[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015190525A1 - Heat source machine and heat source device - Google Patents

Heat source machine and heat source device Download PDF

Info

Publication number
WO2015190525A1
WO2015190525A1 PCT/JP2015/066750 JP2015066750W WO2015190525A1 WO 2015190525 A1 WO2015190525 A1 WO 2015190525A1 JP 2015066750 W JP2015066750 W JP 2015066750W WO 2015190525 A1 WO2015190525 A1 WO 2015190525A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
release control
capacity
compressors
compressor
Prior art date
Application number
PCT/JP2015/066750
Other languages
French (fr)
Japanese (ja)
Inventor
英樹 丹野
馨 松下
勇司 松本
山本 学
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2016527842A priority Critical patent/JP6303004B2/en
Priority to EP15807501.0A priority patent/EP3156747B1/en
Priority to KR1020177000448A priority patent/KR101895175B1/en
Publication of WO2015190525A1 publication Critical patent/WO2015190525A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current
    • F25B2700/151Power, e.g. by voltage or current of the compressor motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator

Definitions

  • Embodiments of the present invention relate to a heat source device including a plurality of compressors and a heat source device including a plurality of heat source devices.
  • a heat source device includes a plurality of refrigeration cycles each including a compressor and supplies hot or cold energy obtained by operation of these refrigeration cycles to a load side (use side).
  • the operating state of one of the refrigeration cycles deteriorates, such as when the temperature or quantity of air sent to the air heat exchanger of each refrigeration cycle is biased, and the refrigeration
  • the operating current of the compressor in the cycle may increase abnormally.
  • release control is performed to suppress an abnormal increase in operating current, and as a result, the energy consumption efficiency of the heat source device, so-called COP (Coefficient-Of-Performance), is reduced.
  • An object of an embodiment of the present invention is to provide a heat source device and a heat source device that can prevent a reduction in energy consumption efficiency.
  • the heat source machine includes a plurality of compressors and a controller.
  • This controller when release control for reducing any one of the plurality of compressors is executed, one or more of the plurality of compressors excluding the compressor subjected to the release control The capacity of the compressor is increased by the capacity reduction by the release control.
  • the heat source device includes a plurality of heat source units and a controller.
  • the controller excludes one or more of the plurality of heat source units excluding the heat source unit that has performed the release control.
  • the capacity of the heat source machine is increased by the capacity reduction by the release control.
  • the figure which shows the structure of 1st Embodiment The figure which shows the structure of the refrigerating cycle of each heat-source equipment in each embodiment.
  • the flowchart which shows control of the system controller in 1st Embodiment The flowchart which shows control of the module controller of each heat source machine in 1st Embodiment.
  • the figure which shows the structure of the module controller of each heat source machine in 2nd Embodiment The figure which shows the structure of the system controller in 2nd Embodiment.
  • FIG. 1 A first embodiment of the present invention will be described with reference to the drawings.
  • a plurality of heat source devices 1a, 1b,... 1n are connected in parallel to each other via a heat medium pipe 2a (hereinafter referred to as a water pipe 2a) and a heat medium pipe 2b (hereinafter referred to as a water pipe 2b). Is done.
  • a heat medium pipe 2a hereinafter referred to as a water pipe 2a
  • a heat medium pipe 2b hereinafter referred to as a water pipe 2b
  • the heat source device 1a includes, for example, a water heat exchanger that is a heat medium heat exchanger, a plurality of heat pump refrigeration cycles including a refrigerant flow path of the water heat exchanger, and a pump, and water (heat medium) in the water pipe 2b. Is introduced into the water flow path of the water heat exchanger by the suction pressure of the pump, and the introduced water is heated or cooled by refrigerant circulation through the operation of each heat pump refrigeration cycle, and the heated or cooled water is converted to water by the discharge pressure of the pump. Supply to piping 2a.
  • the heat source units 1b,... 1n have the same configuration.
  • a plurality of loads for example, use side devices 3a, 3b,... 3n are connected to the water pipe 2a and the water pipe 2b derived from the heat source device 1. These use side devices 3a, 3b,... 3n are in a state of being connected in parallel with each other via the water pipes 2a, 2b, and are used to exchange heat between water flowing from the water pipe 2a and room air sent from the indoor fan. A side heat exchanger is provided, and water after heat exchange flows out to the water pipe 2b.
  • Flow control valves 4a, 4b,... 4n are arranged on the branch pipes of the water pipe 2b connected to the water outlets of the use side devices 3a, 3b,.
  • the flow rate adjusting valves 4a, 4b,... 4n adjust the amount of water flowing to the use side devices 3a, 3b,.
  • the flow sensor 5 is arranged at a position downstream of the branch pipe connected to the water outlet of the use side devices 3a, 3b,.
  • the flow sensor 5 detects the amount Q of water flowing to the use side devices 3a, 3b,... 3n, and the connection positions of the heat source devices 1a, 1b,... 1n and the use side devices 3a, 3b,.
  • one end of the bypass pipe 6 is connected.
  • the other end of the bypass pipe 6 is connected to a position downstream of the arrangement position of the flow rate sensor 5 in the water pipe 2b.
  • the bypass pipe 6 bypasses the water flowing from the heat source devices 1a, 1b,... 1n to the use side devices 3a, 3b,...
  • a flow rate adjusting valve 7 is disposed in the middle of the bypass pipe 6.
  • the flow rate adjusting valve 7 is also referred to as a bypass valve, and adjusts the amount of water flowing through the bypass pipe 6 by changing the opening.
  • a differential pressure sensor 8 is disposed between the one end and the other end of the bypass pipe 6 as a pressure difference detecting means.
  • the differential pressure sensor 8 detects a difference P between the water pressure at one end of the bypass pipe 6 and the water pressure at the other end (water pressure difference between both ends of the bypass pipe 6).
  • FIG. 1a A plurality of heat pump refrigeration cycles mounted on the heat source unit 1a are shown in FIG.
  • the refrigerant discharged from the compressor 21 flows to the air heat exchangers 23a and 23b via the four-way valve 22, and the refrigerant passing through the air heat exchangers 23a and 23b passes through the electronic expansion valves 24a and 24b to the water heat exchanger (heat It flows into the first refrigerant flow path of the (medium heat exchanger) 30.
  • the refrigerant that has passed through the first refrigerant flow path of the water heat exchanger 30 is sucked into the compressor 21 through the four-way valve 22 and the accumulator 25.
  • This refrigerant flow direction is at the time of cooling operation (cold water generation operation), the air heat exchangers 23a and 23b function as condensers, and the first refrigerant flow path of the water heat exchanger 30 functions as an evaporator.
  • the flow path of the four-way valve 22 is switched to reverse the refrigerant flow direction, and the first refrigerant flow path of the water heat exchanger 30 is the condenser and the air heat exchangers 23a and 23b. Functions as an evaporator.
  • the compressor 21, the four-way valve 22, the air heat exchangers 23a and 23b, the electronic expansion valves 24a and 24b, the first refrigerant flow path of the water heat exchanger 30, and the accumulator 25 constitute a first heat pump refrigeration cycle.
  • the An outdoor fan 26 for introducing outside air is disposed in the vicinity of the air heat exchangers 23a and 23b.
  • Temperature sensors 27a and 27b for detecting the condensation temperature Tc of the refrigerant are attached to the refrigerant pipes between the air heat exchangers 23a and 23b and the electronic expansion valves 24a and 24b.
  • the compressor 41, the four-way valve 42, the air heat exchangers 43a and 43b, the electronic expansion valves 44a and 44b, the second refrigerant flow path of the water heat exchanger 30, and the accumulator 45 A second heat pump refrigeration cycle is configured, and the compressor 51, the four-way valve 52, the air heat exchangers 53a and 53b, the electronic expansion valves 54a and 54b, the first refrigerant flow path of the water heat exchanger 60, and the accumulator 55
  • a heat pump refrigeration cycle is configured, and the compressor 71, the four-way valve 72, the air heat exchangers 73a and 73b, the electronic expansion valves 74a and 74b, the second refrigerant flow path of the water heat exchanger 60, and the accumulator 75 are the fourth heat pump.
  • a refrigerating cycle is configured.
  • an outdoor fan 46 for introducing outside air is disposed in the vicinity of the air heat exchangers 43a and 43b
  • an outdoor fan 56 for introducing outside air is disposed in the vicinity of the air heat exchangers 53a and 53b
  • the air heat exchangers 73a, 73a is disposed in the vicinity of 73b.
  • temperature sensors 47a and 47b for detecting the condensation temperature Tc of the refrigerant are attached to the refrigerant piping between the air heat exchangers 43a and 43b and the electronic expansion valves 44a and 44b, and the air heat exchangers 53a and 53b and the electronic Temperature sensors 57a and 57b for detecting the condensation temperature Tc of the refrigerant are attached to the refrigerant pipe between the expansion valves 54a and 54b, and the refrigerant pipe between the air heat exchangers 73a and 73b and the electronic expansion valves 74a and 74b.
  • temperature sensors 77a and 77b for detecting the refrigerant condensing temperature Tc are attached.
  • the compressors 21, 41, 51, 71 in each heat pump refrigeration cycle have a motor that operates with an AC voltage supplied from the inverters 91, 92, 93, 94, and the capacity changes according to the rotation speed of the motor. To do.
  • the inverters 91, 92, 93, 94 rectify the voltage of the commercial AC power supply 90, convert the rectified DC voltage to an AC voltage of a predetermined frequency by switching according to a command from the system controller 10 described later, and convert the voltage The AC voltage is output as drive power for the motors of the compressors 21, 41, 51, 71.
  • Current sensors 96, 97, 98, and 99 are attached to energization lines between the output terminals of the inverters 91, 92, 93, and 94 and the motors of the compressors 21, 41, 51, and 71, respectively.
  • Current sensors 96, 97, 98, 99 detect the current Im flowing through the motors of the compressors 21, 41, 51, 71 as operating currents, respectively.
  • Water in the water pipe 2b is guided to the water pipe 2a through the water flow paths of the water heat exchanger 60 and the water heat exchanger 30, respectively.
  • an inlet water temperature sensor 9b is provided in the water pipe 2b
  • an outlet water temperature sensor 9a is provided in the water pipe 2a.
  • the inlet water temperature sensor 9b detects the temperature Twi of water introduced into the heat source unit
  • the outlet water temperature sensor 9a detects the temperature Two of water derived from the heat source unit.
  • a pump 80 is disposed in the water pipe between the water pipe 2 b and the water flow path of the water heat exchanger 60.
  • the pump 80 has a motor that is operated by the AC voltage supplied from the inverter 95, and the capacity (lift) changes according to the rotation speed of the motor.
  • the inverter 95 rectifies the voltage of the commercial AC power supply 90, converts the rectified DC voltage into an AC voltage having a predetermined frequency by switching according to a command from a module controller 11a described later, and converts the converted AC voltage to the pump 80. Output as drive power to the motor.
  • the frequency (output frequency) F of the output voltage of the inverter 95 By changing the frequency (output frequency) F of the output voltage of the inverter 95, the number of rotations of the motor of the pump 80 changes, and the capacity of the pump 80 changes accordingly.
  • the heat source unit 1a includes a module controller 11a that controls the operation of the first to fourth heat pump refrigeration cycles mounted on the heat source unit 1a.
  • the remaining heat source devices 1b... 1n also include module controllers 11b,... 11n that control the operation of the first to fourth heat pump refrigeration cycles.
  • the module controllers 11a, 11b,... 11n are connected to the system controller 10 via a communication line.
  • the system controller 10 is also connected to the flow rate adjusting valves 4a, 4b,... 4n, the flow rate sensor 5, the flow rate adjusting valve 7, and the differential pressure sensor 8.
  • the system controller 10 controls the heat source devices 1a, 1b,... 1n, the flow rate adjusting valves 4a, 4b,... 4n, and the flow rate adjusting valve 7 as a main function.
  • 2 control unit 102 is included.
  • the first control unit 101 operates the number of heat source devices 1a, 1b,... 1n according to the required capacity (difference between the indoor air temperature Ta and the set temperature Ts) of the usage-side devices 3a, 3b,. And the adjustment amount (opening degree) of the flow rate adjusting valves 4a, 4b,.
  • the second control unit 102 controls the adjustment amount (opening degree) of the flow rate adjusting valve 7 according to the detected flow rate Qt of the flow rate sensor 5.
  • the module controller 11a includes a capability control unit 111, a release control unit 112, and a capability compensation control 113 as main functions.
  • the capacity control unit 111 controls the capacity (operating frequency F) of the compressors 21, 41, 51, 71 so that the water temperature Two detected by the outlet water temperature sensor 9b becomes a preset target outlet water temperature Twt.
  • the release control unit 112 increases the operating current (detected current of the current sensors 96, 97, 98, 99) Im of any one of the compressors 21, 41, 51, 71 to a specified value Ims close to the allowable upper limit value. If it has been reached, so-called release control is performed to reduce the abnormally increased compressor capacity (operation frequency F).
  • the capability compensation control 113 is for one or a plurality of compressors (during operation) excluding the compressor 21, 41, 51, 71 that is the target of the release control.
  • the capacity is increased by the capacity reduction by the release control.
  • the capability compensation control 113 specifically reduces the capability of the compressor 21, 41, 51, 71 that is subject to the release control by the release control.
  • the amount is apportioned by one or more compressors (in operation) excluding the compressors subject to the release control.
  • the capacity compensation control 113 increases the capacity of one or a plurality of compressors (during operation) excluding the compressor that is the target of the release control by the prorated capacity.
  • the module controllers 11b,... 11n also include a capability control unit 111, a release control unit 112, and a capability compensation control unit 113.
  • the system controller 10 determines the number of operating heat sources 1a, 1b,... 1n and the flow rate according to the required capacity (difference between the indoor air temperature Ta and the set temperature Ts) of the use side devices 3a, 3b,.
  • the amount of adjustment (opening) of the regulating valves 4a, 4b,... 4n is controlled (step S1).
  • the system controller 10 controls the adjustment amount (opening degree) of the flow rate adjusting valve 7 according to the detected flow rate Qt of the flow rate sensor 5 (step S2). Thereafter, the system controller 10 returns to the process of step S1.
  • the module controller 11a controls the capacity (operation frequency F) of the compressors 21, 41, 51, 71 so that the water temperature Two detected by the outlet water temperature sensor 9b becomes a preset target outlet water temperature Twt (step F). S11).
  • the module controller 11a compares the operating current Im of the compressor 21 with the specified value Ims (step S12). When the operating current Im of the compressor 21 is less than the specified value Ims (NO in step S12), the module controller 11a returns to the process in step S11.
  • the temperature and amount of air sent to each air heat exchanger of the first to fourth heat pump refrigeration cycles in the heat source unit 1a are biased, and this causes, for example, the first heat pump A case will be described as an example where the operating state Im of the compressor 21 in the heat source unit 1a is abnormally increased due to the deterioration of the operating state of the refrigeration cycle.
  • the module controller 11a executes release control for reducing the output frequency F of the inverter 91 by a predetermined value Fa ( Step S13).
  • the release control By executing this release control, the capacity of the compressor 21 is reduced, and the operating current Im of the compressor 21 is suppressed to less than the specified value Ims. By this suppression, it is possible to prevent an unnecessary temperature rise of the electric device in the heat source device 1a.
  • the module controller 11a controls one or a plurality of compressors (any one of the compressors 41, 51, and 71) in operation other than the compressor 21 subjected to the release control.
  • the capacity is increased by the capacity reduction by the release control (step S14).
  • the module controller 11a apportions the amount of reduction in the capacity of the compressor 21 based on the release control by one or more compressors (any one of the compressors 41, 51, 71) that are operating.
  • the output frequency F of one or a plurality of inverters (any one of the inverters 92, 93, 94) is increased by a frequency ⁇ F corresponding to the prorated capacity. That is, the capacity of one or a plurality of compressors (any one of the compressors 41, 51, 71) in operation is increased by the estimated capacity.
  • the module controller 11a determines the proportion of the proportion based on the rated capacity of the compressors 41, 51, 71 in operation, the current capacity, and the like.
  • the amount of reduction in the capacity of the compressor 21 by release control is apportioned by one or a plurality of compressors (any one of the compressors 41, 51, 71) in operation, and only the apportioned ability
  • By increasing the capacity of one or more compressors (any one of the compressors 41, 51, 71) in operation it is possible to compensate for the reduction in the capacity of the compressor 21 due to release control.
  • the system controller 10 returns to the process of step S11 after the process of step S14.
  • the module controller 11a includes a capability control unit 211 and a release control unit 212, as shown in FIG.
  • the capacity control unit 211 controls the capacity (operating frequency F) of the compressors 21, 41, 51, 71 so that the water temperature Two detected by the outlet water temperature sensor 9b becomes a preset target outlet water temperature Twt.
  • the capacity controller 211 is instructed to increase the capacity from the capacity compensation controller 203 (to be described later) of the system controller 10, the capacity of the compressors 21, 41, 51, 71 is increased by the capacity according to the command. Control to increase (operating frequency F) is appropriately executed.
  • the release control unit 212 increases the operating current (detected current of the current sensors 96, 97, 98, 99) Im of any one of the compressors 21, 41, 51, 71 to the specified value Ims close to the allowable upper limit value. If it has been reached, so-called release control is performed to reduce the abnormally increased compressor capacity (operation frequency F).
  • the module controllers 11b,... 11n also include a capability control unit 211 and a release control unit 212.
  • the system controller 10 includes a first control unit 201, a second control unit 202, and a capability compensation control unit 103, as shown in FIG.
  • the first control unit 201 operates the number of heat source devices 1a, 1b,... 1n according to the required capacity (difference between the indoor air temperature Ta and the set temperature Ts) of the usage-side devices 3a, 3b,. And the adjustment amount (opening degree) of the flow rate adjusting valves 4a, 4b,.
  • the second control unit 202 controls the adjustment amount (opening degree) of the flow rate adjusting valve 7 according to the detected flow rate Qt of the flow rate sensor 5.
  • the capability compensation control unit 203 is in operation excluding the heat source device in which the release control is executed among the heat source devices 1a, 1b,. In order to increase the capability of the one or more heat source units by an amount corresponding to the capability reduction by the release control, this is commanded to the module controllers 11a, 11b,... 11n of the heat source units 1a, 1b,.
  • the capability compensation control unit 103 specifically reduces the capability of the heat source unit in which the release control is executed by the release control.
  • the quantity is prorated by one or more operating heat source machines excluding the heat source machine for which the release control was performed.
  • the capability compensation control unit 103 increases the capability of the one or more heat source devices in operation excluding the heat source device on which the release control is performed by the apportioned capability.
  • the module controller 11a controls the capacity (operation frequency F) of the compressors 21, 41, 51, 71 so that the water temperature Two detected by the outlet water temperature sensor 9b becomes a preset target outlet water temperature Twt (step F). S21).
  • the module controller 11a compares the operating current Im of the compressor 21 with the specified value Ims (step S22). When the operating current Im of the compressor 21 is less than the specified value Ims (NO in step S22), the module controller 11a returns to the process of step S21.
  • the temperature and amount of air sent to each air heat exchanger of the first to fourth heat pump refrigeration cycles in the heat source unit 1a are biased, and this causes, for example, the first heat pump A case will be described as an example in which the operating state Im of the compressor 21 in the heat source unit 1a has abnormally increased due to the deterioration of the operating state of the refrigeration cycle.
  • the module controller 11a releases the output frequency F of the inverter 91 by a predetermined value Fa. Is executed (step S23). By executing this release control, the capacity of the compressor 21 is reduced, and the operating current Im of the compressor 21 is suppressed to less than the specified value Ims. By this suppression, it is possible to prevent an unnecessary temperature rise of the electric device in the heat source device 1a.
  • the system controller 10 determines the number of operating heat sources 1a, 1b,... 1n and the flow rate according to the required capacity (difference between the indoor air temperature Ta and the set temperature Ts) of the use side devices 3a, 3b,.
  • the adjustment amount (opening degree) of the adjustment valves 4a, 4b,... 4n is controlled (step S31). Furthermore, the system controller 10 controls the adjustment amount (opening degree) of the flow rate adjusting valve 7 according to the detected flow rate Qt of the flow rate sensor 5 (step S32).
  • the system controller 10 monitors the execution of release control in the heat source devices 1a, 1b,... 1n (step S33). When release control is not executed in any of the heat source devices 1a, 1b,... 1n (NO in step S33), the system controller 10 returns to the processing in step S31.
  • the system controller 10 performs one or more heat source devices (heat source devices) in operation other than the heat source device 1a for which the release control is executed. 1b,..., 1n) is increased by the reduction of the capability by the release control (step S34).
  • the system controller 10 apportions the amount of reduction in the capacity of the heat source unit 1a by the release control using one or more heat source units (any one of the heat source units 1b,.
  • the result of this plan is notified to the module controller (any one of the module controllers 11b to 11n) of one or more heat source machines (any one of the heat source machines 1b,..., 1n) in operation.
  • the system controller 10 determines the proportion of the proportion based on the rated capacity of the heat source devices 1b to 1n, the current capability, and the like.
  • the module controller 11b of the heat source unit 1b that has received the promising information is operating in the heat source unit 1b by the amount of the capacity allocated to the heat source unit 1b in the capacity control process of step S21. Increase the capacity of one or more compressors.
  • the module controller 11b for example, apportions the capacity apportioned to the heat source apparatus 1b by one or more compressors in operation in the heat source apparatus 1b, and corresponds to the apportioned capacity respectively.
  • the operating frequency F of one or more compressors in operation is increased by the frequency ⁇ F to be operated. That is, the total capacity of the one or more compressors in operation in the heat source apparatus 1b is increased by the capacity allocated to the heat source apparatus 1b.
  • the module controllers 11c to 11n of the other operating heat source units 1c to 1n that have received the notice of the plan perform the same control as the module controller 11b of the heat source unit 1b.
  • the energy consumption efficiency so-called COP of the heat source device 1 is reduced.
  • the reduced amount of the capability of the heat source unit 1a by the release control is reduced to the other heat source units 1b to 1b in operation. Since it is compensated by the increase in capacity of 1n, it is possible to prevent the COP of the heat source device 1 from being lowered.
  • the system controller 10 returns to the process of step S31 after the process of step S34.
  • the capacity reduction amount due to the release control is compensated by increasing the capacity of the compressor during other operations.
  • the capacity increase is performed by changing the rotational speed of the outdoor fans 26, 46, 56, and 76. It is good also as a structure. Or it is good also as a structure which performs both the capability increase of a compressor, and the rotation speed change of the outdoor fans 26,46,56,76.
  • the module controller 11a obtains a so-called heat exchange pinch that is the difference between the refrigerant condensation temperature (detected temperature of the temperature sensors 27a to 77b) Tc and the outside air temperature To in the air heat exchangers 23a to 73b, and the heat
  • the rotational speed of the outdoor fans 26 to 76 is controlled so that the alternating pinch is constant, and this rotational speed control is used for the above-mentioned increase in capacity. Similar rotation speed control is performed by the other module controllers 11b to 11n.
  • the heat source apparatuses 1a, 1b In each of the above embodiments, the heat source apparatuses 1a, 1b,.
  • the number of heat exchangers can be selected as appropriate.
  • the load is an air heat exchanger
  • the load is water in a hot water storage tank
  • the system controller 10 uses the heat source devices 1a, 1b,... According to the required capacity (difference between the indoor air temperature Ta and the set temperature Ts) of the usage-side devices 3a, 3b,.
  • the system controller 10 is calculated from the water temperature detected by the inlet water temperature sensor 9b and the outlet water temperature sensor 9a of each heat source device 1a, 1b,. It is also possible to control the number of operating heat source devices 1a, 1b,... 1n according to the required capacity of the heat source device 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 In the present invention, a heat source machine is provided with a plurality of compressors and a controller. In the event of a release control performed to reduce the performance of any of the plurality of compressors, this controller causes the performance of at least one of the compressors other than the compressor that was subject to the release control to be increased by the amount of reduction in performance due to the release control.

Description

熱源機および熱源装置Heat source machine and heat source device
 本発明の実施形態は、複数の圧縮機を備えた熱源機、および複数の熱源機を備えた熱源装置に関する。 Embodiments of the present invention relate to a heat source device including a plurality of compressors and a heat source device including a plurality of heat source devices.
 それぞれ圧縮機を含む複数の冷凍サイクルを備え、これら冷凍サイクルの運転により得られる温熱または冷熱を負荷側(利用側)に供給する熱源機が知られている。 A heat source device is known that includes a plurality of refrigeration cycles each including a compressor and supplies hot or cold energy obtained by operation of these refrigeration cycles to a load side (use side).
特開2008-224182号公報JP 2008-224182 A
 複数の冷凍サイクルを備えた熱源機では、各冷凍サイクルの空気熱交換器に送られる空気の温度や量に偏りが生じた場合など、いずれかの冷凍サイクルの運転状態が悪化して、その冷凍サイクルにおける圧縮機の運転電流が異常上昇することがある。この場合、運転電流の異常上昇を抑えるレリース制御が入り、その影響で、熱源機のエネルギー消費効率いわゆるCOP(Coefficient-Of-Performance)が低下してしまう。 In a heat source device equipped with a plurality of refrigeration cycles, the operating state of one of the refrigeration cycles deteriorates, such as when the temperature or quantity of air sent to the air heat exchanger of each refrigeration cycle is biased, and the refrigeration The operating current of the compressor in the cycle may increase abnormally. In this case, release control is performed to suppress an abnormal increase in operating current, and as a result, the energy consumption efficiency of the heat source device, so-called COP (Coefficient-Of-Performance), is reduced.
 本発明の実施形態の目的は、エネルギー消費効率の低下を防ぐことができる熱源機および熱源装置を提供することである。 An object of an embodiment of the present invention is to provide a heat source device and a heat source device that can prevent a reduction in energy consumption efficiency.
 請求項1の熱源機は、複数の圧縮機と、コントローラと、を備える。このコントローラは、前記複数の圧縮機のいずれかの能力を低減するレリース制御が実行された場合、前記複数の圧縮機のうち前記レリース制御の対象となった前記圧縮機を除く1つまたは複数の前記圧縮機の能力を、前記レリース制御による前記能力低減分だけ増加する。 The heat source machine according to claim 1 includes a plurality of compressors and a controller. This controller, when release control for reducing any one of the plurality of compressors is executed, one or more of the plurality of compressors excluding the compressor subjected to the release control The capacity of the compressor is increased by the capacity reduction by the release control.
 請求項5の熱源装置は、複数の熱源機と、コントローラと、を備える。このコントローラは、前記複数の熱源機のいずれかの能力を低減するレリース制御が実行された場合、前記複数の熱源機のうち前記レリース制御が実行された前記熱源機を除く1つまたは複数の前記熱源機の能力を、前記レリース制御による前記能力低減分だけ増加する。 The heat source device according to claim 5 includes a plurality of heat source units and a controller. When the release control that reduces the ability of any of the plurality of heat source units is performed, the controller excludes one or more of the plurality of heat source units excluding the heat source unit that has performed the release control. The capacity of the heat source machine is increased by the capacity reduction by the release control.
第1実施形態の構成を示す図。The figure which shows the structure of 1st Embodiment. 各実施形態における各熱源機の冷凍サイクルの構成を示す図。The figure which shows the structure of the refrigerating cycle of each heat-source equipment in each embodiment. 第1実施形態における各熱源機のモジュールコントローラの構成を示す図。The figure which shows the structure of the module controller of each heat source machine in 1st Embodiment. 第1実施形態におけるシステムコントローラの制御を示すフローチャート。The flowchart which shows control of the system controller in 1st Embodiment. 第1実施形態における各熱源機のモジュールコントローラの制御を示すフローチャート。The flowchart which shows control of the module controller of each heat source machine in 1st Embodiment. 第2実施形態における各熱源機のモジュールコントローラの構成を示す図。The figure which shows the structure of the module controller of each heat source machine in 2nd Embodiment. 第2実施形態におけるシステムコントローラの構成を示す図。The figure which shows the structure of the system controller in 2nd Embodiment. 第2実施形態における各熱源機のモジュールコントローラの制御を示すフローチャート。The flowchart which shows control of the module controller of each heat source machine in 2nd Embodiment. 第2実施形態におけるシステムコントローラの制御を示すフローチャート。The flowchart which shows control of the system controller in 2nd Embodiment.
 [1]第1実施形態 
 本発明の第1実施形態について図面を参照して説明する。 
 図1に示すように、複数の熱源機1a,1b,…1nが、熱媒体配管2a(以下、水配管2aという)および熱媒体配管2b(以下、水配管2bという)を介して互いに並列接続される。この並列接続により、熱源機1a,1b,…1nをそれぞれモジュールとして搭載した熱源装置1が構成される。
[1] First embodiment
A first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a plurality of heat source devices 1a, 1b,... 1n are connected in parallel to each other via a heat medium pipe 2a (hereinafter referred to as a water pipe 2a) and a heat medium pipe 2b (hereinafter referred to as a water pipe 2b). Is done. By this parallel connection, the heat source device 1 in which the heat source devices 1a, 1b,.
 熱源機1aは、熱媒体熱交換器である例えば水熱交換器、この水熱交換器の冷媒流路を含む複数のヒートポンプ式冷凍サイクル、およびポンプを備え、水配管2bの水(熱媒体)をポンプの吸入圧により水熱交換器の水流路に導入し、導入した水を各ヒートポンプ式冷凍サイクルの運転による冷媒循環によって加熱または冷却し、その加熱または冷却した水をポンプの吐出圧により水配管2aに供給する。熱源機1b,…1nも同じ構成を有する。 The heat source device 1a includes, for example, a water heat exchanger that is a heat medium heat exchanger, a plurality of heat pump refrigeration cycles including a refrigerant flow path of the water heat exchanger, and a pump, and water (heat medium) in the water pipe 2b. Is introduced into the water flow path of the water heat exchanger by the suction pressure of the pump, and the introduced water is heated or cooled by refrigerant circulation through the operation of each heat pump refrigeration cycle, and the heated or cooled water is converted to water by the discharge pressure of the pump. Supply to piping 2a. The heat source units 1b,... 1n have the same configuration.
 熱源装置1から導出される水配管2aおよび水配管2bに、複数の負荷である例えば利用側機器3a,3b,…3nが接続される。これら利用側機器3a,3b,…3nは、水配管2a,2bを介して互いに並列接続された状態にあり、水配管2aから流入する水と室内ファンから送られる室内空気とで熱交換する利用側熱交換器を備え、熱交換した後の水を水配管2bへと流出する。 A plurality of loads, for example, use side devices 3a, 3b,... 3n are connected to the water pipe 2a and the water pipe 2b derived from the heat source device 1. These use side devices 3a, 3b,... 3n are in a state of being connected in parallel with each other via the water pipes 2a, 2b, and are used to exchange heat between water flowing from the water pipe 2a and room air sent from the indoor fan. A side heat exchanger is provided, and water after heat exchange flows out to the water pipe 2b.
 利用側機器3a,3b,…3nの水流出口につながる水配管2bの枝管に、流量調整弁4a,4b,…4nが配設される。流量調整弁4a,4b,…4nは、利用側機器3a,3b,…3nに流れる水の量を開度変化により調整する。 Flow control valves 4a, 4b,... 4n are arranged on the branch pipes of the water pipe 2b connected to the water outlets of the use side devices 3a, 3b,. The flow rate adjusting valves 4a, 4b,... 4n adjust the amount of water flowing to the use side devices 3a, 3b,.
 水配管2bにおいて、利用側機器3a,3b,…3nの水流出口につながる枝管より下流側の位置に、流量センサ5が配置される。流量センサ5は、利用側機器3a,3b,…3nに流れる水の量Qを検知する
 水配管2aにおける熱源機1a,1b,…1nの接続位置と利用側機器3a,3b,…3nの接続位置との間に、バイパス配管6の一端が接続される。バイパス配管6の他端は、水配管2bにおける流量センサ5の配置位置より下流側の位置に接続される。バイパス配管6は、熱源機1a,1b,…1nから利用側機器3a,3b,…3nへと流れる水をバイパスして熱源機1a,1b,…1n側に戻す。このバイパス配管6の中途部に、流量調整弁7が配設される。流量調整弁7は、バイパス弁とも称し、バイパス配管6に流れる水の量を開度変化により調整する。
In the water pipe 2b, the flow sensor 5 is arranged at a position downstream of the branch pipe connected to the water outlet of the use side devices 3a, 3b,. The flow sensor 5 detects the amount Q of water flowing to the use side devices 3a, 3b,... 3n, and the connection positions of the heat source devices 1a, 1b,... 1n and the use side devices 3a, 3b,. Between the positions, one end of the bypass pipe 6 is connected. The other end of the bypass pipe 6 is connected to a position downstream of the arrangement position of the flow rate sensor 5 in the water pipe 2b. The bypass pipe 6 bypasses the water flowing from the heat source devices 1a, 1b,... 1n to the use side devices 3a, 3b,... 3n and returns them to the heat source devices 1a, 1b,. A flow rate adjusting valve 7 is disposed in the middle of the bypass pipe 6. The flow rate adjusting valve 7 is also referred to as a bypass valve, and adjusts the amount of water flowing through the bypass pipe 6 by changing the opening.
 バイパス配管6の一端と他端との間に、圧力差検知手段として差圧センサ8が配置される。差圧センサ8は、バイパス配管6の一端の水の圧力と他端の水の圧力との差(バイパス配管6の両端間の水の圧力差)Pを検知する。 A differential pressure sensor 8 is disposed between the one end and the other end of the bypass pipe 6 as a pressure difference detecting means. The differential pressure sensor 8 detects a difference P between the water pressure at one end of the bypass pipe 6 and the water pressure at the other end (water pressure difference between both ends of the bypass pipe 6).
 熱源機1aに搭載された複数のヒートポンプ式冷凍サイクルを図2に示す。 
 圧縮機21の吐出冷媒が四方弁22を介して空気熱交換器23a,23bに流れ、その空気熱交換器23a,23bを経た冷媒が電子膨張弁24a,24bを介して水熱交換器(熱媒体熱交換器)30の第1冷媒流路に流れる。水熱交換器30の第1冷媒流路を経た冷媒は、四方弁22およびアキュームレータ25を通って圧縮機21に吸込まれる。この冷媒流れ方向は冷却運転(冷水生成運転)時のもので、空気熱交換器23a,23bが凝縮器、水熱交換器30の第1冷媒流路が蒸発器として機能する。加熱運転(温水生成運転)時は、四方弁22の流路が切替わって冷媒の流れ方向が逆となり、水熱交換器30の第1冷媒流路が凝縮器、空気熱交換器23a,23bが蒸発器として機能する。
A plurality of heat pump refrigeration cycles mounted on the heat source unit 1a are shown in FIG.
The refrigerant discharged from the compressor 21 flows to the air heat exchangers 23a and 23b via the four-way valve 22, and the refrigerant passing through the air heat exchangers 23a and 23b passes through the electronic expansion valves 24a and 24b to the water heat exchanger (heat It flows into the first refrigerant flow path of the (medium heat exchanger) 30. The refrigerant that has passed through the first refrigerant flow path of the water heat exchanger 30 is sucked into the compressor 21 through the four-way valve 22 and the accumulator 25. This refrigerant flow direction is at the time of cooling operation (cold water generation operation), the air heat exchangers 23a and 23b function as condensers, and the first refrigerant flow path of the water heat exchanger 30 functions as an evaporator. During the heating operation (warm water generating operation), the flow path of the four-way valve 22 is switched to reverse the refrigerant flow direction, and the first refrigerant flow path of the water heat exchanger 30 is the condenser and the air heat exchangers 23a and 23b. Functions as an evaporator.
 この圧縮機21、四方弁22、空気熱交換器23a,23b、電子膨張弁24a,24b、水熱交換器30の第1冷媒流路、およびアキュームレータ25により、第1ヒートポンプ式冷凍サイクルが構成される。空気熱交換器23a,23bの近傍に、外気導入用の室外ファン26が配置される。空気熱交換器23a,23bと電子膨張弁24a,24bとの間の冷媒配管に、冷媒の凝縮温度Tcを検知する温度センサ27a,27bが取付けられる。 The compressor 21, the four-way valve 22, the air heat exchangers 23a and 23b, the electronic expansion valves 24a and 24b, the first refrigerant flow path of the water heat exchanger 30, and the accumulator 25 constitute a first heat pump refrigeration cycle. The An outdoor fan 26 for introducing outside air is disposed in the vicinity of the air heat exchangers 23a and 23b. Temperature sensors 27a and 27b for detecting the condensation temperature Tc of the refrigerant are attached to the refrigerant pipes between the air heat exchangers 23a and 23b and the electronic expansion valves 24a and 24b.
 この第1ヒートポンプ式冷凍サイクルと同様に、圧縮機41、四方弁42、空気熱交換器43a,43b、電子膨張弁44a,44b、水熱交換器30の第2冷媒流路、およびアキュームレータ45により第2ヒートポンプ式冷凍サイクルが構成され圧縮機51、四方弁52、空気熱交換器53a,53b、電子膨張弁54a,54b、水熱交換器60の第1冷媒流路、およびアキュームレータ55により第3ヒートポンプ式冷凍サイクルが構成され、圧縮機71、四方弁72、空気熱交換器73a,73b、電子膨張弁74a,74b、水熱交換器60の第2冷媒流路、およびアキュームレータ75により第4ヒートポンプ式冷凍サイクルが構成される。 Similarly to the first heat pump refrigeration cycle, the compressor 41, the four-way valve 42, the air heat exchangers 43a and 43b, the electronic expansion valves 44a and 44b, the second refrigerant flow path of the water heat exchanger 30, and the accumulator 45 A second heat pump refrigeration cycle is configured, and the compressor 51, the four-way valve 52, the air heat exchangers 53a and 53b, the electronic expansion valves 54a and 54b, the first refrigerant flow path of the water heat exchanger 60, and the accumulator 55 A heat pump refrigeration cycle is configured, and the compressor 71, the four-way valve 72, the air heat exchangers 73a and 73b, the electronic expansion valves 74a and 74b, the second refrigerant flow path of the water heat exchanger 60, and the accumulator 75 are the fourth heat pump. A refrigerating cycle is configured.
 また、空気熱交換器43a,43bの近傍に外気導入用の室外ファン46が配置され、空気熱交換器53a,53bの近傍に外気導入用の室外ファン56が配置され、空気熱交換器73a,73bの近傍に外気導入用の室外ファン76が配置される。 In addition, an outdoor fan 46 for introducing outside air is disposed in the vicinity of the air heat exchangers 43a and 43b, an outdoor fan 56 for introducing outside air is disposed in the vicinity of the air heat exchangers 53a and 53b, and the air heat exchangers 73a, 73a, An outdoor fan 76 for introducing outside air is disposed in the vicinity of 73b.
 また、空気熱交換器43a,43bと電子膨張弁44a,44bとの間の冷媒配管に、冷媒の凝縮温度Tcを検知する温度センサ47a,47bが取付けられ、空気熱交換器53a,53bと電子膨張弁54a,54bとの間の冷媒配管に、冷媒の凝縮温度Tcを検知する温度センサ57a,57bが取付けられ、空気熱交換器73a,73bと電子膨張弁74a,74bとの間の冷媒配管に、冷媒の凝縮温度Tcを検知する温度センサ77a,77bが取付けられる。 Moreover, temperature sensors 47a and 47b for detecting the condensation temperature Tc of the refrigerant are attached to the refrigerant piping between the air heat exchangers 43a and 43b and the electronic expansion valves 44a and 44b, and the air heat exchangers 53a and 53b and the electronic Temperature sensors 57a and 57b for detecting the condensation temperature Tc of the refrigerant are attached to the refrigerant pipe between the expansion valves 54a and 54b, and the refrigerant pipe between the air heat exchangers 73a and 73b and the electronic expansion valves 74a and 74b. In addition, temperature sensors 77a and 77b for detecting the refrigerant condensing temperature Tc are attached.
 各ヒートポンプ式冷凍サイクルにおける圧縮機21,41,51,71は、インバータ91,92,93,94から供給される交流電圧により動作するモータを有し、そのモータの回転数に応じて能力が変化する。インバータ91,92,93,94は、商用交流電源90の電圧を整流し、整流後の直流電圧を後述のシステムコントローラ10からの指令に応じたスイッチングにより所定周波数の交流電圧に変換し、変換した交流電圧を圧縮機21,41,51,71のモータに対する駆動電力として出力する。 The compressors 21, 41, 51, 71 in each heat pump refrigeration cycle have a motor that operates with an AC voltage supplied from the inverters 91, 92, 93, 94, and the capacity changes according to the rotation speed of the motor. To do. The inverters 91, 92, 93, 94 rectify the voltage of the commercial AC power supply 90, convert the rectified DC voltage to an AC voltage of a predetermined frequency by switching according to a command from the system controller 10 described later, and convert the voltage The AC voltage is output as drive power for the motors of the compressors 21, 41, 51, 71.
 インバータ91,92,93,94の出力電圧の周波数(出力周波数)Fを変化させることにより、圧縮機21,41,51,71のモータの回転数が変化し、それに伴い圧縮機21,41,51,71の能力が変化する。 By changing the frequency (output frequency) F of the output voltage of the inverters 91, 92, 93, 94, the rotational speeds of the motors of the compressors 21, 41, 51, 71 are changed. The ability of 51 and 71 changes.
 インバータ91,92,93,94の出力端と圧縮機21,41,51,71のモータとの間の通電ラインに、電流センサ96,97,98,99がそれぞれ取付けられる。電流センサ96,97,98,99は、圧縮機21,41,51,71のモータに流れる電流Imをそれぞれ運転電流として検知する。 Current sensors 96, 97, 98, and 99 are attached to energization lines between the output terminals of the inverters 91, 92, 93, and 94 and the motors of the compressors 21, 41, 51, and 71, respectively. Current sensors 96, 97, 98, 99 detect the current Im flowing through the motors of the compressors 21, 41, 51, 71 as operating currents, respectively.
 水配管2bの水は、水熱交換器60および水熱交換器30のそれぞれ水流路を通り、水配管2aへと導かれる。また、水配管2bに入口水温センサ9bが設けられ、水配管2aに出口水温センサ9aが設けられる。入口水温センサ9bは熱源機に導入される水の温度Twiを検知し、出口水温センサ9aは熱源機から導出される水の温度Twoを検知する。 Water in the water pipe 2b is guided to the water pipe 2a through the water flow paths of the water heat exchanger 60 and the water heat exchanger 30, respectively. In addition, an inlet water temperature sensor 9b is provided in the water pipe 2b, and an outlet water temperature sensor 9a is provided in the water pipe 2a. The inlet water temperature sensor 9b detects the temperature Twi of water introduced into the heat source unit, and the outlet water temperature sensor 9a detects the temperature Two of water derived from the heat source unit.
 水配管2bと水熱交換器60の水流路との間の水配管に、ポンプ80が配設される。ポンプ80は、インバータ95から供給される交流電圧により動作するモータを有し、そのモータの回転数に応じて能力(揚程)が変化する。インバータ95は、商用交流電源90の電圧を整流し、整流後の直流電圧を後述のモジュールコントローラ11aからの指令に応じたスイッチングにより所定周波数の交流電圧に変換し、変換した交流電圧をポンプ80のモータに対する駆動電力として出力する。このインバータ95の出力電圧の周波数(出力周波数)Fを変化させることにより、ポンプ80のモータの回転数が変化し、それに伴いポンプ80の能力が変化する。 A pump 80 is disposed in the water pipe between the water pipe 2 b and the water flow path of the water heat exchanger 60. The pump 80 has a motor that is operated by the AC voltage supplied from the inverter 95, and the capacity (lift) changes according to the rotation speed of the motor. The inverter 95 rectifies the voltage of the commercial AC power supply 90, converts the rectified DC voltage into an AC voltage having a predetermined frequency by switching according to a command from a module controller 11a described later, and converts the converted AC voltage to the pump 80. Output as drive power to the motor. By changing the frequency (output frequency) F of the output voltage of the inverter 95, the number of rotations of the motor of the pump 80 changes, and the capacity of the pump 80 changes accordingly.
 これら第1~第4ヒートポンプ式冷凍サイクルは、熱源機1b,…1nにも搭載されている。 These first to fourth heat pump refrigeration cycles are also mounted on the heat source units 1b,.
 一方、熱源機1aは、当該熱源機1aに搭載の第1~第4ヒートポンプ式冷凍サイクルの運転を制御するモジュールコントローラ11aを備える。残りの熱源機1b…1nも、第1~第4ヒートポンプ式冷凍サイクルの運転を制御するモジュールコントローラ11b,…11nを備える。 On the other hand, the heat source unit 1a includes a module controller 11a that controls the operation of the first to fourth heat pump refrigeration cycles mounted on the heat source unit 1a. The remaining heat source devices 1b... 1n also include module controllers 11b,... 11n that control the operation of the first to fourth heat pump refrigeration cycles.
 モジュールコントローラ11a,11b,…11nは、システムコントローラ10に通信線接続される。システムコントローラ10には、上記流量調整弁4a,4b,…4n、流量センサ5、流量調整弁7、差圧センサ8も接続される。 The module controllers 11a, 11b,... 11n are connected to the system controller 10 via a communication line. The system controller 10 is also connected to the flow rate adjusting valves 4a, 4b,... 4n, the flow rate sensor 5, the flow rate adjusting valve 7, and the differential pressure sensor 8.
 システムコントローラ10は、熱源機1a,1b,…1n、流量調整弁4a,4b,…4n、および流量調整弁7を統括的に制御するもので、主要な機能として、第1制御部101および第2制御部102を含む。 The system controller 10 controls the heat source devices 1a, 1b,... 1n, the flow rate adjusting valves 4a, 4b,... 4n, and the flow rate adjusting valve 7 as a main function. 2 control unit 102 is included.
 第1制御部101は、負荷である利用側機器3a,3b,…3nの要求能力(室内空気温度Taと設定温度Tsとの差)に応じて、熱源機1a,1b,…1nの運転台数および流量調整弁4a,4b,…4nの調整量(開度)を制御する。 The first control unit 101 operates the number of heat source devices 1a, 1b,... 1n according to the required capacity (difference between the indoor air temperature Ta and the set temperature Ts) of the usage- side devices 3a, 3b,. And the adjustment amount (opening degree) of the flow rate adjusting valves 4a, 4b,.
 第2制御部102は、流量センサ5の検知流量Qtに応じて、流量調整弁7の調整量(開度)を制御する。 The second control unit 102 controls the adjustment amount (opening degree) of the flow rate adjusting valve 7 according to the detected flow rate Qt of the flow rate sensor 5.
 モジュールコントローラ11aは、図3に示すように、主要な機能として、能力制御部111、レリース制御部112、および能力補償制御113を含む。 As shown in FIG. 3, the module controller 11a includes a capability control unit 111, a release control unit 112, and a capability compensation control 113 as main functions.
 能力制御部111は、出口水温センサ9bで検知された水温Twoが予め設定された目標出口水温Twtとなるように、圧縮機21,41,51,71の能力(運転周波数F)を制御する。 The capacity control unit 111 controls the capacity (operating frequency F) of the compressors 21, 41, 51, 71 so that the water temperature Two detected by the outlet water temperature sensor 9b becomes a preset target outlet water temperature Twt.
 レリース制御部112は、圧縮機21,41,51,71のいずれかの運転電流(電流センサ96,97,98,99の検知電流)Imが異常上昇して許容上限値に近い規定値Imsに達した場合、その異常上昇した圧縮機の能力(運転周波数F)を低減するいわゆるレリース制御を実行する。 The release control unit 112 increases the operating current (detected current of the current sensors 96, 97, 98, 99) Im of any one of the compressors 21, 41, 51, 71 to a specified value Ims close to the allowable upper limit value. If it has been reached, so-called release control is performed to reduce the abnormally increased compressor capacity (operation frequency F).
 能力補償制御113は、上記レリース制御が実行された場合、圧縮機21,41,51,71のうち上記レリース制御の対象となった圧縮機を除く1つまたは複数の圧縮機(運転中)の能力を、上記レリース制御による上記能力低減分だけ増加する。 When the release control is executed, the capability compensation control 113 is for one or a plurality of compressors (during operation) excluding the compressor 21, 41, 51, 71 that is the target of the release control. The capacity is increased by the capacity reduction by the release control.
 なお、能力補償制御113は、具体的には、上記レリース制御が実行された場合、圧縮機21,41,51,71のうち上記レリース制御の対象となった圧縮機のそのレリース制御による能力低減量を、そのレリース制御の対象となった圧縮機を除く1つまたは複数の圧縮機(運転中)で案分する。そして、能力補償制御113は、上記レリース制御の対象となった圧縮機を除く1つまたは複数の圧縮機(運転中)の能力を、上記案分した能力分だけ増加する。 Note that, when the release control is executed, the capability compensation control 113 specifically reduces the capability of the compressor 21, 41, 51, 71 that is subject to the release control by the release control. The amount is apportioned by one or more compressors (in operation) excluding the compressors subject to the release control. Then, the capacity compensation control 113 increases the capacity of one or a plurality of compressors (during operation) excluding the compressor that is the target of the release control by the prorated capacity.
 モジュールコントローラ11b,…11nも、同じく、能力制御部111、レリース制御部112、能力補償制御部113を含む。 The module controllers 11b,... 11n also include a capability control unit 111, a release control unit 112, and a capability compensation control unit 113.
 つぎに、システムコントローラ10が実行する制御を図4のフローチャートを参照しながら説明する。 Next, the control executed by the system controller 10 will be described with reference to the flowchart of FIG.
 システムコントローラ10は、負荷である利用側機器3a,3b,…3nの要求能力(室内空気温度Taと設定温度Tsとの差)に応じて、熱源機1a,1b,…1nの運転台数および流量調整弁4a,4b,…4nの調整量(開度)を制御する(ステップS1)。そして、システムコントローラ10は、流量センサ5の検知流量Qtに応じて、流量調整弁7の調整量(開度)を制御する(ステップS2)。この後、システムコントローラ10は、ステップS1の処理に戻る。 The system controller 10 determines the number of operating heat sources 1a, 1b,... 1n and the flow rate according to the required capacity (difference between the indoor air temperature Ta and the set temperature Ts) of the use side devices 3a, 3b,. The amount of adjustment (opening) of the regulating valves 4a, 4b,... 4n is controlled (step S1). Then, the system controller 10 controls the adjustment amount (opening degree) of the flow rate adjusting valve 7 according to the detected flow rate Qt of the flow rate sensor 5 (step S2). Thereafter, the system controller 10 returns to the process of step S1.
 一方、モジュールコントローラ11aが実行する制御を図5のフローチャートを参照しながら説明する。なお、モジュールコントローラ11b,…11nが実行する制御は、モジュールコントローラ11aが実行する制御と同じなので、その説明は省略する。 On the other hand, the control executed by the module controller 11a will be described with reference to the flowchart of FIG. Since the control executed by the module controllers 11b,... 11n is the same as the control executed by the module controller 11a, the description thereof is omitted.
 モジュールコントローラ11aは、出口水温センサ9bで検知された水温Twoが予め設定された目標出口水温Twtとなるように、圧縮機21,41,51,71の能力(運転周波数F)を制御する(ステップS11)。 The module controller 11a controls the capacity (operation frequency F) of the compressors 21, 41, 51, 71 so that the water temperature Two detected by the outlet water temperature sensor 9b becomes a preset target outlet water temperature Twt (step F). S11).
 そして、モジュールコントローラ11aは、圧縮機21の運転電流Imと規定値Imsとを比較する(ステップS12)。圧縮機21の運転電流Imが規定値Ims未満の場合(ステップS12のNO)、モジュールコントローラ11aは、上記ステップS11の処理に戻る。 Then, the module controller 11a compares the operating current Im of the compressor 21 with the specified value Ims (step S12). When the operating current Im of the compressor 21 is less than the specified value Ims (NO in step S12), the module controller 11a returns to the process in step S11.
 設置条件や環境条件などの変化により、熱源機1aにおける第1~第4ヒートポンプ式冷凍サイクルの各空気熱交換器に送られる空気の温度や量に偏りが生じ、それが原因で例えば第1ヒートポンプ式冷凍サイクルの運転状態が悪化して熱源機1aにおける圧縮機21の運転電流Imが異常上昇した場合を例に説明する。 Due to changes in installation conditions, environmental conditions, etc., the temperature and amount of air sent to each air heat exchanger of the first to fourth heat pump refrigeration cycles in the heat source unit 1a are biased, and this causes, for example, the first heat pump A case will be described as an example where the operating state Im of the compressor 21 in the heat source unit 1a is abnormally increased due to the deterioration of the operating state of the refrigeration cycle.
 圧縮機21の運転電流Imが異常上昇して規定値Imsに達した場合(ステップS12のYES)、モジュールコントローラ11aは、インバータ91の出力周波数Fを所定値Faだけ低減するレリース制御を実行する(ステップS13)。このレリース制御の実行により、圧縮機21の能力が低減し、圧縮機21の運転電流Imが規定値Ims未満に抑制される。この抑制により、熱源機1aにおける電気機器の不要な温度上昇を防ぐことができる。 When the operating current Im of the compressor 21 abnormally increases and reaches the specified value Ims (YES in step S12), the module controller 11a executes release control for reducing the output frequency F of the inverter 91 by a predetermined value Fa ( Step S13). By executing this release control, the capacity of the compressor 21 is reduced, and the operating current Im of the compressor 21 is suppressed to less than the specified value Ims. By this suppression, it is possible to prevent an unnecessary temperature rise of the electric device in the heat source device 1a.
 このレリース制御の実行に伴い、モジュールコントローラ11aは、レリース制御の対象となった圧縮機21を除く他の運転中の1つまたは複数の圧縮機(圧縮機41,51,71のいずれか)の能力を、そのレリース制御による上記能力低減分だけ増加する(ステップS14)。 Along with the execution of the release control, the module controller 11a controls one or a plurality of compressors (any one of the compressors 41, 51, and 71) in operation other than the compressor 21 subjected to the release control. The capacity is increased by the capacity reduction by the release control (step S14).
 具体的には、モジュールコントローラ11aは、レリース制御による圧縮機21の能力低減量を他の運転中の1つまたは複数の圧縮機(圧縮機41,51,71のいずれか)で案分し、案分した能力分にそれぞれ対応する周波数ΔFだけ1つまたは複数のインバータ(インバータ92,93,94のいずれか)の出力周波数Fをそれぞれ増加する。つまり、運転中の1つまたは複数の圧縮機(圧縮機41,51,71のいずれか)の能力が、上記案分した能力分だけそれぞれ増加される。なお、モジュールコントローラ11aは、上記案分に際し、案分の割合を運転中の圧縮機41,51,71の定格容量や現時点の能力などに基づいて決定する。 Specifically, the module controller 11a apportions the amount of reduction in the capacity of the compressor 21 based on the release control by one or more compressors (any one of the compressors 41, 51, 71) that are operating. The output frequency F of one or a plurality of inverters (any one of the inverters 92, 93, 94) is increased by a frequency ΔF corresponding to the prorated capacity. That is, the capacity of one or a plurality of compressors (any one of the compressors 41, 51, 71) in operation is increased by the estimated capacity. In addition, the module controller 11a determines the proportion of the proportion based on the rated capacity of the compressors 41, 51, 71 in operation, the current capacity, and the like.
 このように、レリース制御による圧縮機21の能力低減量を他の運転中の1つまたは複数の圧縮機(圧縮機41,51,71のいずれか)で案分し、案分した能力分だけ運転中の1つまたは複数の圧縮機(圧縮機41,51,71のいずれか)の能力をそれぞれ増加することにより、レリース制御による圧縮機21の能力の低減を補うことができる。 In this way, the amount of reduction in the capacity of the compressor 21 by release control is apportioned by one or a plurality of compressors (any one of the compressors 41, 51, 71) in operation, and only the apportioned ability By increasing the capacity of one or more compressors (any one of the compressors 41, 51, 71) in operation, it is possible to compensate for the reduction in the capacity of the compressor 21 due to release control.
 レリース制御によって圧縮機21の能力が低減したままでは、熱源機1aのエネルギー消費効率いわゆるCOP(Coefficient-Of-Performance)が低下してしまうが、レリース制御による圧縮機21の能力低減分を他の運転中の1つまたは複数の圧縮機(圧縮機41,51,71のいずれか)の能力増加によって補うので、熱源機1aのCOPの低下を防ぐことができる。 If the capacity of the compressor 21 is reduced by the release control, the energy consumption efficiency of the heat source unit 1a is reduced, so-called COP (Coefficient-Of-Performance), but the capacity reduction of the compressor 21 by the release control is reduced to other values. Since it compensates by the capability increase of the compressor (one of the compressors 41, 51, and 71) during a driving | operation, the fall of COP of the heat source machine 1a can be prevented.
 システムコントローラ10は、ステップS14の処理後、上記ステップS11の処理に戻る。 The system controller 10 returns to the process of step S11 after the process of step S14.
 [2]第2実施形態 
 本発明の第2実施形態について図面を参照して説明する。 
 モジュールコントローラ11aは、図6に示すように、能力制御部211およびレリース制御部212を含む。
[2] Second embodiment
A second embodiment of the present invention will be described with reference to the drawings.
The module controller 11a includes a capability control unit 211 and a release control unit 212, as shown in FIG.
 能力制御部211は、出口水温センサ9bで検知された水温Twoが予め設定された目標出口水温Twtとなるように、圧縮機21,41,51,71の能力(運転周波数F)を制御する。また、能力制御部211は、システムコントローラ10の後述の能力補償制御部203から能力の増加を指令された場合に、その指令に応じた能力増加分だけ圧縮機21,41,51,71の能力(運転周波数F)を増加する制御を適宜に実行する。 The capacity control unit 211 controls the capacity (operating frequency F) of the compressors 21, 41, 51, 71 so that the water temperature Two detected by the outlet water temperature sensor 9b becomes a preset target outlet water temperature Twt. When the capacity controller 211 is instructed to increase the capacity from the capacity compensation controller 203 (to be described later) of the system controller 10, the capacity of the compressors 21, 41, 51, 71 is increased by the capacity according to the command. Control to increase (operating frequency F) is appropriately executed.
 レリース制御部212は、圧縮機21,41,51,71のいずれかの運転電流(電流センサ96,97,98,99の検知電流)Imが異常上昇して許容上限値に近い規定値Imsに達した場合、その異常上昇した圧縮機の能力(運転周波数F)を低減するいわゆるレリース制御を実行する。 The release control unit 212 increases the operating current (detected current of the current sensors 96, 97, 98, 99) Im of any one of the compressors 21, 41, 51, 71 to the specified value Ims close to the allowable upper limit value. If it has been reached, so-called release control is performed to reduce the abnormally increased compressor capacity (operation frequency F).
 モジュールコントローラ11b,…11nも、同じく、能力制御部211およびレリース制御部212を含む。 The module controllers 11b,... 11n also include a capability control unit 211 and a release control unit 212.
 システムコントローラ10は、図7に示すように、第1制御部201、第2制御部202、および能力補償制御部103を含む。 The system controller 10 includes a first control unit 201, a second control unit 202, and a capability compensation control unit 103, as shown in FIG.
 第1制御部201は、負荷である利用側機器3a,3b,…3nの要求能力(室内空気温度Taと設定温度Tsとの差)に応じて、熱源機1a,1b,…1nの運転台数および流量調整弁4a,4b,…4nの調整量(開度)を制御する。 The first control unit 201 operates the number of heat source devices 1a, 1b,... 1n according to the required capacity (difference between the indoor air temperature Ta and the set temperature Ts) of the usage- side devices 3a, 3b,. And the adjustment amount (opening degree) of the flow rate adjusting valves 4a, 4b,.
 第2制御部202は、流量センサ5の検知流量Qtに応じて、流量調整弁7の調整量(開度)を制御する。 The second control unit 202 controls the adjustment amount (opening degree) of the flow rate adjusting valve 7 according to the detected flow rate Qt of the flow rate sensor 5.
 能力補償制御部203は、熱源機1a,1b,…1nのいずれかでレリース制御が実行された場合、熱源機1a,1b,…1nのうちそのレリース制御が実行された熱源機を除く運転中の1つまたは複数の熱源機の能力を、そのレリース制御による能力低減分だけ増加するべく、その旨を熱源機1a,1b,…1nのモジュールコントローラ11a,11b,…11nに指令する。 When the release control is executed in any one of the heat source devices 1a, 1b,... 1n, the capability compensation control unit 203 is in operation excluding the heat source device in which the release control is executed among the heat source devices 1a, 1b,. In order to increase the capability of the one or more heat source units by an amount corresponding to the capability reduction by the release control, this is commanded to the module controllers 11a, 11b,... 11n of the heat source units 1a, 1b,.
 なお、能力補償制御部103は、具体的には、熱源機1a,1b,…1nのいずれかでレリース制御が実行された場合、そのレリース制御が実行された熱源機のそのレリース制御による能力低減量を、そのレリース制御が実行された熱源機を除く運転中の1つまたは複数の熱源機で案分する。そして、能力補償制御部103は、上記レリース制御が実行された熱源機を除く運転中の1つまたは複数の熱源機の能力を、上記案分した能力分だけ増加する。 Note that, when the release control is executed in any one of the heat source units 1a, 1b,... 1n, the capability compensation control unit 103 specifically reduces the capability of the heat source unit in which the release control is executed by the release control. The quantity is prorated by one or more operating heat source machines excluding the heat source machine for which the release control was performed. Then, the capability compensation control unit 103 increases the capability of the one or more heat source devices in operation excluding the heat source device on which the release control is performed by the apportioned capability.
 他の構成は第1実施形態と同じである。よって、その説明は省略する。 
 つぎに、モジュールコントローラ11aが実行する制御を図8のフローチャートを参照しながら説明する。なお、モジュールコントローラ11b,…11nが実行する制御は、モジュールコントローラ11aが実行する制御と同じなので、その説明は省略する。
Other configurations are the same as those of the first embodiment. Therefore, the description is omitted.
Next, the control executed by the module controller 11a will be described with reference to the flowchart of FIG. Since the control executed by the module controllers 11b,... 11n is the same as the control executed by the module controller 11a, the description thereof is omitted.
 モジュールコントローラ11aは、出口水温センサ9bで検知された水温Twoが予め設定された目標出口水温Twtとなるように、圧縮機21,41,51,71の能力(運転周波数F)を制御する(ステップS21)。 The module controller 11a controls the capacity (operation frequency F) of the compressors 21, 41, 51, 71 so that the water temperature Two detected by the outlet water temperature sensor 9b becomes a preset target outlet water temperature Twt (step F). S21).
 そして、モジュールコントローラ11aは、圧縮機21の運転電流Imと規定値Imsとを比較する(ステップS22)。圧縮機21の運転電流Imが規定値Ims未満の場合(ステップS22のNO)、モジュールコントローラ11aは、上記ステップS21の処理に戻る。 Then, the module controller 11a compares the operating current Im of the compressor 21 with the specified value Ims (step S22). When the operating current Im of the compressor 21 is less than the specified value Ims (NO in step S22), the module controller 11a returns to the process of step S21.
 設置条件や環境条件などの変化により、熱源機1aにおける第1~第4ヒートポンプ式冷凍サイクルの各空気熱交換器に送られる空気の温度や量に偏りが生じ、それが原因で例えば第1ヒートポンプ式冷凍サイクルの運転状態が悪化して熱源機1aにおける圧縮機21の運転電流Imが異常上昇した場合を例に説明する。 Due to changes in installation conditions, environmental conditions, etc., the temperature and amount of air sent to each air heat exchanger of the first to fourth heat pump refrigeration cycles in the heat source unit 1a are biased, and this causes, for example, the first heat pump A case will be described as an example in which the operating state Im of the compressor 21 in the heat source unit 1a has abnormally increased due to the deterioration of the operating state of the refrigeration cycle.
 熱源機1aにおける圧縮機21の運転電流Imが異常上昇して規定値Imsに達した場合(ステップS22のYES)、モジュールコントローラ11aは、インバータ91の出力周波数Fを所定値Faだけ低減するレリース制御を実行する(ステップS23)。このレリース制御の実行により、圧縮機21の能力が低減し、圧縮機21の運転電流Imが規定値Ims未満に抑制される。この抑制により、熱源機1aにおける電気機器の不要な温度上昇を防ぐことができる。 When the operating current Im of the compressor 21 in the heat source unit 1a abnormally increases and reaches the specified value Ims (YES in step S22), the module controller 11a releases the output frequency F of the inverter 91 by a predetermined value Fa. Is executed (step S23). By executing this release control, the capacity of the compressor 21 is reduced, and the operating current Im of the compressor 21 is suppressed to less than the specified value Ims. By this suppression, it is possible to prevent an unnecessary temperature rise of the electric device in the heat source device 1a.
 一方、システムコントローラ10が実行する制御を図9のフローチャートを参照しながら説明する。 
 システムコントローラ10は、負荷である利用側機器3a,3b,…3nの要求能力(室内空気温度Taと設定温度Tsとの差)に応じて、熱源機1a,1b,…1nの運転台数および流量調整弁4a,4b,…4nの調整量(開度)を制御する(ステップS31)。さらに、システムコントローラ10は、流量センサ5の検知流量Qtに応じて、流量調整弁7の調整量(開度)を制御する(ステップS32)。
On the other hand, the control executed by the system controller 10 will be described with reference to the flowchart of FIG.
The system controller 10 determines the number of operating heat sources 1a, 1b,... 1n and the flow rate according to the required capacity (difference between the indoor air temperature Ta and the set temperature Ts) of the use side devices 3a, 3b,. The adjustment amount (opening degree) of the adjustment valves 4a, 4b,... 4n is controlled (step S31). Furthermore, the system controller 10 controls the adjustment amount (opening degree) of the flow rate adjusting valve 7 according to the detected flow rate Qt of the flow rate sensor 5 (step S32).
 そして、システムコントローラ10は、熱源機1a,1b,…1nにおけるレリース制御の実行を監視する(ステップS33)。熱源機1a,1b,…1nのいずれにおいてもレリース制御が実行されない場合(ステップS33のNO)、システムコントローラ10は、上記ステップS31の処理に戻る。 The system controller 10 monitors the execution of release control in the heat source devices 1a, 1b,... 1n (step S33). When release control is not executed in any of the heat source devices 1a, 1b,... 1n (NO in step S33), the system controller 10 returns to the processing in step S31.
 例えば熱源機1aでレリース制御が実行された場合(ステップS33のYES)、システムコントローラ10は、レリース制御が実行された熱源機1aを除く他の運転中の1つまたは複数の熱源機(熱源機1b,…1nのいずれか)の能力を、そのレリース制御による能力の低減分だけ増加する(ステップS34)。 For example, when the release control is executed by the heat source device 1a (YES in step S33), the system controller 10 performs one or more heat source devices (heat source devices) in operation other than the heat source device 1a for which the release control is executed. 1b,..., 1n) is increased by the reduction of the capability by the release control (step S34).
 具体的には、システムコントローラ10は、上記レリース制御による熱源機1aの能力低減量を他の運転中の1つまたは複数の熱源機(熱源機1b,…1nのいずれか)で案分し、この案分の結果を運転中の1つまたは複数の熱源機(熱源機1b,…1nのいずれか)のモジュールコントローラ(モジュールコントローラ11b~11nのいずれか)に知らせる。なお、システムコントローラ10は、上記案分に際し、案分の割合を熱源機1b~1nの定格容量や現時点の能力などに基づいて決定する。 Specifically, the system controller 10 apportions the amount of reduction in the capacity of the heat source unit 1a by the release control using one or more heat source units (any one of the heat source units 1b,. The result of this plan is notified to the module controller (any one of the module controllers 11b to 11n) of one or more heat source machines (any one of the heat source machines 1b,..., 1n) in operation. The system controller 10 determines the proportion of the proportion based on the rated capacity of the heat source devices 1b to 1n, the current capability, and the like.
 案分の知らせを受けた運転中の例えば熱源機1bのモジュールコントローラ11bは、ステップS21の能力制御の処理において、当該熱源機1bに案分された能力分だけ、当該熱源機1bにおける運転中の1つまたは複数の圧縮機の能力を増加する。この場合、モジュールコントローラ11bは、例えば、当該熱源機1bに案分された能力分を当該熱源機1bにおける運転中の1つまたは複数の圧縮機で案分し、案分した能力分にそれぞれ対応する周波数ΔFだけ運転中の1つまたは複数の圧縮機の運転周波数Fを増加する。つまり、当該熱源機1bにおける運転中の1つまたは複数の圧縮機の総能力が、当該熱源機1bに案分された能力分だけ増加される。 For example, the module controller 11b of the heat source unit 1b that has received the promising information is operating in the heat source unit 1b by the amount of the capacity allocated to the heat source unit 1b in the capacity control process of step S21. Increase the capacity of one or more compressors. In this case, the module controller 11b, for example, apportions the capacity apportioned to the heat source apparatus 1b by one or more compressors in operation in the heat source apparatus 1b, and corresponds to the apportioned capacity respectively. The operating frequency F of one or more compressors in operation is increased by the frequency ΔF to be operated. That is, the total capacity of the one or more compressors in operation in the heat source apparatus 1b is increased by the capacity allocated to the heat source apparatus 1b.
 案分の知らせを受けた他の運転中の熱源機1c~1nのモジュールコントローラ11c~11nも、熱源機1bのモジュールコントローラ11bと同様の制御を行う。 The module controllers 11c to 11n of the other operating heat source units 1c to 1n that have received the notice of the plan perform the same control as the module controller 11b of the heat source unit 1b.
 このように、レリース制御による熱源機1aの能力低減量を他の運転中の熱源機1b~1nで案分し、案分した能力分だけ熱源機1b~1nの能力をそれぞれ増加することにより、レリース制御による熱源機1aの能力の低減を補うことができる。 In this way, by reducing the capacity reduction amount of the heat source unit 1a by the release control by the heat source units 1b to 1n in other operation, and increasing the capacity of the heat source units 1b to 1n by the allocated amount, Reduction of the capability of the heat source unit 1a by release control can be supplemented.
 レリース制御によって熱源機1aの能力が低減したままでは、熱源装置1のエネルギー消費効率いわゆるCOPが低下してしまうが、レリース制御による熱源機1aの能力低減分を他の運転中の熱源機1b~1nの能力増加によって補うので、熱源装置1のCOPの低下を防ぐことができる。 If the capability of the heat source unit 1a is reduced by the release control, the energy consumption efficiency so-called COP of the heat source device 1 is reduced. However, the reduced amount of the capability of the heat source unit 1a by the release control is reduced to the other heat source units 1b to 1b in operation. Since it is compensated by the increase in capacity of 1n, it is possible to prevent the COP of the heat source device 1 from being lowered.
 システムコントローラ10は、ステップS34の処理後、上記ステップS31の処理に戻る。 The system controller 10 returns to the process of step S31 after the process of step S34.
 [変形例] 
 上記第1実施形態では、レリース制御による能力低減量を他の運転中の圧縮機の能力増加によって補う構成としたが、その能力増加を室外ファン26,46,56,76の回転数変化によって行う構成としてもよい。あるいは、圧縮機の能力増加および室外ファン26,46,56,76の回転数変化の両方を行う構成としてもよい。
[Modification]
In the first embodiment, the capacity reduction amount due to the release control is compensated by increasing the capacity of the compressor during other operations. However, the capacity increase is performed by changing the rotational speed of the outdoor fans 26, 46, 56, and 76. It is good also as a structure. Or it is good also as a structure which performs both the capability increase of a compressor, and the rotation speed change of the outdoor fans 26,46,56,76.
 モジュールコントローラ11aは、冷却運転時、空気熱交換器23a~73bにおける冷媒の凝縮温度(温度センサ27a~77bの検知温度)Tcと外気温度Toとの差であるいわゆる熱交ピンチを求め、その熱交ピンチが一定となるように室外ファン26~76の回転数を制御しており、この回転数制御を上記能力増加に利用する。同様の回転数制御を他のモジュールコントローラ11b~11nも行う。 During the cooling operation, the module controller 11a obtains a so-called heat exchange pinch that is the difference between the refrigerant condensation temperature (detected temperature of the temperature sensors 27a to 77b) Tc and the outside air temperature To in the air heat exchangers 23a to 73b, and the heat The rotational speed of the outdoor fans 26 to 76 is controlled so that the alternating pinch is constant, and this rotational speed control is used for the above-mentioned increase in capacity. Similar rotation speed control is performed by the other module controllers 11b to 11n.
 上記各実施形態では、4つのヒートポンプ式冷凍サイクルおよび2つの水熱交換器が搭載された熱源機1a,1b,…1nを例に説明したが、各熱源機におけるヒートポンプ式冷凍サイクルの個数および水熱交換器の個数については適宜に選定可能である。 In each of the above embodiments, the heat source apparatuses 1a, 1b,. The number of heat exchangers can be selected as appropriate.
 上記各実施形態では、負荷が空気熱交換器である場合を例に説明したが、負荷について限定はなく、例えば貯湯タンクの水を負荷とする場合も同様に実施可能である。 In each of the above embodiments, the case where the load is an air heat exchanger has been described as an example. However, there is no limitation on the load, and for example, the case where the load is water in a hot water storage tank is also possible.
 上記各実施形態では、システムコントローラ10は、負荷である利用側機器3a,3b,…3nの要求能力(室内空気温度Taと設定温度Tsとの差)に応じて、熱源機1a,1b,…1nの運転台数を制御する例を説明したが、システムコントローラ10は、各熱源機1a,1b,…1nの入口水温センサ9b,出口水温センサ9aで検知された水温および目標出口水温Twtから算出された熱源装置1の必要能力に応じて熱源機1a,1b,…1nの運転台数を制御することも可能である。 In each of the above-described embodiments, the system controller 10 uses the heat source devices 1a, 1b,... According to the required capacity (difference between the indoor air temperature Ta and the set temperature Ts) of the usage- side devices 3a, 3b,. Although the example of controlling the number of operating units of 1n has been described, the system controller 10 is calculated from the water temperature detected by the inlet water temperature sensor 9b and the outlet water temperature sensor 9a of each heat source device 1a, 1b,. It is also possible to control the number of operating heat source devices 1a, 1b,... 1n according to the required capacity of the heat source device 1.
 その他、上記各実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Other than the above, the above embodiments and modifications are presented as examples, and are not intended to limit the scope of the invention. The novel embodiments and modifications can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the spirit of the invention. In these embodiments and modifications, the scope of the invention is included in the gist, and is included in the invention described in the claims and the equivalents thereof.
 1…熱源装置、1a~1n…熱源機、2a,2b…水配管(熱媒体配管)、3…利用側機器(負荷)、4a~4n…流量調整弁、5…流量センサ、6…バイパス配管、7…流量調整弁、8…差圧センサ、10…システムコントローラ、11a~11n…モジュールコントローラ、21,41,51,71…圧縮機、23a~73b…空気熱交換器、30,60…水熱交換器(熱媒体熱交換器)、80…ポンプ、90…商用交流電源、91~95…インバータ、96~99…電流センサ DESCRIPTION OF SYMBOLS 1 ... Heat source apparatus, 1a-1n ... Heat source machine, 2a, 2b ... Water piping (heat-medium piping), 3 ... Utilization side apparatus (load), 4a-4n ... Flow control valve, 5 ... Flow sensor, 6 ... Bypass piping , 7 ... Flow control valve, 8 ... Differential pressure sensor, 10 ... System controller, 11a to 11n ... Module controller, 21, 41, 51, 71 ... Compressor, 23a-73b ... Air heat exchanger, 30, 60 ... Water Heat exchanger (heat medium heat exchanger), 80 ... pump, 90 ... commercial AC power supply, 91-95 ... inverter, 96-99 ... current sensor

Claims (7)

  1.  複数の圧縮機と、
     前記複数の圧縮機のいずれかの能力を低減するレリース制御が実行された場合、前記複数の圧縮機のうち前記レリース制御の対象となった前記圧縮機を除く1つまたは複数の前記圧縮機の能力を、前記レリース制御による前記能力低減分だけ増加するコントローラと、
     を備えることを特徴とする熱源機。
    Multiple compressors,
    When release control for reducing any one of the plurality of compressors is executed, one or a plurality of the compressors excluding the compressor subjected to the release control among the plurality of compressors. A controller that increases the capacity by the capacity reduction by the release control;
    A heat source machine comprising:
  2.  前記コントローラは、
     前記複数の圧縮機のいずれかの運転電流が異常上昇した場合に、その異常上昇した圧縮機の能力を低減するレリース制御を実行し、
     前記複数の圧縮機のうち、前記レリース制御の対象となった前記圧縮機を除く1つまたは複数の前記圧縮機の能力を、前記レリース制御による前記能力低減分だけ増加する、
     ことを特徴とする請求項1に記載の熱源機。
    The controller is
    When the operating current of any of the plurality of compressors abnormally increases, release control is performed to reduce the capacity of the abnormally increased compressor,
    Among the plurality of compressors, the capacity of one or a plurality of the compressors excluding the compressor subjected to the release control is increased by the capacity reduction by the release control.
    The heat source machine according to claim 1, wherein
  3.  前記コントローラは、
     前記複数の圧縮機のいずれかの運転電流が異常上昇した場合に、その異常上昇した圧縮機の能力を低減するレリース制御を実行し、
     前記レリース制御の対象となった前記圧縮機のそのレリース制御による能力低減量を、前記複数の圧縮機のうち前記レリース制御の対象となった前記圧縮機を除く1つまたは複数の前記圧縮機で案分し、
     前記複数の圧縮機のうち、前記レリース制御の対象となった前記圧縮機を除く1つまたは複数の前記圧縮機の能力を、前記案分した能力分だけ増加する、
     ことを特徴とする請求項1記載の熱源機。
    The controller is
    When the operating current of any of the plurality of compressors abnormally increases, release control is performed to reduce the capacity of the abnormally increased compressor,
    The amount of capacity reduction due to the release control of the compressor subjected to the release control is determined by one or more of the plurality of compressors excluding the compressor subjected to the release control. Prorated,
    Increasing the capacity of one or a plurality of the compressors excluding the compressor subjected to the release control among the plurality of compressors by the apportioned capacity,
    The heat source machine according to claim 1.
  4.  前記複数の圧縮機をそれぞれ含む複数の冷凍サイクル、
     をさらに備えることを特徴とする請求項1記載の熱源機。
    A plurality of refrigeration cycles each including the plurality of compressors;
    The heat source apparatus according to claim 1, further comprising:
  5.  複数の熱源機と、
     前記複数の熱源機のいずれかの能力を低減するレリース制御が実行された場合、前記複数の熱源機のうち前記レリース制御が実行された前記熱源機を除く1つまたは複数の前記熱源機の能力を、前記レリース制御による前記能力低減分だけ増加するコントローラと、
     を備えることを特徴とする熱源装置。
    Multiple heat source machines,
    When release control that reduces any of the capabilities of the plurality of heat source units is performed, the capability of one or more of the heat source units excluding the heat source unit that has performed the release control among the plurality of heat source units A controller for increasing the amount of the capacity reduction by the release control,
    A heat source device comprising:
  6.  前記複数の熱源機は、少なくとも1つの圧縮機をそれぞれ含み、その圧縮機の運転電流が異常上昇した場合にその圧縮機の能力を低減するレリース制御を実行する、
     ことを特徴とする請求項5に記載の熱源装置。
    The plurality of heat source units each include at least one compressor, and perform release control to reduce the capacity of the compressor when the operating current of the compressor abnormally increases.
    The heat source device according to claim 5.
  7.  前記コントローラは、
     前記レリース制御が実行された前記熱源機のそのレリース制御による能力低減量を、前記複数の熱源機のうち前記レリース制御が実行された前記熱源機を除く1つまたは複数の前記熱源機で案分し、
     前記複数の熱源機のうち、前記レリース制御が実行された前記熱源機を除く1つまたは複数の前記熱源機の能力を、前記案分した能力分だけ増加する、
     ことを特徴とする請求項6に記載の熱源装置。
    The controller is
    Proportional reduction of the capacity of the heat source machine that has been subjected to the release control by the release control is prorated by one or a plurality of the heat source machines that exclude the heat source machine that has been subjected to the release control among the plurality of heat source machines. And
    Among the plurality of heat source units, the capability of one or a plurality of the heat source units excluding the heat source unit for which the release control has been executed is increased by the apportioned capability.
    The heat source device according to claim 6.
PCT/JP2015/066750 2014-06-10 2015-06-10 Heat source machine and heat source device WO2015190525A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016527842A JP6303004B2 (en) 2014-06-10 2015-06-10 Heat source machine and heat source device
EP15807501.0A EP3156747B1 (en) 2014-06-10 2015-06-10 Heat source machine and heat source device
KR1020177000448A KR101895175B1 (en) 2014-06-10 2015-06-10 Heat source machine and heat source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-119614 2014-06-10
JP2014119614 2014-06-10

Publications (1)

Publication Number Publication Date
WO2015190525A1 true WO2015190525A1 (en) 2015-12-17

Family

ID=54833614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066750 WO2015190525A1 (en) 2014-06-10 2015-06-10 Heat source machine and heat source device

Country Status (4)

Country Link
EP (1) EP3156747B1 (en)
JP (1) JP6303004B2 (en)
KR (1) KR101895175B1 (en)
WO (1) WO2015190525A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138910A1 (en) * 2018-01-12 2019-07-18 三菱重工サーマルシステムズ株式会社 Heat exchange unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111442489B (en) * 2020-03-27 2021-12-14 上海美控智慧建筑有限公司 Control method and system of air conditioner, air conditioner and readable storage medium

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132779A (en) * 1983-01-17 1984-07-30 Toshiba Corp Air conditioner
JPS62166245A (en) * 1986-01-20 1987-07-22 Toshiba Corp Method for controlling air conditioner
JPS62225856A (en) * 1986-03-27 1987-10-03 株式会社東芝 Air conditioner
WO2004088212A1 (en) * 2003-03-28 2004-10-14 Toshiba Carrier Corporation Air conditioner
JP2004360966A (en) * 2003-06-03 2004-12-24 Toshiba Kyaria Kk Air conditioner
JP2005265252A (en) * 2004-03-17 2005-09-29 Toshiba Kyaria Kk Refrigerator and refrigerator vehicle
JP2007163017A (en) * 2005-12-13 2007-06-28 Toyo Kiyaria Kogyo Kk Heat exchange unit
JP2009109059A (en) * 2007-10-29 2009-05-21 Toshiba Carrier Corp Air conditioner
WO2010092916A1 (en) * 2009-02-13 2010-08-19 東芝キヤリア株式会社 Secondary pump type heat source system and secondary pump type heat source control method
JP2013108732A (en) * 2011-11-24 2013-06-06 Mitsubishi Heavy Ind Ltd Defrosting operation method for heat pump system, and heat pump system
JP2013231590A (en) * 2009-07-28 2013-11-14 Toshiba Carrier Corp Heat source unit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648479A (en) * 1970-09-28 1972-03-14 Westinghouse Electric Corp Refrigeration system with multiple centrifugal compressors and load balancing control
US4248054A (en) * 1979-02-14 1981-02-03 Westinghouse Electric Corp. Refrigeration system with load balancing control for at least three centrifugal compressors
JPH07332772A (en) * 1994-06-06 1995-12-22 Toshiba Corp Air conditioner
JP3795996B2 (en) * 1997-02-07 2006-07-12 三洋電機株式会社 Air conditioner
EP1873467B1 (en) * 2004-10-28 2014-07-30 Emerson Retail Services INC. Controller and method for a variable speed condenser fan
JP4829818B2 (en) 2007-03-15 2011-12-07 新日本空調株式会社 Operation control method for 1 pump heat source equipment
JP4879135B2 (en) * 2007-10-22 2012-02-22 三洋電機株式会社 Electronic equipment cooling device
JP2010270970A (en) * 2009-05-21 2010-12-02 Mitsubishi Heavy Ind Ltd Heat source system and method and program for controlling the same
JP5240134B2 (en) * 2009-09-07 2013-07-17 日立電線株式会社 Cold water circulation system
JP5053351B2 (en) * 2009-11-24 2012-10-17 三菱電機株式会社 Number control device
JP5787792B2 (en) * 2012-02-29 2015-09-30 三菱重工業株式会社 Apparatus and method for controlling number of heat source systems and heat source system
JP6095360B2 (en) * 2012-12-25 2017-03-15 ダイキン工業株式会社 Thermal load treatment system
CN105940272B (en) * 2014-02-20 2019-03-08 东芝开利株式会社 Heat resource equipment

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132779A (en) * 1983-01-17 1984-07-30 Toshiba Corp Air conditioner
JPS62166245A (en) * 1986-01-20 1987-07-22 Toshiba Corp Method for controlling air conditioner
JPS62225856A (en) * 1986-03-27 1987-10-03 株式会社東芝 Air conditioner
WO2004088212A1 (en) * 2003-03-28 2004-10-14 Toshiba Carrier Corporation Air conditioner
JP2004360966A (en) * 2003-06-03 2004-12-24 Toshiba Kyaria Kk Air conditioner
JP2005265252A (en) * 2004-03-17 2005-09-29 Toshiba Kyaria Kk Refrigerator and refrigerator vehicle
JP2007163017A (en) * 2005-12-13 2007-06-28 Toyo Kiyaria Kogyo Kk Heat exchange unit
JP2009109059A (en) * 2007-10-29 2009-05-21 Toshiba Carrier Corp Air conditioner
WO2010092916A1 (en) * 2009-02-13 2010-08-19 東芝キヤリア株式会社 Secondary pump type heat source system and secondary pump type heat source control method
JP2013231590A (en) * 2009-07-28 2013-11-14 Toshiba Carrier Corp Heat source unit
JP2013108732A (en) * 2011-11-24 2013-06-06 Mitsubishi Heavy Ind Ltd Defrosting operation method for heat pump system, and heat pump system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156747A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019138910A1 (en) * 2018-01-12 2019-07-18 三菱重工サーマルシステムズ株式会社 Heat exchange unit
JP2019124373A (en) * 2018-01-12 2019-07-25 三菱重工サーマルシステムズ株式会社 Heat exchange unit
JP7313796B2 (en) 2018-01-12 2023-07-25 三菱重工サーマルシステムズ株式会社 heat exchange unit

Also Published As

Publication number Publication date
KR101895175B1 (en) 2018-09-04
EP3156747A4 (en) 2018-01-17
EP3156747A1 (en) 2017-04-19
JP6303004B2 (en) 2018-03-28
EP3156747B1 (en) 2019-08-14
KR20170018890A (en) 2017-02-20
JPWO2015190525A1 (en) 2017-04-20

Similar Documents

Publication Publication Date Title
JP5558400B2 (en) Heat source system and number control method for heat source system
JP5404333B2 (en) Heat source system
US11441828B2 (en) Method for operating a chiller
EP3115707B1 (en) Heat source device
WO2012164684A1 (en) Temperature adjusting system, air conditioning system, and control method
WO2013145005A1 (en) Air-conditioning system
WO2013145844A1 (en) Heat source system, device for controlling same, and method for controlling same
JP6609697B2 (en) Heat source system and control method of heat source system
JP6749471B2 (en) Air conditioner
JP5634389B2 (en) Air conditioner
JP6123289B2 (en) Air conditioning system
JP6486500B2 (en) Waste heat recovery system
JP6672619B2 (en) Air conditioning system
WO2018164253A1 (en) Air-conditioning device
JP6303004B2 (en) Heat source machine and heat source device
JP5780982B2 (en) Power conversion device and compressor, blower, air conditioner and refrigerator provided with the same
WO2016001958A1 (en) Air-conditioning device
JP6330779B2 (en) Heat pump type heating device
JP6152667B2 (en) Air conditioner
WO2019146023A1 (en) Refrigeration cycle device
JP2016102635A (en) Air conditioner system
JP2021044976A (en) Air conditioner
JP2016053437A (en) Refrigeration cycle device and air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527842

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015807501

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015807501

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177000448

Country of ref document: KR

Kind code of ref document: A