[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015196688A1 - 一种可燃废物定向热解方法 - Google Patents

一种可燃废物定向热解方法 Download PDF

Info

Publication number
WO2015196688A1
WO2015196688A1 PCT/CN2014/090354 CN2014090354W WO2015196688A1 WO 2015196688 A1 WO2015196688 A1 WO 2015196688A1 CN 2014090354 W CN2014090354 W CN 2014090354W WO 2015196688 A1 WO2015196688 A1 WO 2015196688A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
waste
combustible
combustible waste
furnace
Prior art date
Application number
PCT/CN2014/090354
Other languages
English (en)
French (fr)
Inventor
李春萍
熊运贵
杨飞华
田立柱
黄乐
Original Assignee
北京建筑材料科学研究总院有限公司
北京金隅股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京建筑材料科学研究总院有限公司, 北京金隅股份有限公司 filed Critical 北京建筑材料科学研究总院有限公司
Publication of WO2015196688A1 publication Critical patent/WO2015196688A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics

Definitions

  • the invention relates to the field of solid waste recycling, in particular to a directional pyrolysis method for combustible waste, which is directed to domestic garbage, medical waste, old garbage, waste tire, waste plastic, industrial waste, sludge, kitchen waste, garden Wastewater, livestock and poultry manure and other technologies for the utilization and recycling of combustible waste energy.
  • the municipal sewage sludge is produced in the biochemical treatment stage of urban domestic sewage, mainly from the primary and secondary sedimentation tanks of the domestic sewage treatment plant. It is the largest and most prone to secondary pollution by urban sewage treatment. .
  • the amount of sludge generated is large, and about 1 ton of sewage containing 80% of water is produced in the treatment of 1,000 tons of urban domestic sewage.
  • the portion used for sludge treatment can reach up to 70%. After the sludge that has not been properly disposed of enters the environment, it directly brings secondary pollution to the water body and the atmosphere, which not only reduces the effective treatment capacity of the sewage treatment system, but also poses a serious threat to the ecological environment and human activities.
  • the amount of kitchen waste produced in China is large and wide, mainly due to the mixture of leftovers and scraps produced in hotels, restaurants, restaurants and canteens. In China, the consumption of organic waste in some canteens, hotels, restaurants and other eating units is staggering.
  • the daily production of kitchen waste in Beijing is more than 1,600 tons.
  • the daily output of kitchen waste in Chongqing's main city in 2007 is about 1000 tons; as of 2003, the daily kitchen waste produced in Shanghai has reached 1,100 tons.
  • the above waste contains a certain calorific value and is suitable for incineration.
  • the combustion temperature of the incinerator is difficult to reach above 850 °C, and the residence time of the material at high temperature is short (usually 2 seconds), and the waste is very It is difficult to completely decompose, and may produce incomplete combustion products and certain harmful substances (such as acid gases and dioxins), causing air pollution. Improper handling may also cause serious harm to human health and the ecological environment. Due to concerns about secondary pollution of domestic waste incineration, the construction of domestic waste incineration plants has encountered considerable resistance.
  • the object of the present invention is to provide a directional pyrolysis method for combustible waste, which is a novel technical scheme proposed for pyrolysis technology, which improves the pyrolysis efficiency and utilization rate of combustible waste.
  • the technical solution of the present invention is: a directional pyrolysis method for combustible waste, placing combustible waste into a pyrolysis furnace, performing gas replacement on the pyrolysis furnace, and inputting nitrogen gas to exhaust the air in the pyrolysis furnace, and maintaining The nitrogen pressure in the pyrolysis furnace is between 0.05 and 0.1 MPa, and the heating is started to enter a pyrolysis state, wherein: different pyrolysis steps are entered according to different pyrolysis requirements for the combustible waste, and the different pyrolysis requirements include: obtaining a step of pyrolysis carbon for combustible waste, a step of obtaining pyrolysis tar of combustible waste, and a step of obtaining combustible gas for combustible waste;
  • the step of obtaining pyrolysis carbon of the combustible waste is: raising the temperature of the pyrolysis furnace to 280 ° C to 300 ° C at a rate of 50 ° C / minute until the pyrolysis waste generates pyrolysis gas to remove the pyrolysis carbon obtained by the microporous structure;
  • the step of obtaining pyrolysis tar of combustible waste is: raising the temperature of the pyrolysis furnace to 580 ° C to 600 ° C at a rate of 10 ° C / minute until collecting all pyrolysis gas generated by combustible waste, and cooling the obtained pyrolysis gas to At 100 ° C, a pyrolysis tar is produced and obtained during the cooling process;
  • the step of obtaining combustible waste pyrolysis combustible gas is: adding 5% of the total amount of combustible waste to the combustible waste, and increasing the temperature of the pyrolysis furnace to 700 ° C at a rate of 50 ° C / minute until all pyrolysis gases are collected and collected.
  • the pyrolysis gas is combustible gas;
  • the combustible waste is one of urban domestic garbage, medical waste, old garbage, waste tire, waste plastic, industrial waste, sludge, kitchen waste, garden tree leaf waste, and livestock manure;
  • the city garbage and kitchen waste are squeezed into a dense garbage pile by a baler for 8-10 days of anaerobic fermentation. Then mechanically squeezed and dehydrated to a water content of 30% or less, and sent to the fermentation bin for 15-20 days of aerobic biological drying; sludge, livestock and poultry slurry materials are naturally aired by adding 10% lime; The garbage is removed from inorganic impurities, and after being crushed, it is naturally stacked for 5-7 days and the water content is 30% or less.
  • the solution further is that the method further comprises the step of separating the air: the air discharged from the pyrolysis furnace is separated into oxygen and nitrogen by an air separation device, and the nitrogen is sent back to the pyrolysis furnace, and the oxygen is sent to the coal-fired boiler and the cement kiln for combustion. Equipment or storage.
  • the step of obtaining pyrolysis tar of the combustible waste further comprises: raising the pyrolysis furnace temperature to a temperature of 10 ° C / minute to 580 ° C to 600 ° C, and collecting the pyrolysis gas into the petroleum ether to be absorbed as oil
  • the tar of the raw material which can further separate light oil and chemical products.
  • the combustible waste is a municipal solid waste with a water content of 60%, which is sorted and removed.
  • the garbage is squeezed into a dense garbage pile by a baler, and 10 days of anaerobic fermentation is carried out, then the garbage is mechanically squeezed and dehydrated, and sent to the fermentation bin for 15 days of aerobic
  • the organism is dried to reduce the moisture content to 30%.
  • a total amount of 10% titanium dioxide was added to the dried garbage, and placed in a fixed bed pyrolysis furnace, and the temperature of the pyrolysis furnace was raised to 700 ° C at a rate of 50 ° C / minute, and the collected pyrolysis gas was combustible gas.
  • the combustible waste is sludge having a water content of 80%
  • the sludge is sent to a kneader and mixed with a total of 5% of the total amount of sludge, and then naturally dried until the water content is reduced to 30%.
  • the fixed bed pyrolysis furnace was raised to 300 ° C at a rate of 50 ° C / minute and held, and the pyrolysis gas generated was removed to form a pyrolysis carbon having a microporous structure.
  • the combustible waste is a waste tire, and the waste tire is crushed to a particle size of 5-10 mm, and then placed in a fixed bed pyrolysis furnace, and the furnace body is heated to a temperature of 10 ° C / min to 600 ° C and maintained.
  • the collected pyrolysis gas was cooled to 100 ° C to obtain tar.
  • the combustible waste is garden tree leaf waste
  • the garden tree leaf waste is broken into a fixed bed pyrolysis furnace with a particle size of 10 mm or less, and is raised to 300 ° C at a rate of 50 ° C / minute and maintained.
  • the pyrolysis gas generated is excluded to form a pyrolytic carbon having a microporous structure.
  • the combustible waste is industrial waste of industrial sludge, industrial waste and coal gangue, and the industrial waste is sorted to remove impurities such as metal and glass, and then crushed to a particle size of 10 cm or less, and waste is added.
  • a total of 10% of the titanium dioxide was placed in a fixed bed pyrolysis furnace, and the temperature of the pyrolysis furnace was raised to 700 ° C at a rate of 50 ° C / minute, and the collected pyrolysis gas was combustible.
  • the invention Compared with the prior art, the invention has the following advantages: the method utilizes the calorific value of combustible waste, and directional combustion of combustible waste into organic carbon and high calorific value gas by adjusting pyrolysis temperature, pressure, heating rate and adding catalyst. And tar, while separating chlorine and heavy metals.
  • the directional pyrolysis technology of combustible solid waste can not only utilize the heat energy in the combustible solid waste, but also the flammable gas, tar and pyrolytic carbon can be used separately, which greatly improves the utilization rate of combustible solid waste, because the method isolates the air and reduces The combustion of carbon and the volatilization of heavy metals and chlorine, therefore, the dioxin emissions are below 0.1 ng / Nm 3 .
  • This method is combined with a coal-fired boiler to reduce the amount of smoke generated and to suppress the production of dioxins.
  • This method is combined with cement kiln to save coal use and reduce NOx emissions from cement kiln.
  • a directional pyrolysis method for combustible waste putting combustible waste into a pyrolysis furnace, performing gas replacement on the pyrolysis furnace, inputting nitrogen to exhaust the air in the pyrolysis furnace, and maintaining the nitrogen pressure in the pyrolysis furnace at 0.05 to 0.1 MPa
  • the heating begins to enter a pyrolysis state, wherein: different pyrolysis steps are entered according to different pyrolysis requirements for combustible waste, the different pyrolysis demand packages Including: obtaining pyrolysis carbon for combustible waste, obtaining pyrolysis tar for combustible waste, and obtaining pyrolysis combustible gas for combustible waste;
  • the step of obtaining pyrolysis carbon of the combustible waste is: raising the temperature of the pyrolysis furnace to 280 ° C to 300 ° C at a rate of 50 ° C / minute until the combustible waste generates pyrolysis gas to remove the pyrolytic carbon obtained by the microporous structure;
  • the carbon weight of the carbon is reduced by 15%-30% compared with the raw material combustible waste, which saves the transportation cost of the recycling process.
  • the calorific value of the pyrolysis carbon is increased by 30% compared with the raw material, and can be directly used as fuel.
  • the carbon produced by pyrolysis is mostly a microporous structure and can be used as a sewage treatment material or activated carbon.
  • the step of obtaining pyrolysis tar of combustible waste is: raising the temperature of the pyrolysis furnace to 580 ° C to 600 ° C at a rate of 10 ° C / minute until collecting all pyrolysis gas generated by combustible waste, and cooling the obtained pyrolysis gas to At 100 °C, the pyrolysis tar is produced and obtained during the cooling process; the tar yield is the highest under this process parameter, and the most valuable components are: the yield of tar is 30%-50%, and the main component of tar is: olefin , aromatic compounds, hydrazine, naphthalene, decene, hydrazine, acetic acid, isopropylidene acetonide and phenol, etc., tar can be separated by distillation, high pressure hydrogenation and other processes to separate light oil and chemical products, and reuse.
  • the step of obtaining combustible waste pyrolysis combustible gas is: adding 5% of the total amount of combustible waste to the combustible waste, and increasing the temperature of the pyrolysis furnace to 700 ° C at a rate of 50 ° C / minute until all pyrolysis gases are collected and collected.
  • the pyrolysis gas is flammable gas; more than 60% of the combustible waste can be converted into combustible gas, the calorific value of the combustible gas reaches 15 MJ/m 3 or more, and the components of the combustible gas are mainly methane, ethylene, propane and propylene.
  • a hydrocarbon compound of C7 or lower such as n-butane, anti-butene, isobutylene, n-pentane or 1,3-butadiene.
  • the combustible waste is municipal solid waste, medical waste, stale waste, waste tire, waste plastic, industrial waste (such as: industrial sludge, industrial waste, coal gangue, etc.), sludge, kitchen waste , one of the garden branches and leaves, and one of the livestock and poultry manure;
  • the city garbage and kitchen waste are squeezed into a dense garbage pile by a baler for 8-10 days of anaerobic fermentation. Then mechanically squeezed and dehydrated to a water content of 30% or less, and sent to the fermentation bin for 15-20 days of aerobic biological drying; sludge, livestock and poultry manure slurry materials are naturally dried to dryness by adding 10% quicklime (aqueous The rate is 30% or less); the old garbage is removed by the old garbage, and the natural moisture is 5 to 30 days after being crushed and the water content is 30% or less.
  • the above method reduces the combustion of carbon and the volatilization of heavy metals and chlorine due to the isolation of air. Therefore, the dioxin emissions are below 0.1 ng/Nm3, thereby suppressing the generation of dioxins.
  • the method further comprises the step of separating the air: the air discharged from the pyrolysis furnace is separated into oxygen and nitrogen by an air separation device, and the nitrogen is sent back to the pyrolysis furnace, and the oxygen is sent to the coal-fired boiler, the cement kiln, etc. Combustion Ready or store.
  • This embodiment is a further method based on Embodiment 1, that the step of obtaining combustible waste pyrolysis tar further comprises: collecting pyrolysis after the pyrolysis furnace temperature is raised to a temperature of 10 ° C / minute to 580 ° C to 600 ° C The gas is absorbed into petroleum ether and absorbed into tar as a petroleum raw material, which can further separate light oil and chemical products.
  • the combustible waste is a municipal solid waste having a water content of 60%.
  • the garbage is squeezed by a baler. It is pressed into a dense garbage pile, and subjected to anaerobic fermentation for 10 days.
  • the garbage is mechanically squeezed and dehydrated, and sent to a fermentation chamber for 15 days of aerobic biological drying to reduce the water content to 30%.
  • TiO 2 titanium dioxide
  • Embodiment 1 is another embodiment based on Embodiment 1: the combustible waste is sludge having a water content of 80%, and the sludge is sent to a kneader to mix with the raw lime of 5% of the total amount of sludge, and then naturally The glass was dried to a moisture content of 30% and placed in a fixed bed pyrolysis furnace, and was raised to 300 ° C at a rate of 50 ° C / minute to maintain, and the pyrolysis gas generated was removed to form a pyrolysis carbon having a microporous structure. 80% of the sludge is converted to pyrolytic carbon. Pyrolytic carbon is used to treat sewage as an adsorbent for suspending materials.
  • the combustible waste is a waste tire, and the waste tire is crushed to a particle size of 5-10 mm, and then placed in a fixed bed pyrolysis furnace at a heating rate of 10 ° C.
  • the furnace body was heated to 600 ° C and kept, and the collected pyrolysis gas was cooled to 100 ° C to obtain tar.
  • the output of tar is more than 50%.
  • the tar contains a lot of valuable components: olefin, aromatic compound, hydrazine, naphthalene, terpene, anthracene, acetic acid, isopropylideneacetone and phenol.
  • the tar can be separated from light oil and chemical products by distillation, high pressure hydrogenation, etc., and reused. At the same time, a large amount of hydrogen-rich combustible gas is generated, and the gas component is mainly composed of hydrogen, which can be collected and reused.
  • Embodiment 1 is another specific embodiment based on Embodiment 1: the combustible waste is garden tree leaf litter waste, and the garden branch leaf waste is broken into a fixed bed pyrolysis furnace with a particle size of 10 mm or less, at 50 ° C / The rate of minutes rises to 300 ° C and is maintained, excluding the pyrolysis gas produced, forming a pyrolytic carbon of a microporous structure. 80% of the waste is converted to pyrolytic carbon and can be sold as activated carbon.
  • the combustible waste is industrial waste of industrial sludge, industrial waste, coal gangue, sorting industrial waste, removing metal, glass and the like, and then breaking To a particle size of 10 cm or less, titanium dioxide added with a total amount of waste of 10% was placed in a fixed bed pyrolysis furnace, and the pyrolysis furnace temperature was raised to 700 ° C at a rate of 50 ° C / minute, and the collected pyrolysis gas was combustible gas. The generated combustible gas and the air after the air separation enter the cement kiln decomposition furnace together with the tertiary wind of the cement kiln. The amount of combustible gas produced is 60% or more. Exhaust dioxin emissions are below 0.01 ng/Nm 3 and below EU emission standards.
  • the above embodiment is a novel technique for solving the problem of producing dioxin-like toxic substances in the process of municipal solid waste incineration. It is also a new type of waste incineration technology. Combustible solid waste does not require oxygen during pyrolysis, and the amount of smoke is low, and at the same time, three parts of combustible gas, tar and pyrolytic carbon are generated, which improves the utilization of energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

本发明公开了一种可燃废物定向热解方法,将可燃废物放入热解炉,对热解炉进行气体置换,输入氮气排出热解炉内的空气,并保持热解炉内氮气压力在0.05至0.1MPa之间,开始加温进入热解状态,其中:根据对可燃废物不同的热解需求进入不同的热解步骤,所述不同的热解需求包括:获取可燃废物热解碳步骤、获取可燃废物热解焦油步骤、获取可燃废物热解可燃气步骤;本发明方法利用可燃废物的热值,通过调节热解温度、压力、升温速率及添加催化剂的方式,将可燃废物定向热解为有机碳、高热值燃气以及焦油,大大提高可燃固废的利用率,由于此方法隔绝了空气,减少了碳的燃烧和重金属以及氯的挥发,因此,二恶英排放在0.1ng/Nm3以下。

Description

一种可燃废物定向热解方法 技术领域
本发明涉及固体废弃物再利用领域,尤其涉及一种可燃废物定向热解方法,是针对生活垃圾、医疗垃圾、陈腐垃圾、废轮胎、废塑料、工业废弃物、污泥、餐厨垃圾、园林废弃物、畜禽粪便等可燃垃圾能源利用和资源化再利用技术。
背景技术
随着城市规模的不断扩大,城市人口的日益增长以及人民生活水平的不断提高,城市生活垃圾的产生量在逐渐增加。早在1996年,中国的城市垃圾清运量就已经达到了1亿吨,而且每年以8%~10%的速度增长。垃圾的历年堆存量达到60多亿吨,全国有200多座城市陷入垃圾的包围之中,垃圾堆存侵占的土地面积多达5亿多平方米。垃圾处理已经成为制约中国城市环境的重要问题。
随着经济的飞速发展和城镇化进程的深入,我国的城市污水处理量也在逐年增长。城市污水厂污泥产生于城市生活污水的生化处理的阶段,主要来自于生活污水处理厂的初次和二次沉淀池,是城市生活污水处理时产生的体积最大、最容易产生二次污染的副产品。污泥的产生量大,处理1000吨城市生活污水约产生1吨含水率为80%的污泥。污水处理厂的全部建设费用中,用于污泥处理的部分最高可达到70%。未经恰当处理处置的污泥进入环境后,直接给水体和大气带来二次污染,不但降低了污水处理系统的有效处理能力,而且对生态环境和人类的活动构成了严重的威胁。
我国餐厨垃圾产生量大、面广,主要是宾馆、饭店、企事业单位食堂等在经营过程中产生的残羹剩饭、下脚料等混合物。在国内,一些食堂、宾馆、饭店等饮食单位的有机垃圾产生量惊人。北京市每天生产餐厨垃圾大约有1600多吨,据重庆大学负责完成的《重庆市主城区餐厨垃圾产量调查及理化性质分析报告》,2007年重庆市主城区餐厨垃圾每天的产量约为1000吨;截至2003年,上海市每天产生的餐厨垃圾也已达1100吨左右。
以上废弃物含有一定的热值,适合焚烧处理。然而,由于我国城市固废水分含量高,热值较低,在直接焚烧的情况下焚烧炉燃烧温度难以达到850℃以上,物料在高温下停留时间较短(一般为2秒),废弃物很难完全分解,可能产生不完全燃烧产物和某些有害物质(如酸性气体和二恶英等),造成大气污染,处理不当还会对人类健康、生态环境形成严重的危害。由于人们对生活垃圾焚烧二次污染的担心,我国生活垃圾焚烧厂的建设遇到了相当大的阻力。
发明内容
本发明的目的在于提供一种可燃废物定向热解方法,是针对热解技术提出的一种新型技术方案,提高了可燃废物热解效率和利用率。
为了实现上述目的,本发明的技术方案是:一种可燃废物定向热解方法,将可燃废物放入热解炉,对热解炉进行气体置换,输入氮气排出热解炉内的空气,并保持热解炉内氮气压力在0.05至0.1MPa之间,开始加温进入热解状态,其中:根据对可燃废物不同的热解需求进入不同的热解步骤,所述不同的热解需求包括:获取可燃废物热解碳步骤、获取可燃废物热解焦油步骤、获取可燃废物热解可燃气步骤;
所述获取可燃废物热解碳步骤是:将热解炉温度以50℃/分钟的速率上升至280℃至300℃直至可燃废物产生热解气排除干净得到多微孔结构的热解碳;
所述获取可燃废物热解焦油步骤是:将热解炉温度以10℃/分钟的速率上升至580℃至600℃直至收集所有可燃废物产生的热解气,对所获取的热解气降温至100℃,降温过程中产生并获得热解焦油;
所述获取可燃废物热解可燃气步骤是:在可燃废物加入可燃废物总量5%的二氧化钛,将热解炉温度以50℃/分钟的速率上升至700℃直至收集所有的热解气体,收集的热解气体为可燃气;
所述的可燃废物是城市生活垃圾、医疗垃圾、陈腐垃圾、废轮胎、废塑料、工业废弃物、污泥、餐厨垃圾、园林树枝树叶废弃物、畜禽粪便中的一种;
其中:将城市生活垃圾和餐厨垃圾去除无机杂物、分选、破碎后,采用打包机将城市生活垃圾和餐厨垃圾挤压成致密的垃圾方堆,进行8-10天厌氧发酵,再进行机械挤压脱水至含水率为30%以下,送入发酵仓进行15-20天好氧的生物干化;污泥、畜禽粪便浆状物料采用添加10%石灰自然晾晒的方式;陈腐垃圾去除无机杂物、破碎后自然堆放5-7天含水率为30%以下。
方案进一步是:所述方法进一步包括空气分离的步骤:将从热解炉内排出的空气通过空气分离设备分离为氧气和氮气,氮气回送进入热解炉,氧气送入燃煤锅炉、水泥窑燃烧设备或者储存。
方案进一步是:所述获取可燃废物热解焦油步骤进一步包括:将热解炉温度以10℃/分钟的速率上升至580℃至600℃后收集的热解气体通入石油醚中吸收成为作为石油原料的焦油,所述焦油可进一步分离出轻质油和化工产品。
方案进一步是:所述可燃废物是含水率为60%城市生活垃圾,经过分选,去除杂 物,破碎颗粒粒径至10cm以下后,采用打包机将垃圾挤压成致密的垃圾方堆,进行10天厌氧发酵,再对垃圾进行机械挤压脱水,送入发酵仓进行15天好氧的生物干化,使含水率降为30%。在干化后的垃圾中添加总量10%的二氧化钛,放入固定床热解炉,将热解炉温度以50℃/分钟的速率上升至700℃,收集的热解气为可燃气。
方案进一步是:所述可燃废物是含水率为80%的污泥,将所述污泥送入捏合机与污泥总量5%的生石灰混合,然后自然晾晒至含水率降为30%放入固定床热解炉,以50℃/分钟的速率上升至300℃并保持,排除所产生的热解气体,形成为多微孔结构的热解碳。
方案进一步是:所述可燃废物是废轮胎,将废轮胎破碎至粒径为5-10mm颗粒后,放入固定床热解炉,以升温速率为10℃/分钟加热炉体至600℃并保持,将收集的热解气降温至100℃得到焦油。
方案进一步是:所述可燃废物是园林树枝树叶废弃物,将园林树枝树叶废弃物破碎至粒径为10mm以下放入固定床热解炉,以50℃/分钟的速率上升至300℃并保持,排除所产生的热解气体,形成为多微孔结构的热解碳。
方案进一步是:所述可燃废物是工业污泥、工业垃圾、煤矸石的工业废弃物,将工业废弃物分选,去除金属、玻璃等杂物后,破碎至粒径为10cm以下,添加废弃物总量10%的二氧化钛放入固定床热解炉,将热解炉温度以50℃/分钟的速率上升至700℃,收集的热解气为可燃气。
本发明与现有技术相比具有如下优点:该方法利用可燃废物的热值,通过调节热解温度、压力、升温速率及添加催化剂的方式,将可燃废物定向热解为有机碳、高热值燃气以及焦油,同时分离氯元素及重金属。可燃固废的定向热解技术不仅可以利用可燃固体废弃物中的热能,所得可燃气体、焦油及热解碳还可以分别使用,大大提高可燃固废的利用率,由于此方法隔绝了空气,减少了碳的燃烧和重金属以及氯的挥发,因此,二恶英排放在0.1ng/Nm3以下。此方法与燃煤锅炉联用,可降低烟气产生量并抑制二恶英产生。此方法与水泥窑联用,可节约煤炭使用,减少水泥窑氮氧化物排放。
下面结合实施例对本发明作一详细描述。
具体实施方式
实施例1:
一种可燃废物定向热解方法,将可燃废物放入热解炉,对热解炉进行气体置换,输入氮气排出热解炉内的空气,并保持热解炉内氮气压力在0.05至0.1MPa之间,开始加温进入热解状态,其中:根据对可燃废物不同的热解需求进入不同的热解步骤,所述不同的热解需求包 括:获取可燃废物热解碳步骤、获取可燃废物热解焦油步骤、获取可燃废物热解可燃气步骤;
所述获取可燃废物热解碳步骤是:将热解炉温度以50℃/分钟的速率上升至280℃至300℃直至可燃废物产生热解气排除干净得到多微孔结构的热解碳;热解碳的容重相比于原料可燃废物下降了15%-30%,节约了再利用过程的运输成本,热解碳的热值相比于原料增加了30%,可直接作为燃料利用。此外,热解产生的碳多为微孔结构,可作为污水处理材料或者活性炭使用。
所述获取可燃废物热解焦油步骤是:将热解炉温度以10℃/分钟的速率上升至580℃至600℃直至收集所有可燃废物产生的热解气,对所获取的热解气降温至摄氏100℃,降温过程中产生并获得热解焦油;此工艺参数下焦油的产量最高,且有价值的组分最多:焦油的产率为30%-50%以上,焦油的主要成分为:烯烃、芳香化合物、茚、萘、苊烯、芴、乙酸、异亚丙基丙酮以及苯酚等,焦油可经过蒸馏、高压加氢等工序分离出轻质油和化学产品,再次利用。
所述获取可燃废物热解可燃气步骤是:在可燃废物加入可燃废物总量5%的二氧化钛,将热解炉温度以50℃/分钟的速率上升至700℃直至收集所有的热解气体,收集的热解气体为可燃气;可使可燃废弃物的60%以上都转化为可燃气体,可燃气体的热值达到了15MJ/m3以上,可燃气体的组分主要为甲烷、乙烯、丙烷、丙烯、正丁烷、反丁烯、异丁烯、正戊烷以及1,3-丁二烯等C7以下的烃类化合物。
实施例中,所述的可燃废物是城市生活垃圾、医疗垃圾、陈腐垃圾、废轮胎、废塑料、工业废弃物(如:工业污泥、工业垃圾、煤矸石等)、污泥、餐厨垃圾、园林树枝树叶废弃物、畜禽粪便中的一种;
其中:将城市生活垃圾和餐厨垃圾去除无机杂物、分选、破碎后,采用打包机将城市生活垃圾和餐厨垃圾挤压成致密的垃圾方堆,进行8-10天厌氧发酵,再进行机械挤压脱水至含水率为30%以下,送入发酵仓进行15-20天好氧的生物干化;污泥、畜禽粪便浆状物料采用添加10%生石灰自然晾晒至干(含水率为30%以下)的方式;陈腐垃圾去除无机杂物、破碎后自然堆放5-7天含水率为30%以下。
上述方法由于隔绝了空气,减少了碳的燃烧和重金属以及氯的挥发,因此,二恶英排放在0.1ng/Nm3以下,做到了抑制二恶英的产生。
实施例中:所述方法进一步包括空气分离的步骤:将从热解炉内排出的空气通过空气分离设备分离为氧气和氮气,氮气回送进入热解炉,氧气送入燃煤锅炉、水泥窑等燃烧设 备或者储存。
实施例2:
本实施例是基于实施例1的进一步的方法,即所述获取可燃废物热解焦油步骤进一步包括:将热解炉温度以10℃/分钟的速率上升至580℃至600℃后收集的热解气体通入石油醚中吸收成为作为石油原料的焦油,所述焦油可进一步分离出轻质油和化工产品。
实施例3:
本实施例是基于实施例1的一个具体方案:所述可燃废物是含水率为60%城市生活垃圾,经过分选,去除杂物,破碎颗粒粒径至10cm以下后,采用打包机将垃圾挤压成致密的垃圾方堆,进行10天厌氧发酵,再对垃圾进行机械挤压脱水,送入发酵仓进行15天好氧的生物干化,使含水率降为30%。在干化后的垃圾中添加总量10%的二氧化钛(TiO2),放入固定床热解炉,将热解炉温度以以50℃/分钟的速率上升至700℃,收集的热解气为可燃气。可燃气体产生量为60%以上。尾气二恶英排放在0.05ng/Nm3及之下,低于欧盟的排放标准。
实施例4:
本实施例是基于实施例1的另一个具体方案:所述可燃废物是含水率为80%的污泥,将所述污泥送入捏合机与污泥总量5%的生石灰混合,然后自然晾晒至含水率降为30%放入固定床热解炉,以50℃/分钟的速率上升至300℃并保持,排除所产生的热解气体,形成为多微孔结构的热解碳。污泥80%转化为热解碳。热解碳用于处理污水,作为可悬浮物质的吸附剂。
实施例5:
本实施例是基于实施例1的另一个具体方案:所述可燃废物是废轮胎,将废轮胎破碎至粒径为5-10mm颗粒后,放入固定床热解炉,以升温速率为10℃/分钟加热炉体至600℃并保持,将收集的热解气降温至100℃得到焦油。焦油的产量达到50%以上,焦油中含有大量的有价值组分:烯烃、芳香化合物、茚、萘、苊烯、芴、乙酸、异亚丙基丙酮以及苯酚等。焦油可经过蒸馏、高压加氢等工序分离出轻质油和化学产品,再次利用。同时,生成大量的富氢可燃气,即可燃气体组分以氢气为主,可以收集再利用。
实施例6:
本实施例是基于实施例1的另一个具体方案:所述可燃废物是园林树枝树叶废弃物,将园林树枝树叶废弃物破碎至粒径为10mm以下放入固定床热解炉,以50℃/分钟的速率上升至300℃并保持,排除所产生的热解气体,形成为多微孔结构的热解碳。废弃物80%转化为热解碳,可作为活性炭出售。
实施例7:
本实施例是基于实施例1的另一个具体方案:所述可燃废物是工业污泥、工业垃圾、煤矸石的工业废弃物,将工业废弃物分选,去除金属、玻璃等杂物后,破碎至粒径为10cm以下,添加废弃物总量10%的二氧化钛放入固定床热解炉,将热解炉温度以50℃/分钟的速率上升至700℃,收集的热解气为可燃气。产生的可燃气体与空分后的氧气同时与水泥窑三次风一起进入水泥窑分解炉。可燃气体产生量为60%以上。尾气二恶英排放在0.01ng/Nm3及之下,低于欧盟的排放标准。
上述实施例是为了解决城市生活垃圾焚烧处理过程中产生二恶英类毒性物质的问题而提出的一种新型技术。也是一种新型垃圾焚烧技术。可燃固废在热解时不需要氧气,排烟量较低,同时生成可燃气体、焦油及热解碳三部分,提高了能量的利用率。

Claims (8)

  1. 一种可燃废物定向热解方法,将可燃废物放入热解炉,对热解炉进行气体置换,输入氮气排出热解炉内的空气,并保持热解炉内氮气压力在0.05至0.1MPa之间,开始加温进入热解状态,其特征在于:根据对可燃废物不同的热解需求进入不同的热解步骤,所述不同的热解需求包括:获取可燃废物热解碳步骤、获取可燃废物热解焦油步骤、获取可燃废物热解可燃气步骤;
    所述获取可燃废物热解碳步骤是:将热解炉温度以50℃/分钟的速率上升至280℃至300℃直至可燃废物产生热解气排除干净得到多微孔结构的热解碳;
    所述获取可燃废物热解焦油步骤是:将热解炉温度以10℃/分钟的速率上升至580℃至600℃直至收集所有可燃废物产生的热解气,对所获取的热解气降温至100℃,降温过程中产生并获得热解焦油;
    所述获取可燃废物热解可燃气步骤是:在可燃废物加入可燃废物总量5%的二氧化钛,将热解炉温度以50℃/分钟的速率上升至700℃直至收集所有的热解气体,收集的热解气体为可燃气;
    所述的可燃废物是城市生活垃圾、医疗垃圾、陈腐垃圾、废轮胎、废塑料、工业废弃物、污泥、餐厨垃圾、园林树枝树叶废弃物、畜禽粪便中的一种;
    其中:将城市生活垃圾和餐厨垃圾去除无机杂物、分选、破碎后,采用打包机将城市生活垃圾和餐厨垃圾挤压成致密的垃圾方堆,进行8-10天厌氧发酵,再进行机械挤压脱水至含水率为30%以下,送入发酵仓进行15-20天好氧的生物干化;污泥、畜禽粪便浆状物料采用添加10%石灰自然晾晒的方式;陈腐垃圾去除无机杂物、破碎后自然堆放5-7天含水率为30%以下。
  2. 根据权利要求1所述的一种可燃废物定向热解方法,其特征在于,所述方法进一步包括空气分离的步骤:将从热解炉内排出的空气通过空气分离设备分离为氧气和氮气,氮气回送进入热解炉,氧气送入燃煤锅炉、水泥窑燃烧设备或者储存。
  3. 根据权利要求1所述的一种可燃废物定向热解方法,其特征在于,所述获取可燃废物热解焦油步骤进一步包括:将热解炉温度以10℃/分钟的速率上升至580℃至600℃后收集的热解气体通入石油醚中吸收成作为石油原料的焦油,所述焦油可进一步分离出轻质油和化工产品。
  4. 根据权利要求1所述的一种可燃废物定向热解方法,其特征在于,所述可燃废物是含水率为60%城市生活垃圾,经过分选,去除杂物,破碎颗粒粒径至10cm以下后,采用打包机将垃圾挤压成致密的垃圾方堆,进行10天厌氧发酵,再对垃圾进行机械挤压脱水,送入发 酵仓进行15天好氧的生物干化,使含水率降为30%,在干化后的垃圾中添加总量10%的二氧化钛,放入固定床热解炉,将热解炉温度以50℃/分钟的速率上升至700℃,收集的热解气为可燃气。
  5. 根据权利要求1所述的一种可燃废物定向热解方法,其特征在于,所述可燃废物是含水率为80%的污泥,将所述污泥送入捏合机与污泥总量5%的生石灰混合,然后自然晾晒至含水率降为30%放入固定床热解炉,以50℃/分钟的速率上升至300℃并保持,排除所产生的热解气体,形成为多微孔结构的热解碳。
  6. 根据权利要求1所述的一种可燃废物定向热解方法,其特征在于,所述可燃废物是废轮胎,将废轮胎破碎至粒径为5-10mm颗粒后,放入固定床热解炉,以升温速率为10℃/分钟加热炉体至600℃并保持,将收集的热解气降温至100℃得到焦油。
  7. 根据权利要求1所述的一种可燃废物定向热解方法,其特征在于,所述可燃废物是园林树枝树叶废弃物,将园林树枝树叶废弃物破碎至粒径为10mm以下放入固定床热解炉,以50℃/分钟的速率上升至300℃并保持,排除所产生的热解气体,形成为多微孔结构的热解碳。
  8. 根据权利要求1所述的一种可燃废物定向热解方法,其特征在于,所述可燃废物是工业污泥、工业垃圾、煤矸石的工业废弃物,将工业废弃物分选,去除金属、玻璃等杂物后,破碎至粒径为10cm以下,添加废弃物总量10%的二氧化钛放入固定床热解炉,将热解炉温度以50℃/分钟的速率上升至700℃,收集的热解气为可燃气。
PCT/CN2014/090354 2014-06-23 2014-11-05 一种可燃废物定向热解方法 WO2015196688A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410281073.2 2014-06-23
CN201410281073.2A CN104031665A (zh) 2014-06-23 2014-06-23 一种可燃废物定向热解方法

Publications (1)

Publication Number Publication Date
WO2015196688A1 true WO2015196688A1 (zh) 2015-12-30

Family

ID=51462667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090354 WO2015196688A1 (zh) 2014-06-23 2014-11-05 一种可燃废物定向热解方法

Country Status (2)

Country Link
CN (1) CN104031665A (zh)
WO (1) WO2015196688A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987280A (zh) * 2017-04-24 2017-07-28 北京神源环保有限公司 一种流化床垃圾热解的系统及方法
CN108165287A (zh) * 2018-02-02 2018-06-15 深圳新能极科技有限公司 一种粘性垃圾无氧热裂解方法及系统
CN109433794A (zh) * 2018-11-02 2019-03-08 湖北亚首生物质新能源科技有限公司 生活垃圾热解处理系统和方法
CN109694161A (zh) * 2019-01-22 2019-04-30 智造起源科技有限公司 污水、污泥及垃圾资源化和能源化闭合处理系统及方法
CN110330203A (zh) * 2018-03-28 2019-10-15 北京清怡环保科技有限公司 一种环保橡胶补强剂的制备方法及设备
CN113717756A (zh) * 2021-09-07 2021-11-30 中国科学院工程热物理研究所 布风方法和布风装置
CN113862009A (zh) * 2021-10-28 2021-12-31 烟台市红森林节能环保科技有限公司 有机废弃物三无法热解气化制取绿氢能联产生物炭的方法
CN114160551A (zh) * 2021-12-06 2022-03-11 重庆普力特激光技术有限公司 一种物质处理方法和装置
CN114433596A (zh) * 2022-01-25 2022-05-06 上海汉怡环保科技有限公司 一种有机质垃圾处理工艺
CN114621800A (zh) * 2020-12-11 2022-06-14 福建天普发展集团有限公司 一种用于耦合发电的rdf制作工艺

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104031665A (zh) * 2014-06-23 2014-09-10 北京建筑材料科学研究总院有限公司 一种可燃废物定向热解方法
CN104654312B (zh) * 2015-02-27 2017-03-01 四川欣源绿环保科技有限公司 一种固体废弃物的无焰焚烧工艺
US10196569B2 (en) 2015-06-29 2019-02-05 Tongji University Method and system of treating biomass wastes by biochemistry-thermochemistry multi-point interconnection
CN104958865B (zh) * 2015-06-29 2018-02-09 同济大学 生物化学—热化学多点交联处理生物质废物的方法及系统
CN106180117B (zh) * 2015-12-22 2018-08-24 北京林业大学 一种废弃物的处理设备及方法
CN108977215A (zh) * 2017-05-31 2018-12-11 黄国城 轮胎热裂解系统及裂解方法
CN107473548A (zh) * 2017-07-30 2017-12-15 谈玉靓 高效清洁的畜牧粪便处理方法
US10711213B2 (en) 2017-08-16 2020-07-14 Tsong-Jen Yang Method and system for enhancing the carbon content of carbon-containing materials
CN109423348A (zh) * 2017-08-28 2019-03-05 杨聪仁 提高含碳材料的含碳量的方法及系统
CN107457246B (zh) * 2017-09-04 2018-06-26 华中科技大学 废电路板破碎分离回收铜残余非金属粉催化热解的方法
CN109622572A (zh) * 2019-01-11 2019-04-16 贵州甲克虫环境科技有限责任公司 一种生产建材协同处理生活垃圾的工艺
CN110415854B (zh) * 2019-07-09 2022-07-08 江苏中海华核环保有限公司 基于惰性气体减少放射性废物分解挥发量的方法
JP2023541114A (ja) 2020-09-14 2023-09-28 エコラボ ユーエスエー インコーポレイティド プラスチック由来の合成原料のための低温流動性添加剤
CN112845515A (zh) * 2020-12-30 2021-05-28 中科院过程工程研究所南京绿色制造产业创新研究院 一种固体废弃物热解烟气的处理方法
CN113025353B (zh) * 2021-03-03 2021-09-28 中国环境科学研究院 一种有机固废快速加热装置及加热方法
CA3234581A1 (en) 2021-10-14 2023-04-20 Kameswara Vyakaranam Antifouling agents for plastic-derived synthetic feedstocks

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970020232A (ko) * 1997-02-22 1997-05-28 김동주 음식물쓰레기 고속 발효 건조 장치
CN101386015A (zh) * 2008-10-31 2009-03-18 天津大学 一种废弃印刷线路板中金属和非金属的热解分离方法
CN101618392A (zh) * 2009-03-02 2010-01-06 深圳市埃玛特实业有限公司 垃圾分选及热解处理的综合利用工艺方法
CN102218439A (zh) * 2011-01-24 2011-10-19 同济大学 一种废弃印刷线路板基板热解分离有价组分的方法
CN102266864A (zh) * 2011-07-01 2011-12-07 中国科学院过程工程研究所 生物质热解炼制-分级定向转化的方法
CN104031665A (zh) * 2014-06-23 2014-09-10 北京建筑材料科学研究总院有限公司 一种可燃废物定向热解方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1038142C (zh) * 1993-02-19 1998-04-22 大连市环境科学研究所 废弃植物制取可燃气、炭和焦油的方法
JP3531106B2 (ja) * 2000-09-07 2004-05-24 岳之 志真 産業廃物より得た炭化物および乾燥物の資源化方法並びに使用済資源の処理方法
WO2010137352A1 (ja) * 2009-05-29 2010-12-02 株式会社ブリヂストン 高分子系廃棄物の熱分解方法及び熱分解装置、炭化物の回収方法、並びに炭化物、該炭化物を含むゴム組成物及び該ゴム組成物を用いたタイヤ
CN102161897B (zh) * 2011-03-20 2013-10-30 卞奎友 一种农作物秸秆制取木炭活性炭可燃气生物油的制作方法
CN102731179B (zh) * 2012-07-20 2014-02-26 四川四通欧美环境工程有限公司 有机垃圾与污泥的固体厌氧及好氧堆肥系统的处置方法
CN103586263B (zh) * 2013-11-06 2015-07-22 武汉理工大学 一种无外加热源的城市垃圾好氧-厌氧生物干化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970020232A (ko) * 1997-02-22 1997-05-28 김동주 음식물쓰레기 고속 발효 건조 장치
CN101386015A (zh) * 2008-10-31 2009-03-18 天津大学 一种废弃印刷线路板中金属和非金属的热解分离方法
CN101618392A (zh) * 2009-03-02 2010-01-06 深圳市埃玛特实业有限公司 垃圾分选及热解处理的综合利用工艺方法
CN102218439A (zh) * 2011-01-24 2011-10-19 同济大学 一种废弃印刷线路板基板热解分离有价组分的方法
CN102266864A (zh) * 2011-07-01 2011-12-07 中国科学院过程工程研究所 生物质热解炼制-分级定向转化的方法
CN104031665A (zh) * 2014-06-23 2014-09-10 北京建筑材料科学研究总院有限公司 一种可燃废物定向热解方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987280A (zh) * 2017-04-24 2017-07-28 北京神源环保有限公司 一种流化床垃圾热解的系统及方法
CN108165287A (zh) * 2018-02-02 2018-06-15 深圳新能极科技有限公司 一种粘性垃圾无氧热裂解方法及系统
CN108165287B (zh) * 2018-02-02 2023-11-10 深圳新能极科技有限公司 一种粘性垃圾无氧热裂解方法及系统
CN110330203A (zh) * 2018-03-28 2019-10-15 北京清怡环保科技有限公司 一种环保橡胶补强剂的制备方法及设备
CN110330203B (zh) * 2018-03-28 2022-03-18 北京清怡环保科技有限公司 一种环保橡胶补强剂的制备方法及设备
CN109433794A (zh) * 2018-11-02 2019-03-08 湖北亚首生物质新能源科技有限公司 生活垃圾热解处理系统和方法
CN109694161A (zh) * 2019-01-22 2019-04-30 智造起源科技有限公司 污水、污泥及垃圾资源化和能源化闭合处理系统及方法
CN114621800A (zh) * 2020-12-11 2022-06-14 福建天普发展集团有限公司 一种用于耦合发电的rdf制作工艺
CN113717756A (zh) * 2021-09-07 2021-11-30 中国科学院工程热物理研究所 布风方法和布风装置
CN113717756B (zh) * 2021-09-07 2022-07-12 中国科学院工程热物理研究所 布风方法和布风装置
CN113862009A (zh) * 2021-10-28 2021-12-31 烟台市红森林节能环保科技有限公司 有机废弃物三无法热解气化制取绿氢能联产生物炭的方法
CN114160551A (zh) * 2021-12-06 2022-03-11 重庆普力特激光技术有限公司 一种物质处理方法和装置
CN114433596A (zh) * 2022-01-25 2022-05-06 上海汉怡环保科技有限公司 一种有机质垃圾处理工艺
CN114433596B (zh) * 2022-01-25 2023-04-18 上海汉怡环保科技有限公司 一种有机质垃圾处理工艺

Also Published As

Publication number Publication date
CN104031665A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2015196688A1 (zh) 一种可燃废物定向热解方法
Anjum et al. Solid waste management in Saudi Arabia
CN100462315C (zh) 一种适合于村镇的垃圾综合处理方法
CN101433904B (zh) 城市生活垃圾能源再生及无废综合利用生产工艺
CN105505414B (zh) 一种固体垃圾无氧催化热裂解方法
CN103756697B (zh) 垃圾和污泥的处理方法及其处理系统
WO2015062458A1 (zh) 一种固液分开及有机物与无机物分开垃圾处理方法和装置
CN106694519B (zh) 生活垃圾综合处理工艺
CN101758059B (zh) 垃圾与污泥的高压热解处理方法与系统及其应用
CN102371266B (zh) 一种餐厨垃圾资源化利用方法
CN107365593A (zh) 一种抗生素菌渣制备生物炭的方法
CN101839488A (zh) 一种可燃固体废物回转窑气化焚烧方法
CN105665421A (zh) 一种城市垃圾处理方法及设备
CN109679672A (zh) 一种催化热解有机固体废弃物制取气体燃料的反应系统及其方法
CN106746468A (zh) 一种污泥处理系统及处理工艺
CN106077052A (zh) 生活垃圾处理方法
CN106077029A (zh) 生活垃圾资源化综合处理方法和处理系统
CN103911170B (zh) 一种城市生活垃圾高温裂解生产rdf6的方法
CN104646396B (zh) 一种利用固废物制取氢碳燃料的方法
CN105798049A (zh) 村镇生活垃圾无害化处理工艺
CN104418301B (zh) 利用城市生活垃圾和农业废弃物制备氢气和营养液的方法
CN102924189B (zh) 垃圾填埋场回收炭基碳酸氢铵的方法
CN202667239U (zh) 一种生活垃圾资源化回收处理系统
CN108787705B (zh) 城市生活垃圾处理工艺方法
CN110777057A (zh) 一种城市有机固废协同处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895932

Country of ref document: EP

Kind code of ref document: A1