%, and preferably 3 to 75. % Is more preferable, and 5 to 70% is more preferable. Among these, from the practical viewpoint, the opening ratio of the center tube 12 is particularly preferably 5 to 25%.
  • the through hole 12a is preferably a circular hole having a diameter of 0.5 to 20 mm. Furthermore, it is preferable that the through holes 12 a are formed uniformly on the peripheral wall of the central cylinder 12.
  • the laminate 14 is formed by laminating an acidic gas separation layer 20, a supply gas flow path member 24, and a permeate gas flow path member 26.
  • reference numeral 30 denotes an acid gas Gc in the permeate gas flow path member 26 while the acid gas separation layer 20 and the permeate gas flow path member 26 are bonded together and the laminates 14 are bonded together.
  • This is an adhesive layer 30 in which the flow path is formed in an envelope shape opened on the center tube 12 side.
  • the separation module 10 in the illustrated example is formed by laminating a plurality of the laminates 14 and winding (wrapping) them around the central cylinder 12 to form a substantially cylindrical spiral laminate 14a. It has a configuration.
  • a direction corresponding to the winding of the laminate 14 is a circumferential direction (arrow y direction)
  • a direction orthogonal to the circumferential direction is a width direction (arrow x direction).
  • the laminated body 14 is generally a rectangular sheet, but the circumferential direction is usually the laminated body 14 (acid gas separation layer 20, supply gas flow path member 24, and permeate gas flow path member. 26) in the longitudinal direction.
  • the laminate 14 may be a single layer. However, as shown in the illustrated example, by laminating a plurality of laminated bodies 14, the membrane area of the acidic gas separation layer 20 can be increased, and the amount of the acidic gas Gc separated by one module can be improved.
  • the film area of the acidic gas separation layer 20 can be improved by increasing the length of the stacked body 14 in the width direction.
  • the number of stacked layers 14 may be appropriately set according to the processing speed and processing amount required for the separation module 10, the size of the separation module 10, and the like.
  • the number of laminated bodies 14 to be laminated is preferably 50 or less, more preferably 45 or less, and particularly preferably 40 or less. By setting the number of laminated bodies 14 to be this number, winding of the laminated body 14 around the central cylinder 12 becomes easy, and workability can be improved.
  • the fragmentary sectional view of the laminated body 14 is shown. As described above, the arrow x is the width direction and the arrow y is the circumferential direction.
  • the laminated body 14 has a supply gas flow path member 24 sandwiched between two folded acid gas separation layers 20 to form a sandwiching body 36 (see FIG. 5).
  • the road member 26 is laminated. This configuration will be described in detail later.
  • the source gas G is supplied from one end face of the spiral laminate 14 a through the telescope prevention plate 16 (its opening 16 d). That is, the source gas G is supplied to the end portion (end surface) in the width direction (arrow x direction) of each stacked body 14. As conceptually shown in FIG. 2, the source gas G supplied to the end surface in the width direction of the stacked body 14 flows in the width direction in the supply gas flow path member 24.
  • the acidic gas Gc in contact with the acidic gas separation layer 20 (facilitated transport film 21) is separated from the source gas G and passes through the acidic gas separation layer 20 in the stacking direction of the laminate 14 ( It is transported in the stacking direction by the carrier of the facilitated transport film 21) and flows into the permeating gas channel member 26.
  • the acidic gas Gc that has flowed into the permeate gas flow path member 26 flows in the permeate gas flow path member 26 in the circumferential direction (the direction of the arrow y), reaches the central cylinder 12, and passes through the through hole 12 a of the central cylinder 12. 12 flows in.
  • the flow of the acid gas Gc is regulated by the adhesive layer 30.
  • the separation module 10 the two acidic gas separation layers 20 (facilitated transport membrane 21) sandwiching the permeate gas flow path member 26, the permeate gas flow path member 26 and the acidic gas separation layer 20 (porous support) 22) and the adhesive layer 30 penetrating into the inner surface of the adhesive layer 30 in the surface direction forms an envelope-like flow path (space) that encloses the permeate gas flow path member 26 and that is open on the central tube 12 side. (See FIGS. 5 and 6A). Thereby, the separation module 10 prevents the acidic gas Gc that has passed through the acidic gas separation layer 20 from flowing out.
  • the adhesive layer 30 will be described in detail later.
  • the acidic gas Gc that has flowed into the center tube 12 flows through the center tube 12 in the width direction and is discharged from the open end 12b. Further, the remaining gas Gr from which the acidic gas Gc has been removed flows in the supply gas flow path member 24 in the width direction, and is discharged from the opposite end face of the spiral laminated body 14a. It is discharged to the outside of the separation module 10 through the part 16d).
  • the supply gas flow path member 24 is supplied with the source gas G from the end in the width direction, and brings the source gas G flowing in the member into contact with the acidic gas separation layer 20.
  • the supply gas flow path member 24 is disposed to face the protective layer 28 formed on the surface of the facilitated transport film 21 of the acidic gas separation layer 20. That is, the supply gas flow path member 24 is provided in contact with the protective layer 28.
  • the protective layer 28 will be described in detail later.
  • the supply gas flow path member 24 functions as a spacer of the acid gas separation layer 20 folded in half as described above, and constitutes a flow path for the source gas G. Further, the supply gas flow path member 24 preferably makes the source gas G turbulent. In consideration of this point, the supply gas flow path member 24 is preferably a member having a mesh structure (net shape / mesh shape). Especially, the network structure formed with the thread
  • various materials can be used as long as they have sufficient heat resistance and moisture resistance.
  • paper materials such as paper, fine paper, coated paper, cast coated paper, and synthetic paper
  • resin materials such as cellulose, polyester, polyolefin, polyamide, polyimide, polysulfone, aramid, and polycarbonate
  • inorganic materials such as metal, glass, and ceramics.
  • a material etc. are illustrated suitably.
  • the material containing a resin material or a resin material is illustrated suitably.
  • the resin material examples include polyethylene, polystyrene, polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyethersulfone (PES), polyphenylene sulfide (PPS), polysulfone (PSF), and polypropylene (PP).
  • PET polyethylene terephthalate
  • PTFE polytetrafluoroethylene
  • PES polyethersulfone
  • PPS polyphenylene sulfide
  • PSF polysulfone
  • PP polypropylene
  • Polyimide, polyetherimide, polyetheretherketone, polyvinylidene fluoride and the like are preferably exemplified. A plurality of such resin materials may be used in combination.
  • the thickness of the supply gas flow path member 24 may be appropriately determined according to the supply amount of the source gas G, the required processing capacity, and the like. Specifically, 100 to 1000 ⁇ m is preferable, 150 to 950 ⁇ m is more preferable, and 200 to 900 ⁇ m is particularly preferable.
  • the fiber diameter is preferably 100 to 900 ⁇ m.
  • the fiber density is preferably 2 to 30 mg / cm 2 .
  • damage to the facilitated transport film 21 caused by the sliding contact between the facilitated transport film 21 that is a gel film and the supply gas flow path member 24 is exemplified as a cause of performance degradation.
  • the separation module 10 of the present invention has the protective layer 28 on the surface of the facilitated transport film 21 so that the facilitated transport film is caused by the sliding contact between the facilitated transport film 21 and the supply gas flow path member 24. 21 damage is prevented.
  • the fiber diameter of the yarn (fiber) constituting the supply gas flow path member 24 is less than 100 ⁇ m, the porosity of the supply gas flow path member 24 is lowered and the pressure loss is increased. , Processing efficiency may be reduced. Therefore, the fiber diameter is preferably 100 ⁇ m or more. In addition, when the fiber diameter exceeds 900 ⁇ m, the amount of fibers pushed into the membrane surface increases, so even if the protective layer 28 is formed on the surface, damage to the facilitated transport membrane 21 due to the sliding contact between the two is caused. There is a risk that it cannot be prevented. Therefore, the fiber diameter is preferably 900 ⁇ m or less.
  • the fiber density of the yarn (fiber) constituting the supply gas flow path member 24 is less than 2 mg / cm 2 , the supply gas flow path member 24 (protective layer 28) and the facilitated transport film 21 Since the contact area is not sufficiently large and the amount of fibers pushed into the membrane surface becomes large, there is a possibility that damage to the facilitated transport membrane 21 due to the sliding contact between the two cannot be prevented. Therefore, the fiber diameter is preferably 2 mg / cm 2 or more. Further, when the fiber density is more than 30 mg / cm 2 , the porosity of the supply gas flow path member 24 becomes low, the resistance to the flowing raw material gas G increases, and the processing efficiency may be lowered. . Accordingly, the fiber density is preferably 30 mg / cm 2 or less.
  • the tensile elastic modulus of the supply gas flow path member 24 is preferably 1 to 500 MPa.
  • the tensile elastic modulus exceeds 500 MPa, that is, when the supply gas flow path member 24 is hard, when the laminate 14 is wound around the central cylinder 12, the amount of fibers pushed into the membrane surface increases. The facilitated transport film 21 may be damaged. Therefore, the tensile elastic modulus is preferably 500 MPa or less. Further, when the tensile elastic modulus is less than 1 MPa, the supply gas flow path member 24 is soft, so that it may not function as a spacer between the acidic gas separation layers 20, that is, the flow path of the source gas may not be secured. There is. Accordingly, the tensile elastic modulus is preferably 1 MPa or more. In this way, by controlling the fiber diameter, fiber density, and tensile modulus of the supply gas flow path member 24, it is possible to improve manufacturing stability and processing performance.
  • the tensile elastic modulus of the supply gas flow path member 24 is obtained from the relationship between the tensile stress and the strain amount as a structure such as a network structure.
  • the separation module 10 of the present invention is a facilitated transport type. Therefore, the acidic gas separation layer 20 has a facilitated transport membrane 21.
  • FIG. 3 shows a schematic cross-sectional view of the acidic gas separation layer 20. As shown in FIG. 3, the acidic gas separation layer 20 includes a facilitated transport film 21, a porous support 22 including a porous film 22 a and an auxiliary support film 22 b that support the facilitated transport film 21, and a facilitated transport film 21. And a protective layer 28 laminated on the surface of the substrate.
  • the facilitated transport film 21 contains at least a carrier that reacts with the acidic gas Gc contained in the source gas G flowing through the supply gas flow path member 24, and a hydrophilic compound that supports the carrier.
  • a facilitated transport film 21 has a function of selectively transmitting the acidic gas Gc from the raw material gas G (a function of selectively transporting the acidic gas Gc).
  • the facilitated transport type separation module is required to be used at high temperature and high humidity. Therefore, the facilitated transport film 21 has a function of selectively permeating the acidic gas Gc even at high temperatures (for example, 100 to 200 ° C.).
  • the carrier transports the acidic gas Gc when the hydrophilic compound absorbs moisture and the facilitated transport film 21 retains moisture. Therefore, the separation efficiency is increased as compared with the case where a dissolution diffusion membrane is used.
  • the membrane area of the facilitated transport membrane 21 may be appropriately set according to the size of the separation module 10, the processing capacity required for the separation module 10, and the like. Specifically, 0.01 to 1000 m 2 is preferable, 0.02 to 750 m 2 is more preferable, and 0.025 m to 500 m 2 is more preferable. In particular, the membrane area of the facilitated transport film 21 is particularly preferably 1 to 100 m 2 from a practical viewpoint. By setting the membrane area of the facilitated transport membrane 21 in the above range, the acidic gas Gc can be efficiently separated with respect to the membrane area, and the processability is also improved.
  • the circumferential length of the facilitated transport film 21 may be appropriately set according to the size of the separation module 10, the processing capacity required for the separation module 10, and the like. Specifically, 100 to 10000 mm is preferable, 150 to 9000 mm is more preferable, and 200 to 8000 mm is even more preferable. Among them, the length of the facilitated transport film 21 is particularly preferably 800 to 4000 mm from a practical viewpoint.
  • the width of the facilitated transport film may be set as appropriate according to the size of the separation module 10 in the width direction.
  • the thickness of the facilitated transport film 21 may be appropriately set according to the size of the separation module 10, the processing capacity required for the separation module 10, and the like.
  • damage to the facilitated transport film 21 due to the sliding contact between the facilitated transport film 21 that has absorbed water and swelled and the supply gas flow path member 24 is a cause of performance degradation.
  • a decrease in performance due to damage to the facilitated transport film 21 can be suppressed by increasing the thickness of the facilitated transport film 21.
  • the permeation performance is lowered, so that the separation performance of the acid gas Gc is lowered accordingly.
  • the separation module of the present invention since the separation module of the present invention has the protective layer 28 on the surface of the facilitated transport film 21, it is facilitated by sliding contact between the facilitated transport film 21 swollen by water absorption and the supply gas flow path member 24. Damage to the transport film 21 can be prevented. That is, even if the facilitated transport film 21 is made thinner in order to improve the permeation performance, it is possible to prevent the performance degradation due to the damage of the facilitated transport film 21.
  • the facilitated transport film 21 has a thickness of preferably 5 to 150 ⁇ m, and more preferably 10 to 120 ⁇ m. By setting the thickness of the facilitated transport membrane 21 within the above range, high gas permeability and separation selectivity can be realized.
  • the water absorption rate of the facilitated transport film 21 is preferably 5% or more.
  • the hydrophilic compound absorbs water vapor and the facilitated transport film 21 retains moisture, so that the carrier easily transports the acidic gas Gc and the separation efficiency is improved.
  • the facilitated transport film becomes softer when the hydrophilic compound retains more water, the facilitated transport film 21 is damaged due to the sliding contact between the facilitated transport film 21 and the supply gas flow path member 24. It becomes easy.
  • the separation module of the present invention since the separation module of the present invention has the protective layer 28 on the surface of the facilitated transport membrane 21, even when the amount of water absorption increases and the facilitated transport membrane becomes softer, the facilitated transport membrane 21 and the supply gas channel The facilitated transport film 21 can be suitably prevented from being damaged due to the sliding contact with the member 24 for use.
  • the water absorption was measured by the following method. The sample dried by vacuum heating for 16 hours in an environment of temperature 80 ° C and humidity 4% or less is left in an environment of temperature 85 ° C and humidity 85% for 6 hours, and the mass of the sample before and after water absorption is measured. The amount of change in mass was calculated as the water absorption rate.
  • the facilitated transport film 21 has at least one selected from the group consisting of a hydroxyl group (—OH group) and a carboxyl group (—COOH group). That is, the facilitated transport film 21 contains a hydrophilic compound having a hydroxyl group or a carboxyl group.
  • a protective layer 28 is provided on the surface of the facilitated transport film 21 in order to prevent damage to the facilitated transport film 21 due to sliding contact between the facilitated transport film 21 and the supply gas flow path member 24. .
  • the facilitated transport film 21 has at least one selected from the group consisting of hydroxyl groups and carboxyl groups
  • the protective layer 28 is selected from the group consisting of hydroxyl groups and carboxyl groups. It has a functional group that reacts with at least one species. Therefore, the adhesion between the facilitated transport film 21 and the protective layer 28 can be improved, and damage to the facilitated transport film 21 due to the sliding contact between the facilitated transport film 21 and the supply gas flow path member 24 can be prevented. This will be described in detail later.
  • the hydrophilic compound contained in the facilitated transport film 21 functions as a binder. In the facilitated transport film 21, moisture is retained and a function of separating a gas such as carbon dioxide by a carrier is exhibited. Moreover, it is preferable that a hydrophilic compound has a crosslinked structure from a heat resistant viewpoint. As described above, the hydrophilic compound has at least one selected from the group consisting of a hydroxyl group and a carboxyl group. Examples of such hydrophilic compounds include hydrophilic polymers.
  • the weight average molecular weight of a hydrophilic compound suitably in the range which can form a stable film
  • the hydrophilic compound preferably has a weight average molecular weight of 30,000 or more. In this case, the weight average molecular weight is more preferably 40,000 or more, and more preferably 50,000 or more.
  • the weight average molecular weight is preferably 6,000,000 or less from the viewpoint of production suitability.
  • the weight average molecular weight of the hydrophilic compound may be a value measured according to JIS K 6726.
  • the hydroxyl group (—OH group) and carboxyl group (—COOH group) possessed by the hydrophilic compound are crosslinkable groups that form the hydrophilic compound and can form a hydrolysis-resistant crosslinked structure.
  • hydrophilic compound examples include those having a hydroxyl group, such as polyvinyl alcohol, polyethylene oxide, water-soluble cellulose, starch, polyhydroxy methacrylate, polyhydroxyethyl methacrylate, and the like.
  • hydroxyl group such as polyvinyl alcohol, polyethylene oxide, water-soluble cellulose, starch, polyhydroxy methacrylate, polyhydroxyethyl methacrylate, and the like.
  • carboxyl group include polyacrylic acid, alginic acid, and carboxymethylcellulose. Most preferred is polyvinyl alcohol.
  • these copolymers are also illustrated.
  • Examples of the hydrophilic compound having a hydroxyl group and a carboxyl group include a polyvinyl alcohol-polyacrylic acid copolymer.
  • a polyvinyl alcohol-polyacrylic salt copolymer is preferable because of its high water absorption ability and high hydrogel strength even at high water absorption.
  • the content of polyacrylic acid in the polyvinyl alcohol-polyacrylic acid copolymer is, for example, 1 to 95 mol%, preferably 2 to 70 mol%, more preferably 3 to 60 mol%, particularly preferably 5 to 50 mol%. It is.
  • the polyacrylic acid may be a salt.
  • Examples of the polyacrylic acid salt in this case include ammonium salts and organic ammonium salts in addition to alkali metal salts such as sodium salts and potassium salts.
  • Polyvinyl alcohol is also available as a commercial product. Specific examples include PVA117 (manufactured by Kuraray Co., Ltd.), Poval (manufactured by Kuraray Co., Ltd.), polyvinyl alcohol (manufactured by Aldrich Co., Ltd.), J-Poval (manufactured by Nippon Vinebaum Poval Co., Ltd.)
  • a polyvinyl alcohol-polyacrylate copolymer (sodium salt) is also available as a commercial product. For example, Crustomer AP20 (made by Kuraray Co., Ltd.) is exemplified.
  • hydrophilic compounds may be mixed and used.
  • crosslinkable group other than the hydroxyl group and the carboxyl group those capable of forming a hydrolysis-resistant crosslinked structure are preferably selected. Examples include amino groups (—NH 2 ) and epoxy groups. Specific examples include polyallylamine, polyvinylpyrrolidone, polyethyleneimine, polyvinylamine, polyornithine, polylysine, chitin and the like.
  • the content of the hydrophilic compound in the facilitated transport film 21 functions as a binder for forming the facilitated transport film 21, and the amount capable of sufficiently retaining moisture depends on the type of the hydrophilic composition, the carrier, and the like. It can be set as appropriate. Specifically, 0.5 to 50% by mass is preferable, 0.75 to 30% by mass is more preferable, and 1 to 15% by mass is particularly preferable. By setting the content of the hydrophilic compound within this range, the above-mentioned function as a binder and the moisture retention function can be stably and suitably expressed.
  • the crosslinked structure in the hydrophilic compound can be formed by a conventionally known method such as thermal crosslinking, ultraviolet crosslinking, electron beam crosslinking, radiation crosslinking, or photocrosslinking. Photocrosslinking or thermal crosslinking is preferred, and thermal crosslinking is most preferred.
  • a crosslinking agent together with the hydrophilic compound. That is, when forming the facilitated-transport film
  • the cross-linking agent one containing a cross-linking agent having two or more functional groups capable of reacting with a hydrophilic compound and capable of cross-linking such as thermal cross-linking or photo-crosslinking is selected.
  • the formed crosslinked structure is preferably a hydrolysis-resistant crosslinked structure.
  • the crosslinking agent used for forming the facilitated transport film 21 includes an epoxy crosslinking agent, a polyvalent glycidyl ether, a polyhydric alcohol, a polyvalent isocyanate, a polyvalent aziridine, a haloepoxy compound, a polyvalent aldehyde
  • Preferred examples include valent amines and organometallic crosslinking agents. More preferred are polyvalent aldehydes, organometallic crosslinking agents and epoxy crosslinking agents, and among them, polyvalent aldehydes such as glutaraldehyde and formaldehyde having two or more aldehyde groups are preferred.
  • Epoxy crosslinking agent it is a compound which has 2 or more of epoxy groups, and the compound which has 4 or more is also preferable.
  • Epoxy crosslinking agents are also available as commercial products, for example, trimethylolpropane triglycidyl ether (manufactured by Kyoeisha Chemical Co., Ltd., Epolite 100MF, etc.), Nagase ChemteX Corporation EX-411, EX-313, EX-614B, Examples include EX-810, EX-811, EX-821, EX-830, and Epiol E400 manufactured by NOF Corporation.
  • the oxetane compound which has cyclic ether as a compound similar to an epoxy crosslinking agent is also used preferably.
  • the oxetane compound is preferably a polyvalent glycidyl ether having two or more functional groups. Examples of commercially available products include EX-411, EX-313, EX-614B, EX-810, EX-811 manufactured by Nagase ChemteX Corporation. Examples include EX-821 and EX-830.
  • polyvalent glycidyl ether examples include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether, propylene Examples include glycol glycidyl ether and polypropylene glycol diglycidyl ether.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, glycerin, polyglycerin, propylene glycol, diethanolamine, triethanolamine, polyoxypropyl, and oxyethylene oxypropylene block copolymer.
  • examples include coalescence, pentaerythritol, and sobitol.
  • Examples of the polyvalent isocyanate include 2,4-toluylene diisocyanate and hexamethylene diisocyanate.
  • Examples of the polyvalent aziridine include 2,2-bishydroxymethylbutanol-tris [3- (1-acyridinyl) propionate], 1,6-hexamethylenediethyleneurea, diphenylmethane-bis-4,4′-N, N Examples include '-diethylene urea.
  • Examples of the haloepoxy compound include epichlorohydrin and ⁇ -methylchlorohydrin.
  • Examples of the polyvalent aldehyde include glutaraldehyde and glyoxal.
  • Examples of the polyvalent amine include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, and polyethyleneimine.
  • examples of the organometallic crosslinking agent include organic titanium crosslinking agents and organic zirconia crosslinking agents.
  • polyvinyl alcohol having a weight average molecular weight of 130,000 or more when polyvinyl alcohol having a weight average molecular weight of 130,000 or more is used as the hydrophilic compound, it is possible to form a crosslinked structure having good reactivity with this hydrophilic compound and excellent hydrolysis resistance. Therefore, an epoxy crosslinking agent and glutaraldehyde are preferably used. Further, when a polyvinyl alcohol-polyacrylic acid copolymer is used as the hydrophilic compound, an epoxy crosslinking agent or glutaraldehyde is preferably used.
  • the quantity of a crosslinking agent suitably according to the kind of hydrophilic compound used for formation of the facilitated-transport film
  • the amount is preferably 0.001 to 80 parts by mass, more preferably 0.01 to 60 parts by mass, and particularly preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the crosslinkable group possessed by the hydrophilic compound. preferable.
  • the crosslinked structure is formed by reacting 0.001 to 80 mol of a crosslinking agent with respect to 100 mol of the crosslinkable group possessed by the hydrophilic compound. preferable.
  • the facilitated transport film 21 contains a carrier in addition to such a hydrophilic compound.
  • the carrier is various water-soluble compounds having affinity with an acidic gas (for example, carbon dioxide gas) and showing basicity. Specific examples include alkali metal compounds, nitrogen-containing compounds, and sulfur oxides.
  • the carrier may react indirectly with the acid gas, or the carrier itself may react directly with the acid gas.
  • the former reacts with other gas contained in the supply gas, shows basicity, and the basic compound reacts with acidic gas. More specifically, OH react with steam (water) - was released, the OH - that reacts with CO 2, a compound can be incorporated selectively CO 2 in facilitated transport membrane 21
  • an alkali metal compound is such that the carrier itself is basic, for example, a nitrogen-containing compound or a sulfur oxide.
  • alkali metal compound examples include alkali metal carbonate, alkali metal bicarbonate, and alkali metal hydroxide.
  • alkali metal an alkali metal element selected from cesium, rubidium, potassium, lithium, and sodium is preferably used.
  • an alkali metal compound contains the salt and its ion other than alkali metal itself.
  • Examples of the alkali metal carbonate include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate.
  • Examples of the alkali metal bicarbonate include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, rubidium hydrogen carbonate, and cesium hydrogen carbonate.
  • examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide. Among these, an alkali metal carbonate is preferable, and a compound containing potassium, rubidium, and cesium having high solubility in water is preferable from the viewpoint of good affinity with acidic gas.
  • two or more kinds of carriers may be used in combination.
  • two or more kinds of carriers are present in the facilitated transport film 21, different carriers can be separated from each other in the film.
  • the facilitated transport films 21 or the facilitated transport film 21 and other members are adhered to each other at the time of manufacture. (Blocking) can be suitably suppressed.
  • the deliquescence property is more excellent than the first compound having deliquescence and the first compound.
  • a second compound having a low specific gravity As an example, the first compound is exemplified by cesium carbonate, and the second compound is exemplified by potassium carbonate.
  • Nitrogen-containing compounds include amino acids such as glycine, alanine, serine, proline, histidine, taurine, diaminopropionic acid, hetero compounds such as pyridine, histidine, piperazine, imidazole, triazine, monoethanolamine, diethanolamine, triethanolamine , Alkanolamines such as monopropanolamine, dipropanolamine and tripropanolamine, cyclic polyetheramines such as cryptand [2.1] and cryptand [2.2], cryptand [2.2.1] and cryptand [ And bicyclic polyetheramines such as 2.2.2], porphyrin, phthalocyanine, ethylenediaminetetraacetic acid and the like.
  • examples of the sulfur compound include amino acids such as cystine and cysteine, polythiophene, dodecylthiol and the like.
  • membrane 21 suitably according to the kind etc. of a carrier or a hydrophilic compound. Specifically, it is preferably 0.3 to 30% by mass, more preferably 0.5 to 25% by mass, and particularly preferably 1 to 20% by mass.
  • the facilitated transport film 21 (composition for forming the facilitated transport film 21) may contain various components as necessary in addition to such a hydrophilic compound, a crosslinking agent, and a carrier.
  • antioxidants such as dibutylhydroxytoluene (BHT), compounds having 3 to 20 carbon atoms or fluorinated alkyl groups having 3 to 20 carbon atoms and hydrophilic groups, and siloxane structures.
  • BHT dibutylhydroxytoluene
  • Specific compounds such as compounds having a surfactant, surfactants such as sodium octoate and sodium 1-hexasulfonate, polymer particles such as polyolefin particles and polymethyl methacrylate particles, and the like.
  • a catalyst, a moisturizing (moisture absorbing) agent, an auxiliary solvent, a film strength adjusting agent, a defect detecting agent, and the like may be used as necessary.
  • the porous support 22 has acid gas permeability and can be coated with a coating composition for forming the facilitated transport film 21 (supports the coating film).
  • the transport membrane 21 is supported.
  • Various known materials can be used as the material for forming the porous support 22 as long as the material can exhibit the above functions.
  • the porous support 22 constituting the acidic gas separation layer 20 may be a single layer, but as shown in FIG. 3, the porous membrane 22a and the auxiliary support membrane A two-layer structure consisting of 22b is preferred.
  • the porous support 22 more reliably expresses the functions of acid gas permeability, application of the coating composition to be the facilitated transport film 21 and support of the facilitated transport film 21.
  • various materials exemplified below as the porous film 22a and the auxiliary support film 22b can be used as the forming material.
  • the porous membrane 22a is on the facilitated transport membrane 21 side.
  • the porous membrane 22a is preferably made of a material having heat resistance and low hydrolyzability.
  • Specific examples of the porous membrane 22a include membrane filter membranes such as polysulfone, polyethersulfone, polypropylene, and cellulose, interfacial polymerized thin films of polyamide and polyimide, polytetrafluoroethylene (PTFE), and high molecular weight polyethylene.
  • PTFE polytetrafluoroethylene
  • a stretched porous membrane of PTFE or high molecular weight polyethylene has a high porosity, is small in inhibition of diffusion of acidic gas (especially carbon dioxide gas), and is preferable from the viewpoints of strength and manufacturing suitability.
  • a stretched porous membrane of PTFE is preferably used in terms of heat resistance and low hydrolyzability.
  • the porous membrane 22a is hydrophobic so that the facilitated transport membrane 21 containing moisture can easily penetrate into the porous portion under the usage environment and does not cause deterioration in film thickness distribution or performance over time. Is preferred.
  • the porous membrane 22a preferably has a maximum pore diameter of 1 ⁇ m or less. Further, the average pore diameter of the pores of the porous membrane 22a is preferably 0.001 to 10 ⁇ m, more preferably 0.002 to 5 ⁇ m, and particularly preferably 0.005 to 1 ⁇ m. By setting the average pore diameter of the porous membrane within this range, the adhesive application region described later is sufficiently impregnated with the adhesive, and suitably prevents the porous membrane 22a from obstructing the passage of acidic gas. it can.
  • the auxiliary support film 22b is provided to reinforce the porous film 22a.
  • Various materials can be used for the auxiliary support film 22b as long as it satisfies the required strength, stretch resistance and gas permeability.
  • a nonwoven fabric, a woven fabric, a net, and a mesh having an average pore diameter of 0.001 to 10 ⁇ m can be appropriately selected and used.
  • the auxiliary support film 22b is also preferably made of a material having heat resistance and low hydrolyzability, similar to the porous film 22a described above.
  • Non-woven fabrics, woven fabrics, and knitted fabrics that have excellent durability and heat resistance include polyolefins such as polypropylene (PP), modified polyamides such as aramid (trade name), polytetrafluoroethylene, polyvinylidene fluoride, etc.
  • a fiber made of a fluorine-containing resin is preferable. It is preferable to use the same material as the resin material constituting the mesh.
  • a non-woven fabric made of PP that is inexpensive and has high mechanical strength is particularly preferably exemplified.
  • the porous support 22 has the auxiliary support film 22b, the mechanical strength can be improved. Therefore, for example, even when handled in a coating apparatus using a roll-to-roll (hereinafter also referred to as RtoR) described later, the porous support 22 can be prevented from wrinkling, and productivity can be increased. .
  • RtoR roll-to-roll
  • the porous support 22 is too thin, the strength is difficult. Considering this point, it is preferable that the porous membrane 22a has a thickness of 5 to 100 ⁇ m, and the auxiliary support membrane 22b has a thickness of 50 to 300 ⁇ m. When the porous support 22 is a single layer, the thickness of the porous support 22 is preferably 30 to 500 ⁇ m.
  • Such an acidic gas separation layer 20 is prepared by preparing a liquid coating composition (coating / coating liquid) containing a component that becomes the facilitated transport film 21, applying it to the porous support 22, and drying it. It can be produced by a coating method. That is, first, the hydrophilic compound, the carrier, and other components to be added as necessary are respectively added to water (room temperature water or warm water) in appropriate amounts, and sufficiently stirred to facilitate transport film 21. A coating composition is prepared. In the preparation of the coating composition, if necessary, dissolution of each component may be promoted by heating with stirring. Moreover, after adding a hydrophilic compound to water and melt
  • the facilitated transport film 21 is formed by applying this composition to the porous support 22 and drying it.
  • the application and drying of the composition may be performed on a cut sheet-like porous support 22 cut into a predetermined size by a so-called single wafer type.
  • the facilitated transport film 21 is formed by so-called RtoR. That is, the porous coating 22 is fed from a feed roll formed by winding a long porous support 22, and the prepared coating composition is applied while being transported in the longitudinal direction.
  • the product (coating film) is dried to produce a laminate in which the facilitated transport film 21 is formed on the surface of the porous support 22, and the produced laminate is wound up.
  • the conveying speed of the porous support 22 is preferably 0.5 m / min or more, more preferably 0.75 to 200 m / min, and particularly preferably 1 to 200 m / min.
  • Various known methods can be used for applying the coating composition. Specific examples include curtain flow coaters, extrusion die coaters, air doctor coaters, blade coaters, rod coaters, knife coaters, squeeze coaters, reverse roll coaters, bar coaters, and the like.
  • the coating film of the coating composition may be dried by a known method.
  • drying with warm air is exemplified.
  • the speed of the warm air may be set as appropriate so that the gel film can be quickly dried and the gel film is not broken.
  • 0.5 to 200 m / min is preferable, 0.75 to 200 m / min is more preferable, and 1 to 200 m / min is particularly preferable.
  • the temperature of the hot air may be set as appropriate so that the porous support 22 is not deformed and the gel membrane can be quickly dried.
  • the film surface temperature is preferably 1 to 120 ° C., more preferably 2 to 115 ° C., and particularly preferably 3 to 110 ° C.
  • the protective layer 28 is formed on the surface of the facilitated transport film 21 of the acidic gas separation layer 20. That is, the protective layer 28 is formed as the uppermost layer of the acid gas separation layer 20.
  • the protective layer 28 is a layer that protects the facilitated transport film 21 from sliding contact with the supply gas flow path member 24, has a gas permeability coefficient of 500 Barr or more, and contains hydroxyl groups or It has a functional group that reacts with a carboxyl group.
  • the spiral type separation module is formed by stacking the acid gas separation layer 20, the supply gas flow path member 24, and the permeate gas flow path member 26, or by stacking this stack.
  • the laminate is formed by winding (wrapping) around the central tube 12.
  • the separation module 10 in the illustrated example forms an sandwiching body 36 in which the acidic gas separation layer 20 is folded in two with the facilitated transport membrane 21 inside, and the supply gas flow path member 24 is sandwiched by the acidic gas separation layer 20. 5 (see FIG. 5), the laminated body 14 in which the permeating gas flow path member 26 is laminated on the sandwiching body 36 is laminated, and the laminated body of the laminated body 14 is wound around the central cylinder 12.
  • the acidic gas separation layer 20 and the permeating gas channel member 26 are fixed by the adhesive layer 30.
  • the acidic gas separation layer 20 and the supply gas flow path member 24 are simply sandwiched between the acidic gas separation layer 20 and the supply gas flow path member 24.
  • the supply gas flow path member 24 preferably has a mesh structure formed of resin threads or the like.
  • the facilitated transport film 21 has a configuration in which a hydrophilic compound such as a superabsorbent resin is used as a binder and carriers are dispersed in the binder. The facilitated transport film 21 needs to retain a large amount of moisture in the film in order for the carrier to function sufficiently.
  • the facilitated transport membrane 21 increases the water absorption amount as the content of a carrier such as a metal carbonate increases, and the acid gas separation performance is improved. Therefore, the facilitated transport film 21 is a very soft gel film.
  • a raw material gas having a temperature of about 100 to 130 ° C. is supplied at a pressure of 1 MPa or more. For this reason, the facilitated transport film and the supply gas flow path member move relatively, and the two come into sliding contact with each other, and the facilitated transport film may be rubbed by the sliding contact to cause a defect.
  • a protective layer is formed on the surface of the facilitated transport film so that the facilitated transport film and the supply gas flow path member do not directly come into sliding contact with each other, thereby suppressing the occurrence of defects due to friction of the facilitated transport film. It is possible.
  • the acidic gas is separated, moisture is supplied to the facilitated transport membrane and the facilitated transport membrane swells, so that the facilitated transport membrane has fluidity. Since the facilitated transport film has fluidity, it is not possible to ensure sufficient adhesion between the protective layer and the facilitated transport film simply by providing a protective layer on the surface of the facilitated transport film. As a result, the protective layer cracks or flows, so that the facilitated transport film cannot be sufficiently protected, and it has been found that there is a problem in that the generation of defects in the facilitated transport film cannot be suppressed.
  • the facilitated transport membrane 21 has at least one selected from the group consisting of hydroxyl groups and carboxyl groups
  • the protective layer 28 is a group consisting of hydroxyl groups and carboxyl groups. It has a functional group that reacts with at least one selected from The present invention chemically bonds the facilitated transport film 21 and the protective layer 28 with such a configuration. Therefore, even if the facilitated transport film 21 is a soft gel film and has fluidity, the adhesion between the facilitated transport film 21 and the protective layer 28 can be improved. Therefore, damage to the facilitated transport film 21 due to the sliding contact between the facilitated transport film 21 and the supply gas flow path member 24 can be prevented. Therefore, according to the present invention, high production stability, high confidentiality, performance degradation due to damage to the facilitated transport film 21, no leakage of the raw material gas G, no pressure loss, and the like are achieved. A separation module 10 can be obtained.
  • the protective layer 28 has a gas permeability coefficient of 500 Barr or more and has a functional group that reacts with a hydroxyl group and / or a carboxyl group contained in the facilitated transport film 21.
  • the acid gas permeability is reduced. Inconveniences such as failure to obtain desired separation performance occur.
  • the protective layer 28 can be formed of various materials. Specifically, the protective layer 28 has a functional group that reacts with a hydroxyl group and / or a carboxyl group. More specifically, the protective layer 28 is preferably a compound having at least one of an epoxy group, an amino group, a methoxy group, an ethoxy group, a hydroxyl group, and a carboxyl group.
  • the material of the protective layer 28 is a polymer (polymer) or a copolymer (copolymer) including a compound having at least one of an epoxy group, an amino group, a methoxy group, an ethoxy group, a hydroxyl group, and a carboxyl group. Preferably there is.
  • Examples of the protective layer 28 include a layer made of a compound having a silicone bond or a silicone-containing compound.
  • silicone-containing polyacetylene such as organopolysiloxane (silicone resin) and polytrimethylsilylpropyne can be used.
  • organopolysiloxane include those represented by the following general formula.
  • n represents an integer of 1 or more.
  • the average value of n is preferably in the range of 10 to 1000000, and more preferably in the range of 100 to 100,000.
  • R 1n , R 2n , R 3 and R 4 are each a hydrogen atom, alkyl group, vinyl group, aralkyl group, aryl group, hydroxyl group, amino group, carboxyl group, epoxy group, methoxy group or ethoxy group. Any one selected from the group consisting of:
  • at least one of R 1n , R 2n , R 3, and R 4 is any one of an epoxy group, an amino group, a methoxy group, an ethoxy group, a hydroxyl group, and a carboxyl group. preferable.
  • n R 1n and R 2n may be the same or different.
  • the epoxy group, alkyl group, aralkyl group, and aryl group may have a ring structure.
  • the alkyl group, vinyl group, aralkyl group and aryl group may have a substituent, and the substituent in this case is, for example, an alkyl group, a vinyl group, an aryl group, a hydroxyl group, an amino group, a carboxyl group. Selected from a group, an epoxy group and a fluorine atom. These substituents may further have a substituent, if possible.
  • the alkyl group, vinyl group, aralkyl group and aryl group selected from R 1n , R 2n , R 3 and R 4 are alkyl groups having 1 to 20 carbon atoms, vinyl groups, More preferred are an aralkyl group having 7 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms.
  • R 1n , R 2n , R 3 and R 4 are preferably methyl groups or epoxy-substituted alkyl groups.
  • PDMS derivatives such as epoxy-modified polydimethylsiloxane (PDMS) can be suitably used.
  • silicone materials such as poly [1- (trimethylsilyl) -1-propyne] (PTMSP), butadiene / isoprene rubber materials, low density polymethyl A layer made of pentene or the like can also be used.
  • the protective layer 28 may be formed on at least a part of the surface of the facilitated transport film 21 as long as the facilitated transport film 21 and the supply gas flow path member 24 can be prevented from coming into direct contact with each other.
  • the protective layer 28 is formed over the entire surface of the facilitated transport film 21.
  • the thickness of the protective layer 28 depends on the material for forming the protective layer 28, the surface coverage of the facilitated transport film 21 by the protective layer 28, and the type of the supply gas flow path member 24 (formation material and mesh).
  • the thickness capable of reliably protecting the facilitated transport film 21 may be appropriately set according to the type of the facilitated transport film 21 (including components and the ratio of the content of each contained component).
  • the thickness of the protective layer 28 is preferably 0.1 ⁇ m to 5 ⁇ m, and more preferably 0.15 ⁇ m to 4 ⁇ m.
  • the acidic gas separation layer 20 shown in FIG. 3 is configured to include the porous support 22, the facilitated transport film 21, and the protective layer 28, but is not limited thereto. Between the facilitated transport film 21, an intermediate layer for preventing the facilitated transport film 21 (carrier) from permeating the porous support 22 may be provided. Such an intermediate layer can be formed of the same material as that of the protective layer 28 described above.
  • Such an acidic gas separation layer 20 may be produced by various known methods. Preferably, it is produced by a coating method using RtoR.
  • RtoR means that a substrate is fed from a roll formed by winding a long substrate (object to be processed) and transported in the longitudinal direction, and the coating composition is applied and dried. It is a manufacturing method which winds up the board
  • a roll formed by winding a long porous support (hereinafter also simply referred to as “support”) 22 is loaded into the apparatus for forming the facilitated transport film 21. Then, the support is sent out from this roll, and the coating composition to be the facilitated transport film 21 is applied while the support 22 is conveyed in the longitudinal direction. What is necessary is just to set suitably the conveyance speed of the support body 22 at the time of forming the facilitated-transport film
  • the conveying speed of the support 22 is preferably 0.5 m / min or more, more preferably 0.75 to 200 m / min, and particularly preferably 1 to 200 m / min.
  • the facilitated transport film 21 contains a hydrophilic compound such as a hydrophilic polymer, a carrier that reacts with an acidic gas, water, and the like.
  • the coating composition (coating liquid / paint) for forming such a facilitated transport film 21 requires the above-mentioned hydrophilic compound, carrier and water (room temperature water or warm water), or a crosslinking agent or the like. It is a coating composition containing the component used as.
  • the hydrophilic compound may be crosslinked, partially crosslinked, or uncrosslinked, or a mixture of these. This coating composition may also be prepared by a known method.
  • the coating composition to be the facilitated transport film 21 preferably has a viscosity at 25 ° C. of 100 cp or more.
  • the viscosity at 25 ° C. of the coating composition is preferable from the standpoint that repelling at the time of coating the coating composition can be suppressed, and uniformity of coating of the coating composition can be improved.
  • what is necessary is just to measure the viscosity of the coating composition used as the facilitated-transport film
  • a roll coater, a bar coater, a positive rotation roll coater, a knife coater, etc. are preferably used in consideration of the preferred viscosity of the coating composition to be the facilitated transport film 21 and the coating amount of the coating composition.
  • membrane 21 is apply
  • Various known methods for drying by removing water such as hot air drying or drying by heating the support 22, can be used as the drying method.
  • the speed of the warm air may be set as appropriate so that the coating composition can be dried quickly and the coating film (gel film) of the coating composition does not collapse.
  • 0.5 to 200 m / min is preferable, 0.75 to 200 m / min is more preferable, and 1 to 200 m / min is particularly preferable.
  • the temperature of the warm air may be appropriately set to a temperature at which the support 22 is not deformed and the coating composition can be dried quickly.
  • the film surface temperature is preferably 1 to 120 ° C., more preferably 2 to 115 ° C., and particularly preferably 3 to 110 ° C.
  • the temperature at which the support 22 is not deformed and the coating composition can be dried quickly may be appropriately set. Moreover, you may use blowing of a dry wind for heating of the support body 22 together.
  • the temperature of the support 22 is preferably 60 to 120 ° C., more preferably 60 to 90 ° C., and particularly preferably 70 to 80 ° C.
  • the film surface temperature is preferably 15 to 80 ° C., more preferably 30 to 70 ° C.
  • the support 22 on which the facilitated transport film is formed is wound into a roll.
  • a roll of the support 22 (hereinafter also referred to as a composite) on which the facilitated transport film 21 is formed is loaded into a forming device for the protective layer 28, and the composite is sent out from the roll and conveyed in the longitudinal direction.
  • a coating composition to be the protective layer 28 is applied.
  • the conveyance speed of the composite is preferably faster from the viewpoint of productivity.
  • it is preferably 3 to 200 m / min, more preferably 5 to 150 m / min, and particularly preferably 10 to 120 m / min.
  • the coating composition to be the protective layer 28 includes monomers, dimers, trimers, oligomers, prepolymers, and mixtures of the compounds to be the protective layer 28 such as the above-described PDMS derivatives, curing agents, curing accelerators, and crosslinking agents.
  • Such a coating composition may be prepared by a known method.
  • the coating composition to be the protective layer 28 preferably has a viscosity at 25 ° C. of 100 cp or more.
  • the viscosity at 25 ° C. of the coating composition to be the protective layer 28 is more preferably 400 cp or more, and particularly preferably 500 cp or more. Therefore, it is preferable to apply the coating composition to be the protective layer 28 at room temperature, or it is preferable to apply the coating composition at a temperature at which the viscosity is 100 cp or more.
  • the upper limit of the viscosity at 25 ° C. of the coating composition to be the protective layer 28 may be in accordance with the limit viscosity in the coating apparatus to be used, but the thickness of the protective layer 28 can be suitably controlled. 1,000,000 cp or less is preferable. In addition, what is necessary is just to measure a viscosity similarly to the coating composition used as the facilitated-transport film
  • the coating device for the coating composition to be the protective layer 28 various known devices corresponding to the silicone coating composition can be used.
  • a roll coater, a direct gravure coater, an offset gravure coater, a 1 roll kiss coater, a 3 reverse roll coater, a forward rotation roll coater, a squeeze coater, a reverse roll coater and the like are preferably exemplified.
  • the coating composition used as the protective layer 28 is applied, the coating composition is then dried.
  • the drying may be performed by a known method such as hot air drying or drying with a heater.
  • the coating composition to be the protective layer 28 is dried, the coating composition is then cured to form the protective layer 28.
  • a method capable of curing such as heat curing, ultraviolet irradiation, electron beam irradiation, or the like, may be appropriately selected according to the material for forming the protective layer 28.
  • curing of the coating composition by ultraviolet irradiation or short heating is preferably performed.
  • curing by ultraviolet irradiation is most preferably used. That is, in the present invention, the protective layer 28 is preferably formed by a coating composition using a monomer or the like that can be cured by ultraviolet irradiation.
  • the coating composition may be dried and cured simultaneously. Moreover, you may perform drying and / or hardening of a coating composition in inert atmosphere, such as nitrogen atmosphere, as needed.
  • the coating composition is dried to produce the protective layer 28, that is, the acidic gas separation layer 20, the acidic gas separation layer 20 is wound into a roll.
  • intermediate layer formed on the support 22 can also be formed basically in the same manner as the protective layer 28.
  • the support 22 on which the facilitated transport film 21 is formed is temporarily wound, and the support 22 on which the facilitated transport film 21 is formed is sent out from this roll to form the protective layer 28.
  • the support 22 on which the facilitated transport film 21 is formed is not wound up, but is transported in the longitudinal direction as it is, and the protective layer 28 is formed to produce the acidic gas separation layer 20. Good.
  • the laminated body 14 is further laminated with a permeating gas flow path member 26.
  • the permeating gas channel member 26 is a member for causing the acidic gas Gc that has reacted with the carrier and permeated the acidic gas separation layer 20 to flow through the through hole 12a of the central cylinder 12.
  • the stacked body 14 has the sandwiching body 36 in which the acidic gas separation layer 20 is folded in half with the facilitated transport film 21 inside, and the supply gas flow path member 24 is sandwiched.
  • the permeating gas flow path member 26 functions as a spacer between the stacked bodies 14, and the acidic gas separated from the source gas G reaches the through hole 12 a of the central cylinder 12 toward the winding center (inner side) of the stacked body 14. A flow path for the gas Gc is formed. Further, in order to properly form the flow path of the acidic gas Gc, the adhesive layer 30 described later needs to penetrate. Considering this point, the permeating gas channel member 26 is preferably a member having a mesh structure (net / mesh), like the supply gas channel member 24.
  • polyester materials such as epoxy-impregnated polyester, polyolefin materials such as polypropylene, and fluorine materials such as polytetrafluoroethylene are preferably exemplified.
  • the thickness of the permeating gas channel member 26 may be appropriately determined according to the supply amount of the raw material gas G, the required processing capacity, and the like. Specifically, 100 to 1000 ⁇ m is preferable, 125 to 950 ⁇ m is more preferable, and 150 to 900 ⁇ m is particularly preferable.
  • the permeating gas flow path member 26 is a flow path of the acidic gas Gc that is separated from the source gas G and permeates the acidic gas separation layer 20. Therefore, it is preferable that the permeating gas channel member 26 has a low resistance to the flowing gas. Specifically, it is preferable that the porosity is high, the deformation is small when pressure is applied, and the pressure loss is small.
  • the porosity of the permeating gas channel member 26 is preferably 30 to 99%, more preferably 35 to 97.5%, and particularly preferably 40 to 95%. Further, deformation when pressure is applied can be approximated by elongation when a tensile test is performed. Specifically, the elongation when a load of 10 N / 10 mm width is applied is preferably within 5%, more preferably within 4%. Furthermore, the pressure loss can be approximated by a flow rate loss of compressed air that flows at a constant flow rate. Specifically, when 15 L / min of air is passed through the 15 cm square permeate gas channel member 26 at room temperature, the flow rate loss is preferably within 7.5 L / min, and within 7 L / min. More preferably.
  • the supply gas flow path member 24 and the permeate gas flow path member 26 have end faces (end faces) in order to simplify the drawings and clearly show the configuration. Part) is shown in net form.
  • the extending direction of the central cylinder 12 and the short direction coincide with each other, and a fixing means such as an instantaneous adhesive is attached to the central cylinder 12.
  • a fixing means such as an instantaneous adhesive is attached to the central cylinder 12.
  • 34 is used to fix the end of the permeating gas channel member 26.
  • the acidic gas separation layer 20 produced as described above is folded in half with the facilitated transport membrane 21 side (protective layer 28 side) inside, and the supply gas is sandwiched therebetween.
  • the channel member 24 is sandwiched. That is, a sandwiching body 36 is produced in which the supply gas flow path member 24 is sandwiched between the acidic gas separation layers 20 folded in half.
  • the acidic gas separation layer 20 is not equally folded in half, but is folded in half so that one is slightly longer as shown in FIG.
  • a sheet-shaped protective member for example, Kapton tape
  • Etc. are preferably arranged.
  • an adhesive 30 a to be the adhesive layer 30 is applied to the shorter surface of the acid gas separation layer 20 folded in half (the surface of the porous support 22).
  • the adhesive 30 a (that is, the adhesive layer 30) extends in the vicinity of both ends in the width direction (arrow x direction) and extends in the entire circumferential direction (arrow y direction). It is applied in the form of a strip, and is further applied in the form of a strip extending in the entire width direction in the vicinity of the end opposite to the folded portion.
  • the surface coated with the adhesive 30a is directed to the permeating gas flow path member 26, and the folded side is directed to the central cylinder 12.
  • the sandwiching body 36 is laminated on the permeate gas channel member 26 fixed to the central cylinder 12, and the permeate gas channel member 26 and the acidic gas separation layer 20 (porous support 22) are bonded.
  • an adhesive 30a to be the adhesive layer 30 is applied to the upper surface of the laminated sandwiching body 36 (the surface of the long porous support 22).
  • the direction opposite to the permeating gas flow path member 26 first fixed to the central cylinder 12 by the fixing means 34 is also referred to as the upper side.
  • the adhesive 30a on this surface is also applied in the form of a belt extending in the entire circumferential direction in the vicinity of both end portions in the width direction, and the reverse of the folded portion. It is applied in the form of a strip extending in the entire width direction in the vicinity of the end on the side.
  • a permeating gas flow path member 26 is laminated on the sandwiching body 36 coated with the adhesive 30a, and the permeation with the acidic gas separation layer 20 (porous support 22).
  • the gas flow path member 26 is bonded to form the laminate 14.
  • a sandwiching body 36 is produced in which the supply gas flow path member 24 is sandwiched by the acidic gas separation layer 20 in which the protective layer 28 is formed on the surface of the facilitated transport film 21.
  • the adhesive layer 30a to be the adhesive layer 30 is applied, the side to which the adhesive is applied is directed downward, and the last laminated permeated gas channel member 26 and the sandwiching body 36 are laminated and bonded.
  • an adhesive 30a is applied to the upper surface of the laminated sandwiching body 36 as shown in FIG. 6A, and then, as shown in FIG. The member 26 is laminated and bonded, and the second layered laminate 14 is laminated.
  • the steps shown in FIGS. 5 to 7 are repeated, and a predetermined number of laminated bodies 14 are laminated as conceptually shown in FIG.
  • the laminated body 14 is laminated so as to be gradually separated from the central tube 12 in the circumferential direction as it goes upward. Thereby, winding (wrapping) of the laminated body 14 around the center tube 12 is easily performed, and the end portion or the vicinity of the end portion of each permeate gas flow path member 26 on the center tube 12 side is preferably the center tube. 12 can be contacted.
  • the adhesive 38b is applied between the sandwiching body 36 and the adhesive 36b.
  • the laminated body 14 is wound (wound) around the central cylinder 12 so as to wind up the laminated body 14.
  • the permeate gas flow path member 26 on the outermost periphery (that is, the lowermost layer first fixed to the central cylinder 12) is maintained for a predetermined time in a state where tension is applied in the pulling-out direction (winding and squeezing direction). Then, the adhesive 30a and the like are dried.
  • the outermost permeate gas channel member 26 is fixed by ultrasonic welding or the like at a position where it has made one round, and the excess permeate gas channel member 26 outside the fixed position is cut.
  • the spiral laminated body 14a formed by winding the laminated body 14 around the central cylinder is completed.
  • the raw material gas G is supplied from the end of the supply gas flow path member 24, and the acidic gas Gc passes (transports) in the stacking direction through the acidic gas separation layer 20 to transmit the permeated gas flow. It flows into the road member 26, flows through the permeate gas flow path member 26, and reaches the central cylinder 12.
  • the adhesive 30a is applied to the porous support 22, and the adhesive 30a is bonded to the permeated gas flow path member 26 having a network structure. Therefore, the adhesive 30a permeates (impregnates) into the porous support 22 and the permeating gas flow path member 26, and the adhesive layer 30 is formed inside both.
  • the adhesive layer 30 (adhesive 30a) is formed in a strip shape extending in the entire circumferential direction in the vicinity of both ends in the width direction. Further, the adhesive layer 30 extends across the entire width direction in the vicinity of the end portion on the side opposite to the folded portion on the central tube 12 side so as to cross the adhesive layer 30 in the width direction in the vicinity of both ends in the width direction.
  • the adhesive layer 30 is formed so as to surround the outer peripheries of the permeating gas flow path member 26 and the porous support 22 by opening the central tube 12 side. Further, the permeating gas channel member 26 is sandwiched between the facilitated transport films 21. As a result, an envelope-like flow path is formed in the permeate gas flow path member 26 of the laminate 14 so that the central tube 12 side is open. Therefore, the acidic gas Gc that has passed through the acidic gas separation layer 20 and has flowed into the permeate gas flow path member 26 flows toward the central cylinder 12 in the permeate gas flow path member 26 without flowing out, It flows into the center tube 12 from the through hole 12a.
  • various known adhesives can be used as long as the adhesive layer 30 (adhesive 30a) has sufficient adhesive strength, heat resistance, and moisture resistance.
  • adhesives include epoxy resins, vinyl chloride copolymers, vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinylidene chloride copolymers, vinyl chloride-acrylonitrile copolymers, butadiene-acrylonitrile copolymers, polyamide resins, polyvinyl butyral.
  • Suitable examples include polyesters, cellulose derivatives (nitrocellulose, etc.), styrene-butadiene copolymers, various synthetic rubber resins, phenol resins, urea resins, melamine resins, phenoxy resins, silicon resins, urea formamide resins, and the like. .
  • the adhesive 30a to be the adhesive layer 30 may be applied once, but preferably, an adhesive diluted with an organic solvent such as acetone is applied first, and only the adhesive is applied thereon. preferable.
  • the adhesive diluted with an organic solvent is preferably applied in a wide width, and the adhesive is preferably applied in a narrower width.
  • the adhesive layer 30 (adhesive 30a) can be suitably infiltrated into the porous support 22 and the permeating gas channel member 26.
  • telescope prevention plates (telescope prevention members) 16 are disposed at both ends of the spiral laminate 14a produced in this way.
  • the telescope prevention plate 16 is a so-called telescope in which the spiral laminated body 14a is pressed by the source gas G, the supply-side end face is pushed in a nested manner, and the opposite end face protrudes in a nested manner. This is a member for preventing the phenomenon.
  • the telescope prevention plate 16 various known types used for spiral type separation modules can be used.
  • the telescope prevention plate includes an annular outer ring portion 16a, an annular inner ring portion 16b arranged in the outer ring portion 16a so as to coincide with the center, an outer ring portion 16a and an inner ring. And a rib (spoke) 16c for connecting and fixing the portion 16b.
  • the center tube 12 around which the stacked body 14 is wound passes through the inner ring portion 16b.
  • the ribs 16c are provided radially at equal angular intervals from the center of the outer ring part 16a and the inner ring part 16b, and between the outer ring part 16a and the inner ring part 16b and each rib 16c. Is an opening 16d through which the source gas G or the residual gas Gr passes.
  • the telescope prevention plate 16 may be disposed in contact with the end face of the spiral laminated body 14a. However, in general, in order to use the entire end face of the spiral laminate 14a for supplying the source gas and discharging the residual gas Gr, there is a slight gap between the telescope prevention plate 16 and the end face of the spiral laminate 14a. It is arranged.
  • Various materials having sufficient strength, heat resistance and moisture resistance can be used as the material for forming the telescope prevention plate 16.
  • metal materials for example, stainless steel (SUS), aluminum, aluminum alloy, tin, tin alloy, etc.
  • resin materials for example, polyethylene resin, polypropylene resin, aromatic polyamide resin, nylon 12, nylon 66, polysulfin resin
  • Polytetrafluoroethylene resin polycarbonate resin, acrylic / butadiene / styrene resin, acrylic / ethylene / styrene resin, epoxy resin, nitrile resin, polyetheretherketone resin (PEEK), polyacetal resin (POM), polyphenylene sulfide (PPS) Etc.
  • fiber reinforced plastics of these resins for example, as the fiber, glass fiber, carbon fiber, stainless steel fiber, aramid fiber, etc.
  • fiber reinforced plastics of these resins for example, as the fiber, glass fiber, carbon fiber, stainless steel fiber, aramid fiber, etc.
  • Fiber-reinforced polypropylene, long glass fiber-reinforced polyphenylene sulfide), as well as ceramics (such as zeolite, alumina, etc.) and the like are preferably exemplified.
  • ceramics such as zeolite, alumina, etc.
  • resin you may use resin reinforced with glass fiber etc.
  • the coating layer 18 covers the peripheral surface of the spiral laminated body 14a, and blocks the discharge of the raw material gas G and the residual gas Gr from the peripheral surface other than the end face of the spiral laminated body 14a to the outside.
  • the covering layer 18 may be a cylindrical member or may be configured by winding a wire or a sheet-like member.
  • a wire made of FRP is impregnated with the adhesive used for the adhesive layer 30 described above, and the wire impregnated with the adhesive is wound around the spiral laminated body 14a in multiple layers without a gap as necessary.
  • the covering layer 18 is illustrated.
  • a sheet-like member such as Kapton tape is provided between the coating layer 18 and the spiral laminate 14a to prevent the adhesive from penetrating into the spiral laminate 14a. Also good.
  • the spiral type acidic gas separation module is used, but the present invention is not limited to this, and a flat membrane type acidic gas separation module may be used. Since the spiral type separation module is likely to rub between the facilitated transport film and the supply gas flow path member, the present invention that can suppress the rub between the facilitated transport film and the supply gas flow path member is preferably applied. can do.
  • Example 1 ⁇ Production of acid gas separation layer> 3.3% by mass of polyvinyl alcohol-polyacrylic acid copolymer (Kuraray Co., Ltd., Crustomer AP-20), 0.016% by mass of a cross-linking agent (25% by mass aqueous glutaraldehyde manufactured by Wako Pure Chemical Industries, Ltd.), An aqueous solution containing was prepared. To this aqueous solution, 1M hydrochloric acid was added until the pH reached 1.5 to cause crosslinking.
  • a 40% aqueous cesium carbonate solution (manufactured by Rare Metal Co., Ltd.) as a carrier was added so that the concentration of cesium carbonate was 6.0% by weight to prepare a coating composition A. That is, in this example, cesium carbonate serves as a carrier for the facilitated transport film 21.
  • the coating composition A is applied to a porous support (a laminate (manufactured by GE) obtained by laminating porous PTFE on the surface of a PP nonwoven fabric) and dried, whereby the porous support 22 is coated. Then, the facilitated transport film 21 was formed.
  • the facilitated transport film 21 has a hydroxyl group and a carboxyl group. The thickness of the facilitated transport film 21 was 30 ⁇ m.
  • coating composition B1 to be the protective layer 28 20% by mass of polymerizable polydimethylsiloxane (UV9300, manufactured by Momentive Performance Materials Japan), 4-isopropyl-4'-methyldiphenyliodonium tetrakis ( A heptane solution containing 0.1% of pentafluorophenyl) borate (I0591, manufactured by Tokyo Chemical Industry Co., Ltd.) was prepared.
  • this coating composition B1 was applied on the surface of the facilitated transport film 21 formed on the porous support 22 and performing a drying / UV irradiation treatment, the porous support 22, the facilitated transport film 21, and the protective layer are applied.
  • An acidic gas separation layer 20 composed of 28 was prepared.
  • the protective layer 28 was polydimethylsiloxane (PDMS), and the thickness was 0.9 ⁇ m.
  • the protective layer 28 has an epoxy group that is a functional group that reacts with a hydroxyl group or a carboxyl group. Moreover, when the gas permeability coefficient of this protective layer 28 was measured by the method shown below, the gas permeability coefficient was 750 Barrer.
  • P (CO 2 ) the CO 2 permeation rate
  • a permeating gas flow path member 26 (tricot knitted epoxy-impregnated polyester) was fixed to the center tube 12 using an adhesive.
  • the produced acidic gas separation layer 20 was folded in two with the facilitated transport membrane 21 inside. As shown in FIG. 5, the half-folding was performed so that one acidic gas separation layer 20 was slightly longer. Kapton tape was attached to the trough of the acid gas separation layer 20 folded in half, and the end of the supply gas flow path member 24 was reinforced so as not to damage the trough of the facilitated transport film 21. The folds were folded firmly so that the film surface was not damaged, so that there was no curl. Next, the supply gas flow path member 24 (a polypropylene net having a thickness of 0.5 mm) was sandwiched between the acid gas separation layer 20 folded in half, and a sandwich body 36 was produced.
  • Kapton tape was attached to the trough of the acid gas separation layer 20 folded in half, and the end of the supply gas flow path member 24 was reinforced so as not to damage the trough of the facilitated transport film 21. The folds were folded firmly so that the film surface was not damaged, so that there was no curl.
  • the circumferential direction (arrow y direction) is arranged on the porous support 22 side of the sandwich body 36 where the acidic gas separation layer 20 is shorter.
  • An adhesive 30a (extending to the entire region and extending to the entire region in the width direction in the vicinity of the end on the opposite side to the circumferential folded portion, and made of an epoxy resin having a high viscosity (about 40 Pa ⁇ s). E120HP manufactured by Henkel Japan KK was applied.
  • the side to which the adhesive 30a was applied was directed downward, and as shown in FIG. 6A, the sandwiching body 36 and the permeating gas flow path member 26 fixed to the central cylinder 12 were laminated and bonded.
  • the adhesive 30a was applied in the vicinity of the end portion on the side opposite to the folded portion in the circumferential direction so as to extend over the entire region in the width direction. Further, as shown in FIG. 7, a permeate gas flow path member 26 is laminated on the acidic gas separation layer 20 coated with the adhesive 30a and bonded to form the first layered product 14. did.
  • an adhesive 30a is applied to the upper surface of the sandwiching body 36 in the same manner as in FIG. 6A, and a permeating gas flow path member 26 is laminated thereon and adhered in the same manner as in FIG. A second layered laminate 14 was formed. Further, the third layered product 14 was formed on the second layered product 14 in the same manner as the second layer.
  • an adhesive 38a is applied to the peripheral surface of the central cylinder 12, as shown in FIG.
  • the adhesive 38b was applied onto the permeating gas flow path member 26 between the central cylinder 12 and the lowermost layered laminate 14.
  • the adhesives 38a and 38b were the same as the adhesive 30a.
  • the central cylinder 12 is rotated in the direction of the arrow yx in FIG. Thus, the sides were cut to align both ends to form a spiral laminate 14a.
  • the center tube 12 is inserted into the inner ring portion 16b at both ends of the spiral laminated body 14a, and the telescope prevention plate 16 made of PPS (40% glass-filled) having a thickness of 2 cm as shown in FIG. Attached.
  • a coating layer 18 is formed by wrapping an FRP resin tape around the peripheral surface of the telescope prevention plate 16 and the peripheral surface of the spiral laminated body 14a and sealing it, and the structure shown in FIG. 1 has a diameter of 4 cm and a width of 30 cm.
  • a separation module 10 as shown was created.
  • the thickness of the coating layer 18 was 5 mm.
  • the membrane area of the separation module 10 was 1.2 m 2 .
  • Example 2 A separation module 10 was produced in the same manner as in Example 1 except that the thickness of the protective layer 28 was 2 ⁇ m and the gas permeability coefficient was 570 Barrer.
  • Example 3 A separation module 10 was produced in the same manner as in Example 1 except that the thickness of the protective layer 28 was 0.4 ⁇ m and the gas permeability coefficient was 1000 Barrer.
  • Example 4 A separation module 10 was produced in the same manner as in Example 2 except that KF-102 manufactured by Shin-Etsu Chemical Co., Ltd. was used as the polymerizable polydimethylsiloxane.
  • the formed protective layer 28 is polydimethylsiloxane (PDMS).
  • the gas permeability coefficient was 620 Barrer.
  • Example 5 Using the coating composition to be the protective layer 28, an intermediate layer having a thickness of 2.2 ⁇ m is formed on the support 22 in the same manner as the protective layer 28, and a facilitated transport film is formed on the intermediate layer.
  • a separation module was formed in the same manner as in Example 1 except that the thickness of the protective layer 28 was 1.2 ⁇ m.
  • the thickness of the region formed on the support was 2 ⁇ m, and the thickness of the region soaked into the support was 0.2 ⁇ m.
  • the gas permeability coefficient was 620 Barrar.
  • Example 1 A separation module was produced in the same manner as in Example 1 except that a PTFE porous membrane having a thickness of 20 ⁇ m was used as the protective layer. Since this protective layer (PTFE porous membrane) is a porous membrane, the gas permeability coefficient is very large and can be ignored.
  • ⁇ Adhesion> The produced acidic gas separation layer was allowed to stand in an environment of a temperature of 85 ° C. and a humidity of 85% RH for 5 hours, and then the protective layer was visually evaluated for cracking and peeling. The evaluation is as follows. A: There was no peeling and cracking. B: Some peeling and cracking occurred. C: There was peeling and cracking in an area of 20% or more of the surface.
  • ⁇ Decrease rate> The rate of decrease in permeation rate due to the formation of the protective layer was evaluated. That is, the ratio of the transmission speed of each separation module to the transmission speed of the separation module of Comparative Example 4 in which no protective layer was formed was evaluated as a reduction rate of the transmission speed.
  • the gas (acid gas Gc and residual gas Gr) permeating through the separation module 10 was analyzed with a gas chromatograph, and the CO 2 permeation rate (P (CO 2 )) was calculated.
  • the evaluation is as follows. A: Reduction rate is less than 10%. B: The decrease rate is more than 10% and less than 30%. C: Reduction rate is over 30%.
  • the gas (acid gas Gc and residual gas Gr) that has permeated through the separation module 10 when 1 hour has passed and when 200 hours have passed are analyzed by a gas chromatograph, and the CO 2 permeation rate (P (CO 2 )) and The CO 2 / H 2 separation factor ( ⁇ ) was calculated.
  • rate of change (value at 1 hour elapsed time ⁇ value at 200 hour elapsed time) / value at 1 hour elapsed time ⁇ 100
  • the evaluation is as follows. A: The rate of change is less than 5% for both the transmission rate and the separation factor.
  • C The rate of change of at least one of the permeation rate and the separation factor exceeds 10%.
  • AA Adhesion and rate of change are both A, and rate of decrease is A or B.
  • A Adhesion evaluation is A, change rate evaluation is B, and decrease rate evaluation is A or B.
  • B Evaluation of adhesion is B, and evaluation of change rate and reduction rate is A or B.
  • C There is at least one C in the evaluation of adhesion, change rate, and reduction rate. The results of the evaluation are shown in the following table. Note that “-” in the performance evaluation result column indicates that the evaluation is not possible because a defect has occurred in the manufacturing stage of the separation module.
  • the facilitated transport film has at least one selected from the group consisting of a hydroxyl group and a carboxyl group
  • the protective layer formed on the facilitated transport film is in the facilitated transport film.
  • Each of the separation modules of Examples 1 to 6 having a functional group that reacts with at least one selected from the group consisting of a hydroxyl group and a carboxyl group contained in each has adhesion, change rate, and reduction rate. It is good.
  • the protective layer has no functional group that reacts with at least one selected from the group consisting of a hydroxyl group and a carboxyl group contained in the facilitated transport film and does not have a protective layer
  • the rate of change is large. This is considered that the facilitated transport film 21 was greatly damaged by the supply gas flow path member 24 during the gas separation. From the above results, the effects of the present invention are clear.
  • SYMBOLS 10 (Acid gas) separation module 12 Center tube 14 Laminated body 14a Spiral laminated body 16 Telescope prevention board 16a Outer ring part 16b Inner ring part 16c Rib 16d Opening part 18 Covering layer 20 Acid gas separation layer 21 Accelerated transport film 22 Porous Support 22a Porous membrane 22b Auxiliary support membrane 24 Supply gas channel member 26 Permeate gas channel member 28 Protective layer 30 Adhesive layer 30a Adhesive 34 Fixing means 36 Holding body

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 促進輸送膜と供給ガス流路用部材との擦れに起因する欠陥の発生を抑制し、目的とする性能を有するモジュールを安定して得ることができる酸性ガス分離用モジュールを提供する。原料ガスから酸性ガスを分離する、酸性ガスと反応するキャリアおよびキャリアを担持するための親水性化合物を含有する促進輸送膜と、促進輸送膜の表面に積層される保護層とを備える酸性ガス分離層を有し、保護層は、酸性ガス分離層中の最上層に形成されており、保護層のガス透過係数が、500Barrer以上であり、促進輸送膜は、ヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種を有し、かつ、保護層が、前記促進輸送膜中に含まれるカルボキシル基、ヒドロキシル基からなる群から選択される少なくとも1種と反応する官能基を有する。

Description

酸性ガス分離用モジュール
 本発明は、原料ガスから酸性ガスを選択的に分離する、酸性ガス分離用モジュールに関する。
 近年、原料ガス(被処理ガス)から、炭酸ガスなどの酸性ガスを選択的に分離する技術の開発が進んでいる。例えば、酸性ガスを選択的に透過する酸性ガス分離膜を用いて、原料ガスから酸性ガスを分離する酸性ガス分離膜が開発されている。
 例えば、特許文献1には、管壁に貫通孔が形成された、分離した酸性ガスを収集するための中心筒(中心透過物収集管)に、酸性ガス分離膜を含む積層体を多重に巻き付けてなる酸性ガス分離モジュールが記載されている。
 この特許文献1に開示される酸性ガス分離モジュールは、酸性ガス分離膜として、いわゆる溶解拡散膜を用いている。この溶解拡散膜は、膜に対する酸性ガスと分離対象物質との溶解性、および、膜中の拡散性の差を利用して、原料ガスから酸性ガスを分離する。
 また、特許文献2には、原料ガスから炭酸ガス(二酸化炭素)を分離する酸性ガス分離膜(二酸化炭素分離ゲル膜)として、二酸化炭素透過性の支持体の上に、二酸化炭素キャリアを含む水溶液を、架橋構造を有するビニルアルコール-アクリル酸塩共重合体に吸収させて形成したハイドロゲル膜を形成した酸性ガス分離膜が記載されている。
 この酸性ガス分離膜は、いわゆる促進輸送膜を用いる酸性ガス分離膜である。促進輸送膜は、二酸化炭素キャリアのような酸性ガスと反応するキャリアを膜中に有し、このキャリアで酸性ガスを膜の反対側に輸送することで、原料ガスから酸性ガスを分離する。
 このような酸性ガス分離モジュールにおいて、特許文献1に示されるような、酸性ガス分離膜を有する積層体を、壁面に貫通孔を有する中心筒に巻回してなる(中心筒に巻き付けた)、いわゆるスパイラル型の酸性ガス分離モジュールは、酸性ガス分離膜の面積を非常に大きくできる。そのため、スパイラル型の酸性ガス分離モジュールは、効率の良い処理が可能で、非常に有力である。
 スパイラル型の酸性ガス分離モジュールは、一例として、酸性ガス分離膜および中心筒に加え、酸性ガスを分離される原料ガスの流路となる供給ガス流路用部材、および、酸性ガス分離膜で分離された酸性ガスの流路となる透過ガス流路用部材を有して構成される。
 このような部材からなるスパイラル型の酸性ガス分離モジュールは、酸性ガス分離膜、供給ガス流路用部材および透過ガス流路用部材を積層した積層体を、1つ、もしくは、複数積層して、中心筒に巻き付けた構成を有する。
特開平4-215824号公報 特公平7-102310号公報
 ところで、特許文献2に示されるような促進輸送膜は、キャリアを十分に機能させるために、膜中に多量の水分を保持させる必要がある。そのため、促進輸送膜には、非常に吸水性および保水性が高いポリマーが用いられる。加えて、原料ガス中に水分を含ませて促進輸送膜に水分を供給する。また、促進輸送膜は、金属炭酸塩などのキャリアの含有量が多い程、吸水量が増えて、酸性ガスの分離性能が向上する。すなわち、促進輸送膜は、非常に柔らかい(粘性が低い)、ゲル膜である場合が多い。
 加えて、促進輸送膜を利用する酸性ガス分離膜では、酸性ガスの分離時には、温度100~130℃程度の原料ガスを、1MPa以上の圧力で供給される。そのため、促進輸送膜を利用する酸性ガス分離膜では、促進輸送膜とこの促進輸送膜と接触している部材との間で擦れて促進輸送膜に欠陥が発生してしまう。例えば、スパイラル型の酸性ガス分離モジュールとした場合には、促進輸送膜と供給ガス流路用部材との間で擦れてしまい、促進輸送膜に欠陥が発生してしまう。
 そのため、促進輸送膜の表面に保護層を形成して、促進輸送膜と供給ガス流路用部材とが直接、摺接しないようにして、促進輸送膜の擦れに起因する欠陥の発生を抑制することが考えられる。
 しかしながら、本願発明者の検討によれば、酸性ガスの分離時には、促進輸送膜に水分が供給され促進輸送膜が膨潤するため、促進輸送膜は流動性を有することになる。促進輸送膜は流動性を有するため、単に、促進輸送膜の表面に保護層を設けただけでは、保護層と促進輸送膜との密着性を十分に確保できず、また、促進輸送膜の流動に伴って、保護層が割れたり流動したりするため、促進輸送膜を十分に保護することができず、促進輸送膜の欠陥発生を抑制することができないという問題があることを見出した。
 そこで本発明は、促進輸送膜と他の部材との擦れに起因する欠陥の発生を抑制し、目的とする性能を有するモジュールを安定して得ることができる酸性ガス分離用モジュールを提供することを課題とする。
 本発明者は、上記課題を達成すべく鋭意研究した結果、原料ガスから酸性ガスを分離する、酸性ガスと反応するキャリアおよびキャリアを担持するための親水性化合物を含有する促進輸送膜と、促進輸送膜の表面に積層される保護層とを備える酸性ガス分離層を有し、保護層は、酸性ガス分離層中の最上層に形成されており、保護層のガス透過係数が、500Barrer以上であり、促進輸送膜は、ヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種を有し、かつ、保護層が、前記促進輸送膜中に含まれるヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種と反応する官能基を有することにより、保護層と促進輸送膜との密着性を向上して促進輸送膜と供給ガス流路用部材との擦れに起因する欠陥の発生を抑制できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の構成の酸性ガス分離用モジュールを提供する。
 (1) 水分を0.1mol%以上含有する原料ガスから、酸性ガスを選択的に分離する酸性ガス分離用モジュールであって、原料ガスから酸性ガスを分離する、酸性ガスと反応するキャリアおよびキャリアを担持するための親水性化合物を含有する促進輸送膜と、促進輸送膜の表面に積層される保護層とを備える酸性ガス分離層を有し、保護層は、酸性ガス分離層中の最上層に形成されており、保護層のガス透過係数が、500Barrer以上であり、促進輸送膜は、ヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種を有し、かつ、保護層が、前記促進輸送膜中に含まれるヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種と反応する官能基を有する酸性ガス分離用モジュール。
 (2) 保護層が有する官能基がエポキシ基、アミノ基、メトキシ基、エトキシ基、ヒドロキシル基、および、カルボキシル基からなる群から選択される少なくとも1つである(1)に記載の酸性ガス分離用モジュール。
 (3) 促進輸送膜の吸水率が5%以上である(1)または(2)に記載の酸性ガス分離用モジュール。
 (4) 保護層の膜厚が0.1μm以上5μm以下である(1)~(3)のいずれかに記載の酸性ガス分離用モジュール。
 (5) 保護層が、ポリジメチルシロキサン誘導体である(1)~(4)のいずれかに記載の酸性ガス分離用モジュール。
 (6) さらに、管壁に貫通孔が形成された中心筒と、原料ガスの流路となる供給ガス流路用部材と、促進輸送膜を透過した酸性ガスが中心筒まで流れる流路となる透過ガス流路用部材と、を有し、供給ガス流路用部材は、酸性ガス分離層の保護層側に積層され、透過ガス流路用部材は、酸性ガス分離層の保護層とは反対側に積層され、供給ガス流路用部材、酸性ガス分離層および透過ガス流路用部材を積層した積層体を、1以上、中心筒に巻回してなるスパイラル型のモジュールである(1)~(5)のいずれかに記載の酸性ガス分離用モジュール。
 本発明によれば、促進輸送膜と他の部材との擦れに起因する欠陥の発生を抑制し、目的とする性能を有するモジュールを安定して得ることができる酸性ガス分離用モジュールを提供することができる。
本発明の酸性ガス分離用モジュールの一例を一部切り欠いて示す概略斜視図である。 図1に示す酸性ガス分離用モジュールの積層体の概略断面図である。 酸性ガス分離層の概略断面図である。 図4(A)および図4(B)は、図1に示す酸性ガス分離用モジュールの作製方法を説明するための概念図である。 図1に示す酸性ガス分離用モジュールの作製方法を説明するための概念図である。 図6(A)および図6(B)は、図1に示す酸性ガス分離用モジュールの作製方法を説明するための概念図である。 図1に示す酸性ガス分離用モジュールの作製方法を説明するための概念図である。 図1に示す酸性ガス分離用モジュールの作製方法を説明するための概念図である。
 以下、本発明の酸性ガス分離用モジュールについて、添付の図面に示される好適実施例を基に、詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 図1に本発明の酸性ガス分離用モジュールの一例の一部切欠き概略斜視図を示す。
 図1に示すように、酸性ガス分離用モジュール10は、基本的に、中心筒12と、酸性ガス分離膜(促進輸送膜21)を有する積層体14と、テレスコープ防止板16とを有して構成される。なお、以下の説明では、酸性ガス分離用モジュールを、単に、分離モジュールとも言う。
 分離モジュール10は、水分を1%mol以上含有する原料ガスGから酸性ガスGcを分離するものである。例えば、一酸化炭素、炭酸ガス(CO2)、水(水蒸気)および水素を含有する原料ガスGから、酸性ガスGcとして炭酸ガスを分離するものである。
 本発明の分離モジュール10は、いわゆるスパイラル型の分離モジュールである。すなわち、分離モジュール10は、シート状の積層体14を、1層、もしくは、複数積層して、中心筒12に巻回して、積層体14の巻回物の両端面に、中心筒12を挿通してテレスコープ防止板16を設けてなる構成を有する。また、巻回した積層体14の最外周面は、ガス非透過性の被覆層18で覆われている。
 なお、以下の説明では、中心筒12に巻回された、複数の積層体14を積層した物の巻回物(すなわち、積層されて巻回された積層体14による略円筒状物)を、便宜的に、スパイラル積層体14aとも言う。
 このような分離モジュール10において、酸性ガスを分離される原料ガスGは、例えば図1中奥手側のテレスコープ防止板16(その開口部16d)を通って、スパイラル積層体14aの端面に供給され、端面から積層体14に流入して、積層体14内を流れつつ、酸性ガスGcを分離される。
 また、積層体14によって原料ガスGから分離された酸性ガスGcは、中心筒12から排出される。他方、酸性ガスを分離された原料ガスG(以下、便宜的に残余ガスGrとする)は、スパイラル積層体14a(積層体14)の供給側とは逆側の端面から排出され、テレスコープ防止板16(同前)を通って分離モジュール10の外部に排出される。
 中心筒(透過ガス集合管)12は、原料ガスG供給側の端面が閉塞する円筒状の管で、周面(管壁)には複数の貫通孔12aが形成される。
 原料ガスGから分離された酸性ガスGcは、後述する透過ガス流路用部材26を通って、貫通孔12aから中心筒12内に至り、中心筒12の開放端12bから排出される。
 中心筒12において、後述する接着剤層30で封止される領域における開口率(中心筒12の外周面に占める貫通孔12aの面積率)は、1.5~80%が好ましく、3~75%がより好ましく、5~70%がさらに好ましい。中でも、実用的な観点から、中心筒12の開口率は、5~25%が、特に好ましい。
 中心筒12の開口率を上記範囲とすることにより、効率的に酸性ガスGcを収集することができ、また、中心筒12の強度を高め、加工適性を十分に確保できる。
 また、貫通孔12aは、直径0.5~20mmの円形の孔であるのが好ましい。さらに、貫通孔12aは、中心筒12の周壁に、均一に形成されるのが好ましい。
 なお、中心筒12には、必要に応じて、分離した酸性ガスGcを開放端12b側に流すためのガス(スイープガス)を供給する供給口(供給部)を設けてもよい。
 積層体14は、酸性ガス分離層20と、供給ガス流路用部材24と、透過ガス流路用部材26とを積層してなるものである。
 なお、図1において、符号30は、酸性ガス分離層20と透過ガス流路用部材26とを接着し、かつ、積層体14同士を接着すると共に、透過ガス流路用部材26における酸性ガスGcの流路を、中心筒12側が開口するエンベロープ状にする接着剤層30である。
 前述のように、図示例の分離モジュール10は、この積層体14を、複数、積層して、中心筒12に巻回して(巻き付けて)、略円筒状のスパイラル積層体14aを形成してなる構成を有する。
 以下、便宜的に、この積層体14の巻回に対応する方向を周方向(矢印y方向)、周方向と直交する方向を幅方向(矢印x方向)とする。なお、積層体14は、一般的に、矩形のシート状物であるが、周方向は、通常、積層体14(酸性ガス分離層20、供給ガス流路用部材24および透過ガス流路用部材26)の長手方向になる。
 分離モジュール10において、積層体14は1層でもよい。しかしながら、図示例のように、複数の積層体14を積層することにより、酸性ガス分離層20の膜面積を大きくして、1つのモジュールで分離する酸性ガスGcの量を向上できる。なお、酸性ガス分離層20の膜面積の向上は、積層体14の幅方向の長さを長くすることでも図れる。
 積層体14の積層数は、分離モジュール10に要求される処理速度や処理量、分離モジュール10の大きさ等に応じて、適宜、設定すればよい。ここで、積層する積層体14の数は、50以下が好ましく、45以下がより好ましく、40以下が特に好ましい。積層体14の積層数を、この数とすることで、中心筒12への積層体14の巻回が容易になり、加工性を向上できる。
 図2に、積層体14の部分断面図を示す。前述のように、矢印xは幅方向、矢印yは周方向である。
 図示例において、積層体14は、二つ折りにした酸性ガス分離層20の間に供給ガス流路用部材24を挟み込んで挟持体36とし(図5参照)、この挟持体36に、透過ガス流路用部材26を積層してなる構成を有する。この構成については、後に詳述する。
 前述のように、分離モジュール10において、原料ガスGは、テレスコープ防止板16(その開口部16d)を通って、スパイラル積層体14aの一方の端面から供給される。すなわち、原料ガスGは、各積層体14の幅方向(矢印x方向)の端部(端面)に供給される。
 図2に概念的に示すように、積層体14の幅方向の端面に供給された原料ガスGは、供給ガス流路用部材24を幅方向に流れる。この流れの中で、酸性ガス分離層20(促進輸送膜21)に接触した酸性ガスGcは、原料ガスGから分離されて、酸性ガス分離層20を積層体14の積層方向に通過して(促進輸送膜21のキャリアによって積層方向に輸送されて)、透過ガス流路用部材26に流入する。
 透過ガス流路用部材26に流入した酸性ガスGcは、透過ガス流路用部材26を周方向(矢印y方向)に流れて、中心筒12に至り、中心筒12の貫通孔12aから中心筒12内に流入する。
 この酸性ガスGcの流れは、接着剤層30によって規制される。すなわち、分離モジュール10においては、透過ガス流路用部材26を挟む2つの酸性ガス分離層20(促進輸送膜21)と、透過ガス流路用部材26および酸性ガス分離層20(多孔質支持体22)に浸透した接着剤層30とによって、面方向における接着剤層30の内側に、透過ガス流路用部材26を内包する、中心筒12側が開放するエンベロープ状の流路(空間)が形成される(図5および図6(A)参照)。分離モジュール10は、これにより、酸性ガス分離層20を透過した酸性ガスGcが外部に流出するのを防止している。
 この接着剤層30に関しては、後に詳述する。
 中心筒12内に流入した酸性ガスGcは、中心筒12を幅方向に流れて、開放端12bから排出される。
 また、酸性ガスGcを除去された残余のガスGrは、供給ガス流路用部材24を幅方向に流れて、スパイラル積層体14aの逆側の端面から排出され、テレスコープ防止板16(その開口部16d)を通って、分離モジュール10の外部に排出される。
 供給ガス流路用部材24は、その幅方向の端部から、原料ガスGを供給され、部材内を流れる原料ガスGと、酸性ガス分離層20とを接触させる。
 ここで、本発明の分離モジュール10においては、供給ガス流路用部材24は、酸性ガス分離層20の促進輸送膜21の表面に形成される保護層28に対面して配置される。すなわち、供給ガス流路用部材24は、保護層28に接触して設けられる。この保護層28に関しては後に詳述する。
 供給ガス流路用部材24は、前述のように二つ折りされた酸性ガス分離層20のスペーサとして機能して、原料ガスGの流路を構成する。また、供給ガス流路用部材24は、原料ガスGを乱流にするのが好ましい。この点を考慮すると、供給ガス流路用部材24は、網目構造(ネット状/メッシュ状)を有する部材が好ましい。中でも、後述する樹脂材料の1以上を含有する糸で形成された網目構造が好ましい。
 このような供給ガス流路用部材24の形成材料としては、十分な耐熱性および耐湿性を有するものであれば、各種の材料が利用可能である。
 一例として、紙、上質紙、コート紙、キャストコート紙、合成紙などの紙材料、セルロース、ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリスルホン、アラミド、ポリカーボネートなどの樹脂材料、金属、ガラス、セラミックスなどの無機材料等が、好適に例示される。
 中でも、樹脂材料もしくは樹脂材料を含有する材料は好適に例示される。樹脂材料としては、具体的には、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、ポリエーテルスルホン(PES)、ポリフェニレンサルファイド(PPS)、ポリスルホン(PSF)、ポリプロピレン(PP)、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトンおよびポリフッ化ビニリデン等が、好適に例示される。このような樹脂材料は、複数を併用してもよい。
 供給ガス流路用部材24の厚さは、原料ガスGの供給量や要求される処理能力等に応じて、適宜、決定すれば良い。
 具体的には、100~1000μmが好ましく、150~950μmがより好ましく、200~900μmが特に好ましい。
 また、供給ガス流路用部材24が、樹脂製の糸等で形成される網目構造を有する織物や不織布の場合には、その繊維径は、100~900μmであるのが好ましい。また、繊維密度は、2~30mg/cm2であるのが好ましい。
 後に詳述するが、分離モジュールにおいて、性能低下の一因として、ゲル膜である促進輸送膜21と供給ガス流路用部材24との摺接に起因する促進輸送膜21の損傷が例示される。
 これに対して、本発明の分離モジュール10は、促進輸送膜21の表面に保護層28を有することで、促進輸送膜21と供給ガス流路用部材24との摺接に起因する促進輸送膜21の損傷を防止する。
 しかしながら、供給ガス流路用部材24を構成する糸(繊維)の繊維径が100μm未満の場合には、供給ガス流路用部材24の空隙率が低くなり、また、圧力損失が大きくなることから、処理効率が低下するおそれがある。従って、繊維径は100μm以上とするのが好ましい。
 また、繊維径が900μm超の場合には、膜表面への繊維の押し込み量が大きくなるため、表面に保護層28を形成しても、両者の摺接に起因する促進輸送膜21の損傷を防止できないおそれがある。従って、繊維径は、900μm以下とするのが好ましい。
 同様に、供給ガス流路用部材24を構成する糸(繊維)の繊維密度が2mg/cm2未満の場合には、供給ガス流路用部材24(保護層28)と促進輸送膜21との接触面積が十分大きくならず、膜表面への繊維の押し込み量が大きくなるため両者の摺接に起因する促進輸送膜21の損傷を防止できないおそれがある。従って、繊維径は、2mg/cm2以上とするのが好ましい。
 また、繊維密度が30mg/cm2超の場合には、供給ガス流路用部材24の空隙率が低くなり、流れる原料ガスGに対しての抵抗が大きくなり、処理効率が低下するおそれがある。従って、繊維密度は、30mg/cm2以下とするのが好ましい。
 また、供給ガス流路用部材24の引張弾性係数は、1~500MPaとするのが好ましい。
 引張弾性係数が500MPa超の場合には、すなわち、供給ガス流路用部材24が硬いと、積層体14として中心筒12に巻かれた際に、膜表面への繊維の押し込み量が大きくなり、促進輸送膜21を傷つけるおそれがある。従って、引張弾性係数は、500MPa以下とするのが好ましい。
 また、引張弾性係数が1MPa未満の場合には、供給ガス流路用部材24が柔らかいため、酸性ガス分離層20間でスペーサとして機能しないおそれがある、すなわち、原料ガスの流路を確保できないおそれがある。従って、引張弾性係数は、1MPa以上とするのが好ましい。
 このように、供給ガス流路用部材24の繊維径、繊維密度、引張弾性係数を制御することで、製造安定性と処理性能を向上することができる。
 なお、供給ガス流路用部材24の引張弾性係数は、網目構造等の構造体としての引張応力とひずみ量との関係から求められるものである。
 本発明の分離モジュール10は、促進輸送型である。そのため、酸性ガス分離層20は、促進輸送膜21を有する。
 図3に酸性ガス分離層20の概略断面図を示す。
 図3に示すように、酸性ガス分離層20は、促進輸送膜21と、促進輸送膜21を支持する、多孔質膜22aおよび補助支持膜22bからなる多孔質支持体22と、促進輸送膜21の表面に積層される保護層28とを有する。
 促進輸送膜21は、少なくとも、供給ガス流路用部材24を流れる原料ガスGに含有される酸性ガスGcと反応するキャリア、および、このキャリアを担持する親水性化合物を含有する。このような促進輸送膜21は、原料ガスGから酸性ガスGcを選択的に透過させる機能(酸性ガスGcを選択的に輸送する機能)を有している。
 促進輸送型の分離モジュールは、高温かつ高湿での使用が必要条件である。従って、促進輸送膜21は、高温下(例えば、100~200℃)でも、酸性ガスGcを選択的に透過させる機能を有する。また、原料ガスGが1%mol以上の水分(水蒸気)を含んでいるので、水蒸気を親水性化合物が吸湿して促進輸送膜21が水分を保持することで、さらにキャリアが酸性ガスGcを輸送し易くなるので、溶解拡散膜を用いる場合に比べて分離効率が高まる。
 促進輸送膜21の膜面積は、分離モジュール10の大きさ、分離モジュール10に要求される処理能力等に応じて、適宜、設定すればよい。具体的には、0.01~1000m2が好ましく、0.02~750m2がより好ましく、0.025m~500m2がさらに好ましい。中でも、促進輸送膜21の膜面積は、実用的な観点から、1~100m2が、特に好ましい。
 促進輸送膜21の膜面積を上記範囲とすることにより、膜面積に対して効率よく酸性ガスGcを分離でき、また、加工性も良好になる。
 促進輸送膜21の周方向の長さ(二つ折りする前の全長)も、分離モジュール10の大きさや分離モジュール10に要求される処理能力等に応じて、適宜、設定すればよい。具体的には、100~10000mmが好ましく、150~9000mmがより好ましく、200~8000mmがさらにより好ましい。中でも、促進輸送膜21の長さは、実用的な観点から、800~4000mmが、特に好ましい。
 促進輸送膜21の周方向の長さを、上記範囲とすることにより、膜面積に対して効率よく酸性ガスGcを分離することができ、さらに、積層体14を巻回する際の巻きずれの発生が抑制され、加工性が容易となる。
 なお、促進輸送膜の幅も、分離モジュール10の幅方向のサイズに応じて、適宜、設定すれば良い。
 促進輸送膜21の厚さも、分離モジュール10の大きさや分離モジュール10に要求される処理能力等に応じて、適宜、設定すればよい。
 ここで、後に詳述するが、分離モジュールにおいて、性能低下の一因として、吸水して膨潤した促進輸送膜21と供給ガス流路用部材24との摺接に起因する促進輸送膜21の損傷が例示される。
 促進輸送膜21の損傷に起因する性能低下は、促進輸送膜21を厚くすることで、抑制できる。しかしながら、促進輸送膜21が厚くなると、透過性能が低下するため、その分だけ、酸性ガスGcの分離性能が低下する。
 これに対して、本発明の分離モジュールは、促進輸送膜21の表面に保護層28を有するので、吸水により膨潤した促進輸送膜21と供給ガス流路用部材24との摺接に起因する促進輸送膜21の損傷を防止できる。すなわち、透過性能を向上するために、促進輸送膜21を薄くしても、促進輸送膜21の損傷に起因する性能低下を防止できる。
 以上の点を考慮すると、促進輸送膜21の厚さは、5~150μmが好ましく、10~120μmがより好ましい。
 促進輸送膜21の厚さを、上記範囲にすることにより、高いガス透過性と分離選択性とを実現できる。
 また、促進輸送膜21の吸水率は、5%以上であるのが好ましい。促進輸送膜21の吸水率を5%以上とすることにより、水蒸気を親水性化合物が吸水して促進輸送膜21が水分を保持することで、キャリアが酸性ガスGcを輸送しやすくなり分離効率が高まる。
 ここで、親水性化合物が水分をより多く保持すると、促進輸送膜はより柔らかくなるため、促進輸送膜21と供給ガス流路用部材24との摺接に起因する促進輸送膜21の損傷が起きやすくなる。
 これに対して、本発明の分離モジュールは、促進輸送膜21の表面に保護層28を有するので、吸水量が増え促進輸送膜がより柔らかくなった場合でも、促進輸送膜21と供給ガス流路用部材24との摺接に起因する促進輸送膜21の損傷を好適に防止できる。
 なお、本発明において、吸水率は、以下の方法により測定した。
 温度80℃、湿度4%以下の環境下で16時間真空加熱して乾燥させた試料を、温度85℃、湿度85%の環境下に6時間放置し、吸水前後の試料の質量を測定して、質量の変化量を算出し吸水率とした。
 また、本発明において、促進輸送膜21は、ヒドロキシル基(-OH基)、カルボキシル基(-COOH基)からなる群から選択される少なくとも1つを有する。すなわち、促進輸送膜21は、ヒドロキシル基、あるいは、カルボキシル基を有する親水性化合物を含有する。
 本発明の分離モジュールは、促進輸送膜21と供給ガス流路用部材24との摺接に起因する促進輸送膜21の損傷を防止するために、促進輸送膜21の表面に保護層28を設ける。ここで、本発明においては、促進輸送膜21が、ヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種を有し、保護層28が、ヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種と反応する官能基を有する。そのため、促進輸送膜21と保護層28との密着性を向上することができ、促進輸送膜21と供給ガス流路用部材24との摺接に起因する促進輸送膜21の損傷を防止できる。
 この点に関しては後に詳述する。
 促進輸送膜21中に含まれる親水性化合物はバインダとして機能するものであり、促進輸送膜21において、水分を保持して、キャリアによる二酸化炭素等のガスの分離機能を発揮させる。また、親水性化合物は、耐熱性の観点から、架橋構造を有するのが好ましい。
 また、前述のとおり、親水性化合物は、ヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種を有する。
 このような親水性化合物としては、親水性ポリマーが例示される。
 親水性化合物の重量平均分子量は、安定な膜を形成し得る範囲で、適宜、選択すればよい。具体的には、20,000~2,000,000が好ましく、25,000~2,000,000がより好ましく、30,000~2,000,000が特に好ましい。
 親水性化合物の重量平均分子量を20,000以上とすることで、安定して十分な膜強度を有する促進輸送膜21を得ることができる。
 特に、親水性化合物が架橋可能基として-OHを有する場合には、親水性化合物は、重量平均分子量が30,000以上であるのが好ましい。この際には、重量平均分子量は更に好ましくは40,000以上であり、より好ましくは、50,000以上である。また、親水性化合物が架橋可能基として-OHを有する場合には、製造適性の観点から、重量平均分子量は、6,000,000以下であることが好ましい。
 なお、親水性化合物の重量平均分子量は、例えば、親水性化合物としてPVAを用いる場合には、JIS K 6726に準じて測定した値を用いればよい。また、市販品を用いる場合には、カタログ、仕様書などで公称される分子量を用いればよい。
 親水性化合物が有するヒドロキシル基(-OH基)、カルボキシル基(-COOH基)は、親水性化合物を形成する架橋可能基であり、耐加水分解性の架橋構造を形成しうるものである。
 親水性化合物としては、具体的には、ヒドロキシル基を有するものとしては、ポリビニルアルコール、ポリエチレンオキサイド、水溶性セルロース、デンプン、ポリヒドロキシメタクリレート、ポリヒドロキシエチルメタクリレートなどが例示される。また、カルボキシル基を有するものとしては、ポリアクリル酸、アルギン酸、カルボキシメチルセルロースなどが例示される。
 最も好ましくはポリビニルアルコールである。また、親水性化合物としては、これらの共重合体も例示される。
 また、ヒドロキシル基とカルボキシル基とを有する親水性化合物としては、ポリビニルアルコール-ポリアクリル酸共重合体が例示される。ポリビニルアルコール-ポリアクリル塩共重合体は、吸水能が高い上に、高吸水時においてもハイドロゲルの強度が大きいため好ましい。
 ポリビニルアルコール-ポリアクリル酸共重合体におけるポリアクリル酸の含有率は、例えば1~95モル%、好ましくは2~70モル%、より好ましくは3~60モル%、特に好ましくは5~50モル%である。
 なお、ポリビニルアルコール-ポリアクリル酸共重合体において、ポリアクリル酸は、塩であってもよい。この際におけるポリアクリル酸塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩の他、アンモニウム塩や有機アンモニウム塩等が例示される。
 ポリビニルアルコールは市販品としても入手可能である。具体的には、PVA117(株式会社クラレ製)、ポバール(株式会社クラレ製)、ポリビニルアルコール(アルドリッチ社製)、J-ポバール(日本酢ビ・ポバール株式会社製)等が例示される。ポリビニルアルコール-ポリアクリル酸塩共重合体(ナトリウム塩)も、市販品として入手可能である。例えば、クラストマーAP20(株式会社クラレ製)が例示される。
 なお、本発明の分離モジュール10の促進輸送膜21において、親水性化合物は、2種以上を混合して使用してもよい。
 また、ヒドロキシル基、カルボキシル基以外の架橋可能基を有する親水性化合物を含有していてもよい。ヒドロキシル基、カルボキシル基以外の架橋可能基としては、耐加水分解性の架橋構造を形成し得るものが、好ましく選択される。
 例えば、アミノ基(-NH2)類、および、エポキシ基等が例示される。
 具体的には、ポリアリルアミン、ポリビニルピロリドン、ポリエチレンイミン、ポリビニルアミン、ポリオルニチン、ポリリジン、キチン、などが例示される。
 促進輸送膜21における親水性化合物の含有量は、促進輸送膜21を形成するためのバインダとして機能し、かつ、水分を十分に保持できる量を、親水性組成物やキャリアの種類等に応じて、適宜、設定すればよい。
 具体的には、0.5~50質量%が好ましく、0.75~30質量%がより好ましく、1~15質量%が特に好ましい。親水性化合物の含有量を、この範囲とすることにより、上述のバインダとしての機能および水分保持機能を、安定して、好適に発現できる。
 親水性化合物における架橋構造は、熱架橋、紫外線架橋、電子線架橋、放射線架橋、光架橋等、従来公知の手法により形成できる。
 好ましくは光架橋もしくは熱架橋であり、最も好ましくは熱架橋である。
 また、促進輸送膜21の形成には、親水性化合物と共に、架橋剤を用いるのが好ましい。すなわち、塗布法によって促進輸送膜21を形成する際には、架橋剤を含む塗布組成物を用いるのが好ましい。
 架橋剤としては、親水性化合物と反応し、熱架橋や光架橋等の架橋をし得る官能基を2以上有する架橋剤を含むものが選択される。また、形成された架橋構造は、耐加水分解性の架橋構造となるのが好ましい。
 このような観点から、促進輸送膜21の形成に利用される架橋剤としては、エポキシ架橋剤、多価グリシジルエーテル、多価アルコール、多価イソシアネート、多価アジリジン、ハロエポキシ化合物、多価アルデヒド、多価アミン、有機金属系架橋剤などが好適に例示される。より好ましくは多価アルデヒド、有機金属系架橋剤およびエポキシ架橋剤であり、中でも、アルデヒド基を2以上有するグルタルアルデヒドやホルムアルデヒドなどの多価アルデヒドが好ましい。
 エポキシ架橋剤としては、エポキシ基を2以上有する化合物であり、4以上有する化合物も好ましい。エポキシ架橋剤は市販品としても入手可能であり、例えば、トリメチロールプロパントリグリシジルエーテル(共栄社化学株式会社製、エポライト100MF等)、ナガセケムテックス社製EX-411、EX-313、EX-614B、EX-810、EX-811、EX-821、EX-830、日油株式会社製エピオールE400などが例示される。
 また、エポキシ架橋剤に類似する化合物として、環状エーテルを有するオキセタン化合物も、また、好ましく使用される。オキセタン化合物としては、官能基を2以上有する多価グリシジルエーテルが好ましく、市販品としては、例えばナガセケムテックス株式会社製EX-411、EX-313、EX-614B、EX-810、EX-811、EX-821、EX-830、などが例示される。
 多価グリシジルエーテルとしては、例えば、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、プロピレングリコールグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等が例示される。
 多価アルコールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、プロピレングリコール、ジエタノールアミン、トリエタノールアミン、ポリオキシプロピル、オキシエチエンオキシプロピレンブロック共重合体、ペンタエリスリトール、ソビトール等が例示される。
 多価イソシアネートとしては、例えば、2,4-トルイレンジイソシアネート、ヘキサメチレンジイソシアネート等が例示される。
 多価アジリジンとしては、例えば、2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アシリジニル)プロピオネート]、1,6-ヘキサメチレンジエチレンウレア、ジフェニルメタン-ビス-4,4’-N,N’-ジエチレンウレア等が例示される。
 ハロエポキシ化合物としては、例えば、エピクロルヒドリン、α-メチルクロルヒドリン等が例示される。
 多価アルデヒドとしては、例えば、グルタルアルデヒド、グリオキサール等が例示される。
 多価アミンとしては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリエチレンイミン等が例示される。
 さらに、有機金属系架橋剤としては、例えば、有機チタン架橋剤、有機ジルコニア架橋剤等が例示される。
 例えば、親水性化合物として、重量平均分子量が130,000以上のポリビニルアルコールを用いる場合には、この親水性化合物と反応性が良好で、加水分解耐性も優れている架橋構造が形成可能である点から,エポキシ架橋剤やグルタルアルデヒドが好ましく利用される。
 また、親水性化合物として、ポリビニルアルコール-ポリアクリル酸共重合体を用いる場合は、エポキシ架橋剤やグルタルアルデヒドが好ましく利用される。
 架橋剤の量は、促進輸送膜21の形成に使用する親水性化合物や架橋剤の種類に応じて、適宜、設定すればよい。
 具体的には、親水性化合物が有する架橋可能基量100質量部に対して0.001~80質量部が好ましく、0.01~60質量部がより好ましく、0.1~50質量部が特に好ましい。架橋剤の含有量を上記範囲とすることにより、架橋構造の形成性が良好であり、かつ、形状維持性に優れる促進輸送膜を得ることができる。
 また、親水性化合物が有する架橋可能基に着目すれば、架橋構造は、親水性化合物が有する架橋可能基100molに対し、架橋剤0.001~80molを反応させて形成されたものであるのが好ましい。
 前述のように、分離モジュール10の酸性ガス分離層20において、促進輸送膜21は、このような親水性化合物に加え、キャリアを含有する。
 キャリアは、酸性ガス(例えば、炭酸ガス)と親和性を有し、かつ、塩基性を示す各種の水溶性の化合物である。具体的には、アルカリ金属化合物、窒素含有化合物および硫黄酸化物等が例示される。
 なお、キャリアは、間接的に酸性ガスと反応するものでも、キャリア自体が、直接、酸性ガスと反応するものでもよい。
 前者は、供給ガス中に含まれる他のガスと反応し、塩基性を示し、その塩基性化合物と酸性ガスが反応するものなどが例示される。より具体的には、スチーム(水分)と反応してOH-を放出し、そのOH-がCO2と反応することで、促進輸送膜21中に選択的にCO2を取り込むことができる化合物であり、例えば、アルカリ金属化合物である。
 後者は、キャリア自体が塩基性であるようなもので、例えば、窒素含有化合物や硫黄酸化物である。
 アルカリ金属化合物としては、アルカリ金属炭酸塩、アルカリ金属重炭酸塩、および、アルカリ金属水酸化物等が例示される。ここで、アルカリ金属としては、セシウム、ルビジウム、カリウム、リチウム、および、ナトリウムから選ばれたアルカリ金属元素が好ましく用いられる。なお、本発明において、アルカリ金属化合物とは、アルカリ金属そのもののほか、その塩およびそのイオンも含む。
 アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、および、炭酸セシウム等が例示される。
 アルカリ金属重炭酸塩としては、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素ルビジウム、および、炭酸水素セシウム等が例示される。
 さらに、アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、および、水酸化セシウム等が例示される。
 これらの中でも、アルカリ金属炭酸塩が好ましく、また、酸性ガスとの親和性が良いという観点から、水に対する溶解度の高いカリウム、ルビジウム、および、セシウムを含む化合物が好ましい。
 また、キャリアとしてアルカリ金属化合物を用いる際には、2種以上のキャリアを併用してもよい。
 促進輸送膜21中に2種以上のキャリアが存在することにより、膜中で異なるキャリアを距離的に離間させることができる。これにより、複数のキャリアの潮解性の違いによって、促進輸送膜21の吸湿性に起因して、製造時等に促進輸送膜21同士や、促進輸送膜21と他の部材とが貼着すること(ブロッキング)を、好適に抑制できる。
 また、ブロッキングの抑制効果を、より好適に得られる等の点で、2種以上のアルカリ金属化合物をキャリアとして用いる場合には、潮解性を有する第1化合物と、第1化合物よりも潮解性が低く比重が小さい第2化合物を含むのが好ましい。一例として、第1化合物としては炭酸セシウムが、第2化合物としては炭酸カリウムが、例示される。
 窒素含有化合物としては、グリシン、アラニン、セリン、プロリン、ヒスチジン、タウリン、ジアミノプロピオン酸などのアミノ酸類、ピリジン、ヒスチジン、ピペラジン、イミダゾール、トリアジンなどのヘテロ化合物類、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノプロパノールアミン、ジプロパノールアミン、トリプロパノールアミンなどのアルカノールアミン類、クリプタンド[2.1]、クリプタンド[2.2]などの環状ポリエーテルアミン類、クリプタンド[2.2.1]、クリプタンド[2.2.2]などの双環式ポリエーテルアミン類,ポルフィリン、フタロシアニン、エチレンジアミン四酢酸等が例示される。
 さらに、硫黄化合物としては、シスチン、システインなどのアミノ酸類、ポリチオフェン、ドデシルチオール等が例示される。
 促進輸送膜21におけるキャリアの含有量は、キャリアや親水性化合物の種類等に応じて、適宜、設定すればよい。具体的には、0.3~30質量%が好ましく、0.5~25質量%がより好ましく、1~20質量%が特に好ましい。
 促進輸送膜21におけるキャリアの含有量を、上記範囲とすることにより、促進輸送膜21を形成するための組成物(塗料)において、塗布前の塩析を好適に防ぐことができ、さらに、促進輸送膜21が、酸性ガスの分離機能を確実に発揮できる。
 促進輸送膜21(促進輸送膜21を形成するための組成物)は、このような親水性化合物、架橋剤およびキャリアに加え、必要に応じて、各種の成分を含有してもよい。
 このような成分としては、ジブチルヒドロキシトルエン(BHT)等の酸化防止剤、炭素数3~20のアルキル基または炭素数3~20のフッ化アルキル基と親水性基とを有する化合物やシロキサン構造を有する化合物等の特定化合物、オクタン酸ナトリウムや1-ヘキサスルホン酸ナトリウム等の界面活性剤、ポリオレフィン粒子やポリメタクリル酸メチル粒子等のポリマー粒子等が例示される。
 その他、必要に応じて、触媒、保湿(吸湿)剤、補助溶剤、膜強度調整剤、欠陥検出剤等を用いてもよい。
 多孔質支持体22は、酸性ガス透過性を有し、かつ、促進輸送膜21を形成するための塗布組成物の塗布が可能(塗膜の支持が可能)であり、さらに、形成された促進輸送膜21を支持するものである。
 多孔質支持体22の形成材料は、上記機能を発現できる物であれば、公知の各種の物が利用可能である。
 ここで、本発明の分離モジュール10において、酸性ガス分離層20を構成する多孔質支持体22は、単層であってもよいが、図3に示すように、多孔質膜22aと補助支持膜22bとからなる2層構成であるのが好ましい。このような2構成を有することにより、多孔質支持体22は、上記酸性ガス透過性、促進輸送膜21となる塗布組成物の塗布および促進輸送膜21の支持という機能を、より確実に発現する。
 なお、多孔質支持体22が単層である場合には、形成材料としては、以下に多孔質膜22aおよび補助支持膜22bで例示する各種の材料が利用可能である。
 この2層構成の多孔質支持体22では、多孔質膜22aが促進輸送膜21側となる。
 多孔質膜22aは、耐熱性を有し、また加水分解性の少ない材料からなることが好ましい。このような多孔質膜22aとしては、具体的には、ポリスルフォン、ポリエーテルスルホン、ポリプロピレン、セルロースなどのメンブレンフィルター膜、ポリアミドやポリイミドの界面重合薄膜、ポリテトラフルオロエチレン(PTFE)や高分子量ポリエチレンの延伸多孔膜等が例示される。
 中でも、PTFEや高分子量ポリエチレンの延伸多孔膜は、高い空隙率を有し、酸性ガス(特に炭酸ガス)の拡散阻害が小さく、さらに、強度、製造適性などの観点から好ましい。その中でも、耐熱性を有し、また加水分解性の少ない等の点で、PTFEの延伸多孔膜が、好適に利用される。
 多孔質膜22aは、使用環境下において、水分を含有した促進輸送膜21が多孔部分に浸み込み易くなり、かつ、膜厚分布や経時での性能劣化を引き起こさないために、疎水性であるのが好ましい。
 また、多孔質膜22aは、孔の最大孔径が1μm以下であるのが好ましい。
 さらに、多孔質膜22aの孔の平均孔径は、0.001~10μmが好ましく、0.002~5μmがより好ましく、0.005~1μmが特に好ましい。多孔質膜の平均孔径をこの範囲とすることにより、後述する接着剤の塗布領域は接着剤を十分に染み込ませ、かつ、多孔質膜22aが酸性ガスの通過の妨げとなることを好適に防止できる。
 補助支持膜22bは、多孔質膜22aの補強用に備えられるものである。
 この補助支持膜22bは、要求される強度、耐延伸性および気体透過性を満たすものであれば、各種の物が利用可能である。例えば、不織布、織布、ネット、および、平均孔径が0.001~10μmのメッシュなどを、適宜、選択して用いることができる。
 補助支持膜22bも、前述の多孔質膜22aと同様、耐熱性を有し、また加水分解性の少ない素材からなることが好ましい。
 不織布、織布、編布を構成する繊維としては、耐久性や耐熱性に優れる、ポリプロピレン(PP)などのポリオレフィン、アラミド(商品名)などの改質ポリアミド、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素含有樹脂などからなる繊維が好ましい。メッシュを構成する樹脂材料も同様の素材を用いるのが好ましい。これらの材料のうち、安価で力学的強度の強いPPからなる不織布は、特に好適に例示される。
 多孔質支持体22が補助支持膜22bを有することにより、力学的強度を向上させることができる。そのため、例えば、後述するロール・トゥ・ロール(以下、RtoRとも言う)を利用する塗布装置においてハンドリングしても、多孔質支持体22に皺がよることを防止でき、生産性を高めることもできる。
 多孔質支持体22は、薄すぎると強度に難がある。この点を考慮すると、多孔質膜22aの膜厚は5~100μm、補助支持膜22bの膜厚は50~300μmが好ましい。
 また、多孔質支持体22を単層にする場合には、多孔質支持体22の厚さは、30~500μmが好ましい。
 このような酸性ガス分離層20は、促進輸送膜21となる成分を含む液体状の塗布組成物(塗料/塗布液)を調製して、多孔質支持体22に塗布して、乾燥する、いわゆる塗布法で作製できる。
 すなわち、まず、親水性化合物、キャリア、および、必要に応じて添加するその他の成分を、それぞれ適量で水(常温水または加温水)に添加して、十分、攪拌することで、促進輸送膜21となる塗布組成物を調製する。
 この塗布組成物の調製では、必要に応じて、攪拌しつつ加熱することで、各成分の溶解を促進させてもよい。また、親水性化合物を水に加えて溶解した後、キャリアを徐々に加えて攪拌することで、親水性化合物の析出(塩析)を効果的に防ぐことができる。
 この組成物を多孔質支持体22に塗布して、乾燥することで、促進輸送膜21を形成する。
 ここで、組成物の塗布および乾燥は、所定のサイズに切断されたカットシート状の多孔質支持体22に行う、いわゆる枚葉式で行ってもよい。
 好ましくは、促進輸送膜21の形成は、いわゆるRtoRによって行う。すなわち、長尺な多孔質支持体22を巻回してなる送り出しロールから、多孔質支持体22を送り出して、長手方向に搬送しつつ、調製した塗布組成物を塗布し、次いで、塗布した塗布組成物(塗膜)を乾燥して、多孔質支持体22の表面に促進輸送膜21を形成してなる積層物を作製し、作製した積層物を巻き取る。
 RtoRにおける多孔質支持体22の搬送速度は、多孔質支持体22の種類や塗布液の粘度等に応じて、適宜、設定すればよい。
 ここで、多孔質支持体22の搬送速度が速すぎると、塗布組成物の塗膜の膜厚均一性が低下するおそれがあり、遅過ぎると生産性が低下する。この点を考慮すると、多孔質支持体22の搬送速度は、0.5m/分以上が好ましく、0.75~200m/分がより好ましく、1~200m/分が特に好ましい。
 塗布組成物の塗布方法は、公知の方法が、各種、利用可能である。
 具体的には、カーテンフローコーター、エクストルージョンダイコーター、エアードクターコーター、ブレードコーター、ロッドコーター、ナイフコーター、スクイズコーター、リバースロールコーター、バーコーター等が例示される。
 塗布組成物の塗膜の乾燥も、公知の方法で行えばよい。一例として、温風による乾燥が例示される。
 温風の風速は、ゲル膜反を迅速に乾燥させることができるともにゲル膜反が崩れない速度を、適宜、設定すればよい。具体的には、0.5~200m/分が好ましく、0.75~200m/分がより好ましく、1~200m/分が特に好ましい。
 温風の温度は、多孔質支持体22の変形などが生じず、かつ、ゲル膜反を迅速に乾燥させることができる温度を、適宜、設定すればよい。具体的には、膜面温度で、1~120℃が好ましく、2~115℃がより好ましく、3~110℃が特に好ましい。
 また、塗膜の乾燥には、必要に応じて、多孔質支持体22の加熱を併用してもよい。
 前述のように、本発明の分離モジュール10においては、酸性ガス分離層20の促進輸送膜21の表面に、保護層28が形成される。すなわち、保護層28は、酸性ガス分離層20の最上層として形成される。
 保護層28は、促進輸送膜21を供給ガス流路用部材24との摺接から保護する層であり、500Barrer以上のガス透過係数を有し、かつ、促進輸送膜21に含まれるヒドロキシル基またはカルボキシル基と反応する官能基を有するものである。
 前述のように、スパイラル型の分離モジュールは、酸性ガス分離層20と、供給ガス流路用部材24と、透過ガス流路用部材26との積層体、もしくは、この積層体を積層してなる積層物を、中心筒12に巻回する(巻き付ける)ことで形成される。
 図示例の分離モジュール10は、促進輸送膜21を内側にして酸性ガス分離層20を二つ折りにして、酸性ガス分離層20で供給ガス流路用部材24を挟持してなる挟持体36を形成し(図5参照)、この挟持体36に透過ガス流路用部材26を積層した積層体14を積層して、この積層体14の積層物を、中心筒12に巻回する。
 ここで、酸性ガス分離層20と透過ガス流路用部材26とは、接着剤層30によって固定されている。これに対し、酸性ガス分離層20と供給ガス流路用部材24とは、単に、酸性ガス分離層20で供給ガス流路用部材24を挟み込んであるだけである。
 また、前述のように、供給ガス流路用部材24は樹脂製の糸等で形成される網目構造を有するのが好ましい。
 他方、促進輸送膜21は、超吸水性樹脂などの親水性化合物をバインダとして用い、このバインダにキャリアを分散してなる構成を有する。促進輸送膜21は、キャリアを十分に機能させるために、膜中に多量の水分を保持させる必要がある。また、促進輸送膜21は、金属炭酸塩などのキャリアの含有量が多い程、吸水量が増えて、酸性ガスの分離性能が向上する。そのため、促進輸送膜21は、非常に柔らかいゲル膜である。
 加えて、酸性ガスの分離時には、温度100~130℃程度の原料ガスを、1MPa以上の圧力で供給される。そのため、促進輸送膜と供給ガス流路用部材との間で相対的に移動して、両者が摺接し、この摺接によって促進輸送膜が擦れて欠陥が発生してしまう場合がある。
 そこで、促進輸送膜の表面に保護層を形成して、促進輸送膜と供給ガス流路用部材とが直接、摺接しないようにして、促進輸送膜の擦れに起因する欠陥の発生を抑制することが考えられる。
 しかしながら、本願発明者の検討によれば、酸性ガスの分離時には、促進輸送膜に水分が供給され促進輸送膜が膨潤するため、促進輸送膜は流動性を有することになる。促進輸送膜は流動性を有するため、単に、促進輸送膜の表面に保護層を設けただけでは、保護層と促進輸送膜との密着性を十分に確保できず、また、促進輸送膜の流動に伴って、保護層が割れたり流動したりするため、促進輸送膜を十分に保護することができず、促進輸送膜の欠陥発生を抑制することができないという問題があることを見出した。
 これに対し、本発明の分離モジュール10では、促進輸送膜21が、ヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種を有し、保護層28が、ヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種と反応する官能基を有する。
 本発明はこのような構成により、促進輸送膜21と保護層28とを化学的に結合させる。そのため、促進輸送膜21が柔らかいゲル膜で流動性を有しても、促進輸送膜21と保護層28との密着性を向上することができる。従って、促進輸送膜21と供給ガス流路用部材24との摺接に起因する促進輸送膜21の損傷を防止できる。
 そのため、本発明によれば、高い製造安定性で、機密性が高く、促進輸送膜21の損傷に起因する性能低下、原料ガスGの漏れ、圧力の抜け等が無い、目的とする性能を有する分離モジュール10を得ることができる。
 前述のとおり、保護層28は、500Barrer以上のガス透過係数を有し、かつ、促進輸送膜21に含まれるヒドロキシル基および/またはカルボキシル基と反応する官能基を有するものである。
 本発明において、保護層28のガス透過性が500Barrer(1Barrer=1×10-10cm3(STP)・cm/(sec・cm2・cmHg))未満では、酸性ガスの透過性が低下して所望の分離性能が得られない等の不都合が生じる。
 保護層28は、各種の材料で形成可能である。
 具体的には、保護層28は、ヒドロキシル基および/またはカルボキシル基と反応する官能基を有する。より具体的には、保護層28は、エポキシ基、アミノ基、メトキシ基、エトキシ基、ヒドロキシル基、および、カルボキシル基の少なくとも1つを有する化合物であるのが好ましい。
 また、保護層28の材料は、エポキシ基、アミノ基、メトキシ基、エトキシ基、ヒドロキシル基、および、カルボキシル基の少なくとも1つを有する化合物を含む重合体(ポリマー)または共重合体(コポリマー)であるのが好ましい。
 保護層28の一例として、シリコーン結合を有する化合物やシリコーン含有化合物からなる層が例示される。具体的には、オルガノポリシロキサン(シリコーン樹脂)やポリトリメチルシリルプロピンなどシリコーン含有ポリアセチレン等が利用できる。オルガノポリシロキサンの具体例としては、下記の一般式で示されるものが例示される。
Figure JPOXMLDOC01-appb-C000001

 なお、上記一般式中、nは1以上の整数を表す。ここで、入手容易性、揮発性、粘度等の観点から、nの平均値は10~1000000の範囲が好ましく、100~100000の範囲がより好ましい。
 また、R1n、R2n、R3およびR4は、それぞれ、水素原子、アルキル基、ビニル基、アラルキル基、アリール基、ヒドロキシル基、アミノ基、カルボキシル基、エポキシ基、メトキシ基、エトキシ基からなる群より選択されるいずれかを示す。ここで、上記のとおり、R1n、R2n、R3およびR4の少なくとも1つは、エポキシ基、アミノ基、メトキシ基、エトキシ基、ヒドロキシル基、および、カルボキシル基のいずれかであるのが好ましい。
 なお、n個存在するR1nおよびR2nは、それぞれ、同じであっても異なっても良い。また、少なくとも一部の、エポキシ基、アルキル基、アラルキル基およびアリール基は環構造を有していても良い。さらに、前記アルキル基、ビニル基、アラルキル基およびアリール基は置換基を有していても良く、この際における置換基は、例えば、アルキル基、ビニル基、アリール基、ヒドロキシル基、アミノ基、カルボキシル基、エポキシ基およびフッ素原子から選ばれる。これらの置換基は、可能であれば、さらに置換基を有することもできる。
 R1n、R2n、R3およびR4に選択されるアルキル基、ビニル基、アラルキル基およびアリール基は、入手容易性などの観点から、炭素数1~20のアルキル基、ビニル基、炭素数7~20のアラルキル基、炭素数6~20のアリール基がより好ましい。
 R1n、R2n、R3およびR4は、メチル基またはエポキシ置換アルキル基が好ましく、例えば、エポキシ変性のポリジメチルシロキサン(PDMS)など、PDMS誘導体が好適に利用できる。
 また、保護層28としては、上記のオルガノポリシロキサン以外にも、ポリ[1-(トリメチルシリル)-1-プロピン](PTMSP)等のシリコーン材料、ブタジエン系・イソプレン系ゴム材料、低密度なポリメチルペンテン等からなる層も利用可能である。
 ここで、保護層28は、促進輸送膜21と供給ガス流路用部材24とが直接摺接することを防止できれば、促進輸送膜21の表面の少なくとも一部に形成されていればよい。好ましくは、保護層28は、促進輸送膜21の表面の全面にわたって形成される。
 保護層28の形成部において、保護層28の厚さは、保護層28の形成材料、保護層28による促進輸送膜21の表面被覆率、供給ガス流路用部材24の種類(形成材料や網目の粗さなど)、促進輸送膜21の種類(含有成分や各含有成分の量比など)等に応じて、促進輸送膜21を確実に保護できる厚さを、適宜、設定すればよい。
 具体的には、保護層28の厚さは、0.1μm~5μmが好ましく、0.15μm~4μmがより好ましい。
 保護層28の厚さを、上記範囲とすることにより、供給ガス流路用部材24による促進輸送膜21の損傷を、より好適に防止できる点で好ましい。
 なお、図3に示す酸性ガス分離層20は、多孔質支持体22と促進輸送膜21と保護層28とを有する構成としたが、これに限定はされず、例えば、多孔質支持体22と促進輸送膜21との間に、促進輸送膜21(キャリア)が多孔質支持体22を透過することを防止するための中間層を有していてもよい。
 このような中間層は、上述の保護層28と同様の材料で形成することができる。
 このような酸性ガス分離層20は、公知の各種の方法で作製すればよい。好ましくは、RtoRを利用する塗布法によって作製する。
 周知のように、RtoRとは、長尺な基板(被処理物)を巻回してなるロールから、基板を送り出し、長手方向に搬送しつつ、塗布組成物の塗布や乾燥等を行い、処理済の基板をロール状に巻き取る製造方法である。
 酸性ガス分離層20を作製する際には、長尺な多孔質支持体(以下、単に「支持体」ともいう)22を巻回してなるロールを、促進輸送膜21の形成装置に装填して、このロールから支持体を送り出して、支持体22を長手方向に搬送しつつ、促進輸送膜21となる塗布組成物を塗布する。
 促進輸送膜21を形成する際の支持体22の搬送速度は、塗布組成物の組成や粘度等に応じて、適宜、設定すればよい。
 ここで、支持体22の搬送速度が速すぎると、塗布組成物の塗膜の膜厚均一性の低下や塗布組成物の乾燥が不十分になるおそれがあり、遅過ぎると生産性が低下する。この点を考慮すると、支持体22の搬送速度は、0.5m/min以上が好ましく、0.75~200m/minがより好ましく、1~200m/minが特に好ましい。
 前述のように、促進輸送膜21は、親水性ポリマー等の親水性化合物、酸性ガスと反応するキャリアおよび水等を含有する。
 従って、このような促進輸送膜21を形成するための塗布組成物(塗布液/塗料)は、前述の親水性化合物、キャリアおよび水(常温水または加温水)、あるいはさらに、架橋剤等の必要となる成分を含む塗布組成物である。なお、親水性化合物は、架橋、一部架橋および未架橋のいずれでも良く、また、これらが混合されたものでもよい。この塗布組成物も、公知の方法で調製すればよい。
 ここで、促進輸送膜21となる塗布組成物は、25℃における粘度が100cp以上であるのが好ましい。
 塗布組成物の25℃における粘度を、100cp以上とすることにより、塗布組成物を塗布する際のハジキを抑制できる、塗布組成物の塗布の均一性を良くできる等の点で好ましい。
 なお、促進輸送膜21となる塗布組成物の粘度は、JIS Z8803に準じて、B型粘度計による回転数60rpmにおける粘度を、25℃で測定すればよい。
 促進輸送膜21となる塗布組成物の塗布は、公知の物が各種、利用可能である。特に、促進輸送膜21となる塗布組成物の好ましい粘度や塗布組成物の塗布量等を考慮すると、ロールコータ、バーコータ、正回転ロールコータ、ナイフコータ等は好適に利用される。
 促進輸送膜21となる塗布組成物を塗布したら、次いで、この塗布組成物を乾燥して、促進輸送膜21を形成する。
 乾燥方法は、温風乾燥や支持体22の加熱による乾燥方法等、水の除去による乾燥を行う公知の方法が、各種、利用可能である。
 温風乾燥を行う場合には、温風の風速は、塗布組成物を迅速に乾燥できると共に、塗布組成物の塗膜(ゲル膜)が崩れない速度を、適宜、設定すればよい。具体的には、0.5~200m/分が好ましく、0.75~200m/分がより好ましく、1~200m/分が特に好ましい。
 また、温風の温度は、支持体22の変形などが生じず、かつ、塗布組成物を迅速に乾燥できる温度を、適宜、設定すればよい。具体的には、膜面温度で、1~120℃が好ましく、2~115℃がより好ましく、3~110℃が特に好ましい。
 支持体22の加熱による乾燥を行う場合には、支持体22の変形などが生じず、かつ、塗布組成物を迅速に乾燥できる温度を、適宜、設定すればよい。また、支持体22の加熱に、乾燥風の吹き付けを併用してもよい。
 具体的には、支持体22の温度を60~120℃として行うのが好ましく、60~90℃として行うのがより好ましく、70~80℃として行うのが特に好ましい。また、この際において、膜面温度は、15~80℃が好ましく、30~70℃がより好ましい。
 このようにして支持体22に促進輸送膜21を形成したら、促進輸送膜を形成した支持体22をロール状に巻き取る。
 次いで、促進輸送膜21を形成した支持体22(以下、複合体とも言う)のロールを保護層28の形成装置に装填して、このロールから複合体を送り出して、長手方向に搬送しつつ、保護層28となる塗布組成物を塗布する。
 ここで、複合体の搬送速度は、生産性の観点から速い方が好ましい。しかしながら、塗布組成物を均一に塗布するために、3~200m/minが好ましく、5~150m/minがより好ましく、10~120m/minが特に好ましい。
 保護層28となる塗布組成物は、前述のPDMS誘導体等の保護層28となる化合物のモノマー、ダイマー、トリマー、オリゴマー、プレポリマー、および、これらの混合物や、硬化剤、硬化促進剤、架橋剤、増粘剤、補強剤、および、フィラー等を、有機溶剤に溶解(分散)してなる、塗布法によって樹脂層(樹脂の膜)等を形成する際に用いられる、一般的な塗布組成物(塗布液/塗料)である。このような塗布組成物は、公知の方法で調製すればよい。
 ここで、保護層28となる塗布組成物は、25℃における粘度が100cp以上であるのが好ましい。
 保護層28となる塗布組成物の25℃における粘度を100cp以上とすることにより、所望の厚さの保護層28を安定して形成できる。また、この点を考慮すると、保護層28となる塗布組成物の25℃における粘度は、400cp以上がより好ましく、500cp以上が特に好ましい。
 従って、保護層28となる塗布組成物は、室温で塗布するのが好ましく、もしくは、粘度が100cp以上となる温度に制御して塗布を行うのが好ましい。
 他方、保護層28となる塗布組成物の25℃における粘度の上限は、使用する塗布装置における限界粘度に応じればよいが、保護層28の厚さの制御が好適に行える等の点で、1,000,000cp以下が好ましい。
 なお、粘度は、促進輸送膜21となる塗布組成物と同様に測定すればよい。
 保護層28となる塗布組成物の塗布装置は、シリコーン塗布組成物に応じた公知のものが、各種、利用可能である。特に、ロールコータ、ダイレクトグラビアコータ、オフセットグラビアコータ、1本ロールキスコータ、3本リバースロールコータ、正回転ロールコータ、スクイズコータ、リバースロールコータ等は、好適に例示される。
 保護層28となる塗布組成物を塗布したら、次いで、この塗布組成物を乾燥する。乾燥も、温風乾燥やヒータによる乾燥等、公知の方法で行えばよい。
 保護層28となる塗布組成物を乾燥したら、次いで、塗布組成物を硬化して、保護層28を形成する。
 硬化は、加熱硬化、紫外線照射、電子線照射等、保護層28の形成材料に応じて、硬化が可能な方法を、適宜、選択すればよい。ここで、支持体22のカール(変形)を抑制できる、支持体22を構成する樹脂などの劣化を防止できる等の理由により、紫外線照射や短時間の加熱による塗布組成物の硬化は、好適に利用され、特に紫外線照射による硬化は、最も好ましく利用される。すなわち、本発明においては、紫外線の照射による硬化が可能なモノマー等を用いた塗布組成物によって、保護層28を形成するのが好ましい。
 なお、保護層28となる塗布組成物(保護層28)の組成によっては、塗布組成物の乾燥および硬化を、同時に行ってもよい。
 また、塗布組成物の乾燥および/または硬化は、必要に応じて、窒素雰囲気等の不活性雰囲気で行ってもよい。
 塗布組成物を乾燥して、保護層28すなわち酸性ガス分離層20を作製したら、酸性ガス分離層20をロール状に巻き取る。
 なお、支持体22の上に形成する中間層も、基本的に、保護層28と同様に形成できる。
 なお、以上の例では、促進輸送膜21を形成した支持体22を、一旦、巻取り、このロールから、促進輸送膜21を形成した支持体22を送り出して、保護層28を形成している。
 しかしながら、これ以外にも促進輸送膜21を形成した支持体22を巻き取らず、そのまま長手方向に搬送して、保護層28を形成して酸性ガス分離層20を作製して、巻き取ってもよい。
 積層体14には、さらに、透過ガス流路用部材26が積層される。
 透過ガス流路用部材26は、キャリアと反応して酸性ガス分離層20を透過した酸性ガスGcを、中心筒12の貫通孔12aに流すための部材である。
 前述のように、図示例において、積層体14は、酸性ガス分離層20を促進輸送膜21を内側にして二つ折りにして、供給ガス流路用部材24を挟み込んだ挟持体36を有する。この挟持体36に、透過ガス流路用部材26を積層して、接着剤層30で接着することにより、1つの積層体14が構成される。
 透過ガス流路用部材26は、積層体14間でスペーサとして機能して、積層体14の巻回中心(内側)に向かって中心筒12の貫通孔12aに至る、原料ガスGから分離した酸性ガスGcの流路を構成する。また、この酸性ガスGcの流路を適正に形成するために、後述する接着剤層30が浸透する必要が有る。この点を考慮すると、透過ガス流路用部材26は、供給ガス流路用部材24と同様、網目構造(ネット状/メッシュ状)の部材が好ましい。
 透過ガス流路用部材26の形成材料は、十分な強度や耐熱性を有するものであれば、各種の材料が利用可能である。具体的には、エポキシ含浸ポリエステルなどポリエステル系の材料、ポリプロピレンなどポリオレフィン系材料、ポリテトラフルオロエチレンなどフッ素系の材料が、好適に例示される。
 透過ガス流路用部材26の厚さは、原料ガスGの供給量や要求される処理能力等に応じて、適宜、決定すれば良い。
 具体的には、100~1000μmが好ましく、125~950μmがより好ましく、150~900μmが特に好ましい。
 前述のように、透過ガス流路用部材26は、原料ガスGから分離されて酸性ガス分離層20を透過した酸性ガスGcの流路となる。
 そのため、透過ガス流路用部材26は、流れるガスに対しての抵抗が少ないのが好ましい。具体的には、空隙率が高く、圧をかけたときの変形が少なく、かつ、圧損が少ないのが好ましい。
 透過ガス流路用部材26の空隙率は、30~99%が好ましく、35~97.5%がより好ましく、40~95%が特に好ましい。
 また、圧をかけたときの変形は、引張試験を行ったときの伸度で近似できる。具体的には、10N/10mm幅の荷重をかけたときの伸度が5%以内であることが好ましく、4%以内であることがより好ましい。
 さらに、圧損は、一定の流量で流した圧縮空気の流量損失で近似できる。具体的には、15cm角の透過ガス流路用部材26に、室温で15L/分の空気を流した際に、流量損失が7.5L/分以内であるのが好ましく、7L/分以内であるのがより好ましい。
 以下、積層体14の積層方法、および、積層した積層体14の巻回方法すなわちスパイラル積層体14aの作製方法を説明する。なお、以下の説明に用いる図4(A)~図7では、図面を簡潔にして構成を明確に示すために、供給ガス流路用部材24および透過ガス流路用部材26は、端面(端部)のみをネット状で示す。
 まず、図4(A)および図4(B)に概念的に示すように、中心筒12の延在方向と短手方向とを一致して、中心筒12に、瞬間接着剤等の固定手段34を用いて、透過ガス流路用部材26の端部を固定する。
 次に、図5に概念的に示すように、前述のように作製した酸性ガス分離層20を、促進輸送膜21側(保護層28側)を内側にして二つ折りにし、その間に、供給ガス流路用部材24を挟み込む。すなわち、供給ガス流路用部材24を、二つ折りにした酸性ガス分離層20で挟持した挟持体36を作製する。なお、この際には、酸性ガス分離層20は均等に二つ折りにするのではなく、図5に示すように、一方が、若干、長くなるように、二つ折りする。
 また、供給ガス流路用部材24による促進輸送膜21の損傷を防止するために、酸性ガス分離層20を二つ折りにした谷部に、二つ折りにしたシート状の保護部材(例えば、カプトンテープなど)を配置するのが好ましい。
 さらに、二つ折りにした酸性ガス分離層20の短い方の表面(多孔質支持体22の表面)に、接着剤層30となる接着剤30aを塗布する。
 ここで、接着剤30a(すなわち、接着剤層30)は、図5に示すように、幅方向(矢印x方向)の両端部近傍で、周方向(矢印y方向)の全域に延在して帯状に塗布し、さらに、折り返し部と逆側の端部近傍で幅方向の全域に延在して帯状に塗布する。
 次いで、図6(A)および図6(B)に概念的に示すように、接着剤30aを塗布した面を透過ガス流路用部材26に向け、かつ、折り返し側を中心筒12に向けて、挟持体36を、中心筒12に固定した透過ガス流路用部材26に積層し、透過ガス流路用部材26と酸性ガス分離層20(多孔質支持体22)とを接着する。
 さらに、図6(A)に示すように、積層した挟持体36の上面(長い側の多孔質支持体22の表面)に、接着剤層30となる接着剤30aを塗布する。なお、以下の説明では、最初に固定手段34で中心筒12に固定された透過ガス流路用部材26と逆側の方向を、上側とも言う。
 図6(A)に示すように、この面の接着剤30aも、先と同様、幅方向の両端部近傍で、周方向の全域に延在して帯状に塗布し、さらに、折り返し部と逆側の端部近傍で幅方向の全域に延在して帯状に塗布する。
 次いで、図7に概念的に示すように、接着剤30aを塗布した挟持体36の上に、透過ガス流路用部材26を積層し、酸性ガス分離層20(多孔質支持体22)と透過ガス流路用部材26とを接着し、積層体14が形成される。
 次いで、先と同様、図5に示すように、促進輸送膜21の表面に保護層28を形成した酸性ガス分離層20で、供給ガス流路用部材24を挟み込んだ挟持体36を作製して、接着剤層30となる接着剤30aを塗布して、接着剤を塗布した側を下に向けて、最後に積層した透過ガス流路用部材26と挟持体36とを積層して、接着する。
 さらに、先と同様、積層した挟持体36の上面に、図6(A)に示すように接着剤30aを塗布して、次いで、図7に示すように、その上に、透過ガス流路用部材26を積層して、接着し、2層目の積層体14を積層する。
 以下、図5~図7の工程を繰り返して、図8に概念的に示すように、所定数の積層体14を積層する。
 なお、この際においては、図8に示すように、積層体14は、上方に行くにしたがって、次第に、周方向に中心筒12から離間するように積層するのが好ましい。これにより、中心筒12への積層体14の巻回(巻き付け)を容易に行い、かつ、各透過ガス流路用部材26の中心筒12側の端部もしくは端部近傍が、好適に中心筒12に当接できる。
 所定数の積層体14を積層したら、図8に示すように、中心筒12の外周面に接着剤38aを、最初に中心筒12に固定した透過ガス流路用部材26の上面の中心筒12と挟持体36との間に接着剤38bを、それぞれ、塗布する。
 次いで、図8に矢印yxで示すように、積層した積層体14を巻き込むようにして、積層体14を中心筒12に巻回する(巻き付ける)。
 巻き終わったら、最外周(すなわち、最初に中心筒12に固定した最下層)の透過ガス流路用部材26に、ひき出す方向(巻き絞める方向)の張力を掛けた状態で、所定時間、維持して、接着剤30a等を乾燥させる。
 所定時間が経過したら、最外周の透過ガス流路用部材26を1周した位置で超音波融着等によって固定し、固定位置よりも外方の余分な透過ガス流路用部材26を切断して、積層した積層体14を中心筒に巻回してなるスパイラル積層体14aを完成する。
 前述のように、原料ガスGは、供給ガス流路用部材24の端部から供給され、酸性ガスGcは、酸性ガス分離層20を積層方向に通過して(輸送されて)、透過ガス流路用部材26に流入し、透過ガス流路用部材26内を流れて、中心筒12に至る。
 ここで、接着剤30aを塗布されるのは、多孔質支持体22であり、また、接着剤30aによって接着されるのは、網目構造の透過ガス流路用部材26である。従って、接着剤30aは、多孔質支持体22および透過ガス流路用部材26内に浸透(含浸)し、両者の内部に接着剤層30が形成される。
 また、接着剤層30(接着剤30a)は、前述のように、幅方向の両端部近傍で、周方向の全域に延在して帯状に形成される。さらに、接着剤層30は、この幅方向両端部近傍の接着剤層30を幅方向に横切るように、中心筒12側となる折り返し部と逆側の端部近傍で幅方向の全域に延在して帯状に形成される。すなわち、接着剤層30は、中心筒12側を開放して、透過ガス流路用部材26および多孔質支持体22の外周を囲むように形成される。また、透過ガス流路用部材26は、促進輸送膜21によって挟まれた状態となっている。
 これにより、積層体14の透過ガス流路用部材26には、中心筒12側が開放するエンベロープ状の流路が形成される。従って、酸性ガス分離層20を透過して透過ガス流路用部材26に流入した酸性ガスGcは、外部に流出することなく、透過ガス流路用部材26内を中心筒12に向かって流れ、貫通孔12aから中心筒12内に流入する。
 本発明の分離モジュール10において、接着剤層30(接着剤30a)は、十分な接着力、耐熱性および耐湿性を有するものであれば、各種の公知の接着剤が利用可能である。
 一例として、エポキシ樹脂、塩化ビニル共重合体、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、ブタジエン-アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル、セルロース誘導体(ニトロセルロース等)、スチレン-ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、尿素ホルムアミド樹脂等が好適に例示される。
 なお、接着剤層30となる接着剤30aは、一度塗りでもよいが、好ましくは、最初はアセトン等の有機溶剤で希釈した接着剤を塗布し、その上に、接着剤のみを塗布するのが好ましい。また、この際には、有機溶剤で希釈した接着剤は幅広に塗布し、接着剤は、これよりも狭い幅で塗布するのが好ましい。
 これにより、多孔質支持体22および透過ガス流路用部材26に、好適に接着剤層30(接着剤30a)を浸透させることができる。
 本発明の分離モジュール10において、このようにして作製されるスパイラル積層体14aの両端部には、テレスコープ防止板(テレスコープ防止部材)16が配置される。
 前述のように、テレスコープ防止板16は、スパイラル積層体14aが原料ガスGによって押圧されて、供給側の端面が入れ子状に押し込まれ、逆側の端面が入れ子状に突出する、いわゆるテレスコープ現象を防止するための部材である。
 本発明において、テレスコープ防止板16は、スパイラル型の分離モジュールに用いられる公知のものが、各種、利用可能である。
 図示例において、テレスコープ防止板は、円環状の外環部16aと、外環部16aの中に中心を一致して配置される円環状の内環部16bと、外環部16aおよび内環部16bを連結して固定するリブ(スポーク)16cとを有して構成される。前述のように、積層体14が巻回される中心筒12は、内環部16bを挿通する。
 図示例において、リブ16cは、外環部16aおよび内環部16bの中心から、等角度間隔で放射状に設けられおり、外環部16aと内環部16bとの間で、かつ、各リブ16cの間隙が、原料ガスGもしくは残余ガスGrが通過する開口部16dとなっている。
 また、テレスコープ防止板16は、スパイラル積層体14aの端面に接触して配置しても良い。しかしながら、一般的には、スパイラル積層体14aの端面全域を原料ガスの供給や残余ガスGrの排出に使用するために、テレスコープ防止板16とスパイラル積層体14aの端面とは、若干の間隙を有して配置される。
 テレスコープ防止板16の形成材料は、十分な強度と、耐熱性および耐湿性を有する、各種の材料が利用可能である。
 具体的には、金属材料(例えば、ステンレス(SUS)、アルミニウム、アルミニウム合金、錫、錫合金等)、樹脂材料(例えばポリエチレン樹脂、ポリプロピレン樹脂、芳香族ポリアミド樹脂、ナイロン12、ナイロン66、ポリサルフィン樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、アクリル・ブタジエン・スチレン樹脂、アクリル・エチレン・スチレン樹脂、エポキシ樹脂、ニトリル樹脂、ポリエーテルエーテルケトン樹脂(PEEK)、ポリアセタール樹脂(POM)、ポリフェニレンサルファイド(PPS)等)、およびこれら樹脂の繊維強化プラスチック(例えば繊維としては、ガラス繊維、カーボン繊維、ステンレス繊維、アラミド繊維などで、特に長繊維が好ましい。具体例としては、例えばガラス長繊維強化ポリプロピレン、ガラス長繊維強化ポリフェニレンサルファイドなど)、並びに、セラミックス(例えばゼオライト、アルミナなど)等が好適に例示される。
 なお、樹脂を用いる際には、ガラス繊維等で強化した樹脂を用いてもよい。
 被覆層18は、スパイラル積層体14aの周面を覆って、この周面すなわちスパイラル積層体14aの端面以外から外部への原料ガスGや残余ガスGrの排出を遮断するためのものである。
 被覆層18は、原料ガスG等を遮蔽できる物が、各種、利用可能である。また、被覆層18は、筒状の部材であってもよく、線材やシート状の部材を巻回して構成してもよい。
 一例として、FRP製の線材に、前述の接着剤層30に利用される接着剤を含浸して、接着剤を含浸した線材を、隙間無く、必要に応じて多重に、スパイラル積層体14aに巻き付けてなる被覆層18が例示される。
 なお、この際においては、必要に応じて、被覆層18とスパイラル積層体14aとの間に、スパイラル積層体14aへの接着剤の染み込みを防止するためのカプトンテープ等のシート状部材を設けてもよい。
 以上、本発明の分離モジュール(酸性ガス分離用モジュール)について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。
 例えば、上記実施形態においては、スパイラル型の酸性ガス分離用モジュールとしたが、これに限定はされず、平膜型の酸性ガス分離用モジュールであってもよい。
 なお、スパイラル型の分離モジュールは、促進輸送膜と供給ガス流路用部材との擦れが発生しやすいため、促進輸送膜と供給ガス流路用部材との擦れを抑制できる本発明を好適に適用することができる。
 以下、本発明の具体的実施例を挙げ、本発明の酸性ガス分離用モジュールについて、より詳細に説明する。なお、本発明は、これらの実施例に限定されるものではない。
 [実施例1]
<酸性ガス分離層の作製>
 ポリビニルアルコール-ポリアクリル酸共重合体(株式会社クラレ製 クラストマーAP-20)を3.3質量%、架橋剤(和光純薬工業株式会社製 25質量%グルタルアルデヒド水溶液)を0.016質量%、含む水溶液を調製した。この水溶液に、1M塩酸をpH1.5になるまで添加して、架橋させた。
 架橋後、キャリアとしての、40%炭酸セシウム水溶液(稀産金属株式会社製)を炭酸セシウム濃度が6.0重量%になるように添加して、塗布組成物Aを調製した。すなわち、本例では、炭酸セシウムが促進輸送膜21のキャリアとなる。
 この塗布組成物Aを、多孔質支持体(PP不織布の表面に多孔質のPTFEを積層してなる積層体(GE社製))に塗布して、乾燥することで、多孔質支持体22上に促進輸送膜21を形成した。この促進輸送膜21は、ヒドロキシル基とカルボキシル基とを有する。
 促進輸送膜21の厚さは、30μmとした。
 次に、保護層28となる塗布組成物B1として、重合性ポリジメチルシロキサン(UV9300、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)を20質量%、4-イソプロピル-4'-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート(I0591、東京化成工業株式会社製)を0.1%、含むヘプタン溶液を調製した。
 この塗布組成物B1を、多孔質支持体22上に形成された促進輸送膜21の表面に塗布して乾燥・UV照射処理を行うことで、多孔質支持体22と促進輸送膜21と保護層28とからなる酸性ガス分離層20を作製した。
 保護層28は、ポリジメチルシロキサン(PDMS)であり、厚さは、0.9μmとした。この保護層28は、ヒドロキシル基、カルボキシル基と反応する官能基であるエポキシ基を有する。
 また、この保護層28のガス透過係数を下記に示す方法で測定したところ、ガス透過係数は、750Barrerであった。
 ガス透過係数の測定方法は、以下のとおりである。
 まず、保護層28となる塗布組成物B1を、透過係数が無視できる多孔質膜Zの上に塗布・乾燥して保護層28と同じ層を形成したサンプルを作製した。
 次に、作製したサンプルを、PTFEメンブレンフィルターで挟んで透過試験サンプルを作製した。透過試験サンプルに、テストガスとしてCH4:CO2=87:13の混合ガスを相対湿度0%(検出限界以下)、温度25℃、全圧601.3kPaで供給した。透過してきたガスをガスクロマトグラフで分析し、CO2透過速度(P(CO2))を算出し、保護層28の透過係数を算出した。
 <分離モジュールの作製>
 まず、図4(A)に示すように、中心筒12に、接着剤を用いて透過ガス流路用部材26(トリコット編みのエポキシ含浸ポリエステル)を固定した。
 一方、作製した酸性ガス分離層20を促進輸送膜21を内側にして二つ折りした。二つ折りは、図5に示すように、一方の酸性ガス分離層20が、若干、長くなるように行った。二つ折りした酸性ガス分離層20の谷部にカプトンテープを貼り、供給ガス流路用部材24の端部が促進輸送膜21の膜谷部を傷つけないように補強した。折り目は膜面が傷つかないようにしっかり折り、カールが無いようにした。
 次いで、二つ折りした酸性ガス分離層20に、供給ガス流路用部材24(厚さ0.5mmのポリプロピレン製ネット)を挟み込んで、挟持体36を作製した。
 この挟持体36の酸性ガス分離層20が短い方の多孔質支持体22側に、図5に示すように、幅方向(矢印x方向)の両端部近傍に、周方向(矢印y方向)の全域に延在し、かつ、周方向の折り返し部と逆側の端部近傍に、幅方向の全域に延在して、高粘度(約40Pa・s)のエポキシ系樹脂からなる接着剤30a(ヘンケルジャパン株式会社製 E120HP)を塗布した。
 次いで、接着剤30aを塗布した側を下方に向けて、図6(A)に示すように、挟持体36と中心筒12に固定した透過ガス流路用部材26とを積層し、接着した。
 次いで、透過ガス流路用部材26に積層した挟持体36の酸性ガス分離層20の上面に、図6(A)に示すように、幅方向の両端部近傍に、周方向の全域に延在し、かつ、周方向の折り返し部と逆側の端部近傍に、幅方向の全域に延在して、接着剤30aを塗布した。さらに、接着剤30aを塗布した酸性ガス分離層20の上に、図7に示すように、透過ガス流路用部材26を積層して、接着することにより、1層目の積層体14を形成した。
 先と同様にして、図5に示す、表面に保護層28を形成した供給ガス流路用部材24を酸性ガス分離層20で挾持してなる挟持体36を、もう一つ作製し、同様に、短い側の酸性ガス分離層20の多孔質支持体22側に、同様に接着剤30aを塗布した。次いで、図6(A)と同様に、接着剤30aを塗布した側を先に形成した1層目の積層体14(その透過ガス流路用部材26)に向けて、挟持体36を、1層目の積層体14(透過ガス流路用部材26)の上に積層し、接着した。さらに、この挟持体36の上面に、図6(A)と同様に接着剤30aを塗布し、その上に、図8と同様に透過ガス流路用部材26を積層して、接着することにより、2層目の積層体14を形成した。
 さらに、上記2層目と同様にして、2層目の積層体14の上に、3層目の積層体14を形成した。
 中心筒12に固定した透過ガス流路用部材26の上に、3層の積層体14を積層した後、図8に示すように、中心筒12の周面に接着剤38aを塗布し、さらに、中心筒12と最下層の積層体14との間の透過ガス流路用部材26上に、接着剤38bを塗布した。接着剤38aおよび38bは、接着剤30aと同じ物を用いた。
 次いで、図8の矢印yx方向に中心筒12を回転することで、積層した3層の積層体14を巻き込むようにして中心筒12に多重に巻き付け、積層体14を牽引する方向に張力を掛けて、サイドをカットして両端をそろえてスパイラル積層体14aとした。
 さらに、スパイラル積層体14aの両端部に、内環部16bに中心筒12を挿通して、図1に示される形状の、厚さ2cmのPPS(40%ガラス入り)製のテレスコープ防止板16を取り付けた。
 さらに、テレスコープ防止板16の周面およびスパイラル積層体14aの周面に、FRP樹脂テープを巻き付けて、封止することにより、被覆層18を形成して、直径4cm、幅30cmの図1に示されるような分離モジュール10を作成した。なお、被覆層18の厚さは、5mmとした。
 この分離モジュール10の膜面積は、1.2m2であった。
 [実施例2]
 保護層28の厚さを2μmとし、ガス透過係数を570Barrerとした以外は、実施例1と同様にして、分離モジュール10を作成した。
 [実施例3]
 保護層28の厚さを0.4μmとし、ガス透過係数を1000Barrerとした以外は、実施例1と同様にして、分離モジュール10を作成した。
 [実施例4]
 重合性ポリジメチルシロキサンとして信越化学工業社製のKF-102を用いた以外は、実施例2と同様にして分離モジュール10を作製した。
 形成された保護層28は、ポリジメチルシロキサン(PDMS)である。また、ガス透過係数は620Barrerであった。
 [実施例5]
 保護層28となる塗布組成物を用いて、保護層28と同様にして、支持体22の上に厚さ2.2μmの中間層を形成し、中間層の上に促進輸送膜を形成すると共に、保護層28の厚みを1.2μmとした以外は、実施例1と同様にして分離モジュールを形成した。
 なお、中間層は、支持体上に形成される領域の厚さは2μm、支持体に染み込んだ領域の厚さは0.2μmであった。
 また、ガス透過係数は、620Barrarであった。
 [比較例1]
 保護層として厚さ20μmのPTFE多孔質膜を用いた以外は、実施例1と同様にして分離モジュールを作製した。
 なお、この保護層(PTFE多孔質膜)は、多孔質膜であるため、ガス透過係数は非常に大きく、無視可能である。
 [比較例2]
 保護層を形成しない以外は、実施例1と同様にして分離モジュールを作製した。
 [評価]
 作製した酸性ガス分離層の促進輸送膜と保護層との密着性、ならびに、作製した分離モジュールのガス透過速度の減少率、および、分離性能の変化率を測定した。
  <密着性>
 作製した酸性ガス分離層を温度85℃、湿度85%RHの環境下に5時間放置した後に、保護層の割れ、剥離を目視で評価した。評価は以下のとおりである。
  A:剥離、割れが全くなかった。
  B:一部に剥離、割れがあった。
  C:表面の20%以上の領域で剥離、割れがあった。
  <減少率>
 保護層を形成することによる透過速度の減少率を評価した。すなわち、保護層を形成しない比較例4の分離モジュールの透過速度に対する、各分離モジュールの透過速度の比を透過速度の減少率として評価した。
 具体的には、作製した各分離モジュールに、テスト用の原料ガスGとして、N2:CO2:H2O=66:21:13(分圧比)の混合ガスを、温度130℃、全圧2001.3kPaの条件で供給した。
 分離モジュール10を透過してきたガス(酸性ガスGcおよび残余ガスGr)をガスクロマトグラフで分析し、CO2透過速度(P(CO2))を算出した。なお、透過速度の単位GPCは、『1GPU=[1×10-6cm3(STP)]/[s・cm2・cmHg]』である。評価は以下のとおりである。
  A: 減少率が10%未満。
  B: 減少率が10%超30%未満。
  C: 減少率が30%超。
  <分離性能の変化率>
 ガスの分離を開始して1時間経過した時点と、200時間経過した時点での透過速度および分離係数を測定し、透過速度および分離係数の経時による変化率を評価した。
 具体的には、作製した各分離モジュールに、テスト用の原料ガスGとして、N2:CO2:H2O=66:21:13(分圧比)の混合ガスを、温度130℃、全圧2001.3kPaの条件で供給した。1時間経過した時点と、200時間経過した時点で、分離モジュール10を透過してきたガス(酸性ガスGcおよび残余ガスGr)をガスクロマトグラフで分析し、CO2透過速度(P(CO2))およびCO2/H2分離係数(α)を算出した。
 透過速度および分離係数それぞれについて、変化率=(1時間経過時点での値-200時間経過時点での値)/1時間経過時点での値×100 として変化率を求めた。評価は以下のとおりである。
  A: 透過速度および分離係数共に変化率が5%未満。
  B: 透過速度および分離係数の少なくとも一方の変化率が5%超10%未満。
  C: 透過速度および分離係数の少なくとも一方の変化率が10%超。
  <総合評価>
 以下の評価規準で、分離モジュール10の性能を評価した。
  AA: 密着性および変化率の評価が共にAで、減少率の評価がAまたはB。
  A: 密着性の評価がA、変化率の評価がBで、減少率の評価がAまたはB。
  B: 密着性の評価がB、変化率および減少率の評価がAまたはB。
  C: 密着性、変化率および減少率の評価に、1つでもCがある。
 上記評価の結果を、下記の表に示す。なお、性能評価の結果の欄における『-』は、分離モジュールの製造段階に欠陥が発生したため、評価が不可であることを示す。
Figure JPOXMLDOC01-appb-T000002
 上記表に示されるように、促進輸送膜が、ヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種を有し、かつ、促進輸送膜上に形成される保護層が、促進輸送膜中に含まれるヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種と反応する官能基を有する本発明の実施例1~6の分離モジュールは、いずれも、密着性、変化率、減少率が良好である。
 これに対して、保護層が前記促進輸送膜中に含まれるヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種と反応する官能基を有さない比較例1および保護層を有さない比較例2は、変化率が大きい。これは、ガス分離を行う間に、供給ガス流路用部材24によって促進輸送膜21が大きく損傷してしまったと考えられる。
 以上の結果より、本発明の効果は明らかである。
 10  (酸性ガス)分離モジュール
 12  中心筒
 14  積層体
 14a スパイラル積層体
 16  テレスコープ防止板
 16a 外環部
 16b 内環部
 16c リブ
 16d 開口部
 18  被覆層
 20  酸性ガス分離層
 21  促進輸送膜
 22  多孔質支持体
 22a 多孔質膜
 22b 補助支持膜
 24  供給ガス流路用部材
 26  透過ガス流路用部材
 28  保護層
 30  接着剤層
 30a 接着剤
 34  固定手段
 36  挟持体

Claims (6)

  1.  水分を0.1mol%以上含有する原料ガスから、酸性ガスを選択的に分離する酸性ガス分離用モジュールであって、
     原料ガスから酸性ガスを分離する、酸性ガスと反応するキャリアおよび前記キャリアを担持するための親水性化合物を含有する促進輸送膜と、前記促進輸送膜の表面に積層される保護層とを備える酸性ガス分離層を有し、
     前記保護層は、酸性ガス分離層中の最上層に形成されており、
     前記保護層のガス透過係数が、500Barrer以上であり、
     前記促進輸送膜は、ヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種を有し、
     かつ、前記保護層が、前記促進輸送膜中に含まれるヒドロキシル基、カルボキシル基からなる群から選択される少なくとも1種と反応する官能基を有することを特徴とする酸性ガス分離用モジュール。
  2.  前記保護層が有する前記官能基がエポキシ基、アミノ基、メトキシ基、エトキシ基、ヒドロキシル基、および、カルボキシル基からなる群から選択される少なくとも1つである請求項1に記載の酸性ガス分離用モジュール。
  3.  前記促進輸送膜の吸水率が5%以上である請求項1または2に記載の酸性ガス分離用モジュール。
  4.  前記保護層の膜厚が0.1μm以上5μm以下である請求項1~3のいずれか1項に記載の酸性ガス分離用モジュール。
  5.  前記保護層が、ポリジメチルシロキサン誘導体である請求項1~4のいずれか1項に記載の酸性ガス分離用モジュール。
  6.  さらに、管壁に貫通孔が形成された中心筒と、
     原料ガスの流路となる供給ガス流路用部材と、
     前記促進輸送膜を透過した酸性ガスが前記中心筒まで流れる流路となる透過ガス流路用部材と、を有し、
     前記供給ガス流路用部材は、前記酸性ガス分離層の前記保護層側に積層され、
     前記透過ガス流路用部材は、前記酸性ガス分離層の前記保護層とは反対側に積層され、
     前記供給ガス流路用部材、前記酸性ガス分離層および前記透過ガス流路用部材を積層した積層体を、1以上、前記中心筒に巻回してなるスパイラル型のモジュールである請求項1~5のいずれか1項に記載の酸性ガス分離用モジュール。
PCT/JP2014/081202 2014-01-16 2014-11-26 酸性ガス分離用モジュール WO2015107776A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014006086A JP6276598B2 (ja) 2014-01-16 2014-01-16 酸性ガス分離用モジュール
JP2014-006086 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015107776A1 true WO2015107776A1 (ja) 2015-07-23

Family

ID=53542680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081202 WO2015107776A1 (ja) 2014-01-16 2014-11-26 酸性ガス分離用モジュール

Country Status (2)

Country Link
JP (1) JP6276598B2 (ja)
WO (1) WO2015107776A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111249929A (zh) * 2020-02-21 2020-06-09 太原理工大学 点击化学接枝配位的聚酰胺-聚酰亚胺煤层气脱氧分离膜
US11376547B2 (en) 2017-07-24 2022-07-05 Fujifilm Manufacturing Europe B.V. Spiral wound membrane module for gas separation with protection layer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017098802A1 (ja) * 2015-12-10 2017-06-15 富士フイルム株式会社 保護層付きガス分離膜、保護層付きガス分離膜の製造方法、ガス分離膜モジュール及びガス分離装置
JP6609209B2 (ja) * 2016-03-24 2019-11-20 次世代型膜モジュール技術研究組合 ガス分離膜
JP6934306B2 (ja) * 2017-02-17 2021-09-15 東京瓦斯株式会社 分離膜及び分離膜モジュール
JP2023143687A (ja) * 2022-03-24 2023-10-06 日東電工株式会社 複合半透膜、及びスパイラル型膜エレメント

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269650A (ja) * 1992-12-31 1994-09-27 Hoechst Celanese Corp 複合ガス分離膜とその製造法
JP2009195900A (ja) * 2008-01-24 2009-09-03 Renaissance Energy Research:Kk 二酸化炭素分離装置
WO2012096055A1 (ja) * 2011-01-12 2012-07-19 富士フイルム株式会社 二酸化炭素分離膜形成用組成物、二酸化炭素分離膜及びその製造方法、並びに二酸化炭素分離装置
JP2012210589A (ja) * 2011-03-31 2012-11-01 Jx Nippon Oil & Energy Corp ガス分離膜
WO2013191147A1 (ja) * 2012-06-20 2013-12-27 富士フイルム株式会社 酸性ガス分離モジュール及びその製造方法、酸性ガス分離層、その製造方法及びその促進輸送膜、並びに、酸性ガス分離システム
WO2014050517A1 (ja) * 2012-09-28 2014-04-03 富士フイルム株式会社 二酸化炭素分離用複合体、二酸化炭素分離用モジュール、及び二酸化炭素分離用複合体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06269650A (ja) * 1992-12-31 1994-09-27 Hoechst Celanese Corp 複合ガス分離膜とその製造法
JP2009195900A (ja) * 2008-01-24 2009-09-03 Renaissance Energy Research:Kk 二酸化炭素分離装置
WO2012096055A1 (ja) * 2011-01-12 2012-07-19 富士フイルム株式会社 二酸化炭素分離膜形成用組成物、二酸化炭素分離膜及びその製造方法、並びに二酸化炭素分離装置
JP2012210589A (ja) * 2011-03-31 2012-11-01 Jx Nippon Oil & Energy Corp ガス分離膜
WO2013191147A1 (ja) * 2012-06-20 2013-12-27 富士フイルム株式会社 酸性ガス分離モジュール及びその製造方法、酸性ガス分離層、その製造方法及びその促進輸送膜、並びに、酸性ガス分離システム
WO2014050517A1 (ja) * 2012-09-28 2014-04-03 富士フイルム株式会社 二酸化炭素分離用複合体、二酸化炭素分離用モジュール、及び二酸化炭素分離用複合体の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11376547B2 (en) 2017-07-24 2022-07-05 Fujifilm Manufacturing Europe B.V. Spiral wound membrane module for gas separation with protection layer
CN111249929A (zh) * 2020-02-21 2020-06-09 太原理工大学 点击化学接枝配位的聚酰胺-聚酰亚胺煤层气脱氧分离膜
CN111249929B (zh) * 2020-02-21 2022-03-11 太原理工大学 点击化学接枝配位的聚酰胺-聚酰亚胺煤层气脱氧分离膜

Also Published As

Publication number Publication date
JP2015134310A (ja) 2015-07-27
JP6276598B2 (ja) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6067649B2 (ja) 酸性ガス分離モジュール
JP6001013B2 (ja) 酸性ガス分離用スパイラル型モジュール
JP6276598B2 (ja) 酸性ガス分離用モジュール
WO2015025811A1 (ja) 酸性ガス分離モジュール
WO2014156185A1 (ja) 酸性ガス分離複合膜の製造方法及び酸性ガス分離膜モジュール
JP5990556B2 (ja) 酸性ガス分離用積層体および該積層体を備えた酸性ガス分離用モジュール
JP2016137462A (ja) 酸性ガス分離用スパイラル型モジュール
WO2015025812A1 (ja) 酸性ガス分離用スパイラル型モジュール
JP6419850B2 (ja) 酸性ガス分離モジュール
JP6145349B2 (ja) 酸性ガス分離モジュール
JP6524113B2 (ja) 酸性ガス分離モジュール
JP6037965B2 (ja) 酸性ガス分離モジュール
WO2015107820A1 (ja) 酸性ガス分離用スパイラル型モジュールおよび製造方法
JP2015061721A (ja) 酸性ガス分離層、酸性ガス分離層の製造方法、および、酸性ガス分離モジュール
JP6145431B2 (ja) 酸性ガス分離モジュールの製造方法および酸性ガス分離モジュール
JP5972232B2 (ja) 酸性ガス分離モジュール
JP6005003B2 (ja) 酸性ガス分離用スパイラル型モジュール
JP2015020147A (ja) 酸性ガス分離用スパイラル型モジュール
WO2016117360A1 (ja) 酸性ガス分離モジュール
JP2016064384A (ja) 酸性ガス分離モジュール
JP2015029959A (ja) 酸性ガス分離モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878836

Country of ref document: EP

Kind code of ref document: A1