WO2015186616A1 - Control device for chassis dynamometer - Google Patents
Control device for chassis dynamometer Download PDFInfo
- Publication number
- WO2015186616A1 WO2015186616A1 PCT/JP2015/065498 JP2015065498W WO2015186616A1 WO 2015186616 A1 WO2015186616 A1 WO 2015186616A1 JP 2015065498 W JP2015065498 W JP 2015065498W WO 2015186616 A1 WO2015186616 A1 WO 2015186616A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inertia
- speed
- command
- electric
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
Definitions
- the present invention relates to a controller for a chassis dynamometer, and more particularly to improvement of work accuracy of the chassis dynamometer and reduction of machine differences.
- FIG. 13 shows a schematic configuration of the chassis dynamometer control unit, where 1 is a vehicle under test, 2 is a dynamometer, 3 is a roller, and the vehicle under test 1 is placed on this roller 3.
- Reference numeral 4 denotes a load cell, and 5 denotes a pulse pickup. A signal measured by the load cell 4 and the pulse pickup 5 is input to the driving force observer 6.
- Patent Document 1 Japanese Patent Laid-Open No. 2004-228561 aims to stabilize the electric inertia loop by changing the output torque of the dynamometer by changing the gain generated by the torque control system as means for changing the inertial resistance.
- the output of the running resistance setting unit 7 and the output of the driving force observer 6 are added by the adding unit 8, the torque detected by the load cell 4 is subtracted from the added value by the subtracting unit 9, and the difference value is input to the torque control unit 10.
- a torque command is generated and output to the inverter 11 as a control value.
- the inverter 11 executes torque absorption control for the dynamometer 2 in response to the torque command.
- the work amount obtained by traveling on the actual road and the work amount obtained by mode traveling on the dynamometer do not coincide with each other, and an error occurs. It is known that this work amount error varies between benches, and the following three factors A to C can be cited as causes of the occurrence of errors and machine differences between benches.
- the work error rate is defined by the equations (1) to (5).
- control response has a certain standard such as 90% response and within 100 ms, but the control response depends on the amount of feedforward and PID adjustment parameters by the adjuster. There is a difference in sex. As a result, there is a difference in the response performance of the electric inertia, which affects the variation in the measurement work error rate.
- a unique low-pass filter is used for torque detection used for control feedback, but this makes detection responsiveness low, making it difficult to increase responsiveness.
- the negative inertia is an inertia amount applied to make the inertia smaller than the mechanical inertia (fixed inertia) of the chassis dynamometer. For example, when the fixed inertia is 1000 kg (equivalent vehicle weight), a 700 kg vehicle is tested. Sometimes it is necessary to apply a negative inertia of -300 kg. In other words, it is driven from the chassis dynamometer.
- a vehicle to be tested is placed on a roller of a dynamometer, and a detection speed signal of the roller and a torque detection signal of the dynamometer are inputted to a driving force observer to give an electric inertia command of positive inertia.
- the torque detection signal is subtracted from the added value of the running resistance command and the electric inertia command output corresponding to the detected speed signal, and the difference is input to the torque control unit to generate the torque control command.
- an electric inertia setting unit that inputs the detection speed signal and outputs an electric inertia command of negative inertia is provided,
- M> Mo an electric inertia command is output from the driving force observer
- M ⁇ Mo the output of the electric inertia command is obtained from the electric inertia setting unit and the travel is performed. It is characterized in that it is configured to be added to the resistance command.
- Claim 2 of the present invention provides a speed correction unit having a speed correction gain map in which the speed correction gain is mapped according to the electric inertia set value, The speed correction gain is changed in accordance with the electric inertia setting value and added to the output of the driving force observer or the electric inertia setting unit.
- the electric inertia setting unit is configured to multiply a first differentiating circuit for differentiating the detection speed signal, a differential signal of the first differentiating circuit, and a preset electric inertia.
- a multiplication unit is provided, and the multiplication value of the first multiplication unit is added to the travel resistance command.
- the speed correction unit calculates a calculation speed by integrating an acceleration obtained by dividing a difference between the travel resistance command and the torque detection signal by electric inertia,
- the calculated calculation speed is multiplied by an inertia value composed of a ratio between the set electric inertia and the set inertia to obtain a first calculation speed, Multiplying the detected inertia signal by the inertia value consisting of the ratio between the set fixed inertia and the set inertia to obtain the second calculation speed;
- a speed target value is calculated by adding the first calculation speed and the second calculation speed, and a speed error is generated by a difference between the speed target value and the detected speed signal, and
- the speed correction gain map is provided in the correction output unit, and a correction signal is generated by multiplying the speed correction gain from the correction output unit and the speed error, and added to the output of the driving force observer or the electric inertia setting unit. It is characterized by comprising.
- a low-pass filter is provided in a torque detection circuit for torque detection signal feedback of the torque control unit, and the peak value of the resonance magnification between the low-pass filter characteristic and the mechanical dynamic characteristic measured in advance is one time or less.
- the feature is that it is set to be.
- the driving force observer includes a second differentiating circuit for differentiating the detected speed signal; A second multiplier for multiplying the differential signal of the second differentiating circuit by a preset fixed inertia; A subtracting unit that calculates a difference from the running resistance command after adding the multiplication value obtained by the second multiplication unit and the output value of the low-pass filter; The difference calculated by the subtracting unit is multiplied by a preset electric inertia and electric inertia set value based on a ratio of the set inertia, and the multiplied value and the running resistance command are added. is there.
- the occurrence of work error and the occurrence of machine difference between benches are reduced, and more accurate vehicle characteristics can be measured.
- FIG. 6 is a characteristic diagram of a conventional electric inertia command.
- Mechanical dynamic characteristics diagram The comparison figure of torque control characteristics. Detection response comparison diagram.
- FIG. 1 is a block diagram showing an embodiment of the present invention.
- Reference numeral 13 denotes a low-pass filter connected to the output side of the load cell 4, and the output of the low-pass filter 13 is input to the driving force observer 6 and the subtraction unit 9.
- Reference numeral 20 denotes an electric inertia setting unit that receives a signal measured by the pulse pickup 5.
- the electric inertia method used is the electric inertia method used for the driving force observer 6.
- the electric inertia method in the electric inertia setting unit 20 is referred to as a negative inertia electric inertia method (: differential method).
- the electric inertia setting values of the driving force observer 6 and the electric inertia setting unit 20 provided therewith are switched by a switch and output, and the output and the correction amount of the speed correction unit 21 are added by the adding unit 22, and an adding unit The output of 22 and the output of the running resistance setting unit 7 are added by the adding unit 8.
- the electric inertia set value is output from the driving force observer 6 when M> Mo.
- M ⁇ Mo that is, when the inertia is negative
- the electric inertia is set.
- the electrical inertia set value is output from the setting unit 20 to the adding unit 8 side.
- the speed correction unit 21 receives a torque detection signal, a speed detection signal, and a travel resistance command from the travel resistance setting unit 7 as shown in FIG. .
- FIG. 2 shows the detailed configuration of the torque control unit 10a, the inverter 11 and the electric inertia setting unit 20 in FIG. 1, and the driving force observer 6, the switch, the speed correction unit 21, the addition unit 22 and the like in FIG. 1 are not shown. is doing.
- the block shown between the output side of the inverter 11 and the vehicle speed V in FIG. 2 is expressed by replacing the mechanical components of the dynamometer 2 and the roller 3 in FIG. Therefore, in this block, the portion obtained by subtracting the driving force of the dynamometer 2 from the driving force of the vehicle under test 1 and multiplying the difference by 1 / sMo detects the speed corresponding to the vehicle speed from the pulse pickup 5 attached to the roller 3. (This also applies to FIG. 4 described later).
- the electric inertia setting unit 20 receives a speed detection signal detected by the pulse pickup 5 and is differentiated by a differentiating circuit 20a.
- the differentiated signal is obtained by an electric inertia Me and a multiplying unit 20b set in advance in a setting unit 20c. Is multiplied.
- the multiplication value of the multiplication unit 20b is output to the addition unit 8 after the correction value from the speed correction unit 21 (not shown) is added by the addition unit 22, and is added to the running resistance command by the running resistance setting unit 7 in the addition unit 8. Is done.
- FIG. 3 shows a block diagram of the speed correction unit 21 of FIG. 1.
- This speed correction unit 21 corrects the difference between the theoretical vehicle speed and the actual vehicle speed obtained from torque detection to zero. Therefore, the speed correction unit 21 is configured to map a proportional gain with respect to the correction amount and generate a correction output according to the inertia set value.
- the subtractor 21a the difference between the running resistance command value of the running resistance setting unit 7 and the torque detection signal is calculated, and the difference is divided by the electric inertia Me in 21b to become the acceleration (the difference of the subtractor 21a is multiplied by the multiplier 21b). The output is multiplied by 1 / Me to get acceleration).
- Acceleration is integrated by the integrator 21c to obtain a calculation speed and is input to the multiplication unit 21d.
- the setting unit 21e sets a ratio between the electric inertia Me and the setting inertia M, and the multiplication unit 21d multiplies the calculation speed and the set ratio to obtain the first calculation speed, which is input to the addition unit 21f.
- an inertia value is set by the ratio of the fixed inertia Mo and the set inertia M of the chassis dynamometer, and the set inertia value is multiplied by the speed detection value in the multiplication unit 21h to obtain the second calculation speed. It becomes.
- the second calculation speed is added to the first calculation speed by the adding unit 21f, thereby obtaining a speed target value (target speed).
- the speed target value further becomes a speed error by obtaining a difference from the speed detection value (detection value of the pulse pickup 5) by the subtractor 21i.
- the speed error is multiplied by the proportional gain from the correction output unit 21k by the multiplication unit 21j, and output as a correction amount (SE correction) to the addition unit 22 in FIG.
- the correction output unit 21k is a speed correction gain map corresponding to the inertia setting value, with the vertical axis representing the speed correction gain and the horizontal axis representing the electric inertia setting value. That is, by adding a gain correction function to the speed correction function and changing the speed correction gain according to the inertia setting value, the target vehicle speed is determined so that the target driving force and the measured driving force are equal.
- the first calculation speed based on the electric inertia Me (output of the multiplication unit 21d) and the second calculation speed based on the fixed inertia Mo (output of the multiplication unit 21h) are obtained separately.
- An ideal target speed can be calculated.
- FIG. 4 shows a detailed configuration of the driving force observer 6 of FIG. 1, and the switch, the electric inertia setting unit 20, the speed correction unit 21, the addition unit 22 and the like in FIG. 1 are not shown.
- the speed detection signal detected by the pulse pickup 5 is input to the travel resistance setting unit 7 and a travel resistance command value corresponding to the speed is output.
- the speed detection signal is also input to the driving force observer 6 and differentiated by the differentiating circuit 6a, and the differentiated signal is multiplied by the fixed inertia Mo of the chassis dynamometer preset by the setting unit 6c (multiplication unit 6b).
- the multiplication value of the multiplication unit 6b is added to the torque detection value (output of the low pass filter 13) by the addition unit 6d to obtain a torque component due to mechanical inertia, and this torque component is calculated by the subtraction unit 6e as a difference from the running resistance command value.
- the difference calculated by executing is output to the multiplier 6f.
- an inertia value is set by the ratio of the electric inertia Me and the set inertia M, and the set inertia value is multiplied by the torque component due to the mechanical inertia in the multiplication unit 6f and is added to the addition unit 8 side as an electric inertia set value. Is output.
- the output of the adder 8 is output to the torque controller 10a via the subtractor 9 as described in FIG. 1, and a torque command is generated.
- the torque detection signal detected by the load cell 4 is fed back to the torque control unit 10a, and a low-pass filter 13 is connected to the output side of the torque detection unit.
- the low-pass filter 13 measures the mechanical dynamic characteristics in advance, grasps the mechanical resonance point and magnification, and quantifies the mechanical dynamic characteristics.
- the peak frequency of resonance magnification with the mechanical dynamic characteristics is selected so that the frequency characteristics are optimal for torque detection, and for example, 90% / 30msec is targeted to improve control response and electrical inertia response. ing.
- the correction value from the speed correction unit 21 is added to the electric inertia setting value by the driving force observer 6. Is output to the adder 8 as an electric inertia set value.
- the driving force observer 6 obtains a multiplication value of the differentiated detection speed signal (output of the differentiation circuit 6 a) and the fixed inertia Mo, and adds the multiplication value and torque detection that has passed through the low-pass filter 13. Is performed by the adder 6d.
- the multiplication unit 6f multiplies the calculation output of the subtraction unit 6e and the inertia value based on the ratio of the electric inertia Me and the set inertia M set in the setting unit 6g, and as a result, the multiplication unit 6f sends the electric inertia to the addition unit 8.
- the set value is output.
- the running resistance command corresponding to the vehicle speed set by the running resistance setting unit 7 is output to the adding unit 8, and the running resistance command and the electric inertia set value (output of the multiplication unit 6f) are added.
- the added value of the adding unit 8 is subtracted from the torque detection fed back through the low-pass filter 13 in the subtracting unit 9, and the difference is input to the torque control unit 10 a to generate a torque command.
- the meter 2 is controlled.
- line A represents a fixed inertia torque
- line C represents a theoretical electric inertia command
- line D represents an electric inertia command
- line E represents a vehicle speed. Is.
- the electric inertia range is wide on the positive inertia side, whereas the electric inertia is in the initial state of transient on the negative inertia side. Is applied too much, and there is a difference between the electrical inertia command (line D) and the theoretical electrical inertia command (line C).
- the electric inertia command (line D) when the electric inertia setting unit 20 shown in FIG. 6 is provided coincides with the theoretical electric inertia command (line C) and has a high electric inertia. You can see that it is applied with accuracy.
- FIG. 7 is a Bode diagram showing mechanical dynamic characteristics. A resonance point exists in the vicinity of 40 Hz, and the characteristic of the low-pass filter 13 is selected by grasping the resonance point and the magnification.
- FIG. 8 is a Bode diagram comparing the torque control characteristics when using the low-pass filter 13 in consideration of mechanical dynamic characteristics.
- the line A is before the low-pass filter characteristic adjustment, the line B is after the adjustment, and the frequency characteristic is wide. It is still stretched.
- FIG. 10 and 11 show the electric inertia command in the transient state when the vehicle speed is changed.
- FIG. 10 is a characteristic diagram when the electric inertia command is generated only from the conventional driving force observer 6.
- FIG. It is a characteristic view of an electric inertia command when the electric inertia setting unit 20 according to the invention is provided.
- line B is an electric inertia command
- line C is a theoretical electric inertia command
- line E is a vehicle speed
- FIG. 9A shows a conventional torque response
- FIG. 9B is a torque response diagram when using the low-pass filter 13 considering the mechanical dynamic characteristics. Can be seen to improve.
- FIG. 12 is a diagram showing a change in the amount of error at the time of mode running.
- FIG. 12 is a diagram showing a change in the amount of work error accumulated when actually running in the mode, and when the electric inertia setting unit 20 according to the present invention is provided, Is approaching.
- a driving force observer adopting an electric inertia method at the time of positive inertia and an electric inertia setting unit adopting an electric inertia method at the time of negative inertia are provided side by side, and the relationship between the set inertia M and the fixed inertia Mo is M> Electric inertia value is output from the driving force observer when Mo, and output is obtained from the electric inertia setting unit when M ⁇ Mo, so that the electric inertia setting value can be optimized, and control switching to negative inertia
- the responsiveness at the time is improved, and the amount of error generated at the vehicle speed change point is reduced.
- speed correction By providing a speed correction unit and changing the speed correction gain for each inertia setting value, speed correction can be performed in the range of all electric inertia setting values, and the target driving force and the measured driving force become equal. It can be controlled.
- a low-pass filter is provided in the torque detection feedback circuit in the torque control unit, and the characteristic of this low-pass filter is torque detection so that the peak value of the resonance magnification with the mechanical dynamic characteristic measured in advance is 1 or less. Thus, the response of torque control is improved.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Feedback Control In General (AREA)
Abstract
In a control device for a chassis dynamometer, a work load error and a machine difference between benches exert a bad influence on the measurement accuracy of a vehicle characteristic. A detection speed signal and a torque detection signal are inputted to a driving force observer (6), and an electric inertia command of positive inertia is outputted. The electric inertia command is added to a travel resistance command that is outputted from a travel resistance setting unit (7) to correspond to the detection speed signal, and the torque detection signal is subtracted from the addition value thereof to generate a torque control command. An electric inertia setting unit (20) which outputs an electric inertia command of negative inertia is provided together with the driving force observer (6). When M>Mo where M is set inertia and Mo is fixed inertia, the electric inertia command is outputted from the driving force observer (6), and when M<Mo, the electric inertia command is outputted from the electric inertia setting unit (20). Further, a speed correction value in a speed correction unit (21) is added to the electric inertia command.
Description
本発明は、シャシーダイナモメータの制御装置に係わり、特にシャシーダイナモメータの仕事量精度の向上と機差の低減に関するものである。
The present invention relates to a controller for a chassis dynamometer, and more particularly to improvement of work accuracy of the chassis dynamometer and reduction of machine differences.
シャシーダイナモメータシステムで車両の性能試験や排ガス試験などを行うとき、ダイナモメータは制御装置による走行抵抗制御を行うことで実車と等価な慣性を付加し、実路走行を模擬した試験を行っている。
図13はシャシーダイナモメータ制御部の概略構成を示したもので、1は被試験車両、2はダイナモメータ、3はローラで、このローラ3に被試験車両1が載置される。4はロードセル、5はパルスピックアップで、このロードセル4とパルスピックアップ5により計測された信号が駆動力オブザーバ6に入力される。 When performing vehicle performance tests, exhaust gas tests, etc. with a chassis dynamometer system, the dynamometer adds a inertia equivalent to that of a real vehicle by performing running resistance control with a control device, and performs a test that simulates running on a real road. .
FIG. 13 shows a schematic configuration of the chassis dynamometer control unit, where 1 is a vehicle under test, 2 is a dynamometer, 3 is a roller, and the vehicle undertest 1 is placed on this roller 3. Reference numeral 4 denotes a load cell, and 5 denotes a pulse pickup. A signal measured by the load cell 4 and the pulse pickup 5 is input to the driving force observer 6.
図13はシャシーダイナモメータ制御部の概略構成を示したもので、1は被試験車両、2はダイナモメータ、3はローラで、このローラ3に被試験車両1が載置される。4はロードセル、5はパルスピックアップで、このロードセル4とパルスピックアップ5により計測された信号が駆動力オブザーバ6に入力される。 When performing vehicle performance tests, exhaust gas tests, etc. with a chassis dynamometer system, the dynamometer adds a inertia equivalent to that of a real vehicle by performing running resistance control with a control device, and performs a test that simulates running on a real road. .
FIG. 13 shows a schematic configuration of the chassis dynamometer control unit, where 1 is a vehicle under test, 2 is a dynamometer, 3 is a roller, and the vehicle under
7は、パルスピックアップ5により計測された信号を入力とし、車速に応じた走行抵抗指令を出力する走行抵抗設定部であり、その出力は加算部8と駆動力オブザーバ6に出力される。その際、駆動力オブザーバ6は、走行抵抗のうち、ダイナモメータの吸収分として慣性抵抗を制御する電気慣性補償方式が採用されており、この方式は特許文献1として公知となっている。特許文献1は、慣性抵抗を変える手段としてトルク制御系が生成したゲインを可変してダイナモメータの出力トルクを変えることで、電気慣性ループの安定化を図ったものである。
7 is a running resistance setting unit that receives a signal measured by the pulse pickup 5 and outputs a running resistance command corresponding to the vehicle speed, and the output is output to the adding unit 8 and the driving force observer 6. At this time, the driving force observer 6 employs an electric inertia compensation method for controlling the inertial resistance as the absorption of the dynamometer among the running resistance, and this method is known as Patent Document 1. Japanese Patent Laid-Open No. 2004-228561 aims to stabilize the electric inertia loop by changing the output torque of the dynamometer by changing the gain generated by the torque control system as means for changing the inertial resistance.
走行抵抗設定部7の出力と駆動力オブザーバ6の出力は加算部8で加算され、その加算値からロードセル4により検出されたトルクを減算部9で減じ、差分の値がトルク制御部10に入力されてトルク指令を生成し、制御値としてインバータ11に出力される。インバータ11はトルク指令に対応してダイナモメータ2に対するトルク吸収の制御を実行する。
The output of the running resistance setting unit 7 and the output of the driving force observer 6 are added by the adding unit 8, the torque detected by the load cell 4 is subtracted from the added value by the subtracting unit 9, and the difference value is input to the torque control unit 10. Thus, a torque command is generated and output to the inverter 11 as a control value. The inverter 11 executes torque absorption control for the dynamometer 2 in response to the torque command.
シャシーダイナモメータシステムで車両の性能試験などを行うとき、実路を走行して得られた仕事量と、ダイナモメータ上でモード走行して得られた仕事量は一致せずに誤差が発生する。この仕事量誤差はベンチ間で異なることが分っており、誤差の発生及びベンチ間機差の発生原因として以下のA~Cの3要因が挙げられる。なお、仕事量誤差率などは(1)~(5)式によって定義する。
仕事量誤差率[%]=(計測仕事量[J]-目標仕事量[J])/目標仕事量[J]
×100[%] ………(1)
目標仕事量[J] =∫(目標駆動力[N]×車速検出[km/h])/
(3.6)dt ………(2)
計測仕事量[J] =∫(計測駆動力[N]×車速検出[km/h])/
(3.6)dt ………(3)
目標駆動力[J] =走行抵抗設定+(固定慣性[kg]+電気慣性[kg])
×加速度[m/s^2] ………(4)
計測駆動力[J] =DYトルク[N]+メカロス[N]+固定慣性[kg]
×加速度[m/s^2] ………(5)
ただし、DY:ダイナモメータ。 When performing a vehicle performance test or the like with the chassis dynamometer system, the work amount obtained by traveling on the actual road and the work amount obtained by mode traveling on the dynamometer do not coincide with each other, and an error occurs. It is known that this work amount error varies between benches, and the following three factors A to C can be cited as causes of the occurrence of errors and machine differences between benches. The work error rate is defined by the equations (1) to (5).
Work error rate [%] = (Measured work [J] −Target work [J]) / Target work [J]
× 100 [%] ……… (1)
Target work [J] = ∫ (target driving force [N] × vehicle speed detection [km / h]) /
(3.6) dt (2)
Measurement work [J] =] (measurement driving force [N] × vehicle speed detection [km / h]) /
(3.6) dt (3)
Target driving force [J] = Running resistance setting + (Fixed inertia [kg] + Electric inertia [kg])
× Acceleration [m / s ^ 2] (4)
Measurement drive force [J] = DY torque [N] + Mecharos [N] + Fixed inertia [kg]
× Acceleration [m / s ^ 2] (5)
However, DY: Dynamometer.
仕事量誤差率[%]=(計測仕事量[J]-目標仕事量[J])/目標仕事量[J]
×100[%] ………(1)
目標仕事量[J] =∫(目標駆動力[N]×車速検出[km/h])/
(3.6)dt ………(2)
計測仕事量[J] =∫(計測駆動力[N]×車速検出[km/h])/
(3.6)dt ………(3)
目標駆動力[J] =走行抵抗設定+(固定慣性[kg]+電気慣性[kg])
×加速度[m/s^2] ………(4)
計測駆動力[J] =DYトルク[N]+メカロス[N]+固定慣性[kg]
×加速度[m/s^2] ………(5)
ただし、DY:ダイナモメータ。 When performing a vehicle performance test or the like with the chassis dynamometer system, the work amount obtained by traveling on the actual road and the work amount obtained by mode traveling on the dynamometer do not coincide with each other, and an error occurs. It is known that this work amount error varies between benches, and the following three factors A to C can be cited as causes of the occurrence of errors and machine differences between benches. The work error rate is defined by the equations (1) to (5).
Work error rate [%] = (Measured work [J] −Target work [J]) / Target work [J]
× 100 [%] ……… (1)
Target work [J] = ∫ (target driving force [N] × vehicle speed detection [km / h]) /
(3.6) dt (2)
Measurement work [J] =] (measurement driving force [N] × vehicle speed detection [km / h]) /
(3.6) dt (3)
Target driving force [J] = Running resistance setting + (Fixed inertia [kg] + Electric inertia [kg])
× Acceleration [m / s ^ 2] (4)
Measurement drive force [J] = DY torque [N] + Mecharos [N] + Fixed inertia [kg]
× Acceleration [m / s ^ 2] (5)
However, DY: Dynamometer.
A.トルク制御部の制御応答によるばらつきについて
制御応答は、例えば90%応答、100ms以内というようにある基準は設定されているが、制御応答は調整者によってフィードフォワードの量やPID調整パラメータの違いにより応答性に機差が生じる。これにより、電気慣性の応答性能に機差が生じて計測の仕事量誤差率のばらつきに影響する。また、制御のフィードバックに使用するトルク検出には一意のローパスフィルターが使用されるが、これにより検出応答性が低くなって応答性を上げることが困難になっている。 A. Regarding the variation due to the control response of the torque controller The control response has a certain standard such as 90% response and within 100 ms, but the control response depends on the amount of feedforward and PID adjustment parameters by the adjuster. There is a difference in sex. As a result, there is a difference in the response performance of the electric inertia, which affects the variation in the measurement work error rate. In addition, a unique low-pass filter is used for torque detection used for control feedback, but this makes detection responsiveness low, making it difficult to increase responsiveness.
制御応答は、例えば90%応答、100ms以内というようにある基準は設定されているが、制御応答は調整者によってフィードフォワードの量やPID調整パラメータの違いにより応答性に機差が生じる。これにより、電気慣性の応答性能に機差が生じて計測の仕事量誤差率のばらつきに影響する。また、制御のフィードバックに使用するトルク検出には一意のローパスフィルターが使用されるが、これにより検出応答性が低くなって応答性を上げることが困難になっている。 A. Regarding the variation due to the control response of the torque controller The control response has a certain standard such as 90% response and within 100 ms, but the control response depends on the amount of feedforward and PID adjustment parameters by the adjuster. There is a difference in sex. As a result, there is a difference in the response performance of the electric inertia, which affects the variation in the measurement work error rate. In addition, a unique low-pass filter is used for torque detection used for control feedback, but this makes detection responsiveness low, making it difficult to increase responsiveness.
B.負慣性設定時の電気慣性制御方式について
図13で示す駆動力オブザーバ6での電気慣性制御方式は、特許文献1のものが使用されるが、この方式は原動機の出力トルクを推定し、その推定値に機械慣性と電気慣性補償から求めるゲインを乗算して電気慣性分のトルク指令とするため、電気慣性補償の増減にも係わらずオブザーバのゲイン増減を小さくでき、応答性が向上できる利点を有する。その反面、負慣性では、電気慣性指令として固定慣性分の発生トルクから演算を開始するため、速度の変化点では理論電気慣性指令より大きな電気慣性となってしまう。 B. Regarding Electric Inertia Control Method at Negative Inertia Setting As the electric inertia control method in thedriving force observer 6 shown in FIG. 13, the one of Patent Document 1 is used, but this method estimates the output torque of the prime mover, and the estimation Since the torque command for the electric inertia is multiplied by the value obtained from the mechanical inertia and the electric inertia compensation, the observer gain and loss can be reduced regardless of the electric inertia compensation increase and decrease, and the response can be improved. . On the other hand, in the case of negative inertia, the calculation is started from the generated torque corresponding to the fixed inertia as the electric inertia command, so the electric inertia is larger than the theoretical electric inertia command at the speed change point.
図13で示す駆動力オブザーバ6での電気慣性制御方式は、特許文献1のものが使用されるが、この方式は原動機の出力トルクを推定し、その推定値に機械慣性と電気慣性補償から求めるゲインを乗算して電気慣性分のトルク指令とするため、電気慣性補償の増減にも係わらずオブザーバのゲイン増減を小さくでき、応答性が向上できる利点を有する。その反面、負慣性では、電気慣性指令として固定慣性分の発生トルクから演算を開始するため、速度の変化点では理論電気慣性指令より大きな電気慣性となってしまう。 B. Regarding Electric Inertia Control Method at Negative Inertia Setting As the electric inertia control method in the
このことは(7)式で表される理論電気慣性指令と(6)式で表される駆動力オブザーバ電気慣性指令を比較してみるとわかる。設定慣性-固定慣性は電気慣性のことであり、この電気慣性が負慣性となる時の設定慣性は固定慣性より小さくなることから、駆動力オブザーバ電気慣性指令は理論電気慣性指令より大きくなり、速度変化点で電気慣性がかかりすぎる傾向となって仕事量誤差の発生に影響する。
駆動力オブザーバ電気慣性指令=(ロードセルトルク+固定慣性×加速度)×(設定慣性-固定慣性)/設定慣性 ……(6)
理論電気慣性指令=電気慣性×加速度 ……(7)
なお、負慣性とは、シャシーダイナモメータの機械慣性(固定慣性)より小さい慣性とするためにかける慣性量で、例えば、固定慣性が1000kg(相当車重)あるとき、700kgの車両の試験を行うときには-300kgの負慣性をかける必要がある。つまりシャシーダイナモメータから駆動することになる。 This can be seen by comparing the theoretical electric inertia command expressed by the equation (7) with the driving force observer electric inertia command expressed by the equation (6). Set inertia-Fixed inertia is electric inertia, and when this inertia becomes negative inertia, the set inertia becomes smaller than the fixed inertia. Therefore, the driving force observer electric inertia command becomes larger than the theoretical electric inertia command, and the speed At the change point, the electric inertia tends to be applied too much, which affects the generation of work error.
Driving force observer electric inertia command = (Load cell torque + Fixed inertia x Acceleration) x (Set inertia-Fixed inertia) / Set inertia (6)
Theoretical electric inertia command = Electric inertia x Acceleration (7)
The negative inertia is an inertia amount applied to make the inertia smaller than the mechanical inertia (fixed inertia) of the chassis dynamometer. For example, when the fixed inertia is 1000 kg (equivalent vehicle weight), a 700 kg vehicle is tested. Sometimes it is necessary to apply a negative inertia of -300 kg. In other words, it is driven from the chassis dynamometer.
駆動力オブザーバ電気慣性指令=(ロードセルトルク+固定慣性×加速度)×(設定慣性-固定慣性)/設定慣性 ……(6)
理論電気慣性指令=電気慣性×加速度 ……(7)
なお、負慣性とは、シャシーダイナモメータの機械慣性(固定慣性)より小さい慣性とするためにかける慣性量で、例えば、固定慣性が1000kg(相当車重)あるとき、700kgの車両の試験を行うときには-300kgの負慣性をかける必要がある。つまりシャシーダイナモメータから駆動することになる。 This can be seen by comparing the theoretical electric inertia command expressed by the equation (7) with the driving force observer electric inertia command expressed by the equation (6). Set inertia-Fixed inertia is electric inertia, and when this inertia becomes negative inertia, the set inertia becomes smaller than the fixed inertia. Therefore, the driving force observer electric inertia command becomes larger than the theoretical electric inertia command, and the speed At the change point, the electric inertia tends to be applied too much, which affects the generation of work error.
Driving force observer electric inertia command = (Load cell torque + Fixed inertia x Acceleration) x (Set inertia-Fixed inertia) / Set inertia (6)
Theoretical electric inertia command = Electric inertia x Acceleration (7)
The negative inertia is an inertia amount applied to make the inertia smaller than the mechanical inertia (fixed inertia) of the chassis dynamometer. For example, when the fixed inertia is 1000 kg (equivalent vehicle weight), a 700 kg vehicle is tested. Sometimes it is necessary to apply a negative inertia of -300 kg. In other words, it is driven from the chassis dynamometer.
C.速度補正ゲインについて
シャシーダイナモメータの制御には、速度補正といわれる目標車速と実車速の速度差が0となるような補正が行われている。これは、(8)~(10)式に示すように目標駆動力=計測駆動力となるように目標車速を算出するためのもので、補正が正しく機能すれば仕事量としても仕事量誤差を0に近づけることができる。
現状では差車速(目標車速と実車速の差)に一定のゲインをかけて補正量としているため、車重設定が大きい場合と小さい場合では、その効果率が一定とならず仕事量誤差率が設定慣性で変化する原因となっている。
目標駆動力 = 走行抵抗設定+(固定慣性+電気慣性)×加速度 …(8)
計測駆動力 = DYトルク+メカロス+固定慣性×加速度 ……(9)
(8)式=(9)式から
目標車速=1/電気慣性×∫(DYトルク+メカロス-走行抵抗設定)dt
……(10)
本発明が目的とするとこは、シャシーダイナモメータの制御精度の向上と機差低減を可能としたシャシーダイナモメータの制御装置を提供することにある。 C. About Speed Correction Gain In the control of the chassis dynamometer, correction is performed so that the speed difference between the target vehicle speed and the actual vehicle speed, which is called speed correction, becomes zero. This is for calculating the target vehicle speed so that the target driving force = measured driving force as shown in the equations (8) to (10). Can approach 0.
At present, the difference vehicle speed (difference between the target vehicle speed and the actual vehicle speed) is adjusted by applying a fixed gain. Therefore, when the vehicle weight setting is large or small, the effect rate is not constant and the work error rate is not constant. This is the cause of the change in the set inertia.
Target driving force = Running resistance setting + (Fixed inertia + Electric inertia) x Acceleration (8)
Measurement drive force = DY torque + mechanical loss + fixed inertia x acceleration (9)
(8) Equation = Target vehicle speed from Equation (9) = 1 / Electric inertia × ∫ (DY torque + mechanical loss−running resistance setting) dt
...... (10)
An object of the present invention is to provide a control device for a chassis dynamometer that can improve the control accuracy of the chassis dynamometer and reduce machine differences.
シャシーダイナモメータの制御には、速度補正といわれる目標車速と実車速の速度差が0となるような補正が行われている。これは、(8)~(10)式に示すように目標駆動力=計測駆動力となるように目標車速を算出するためのもので、補正が正しく機能すれば仕事量としても仕事量誤差を0に近づけることができる。
現状では差車速(目標車速と実車速の差)に一定のゲインをかけて補正量としているため、車重設定が大きい場合と小さい場合では、その効果率が一定とならず仕事量誤差率が設定慣性で変化する原因となっている。
目標駆動力 = 走行抵抗設定+(固定慣性+電気慣性)×加速度 …(8)
計測駆動力 = DYトルク+メカロス+固定慣性×加速度 ……(9)
(8)式=(9)式から
目標車速=1/電気慣性×∫(DYトルク+メカロス-走行抵抗設定)dt
……(10)
本発明が目的とするとこは、シャシーダイナモメータの制御精度の向上と機差低減を可能としたシャシーダイナモメータの制御装置を提供することにある。 C. About Speed Correction Gain In the control of the chassis dynamometer, correction is performed so that the speed difference between the target vehicle speed and the actual vehicle speed, which is called speed correction, becomes zero. This is for calculating the target vehicle speed so that the target driving force = measured driving force as shown in the equations (8) to (10). Can approach 0.
At present, the difference vehicle speed (difference between the target vehicle speed and the actual vehicle speed) is adjusted by applying a fixed gain. Therefore, when the vehicle weight setting is large or small, the effect rate is not constant and the work error rate is not constant. This is the cause of the change in the set inertia.
Target driving force = Running resistance setting + (Fixed inertia + Electric inertia) x Acceleration (8)
Measurement drive force = DY torque + mechanical loss + fixed inertia x acceleration (9)
(8) Equation = Target vehicle speed from Equation (9) = 1 / Electric inertia × ∫ (DY torque + mechanical loss−running resistance setting) dt
...... (10)
An object of the present invention is to provide a control device for a chassis dynamometer that can improve the control accuracy of the chassis dynamometer and reduce machine differences.
本発明の請求項1は、ダイナモメータのローラ上に被試験車両を載置し、前記ローラの検出速度信号とダイナモメータのトルク検出信号を駆動力オブザーバに入力して正慣性の電気慣性指令を出力し、検出速度信号に対応して出力される走行抵抗指令と電気慣性指令との加算値からトルク検出信号を減算し、差分をトルク制御部に入力してトルク制御指令を生成し、インバータを介してダイナモメータを制御するシャシーダイナモメータにおいて、
前記検出速度信号を入力して負慣性の電気慣性指令を出力する電気慣性設定部を設け、
設定慣性をM、固定慣性をMoとしてM>Moのときに前記駆動力オブザーバから電気慣性指令を出力し、M<Moのときに前記電気慣性設定部から電気慣性指令の出力を得て前記走行抵抗指令と加算するよう構成したことを特徴としたものである。 According to the first aspect of the present invention, a vehicle to be tested is placed on a roller of a dynamometer, and a detection speed signal of the roller and a torque detection signal of the dynamometer are inputted to a driving force observer to give an electric inertia command of positive inertia. The torque detection signal is subtracted from the added value of the running resistance command and the electric inertia command output corresponding to the detected speed signal, and the difference is input to the torque control unit to generate the torque control command. In a chassis dynamometer that controls the dynamometer via
An electric inertia setting unit that inputs the detection speed signal and outputs an electric inertia command of negative inertia is provided,
When the set inertia is M and the fixed inertia is Mo, when M> Mo, an electric inertia command is output from the driving force observer, and when M <Mo, the output of the electric inertia command is obtained from the electric inertia setting unit and the travel is performed. It is characterized in that it is configured to be added to the resistance command.
前記検出速度信号を入力して負慣性の電気慣性指令を出力する電気慣性設定部を設け、
設定慣性をM、固定慣性をMoとしてM>Moのときに前記駆動力オブザーバから電気慣性指令を出力し、M<Moのときに前記電気慣性設定部から電気慣性指令の出力を得て前記走行抵抗指令と加算するよう構成したことを特徴としたものである。 According to the first aspect of the present invention, a vehicle to be tested is placed on a roller of a dynamometer, and a detection speed signal of the roller and a torque detection signal of the dynamometer are inputted to a driving force observer to give an electric inertia command of positive inertia. The torque detection signal is subtracted from the added value of the running resistance command and the electric inertia command output corresponding to the detected speed signal, and the difference is input to the torque control unit to generate the torque control command. In a chassis dynamometer that controls the dynamometer via
An electric inertia setting unit that inputs the detection speed signal and outputs an electric inertia command of negative inertia is provided,
When the set inertia is M and the fixed inertia is Mo, when M> Mo, an electric inertia command is output from the driving force observer, and when M <Mo, the output of the electric inertia command is obtained from the electric inertia setting unit and the travel is performed. It is characterized in that it is configured to be added to the resistance command.
本発明の請求項2は、電気慣性設定値に応じて速度補正ゲインがマップ化された速度補正ゲインマップを有する速度補正部を設け、
前記電気慣性設定値に応じて速度補正ゲインを変えて前記駆動力オブザーバ若しくは電気慣性設定部の出力に加算するよう構成したことを特徴としたものである。Claim 2 of the present invention provides a speed correction unit having a speed correction gain map in which the speed correction gain is mapped according to the electric inertia set value,
The speed correction gain is changed in accordance with the electric inertia setting value and added to the output of the driving force observer or the electric inertia setting unit.
前記電気慣性設定値に応じて速度補正ゲインを変えて前記駆動力オブザーバ若しくは電気慣性設定部の出力に加算するよう構成したことを特徴としたものである。
The speed correction gain is changed in accordance with the electric inertia setting value and added to the output of the driving force observer or the electric inertia setting unit.
本発明の請求項3は、前記電気慣性設定部は、前記検出速度信号を微分する第1の微分回路と、第1の微分回路の微分信号と予め設定された電気慣性を乗算する第1の乗算部を設け、第1の乗算部の乗算値を前記走行抵抗指令に加算するよう構成したことを特徴としたものである。
According to a third aspect of the present invention, the electric inertia setting unit is configured to multiply a first differentiating circuit for differentiating the detection speed signal, a differential signal of the first differentiating circuit, and a preset electric inertia. A multiplication unit is provided, and the multiplication value of the first multiplication unit is added to the travel resistance command.
本発明の請求項4は、前記速度補正部は、前記走行抵抗指令とトルク検出信号の差分を電気慣性で除算した結果の加速度を積分して演算速度を算出し、
算出された演算速度に、設定された電気慣性と設定慣性との比からなる慣性値を乗算して第1の演算速度とし、
設定された固定慣性と設定慣性の比からなる慣性値に前記検出速度信号を乗算して第2の演算速度とし、
前記第1の演算速度と第2の演算速度を加算して速度目標値を算出し、この速度目標値と前記検出速度信号の差分で速度誤差を生成するよう構成すると共に、
前記速度補正ゲインマップを補正出力部に設け、補正出力部からの速度補正ゲインと前記速度誤差を乗算することで補正信号を生成して前記駆動力オブザーバ若しくは電気慣性設定部の出力に加算するよう構成したことを特徴としたものである。 According to a fourth aspect of the present invention, the speed correction unit calculates a calculation speed by integrating an acceleration obtained by dividing a difference between the travel resistance command and the torque detection signal by electric inertia,
The calculated calculation speed is multiplied by an inertia value composed of a ratio between the set electric inertia and the set inertia to obtain a first calculation speed,
Multiplying the detected inertia signal by the inertia value consisting of the ratio between the set fixed inertia and the set inertia to obtain the second calculation speed;
A speed target value is calculated by adding the first calculation speed and the second calculation speed, and a speed error is generated by a difference between the speed target value and the detected speed signal, and
The speed correction gain map is provided in the correction output unit, and a correction signal is generated by multiplying the speed correction gain from the correction output unit and the speed error, and added to the output of the driving force observer or the electric inertia setting unit. It is characterized by comprising.
算出された演算速度に、設定された電気慣性と設定慣性との比からなる慣性値を乗算して第1の演算速度とし、
設定された固定慣性と設定慣性の比からなる慣性値に前記検出速度信号を乗算して第2の演算速度とし、
前記第1の演算速度と第2の演算速度を加算して速度目標値を算出し、この速度目標値と前記検出速度信号の差分で速度誤差を生成するよう構成すると共に、
前記速度補正ゲインマップを補正出力部に設け、補正出力部からの速度補正ゲインと前記速度誤差を乗算することで補正信号を生成して前記駆動力オブザーバ若しくは電気慣性設定部の出力に加算するよう構成したことを特徴としたものである。 According to a fourth aspect of the present invention, the speed correction unit calculates a calculation speed by integrating an acceleration obtained by dividing a difference between the travel resistance command and the torque detection signal by electric inertia,
The calculated calculation speed is multiplied by an inertia value composed of a ratio between the set electric inertia and the set inertia to obtain a first calculation speed,
Multiplying the detected inertia signal by the inertia value consisting of the ratio between the set fixed inertia and the set inertia to obtain the second calculation speed;
A speed target value is calculated by adding the first calculation speed and the second calculation speed, and a speed error is generated by a difference between the speed target value and the detected speed signal, and
The speed correction gain map is provided in the correction output unit, and a correction signal is generated by multiplying the speed correction gain from the correction output unit and the speed error, and added to the output of the driving force observer or the electric inertia setting unit. It is characterized by comprising.
本発明の請求項5は、トルク制御部のトルク検出信号フィードバック用のトルク検出回路にローパスフィルタを設け、ローパスフィルタの特性を、予め計測した機械動特性との共振倍率のピーク値が1倍以下となるよう設定したことを特徴としたものである。
According to a fifth aspect of the present invention, a low-pass filter is provided in a torque detection circuit for torque detection signal feedback of the torque control unit, and the peak value of the resonance magnification between the low-pass filter characteristic and the mechanical dynamic characteristic measured in advance is one time or less. The feature is that it is set to be.
本発明の請求項6は、前記駆動力オブザーバは、前記検出速度信号を微分する第2の微分回路と、
第2の微分回路の微分信号と予め設定された固定慣性とを乗算する第2の乗算部と、
第2の乗算部による乗算値と前記ローパスフィルタの出力値とを加算した後、前記走行抵抗指令との差分を算出する減算部と、
減算部で算出された差分と予め設定された電気慣性と設定慣性の比による電気慣性設定値とを乗算し、この乗算値と前記走行抵抗指令を加算するよう構成したことを特徴としたものである。 According to a sixth aspect of the present invention, the driving force observer includes a second differentiating circuit for differentiating the detected speed signal;
A second multiplier for multiplying the differential signal of the second differentiating circuit by a preset fixed inertia;
A subtracting unit that calculates a difference from the running resistance command after adding the multiplication value obtained by the second multiplication unit and the output value of the low-pass filter;
The difference calculated by the subtracting unit is multiplied by a preset electric inertia and electric inertia set value based on a ratio of the set inertia, and the multiplied value and the running resistance command are added. is there.
第2の微分回路の微分信号と予め設定された固定慣性とを乗算する第2の乗算部と、
第2の乗算部による乗算値と前記ローパスフィルタの出力値とを加算した後、前記走行抵抗指令との差分を算出する減算部と、
減算部で算出された差分と予め設定された電気慣性と設定慣性の比による電気慣性設定値とを乗算し、この乗算値と前記走行抵抗指令を加算するよう構成したことを特徴としたものである。 According to a sixth aspect of the present invention, the driving force observer includes a second differentiating circuit for differentiating the detected speed signal;
A second multiplier for multiplying the differential signal of the second differentiating circuit by a preset fixed inertia;
A subtracting unit that calculates a difference from the running resistance command after adding the multiplication value obtained by the second multiplication unit and the output value of the low-pass filter;
The difference calculated by the subtracting unit is multiplied by a preset electric inertia and electric inertia set value based on a ratio of the set inertia, and the multiplied value and the running resistance command are added. is there.
以上のとおり、本発明によれば、仕事量誤差の発生、及びベンチ間機差の発生が縮減されてより高精度な車両特性の計測が可能となるものである。
As described above, according to the present invention, the occurrence of work error and the occurrence of machine difference between benches are reduced, and more accurate vehicle characteristics can be measured.
図1は、本発明の実施例を示す構成図で、図13と同一部分若しくは相当する部分に同一符号を付してその説明を省略する。13はロードセル4の出力側に接続されたローパスフィルタであり、ローパスフィルタ13の出力は駆動力オブザーバ6および減算部9に入力されている。
FIG. 1 is a block diagram showing an embodiment of the present invention. The same or corresponding parts as those in FIG. Reference numeral 13 denotes a low-pass filter connected to the output side of the load cell 4, and the output of the low-pass filter 13 is input to the driving force observer 6 and the subtraction unit 9.
20は、パルスピックアップ5により計測された信号を入力とする電気慣性設定部であり、以下の説明では、使用される電気慣性方式を、駆動力オブザーバ6に用いられる方式を正慣性時電気慣性方式と呼称するのに対し、この電気慣性設定部20での電気慣性方式を負慣性時電気慣性方式(:微分方式)と呼称する。
Reference numeral 20 denotes an electric inertia setting unit that receives a signal measured by the pulse pickup 5. In the following description, the electric inertia method used is the electric inertia method used for the driving force observer 6. In contrast, the electric inertia method in the electric inertia setting unit 20 is referred to as a negative inertia electric inertia method (: differential method).
前記併設した駆動力オブザーバ6と電気慣性設定部20の各電気慣性設定値を、切替器により切り替えて出力し、その出力と速度補正部21の補正量とを加算部22で加算し、加算部22の出力と走行抵抗設定部7の出力とを加算部8において加算するように構成した。
The electric inertia setting values of the driving force observer 6 and the electric inertia setting unit 20 provided therewith are switched by a switch and output, and the output and the correction amount of the speed correction unit 21 are added by the adding unit 22, and an adding unit The output of 22 and the output of the running resistance setting unit 7 are added by the adding unit 8.
後述のように設定慣性をM、固定慣性をMoとしたときM>Moのときに駆動力オブザーバ6から電気慣性設定値を出力し、M<Moのとき、すなわち、負慣性のときに電気慣性設定部20から電気慣性設定値が加算部8側に出力される。このように、負慣性設定時の制御方式を切替ることにより車速変化点の発生誤差量の(負慣性時の)低減を図るものである。
As will be described later, when the set inertia is M and the fixed inertia is Mo, the electric inertia set value is output from the driving force observer 6 when M> Mo. When M <Mo, that is, when the inertia is negative, the electric inertia is set. The electrical inertia set value is output from the setting unit 20 to the adding unit 8 side. As described above, the control method at the time of setting the negative inertia is switched to reduce the generation error amount at the vehicle speed change point (at the time of negative inertia).
尚、図1では図示省略しているが、速度補正部21には後述の図3のように、トルク検出信号、速度検出信号および走行抵抗設定部7の走行抵抗指令が入力されるものである。
Although not shown in FIG. 1, the speed correction unit 21 receives a torque detection signal, a speed detection signal, and a travel resistance command from the travel resistance setting unit 7 as shown in FIG. .
図2は、図1のトルク制御部10a、インバータ11および電気慣性設定部20の詳細な構成を示し、図1における駆動力オブザーバ6、切替器、速度補正部21、加算部22等は図示省略している。また、図2においてインバータ11の出力側から車速Vまでの間に図示されたブロックは、図1のダイナモメータ2およびローラ3の機械構成部分を模擬的にブロックに置換えて表現したものである。したがってこのブロックで、被試験車両1の駆動力からダイナモメータ2の駆動力を差し引き、その差分に1/sMoを乗算した部分は、ローラ3に取り付けられたパルスピックアップ5から車速相当の速度検出をしていることを表している(これは後述の図4の場合も同様である)。
2 shows the detailed configuration of the torque control unit 10a, the inverter 11 and the electric inertia setting unit 20 in FIG. 1, and the driving force observer 6, the switch, the speed correction unit 21, the addition unit 22 and the like in FIG. 1 are not shown. is doing. Further, the block shown between the output side of the inverter 11 and the vehicle speed V in FIG. 2 is expressed by replacing the mechanical components of the dynamometer 2 and the roller 3 in FIG. Therefore, in this block, the portion obtained by subtracting the driving force of the dynamometer 2 from the driving force of the vehicle under test 1 and multiplying the difference by 1 / sMo detects the speed corresponding to the vehicle speed from the pulse pickup 5 attached to the roller 3. (This also applies to FIG. 4 described later).
前記電気慣性設定部20には、パルスピックアップ5により検出された速度検出信号が入力され、微分回路20aにおいて微分され、その微分信号は設定部20cにおいて予め設定された電気慣性Meと乗算部20bで乗算される。乗算部20bの乗算値は、図示省略の速度補正部21からの補正値が加算部22で加算された後加算部8に出力され、加算部8において走行抵抗設定部7による走行抵抗指令と加算される。
The electric inertia setting unit 20 receives a speed detection signal detected by the pulse pickup 5 and is differentiated by a differentiating circuit 20a. The differentiated signal is obtained by an electric inertia Me and a multiplying unit 20b set in advance in a setting unit 20c. Is multiplied. The multiplication value of the multiplication unit 20b is output to the addition unit 8 after the correction value from the speed correction unit 21 (not shown) is added by the addition unit 22, and is added to the running resistance command by the running resistance setting unit 7 in the addition unit 8. Is done.
図3は図1の速度補正部21の構成図を示したもので、この速度補正部21はトルク検出から得られる理論車速と実車速の差を0とするよう補正するものである。このため、速度補正部21は補正量に対しての比例ゲインをマップ化して慣性設定値に応じた補正出力を発生するよう構成される。
FIG. 3 shows a block diagram of the speed correction unit 21 of FIG. 1. This speed correction unit 21 corrects the difference between the theoretical vehicle speed and the actual vehicle speed obtained from torque detection to zero. Therefore, the speed correction unit 21 is configured to map a proportional gain with respect to the correction amount and generate a correction output according to the inertia set value.
減算部21aにおいて、走行抵抗設定部7の走行抵抗指令値とトルク検出信号の差分が算出され、その差分は21bにおいて電気慣性Meにより除算され加速度となる(乗算部21bによって、減算部21aの差分出力と1/Meとが乗算されて加速度となる)。
In the subtractor 21a, the difference between the running resistance command value of the running resistance setting unit 7 and the torque detection signal is calculated, and the difference is divided by the electric inertia Me in 21b to become the acceleration (the difference of the subtractor 21a is multiplied by the multiplier 21b). The output is multiplied by 1 / Me to get acceleration).
加速度は積分器21cで積分されて演算速度となり乗算部21dに入力される。設定部21eでは電気慣性Meと設定慣性Mとの比が設定され、乗算部21dで演算速度と設定比率による乗算が行われて第1の演算速度となって加算部21fに入力される。
Acceleration is integrated by the integrator 21c to obtain a calculation speed and is input to the multiplication unit 21d. The setting unit 21e sets a ratio between the electric inertia Me and the setting inertia M, and the multiplication unit 21d multiplies the calculation speed and the set ratio to obtain the first calculation speed, which is input to the addition unit 21f.
一方、設定部21gでは、シャシーダイナモメータの固定慣性Moと設定慣性Mとの比で慣性値を設定し、設定された慣性値は乗算部21hで速度検出値と乗算されて第2の演算速度となる。この第2の演算速度は加算部21fで第1の演算速度と加算演算されることによって、速度目標値(目標速度)が得られる。この速度目標値は、さらに、減算部21iで速度検出値(パルスピックアップ5の検出値)との差分が得られて速度誤差となる。この速度誤差に補正出力部21kからの比例ゲインを乗算部21jにて乗算することで図1の加算部22への補正量(SE補正)として出力される。
On the other hand, in the setting unit 21g, an inertia value is set by the ratio of the fixed inertia Mo and the set inertia M of the chassis dynamometer, and the set inertia value is multiplied by the speed detection value in the multiplication unit 21h to obtain the second calculation speed. It becomes. The second calculation speed is added to the first calculation speed by the adding unit 21f, thereby obtaining a speed target value (target speed). The speed target value further becomes a speed error by obtaining a difference from the speed detection value (detection value of the pulse pickup 5) by the subtractor 21i. The speed error is multiplied by the proportional gain from the correction output unit 21k by the multiplication unit 21j, and output as a correction amount (SE correction) to the addition unit 22 in FIG.
なお、補正出力部21kは、縦軸を速度補正ゲイン、横軸を電気慣性設定値とし、慣性設定値に応じた速度補正ゲインマップとなっている。すなわち、速度補正機能にゲイン補正機能を加え、慣性設定値に応じて速度補正ゲインを変えるよう構成したことで、目標駆動力と計測駆動力が等しくなるよう目標車速を決定している。
The correction output unit 21k is a speed correction gain map corresponding to the inertia setting value, with the vertical axis representing the speed correction gain and the horizontal axis representing the electric inertia setting value. That is, by adding a gain correction function to the speed correction function and changing the speed correction gain according to the inertia setting value, the target vehicle speed is determined so that the target driving force and the measured driving force are equal.
尚、図3の構成では、電気慣性Meによる第1の演算速度(乗算部21dの出力)と固定慣性Moによる第2の演算速度(乗算部21hの出力)とを分けて求めているので、理想的な目標速度を演算することができる。
In the configuration of FIG. 3, the first calculation speed based on the electric inertia Me (output of the multiplication unit 21d) and the second calculation speed based on the fixed inertia Mo (output of the multiplication unit 21h) are obtained separately. An ideal target speed can be calculated.
図4は図1の駆動力オブザーバ6の詳細な構成を示し、図1における切替器、電気慣性設定部20、速度補正部21、加算部22等は図示省略している。
パルスピックアップ5で検出された速度検出信号は、走行抵抗設定部7に入力されて速度に対応した走行抵抗指令値が出力される。速度検出信号は駆動力オブザーバ6にも入力されて微分回路6aで微分され、その微分信号は設定部6cで予め設定されたシャシーダイナモメータの固定慣性Moと乗算(乗算部6b)される。 FIG. 4 shows a detailed configuration of the drivingforce observer 6 of FIG. 1, and the switch, the electric inertia setting unit 20, the speed correction unit 21, the addition unit 22 and the like in FIG. 1 are not shown.
The speed detection signal detected by thepulse pickup 5 is input to the travel resistance setting unit 7 and a travel resistance command value corresponding to the speed is output. The speed detection signal is also input to the driving force observer 6 and differentiated by the differentiating circuit 6a, and the differentiated signal is multiplied by the fixed inertia Mo of the chassis dynamometer preset by the setting unit 6c (multiplication unit 6b).
パルスピックアップ5で検出された速度検出信号は、走行抵抗設定部7に入力されて速度に対応した走行抵抗指令値が出力される。速度検出信号は駆動力オブザーバ6にも入力されて微分回路6aで微分され、その微分信号は設定部6cで予め設定されたシャシーダイナモメータの固定慣性Moと乗算(乗算部6b)される。 FIG. 4 shows a detailed configuration of the driving
The speed detection signal detected by the
乗算部6bの乗算値は加算部6dでトルク検出値(ローパスフィルタ13の出力)と加算されて機械慣性によるトルク分が求められ、このトルク分は減算部6eで走行抵抗指令値との差演算が実行されて算出された差分は乗算部6fに出力される。設定部6gでは電気慣性Meと設定慣性Mとの比によって慣性値が設定され、設定された慣性値は乗算部6fにおいて機械慣性によるトルク分と乗算されて電気慣性設定値として加算部8側に出力される。加算部8の出力は、図1で述べたように減算部9を介してトルク制御部10aに出力されてトルク指令が生成される。
The multiplication value of the multiplication unit 6b is added to the torque detection value (output of the low pass filter 13) by the addition unit 6d to obtain a torque component due to mechanical inertia, and this torque component is calculated by the subtraction unit 6e as a difference from the running resistance command value. The difference calculated by executing is output to the multiplier 6f. In the setting unit 6g, an inertia value is set by the ratio of the electric inertia Me and the set inertia M, and the set inertia value is multiplied by the torque component due to the mechanical inertia in the multiplication unit 6f and is added to the addition unit 8 side as an electric inertia set value. Is output. The output of the adder 8 is output to the torque controller 10a via the subtractor 9 as described in FIG. 1, and a torque command is generated.
トルク制御部10aにはロードセル4により検出されたトルク検出信号がフィードバックされるが、そのトルク検出部の出力側にローパスフィルタ13が接続される。このローパスフィルタ13は、トルク制御部10aの制御応答性の向上を図るために、予め機械動特性を計測し、機械系共振点及び倍率を把握して機械動特性の定量化を図り、計測した機械動特性との共振倍率のピーク値が1倍以下となるようにトルク検出に最適な周波数特性となるよう選定され、例えば、90%/30msecを目標として制御応答・電気慣性応答の向上を図っている。
The torque detection signal detected by the load cell 4 is fed back to the torque control unit 10a, and a low-pass filter 13 is connected to the output side of the torque detection unit. In order to improve the control response of the torque control unit 10a, the low-pass filter 13 measures the mechanical dynamic characteristics in advance, grasps the mechanical resonance point and magnification, and quantifies the mechanical dynamic characteristics. The peak frequency of resonance magnification with the mechanical dynamic characteristics is selected so that the frequency characteristics are optimal for torque detection, and for example, 90% / 30msec is targeted to improve control response and electrical inertia response. ing.
以上のように構成されたシャシーダイナモメータの制御装置において、ダイナモメータ2が正慣性で制御されているときは、駆動力オブザーバ6による電気慣性設定値に速度補正部21からの補正値が加算されて電気慣性設定値として加算部8に出力される。その際、駆動力オブザーバ6には、微分された検出速度信号(微分回路6aの出力)と固定慣性Moとの乗算値を求め、この乗算値とローパスフィルタ13を通過したトルク検出との加算演算が加算部6dで行われる。
In the chassis dynamometer control device configured as described above, when the dynamometer 2 is controlled with positive inertia, the correction value from the speed correction unit 21 is added to the electric inertia setting value by the driving force observer 6. Is output to the adder 8 as an electric inertia set value. At that time, the driving force observer 6 obtains a multiplication value of the differentiated detection speed signal (output of the differentiation circuit 6 a) and the fixed inertia Mo, and adds the multiplication value and torque detection that has passed through the low-pass filter 13. Is performed by the adder 6d.
そして、加算部6dの加算値と走行抵抗設定部7からの走行抵抗指令との差分を求める演算が減算部6eで実行される。さらに、減算部6eの演算出力と、設定部6gに設定された電気慣性Meおよび設定慣性Mの比による慣性値とが乗算部6fにおいて乗算され、その結果乗算部6fから加算部8に電気慣性設定値が出力される。
And the calculation which calculates | requires the difference of the addition value of the addition part 6d and the running resistance command from the running resistance setting part 7 is performed in the subtraction part 6e. Further, the multiplication unit 6f multiplies the calculation output of the subtraction unit 6e and the inertia value based on the ratio of the electric inertia Me and the set inertia M set in the setting unit 6g, and as a result, the multiplication unit 6f sends the electric inertia to the addition unit 8. The set value is output.
加算部8には、走行抵抗設定部7によって設定された車速に応じた走行抵抗指令が出力されており、この走行抵抗指令と電気慣性設定値(乗算部6fの出力)とが加算される。この加算部8の加算値は、減算部9においてローパスフィルタ13を経てフィードバックされたトルク検出と減算され、その差分がトルク制御部10aに入力されてトルク指令が生成され、インバータ11を介してダイナモメータ2が制御される。
The running resistance command corresponding to the vehicle speed set by the running resistance setting unit 7 is output to the adding unit 8, and the running resistance command and the electric inertia set value (output of the multiplication unit 6f) are added. The added value of the adding unit 8 is subtracted from the torque detection fed back through the low-pass filter 13 in the subtracting unit 9, and the difference is input to the torque control unit 10 a to generate a torque command. The meter 2 is controlled.
一方、電気慣性設定部20からは、ダイナモメータ2の正慣性制御時には設定慣性Mと固定慣性Moの関係がM>Moとなっているため、電気慣性設定部20による電気慣性設定値は加算部8には出力されない。
On the other hand, since the relationship between the set inertia M and the fixed inertia Mo is M> Mo during the positive inertia control of the dynamometer 2, the electric inertia set value by the electric inertia set unit 20 is an adder. 8 is not output.
次に、ダイナモメータ2の制御が負慣性への電気慣性指令に切替られて設定慣性Mと固定慣性Moの関係がM<Moになると、電気慣性設定部20により設定された慣性値に速度補正部21からの補正値が加算されて電気慣性設定値となって加算部8に出力され、トルク制御部10a及びインバータ11を介してダイナモメータ2は負慣性制御される。当然のことながらM=Moの時にはどちらの設定値も出力されない。
Next, when the control of the dynamometer 2 is switched to the electric inertia command to the negative inertia and the relationship between the set inertia M and the fixed inertia Mo becomes M <Mo, the speed is corrected to the inertia value set by the electric inertia setting unit 20. The correction values from the unit 21 are added and output to the adding unit 8 as an electric inertia set value, and the dynamometer 2 is subjected to negative inertia control via the torque control unit 10a and the inverter 11. As a matter of course, neither set value is output when M = Mo.
図5、図6は電気慣性指令の特性図を示したものである。各図において、線Aは固定慣性トルク、線Bは駆動力オブザーバ出力(=固定慣性トルク+ロードセルトルク)、線Cは理論電気慣性指令、線Dは電気慣性指令、線Eは車速を示したものである。
5 and 6 show the characteristic diagrams of the electric inertia command. In each figure, line A represents a fixed inertia torque, line B represents a driving force observer output (= fixed inertia torque + load cell torque), line C represents a theoretical electric inertia command, line D represents an electric inertia command, and line E represents a vehicle speed. Is.
図5で示す駆動力オブザーバ6の電気慣性指令のみの場合(従来方式の場合)で、正慣性側では電気慣性範囲が広くなっているのに対し、負慣性側では過渡の初期状態では電気慣性がかかり過ぎて電気慣性指令(線D)と理論電気慣性指令(線C)との間に差異が生じている。これに対し、図6で示す電気慣性設定部20を併設した場合(本発明方式の場合)の電気慣性指令(線D)は、理論電気慣性指令(線C)と一致して電気慣性が高精度でかけられていることが分る。
In the case of only the electric inertia command of the driving force observer 6 shown in FIG. 5 (conventional method), the electric inertia range is wide on the positive inertia side, whereas the electric inertia is in the initial state of transient on the negative inertia side. Is applied too much, and there is a difference between the electrical inertia command (line D) and the theoretical electrical inertia command (line C). On the other hand, the electric inertia command (line D) when the electric inertia setting unit 20 shown in FIG. 6 is provided (in the case of the method of the present invention) coincides with the theoretical electric inertia command (line C) and has a high electric inertia. You can see that it is applied with accuracy.
図7は機械動特性を示したボード線図で、40Hz近辺に共振点が存在し、この共振点及び倍率を把握してローパスフィルタ13の特性が選択される。
FIG. 7 is a Bode diagram showing mechanical dynamic characteristics. A resonance point exists in the vicinity of 40 Hz, and the characteristic of the low-pass filter 13 is selected by grasping the resonance point and the magnification.
図8は機械動特性を考慮したローパスフィルタ13を用いたときのトルク制御特性を比較したボード線図で、線イがローパスフィルタ特性調整前、線ロが調整後であり、周波数特性が広域にまだ伸長されている。
FIG. 8 is a Bode diagram comparing the torque control characteristics when using the low-pass filter 13 in consideration of mechanical dynamic characteristics. The line A is before the low-pass filter characteristic adjustment, the line B is after the adjustment, and the frequency characteristic is wide. It is still stretched.
図10,図11は車速変更時の過渡状態時における電気慣性指令を示したもので、図10は従来の駆動力オブザーバ6のみから電気慣性指令を発生させた場合の特性図、図11が本発明による電気慣性設定部20を併設した場合の電気慣性指令の特性図である。各図において線Bは電気慣性指令、線Cは理論電気慣性指令、線Eは車速であり、車速(線E)変更時点の過渡時には図10よりも図11で示す本発明の方が電気慣性指令(線B)が理論電気慣性指令(線C)に近づいていることが分る。
10 and 11 show the electric inertia command in the transient state when the vehicle speed is changed. FIG. 10 is a characteristic diagram when the electric inertia command is generated only from the conventional driving force observer 6. FIG. It is a characteristic view of an electric inertia command when the electric inertia setting unit 20 according to the invention is provided. In each figure, line B is an electric inertia command, line C is a theoretical electric inertia command, line E is a vehicle speed, and the present invention shown in FIG. It can be seen that the command (line B) is approaching the theoretical electrical inertia command (line C).
本発明によりトルク制御ゲインが向上することにより、図9で示すようにステップ変化によるトルク応答が向上している。なお、図9(a)が従来のトルク応答を示し、図9(b)が機械動特性を考慮したローパスフィルタ13を用いたときのトルク応答図で、短時間にトルク検出されて電気慣性応答が向上していることが分る。
As the torque control gain is improved according to the present invention, the torque response due to the step change is improved as shown in FIG. FIG. 9A shows a conventional torque response, and FIG. 9B is a torque response diagram when using the low-pass filter 13 considering the mechanical dynamic characteristics. Can be seen to improve.
図12はモード走行時の誤差量変化図で、実際にモード走行したときの積算した仕事量誤差量の変化図で、本発明による電気慣性設定部20を併設した場合に仕事量誤差量が0に近づいている。
FIG. 12 is a diagram showing a change in the amount of error at the time of mode running. FIG. 12 is a diagram showing a change in the amount of work error accumulated when actually running in the mode, and when the electric inertia setting unit 20 according to the present invention is provided, Is approaching.
以上本発明によれば、次のような効果が得られるものである。
(1)正慣性時の電気慣性方式が採用された駆動力オブザーバと、負慣性時の電気慣性方式を採用した電気慣性設定部を併設し、設定慣性Mと固定慣性Moとの関係がM>Moのときに駆動力オブザーバから電気慣性値を出力し、M<Moのときに電気慣性設定部から出力を得ることで、電気慣性設定値の最適化が可能となり、負慣性時への制御切替時での応答性が向上し、車速変化点での発生誤差量が縮減されるものである。
(2)速度補正部を設けて慣性設定値毎に速度補正ゲインを変化させたことで、全電気慣性設定値の範囲において速度補正が可能となり、目標駆動力と計測駆動力が等しくなるような制御ができるものである。
(3)トルク制御部でのトルク検出フィードバック回路にローパスフィルタを設け、このローパスフィルタの特性として、予め計測した機械動特性との共振倍率のピーク値が1倍以下となるようなトルク検出とすることで、トルク制御の応答性が向上するものである。
(4)上記(1)~(3)項の全部の組み合わせ、若しくは任意の組み合わせによる装置でシャシーダイナモシステムを使用してモード運転を行った場合、従来と比較して仕事量誤差の発生、及びベンチ間機差の発生が縮減され、仕事量誤差は燃費と相関関係にあることから燃費計測における信頼性が向上し、より高精度な車両特性の計測が可能となるものである。 As described above, according to the present invention, the following effects can be obtained.
(1) A driving force observer adopting an electric inertia method at the time of positive inertia and an electric inertia setting unit adopting an electric inertia method at the time of negative inertia are provided side by side, and the relationship between the set inertia M and the fixed inertia Mo is M> Electric inertia value is output from the driving force observer when Mo, and output is obtained from the electric inertia setting unit when M <Mo, so that the electric inertia setting value can be optimized, and control switching to negative inertia The responsiveness at the time is improved, and the amount of error generated at the vehicle speed change point is reduced.
(2) By providing a speed correction unit and changing the speed correction gain for each inertia setting value, speed correction can be performed in the range of all electric inertia setting values, and the target driving force and the measured driving force become equal. It can be controlled.
(3) A low-pass filter is provided in the torque detection feedback circuit in the torque control unit, and the characteristic of this low-pass filter is torque detection so that the peak value of the resonance magnification with the mechanical dynamic characteristic measured in advance is 1 or less. Thus, the response of torque control is improved.
(4) When a mode operation is performed using a chassis dynamo system with an apparatus based on all or a combination of the above items (1) to (3), generation of a work error compared to the conventional case, and The occurrence of machine differences between benches is reduced, and the work error is correlated with the fuel consumption. Therefore, the reliability in the fuel consumption measurement is improved, and the vehicle characteristics can be measured with higher accuracy.
(1)正慣性時の電気慣性方式が採用された駆動力オブザーバと、負慣性時の電気慣性方式を採用した電気慣性設定部を併設し、設定慣性Mと固定慣性Moとの関係がM>Moのときに駆動力オブザーバから電気慣性値を出力し、M<Moのときに電気慣性設定部から出力を得ることで、電気慣性設定値の最適化が可能となり、負慣性時への制御切替時での応答性が向上し、車速変化点での発生誤差量が縮減されるものである。
(2)速度補正部を設けて慣性設定値毎に速度補正ゲインを変化させたことで、全電気慣性設定値の範囲において速度補正が可能となり、目標駆動力と計測駆動力が等しくなるような制御ができるものである。
(3)トルク制御部でのトルク検出フィードバック回路にローパスフィルタを設け、このローパスフィルタの特性として、予め計測した機械動特性との共振倍率のピーク値が1倍以下となるようなトルク検出とすることで、トルク制御の応答性が向上するものである。
(4)上記(1)~(3)項の全部の組み合わせ、若しくは任意の組み合わせによる装置でシャシーダイナモシステムを使用してモード運転を行った場合、従来と比較して仕事量誤差の発生、及びベンチ間機差の発生が縮減され、仕事量誤差は燃費と相関関係にあることから燃費計測における信頼性が向上し、より高精度な車両特性の計測が可能となるものである。 As described above, according to the present invention, the following effects can be obtained.
(1) A driving force observer adopting an electric inertia method at the time of positive inertia and an electric inertia setting unit adopting an electric inertia method at the time of negative inertia are provided side by side, and the relationship between the set inertia M and the fixed inertia Mo is M> Electric inertia value is output from the driving force observer when Mo, and output is obtained from the electric inertia setting unit when M <Mo, so that the electric inertia setting value can be optimized, and control switching to negative inertia The responsiveness at the time is improved, and the amount of error generated at the vehicle speed change point is reduced.
(2) By providing a speed correction unit and changing the speed correction gain for each inertia setting value, speed correction can be performed in the range of all electric inertia setting values, and the target driving force and the measured driving force become equal. It can be controlled.
(3) A low-pass filter is provided in the torque detection feedback circuit in the torque control unit, and the characteristic of this low-pass filter is torque detection so that the peak value of the resonance magnification with the mechanical dynamic characteristic measured in advance is 1 or less. Thus, the response of torque control is improved.
(4) When a mode operation is performed using a chassis dynamo system with an apparatus based on all or a combination of the above items (1) to (3), generation of a work error compared to the conventional case, and The occurrence of machine differences between benches is reduced, and the work error is correlated with the fuel consumption. Therefore, the reliability in the fuel consumption measurement is improved, and the vehicle characteristics can be measured with higher accuracy.
Claims (6)
- ダイナモメータのローラ上に被試験車両を載置し、前記ローラの検出速度信号とダイナモメータのトルク検出信号を駆動力オブザーバに入力して正慣性の電気慣性指令を出力し、検出速度信号に対応して出力される走行抵抗指令と電気慣性指令との加算値からトルク検出信号を減算し、差分をトルク制御部に入力してトルク制御指令を生成し、インバータを介してダイナモメータを制御するシャシーダイナモメータにおいて、
前記検出速度信号を入力して負慣性の電気慣性指令を出力する電気慣性設定部を設け、
設定慣性をM、固定慣性をMoとしてM>Moのときに前記駆動力オブザーバから電気慣性指令を出力し、M<Moのときに前記電気慣性設定部から電気慣性指令の出力を得て前記走行抵抗指令と加算するよう構成したシャシーダイナモメータの制御装置。 Place the vehicle under test on the dynamometer roller, input the detected speed signal of the roller and the torque detection signal of the dynamometer to the driving force observer, and output the electric inertia command of positive inertia, corresponding to the detected speed signal The torque detection signal is subtracted from the added value of the running resistance command and the electric inertia command that are output in this manner, the difference is input to the torque control unit to generate a torque control command, and the dynamometer is controlled via the inverter. In the dynamometer,
An electric inertia setting unit that inputs the detection speed signal and outputs an electric inertia command of negative inertia is provided,
When the set inertia is M and the fixed inertia is Mo, when M> Mo, an electric inertia command is output from the driving force observer, and when M <Mo, the output of the electric inertia command is obtained from the electric inertia setting unit and the travel is performed. Chassis dynamometer controller configured to add with resistance command. - 電気慣性設定値に応じて速度補正ゲインがマップ化された速度補正ゲインマップを有する速度補正部を設け、
前記電気慣性設定値に応じて速度補正ゲインを変えて前記駆動力オブザーバ若しくは電気慣性設定部の出力に加算するよう構成した請求項1記載のシャシーダイナモメータの制御装置。 A speed correction unit having a speed correction gain map in which the speed correction gain is mapped according to the electric inertia set value;
2. The chassis dynamometer control device according to claim 1, wherein a speed correction gain is changed in accordance with the electric inertia setting value and added to an output of the driving force observer or the electric inertia setting unit. - 前記電気慣性設定部は、前記検出速度信号を微分する第1の微分回路と、第1の微分回路の微分信号と予め設定された電気慣性を乗算する第1の乗算部を設け、
第1の乗算部の乗算値を前記走行抵抗指令に加算するよう構成した請求項1又は2記載のシャシーダイナモメータの制御装置。 The electrical inertia setting unit includes a first differentiation circuit that differentiates the detection speed signal, and a first multiplication unit that multiplies the differential signal of the first differentiation circuit by a preset electric inertia,
The chassis dynamometer control device according to claim 1 or 2, wherein a multiplication value of a first multiplication unit is added to the running resistance command. - 前記速度補正部は、前記走行抵抗指令とトルク検出信号の差分を電気慣性で除算した結果の加速度を積分して演算速度を算出し、
算出された演算速度に、設定された電気慣性と設定慣性との比からなる慣性値を乗算して第1の演算速度とし、
設定された固定慣性と設定慣性の比からなる慣性値に前記検出速度信号を乗算して第2の演算速度とし、
前記第1の演算速度と第2の演算速度を加算して速度目標値を算出し、この速度目標値と前記検出速度信号の差分で速度誤差を生成するよう構成すると共に、
前記速度補正ゲインマップを補正出力部に設け、補正出力部からの速度補正ゲインと前記速度誤差を乗算することで補正信号を生成して前記駆動力オブザーバ若しくは電気慣性設定部の出力に加算するよう構成した請求項2又は3記載のシャシーダイナモメータの制御装置。 The speed correction unit calculates the calculation speed by integrating the acceleration obtained by dividing the difference between the running resistance command and the torque detection signal by the electric inertia,
The calculated calculation speed is multiplied by an inertia value composed of a ratio between the set electric inertia and the set inertia to obtain a first calculation speed,
Multiplying the detected inertia signal by the inertia value consisting of the ratio between the set fixed inertia and the set inertia to obtain the second calculation speed;
A speed target value is calculated by adding the first calculation speed and the second calculation speed, and a speed error is generated by a difference between the speed target value and the detected speed signal, and
The speed correction gain map is provided in the correction output unit, and a correction signal is generated by multiplying the speed correction gain from the correction output unit and the speed error, and added to the output of the driving force observer or the electric inertia setting unit. 4. The chassis dynamometer control device according to claim 2, wherein the chassis dynamometer is configured. - 前記トルク制御部のトルク検出信号フィードバック用のトルク検出回路にローパスフィルタを設け、
ローパスフィルタの特性を、予め計測した機械動特性との共振倍率のピーク値が1倍以下となるよう設定した請求項1乃至4の何れか1項に記載のシャシーダイナモメータの制御装置。 A torque detection circuit for torque detection signal feedback of the torque control unit is provided with a low pass filter,
The chassis dynamometer control device according to any one of claims 1 to 4, wherein the characteristic of the low-pass filter is set so that a peak value of a resonance magnification with a mechanical dynamic characteristic measured in advance is 1 or less. - 前記駆動力オブザーバは、前記検出速度信号を微分する第2の微分回路と、
第2の微分回路の微分信号と予め設定された固定慣性とを乗算する第2の乗算部と、
第2の乗算部による乗算値と前記ローパスフィルタの出力値とを加算した後、前記走行抵抗指令との差分を算出する減算部と、
減算部で算出された差分と予め設定された電気慣性と設定慣性の比による電気慣性設定値とを乗算し、この乗算値と前記走行抵抗指令を加算するよう構成した請求項5記載のシャシーダイナモメータの制御装置。 The driving force observer includes a second differentiating circuit for differentiating the detected speed signal;
A second multiplier for multiplying the differential signal of the second differentiating circuit by a preset fixed inertia;
A subtracting unit that calculates a difference from the running resistance command after adding the multiplication value obtained by the second multiplication unit and the output value of the low-pass filter;
6. The chassis dynamo according to claim 5, wherein the difference calculated by the subtracting unit is multiplied by a preset electric inertia set value based on a ratio between the electric inertia and the set inertia, and the multiplied value is added to the running resistance command. Meter control device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580029368.3A CN106461506B (en) | 2014-06-02 | 2015-05-29 | Control device for chassis dynamometer |
JP2015527696A JP5812229B1 (en) | 2014-06-02 | 2015-05-29 | Chassis dynamometer controller |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014113655 | 2014-06-02 | ||
JP2014-113655 | 2014-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015186616A1 true WO2015186616A1 (en) | 2015-12-10 |
Family
ID=54766689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/065498 WO2015186616A1 (en) | 2014-06-02 | 2015-05-29 | Control device for chassis dynamometer |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106461506B (en) |
WO (1) | WO2015186616A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110537156B (en) * | 2017-04-21 | 2023-07-11 | 阿尔卑斯阿尔派株式会社 | Rotary operation device, control method for rotary operation device, and program |
CN113074865A (en) * | 2021-02-18 | 2021-07-06 | 河南省计量科学研究院 | Torsion calibrating device of chassis dynamometer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5618108B2 (en) * | 1976-12-10 | 1981-04-27 | ||
JPH03163329A (en) * | 1989-11-22 | 1991-07-15 | Hitachi Ltd | Running-resistance control device of vehicle testing machine |
JPH09304201A (en) * | 1996-05-16 | 1997-11-28 | Meidensha Corp | Automatic setting circuit for vehicle inertia |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3801647C2 (en) * | 1988-01-21 | 1995-02-02 | Licentia Gmbh | Method and device for testing a four-wheel drive unit |
JP3158461B2 (en) * | 1991-03-07 | 2001-04-23 | 株式会社明電舎 | Dynamometer electric inertia compensation method |
DE10361314B3 (en) * | 2003-12-19 | 2005-11-10 | Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS) | Method for determining vertical forces acting on a motor vehicle in a wind tunnel under wind flow |
CN100575899C (en) * | 2008-05-29 | 2009-12-30 | 周申生 | Elementary inertia meter |
CN101581613B (en) * | 2009-06-16 | 2011-05-11 | 深圳市万德源科技发展有限公司 | Dynamometer for automobile chassis and measurement and control method thereof |
CN101587020B (en) * | 2009-06-18 | 2012-01-11 | 天津市天波科达科技有限公司 | High-precision fast self-compensating method of simulation of automobile chassis dynamometer resistance |
-
2015
- 2015-05-29 CN CN201580029368.3A patent/CN106461506B/en active Active
- 2015-05-29 WO PCT/JP2015/065498 patent/WO2015186616A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5618108B2 (en) * | 1976-12-10 | 1981-04-27 | ||
JPH03163329A (en) * | 1989-11-22 | 1991-07-15 | Hitachi Ltd | Running-resistance control device of vehicle testing machine |
JPH09304201A (en) * | 1996-05-16 | 1997-11-28 | Meidensha Corp | Automatic setting circuit for vehicle inertia |
Also Published As
Publication number | Publication date |
---|---|
CN106461506A (en) | 2017-02-22 |
CN106461506B (en) | 2019-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101521487B1 (en) | Dynamometer system | |
US9641107B2 (en) | Motor controller for electric vehicle | |
US10414287B2 (en) | Control apparatus for rotary electric machines | |
JP5098736B2 (en) | Vehicle speed control device | |
US20150048774A1 (en) | Three-phase ac induction motor control device and three-phase ac induction motor control method | |
JP6429235B2 (en) | Vehicle speed control device | |
WO2015186616A1 (en) | Control device for chassis dynamometer | |
US11073437B2 (en) | Dynamometer system control device | |
JP2013053978A (en) | Control device of engine bench system | |
JP5812229B1 (en) | Chassis dynamometer controller | |
JP5790339B2 (en) | Power transmission system test equipment | |
JP4645231B2 (en) | Power transmission system test apparatus and control method thereof | |
US8689640B2 (en) | Method and device for simulating a body that is moved in a translational or rotational manner | |
US20210310900A1 (en) | Electric inertia control apparatus | |
JP2013101048A (en) | Transmission test device | |
JP5880048B2 (en) | Electric vehicle control method and electric vehicle control apparatus | |
JP5895405B2 (en) | Control device for engine bench system | |
JP4591177B2 (en) | Engine test equipment | |
JP5037024B2 (en) | Motor control device | |
JP5292922B2 (en) | Method and apparatus for estimating roller surface driving force | |
JP2010043940A (en) | Apparatus for testing power transmission system and its control method | |
JP2024017535A (en) | Electric inertia control device and vehicle testing device | |
JP2017150954A (en) | Engine bench system control device | |
JP2013054671A (en) | Standard response arithmetic device and vehicular braking/driving force controller using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015527696 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15803945 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15803945 Country of ref document: EP Kind code of ref document: A1 |