[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015103734A1 - 一种进行下行传输的方法、系统和设备 - Google Patents

一种进行下行传输的方法、系统和设备 Download PDF

Info

Publication number
WO2015103734A1
WO2015103734A1 PCT/CN2014/070246 CN2014070246W WO2015103734A1 WO 2015103734 A1 WO2015103734 A1 WO 2015103734A1 CN 2014070246 W CN2014070246 W CN 2014070246W WO 2015103734 A1 WO2015103734 A1 WO 2015103734A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
bandwidth
uplink
uplink frequency
available
Prior art date
Application number
PCT/CN2014/070246
Other languages
English (en)
French (fr)
Inventor
温容慧
周明宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2016544835A priority Critical patent/JP6382994B2/ja
Priority to PCT/CN2014/070246 priority patent/WO2015103734A1/zh
Priority to KR1020167021103A priority patent/KR101765738B1/ko
Priority to CN201480000364.8A priority patent/CN105009622B/zh
Priority to EP14877997.8A priority patent/EP3082357B1/en
Publication of WO2015103734A1 publication Critical patent/WO2015103734A1/zh
Priority to US15/203,940 priority patent/US10237748B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/04Traffic adaptive resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a method, system, and device for performing downlink transmission. Background technique
  • LTE Long Term Evolution
  • LTE ⁇ -f OFDMA Orthogonal Frequency Division Multiple Access
  • 3GPP 3rd Generation Partnership Project
  • FDD Frequency division duplex
  • TDD Time division duplex
  • the FDD-style LTE is FDD-LTE.
  • the evolution of the TDD system is synchronized with the evolution of the FDD system.
  • the FDD mode is characterized by receiving and transmitting on two symmetric frequency channels separated (up and down frequency interval 190MHz).
  • the uplink and downlink resources occupy the same bandwidth, but the uplink and downlink services are asymmetric. If the downlink service is larger than the uplink service, it may result in waste of resources. Downstream services A site with high demand can use the idle uplink frequency band to transmit downlink data to make full use of resources.
  • the total transmit power of the base station is generally higher than the bandwidth occupied by the user equipment. Therefore, if the base station directly transmits the downlink signal in the entire uplink frequency band, the signal strength of the downlink signal leaking to the adjacent frequency may be higher than the interference tolerance threshold of the adjacent frequency. (As shown in Figure 1), causing serious interference to the communication of adjacent-frequency user equipment.
  • the present invention provides a method, a system, and a device for performing downlink transmission, which are used to solve the problem that in the prior art, when the uplink frequency band is occupied for downlink transmission, the communication of the adjacent frequency user equipment may be seriously interfered.
  • a method for performing downlink transmission including:
  • the network side device determines an uplink frequency band for downlink transmission including the protection frequency band and the available frequency band; the network side device sends a downlink signal to the user equipment on the available frequency band, and does not send and receive any signal on the protection frequency band;
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band.
  • the high frequency part and the low frequency part of the uplink frequency band each have a The guard band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency portion of the uplink frequency band has one of the Protection band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, the low frequency portion of the uplink frequency band has one of the protection Frequency band.
  • the bandwidth of the second possible real segment and the bandwidth of the available frequency band are configured to be any suitable bandwidth
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support One of the bandwidths of the plurality of frequency bands is selected as the bandwidth of the available frequency band, and half of the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band; If there is one of the protection bands in the uplink frequency band, the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection band in the uplink frequency band as the maximum value of the available frequency band, and all the bandwidths that the system can support The bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band.
  • the network side device After determining the uplink frequency band for the downlink transmission, including the protection frequency band and the available frequency band, the method further includes: the network side device scheduling the user equipment, and transmitting on the uplink frequency band except the uplink frequency band used for downlink transmission Uplink control information and/or reference signals.
  • the network side device After determining the uplink frequency band for the downlink transmission, including the protection frequency band and the available frequency band, the method further includes: when the network side device transmits the scheduling information of the downlink signal in the uplink frequency band, sending, according to the determined payload size payload size corresponding to the determined available frequency band width information.
  • a second aspect provides a method for performing downlink transmission, where the method includes: determining, by a user equipment, an uplink frequency band for downlink transmission including a guard frequency band and an available frequency band; and receiving, by the user equipment, the network side on the available frequency band The downlink signal sent by the device, and no signal is sent and received on the guard band;
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band.
  • the high frequency part and the low frequency part of the uplink frequency band each have a The guard band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency portion of the uplink frequency band has one of the Protection band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band used for downlink transmission, And the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, and the low frequency part of the uplink frequency band has one of the protection frequency bands.
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support One of the bandwidths of the plurality of frequency bands is selected as the bandwidth of the available frequency band, and half of the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band;
  • the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection band in the uplink frequency band as the maximum value of the available frequency band, and all the bandwidths that the system can support
  • the bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band.
  • the user equipment determines After the uplink frequency band for the downlink transmission, including the protection frequency band and the available frequency band, the method further includes: the user equipment, according to the scheduling of the network side device, on an uplink frequency band other than the uplink frequency band used for downlink transmission The uplink control information and/or the reference signal are transmitted.
  • the user equipment determines After the uplink frequency band for the downlink transmission, including the protection frequency band and the available frequency band, the method further includes: when the user equipment transmits the scheduling information of the downlink signal in the uplink frequency band, receiving the information according to the payload size payload size corresponding to the determined width of the available frequency band.
  • the third aspect provides a network side device that performs downlink transmission, where the network side device includes: a determining module, configured to determine an uplink frequency band for downlink transmission including a guard frequency band and an available frequency band;
  • a transmission module configured to send a downlink signal to the user equipment on the available frequency band, and not send and receive any signal on the protection frequency band;
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band.
  • the high frequency part and the low frequency part of the uplink frequency band each have a The guard band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency portion of the uplink frequency band has one of the Protection band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, the low frequency portion of the uplink frequency band has one of the protection Frequency band.
  • the determining module is specifically configured to determine, according to the following manner, the protection frequency band in the uplink frequency band. Bandwidth and bandwidth of the available frequency bands:
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support One of the bandwidths of the plurality of frequency bands is selected as the bandwidth of the available frequency band, and half of the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band;
  • the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection band in the uplink frequency band as the maximum value of the available frequency band, and all the bandwidths that the system can support The bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band.
  • the transmitting module further Used to: transmit uplink control information and/or reference signals on the frequency band.
  • the transmission module further Used for:
  • the scheduling information of the downlink signal is transmitted in the uplink frequency band
  • the information is transmitted according to the payload size payload size corresponding to the determined width of the available frequency band.
  • a fourth aspect provides a user equipment that performs downlink transmission, where the user equipment includes:
  • a determining module configured to determine an uplink frequency band for downlink transmission including a guard frequency band and an available frequency band
  • a transmission module configured to receive a downlink signal sent by the network side device on an available frequency band, and not send and receive any signal on the protection frequency band;
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band.
  • the high frequency part and the low frequency part of the uplink frequency band each have a The guard band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency portion of the uplink frequency band has one of the Protection band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, the low frequency portion of the uplink frequency band has one of the protection Frequency band.
  • the determining module is specifically configured to determine, according to the following manner, a bandwidth of the protection frequency band and a bandwidth of the available frequency band in the uplink frequency band:
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support One of the bandwidths of the plurality of frequency bands is selected as the bandwidth of the available frequency band, and half of the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band;
  • the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection band in the uplink frequency band as the maximum value of the available frequency band, and all the bandwidths that the system can support
  • the bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band.
  • the transmitting module further Used for:
  • the transmission module further Used for:
  • the scheduling information of the downlink signal is transmitted in the uplink frequency band
  • the information is received according to the payload size corresponding to the determined width of the available frequency band.
  • a fifth aspect provides a network side device that performs downlink transmission, including:
  • a processor configured to determine an uplink frequency band for downlink transmission including a guard frequency band and an available frequency band, send a downlink signal to the user equipment on the available frequency band by the transceiver, and send and receive no signal on the guard frequency band;
  • a transceiver for receiving and transmitting data under the control of a processor.
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band.
  • the high frequency part and the low frequency part of the uplink frequency band each have a The guard band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency portion of the uplink frequency band has one of the Protection band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, the low frequency portion of the uplink frequency band has one of the protection Frequency band.
  • the processor is specifically configured to determine, according to the following manner, the protection frequency band in the uplink frequency band Bandwidth and bandwidth of the available frequency bands:
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support One of the bandwidths of the plurality of frequency bands is selected as the bandwidth of the available frequency band, and half of the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band;
  • the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection band in the uplink frequency band as the maximum value of the available frequency band, and all the bandwidths that the system can support
  • the bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band.
  • the processor is further Used for:
  • Uplink control information and/or reference signals are transmitted on other uplink frequency bands.
  • the processor is further Used for:
  • the transceiver When the transceiver transmits the scheduling information of the downlink signal in the uplink frequency band, the information is transmitted according to the payload size payload size corresponding to the determined width of the available frequency band.
  • a sixth aspect provides a user equipment for performing downlink transmission, including:
  • a processor configured to determine an uplink frequency band for downlink transmission including a guard frequency band and an available frequency band, receive, by the transceiver, a downlink signal sent by the network side device on the available frequency band, and do not send and receive any signal on the protection frequency band;
  • a transceiver for receiving and transmitting data under the control of a processor.
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band.
  • the high frequency part and the low frequency part of the uplink frequency band each have a The guard band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency portion of the uplink frequency band has one of the Protection band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, the low frequency portion of the uplink frequency band has one of the protection Frequency band.
  • the processor is specifically configured to determine, according to the following manner, the protection frequency band in the uplink frequency band. Bandwidth and bandwidth of the available frequency bands:
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support Selecting a frequency that is not greater than the maximum value of the available frequency band among all the bandwidths of the frequency band Bandwidth is used as the bandwidth of the available frequency band, and half of the bandwidth of the uplink frequency band except the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band;
  • the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection band in the uplink frequency band as the maximum value of the available frequency band, and all the bandwidths that the system can support
  • the bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band.
  • the processor is further Used for:
  • the processor is further Used for:
  • the transceiver When the transceiver transmits the scheduling information of the downlink signal in the uplink frequency band, the information is received according to the payload size payload size corresponding to the determined width of the available frequency band.
  • the embodiment of the present application sends a downlink signal to the user equipment in the available frequency band in the uplink frequency band, and does not send and receive any signal in the protection frequency band in the uplink frequency band.
  • the protection frequency band is located in the high frequency part of the uplink frequency band. And / or low frequency part. Since no signal is transmitted and received on the guard band in the uplink frequency band, the communication interference to the adjacent frequency user equipment is reduced when the uplink frequency band is occupied, and the system performance is improved.
  • FIG. 1 is a schematic structural diagram of a system for performing downlink transmission according to Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of different available transmission directions of the available resources according to Embodiment 2 of the present application;
  • 3 is a schematic diagram of an uplink frequency band according to Embodiment 3 of the present application
  • 4 is a schematic diagram of two uplink frequency bands according to Embodiment 4 of the present application
  • FIG. 5 is a schematic diagram of three uplink frequency bands according to Embodiment 5 of the present application.
  • FIG. 6 is a schematic diagram of a network side device in a system for performing downlink transmission according to Embodiment 6 of the present application
  • FIG. 7 is a schematic diagram of user equipment in a system for downlink transmission according to Embodiment 7 of the present application
  • FIG. 8 is a downlink transmission according to Embodiment 8 of the present application.
  • FIG. 9 is a schematic diagram of a user equipment in a system for performing downlink transmission according to Embodiment 9 of the present application
  • FIG. 10 is a schematic flowchart of a method for performing downlink transmission according to Embodiment 10 of the present application;
  • FIG. 11 is a schematic flowchart of a method for performing downlink transmission according to Embodiment 11 of the present application. detailed description
  • the embodiment of the present application sends a downlink signal to the user equipment in the available frequency band in the uplink frequency band, and does not send and receive any signal in the protection frequency band in the uplink frequency band.
  • the protection frequency band is located in the high frequency part of the uplink frequency band. And / or low frequency part. Since no signal is transmitted and received on the guard band in the uplink frequency band, the communication interference to the adjacent frequency user equipment is reduced when the uplink frequency band is occupied, and the system performance is improved.
  • the system for performing downlink transmission in Embodiment 1 of the present application includes:
  • the network side device 10 is configured to determine an uplink frequency band for downlink transmission including a guard frequency band and an available frequency band; send a downlink signal to the user equipment on the available frequency band, and do not send and receive any signal on the guard frequency band;
  • the user equipment 11 is configured to determine an uplink frequency band for downlink transmission including a protection frequency band and an available frequency band; receive a downlink signal sent by the network side device on the available frequency band, and do not send and receive any signal on the protection frequency band;
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band.
  • the guard frequency band of the sufficient frequency band is reserved, so that the downlink signal sent by the network side device fading in the protection band to the interference tolerance threshold of the adjacent frequency, thereby occupying the uplink frequency band.
  • the entire frequency band may be used for signal transmission; and for downlink transmission, only the available frequency band may be used for transmitting signals, and the edge frequency band is reserved as the protection frequency band for signal transmission, including data signals. All signals, reference signals, control signals.
  • the available resources of the frequency band are different when corresponding to different signal transmission directions, as shown in Figure 2.
  • each uplink frequency band can include a guard frequency band and an available frequency band.
  • it may be determined according to the traffic demand, and the user equipment is notified after being determined by the network side device, and may also be specified in the protocol in advance.
  • an uplink frequency band used for downlink transmission may have a protection frequency band, or may have two protection intervals, or may not have a protection interval.
  • Case 1 An upstream frequency band for downlink transmission has two guard intervals.
  • the frequency portion and the low frequency portion each have one of the guard bands.
  • the bandwidth of the two guard intervals may be the same or different, but may not be less than the minimum value of the set guard band bandwidth.
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support A bandwidth of a frequency band not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and half of the bandwidth of the uplink frequency band except the bandwidth of the available frequency band is used as the bandwidth of the protected frequency band.
  • the bandwidth of the uplink frequency band is A and the minimum bandwidth of the protection frequency band is B
  • the maximum available frequency band is A-2B
  • the bandwidth of the frequency band not greater than A-2B is selected from all the bandwidths that the system can support, for example, D.
  • the bandwidth of the guard band is (AD) /2.
  • the minimum value of the guard band bandwidth and the transmit power of the network side device and the signal in the guard band is related. In the implementation, it is required to ensure that the network side device signal is attenuated within the allowable range within the guard interval (such as the interference tolerance threshold of the adjacent frequency).
  • the transmission power of the network side device is P
  • the interference tolerance threshold of the adjacent frequency is P_MIN. Then, the downlink signal transmitted by the network side device needs to be attenuated in the protection frequency band.
  • the uplink frequency band be A and the center frequency point be fO.
  • the minimum bandwidth of the guard band required on both sides of the bandwidth is 8. That is, the range of the upstream frequency band is [fO-A/2, f0+A/2] o
  • the UE and the network side device After determining that the downlink signal needs to be received in the uplink frequency band, the UE and the network side device determine the center frequency of the system and calculate the bandwidth of the downlink signal to be received.
  • the specific process is as follows:
  • the UE and the network side device determine that the center frequency and the uplink frequency band of the downlink frequency band of the transmitted signal in the system are the same.
  • Communication system equipment can support multiple frequency bandwidth communication.
  • the current LTE system supports six different frequency bandwidths: 1.4M, 3M, 5M, 10M, 15M, 20M.
  • the bandwidth smaller than C is selected as the bandwidth of the downlink transmission.
  • the maximum bandwidth less than C is selected as the bandwidth of the downlink transmission.
  • the UE and the network side device select the downlink bandwidth as 10M, that is, the frequency band with the f0 as the center frequency point width of 10M as the available frequency band, the frequency band.
  • the user equipment when the frequency band is used for uplink transmission, the user equipment sends an uplink signal according to the 20M bandwidth, and the network side device receives the signal on the corresponding 20M bandwidth; when the frequency band is used for downlink transmission, the network side device equipment follows the 10M bandwidth. Send the downlink signal, the user equipment is on the corresponding 10M bandwidth. receive signal.
  • the frequency bands are adjacent, so that there is a guard interval for the uplink frequency band for downlink transmission.
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band used for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency part of the uplink frequency band is One of the guard bands;
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, the low frequency portion of the uplink frequency band has one of the protection Frequency band.
  • the guard intervals of each uplink frequency band including the guard interval may all be the same, may be different, or may be partially the same, but may not be less than the minimum value of the set guard band bandwidth.
  • the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection frequency band in the uplink frequency band as the maximum value of the available frequency band, and the slave system can support A bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and a bandwidth other than the bandwidth of the available frequency band in the uplink frequency band is used as the bandwidth of the protection frequency band.
  • the bandwidth of the uplink frequency band is A and the minimum bandwidth of the protection frequency band is B, the maximum available frequency band is AB, and the bandwidth of the frequency band not greater than AB is selected from all the bandwidths that the system can support, for example, D, the bandwidth of the protection frequency band is Is (AD) /2.
  • the minimum bandwidth of the guard band is related to the transmit power of the network side device and the attenuation of the signal in the guard band. In the implementation, it is necessary to ensure that the network side device signal is attenuated within the guard interval within the guard interval (such as the interference tolerance threshold of the adjacent frequency).
  • the two frequency bands used for downlink transmission are adjacent frequency bands, and only the high frequency part of the higher frequency band and the low frequency part of the lower frequency band need to leave the protection frequency band;
  • the uplink frequency band used for downlink transmission is greater than or equal to three adjacent frequency bands, only the high frequency portion of the higher frequency band and the low frequency portion of the lower frequency band need to leave the protection frequency band.
  • the frequency band can be used for transmitting downlink signals in the full frequency band.
  • the transmit power of the network side device is P
  • the interference tolerance threshold of the adjacent frequency is P_MIN
  • the upstream band 1 have a width of A1 and the center frequency point be fl.
  • the upstream band 2 has a width of A2 and a center frequency of £2.
  • the minimum guard band width required on both sides of the bandwidth is B. That is, the range of the uplink frequency band 1 is [fl-Al/2, fl+Al/2], that is, the range of the uplink frequency band 2 is [-A2/2, f2+A2/2]
  • the UE and the network side device After determining that the downlink signal needs to be received in the uplink frequency band, the UE and the network side device determine the center frequency of the system and calculate the bandwidth of the downlink signal to be received.
  • the specific process is as follows:
  • Communication system equipment can support multiple frequency bandwidth communication.
  • the current LTE system supports six different frequency bandwidths: 1.4M, 3M, 5M, 10M, 15M, 20M.
  • the bandwidth smaller than CI is selected as the bandwidth of the downlink transmission.
  • the maximum bandwidth smaller than C1 is selected as the bandwidth of the downlink transmission.
  • width ⁇ 5 ⁇ .
  • the user equipment when the frequency band is used for uplink transmission, the user equipment sends an uplink signal according to the bandwidth of 20 ,, and the network side device receives the signal on the corresponding 20 ⁇ bandwidth; when the frequency band is used for downlink transmission, the network side device transmits according to the 15 M bandwidth. Downstream, the user equipment receives the signal on the corresponding 15M bandwidth.
  • Communication system equipment can support multiple frequency bandwidth communication.
  • the current LTE system supports six different frequency bandwidths: 1.4M, 3M, 5M, 10M, 15M, 20M.
  • the bandwidth smaller than C2 is selected as the bandwidth of the downlink transmission.
  • the maximum bandwidth less than C2 is selected as the bandwidth of the downlink transmission.
  • band width B2' 5M.
  • the user equipment when the frequency band is used for uplink transmission, the user equipment sends an uplink signal according to the 10M bandwidth, and the network side device receives the signal on the corresponding 10M bandwidth; when the frequency band is used for downlink transmission, the network side device sends according to the 5M bandwidth. Downstream, the user equipment receives the signal on the corresponding 5M bandwidth.
  • the center frequency and the width of the available frequency band of the uplink frequency band 1 and the uplink frequency band 3 in the figure can be obtained according to the method of the uplink frequency band 1 and the uplink frequency band 2 in FIG. 4, and details are not described herein again.
  • the center frequency and width of the uplink frequency band 2 in Figure 5 are the same as those in the uplink transmission, and remain unchanged.
  • the network side device sends the reference signal, the data signal, and the like according to the selected available frequency band and the central frequency point; the user equipment receives the data signal according to the available frequency band, and performs channel measurement and channel quality reporting.
  • the payload size of the scheduling information can be correspondingly reduced.
  • the user equipment demodulates the scheduling information according to the corresponding payload size according to the downlink bandwidth.
  • the network side device transmits the scheduling information of the downlink signal in the uplink frequency band
  • the network side device sends the information according to the payload size corresponding to the determined width of the available frequency band
  • the user equipment receives the information according to the payload size corresponding to the determined width of the available frequency band.
  • the network side device since some signals are periodically reported, the network side device cannot ensure that the resources of the reported signals are still uplink when the available frequency band is selected as the downlink. Therefore, the reporting resources of the user equipment need to be adjusted.
  • the network side device schedules the user equipment, and transmits uplink control information and/or a reference signal on other uplink frequency bands except the uplink frequency band used for downlink transmission;
  • the user equipment transmits the uplink control information and/or the reference signal on other uplink frequency bands except the uplink frequency band for downlink transmission according to the scheduling of the network side device.
  • Case 3 An upstream frequency band for downlink transmission has no guard interval.
  • the frequency bands are adjacent, so that the uplink frequency band used for downlink transmission has no guard interval. For this case, see uplink frequency band 2 in Figure 5.
  • the entire bandwidth is the available frequency band, and the center frequency is the same as when performing uplink transmission.
  • the network side device in the system for performing downlink transmission in Embodiment 6 of the present application includes: a determining module 610 and a transmitting module 620.
  • a determining module 610 configured to determine an uplink frequency band for downlink transmission including a guard frequency band and an available frequency band;
  • the transmission module 620 is configured to send a downlink signal to the user equipment on the available frequency band, and not send and receive any signal on the protection frequency band;
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band. Adjacent, the high frequency part and the low frequency part of the uplink frequency band each have one of the protection frequency bands;
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency portion of the uplink frequency band has one of the Protection band If the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, the low frequency portion of the uplink frequency band has one of the protection Frequency band.
  • the determining module 610 is specifically configured to determine, according to the following manner, a bandwidth of the guard band in the uplink frequency band and a bandwidth of the available frequency band:
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support One of the bandwidths of the plurality of frequency bands is selected as the bandwidth of the available frequency band, and half of the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band;
  • the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection band in the uplink frequency band as the maximum value of the available frequency band, and all the bandwidths that the system can support
  • the bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band.
  • the transmission module 620 is further configured to: transmit uplink control information and/or a reference signal on a frequency band.
  • the transmission module 620 is further configured to:
  • the scheduling information of the downlink signal is transmitted in the uplink frequency band
  • the information is transmitted according to the ayload size corresponding to the determined width of the available frequency band.
  • the user equipment in the system for performing downlink transmission in Embodiment 7 of the present application includes: a determining module 710 and a transmitting module 720.
  • a determining module 710 configured to determine an uplink frequency band for downlink transmission including a guard frequency band and an available frequency band;
  • the transmitting module 720 is configured to receive, on an available frequency band, a downlink signal sent by the network side device, and do not send and receive any signal on the guard band;
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band. Adjacent, the high frequency part and the low frequency part of the uplink frequency band each have one of the protection frequency bands;
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency portion of the uplink frequency band has one of the Protection band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, the low frequency portion of the uplink frequency band has one of the protection Frequency band.
  • the determining module 710 is specifically configured to determine, according to the following manner, a bandwidth of the guard band in the uplink frequency band and a bandwidth of the available frequency band:
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support One of the bandwidths of the plurality of frequency bands is selected as the bandwidth of the available frequency band, and half of the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band;
  • the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection band in the uplink frequency band as the maximum value of the available frequency band, and all the bandwidths that the system can support
  • the bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band.
  • the transmission module 720 is further configured to:
  • the transmission module 720 is further configured to:
  • the network side device in the system for performing downlink transmission in the eighth embodiment of the present application includes: a processor 800, configured to determine an uplink frequency band for downlink transmission including a guard frequency band and an available frequency band, which is used by the transceiver 810. Sending downlink signals to user equipment in the available frequency bands, and not transmitting and receiving any signals on the guard frequency bands;
  • the transceiver 810 is configured to receive and transmit data under the control of the processor 800.
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band. Adjacent, the high frequency part and the low frequency part of the uplink frequency band each have one of the protection frequency bands;
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency portion of the uplink frequency band has one of the Protection band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, the low frequency portion of the uplink frequency band has one of the protection Frequency band.
  • the processor 800 is specifically configured to determine, according to the following manner, a bandwidth of the guard band in the uplink frequency band and a bandwidth of the available frequency band:
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support One of the bandwidths of the plurality of frequency bands is selected as the bandwidth of the available frequency band, and half of the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band;
  • the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection band in the uplink frequency band as the maximum value of the available frequency band, and all the bandwidths that the system can support
  • the bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band.
  • the processor 800 is further configured to: The user equipment is scheduled by the transceiver 810 to transmit uplink control information and/or reference signals on other uplink frequency bands than the uplink frequency band for downlink transmission.
  • the processor 800 is further configured to:
  • the transceiver When the transceiver transmits the scheduling information of the downlink signal in the uplink frequency band, the information is transmitted according to the payload size corresponding to the determined width of the available frequency band.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 800 and various circuits of memory represented by memory 820.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 810 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 800 is responsible for managing the bus architecture and general processing, and the memory 820 can store data used by the processor 800 in performing operations.
  • the processor 800 is responsible for managing the bus architecture and the usual processing, and the memory 820 can store the data used by the processor 800 in performing the operations.
  • the user equipment in the system for downlink transmission in the ninth embodiment of the present application includes: a processor 900, configured to determine an uplink frequency band for downlink transmission including a guard frequency band and an available frequency band, which is available through the transceiver 910. Receiving downlink signals sent by the network side device in the frequency band, and not transmitting and receiving any signals on the guard frequency band;
  • the transceiver 910 is configured to receive and transmit data under the control of the processor 900.
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band. Adjacent, the high frequency part and the low frequency part of the uplink frequency band each have one of the protection frequency bands;
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency portion of the uplink frequency band has one of the Protection band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band used for downlink transmission, And the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, and the low frequency part of the uplink frequency band has one of the protection frequency bands.
  • the processor 900 is specifically configured to determine, according to the following manner, a bandwidth of the guard band in the uplink frequency band and a bandwidth of the available frequency band:
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support One of the bandwidths of the plurality of frequency bands is selected as the bandwidth of the available frequency band, and half of the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band;
  • the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection band in the uplink frequency band as the maximum value of the available frequency band, and all the bandwidths that the system can support
  • the bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band.
  • the processor 900 is further configured to:
  • the processor 900 is further configured to:
  • the transceiver When the transceiver transmits the scheduling information of the downlink signal in the uplink frequency band, the information is received according to the payload size corresponding to the determined width of the available frequency band.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 900 and various circuits of memory represented by memory 920.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 910 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 930 may also be an interface capable of externally connecting the required devices. Connected devices include, but are not limited to, keypads, displays, speakers, microphones, joysticks, and the like.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 920 can store data used by the processor 900 in performing operations.
  • the method for performing downlink transmission is separately provided in the embodiment of the present application, and the device corresponding to the method is a device in a system for performing downlink transmission in the embodiment of the present application, and the principle of the method for solving the problem is similar to the system. Therefore, the implementation of the method can be referred to the implementation of the corresponding device in the system, and the repeated description is not repeated.
  • the method for performing downlink transmission in Embodiment 10 of the present application includes:
  • Step 1010 The network side device determines, according to the protection frequency band and the available frequency band, an uplink frequency band for downlink transmission;
  • Step 1020 The network side device sends a downlink signal to the user equipment in the available frequency band, and does not send and receive any signal on the guard frequency band.
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band. Adjacent, the high frequency part and the low frequency part of the uplink frequency band each have one of the protection frequency bands;
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency portion of the uplink frequency band has one of the Protection band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, the low frequency portion of the uplink frequency band has one of the protection Frequency band.
  • Bandwidth of the band and bandwidth of the available band are the following:
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support A bandwidth of a frequency band not greater than a maximum value of the available frequency band is selected as a bandwidth of the available frequency band, and a bandwidth of the uplink frequency band other than the available frequency band is used. Half of the bandwidth is used as the bandwidth of the guard band;
  • the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection band in the uplink frequency band as the maximum value of the available frequency band, and all the bandwidths that the system can support
  • the bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band.
  • the network side device determines the uplink frequency band for the downlink transmission including the protection frequency band and the available frequency band, the network side device further includes:
  • the network side device schedules the user equipment to transmit uplink control information and/or a reference signal on other uplink frequency bands except the uplink frequency band used for downlink transmission.
  • the network side device determines the uplink frequency band for the downlink transmission including the protection frequency band and the available frequency band, the network side device further includes:
  • the network side device When the network side device transmits the scheduling information of the downlink signal in the uplink frequency band, the network side device sends the information according to the payload size corresponding to the determined width of the available frequency band.
  • the method for performing downlink transmission in Embodiment 11 of the present application includes:
  • Step 1110 The user equipment determines an uplink frequency band for downlink transmission including a guard frequency band and an available frequency band;
  • Step 1120 The user equipment receives a downlink signal sent by the network side device on an available frequency band, and does not send and receive any signal on the protection frequency band.
  • the guard band is located in a high frequency portion and/or a low frequency portion of the uplink frequency band. Adjacent, the high frequency part and the low frequency part of the uplink frequency band each have one of the protection frequency bands;
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band for downlink transmission, and the uplink frequency band is the highest frequency band of all adjacent uplink frequency bands, the high frequency portion of the uplink frequency band has one of the Protection band
  • the uplink frequency band used for downlink transmission is adjacent to another uplink frequency band used for downlink transmission, and the uplink frequency band is the lowest frequency band of all adjacent uplink frequency bands, the low frequency band of the uplink frequency band Some have one of the guard bands.
  • the network side device determines a bandwidth other than the bandwidth of the minimum protection band bandwidth of the uplink frequency band as the maximum value of the available frequency band, and the slave system can support One of the bandwidths of the plurality of frequency bands is selected as the bandwidth of the available frequency band, and half of the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band;
  • the network side device determines a bandwidth other than the bandwidth of the minimum frequency of the protection band in the uplink frequency band as the maximum value of the available frequency band, and all the bandwidths that the system can support
  • the bandwidth of the frequency band that is not greater than the maximum value of the available frequency band is selected as the bandwidth of the available frequency band, and the bandwidth of the uplink frequency band other than the bandwidth of the available frequency band is used as the bandwidth of the protection frequency band.
  • the method further includes:
  • the user equipment transmits uplink control information and/or a reference signal on other uplink frequency bands except the uplink frequency band for downlink transmission according to the scheduling of the network side device.
  • the method further includes:
  • the user equipment When the user equipment transmits the scheduling information of the downlink signal in the uplink frequency band, the user equipment receives the information according to the payload size corresponding to the determined width of the available frequency band.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the application can be in the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the application can be in the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) in which computer usable program code is embodied.
  • the present application is made with reference to a method, a device (system), and a computer program according to an embodiment of the present application.
  • the flow chart and/or block diagram of the product is described. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信技术领域,特别涉及一种进行下行传输的方法、系统和设备,用以解决现有技术中存在占用上行频段进行下行传输时,有可能对邻频用户设备的通信造成严重干扰的问题。本申请实施例在上行频段中的可用频段上向用户设备发送下行信号,以及在上行频段中的保护频段上不发送和接收任何信号;其中,所述保护频段位于所述上行频段的高频部分和/或低频部分。由于上行频段中的保护频段上不发送和接收任何信号,从而在占用上行频段进行下行传输时减小对邻频用户设备的通信干扰,提高了系统性能。

Description

一种进行下行传输的方法、 系统和设备 技术领域
本申请涉及无线通信技术领域, 特别涉及一种进行下行传输的方法、 系 统和设备。 背景技术
LTE (Long Term Evolution, 长期演进技术) 是 3G的演进, 通常被称作 3.9G。 LTE ^^-f" OFDMA ( Orthogonal Frequency Division Multiple Access, 正交频分多址)技术、 由 3 GPP ( 3rd Generation Partnership Project, 第三代移 动通信标准化组织 )组织制定的全球通用标准, 包括 FDD ( Frequency division duplex, 频分双工)和 TDD ( Time division duplex, 时分双工) 两种模式用于 成对频谱和非成对频谱。 LTE标准中的 FDD和 TDD两个模式间只存在较小 的差异, 相似度达 90%。
应用 FDD式的 LTE即为 FDD-LTE。 作为 LTE的需求, TDD系统的演进 与 FDD系统的演进是同步进行的。
FDD模式的特点是在分离(上下行频率间隔 190MHz)的两个对称频率信 道上, 进行接收和传送„
在 LTE-FDD系统中, 上下行资源占用频段宽度相同, 但上下行业务并一 定是不对称的。 若下行业务大于上行业务, 就可能导致资源浪费。 下行业务 需求大的站点可釆用空闲的上行频带传输下行数据, 来充分利用资源。
但是基站的总发射功率一般高于用户设备占用的带宽, 因此如果直接让 基站在整个上行频段发送下行信号, 有可能会造成下行信号泄露到邻频的信 号强度可能高于邻频的干扰容忍门限(如图 1所示), 导致对邻频用户设备的 通信造成严重干扰。
综上所述, 目前占用上行频段进行下行传输时, 有可能对邻频用户设备 的通信造成严重干扰。 发明内容
本申请提供一种进行下行传输的方法、 系统和设备, 用以解决现有技术 中存在占用上行频段进行下行传输时, 有可能对邻频用户设备的通信造成严 重干扰的问题。
第一方面, 提供一种进行下行传输的方法, 包括:
网络侧设备确定包括保护频段和可用频段的用于下行传输的上行频段; 所述网络侧设备在可用频段上向用户设备发送下行信号, 以及在保护频 段上不发送和接收任何信号;
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。
结合第一方面, 在第一种可能的实现方式中, 若用于下行传输的上行频 段与用于下行传输的其他上行频段不相邻, 所述上行频段的高频部分和低频 部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
结合第一方面或第一方面的第一种可能的实现方式, 在第二种可能的实 段的带宽和所述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽; 若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
结合第一方面、 第一方面的第一种可能的实现方式和第一方面的第二种 可能的实现方式中的任——种, 在第三种可能的实现方式中, 所述网络侧设 备确定包括保护频段和可用频段的用于下行传输的上行频段之后, 还包括: 所述网络侧设备调度所述用户设备, 在除所述用于下行传输的上行频段 之外的其他上行频段上传输上行控制信息和 /或参考信号。
结合第一方面、 第一方面的第一种可能的实现方式和第一方面的第二种 可能的实现方式中的任——种, 在第四种可能的实现方式中, 所述网络侧设 备确定包括保护频段和可用频段的用于下行传输的上行频段之后, 还包括: 所述网络侧设备在上行频段传输下行信号的调度信息时, 根据确定的可 用频段的宽度对应的负载尺寸 payload size发送信息。
第二方面, 提供一种进行下行传输的方法, 其特征在于, 该方法包括: 用户设备确定包括保护频段和可用频段的用于下行传输的上行频段; 所述用户设备在可用频段上接收网络侧设备发送的下行信号, 以及在保 护频段上不发送和接收任何信号;
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。
结合第二方面, 在第一种可能的实现方式中, 若用于下行传输的上行频 段与用于下行传输的其他上行频段不相邻, 所述上行频段的高频部分和低频 部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
结合第二方面或第二方面的第一种可能的实现方式, 在第二种可能的实
的带宽和所述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
结合第二方面、 第二方面的第一种可能的实现方式和第二方面的第二种 可能的实现方式中的任——种, 在第三种可能的实现方式中, 所述用户设备 确定包括保护频段和可用频段的用于下行传输的上行频段之后, 还包括: 所述用户设备根据所述网络侧设备的调度, 在除所述用于下行传输的上 行频段之外的其他上行频段上传输上行控制信息和 /或参考信号。
结合第二方面、 第二方面的第一种可能的实现方式和第二方面的第二种 可能的实现方式中的任——种, 在第四种可能的实现方式中, 所述用户设备 确定包括保护频段和可用频段的用于下行传输的上行频段之后, 还包括: 所述用户设备在上行频段传输下行信号的调度信息时, 根据确定的可用 频段的宽度对应的负载尺寸 payload size接收信息。
第三方面, 提供一种进行下行传输的网络侧设备, 其特征在于, 该网络 侧设备包括: 确定模块, 用于确定包括保护频段和可用频段的用于下行传输的上行频 段;
传输模块, 用于在可用频段上向用户设备发送下行信号, 以及在保护频 段上不发送和接收任何信号;
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。
结合第三方面, 在第一种可能的实现方式中, 若用于下行传输的上行频 段与用于下行传输的其他上行频段不相邻, 所述上行频段的高频部分和低频 部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
结合第三方面或第三方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述确定模块具体用于, 根据下列方式确定所述上行频段中的所 述保护频段的带宽和所述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。 结合第三方面、 第三方面的第一种可能的实现方式和第三方面的第二种 可能的实现方式中的任一一种, 在第三种可能的实现方式中, 所述传输模块 还用于: 频段上传输上行控制信息和 /或参考信号。
结合第三方面、 第三方面的第一种可能的实现方式和第三方面的第二种 可能的实现方式中的任——种, 在第四种可能的实现方式中, 所述传输模块 还用于:
在上行频段传输下行信号的调度信息时, 根据确定的可用频段的宽度对 应的负载尺寸 payload size发送信息。
第四方面, 提供一种进行下行传输的用户设备, 其特征在于, 该用户设 备包括:
确定模块, 用于确定包括保护频段和可用频段的用于下行传输的上行频 段;
传输模块, 用于在可用频段上接收网络侧设备发送的下行信号, 以及在 保护频段上不发送和接收任何信号;
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。
结合第四方面, 在第一种可能的实现方式中, 若用于下行传输的上行频 段与用于下行传输的其他上行频段不相邻, 所述上行频段的高频部分和低频 部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
结合第四方面或第四方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述确定模块具体用于, 根据下列方式确定所述上行频段中的所 述保护频段的带宽和所述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
结合第四方面、 第四方面的第一种可能的实现方式和第四方面的第二种 可能的实现方式中的任一一种, 在第三种可能的实现方式中, 所述传输模块 还用于:
根据所述网络侧设备的调度, 在除所述用于下行传输的上行频段之外的 其他上行频段上传输上行控制信息和 /或参考信号。
结合第四方面、 第四方面的第一种可能的实现方式和第四方面的第二种 可能的实现方式中的任——种, 在第四种可能的实现方式中, 所述传输模块 还用于:
在上行频段传输下行信号的调度信息时, 根据确定的可用频段的宽度对 应的负载尺寸 payload size接收信息。
第五方面, 提供一种进行下行传输的网络侧设备, 包括:
处理器, 用于确定包括保护频段和可用频段的用于下行传输的上行频段, 通过收发机在可用频段上向用户设备发送下行信号, 以及在保护频段上不发 送和接收任何信号;
收发机, 用于在处理器的控制下接收和发送数据。 其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。
结合第五方面, 在第一种可能的实现方式中, 若用于下行传输的上行频 段与用于下行传输的其他上行频段不相邻, 所述上行频段的高频部分和低频 部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
结合第五方面或第五方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述处理器具体用于, 根据下列方式确定所述上行频段中的所述 保护频段的带宽和所述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
结合第五方面、 第五方面的第一种可能的实现方式和第五方面的第二种 可能的实现方式中的任——种, 在第三种可能的实现方式中, 所述处理器还 用于:
通过收发机调度所述用户设备, 在除所述用于下行传输的上行频段之外 的其他上行频段上传输上行控制信息和 /或参考信号。
结合第五方面、 第五方面的第一种可能的实现方式和第五方面的第二种 可能的实现方式中的任——种, 在第四种可能的实现方式中, 所述处理器还 用于:
通过收发机在上行频段传输下行信号的调度信息时, 根据确定的可用频 段的宽度对应的负载尺寸 payload size发送信息。
第六方面, 提供一种进行下行传输的用户设备, 包括:
处理器, 用于确定包括保护频段和可用频段的用于下行传输的上行频段, 通过收发机在可用频段上接收网络侧设备发送的下行信号, 以及在保护频段 上不发送和接收任何信号;
收发机, 用于在处理器的控制下接收和发送数据。
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。
结合第六方面, 在第一种可能的实现方式中, 若用于下行传输的上行频 段与用于下行传输的其他上行频段不相邻, 所述上行频段的高频部分和低频 部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
结合第六方面或第六方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述处理器具体用于, 根据下列方式确定所述上行频段中的所述 保护频段的带宽和所述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
结合第六方面、 第六方面的第一种可能的实现方式和第六方面的第二种 可能的实现方式中的任——种, 在第三种可能的实现方式中, 所述处理器还 用于:
根据所述网络侧设备的调度, 在除所述用于下行传输的上行频段之外的 其他上行频段上传输上行控制信息和 /或参考信号。
结合第六方面、 第六方面的第一种可能的实现方式和第六方面的第二种 可能的实现方式中的任——种, 在第四种可能的实现方式中, 所述处理器还 用于:
通过收发机在上行频段传输下行信号的调度信息时, 根据确定的可用频 段的宽度对应的负载尺寸 payload size接收信息。
本申请实施例在上行频段中的可用频段上向用户设备发送下行信号, 以 及在上行频段中的保护频段上不发送和接收任何信号; 其中, 所述保护频段 位于所述上行频段的高频部分和 /或低频部分。 由于上行频段中的保护频段上 不发送和接收任何信号, 从而在占用上行频段进行下行传输时减小对邻频用 户设备的通信干扰, 提高了系统性能。 附图说明
图 1为本申请实施例一进行下行传输的系统结构示意图;
图 2为本申请实施例二可用资源对应不同传输方向的示意图;
图 3为本申请实施例三针对一个上行频段的示意图; 图 4为本申请实施例四针对两个上行频段的示意图;
图 5为本申请实施例五针对三个上行频段的示意图;
图 6为本申请实施例六进行下行传输的系统中的网络侧设备示意图; 图 7为本申请实施例七进行下行传输的系统中的用户设备示意图; 图 8为本申请实施例八进行下行传输的系统中的网络侧设备示意图; 图 9为本申请实施例九进行下行传输的系统中的用户设备示意图; 图 10为本申请实施例十进行下行传输的方法流程示意图;
图 11为本申请实施例十一进行下行传输的方法流程示意图。 具体实施方式
本申请实施例在上行频段中的可用频段上向用户设备发送下行信号, 以 及在上行频段中的保护频段上不发送和接收任何信号; 其中, 所述保护频段 位于所述上行频段的高频部分和 /或低频部分。 由于上行频段中的保护频段上 不发送和接收任何信号, 从而在占用上行频段进行下行传输时减小对邻频用 户设备的通信干扰, 提高了系统性能。
下面结合说明书附图对本申请实施例作进一步详细描述。
如图 1所示, 本申请实施例一进行下行传输的系统包括:
网络侧设备 10, 用于确定包括保护频段和可用频段的用于下行传输的上 行频段; 在可用频段上向用户设备发送下行信号, 以及在保护频段上不发送 和接收任何信号;
用户设备 11 , 用于确定包括保护频段和可用频段的用于下行传输的上行 频段; 在可用频段上接收网络侧设备发送的下行信号, 以及在保护频段上不 发送和接收任何信号;
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。
本申请实施例在上行频段上传输下行信号时, 预留足够频带的保护频段, 以使网络侧设备发送的下行信号在保护带内衰落到邻频的干扰容忍门限以 下, 从而在占用上行频段进行下行传输时减小对邻频用户设备的通信干扰, 提高了系统性能。
本申请实施例的频段用于上行传输时, 可以使用整个频段进行信号传输; 而用于下行传输时, 仅可以使用可用频段传输信号, 而保留边缘频带作为保 护频段不做信号传输, 包括数据信号、 参考信号、 控制信号在内的所有信号。 所述频段的可用资源在对应不同信号传输方向的时候是不一样的, 具体可以 参见图 2。
其中, 每个上行频段都可以包括保护频段和可用频段。 较佳地, 可以根 据业务量需求确定, 由网络侧设备确定后通知用户设备, 也可以预先在协议 中规定。
在实施中, 本申请实施例中一个用于下行传输的上行频段可能有一个保 护频段, 也可能有两个保护间隔, 也可能没有保护间隔, 下面分别进行介绍。
情况一、 一个用于下行传输的上行频段有两个保护间隔。
Figure imgf000014_0001
频部分和低频部分各有一个所述保护频段。
在实施中, 两个保护间隔的带宽可以相同, 也可以不同, 但是不能小于 设定的保护频段带宽最小值。
以两个保护间隔的带宽相同为例:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽。
比如上行频段的带宽为 A,保护频段带宽最小值为 B,则可用频段最大值 为 A-2B, 从系统能够支持的所有频带带宽中选择不大于 A-2B的频带带宽, 比如是 D, 则保护频段的带宽为 (A-D ) /2。
其中, 保护频段带宽最小值与网络侧设备的发射功率和信号在保护频段 的衰减情况有关。 在实施中, 需要保证网络侧设备信号在保护间隔内衰减到 允许范围内 (比如邻频的干扰容忍门限以下)。
以图 2 所示, 设网络侧设备的发射功率为 P, 邻频的干扰容忍门限为 P_MIN , 则网络侧设备发射的下行信号在保护频段内需要衰减功率为
Figure imgf000015_0001
由于信号的邻频泄露, 在可用频带内的信号会有一部分功率泄露到邻频, 所以预留出保护频带, 这样泄漏到邻频的干扰就减少了, 不影响邻频的通信, 所以虽然在保护频段内不会发送信号, 由于信号的邻频泄露在保护频段内也 是平滑衰减。
设上行频段宽度为 A, 中心频点为 fO, 带宽两侧需要的保护频段带宽最 小值均为8。 即上行频段的范围为 [fO-A/2, f0+A/2]o
UE和网络侧设备在确定需要在上行频段接收下行信号后, 确定系统的中 心频点并计算所要接收的下行信号的频带宽度, 具体流程为:
UE 和网络侧设备确定系统中传输信号的下行频段的中心频率和上行频 段相同。
为了防止对邻频信号造成干扰, UE和网络侧设备确定在上行频段去掉保 护频段后可以用于传输下行信号的最大频带宽度为: C=(A-2*B);
通信系统设备都可以支持多个频带宽度的通信, 例如, 目前 LTE系统支 持 6种不同的频带宽度有: 1.4M、 3M、 5M、 10M、 15M、 20M。
选取小于 C的带宽作为下行传输的带宽。 较佳地, 选取小于 C的最大带 宽作为下行传输的带宽。
如 A=20M, B=4M, UE和网络侧设备确定的带宽 C=12M, 则 UE和网络 侧设备选取下行带宽为 10M,即将以 fO为中心频点宽度为 10M的频段作为可 用频段, 频段两侧实际留出的保护频段的带宽 B'=5M。
也就是说, 当该频段用于上行传输时, 用户设备按照 20M带宽发送上行 信号, 网络侧设备在对应的 20M带宽上接收信号; 当该频段用于下行传输时, 网络侧设备设备按照 10M带宽发送下行信号,用户设备在对应的 10M带宽上 接收信号。 即, 下行可用频段的范围为 [fO-A/2+BV2, f0+A/2-BV2]o 情况二、 一个用于下行传输的上行频段有一个保护间隔。 频段相邻, 这样用于下行传输的上行频段会有一个保护间隔。
具体的, 若用于下行传输的上行频段与一个用于下行传输的其他上行频 段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频 段的高频部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
在实施中, 包括保护间隔的每个上行频段的保护间隔可以全部相同, 也 可以全不相同, 也可以部分相同, 但是不能小于设定的保护频段带宽最小值。
对于情况二, 用于下行传输的上行频段与用于下行传输的一个其他上行 频段相邻有多种情况。
在实施中, 若所述上行频段中有一个所述保护频段, 所述网络侧设备确 定所述上行频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最 大值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的 频带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之 外的带宽作为所述保护频段的带宽。
比如上行频段的带宽为 A,保护频段带宽最小值为 B,则可用频段最大值 为 A-B, 从系统能够支持的所有频带带宽中选择不大于 A-B的频带带宽, 比 如是 D, 则保护频段的带宽为 (A-D ) /2。
其中, 保护频段带宽最小值与网络侧设备的发射功率和信号在保护频段 的衰减情况有关。 在实施中, 需要保证网络侧设备信号在保护间隔内衰减到 允许范围内 (比如邻频的干扰容忍门限以下)。
比如图四中, 用于下行传输的两个频段为相邻频段, 则仅需要在较高频 段的高频部分和较低频段的低频部分留出保护频段即可; 还比如图 5中, 若用于下行传输的上行频段为大于或等于三个相邻频段, 则仅需要在较高频段的高频部分和较低频段的低频部分留出保护频段即可, 中间频段可以全频带用于传输下行信号,
下面分别针对图 4和图 5进行说明。
以图 4 所示, 设网络侧设备的发射功率为 P, 邻频的干扰容忍门限为 P_MIN , 则网络侧设备发射的下行信号在保护频段内需要衰减功率为
Figure imgf000017_0001
设上行频段 1宽度为 A1 , 中心频点为 fl。 上行频段 2宽度为 A2, 中心 频点为 £2, 带宽两侧需要的最小保护频段宽度均为 B。 即上行频段 1 的范围 为 [fl-Al/2, fl+Al/2] , 即上行频段 2的范围为 [ -A2/2, f2+A2/2]„
UE和网络侧设备在确定需要在上行频段接收下行信号后, 确定系统的中 心频点并计算所要接收的下行信号的频带宽度, 具体流程为:
1、 确定可用频段 1。
为了防止对邻频信号造成干扰, UE和网络侧设备确定在上行频段去掉保 护频段后可以用于传输下行信号的最大频带宽度为: C1=(A1-B);
通信系统设备都可以支持多个频带宽度的通信, 例如, 目前 LTE系统支 持 6种不同的频带宽度有: 1.4M、 3M、 5M、 10M、 15M、 20M。
选取小于 CI的带宽作为下行传输的带宽。 较佳地, 选取小于 C1的最大 带宽作为下行传输的带宽。
如 A1=20M, B=4M, UE和网络侧设备确定的带宽 C1=16M, 则选取下 行带宽为 15M, 即接收以 fl,为中心频点宽度为 15M的信号, 低频段实际留 出的保护带宽度 ΒΓ=5Μ。
也就是说, 当该频段用于上行传输时, 用户设备按照 20Μ带宽发送上行 信号, 网络侧设备在对应的 20Μ带宽上接收信号; 当该频段用于下行传输时, 网络侧设备按照 15M带宽发送下行信号,用户设备在对应的 15M带宽上接收 信号。 系统中传输信号的下行频段的中心频率为 fl'=(fl+Bl'/2)。 即, 可用频 段 1的下行范围为 [fl-Al/2+ΒΓ , fl+Al/2]„ 2、 确定可用频段 2。
为了防止对邻频信号造成干扰, UE和网络侧设备确定在上行频段去掉保 护频段后可以用于传输下行信号的最大频带宽度为: C2=(A2-B);
通信系统设备都可以支持多个频带宽度的通信, 例如, 目前 LTE系统支 持 6种不同的频带宽度有: 1.4M、 3M、 5M、 10M、 15M、 20M。
选取小于 C2的带宽作为下行传输的带宽。 较佳地, 选取小于 C2的最大 带宽作为下行传输的带宽。
如 A2=10M, B=4M, UE和网络侧设备确定的带宽 C2=6M, 则选取下行 带宽为 5M, 即接收以 f2,为中心频点宽度为 5M的信号, 高频段实际留出的 保护带宽度 B2'=5M。
也就是说, 当该频段用于上行传输时, 用户设备按照 10M带宽发送上行 信号, 网络侧设备在对应的 10M带宽上接收信号; 当该频段用于下行传输时, 网络侧设备按照 5M带宽发送下行信号,用户设备在对应的 5M带宽上接收信 号。 系统中传输信号的下行频段的中心频率为 f2'=(f2-B2V2)。 即, 可用频段 2 的下行范围为 [ -A2/2 , f2+A2/2-B2']„
以图 5所示, 图中上行频段 1、上行频段 3的可用频段的中心频率和宽度 可按照图 4中的上行频段 1和上行频段 2的方法得到, 在此不再赘述。 图 5 的上行频段 2 的传输下行信号时的中心频率和宽度与进行上行传输时相同, 保持不变。
针对上述情况一和情况二, 网络侧设备按照选定的可用频段及中心频点 发送参考信号、 数据信号等; 用户设备按照该可用频段接收数据信号, 进行 信道测量及信道质量的上报。
因为可用频段的宽度小于上行频段, 网络侧设备在给用户设备发送下行 调度信息时, 可相应的降低调度信息的 payload size (负载尺寸)。 同样的, 用 户设备根据下行带宽按照相应的 payload size解调调度信息。
具体的, 网络侧设备在上行频段传输下行信号的调度信息时, 根据确定 的可用频段的宽度对应的 payload size发送信息; 相应的, 用户设备在上行频段传输下行信号的调度信息时, 根据确定的 可用频段的宽度对应的 payload size接收信息。
在实施中, 由于有些信号是周期上报的, 网络侧设备在选择在可用频段 作为下行时无法保证这些周期上报信号的资源仍为上行, 所以需要调整用户 设备的上报资源。
具体的, 网络侧设备调度所述用户设备, 在除所述用于下行传输的上行 频段之外的其他上行频段上传输上行控制信息和 /或参考信号;
相应的, 用户设备根据所述网络侧设备的调度, 在除所述用于下行传输 的上行频段之外的其他上行频段上传输上行控制信息和 /或参考信号。
情况三、 一个用于下行传输的上行频段没有保护间隔。 频段相邻, 这样用于下行传输的上行频段没有保护间隔, 这种情况可以参见 图 5的上行频段 2。
对于这种上行频段, 整个带宽都是可用频段, 中心频率与进行上行传输 时相同。
如图 6所示, 本申请实施例六进行下行传输的系统中的网络侧设备包括: 确定模块 610和传输模块 620。
确定模块 610 ,用于确定包括保护频段和可用频段的用于下行传输的上行 频段;
传输模块 620 , 用于在可用频段上向用户设备发送下行信号, 以及在保护 频段上不发送和接收任何信号;
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。 相邻, 所述上行频段的高频部分和低频部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段; 若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
较佳地, 所述确定模块 610具体用于, 根据下列方式确定所述上行频段 中的所述保护频段的带宽和所述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
较佳地, 所述传输模块 620还用于: 频段上传输上行控制信息和 /或参考信号。
较佳地, 所述传输模块 620还用于:
在上行频段传输下行信号的调度信息时, 根据确定的可用频段的宽度对 应的 ayload size发送信息。
如图 7 所示, 本申请实施例七进行下行传输的系统中的用户设备包括: 确定模块 710和传输模块 720。
确定模块 710 ,用于确定包括保护频段和可用频段的用于下行传输的上行 频段;
传输模块 720 , 用于在可用频段上接收网络侧设备发送的下行信号, 以及 在保护频段上不发送和接收任何信号; 其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。 相邻, 所述上行频段的高频部分和低频部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
较佳地, 所述确定模块 710具体用于, 根据下列方式确定所述上行频段 中的所述保护频段的带宽和所述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
较佳地, 所述传输模块 720还用于:
根据所述网络侧设备的调度, 在除所述用于下行传输的上行频段之外的 其他上行频段上传输上行控制信息和 /或参考信号。
较佳地, 所述传输模块 720还用于:
在上行频段传输下行信号的调度信息时, 根据确定的可用频段的宽度对 应的 payload size接收信息。 如图 8所示, 本申请实施例八进行下行传输的系统中的网络侧设备包括: 处理器 800,用于确定包括保护频段和可用频段的用于下行传输的上行频 段, 通过收发机 810在可用频段上向用户设备发送下行信号, 以及在保护频 段上不发送和接收任何信号;
收发机 810, 用于在处理器 800的控制下接收和发送数据。
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。 相邻, 所述上行频段的高频部分和低频部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
较佳地, 所述处理器 800具体用于, 根据下列方式确定所述上行频段中 的所述保护频段的带宽和所述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
较佳地, 所述处理器 800还用于: 通过收发机 810调度所述用户设备, 在除所述用于下行传输的上行频段 之外的其他上行频段上传输上行控制信息和 /或参考信号。
较佳地, 所述处理器 800还用于:
通过收发机在上行频段传输下行信号的调度信息时, 根据确定的可用频 段的宽度对应的 payload size发送信息。
其中, 在图 8 中, 总线架构可以包括任意数量的互联的总线和桥, 具体 由处理器 800代表的一个或多个处理器和存储器 820代表的存储器的各种电 路链接在一起。 总线架构还可以将诸如外围设备、 稳压器和功率管理电路等 之类的各种其他电路链接在一起, 这些都是本领域所公知的, 因此, 本文不 再对其进行进一步描述。 总线接口提供接口。 收发机 810可以是多个元件, 即包括发送机和接收机, 提供用于在传输介质上与各种其他装置通信的单元。 处理器 800负责管理总线架构和通常的处理,存储器 820可以存储处理器 800 在执行操作时所使用的数据。
处理器 800 负责管理总线架构和通常的处理, 存储器 820可以存储处理 器 800在执行操作时所使用的数据。
如图 9所示, 本申请实施例九进行下行传输的系统中的用户设备包括: 处理器 900,用于确定包括保护频段和可用频段的用于下行传输的上行频 段, 通过收发机 910在可用频段上接收网络侧设备发送的下行信号, 以及在 保护频段上不发送和接收任何信号;
收发机 910, 用于在处理器 900的控制下接收和发送数据。
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。 相邻, 所述上行频段的高频部分和低频部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
较佳地, 所述处理器 900具体用于, 根据下列方式确定所述上行频段中 的所述保护频段的带宽和所述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
较佳地, 所述处理器 900还用于:
根据所述网络侧设备的调度, 在除所述用于下行传输的上行频段之外的 其他上行频段上传输上行控制信息和 /或参考信号。
较佳地, 所述处理器 900还用于:
通过收发机在上行频段传输下行信号的调度信息时, 根据确定的可用频 段的宽度对应的 payload size接收信息。
其中, 在图 9 中, 总线架构可以包括任意数量的互联的总线和桥, 具体 由处理器 900代表的一个或多个处理器和存储器 920代表的存储器的各种电 路链接在一起。 总线架构还可以将诸如外围设备、 稳压器和功率管理电路等 之类的各种其他电路链接在一起, 这些都是本领域所公知的, 因此, 本文不 再对其进行进一步描述。 总线接口提供接口。 收发机 910 可以是多个元件, 即包括发送机和接收机, 提供用于在传输介质上与各种其他装置通信的单元。 针对不同的用户设备, 用户接口 930还可以是能够外接内接需要设备的接口, 连接的设备包括但不限于小键盘、 显示器、 扬声器、 麦克风、 操纵杆等。 处理器 900 负责管理总线架构和通常的处理, 存储器 920可以存储处理 器 900在执行操作时所使用的数据。
基于同一发明构思, 本申请实施例中还分别提供了进行下行传输的方法, 由于这些方法对应的设备是本申请实施例进行下行传输的系统中的设备, 并 且该方法解决问题的原理与系统相似, 因此该方法的实施可以参见系统中对 应的设备的实施, 重复之处不再赘述。
如图 10所示, 本申请实施例十进行下行传输的方法包括:
步骤 1010、 网络侧设备确定包括保护频段和可用频段的用于下行传输的 上行频段;
步骤 1020、 所述网络侧设备在可用频段上向用户设备发送下行信号, 以 及在保护频段上不发送和接收任何信号;
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。 相邻, 所述上行频段的高频部分和低频部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。 频段的带宽和所述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
较佳地, 所述网络侧设备确定包括保护频段和可用频段的用于下行传输 的上行频段之后, 还包括:
所述网络侧设备调度所述用户设备, 在除所述用于下行传输的上行频段 之外的其他上行频段上传输上行控制信息和 /或参考信号。
较佳地, 所述网络侧设备确定包括保护频段和可用频段的用于下行传输 的上行频段之后, 还包括:
所述网络侧设备在上行频段传输下行信号的调度信息时, 根据确定的可 用频段的宽度对应的 payload size发送信息。
如图 11所示, 本申请实施例十一进行下行传输的方法包括:
步骤 1110、 用户设备确定包括保护频段和可用频段的用于下行传输的上 行频段;
步骤 1120、所述用户设备在可用频段上接收网络侧设备发送的下行信号, 以及在保护频段上不发送和接收任何信号;
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。 相邻, 所述上行频段的高频部分和低频部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。 段的带宽和所述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
较佳地, 所述用户设备确定包括保护频段和可用频段的用于下行传输的 上行频段之后, 还包括:
所述用户设备根据所述网络侧设备的调度, 在除所述用于下行传输的上 行频段之外的其他上行频段上传输上行控制信息和 /或参考信号。
较佳地, 所述用户设备确定包括保护频段和可用频段的用于下行传输的 上行频段之后, 还包括:
所述用户设备在上行频段传输下行信号的调度信息时, 根据确定的可用 频段的宽度对应的 payload size接收信息。
本领域内的技术人员应明白, 本申请的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本申请可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本申请可釆用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器、 CD-ROM、 光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器, 使得通 过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流 程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
尽管已描述了本申请的优选实施例, 但本领域内的技术人员一旦得知了 基本创造性概念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权 利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然, 本领域的技术人员可以对本申请进行各种改动和变型而不脱离本 申请的精神和范围。 这样, 倘若本申请的这些修改和变型属于本申请权利要 求及其等同技术的范围之内, 则本申请也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种进行下行传输的方法, 其特征在于, 该方法包括:
网络侧设备确定包括保护频段和可用频段的用于下行传输的上行频段; 所述网络侧设备在可用频段上向用户设备发送下行信号, 以及在保护频 段上不发送和接收任何信号;
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。
2、 如权利要求 1所述的方法, 其特征在于, 述上行频段的高频部分和低频部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述网络侧设备根据下 若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
4、 如权利要求 1~3任一所述的方法, 其特征在于, 所述网络侧设备确定 包括保护频段和可用频段的用于下行传输的上行频段之后, 还包括:
所述网络侧设备调度所述用户设备, 在除所述用于下行传输的上行频段 之外的其他上行频段上传输上行控制信息和 /或参考信号。
5、 如权利要求 1~3任一所述的方法, 其特征在于, 所述网络侧设备确定 包括保护频段和可用频段的用于下行传输的上行频段之后, 还包括:
所述网络侧设备在上行频段传输下行信号的调度信息时, 根据确定的可 用频段的宽度对应的负载尺寸 payload size发送信息。
6、 一种进行下行传输的方法, 其特征在于, 该方法包括:
用户设备确定包括保护频段和可用频段的用于下行传输的上行频段; 所述用户设备在可用频段上接收网络侧设备发送的下行信号, 以及在保 护频段上不发送和接收任何信号;
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。
7、 如权利要求 6所述的方法, 其特征在于, 述上行频段的高频部分和低频部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
8、 如权利要求 6或 7所述的方法, 其特征在于, 所述用户设备根据下列 方式确定所述上行频段中的所述保护频段的带宽和所述可用频段的带宽: 若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
9、 如权利要求 6~8任一所述的方法, 其特征在于, 所述用户设备确定包 括保护频段和可用频段的用于下行传输的上行频段之后, 还包括:
所述用户设备根据所述网络侧设备的调度, 在除所述用于下行传输的上 行频段之外的其他上行频段上传输上行控制信息和 /或参考信号。
10、 如权利要求 6~8任一所述的方法, 其特征在于, 所述用户设备确定 包括保护频段和可用频段的用于下行传输的上行频段之后, 还包括:
所述用户设备在上行频段传输下行信号的调度信息时, 根据确定的可用 频段的宽度对应的负载尺寸 payload size接收信息。
11、 一种进行下行传输的网络侧设备, 其特征在于, 该网络侧设备包括: 确定模块, 用于确定包括保护频段和可用频段的用于下行传输的上行频 段;
传输模块, 用于在可用频段上向用户设备发送下行信号, 以及在保护频 段上不发送和接收任何信号;
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。
12、 如权利要求 11所述的网络侧设备, 其特征在于, 述上行频段的高频部分和低频部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
13、 如权利要求 11或 12所述的网络侧设备, 其特征在于, 所述确定模 述可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
14、 如权利要求 11~13任一所述的网络侧设备, 其特征在于, 所述传输 模块还用于: 频段上传输上行控制信息和 /或参考信号。
15、 如权利要求 11~13任一所述的网络侧设备, 其特征在于, 所述传输 模块还用于:
在上行频段传输下行信号的调度信息时, 根据确定的可用频段的宽度对 应的负载尺寸 payload size发送信息。
16、 一种进行下行传输的用户设备, 其特征在于, 该用户设备包括: 确定模块, 用于确定包括保护频段和可用频段的用于下行传输的上行频 段;
传输模块, 用于在可用频段上接收网络侧设备发送的下行信号, 以及在 保护频段上不发送和接收任何信号;
其中, 所述保护频段位于所述上行频段的高频部分和 /或低频部分。
17、 如权利要求 16所述的用户设备, 其特征在于, 述上行频段的高频部分和低频部分各有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最高频段, 则所述上行频段的高频 部分有一个所述保护频段;
若用于下行传输的上行频段与一个用于下行传输的其他上行频段相邻, 且所述上行频段是相邻的所有上行频段的最低频段, 则所述上行频段的低频 部分有一个所述保护频段。
18、 如权利要求 16或 17所述的用户设备, 其特征在于, 所述确定模块 可用频段的带宽:
若所述上行频段中有两个所述保护频段, 所述网络侧设备确定所述上行 频段中除两倍的保护频段带宽最小值的带宽之外的带宽作为可用频段最大 值, 从系统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频 带带宽作为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外 的带宽的一半作为所述保护频段的带宽;
若所述上行频段中有一个所述保护频段, 所述网络侧设备确定所述上行 频段中除保护频段带宽最小值的带宽之外的带宽作为可用频段最大值, 从系 统能够支持的所有频带带宽中选择不大于所述可用频段最大值的频带带宽作 为所述可用频段的带宽, 将所述上行频段中除可用频段的带宽之外的带宽作 为所述保护频段的带宽。
19、 如权利要求 16~18任一所述的用户设备, 其特征在于, 所述传输模 块还用于:
根据所述网络侧设备的调度, 在除所述用于下行传输的上行频段之外的 其他上行频段上传输上行控制信息和 /或参考信号。
20、 如权利要求 16~18任一所述的用户设备, 其特征在于, 所述传输模 块还用于:
在上行频段传输下行信号的调度信息时, 根据确定的可用频段的宽度对 应的负载尺寸 payload size接收信息。
PCT/CN2014/070246 2014-01-07 2014-01-07 一种进行下行传输的方法、系统和设备 WO2015103734A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016544835A JP6382994B2 (ja) 2014-01-07 2014-01-07 ダウンリンク送信のための方法、システム、および装置
PCT/CN2014/070246 WO2015103734A1 (zh) 2014-01-07 2014-01-07 一种进行下行传输的方法、系统和设备
KR1020167021103A KR101765738B1 (ko) 2014-01-07 2014-01-07 다운링크 송신 위한 방법, 시스템 및 디바이스
CN201480000364.8A CN105009622B (zh) 2014-01-07 2014-01-07 一种进行下行传输的方法、系统和设备
EP14877997.8A EP3082357B1 (en) 2014-01-07 2014-01-07 Methods and devices for performing downlink transmission
US15/203,940 US10237748B2 (en) 2014-01-07 2016-07-07 Method, system, and device for downlink transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/070246 WO2015103734A1 (zh) 2014-01-07 2014-01-07 一种进行下行传输的方法、系统和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/203,940 Continuation US10237748B2 (en) 2014-01-07 2016-07-07 Method, system, and device for downlink transmission

Publications (1)

Publication Number Publication Date
WO2015103734A1 true WO2015103734A1 (zh) 2015-07-16

Family

ID=53523432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070246 WO2015103734A1 (zh) 2014-01-07 2014-01-07 一种进行下行传输的方法、系统和设备

Country Status (6)

Country Link
US (1) US10237748B2 (zh)
EP (1) EP3082357B1 (zh)
JP (1) JP6382994B2 (zh)
KR (1) KR101765738B1 (zh)
CN (1) CN105009622B (zh)
WO (1) WO2015103734A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955991B2 (ja) * 2014-07-28 2016-07-20 パナソニック株式会社 基地局
CN106162906B (zh) * 2015-03-31 2019-01-15 中兴通讯股份有限公司 调度信息发送、接收方法及装置
US10779277B2 (en) * 2016-07-07 2020-09-15 Qualcomm Incorporated General authorized access (GAA) primary channel assignment for multiple operators
JP7012460B2 (ja) * 2017-06-08 2022-01-28 パナソニック株式会社 基地局、端末、無線通信システムおよび通信方法
US11546917B2 (en) * 2019-12-13 2023-01-03 Qualcomm Incorporated Interference mitigation scheme for asynchronous time division duplex

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155385A (zh) * 2006-09-29 2008-04-02 中兴通讯股份有限公司 具有改进的频谱使用方式的通信系统
CN102595425A (zh) * 2011-01-11 2012-07-18 上海贝尔股份有限公司 抗tdd和fdd频带间干扰的方法及通信方法和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002112326A (ja) 2000-10-02 2002-04-12 Ntt Docomo Inc 無線リソース割当方法及び基地局装置
JP4982409B2 (ja) * 2008-03-06 2012-07-25 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び方法
EP2286519A4 (en) * 2008-06-13 2014-12-03 Rajiv Mehrotra PROCEDURE AND ARCHITECTURE FOR PAIRING SAFETY BAND FREQUENCIES FOR THE PERFORMANCE OF GSM, CDMA, UMTS AND WCDMA SERVICES
US9232478B2 (en) * 2012-03-02 2016-01-05 Qualcomm Incorporated Frequency scan method for determining the system center frequency for LTE TDD
US20140274193A1 (en) * 2013-03-15 2014-09-18 Wilson Electronics, Llc Out-of-band noise and overload protection
US8803635B1 (en) * 2013-03-15 2014-08-12 Wilson Electronics, Llc Filter isolation using a circulator
WO2014178852A1 (en) * 2013-04-30 2014-11-06 Empire Technology Development Llc Hybrid fdd/tdd wireless network
US20150029909A1 (en) * 2013-07-25 2015-01-29 Wilson Electronics, Llc Bi-directional signal booster

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155385A (zh) * 2006-09-29 2008-04-02 中兴通讯股份有限公司 具有改进的频谱使用方式的通信系统
CN102595425A (zh) * 2011-01-11 2012-07-18 上海贝尔股份有限公司 抗tdd和fdd频带间干扰的方法及通信方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3082357A4 *

Also Published As

Publication number Publication date
JP2017502611A (ja) 2017-01-19
US20160316376A1 (en) 2016-10-27
EP3082357A1 (en) 2016-10-19
CN105009622B (zh) 2020-02-14
KR101765738B1 (ko) 2017-08-07
CN105009622A (zh) 2015-10-28
US10237748B2 (en) 2019-03-19
EP3082357B1 (en) 2019-07-03
KR20160105512A (ko) 2016-09-06
JP6382994B2 (ja) 2018-08-29
EP3082357A4 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
CN109275191B (zh) 一种传输方法及其装置
WO2017133596A1 (zh) 上行控制信息的传输方法及装置
WO2018133669A1 (zh) 一种资源调度方法以及无线接入网设备和终端设备
WO2016049890A1 (zh) 数据传输方法和设备
WO2016070704A1 (zh) 一种在非授权频段上的数据传输方法及装置
US12120063B2 (en) Resource configuration method and apparatus
WO2019153896A1 (zh) 一种确定dci中信息域取值的方法及装置
WO2018027918A1 (zh) 上行信道发送方法和装置
WO2015103734A1 (zh) 一种进行下行传输的方法、系统和设备
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2017059572A1 (zh) 一种干扰指示方法及装置
WO2016075515A1 (en) Neighboring cell load information
CA3087852C (en) Bwp frequency hopping configuration method, network device and terminal
WO2018201902A1 (zh) 一种数据传输方法及装置
US20190124705A1 (en) Identifier management method, apparatus, and system
WO2020164156A1 (zh) 传输带宽的确定方法、设备及存储介质
WO2013189201A1 (zh) 位置处理方法及基站、终端
CN110537385B (zh) 下行传输的检测方法、装置、设备及存储介质
WO2012163145A1 (zh) 一种载波调度方法、装置及相关设备
CN114451017B (zh) 一种激活和释放非动态调度传输的方法及装置
WO2017166234A1 (zh) 信号传输方法、信号传输控制方法、用户设备及基站
WO2015039626A1 (zh) 一种发送和接收数据的方法、系统及设备
WO2017004757A1 (zh) 一种通信方法及装置
EP2989845B1 (en) Methods and apparatus for communication scheduling
WO2021023294A1 (zh) 信息传输方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544835

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014877997

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014877997

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167021103

Country of ref document: KR

Kind code of ref document: A