[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015194296A1 - 発光デバイス - Google Patents

発光デバイス Download PDF

Info

Publication number
WO2015194296A1
WO2015194296A1 PCT/JP2015/064304 JP2015064304W WO2015194296A1 WO 2015194296 A1 WO2015194296 A1 WO 2015194296A1 JP 2015064304 W JP2015064304 W JP 2015064304W WO 2015194296 A1 WO2015194296 A1 WO 2015194296A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
light source
emitting unit
emitting device
Prior art date
Application number
PCT/JP2015/064304
Other languages
English (en)
French (fr)
Inventor
角見 昌昭
浅野 秀樹
隆史 西宮
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2016529184A priority Critical patent/JPWO2015194296A1/ja
Priority to KR1020167025769A priority patent/KR20170020306A/ko
Priority to CN201580013121.2A priority patent/CN106104824A/zh
Publication of WO2015194296A1 publication Critical patent/WO2015194296A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • the present invention relates to a light emitting device.
  • Patent Document 1 discloses a light-emitting device that includes a blue LED and a sealing portion that seals the blue LED, and the sealing portion is made of a resin composition containing quantum dots.
  • the light emitting surface of the blue LED is in contact with a sealing portion including quantum dots that are easily deteriorated by heat.
  • the blue LED and the substrate on which the electrodes are arranged are connected via a bonding wire. For this reason, the heat generated when the blue LED emits light degrades the quantum dots in the sealing portion in contact with the light emitting surface of the blue LED and the bonding wire, resulting in a decrease in light emission intensity and the like.
  • the main object of the present invention is to provide a light emitting device which is not easily deteriorated by heat.
  • a light-emitting device includes a light-emitting unit including quantum dots, and a light source that emits light having an excitation wavelength of the quantum dot to the light-emitting unit, and a portion of the light source opposite to the light-emitting unit The emission intensity at is higher than the emission intensity at the portion on the light emitting part side.
  • the light-emitting device may be located on the opposite side of the light source from the light-emitting unit, may further include a mounting substrate on which the light source is mounted, and the light source may be flip-chip mounted on the mounting substrate.
  • the light emitting unit may be provided apart from the light source.
  • the light-emitting device is located on the opposite side of the light source from the light source, further includes a mounting substrate on which the light source is mounted, and the mounting substrate houses the light source and the light emitting unit.
  • a cover member that has a recess and closes the recess may further be provided, and the light emitting unit may be provided on the surface of the cover member on the recess side of the device.
  • the light-emitting device according to the present invention may be further provided with a cell that is disposed above the light source and seals the light-emitting portion.
  • the light source may be constituted by an LED element.
  • the light emitting device is located on the opposite side of the light source with respect to the light source, further includes a mounting substrate on which the light source is mounted, and the light emitting unit further includes a dispersion medium of quantum dots,
  • the thermal conductivity may be lower than the thermal conductivity of the mounting substrate.
  • FIG. 1 is a schematic cross-sectional view of the light emitting device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of the light emitting device according to the second embodiment.
  • FIG. 3 is a schematic cross-sectional view of a light emitting device according to a third embodiment.
  • FIG. 4 is a schematic cross-sectional view of a light emitting device according to a fourth embodiment.
  • FIG. 1 is a schematic cross-sectional view of a light emitting device 1 according to the first embodiment.
  • the light emitting device 1 is a device that emits light having a wavelength different from that of the excitation light when the excitation light is incident.
  • the light emitting device 1 may emit mixed light of excitation light and light generated by irradiation of excitation light.
  • the light emitting device 1 has a mounting substrate 10.
  • the mounting substrate 10 includes a first member 11 serving as a base material and a second member 12 serving as a frame member.
  • the second member 12 is provided on the first member 11.
  • the second member 12 is provided with a through hole 12 a that opens to the first member 11.
  • a recess 13 is formed by the through hole 12a.
  • the through hole 12a tapers toward the first member 11 side. For this reason, the side wall 13 a of the recess 13 is inclined with respect to the main surface of the first member 11.
  • the mounting substrate 10 may be made of any material.
  • the mounting substrate 10 can be made of, for example, ceramics such as low-temperature co-fired ceramics, metal, resin, glass, or the like.
  • the material constituting the first member 11 and the material constituting the second member 12 may be the same or different. When the material constituting the first member 11 and the material constituting the second member 12 are the same, since the thermal expansion coefficient is the same, the first generated by the heat generated when light is emitted. It can suppress that the member 11 and the 2nd member 12 peel.
  • Lands 11 a and 11 b are provided on one surface of the first member 11 of the mounting substrate 10.
  • the lands 11a and 11b are connected to terminal electrodes 11e and 11f provided on the other surface of the first member 11 by via-hole electrodes 11c and 11d.
  • the light source 20 is disposed on the bottom wall 13 b of the recess 13 of the mounting substrate 10.
  • the light source 20 is flip-chip mounted on the first member 11 of the mounting substrate 10.
  • flip chip mounting means that electronic components are arranged on lands (bumps) provided on the mounting surface of the mounting substrate, and the electrodes and lands of the electronic components are joined by a conductive material such as solder. This means that an electronic component is mounted.
  • the light source 20 is located on the lands 11a and 11b.
  • the electrodes of the light source 20 are joined to the lands 11a and 11b via a conductive material such as solder.
  • the light source 20 can be composed of, for example, an LED (Light Emitting Diode) element, an LD (Laser Diode) element, or the like. In the present embodiment, an example in which the light source 20 is configured by LED elements will be described.
  • LED Light Emitting Diode
  • LD Laser Diode
  • a light emitting unit 30 is arranged in the recess 13.
  • the light emitting unit 30 and the light source 20 are accommodated in the recess 13. That is, the light emitting unit 30 is arranged so that light from the light source 20 is incident in the recess 13. Specifically, the light emitting unit 30 is disposed on the light source 20 so as to block the light source 20.
  • the light emitting unit 30 includes quantum dots.
  • the light emitting unit 30 may include one type of quantum dot or may include a plurality of types of quantum dots. By including a plurality of types of quantum dots, the color tone of the converted light can be widened.
  • Quantum dots emit light having a wavelength different from that of excitation light when excitation light of the quantum dot is incident.
  • the wavelength of the light emitted from the quantum dot depends on the particle diameter of the quantum dot. That is, the wavelength of the light obtained by changing the particle diameter of the quantum dots can be adjusted. For this reason, the particle diameter of a quantum dot is made into the particle diameter according to the wavelength of the light to obtain.
  • the particle size of the quantum dots is usually about 2 nm to 10 nm.
  • quantum dots that emits blue visible light (fluorescence with a wavelength of 440 nm to 480 nm) when irradiated with excitation light of ultraviolet to near ultraviolet with a wavelength of 300 nm to 440 nm
  • the particle diameter is about 2.0 nm to 3.0 nm.
  • quantum dots that emit green visible light (fluorescence having a wavelength of 500 nm to 540 nm) when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 nm to 440 nm or blue excitation light having a wavelength of 440 nm to 480 nm include particle diameters.
  • CdSe / ZnS microcrystals having a thickness of about 3.0 nm to 3.3 nm.
  • Specific examples of quantum dots that emit yellow visible light (fluorescence having a wavelength of 540 nm to 595 nm) when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 nm to 440 nm or blue excitation light having a wavelength of 440 nm to 480 nm include particle diameters.
  • CdSe / ZnS microcrystals having a thickness of about 3.3 nm to 4.5 nm.
  • quantum dots that emit red visible light (fluorescence with a wavelength of 600 nm to 700 nm) when irradiated with ultraviolet to near ultraviolet excitation light with a wavelength of 300 nm to 440 nm or blue excitation light with a wavelength of 440 nm to 480 nm include particle diameters.
  • CdSe / ZnS microcrystals having a thickness of about 4.5 nm to 10 nm.
  • the light emitting unit 30 includes a dispersion medium in which quantum dots are dispersed.
  • a dispersion medium will not be specifically limited if a quantum dot can be disperse
  • the dispersion medium may be a solid such as a resin or a liquid, for example. In this embodiment, an example in which the dispersion medium is a resin will be described. Specific examples of the resin preferably used include a silicone resin, an epoxy resin, and an acrylic resin.
  • the light emitting unit 30 may further include, for example, a light dispersant in addition to the resin and the quantum dots.
  • a light dispersant in addition to the resin and the quantum dots.
  • Specific examples of the light scattering agent preferably used include highly reflective inorganic compound particles such as alumina particles, titania particles and silica particles, and highly reflective white resin particles. As described above, by including the light scattering agent in the light emitting unit 30, the in-plane variation of the light emission intensity in the light emitting unit 11 can be reduced.
  • the light emitting unit 30 may be configured by a laminate of a plurality of light emitting layers.
  • the plurality of light emitting layers may include a plurality of light emitting layers including quantum dots that emit light having different wavelengths.
  • a stacked body of a plurality of light-emitting layers including a first light-emitting layer including quantum dots that emit light having a first wavelength and a second light-emitting layer including quantum dots that emit light having a second wavelength You may comprise the light emission part 30 by.
  • By laminating a plurality of light emitting layers it is possible to measure the color tone of the first light emitting layer and adjust the color tone of the second light emitting layer according to the obtained color tone. The variation of can be suppressed.
  • the light emitting unit 30 may be filled in the entire recess 13, but is provided in a part of the recess 13 in the present embodiment.
  • the recess 13 is closed by the cover member 40.
  • the cover member 40 and the mounting substrate 10 are joined.
  • a sealing space 50 is defined by the cover member 40 and the mounting substrate 10.
  • the light source 20 and the light emitting unit 30 are sealed in the sealed space 50.
  • the cover member 40 is preferably made of an inorganic material. Specifically, since the cover member 40 needs to have translucency, it is preferable that the cover member 40 is made of, for example, glass or ceramics. Thus, since the cover member 40 is made of an inorganic material, it is possible to prevent oxygen and moisture from entering the sealed space 50, so that deterioration of quantum dots due to contact with oxygen and moisture is suppressed. Can do.
  • the light source 20 emits light including light having an excitation wavelength of quantum dots included in the light emitting unit 30 to the light emitting unit 30.
  • the quantum dots included in the light emitting unit 30 emit light having a wavelength corresponding to the particle diameter of the quantum dots.
  • the light emitting device 1 emits light emitted from the quantum dots or mixed light of the light emitted from the quantum dots and the light from the light source 20.
  • the first member 11 of the mounting substrate 10 is located on the side opposite to the light emitting unit 30 with respect to the light source 20.
  • the light source 20 is flip-mounted on the first member 11. For this reason, the light emission intensity in the part 20a on the opposite side to the light emitting part 30 of the light source 20 is higher than the light emission intensity in the part 20b on the light emitting part 30 side. Therefore, the light emitting unit 30 including the quantum dots and the portion of the light source 20 that is at a high temperature can be isolated. If the light source 20 is flip-chip mounted, the connection between the light source 20 and the first member 11 by a bonding wire is not necessary.
  • the light emitting unit 30 When the light emitting unit 30 is composed of an element that generates a large amount of heat when emitting light such as an LED element or an LD element, the light source 20 is likely to become hot. Accordingly, the light emitting unit 30 is likely to be deteriorated as the light source 20 emits light. Therefore, it is more effective to make the light emission intensity of the portion 20a of the light source 20 opposite to the light emitting portion 30 higher than the light emission intensity of the portion 20b on the light emitting portion 30 side.
  • the thermal conductivity of the dispersion medium of the light emitting unit 30 is lower than the thermal conductivity of the mounting substrate 10. Is more preferably 0.5 times or less, and still more preferably 0.25 times or less. This is because the heat of the light source 20 is preferentially transmitted to the mounting substrate 10 side and is not easily transmitted to the light emitting unit 30, so that the quantum dots included in the light emitting unit 30 are less likely to be thermally deteriorated. .
  • the light emitting device 1 b in which the light emitting unit 30 is provided so as to block the light source 20 in the recess 13 of the device body 10 is blocked.
  • a resin in which quantum dots (including a light dispersant as necessary) are dispersed is dropped onto the light source 20 using a dropper or the like.
  • the resin layer is dried in an atmosphere with less air or moisture to form the light emitting unit 30.
  • the cover member 40 is placed on the device body 10 and the cover member 40 and the device body 10 are joined.
  • FIG. 2 is a schematic cross-sectional view of a light emitting device 1a according to the second embodiment.
  • the position of the light emitting part is not particularly limited as long as it is a position where light from the light source is incident.
  • the light emitting unit 30 is provided on the surface of the cover member 40 on the concave portion 13 side.
  • the light emitting unit 30 is provided on substantially the entire surface exposed to the concave portion 13 of the cover member 40.
  • the light emitting unit 30 and the light source 20 are separated from each other. A gap is provided between the light emitting unit 30 and the light source 20. For this reason, the heat of the light source 20 is hardly transmitted by the light emitting unit 30. Therefore, the quantum dots included in the light emitting unit 30 are not easily thermally deteriorated. Therefore, the thermal deterioration of the light emitting device 1a can be more effectively suppressed.
  • such a light emission part 30 can be formed by apply
  • FIG. 3 is a schematic cross-sectional view of a light emitting device 1b according to the third embodiment.
  • the light emitting unit 30 is provided in a cell 60 provided above the light source 20 and separated from the light source 20.
  • the light emitting unit 30 is sealed in the internal space 40 a of the cell 60.
  • the light emitting unit 30 is isolated from the light source 20 by the cell 60, the heat of the light source 20 is more effectively suppressed from being transmitted to the light emitting unit 30. For this reason, the quantum dots included in the light emitting unit 30 are unlikely to be thermally deteriorated. Therefore, the thermal deterioration of the light emitting device 1b can be more effectively suppressed.
  • the thermal conductivity of the cell 60 is preferably low.
  • the thermal conductivity of the cell 60 is preferably 30 or less, and more preferably 10 or less.
  • the thermal conductivity of the cell 60 is usually 1 or more.
  • the cell 60 can be made of glass, ceramics, resin, or the like, for example.
  • FIG. 4 is a schematic cross-sectional view of a light emitting device according to a fourth embodiment.
  • the sealing space 50 is filled with a resin 70.
  • the refractive index difference between the resin 70 and the light emitting unit 30 and the refractive index difference between the resin 70 and the light source 20 can be reduced. Therefore, the light emission efficiency can be improved.
  • Resin 70 can be made of, for example, a silicone resin, an epoxy resin, an acrylic resin, or the like.
  • Resin 70 may contain a light dispersing agent. In this case, the uniformity of light from the light source 20 to the light emitting unit 30 can be further enhanced.
  • the resin 70 is closed so as to close the light source 20 disposed in the recess 13 of the device body 10.
  • a light dispersant is included if necessary
  • a resin in which quantum dots (including a light dispersant as necessary) are dispersed is applied to one surface of the cover member 40 and dried to form a resin layer.
  • the cover member 40 is placed on the device main body 10 so that the light emitting unit 30 is accommodated in the recess 13 of the device main body 10, and the cover member 30 and the device main body 10 are joined.
  • the resin 70 used for filling the sealing space a resin having a low surface tension or a resin having high wettability with respect to the second member 12 serving as a frame member is used.
  • the thickness of the portion is thin, and it becomes easier to obtain a resin layer that fills the sealing space 50 whose thickness gradually increases toward the outside.
  • a resin having a high surface tension or a resin having low wettability with respect to the cover member 40 as a resin used to disperse the quantum dots (including a light dispersing agent as necessary) to be the light emitting unit 30.
  • the light emitting device 1 is obtained in which the thickness of the light emitting portion 30 gradually decreases toward the outside at least at the peripheral portion of the light emitting portion 30. It becomes easy.
  • a resin in which quantum dots are dispersed is applied, and one of the cover members 40 is directly applied.
  • the method for forming the light emitting unit 30 on the surface has been described, the present invention is not limited to this method.
  • a resin having quantum dots dispersed therein is filled in a mold having a desired shape, molded, and dried to form the light emitting unit 30 in advance, and the molded light emitting unit 30 is formed on one surface of the cover member 40. Further, it may be adhered using an adhesive whose refractive index is adjusted. By doing in this way, the light emission part 30 of the same shape can be mass-produced, and the dispersion

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 熱劣化しにくい発光デバイスを提供する。 発光デバイス1は、発光部30と、光源20とを備える。発光部30は、量子ドットを含む。光源20は、発光部30に対して、量子ドットの励起波長の光を出射する。光源20のうち、発光部30とは反対側の部分20aにおける発光強度が、発光部側20bの部分における発光強度よりも高い。

Description

発光デバイス
 本発明は、発光デバイスに関する。
 近年、発光ダイオードを用いた発光デバイスの進歩が目覚しく、液晶のバックライト、大型ディスプレイ等に採用されている。特に、短波長光の発光素子の半導体材料の発展により、短波長の光を得られるようになってきたため、これを用いて蛍光体を励起してより多様な波長の光を得ることができるようになった。
 従来より、量子ドットを用いた発光デバイスが知られている。例えば、特許文献1には、青色LEDと、青色LEDを封止する封止部を備え、封止部が量子ドットを含む樹脂組成物からなる発光デバイスが開示されている。
特開2010-126596号公報
 しかしながら、特許文献1で開示されている発光デバイスは、青色LEDの発光面が、熱により劣化しやすい量子ドットを含む封止部と接している。また、青色LEDと電極を配した基板とがボンディングワイヤを介して接続されている。そのため、青色LEDが発光する際に発生する熱により、青色LEDの発光面やボンディングワイヤと接する封止部の量子ドットが劣化し、発光強度等が低下するという問題がある。
 本発明の主な目的は、熱劣化しにくい発光デバイスを提供することにある。
 本発明に係る発光デバイスは、量子ドットを含む発光部と、発光部に対して、量子ドットの励起波長の光を出射する光源と、を備え、光源のうち、発光部とは反対側の部分における発光強度が、発光部側の部分における発光強度よりも高い。
 本発明に係る発光デバイスは、光源に対して発光部とは反対側に位置しており、光源が実装された実装基板をさらに備え、光源が実装基板にフリップチップ実装されていてもよい。
 本発明に係る発光デバイスは、発光部が光源とは離間して設けられていてもよい。
 本発明に係る発光デバイスは、光源に対して発光部とは反対側に位置しており、光源が実装された実装基板をさらに備え、実装基板は、前記光源及び前記発光部を収容している凹部を有し、凹部を塞ぐカバー部材をさらに備え、発光部は、デバイスの凹部側となるカバー部材の表面の上に設けられていてもよい。
 本発明に係る発光デバイスは、光源の上方に配されており、発光部を封止するセルをさらに備えていてもよい。
 本発明に係る発光デバイスは、光源が、LED素子により構成されていてもよい。
 本発明に係る発光デバイスは、光源に対して発光部とは反対側に位置しており、光源が実装された実装基板をさらに備え、発光部は、量子ドットの分散媒をさらに含み、分散媒の熱伝導率が、実装基板の熱伝導率よりも低くてもよい。
 本発明によれば、熱劣化しにくい発光デバイスを提供することができる。
図1は、第1の実施形態に係る発光デバイスの模式的断面図である。 図2は、第2の実施形態に係る発光デバイスの模式的断面図である。 図3は、第3の実施形態に係る発光デバイスの模式的断面図である。 図4は、第4の実施形態に係る発光デバイスの模式的断面図である。
 以下、本発明を実施した好ましい形態について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 (第1の実施形態)
 図1は、第1の実施形態に係る発光デバイス1の模式的断面図である。
 発光デバイス1は、励起光が入射したときに励起光とは異なる波長の光を出射するデバイスである。発光デバイス1は、励起光と、励起光の照射により生じた光との混合光を出射するものであってもよい。
 発光デバイス1は、実装基板10を有する。実装基板10は、基材となる第1の部材11と、枠材となる第2の部材12とを有する。第2の部材12は、第1の部材11の上に設けられている。第2の部材12には、第1の部材11に開口する貫通孔12aが設けられている。この貫通孔12aにより凹部13が構成されている。なお、貫通孔12aは、第1の部材11側に向かって先細っている。このため、凹部13の側壁13aは、第1の部材11の主面に対して傾斜している。
 実装基板10は、どのような材料によって構成されていてもよい。実装基板10は、例えば、低温同時焼成セラミックス等のセラミックス、金属、樹脂、ガラス等により構成することができる。第1の部材11を構成している材料と、第2の部材12を構成している材料とは、同じであってもよいし、異なっていてもよい。第1の部材11を構成している材料と、第2の部材12を構成している材料が同じである場合、熱膨張係数が同じであるため、発光する際に発生する熱によって第1の部材11と第2の部材12とが剥離するのを抑えることができる。
 実装基板10の第1の部材11の一方面の上には、ランド11a、11bが設けられている。ランド11a、11bは、ビアホール電極11c、11dによって、第1の部材11の他方面の上に設けられた端子電極11e、11fに接続されている。
 実装基板10の凹部13の底壁13bの上には、光源20が配されている。光源20は、実装基板10の第1の部材11にフリップチップ実装されている。ここで、「フリップチップ実装」とは、実装基板の実装面上に設けられたランド(バンプ)の上に電子部品を配し、電子部品の電極とランドとを、半田等の導電材によって接合することにより電子部品を実装することを意味する。具体的には、本実施形態では、光源20は、ランド11a、11bの上に位置している。光源20の電極は、ランド11a、11bと、半田等の導電材を介して接合されている。
 光源20は、例えば、LED(Light Emitting Diode)素子、LD(Laser Diode)素子等により構成することができる。本実施形態では、光源20がLED素子により構成されている例について説明する。
 凹部13内には、発光部30が配されている。発光部30と光源20とは、凹部13内に収容されている。つまり、発光部30は、凹部13内で光源20からの光が入射するように配されている。具体的には、発光部30は、光源20の上に、光源20を塞ぐように配されている。
 発光部30は、量子ドットを含んでいる。発光部30は、1種類の量子ドットを含んでいてもよいし、複数種類の量子ドットを含んでいてもよい。複数種類の量子ドットを含有させることで、変換光の色調に幅を持たせることが可能となる。
 量子ドットは、量子ドットの励起光が入射したときに、励起光とは異なる波長の光を出射する。量子ドットから出射される光の波長は、量子ドットの粒子径に依存する。すなわち、量子ドットの粒子径を変化させることにより得られる光の波長を調整することができる。このため、量子ドットの粒子径は、得ようとする光の波長に応じた粒子径とされている。量子ドットの粒子径は、通常、2nm~10nm程度である。
 例えば、波長300nm~440nmの紫外~近紫外の励起光を照射すると青色の可視光(波長440nm~480nmの蛍光)を発する量子ドットの具体例としては、粒子径が2.0nm~3.0nm程度のCdSe/ZnSの微結晶などが挙げられる。波長300nm~440nmの紫外~近紫外の励起光や波長440nm~480nmの青色の励起光を照射すると緑色の可視光(波長が500nm~540nmの蛍光)を発する量子ドットの具体例としては、粒子径が3.0nm~3.3nm程度のCdSe/ZnSの微結晶などが挙げられる。波長300nm~440nmの紫外~近紫外の励起光や波長440nm~480nmの青色の励起光を照射すると黄色の可視光(波長が540nm~595nmの蛍光)を発する量子ドットの具体例としては、粒子径が3.3nm~4.5nm程度のCdSe/ZnSの微結晶などが挙げられる。波長300nm~440nmの紫外~近紫外の励起光や波長440nm~480nmの青色の励起光を照射すると赤色の可視光(波長が600nm~700nmの蛍光)を発する量子ドットの具体例としては、粒子径が4.5nm~10nm程度のCdSe/ZnSの微結晶などが挙げられる。
 発光部30は、量子ドットを分散させている分散媒を含んでいる。分散媒は、量子ドットを好適に分散できるものであれば特に限定されない。分散媒は、例えば、樹脂等の固体であってもよいし、液体であってもよい。本実施形態では、分散媒が樹脂である例について説明する。好ましく用いられる樹脂の具体例としては、例えば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂等が挙げられる。
 発光部30は、樹脂と量子ドットとの他に、例えば、光分散剤等をさらに含んでいてもよい。好ましく用いられる光散乱剤の具体例としては、例えば、アルミナ粒子、チタニア粒子、シリカ粒子などの高反射無機化合物粒子及び高反射白色樹脂粒子等が挙げられる。このように、発光部30に光散乱剤を含有させることで、発光部11における発光強度の面内ばらつきを小さくすることができる。
 発光部30は、複数層の発光層の積層体により構成されていてもよい。その場合、複数層の発光層は、相互に異なる波長の光を出射する量子ドットを含む複数の発光層を含んでいてもよい。例えば、第1の波長の光を出射する量子ドットを含む第1の発光層と、第2の波長の光を出射する量子ドットを含む第2の発光層とを含む複数の発光層の積層体により発光部30を構成してもよい。複数の発光層を積層することにより、第一の発光層の色調を測定し、得られた色調に合わせて、第二の発光層の色調を調整することが可能となるため、ロット間の色調のばらつきを抑えることができる。
 発光部30は、凹部13の全体に充填されていてもよいが、本実施形態では、凹部13の一部分に設けられている。
 凹部13は、カバー部材40により塞がれている。カバー部材40と実装基板10とは、接合されている。カバー部材40と実装基板10とによって封止空間50が区画形成されている。光源20と発光部30とはこの封止空間50内に封止されている。
 カバー部材40は、無機材により構成されていることが好ましい。具体的には、カバー部材40は、透光性を有するものである必要があるため、例えば、ガラス、セラミックス等により構成されていることが好ましい。このように、カバー部材40を無機材とすることで、封止空間50内に酸素や水分が侵入するのを抑えことができるため、酸素や水分と接触することによる量子ドットの劣化を抑えることができる。
 発光デバイス1では、光源20が、発光部30に対して、発光部30に含まれる量子ドットの励起波長の光を含む光を出射する。光源20からの光が発光部30に対して入射すると、発光部30に含まれる量子ドットが、量子ドットの粒子径に応じた波長の光を出射する。発光デバイス1からは、この量子ドットの発光、若しくは、量子ドットの発光と光源20からの光との混合光が出射する。
 発光デバイス1では、実装基板10の第1の部材11が光源20に対して発光部30とは反対側に位置している。そして、光源20は、第1の部材11にフリップ実装されている。このため、光源20のうち、発光部30とは反対側の部分20aにおける発光強度が、発光部30側の部分20bにおける発光強度よりも高い。よって、量子ドットを含む発光部30と光源20の高温となる部分を隔離することができる。また、光源20がフリップチップ実装であれば、ボンディングワイヤによる光源20と第1の部材11との接続が不要となる。その結果、光源20やボンディングワイヤから発生する熱に起因して発光部30に含まれる量子ドットが劣化することを抑制することができる。従って、熱劣化しにくい発光デバイス1を実現することができる。
 発光部30がLED素子や、LD素子等の発光に際し、大きな発熱を伴う素子により構成されている場合は、光源20が高熱になりやすい。従って、光源20の発光に伴って発光部30が劣化しやすい。従って、光源20の発光部30とは反対側の部分20aの発光強度を、発光部30側の部分20bの発光強度よりも高くすることがより効果的である。
 発光デバイス1の熱劣化をより効果的に抑制する観点からは、発光部30の分散媒の熱伝導率が、実装基板10の熱伝導率よりも低いことが好ましく、実装基板10の熱伝導率の0.5倍以下であることがより好ましく、0.25倍以下であることがさらに好ましい。このようにすることで、光源20の熱が実装基板10側に優先的に伝達し、発光部30に伝達されにくくなるため、発光部30に含まれる量子ドットが熱劣化しにくくなるためである。
 図1に示すように、凹部13内に、光源20を塞ぐように発光部30が設けられた発光デバイス1bを得るには、デバイス本体10の凹部13内に配されている光源20を塞ぐように、量子ドット(必要に応じて光分散剤を含む)を分散させた樹脂をスポイト等を用いて光源20上に滴下する。続いて、空気や水分の少ない雰囲気下で樹脂層を乾燥させ発光部30を形成する。その後、デバイス本体10上にカバー部材40を置き、カバー部材40とデバイス本体10とを接合する。このようにすることで、図1に示すように、凹部13内に、光源20を塞ぐように発光部30が設けられている発光デバイス1を得ることができる。
 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 (第2の実施形態)
 図2は、第2の実施形態に係る発光デバイス1aの模式的断面図である。
 第1の実施形態に係る発光デバイス1では、発光部30が、凹部13の底壁13bの上に、光源20を覆うように設けられている例について説明した。但し、本発明において、発光部の位置は、光源からの光が入射する位置である限りにおいて特に限定されない。
 図2に示すように、第2の実施形態に係る発光デバイス1aでは、発光部30が凹部13側となるカバー部材40の表面の上に設けられている。発光部30は、カバー部材40の凹部13に露出している面の実質的に全体の上に設けられている。発光部30と光源20とが離間している。発光部30と光源20との間にはギャップが設けられている。このため、光源20の熱が発光部30により伝わり難い。よって、発光部30に含まれる量子ドットが熱劣化しにくい。従って、発光デバイス1aの熱劣化をより効果的に抑制することができる。
 なお、このような発光部30は、例えば、カバー部材40の上に、量子ドットと樹脂を含むペーストを塗布し、乾燥させることにより形成することができる。
 (第3の実施形態)
 図3は、第3の実施形態に係る発光デバイス1bの模式的断面図である。
 図3に示すように、本実施形態に係る発光デバイス1bでは、発光部30は、光源20の上方に、光源20とは離間して設けられたセル60内に設けられている。発光部30は、セル60の内部空間40a内に封止されている。
 発光デバイス1bでは、セル60により発光部30が光源20から隔離されているため、光源20の熱が発光部30に伝わることがより効果的に抑制されている。このため、発光部30に含まれる量子ドットが熱劣化しにくい。従って、発光デバイス1bの熱劣化をさらに効果的に抑制することができる。
 光源20の熱が発光部30に伝わることをさらに効果的に抑制する観点からは、セル60の熱伝導率が低いことが好ましい。セル60の熱伝導率は、例えば、30以下であることが好ましく、10以下であることがより好ましい。セル60の熱伝導率は、通常、1以上である。セル60は、例えば、ガラス、セラミックス、樹脂等により構成することができる。
 (第4の実施形態)
 図4は、第4の実施形態に係る発光デバイスの模式的断面図である。
 第2の実施形態では、光源20と発光部30との間に位置する封止空間50が空間により構成されている例について説明した。但し、本発明は、この構成に限定されない。
 図4に示すように、第4の実施形態に係る発光デバイス1cでは、封止空間50に樹脂70が充填されている。この場合、樹脂70と発光部30との間の屈折率差、及び樹脂70と光源20との間の屈折率差を小さくすることができる。従って、光の出射効率を向上することができる。
 樹脂70は、例えば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂等により構成することができる。
 樹脂70は、光分散剤を含んでもよい。この場合、光源20から発光部30への光の均一性をさらに高めることができる。
 図4に示すように、封止空間50に樹脂70が充填されている発光デバイス1cを得るには、まず、デバイス本体10の凹部13内に配されている光源20を塞ぐように、樹脂70(必要に応じて光分散剤を含む)をスポイト等を用いて光源20上に滴下し、乾燥する。次に、カバー部材40の一方の表面に、量子ドット(必要に応じて光分散剤を含む)を分散させた樹脂を塗布し乾燥させて樹脂層を形成する。その後、発光部30がデバイス本体10の凹部13に収容されるように、デバイス本体10上にカバー部材40を置き、カバー部材30とデバイス本体10とを接合する。このようにすることで、図4に示すように、封止空間50に樹脂70が充填されている発光デバイス1cを得ることができる。
 なお、封止空間を充填するために用いる樹脂70として、表面張力の小さい樹脂や枠材となる第2の部材12に対して濡れ性の大きい樹脂を用いることで、乾燥させた際に、中央部の厚みは薄く、外側に向かって厚みが漸増する封止空間50を充填する樹脂層をより得やすくなる。また、発光部30となる量子ドット(必要に応じて光分散剤を含む)を分散させるために用いる樹脂として、表面張力の大きい樹脂やカバー部材40に対して濡れ性の小さい樹脂を用いることで、中央部の厚みは厚く、外側に向かって厚みが漸減する樹脂層をより得やすくなり、発光部30の少なくとも周縁部において、発光部30の厚みが外側に向かって漸減する発光デバイス1が得やすくなる。 なお、第2及び第4の実施形態おいて、カバー部材40の一方の表面に発光部30を形成する方法として、量子ドットを分散させた樹脂を塗布して、直接、カバー部材40の一方の表面に発光部30を形成する方法について説明したが、本発明は、この方法に限定されない。例えば、量子ドットを分散させた樹脂を、所望の形状を有する型に充填して成形し、乾燥させることで、予め発光部30を形成し、成形した発光部30をカバー部材40の一方の表面に、屈折率を調整した接着剤を用いて接着させてもよい。このようにすることで、同じ形状の発光部30を大量生産することができ、発光部の厚み等の形状による色調のばらつきを抑えることができる。
1,1a,1b,1c 発光デバイス
10 実装基板
11 第1の部材
11a、11b ランド
11c、11d ビアホール電極
11e、11f 端子電極
12 第2の部材
12a 貫通孔
13 凹部
13a 側壁
13b 底壁
20 光源
30 発光部
40 カバー部材
50 封止空間
60 セル
70 樹脂

Claims (7)

  1.  量子ドットを含む発光部と、
     前記発光部に対して、前記量子ドットの励起波長の光を出射する光源と、
     を備え、
     前記光源のうち、前記発光部とは反対側の部分における発光強度が、前記発光部側の部分における発光強度よりも高い、発光デバイス。
  2.  前記光源に対して前記発光部とは反対側に位置しており、前記光源が実装された実装基板をさらに備え、
     前記光源は、前記実装基板にフリップチップ実装されている、請求項1に記載の発光デバイス。
  3.  前記発光部は、前記光源とは離間して設けられている、請求項1又は2に記載の発光デバイス。
  4.  前記光源に対して前記発光部とは反対側に位置しており、前記光源が実装された実装基板をさらに備え、
     前記実装基板は、前記光源及び前記発光部を収容している凹部を有し、
     前記凹部を塞ぐカバー部材をさらに備え、
     前記発光部は、前記カバー部材の前記凹部側の表面の上に設けられている、請求項3に記載の発光デバイス。
  5.  前記光源の上方に配されており、前記発光部を封止するセルをさらに備える、請求項3に記載の発光デバイス。
  6.  前記光源は、LED素子により構成されている、請求項1~5のいずれか一項の記載に発光デバイス。
  7.  前記光源に対して前記発光部とは反対側に位置しており、前記光源が実装された実装基板をさらに備え、
     前記発光部は、前記量子ドットの分散媒をさらに含み、
     前記分散媒の熱伝導率が、前記実装基板の熱伝導率よりも低い、請求項1~6のいずれか一項に記載の発光デバイス。
PCT/JP2015/064304 2014-06-18 2015-05-19 発光デバイス WO2015194296A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016529184A JPWO2015194296A1 (ja) 2014-06-18 2015-05-19 発光デバイス
KR1020167025769A KR20170020306A (ko) 2014-06-18 2015-05-19 발광 디바이스
CN201580013121.2A CN106104824A (zh) 2014-06-18 2015-05-19 发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-125839 2014-06-18
JP2014125839 2014-06-18

Publications (1)

Publication Number Publication Date
WO2015194296A1 true WO2015194296A1 (ja) 2015-12-23

Family

ID=54935290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064304 WO2015194296A1 (ja) 2014-06-18 2015-05-19 発光デバイス

Country Status (5)

Country Link
JP (1) JPWO2015194296A1 (ja)
KR (1) KR20170020306A (ja)
CN (1) CN106104824A (ja)
TW (1) TW201608741A (ja)
WO (1) WO2015194296A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI823371B (zh) * 2020-01-31 2023-11-21 日商日亞化學工業股份有限公司 面狀光源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197476A (ja) * 2004-01-07 2005-07-21 Koito Mfg Co Ltd 発光モジュール及び車両用灯具
JP2007134645A (ja) * 2005-11-14 2007-05-31 Shinko Electric Ind Co Ltd 半導体装置および半導体装置の製造方法
JP2007273498A (ja) * 2006-03-30 2007-10-18 Kyocera Corp 波長変換器および発光装置
JP2014096419A (ja) * 2012-11-07 2014-05-22 Stanley Electric Co Ltd 光電子デバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135002A (ja) * 2004-11-04 2006-05-25 Koito Mfg Co Ltd 発光デバイス及び車両用灯具
JP5483669B2 (ja) 2008-11-26 2014-05-07 昭和電工株式会社 液状硬化性樹脂組成物、ナノ粒子蛍光体を含む硬化樹脂の製造方法、発光装置の製造方法、発光装置及び照明装置
WO2012132232A1 (ja) * 2011-03-31 2012-10-04 パナソニック株式会社 半導体発光装置
GB201109065D0 (en) * 2011-05-31 2011-07-13 Nanoco Technologies Ltd Semiconductor nanoparticle-containing materials and light emitting devices incorporating the same
WO2013001687A1 (ja) * 2011-06-30 2013-01-03 パナソニック株式会社 発光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197476A (ja) * 2004-01-07 2005-07-21 Koito Mfg Co Ltd 発光モジュール及び車両用灯具
JP2007134645A (ja) * 2005-11-14 2007-05-31 Shinko Electric Ind Co Ltd 半導体装置および半導体装置の製造方法
JP2007273498A (ja) * 2006-03-30 2007-10-18 Kyocera Corp 波長変換器および発光装置
JP2014096419A (ja) * 2012-11-07 2014-05-22 Stanley Electric Co Ltd 光電子デバイス

Also Published As

Publication number Publication date
JPWO2015194296A1 (ja) 2017-04-20
KR20170020306A (ko) 2017-02-22
CN106104824A (zh) 2016-11-09
TW201608741A (zh) 2016-03-01

Similar Documents

Publication Publication Date Title
US11081471B2 (en) LED module with hermetic seal of wavelength conversion material
JP5919504B2 (ja) 発光装置
KR101812168B1 (ko) 발광 소자 패키지 및 이를 이용한 발광 장치
US9583682B2 (en) Light-emitting device and method of manufacturing the same
KR101906863B1 (ko) 발광 모듈, 램프, 조명기구 및 표시 디바이스
TWI389337B (zh) 發光裝置與使用其之顯示裝置及照明裝置,以及發光裝置之製造方法
JP7100383B2 (ja) 耐湿性チップスケールパッケージ発光素子
JP2008060542A (ja) 発光装置、発光装置の製造方法、及びこれを備えた光源装置
JP5895597B2 (ja) 発光装置
JP2007123438A (ja) 蛍光体板及びこれを備えた発光装置
JP5082427B2 (ja) 発光装置
JP2007201301A (ja) 白色ledの発光装置
JP2016062899A (ja) 半導体発光装置
JP5224890B2 (ja) 発光デバイスおよび発光デバイスの製造方法
JP4961413B2 (ja) 白色led装置およびその製造方法
WO2015174127A1 (ja) 発光デバイス及びその製造方法
JP2018082027A (ja) 発光装置及びその製造方法
JP2006202962A (ja) 発光装置
WO2015190242A1 (ja) 発光デバイス
JP2005332951A (ja) 発光装置
JP2005005544A (ja) 白色発光素子
JP2017076673A (ja) 発光装置の製造方法
TW201624775A (zh) 用於發光二極體之顏色轉換基板及其製造方法
WO2015194296A1 (ja) 発光デバイス
JP7236016B2 (ja) 発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529184

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167025769

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809627

Country of ref document: EP

Kind code of ref document: A1