[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015186161A1 - 充放電制御装置および充放電制御方法 - Google Patents

充放電制御装置および充放電制御方法 Download PDF

Info

Publication number
WO2015186161A1
WO2015186161A1 PCT/JP2014/003566 JP2014003566W WO2015186161A1 WO 2015186161 A1 WO2015186161 A1 WO 2015186161A1 JP 2014003566 W JP2014003566 W JP 2014003566W WO 2015186161 A1 WO2015186161 A1 WO 2015186161A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
charge
command value
power
discharge
Prior art date
Application number
PCT/JP2014/003566
Other languages
English (en)
French (fr)
Inventor
加治 充
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to SG11201507083QA priority Critical patent/SG11201507083QA/en
Priority to US14/848,246 priority patent/US9787123B2/en
Publication of WO2015186161A1 publication Critical patent/WO2015186161A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a charge / discharge control device that controls charge / discharge of the power storage system.
  • Patent Literature 1 and Patent Literature 2 are technologies for controlling charging / discharging of an electric power storage system (storage battery or the like).
  • the frequency of the power system can be moved away from the standard frequency by the reversal operation of charge / discharge (reverse operation). There is sex.
  • the present disclosure provides a charge / discharge control device and the like that can suppress the occurrence of the reversal operation of the storage battery in frequency adjustment.
  • a charge / discharge control device includes a frequency measurement unit that measures a system frequency that is a frequency of an electric power system for each predetermined control period, and a reference frequency that uses the system frequency for each control period.
  • a first frequency deviation calculating unit that calculates a first frequency deviation indicating a difference between the reference frequency and the system frequency for each control period, and a first frequency deviation.
  • a command value determining unit that determines a first power command value indicating charge / discharge power to bring the system frequency close to the reference frequency, and power to the power storage system using the first power command value.
  • a charge / discharge control unit that charges and discharges the reference frequency, and the reference frequency update unit uses the reference frequency, the system frequency, and a standard frequency of the power system to determine whether the system frequency is the standard frequency or not. It is determined whether or not an inversion operation that is charging / discharging corresponding to a direction away from the power storage system occurs, and when it is determined that the inversion operation does not occur, a low-pass filter against temporal fluctuations in the system frequency When the reference frequency is updated so that the reference frequency matches the frequency obtained by applying the reference frequency and it is determined that the inversion operation occurs, the reference frequency is set so that the reference frequency matches the system frequency. Update.
  • the charge / discharge control device of the present disclosure can suppress the occurrence of the reversal operation.
  • FIG. 1 is a diagram showing charge / discharge command values in a reference example.
  • FIG. 2 is a system configuration diagram showing the frequency adjustment system according to the first embodiment.
  • FIG. 3 is a block diagram of the charge / discharge control apparatus according to the first embodiment.
  • FIG. 4 is a flowchart showing the operation of the charge / discharge control device according to the first embodiment.
  • FIG. 5 is a flowchart showing the operation of the reference frequency update unit in the first embodiment.
  • FIG. 6 is a diagram showing fluctuations in the reference frequency in the first embodiment.
  • FIG. 7 is a diagram showing charge / discharge command values in the first embodiment.
  • FIG. 8 is a block diagram of the charge / discharge control apparatus according to the second embodiment.
  • FIG. 1 is a diagram showing charge / discharge command values in a reference example.
  • FIG. 2 is a system configuration diagram showing the frequency adjustment system according to the first embodiment.
  • FIG. 3 is a block diagram of the charge / discharge control apparatus according to the first embodiment.
  • FIG. 9 is a flowchart showing the operation of the charge / discharge control apparatus according to the second embodiment.
  • FIG. 10 is a diagram showing charge / discharge command values in the second embodiment.
  • FIG. 11 is a block diagram of the charge / discharge control apparatus according to the third embodiment.
  • FIG. 12 is a flowchart showing the operation of the charge / discharge control device according to the third embodiment.
  • FIG. 13 is a diagram showing charge / discharge command values in the third embodiment.
  • FIG. 14 is a block diagram of the charge / discharge control apparatus according to the fourth embodiment.
  • FIG. 15 is a flowchart illustrating the operation of the charge / discharge control device according to the fourth embodiment.
  • FIG. 16 is a flowchart showing the operation of the charge / discharge control device according to the fourth embodiment.
  • FIG. 17 is a diagram showing charge / discharge command values in the fourth embodiment.
  • FIG. 18 is a system configuration diagram showing the frequency adjustment system in the fifth embodiment.
  • FIG. 19 is a sequence diagram showing processing of the charge / discharge control device and the storage battery system in the fifth embodiment.
  • Patent Document 1 discloses a technique for dealing with load fluctuations using a power generation facility and a charge / discharge facility.
  • Load fluctuation includes long-period fluctuation and short-period fluctuation.
  • the power generation facility can cope with long-period fluctuations with a large power fluctuation range by increasing or decreasing the supplied power.
  • charging / discharging equipment with a small capacity can handle short-period fluctuations with a small power fluctuation range by charging and discharging electric power.
  • Patent Document 2 discloses a technique for following a load change by supplementing a load change that the gas engine generator cannot follow with a nickel metal hydride battery or the like.
  • an LPF low-pass filter
  • the nickel metal hydride battery follows the component obtained by subtracting the variable component through the LPF from the original variable component, so that the nickel metal hydride battery can handle only the short cycle variable component.
  • the generator may be controlled to follow only a long cycle load fluctuation, and the storage battery may be controlled to follow only a short cycle load fluctuation.
  • the frequency of the power system is adjusted to an appropriate range including the standard frequency.
  • the standard frequency is a frequency predetermined for each electric power company. For example, in Japan, there are two types of standard frequencies, 50 Hz and 60 Hz. The appropriate range including the standard frequency is, for example, ⁇ 0.2 Hz of the standard frequency.
  • the frequency of the power system (hereinafter also referred to as system frequency) varies depending on the supply and demand of power. Therefore, the fluctuation of the system frequency is suppressed by the FR.
  • the system frequency will be low. Conversely, if demand is small and supply is large, the system frequency will increase. For example, when a system frequency is high, a charge / discharge control device that performs FR using a storage battery consumes power of the power system by charging the storage battery. Further, when the system frequency is low, the charge / discharge control device supplies power to the power system by discharging the storage battery. Thereby, a charging / discharging control apparatus suppresses the fluctuation
  • the charge / discharge control device may control the charge / discharge of the storage battery so as to follow only the short-cycle fluctuation of the system frequency.
  • the charge / discharge control device follows only short-cycle fluctuations in the system frequency. To control the charge and discharge of the storage battery.
  • FIG. 1 is a diagram showing charge / discharge command values determined by a charge / discharge control device that controls charge / discharge of a storage battery so as to follow only short-cycle fluctuations in the system frequency.
  • the charge / discharge control device acquires a reference frequency corresponding to the long-period fluctuation component of the system frequency by using a low-pass filter or the like. Then, the charge / discharge control device determines the charge / discharge command value so that charging is performed when the system frequency exceeds the reference frequency, and discharge is performed when the system frequency is below the reference frequency.
  • the charging / discharging control device controls charging / discharging so that the system frequency approaches the reference frequency.
  • the system frequency moves away from the standard frequency by bringing the system frequency closer to the reference frequency.
  • the system frequency is lower than the standard frequency (50 Hz) at all times. Therefore, in order to bring the system frequency close to the standard frequency, it is better that the storage battery is discharged.
  • charging is performed in a time zone where the system frequency exceeds the reference frequency.
  • an inversion operation reverse operation
  • Such an inversion operation is undesirable for the stabilization of the power system because the system frequency is moved away from the standard frequency as a result. Therefore, it is desirable to prevent the reversal operation of charge / discharge of the storage battery from occurring.
  • a charge / discharge control apparatus uses a frequency measurement unit that measures a system frequency that is a frequency of an electric power system for each predetermined control period, and uses the system frequency for each control period.
  • a reference frequency updating unit for updating a reference frequency
  • a first frequency deviation calculating unit for calculating a first frequency deviation indicating a difference between the reference frequency and the system frequency for each control period, and the first frequency Using a deviation
  • a command value determining unit that determines a first power command value indicating charge / discharge power for bringing the grid frequency close to the reference frequency, and a power storage system using the first power command value
  • a charge / discharge control unit that charges and discharges power to the power supply, and the reference frequency update unit uses the reference frequency, the system frequency, and a standard frequency of the power system, to set the system frequency to the standard.
  • the reference frequency is updated so that the reference frequency matches the frequency obtained by applying a low-pass filter and it is determined that the inversion operation occurs, the reference frequency is set so that the reference frequency matches the system frequency. Update the frequency.
  • the reference frequency is updated to match the system frequency. That is, when it is determined that the reversal operation occurs, the charge / discharge control device does not cause the power storage system to charge / discharge. As a result, the charge / discharge control device can suppress the occurrence of the reversal operation.
  • the reference frequency update unit may update the reference frequency by changing the reference frequency by a certain value for each control period in which the inversion operation is determined not to occur.
  • the charge / discharge control device can reduce the amount of calculation when obtaining the low fluctuation frequency as compared with the moving average or the like.
  • the reference frequency update unit decreases the reference frequency by a constant value for each control period determined that the inversion operation does not occur,
  • the reference frequency may be updated.
  • the reference frequency update unit when the system frequency is larger than the standard frequency, by increasing the reference frequency by a constant value for each control period determined that the inversion operation does not occur, The reference frequency may be updated.
  • the charge / discharge control device can gradually bring the reference frequency closer to the high system frequency.
  • the reference frequency update unit determines that the inversion operation does not occur when the reference frequency is included in a section having the system frequency and the standard frequency as endpoints, and the reference frequency is included in the section. If not, it may be determined that the inversion operation occurs.
  • the charge / discharge control device can appropriately determine whether or not the reversal operation occurs based on whether or not the reference frequency is included in the predetermined range.
  • the reference frequency update unit when the reference frequency is less than the standard frequency and greater than the system frequency, or when the reference frequency is greater than the standard frequency and less than the system frequency, the inversion operation If the reference frequency is greater than the standard frequency and greater than or equal to the system frequency, or if the reference frequency is less than the standard frequency and less than or equal to the system frequency, the inversion operation occurs. Then, it may be determined.
  • the charge / discharge control device can appropriately determine whether or not the inversion operation occurs based on the relationship between the reference frequency, the system frequency, and the standard frequency.
  • the charge / discharge control apparatus further calculates a second capacity deviation indicating a difference between the standard frequency and the system frequency, and a remaining capacity obtaining unit that obtains information on a remaining charge of the power storage system.
  • a second frequency deviation calculating unit that performs the second power deviation, and the command value determining unit uses the second frequency deviation to indicate the power of charging / discharging to bring the system frequency close to the standard frequency.
  • a command value is determined, a power command value is selected from a plurality of power command values including the first power command value and the second power command value, using the information on the remaining charge amount, and the charge / discharge control The unit may charge / discharge power in the power storage system using the selected power command value.
  • the charge / discharge control device can control the charge / discharge of the power storage system based on the remaining capacity of the power storage system.
  • the charge / discharge control device can respond (respond) to larger fluctuations based on the remaining capacity.
  • the command value determining unit may (i) when the remaining charge amount is equal to or less than a predetermined threshold value and the second power command value does not indicate discharge power, or (ii) If the remaining charge is equal to or greater than the predetermined threshold and the second power command value does not indicate charging power, the second power command value is selected as the power command value, (i ) When the remaining charge amount is larger than the predetermined threshold value and the second power command value indicates the power for charging, or (ii) The remaining charge amount is smaller than the predetermined threshold value. And when the second power command value indicates the power of discharge, the first power command value may be selected as the power command value.
  • the charge / discharge control device can appropriately select one of the operation of bringing the system frequency close to the reference frequency and the operation of bringing the system frequency close to the standard frequency based on the remaining capacity of the power storage system.
  • the charge / discharge control apparatus further calculates a second capacity deviation indicating a difference between the standard frequency and the system frequency, and a remaining capacity obtaining unit that obtains information on a remaining charge of the power storage system.
  • a base point for determining a base point indicating power to be charged / discharged to the power storage system when the system frequency matches the reference frequency, using the second frequency deviation calculating unit that performs information on the remaining charge amount A determination unit, wherein the command value determination unit determines the first power command value using the first frequency deviation and the base point, and uses the second frequency deviation and the base point.
  • a power command value is selected from a plurality of power command values including a first power command value and the second power command value, and the charge / discharge control unit uses the selected power command value to store the power
  • the system may be charged and discharged with power.
  • the charge / discharge control device can control the charge / discharge of the power storage system based on the base point.
  • the base point determination unit sets an offset to the base point when the remaining charge is smaller than a first threshold or when the remaining charge is larger than a second threshold
  • the command value determining unit may determine the power command value included in the plurality of power command values using the base point to which the offset is set.
  • the charge / discharge control device appropriately adjusts the charge / discharge based on the base point.
  • the base point determination unit sets the offset to the base point
  • the remaining charge amount is smaller than the first threshold
  • the power command value indicates discharge power.
  • the amount of discharge corresponding to the power command value is less than when the offset is not set in the base point, the remaining charge is smaller than the first threshold, and the power command value is charged.
  • the charge amount corresponding to the power command value in the case of indicating power may be increased as compared with the case where the offset is not set in the base point.
  • the charge / discharge is adjusted based on the base point so that the charge amount increases and the discharge amount decreases.
  • the base point determination unit sets the offset to the base point
  • the remaining charge amount is larger than the second threshold
  • the power command value indicates the power of discharge.
  • the amount of discharge corresponding to the power command value is increased as compared with the case where the offset is not set in the base point, the remaining charge amount is larger than the second threshold value, and the power command value is charged.
  • the charge amount corresponding to the power command value in the case of indicating power may be reduced as compared with the case where the offset is not set in the base point.
  • the charge / discharge is adjusted based on the base point so that the charge amount becomes small and the discharge amount becomes large.
  • the command value determination unit may: (i) if the base point does not indicate discharge power and the second power command value does not indicate discharge power; or (ii) ) When the base point does not indicate charging power and the second power command value does not indicate charging power, the second power command value is selected as the power command value, i) when the base point indicates electric power for discharging and the second power command value indicates electric power for charging; or (ii) the base point indicates electric power for charging; In addition, when the second power command value indicates discharge power, the first power command value may be selected as the power command value.
  • the charge / discharge control device can appropriately select one of the operation of bringing the system frequency close to the reference frequency and the operation of bringing the system frequency close to the standard frequency based on the base point.
  • the command value determination unit selects, as the new power command value, a value that the power storage system does not charge / discharge in place of the power command value.
  • the charge / discharge control unit may cause the power storage system to stop charging / discharging in a control period in which a value that the power storage system does not charge / discharge is selected as the new power command value.
  • the charge / discharge control device can determine the charge / discharge command value so that the reversal operation is not performed.
  • the command value determination unit may: (i) the base point does not indicate discharge power, the second power command value indicates charge power, and the system frequency Is less than or equal to the standard frequency, or (ii) the base point does not indicate charging power, the second power command value indicates discharging power, and the grid frequency Is equal to or higher than the standard frequency, a value that the power storage system does not charge / discharge is selected as the power command value, and the charge / discharge control unit selects a value that the power storage system does not charge / discharge as the power command value.
  • the power storage system may stop charging / discharging.
  • the charge / discharge control device can appropriately suppress the occurrence of the reversal operation based on the application of the base point.
  • non-transitory recording medium such as a system, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM.
  • the present invention may be realized by any combination of an integrated circuit, a computer program, and a recording medium.
  • charge / discharge control device shown in the following embodiment may be expressed as a frequency control device.
  • charging / discharging corresponds to at least one of charging and discharging.
  • a negative value may indicate the charge power and a positive value may indicate the discharge power.
  • the positive / negative relationship may be reversed.
  • the value which shows the electric power of charging / discharging may be a value (0) corresponding to the state which neither charge nor discharge is performed.
  • the magnitude of the charge / discharge power may mean the absolute value of the value indicating the charge / discharge power, regardless of whether the charge / discharge is performed.
  • electric power may mean the value (magnitude).
  • the charge / discharge control apparatus in the first embodiment updates the target reference frequency that brings the system frequency closer, based on the measured system frequency and the standard frequency of the power system.
  • FIG. 2 is a system configuration diagram of a frequency control system including the charge / discharge control device according to the first embodiment.
  • FIG. 2 shows a distribution transformer 201, a distribution line 202, loads 203 and 205, and storage battery systems 204 and 206.
  • the distribution transformer 201 is a transformer that is connected to an electric power system provided by the system operator and converts the electric power supplied from the electric power system into an appropriate voltage for supplying to the loads 203 and 205.
  • the system operator is a business operator who operates the power system.
  • the distribution line 202 is a power wiring for electrically connecting the distribution transformer 201 and the loads 203 and 205 and supplying the power supplied by the distribution transformer 201 to the loads 203 and 205.
  • the loads 203 and 205 are devices that consume power supplied from the power system.
  • the loads 203 and 205 are, for example, household electric appliances.
  • the storage battery systems 204 and 206 charge the power supplied from the power system or discharge the power supplied to the power system.
  • the storage battery systems 204 and 206 bring the frequency of power supplied from the power system closer to the reference frequency by charging or discharging as described above.
  • the storage battery system 204 includes a storage battery 301 and a charge / discharge control device 302.
  • the storage battery system 206 may include the same components as the storage battery system 204.
  • the storage battery 301 is charged or discharged according to the control by the charge / discharge control device 302.
  • the storage battery 301 is a power storage device including a DC / AC inverter (not shown).
  • the charge / discharge control device 302 causes the storage battery 301 to perform charge / discharge. Then, the charge / discharge control device 302 performs frequency adjustment to bring the system frequency close to the reference frequency.
  • the system frequency is the frequency of the power system, specifically, the frequency of the power of the power system. More specifically, the system frequency is the frequency of power supplied from the power system.
  • the charge / discharge control device 302 measures the system frequency by measuring the frequency of the power supplied from the power system. And the charging / discharging control apparatus 302 controls charging / discharging of the storage battery 301 so that a system frequency may be approximated to a reference frequency based on the measured system frequency.
  • the distribution transformer 201 and the distribution line 202 may be included in the power system. In addition, more loads and storage battery systems may be connected to the distribution line 202.
  • FIG. 3 is a block diagram of the charge / discharge control device 302 shown in FIG.
  • the charge / discharge control device 302 includes a system frequency measurement unit 303, a reference frequency update unit 304, a frequency deviation calculation unit 305, a charge / discharge command value determination unit 306, and a charge / discharge control unit 307.
  • the system frequency measuring unit 303 is a frequency measuring unit that measures the system frequency.
  • the system frequency measuring unit 303 may measure the system frequency via a sensor for measuring the system frequency.
  • the reference frequency update unit 304 updates the reference frequency. Specifically, the reference frequency update unit 304 acquires the system frequency measured by the system frequency measurement unit 303 and updates a predetermined reference frequency based on the measured system frequency.
  • the reference frequency update unit 304 updates the reference frequency so that the reference frequency matches the system frequency.
  • the reference frequency update unit 304 updates the reference frequency so that the reference frequency approaches the system frequency with a predetermined change width.
  • the frequency deviation calculation unit 305 calculates a frequency deviation.
  • the frequency deviation indicates a difference between the system frequency and the reference frequency.
  • the frequency deviation calculation unit 305 acquires the system frequency measured by the system frequency measurement unit 303 and the reference frequency updated by the reference frequency update unit 304, and is updated with the measured system frequency.
  • the frequency deviation is calculated based on the reference frequency.
  • the charge / discharge command value determination unit 306 is a command value determination unit that determines the charge / discharge command value by calculating the charge / discharge command value.
  • the charge / discharge command value indicates power that causes the storage battery 301 to perform charge / discharge.
  • the charge / discharge command value may be expressed as a power value or a power command value.
  • the charge / discharge command value determination unit 306 acquires the frequency deviation calculated by the frequency deviation calculation unit 305, and based on the calculated frequency deviation, calculates a power value indicating power for bringing the system frequency closer to the reference frequency. calculate. Then, the charge / discharge command value determining unit 306 determines the calculated power value as the charge / discharge command value.
  • the negative charge / discharge command value corresponds to charging.
  • a positive charge / discharge command value corresponds to discharge.
  • the positive and negative relationships shown here are examples and may be reversed.
  • the charge / discharge control unit 307 controls charge / discharge of the storage battery 301. That is, the charge / discharge control unit 307 causes the storage battery 301 to perform charge / discharge. Specifically, the charging / discharging control unit 307 acquires the charging / discharging command value determined by the charging / discharging command value determining unit 306, and controls charging / discharging of the storage battery 301 based on the determined charging / discharging command value. . For example, the charge / discharge control unit 307 causes the storage battery 301 to perform charge / discharge by transmitting a charge / discharge command value to the storage battery 301.
  • the storage battery 301 performs charging / discharging. Specifically, the storage battery 301 receives a charge / discharge command value from the charge / discharge control unit 307, and performs charge / discharge by operating an inverter in the storage battery 301 based on the charge / discharge command value.
  • FIG. 4 is a flowchart showing the operation of the charge / discharge control device 302 shown in FIG.
  • the system frequency measuring unit 303 measures the system frequency (S101).
  • the reference frequency update unit 304 updates the reference frequency based on the measured system frequency (S102).
  • the reference frequency update unit 304 determines whether or not an inversion operation occurs based on the reference frequency, the system frequency, and the standard frequency.
  • the reference frequency update unit 304 matches the reference frequency with the low fluctuation frequency.
  • the low fluctuation frequency is a frequency obtained by applying a low-pass filter to the temporal fluctuation of the system frequency.
  • the reference frequency update unit 304 matches the reference frequency with the system frequency.
  • the reference frequency update unit 304 determines that the reversal operation does not occur when the reference frequency is included in a section (frequency range) whose end points are the system frequency and the standard frequency. Conversely, the reference frequency update unit 304 determines that an inversion operation occurs when the reference frequency is not included in the section (frequency range) whose end points are the system frequency and the standard frequency. More specific operation of the reference frequency update unit 304 will be described later.
  • the frequency deviation calculation unit 305 calculates a frequency deviation indicating a difference between the updated reference frequency and the measured system frequency (S103).
  • the frequency deviation calculation unit 305 calculates the frequency deviation based on the following Equation 1.
  • the charging / discharging command value determination unit 306 determines a charging / discharging command value indicating charging / discharging power for bringing the system frequency close to the reference frequency based on the frequency deviation (S104).
  • the charge / discharge command value determination unit 306 calculates the charge / discharge command value based on the following Equation 2.
  • Charge / discharge command value frequency deviation / -appropriate frequency width x charge / discharge variable width (Formula 2)
  • the appropriate frequency width corresponds to the appropriate range of the system frequency. For example, when the standard frequency is 50 Hz and the appropriate range of the system frequency is from 49.8 Hz to 50.2 Hz, the appropriate frequency width is 0.2 Hz. When the appropriate frequency width is 0.2 Hz, the charge / discharge command value determination unit 306 calculates the charge / discharge command value based on the following Equation 3.
  • Charge / discharge command value frequency deviation / ⁇ 0.2 Hz ⁇ charge / discharge variable width (Equation 3)
  • the charge / discharge variable width corresponds to the maximum value of charge / discharge power of the storage battery 301.
  • the maximum value of the charge / discharge power of the storage battery 301 depends on the capacity of the inverter of the storage battery 301.
  • the charge / discharge control unit 307 causes the storage battery 301 to perform charge / discharge corresponding to the power indicated by the charge / discharge command value (S105).
  • the frequency deviation is 0.1 Hz.
  • the charge / discharge control unit 307 causes the storage battery 301 to perform charge / discharge corresponding to ⁇ 10 kW. That is, the charge / discharge control unit 307 causes the storage battery 301 to charge with 10 kW of power.
  • the charging / discharging control device 302 repeats the above operation every predetermined control period.
  • the predetermined control period is, for example, 1 second or 4 seconds.
  • FIG. 5 is a flowchart showing the operation of the reference frequency update unit 304 shown in FIG.
  • the operation shown in FIG. 5 mainly corresponds to the operation (S102) for updating the reference frequency shown in FIG.
  • the reference frequency update unit 304 initializes the reference frequency by setting the reference frequency to the standard frequency (S201).
  • the reference frequency is set to 50 Hz.
  • the reference frequency update unit 304 acquires the system frequency measured by the system frequency measurement unit 303 (S202).
  • the reference frequency update unit 304 determines whether or not the reference frequency is greater than the system frequency and equal to or less than the standard frequency (50 Hz) (S203). When the reference frequency is greater than the system frequency and equal to or less than the standard frequency (Yes in S203), the reference frequency update unit 304 determines that the inversion operation does not occur. In this case, the reference frequency update unit 304 gradually decreases the reference frequency. For example, the reference frequency update unit 304 decreases the reference frequency at a speed of 0.02 Hz / min (S204).
  • the reference frequency update unit 304 determines whether or not the reference frequency is smaller than the system frequency and equal to or higher than the standard frequency (50 Hz) (S205). When the reference frequency is smaller than the system frequency and equal to or higher than the standard frequency (Yes in S205), the reference frequency update unit 304 determines that the inversion operation does not occur. In this case, the reference frequency update unit 304 gradually increases the reference frequency. For example, the reference frequency update unit 304 increases the reference frequency at a speed of 0.02 Hz / min (S206).
  • the reference frequency update unit 304 determines that an inversion operation occurs. In this case, the reference frequency update unit 304 matches the reference frequency with the system frequency (S207).
  • the reference frequency update unit 304 repeats a series of operations from acquiring the system frequency to updating the reference frequency every predetermined control period.
  • FIG. 6 is a diagram showing fluctuations in the reference frequency in the first embodiment.
  • the reference frequency update unit 304 gradually decreases the reference frequency (period of t ⁇ t + 2). Thereby, the reference frequency update unit 304 matches the reference frequency with the low fluctuation frequency.
  • the reference frequency update unit 304 matches the reference frequency with the system frequency (period t ⁇ t + 2) ).
  • FIG. 7 is a diagram showing charge / discharge command values in the first embodiment.
  • FIG. 7 shows a reference frequency that is updated based on the above operation.
  • the system frequency and the standard frequency are the same as in the example of FIG.
  • the reference frequency is equal to or higher than the system frequency. Therefore, in all the time zones, the charge / discharge command value is a value indicating discharge or a value at which charge / discharge is not executed. And the charge which keeps a system
  • charging / discharging control apparatus 302 updates the reference frequency so that the reference frequency matches the system frequency. That is, the charge / discharge control device 302 does not cause the storage battery 301 to perform charge / discharge when it is determined that a charge / discharge reversal operation occurs. Thereby, the charge / discharge control apparatus 302 can suppress generation
  • the reference frequency update unit 304 determines whether or not an inversion operation occurs based on the reference frequency before update. However, the reference frequency update unit 304 may determine whether or not an inversion operation occurs based on the updated reference frequency. If it is determined that an inversion operation occurs, the reference frequency update unit 304 may further update the updated reference frequency so that the reference frequency matches the system frequency.
  • the reference frequency update unit 304 may update the reference frequency so that the reference frequency matches the low fluctuation frequency regardless of whether or not the inversion operation occurs. Then, the charge / discharge command value determination unit 306 may determine whether or not the reversal operation occurs based on the updated reference frequency. Then, when it is determined that the reversal operation occurs, the charge / discharge command value determination unit 306 may determine a value at which charge / discharge is not performed as the charge / discharge command value. Thereby, generation
  • the low fluctuation frequency may be a moving average of the system frequency.
  • the charge / discharge control device in the second embodiment determines (selects) a charge / discharge command value based on the remaining capacity of the storage battery.
  • the remaining capacity is also expressed as a remaining charge.
  • the remaining capacity acquisition unit and the remaining capacity information in the following description may be similarly expressed as a remaining charge acquisition unit and remaining charge information.
  • FIG. 8 is a block diagram of the charge / discharge control apparatus according to the second embodiment.
  • the charge / discharge control device 302a shown in FIG. 8 further includes a frequency deviation calculation unit 305a and a remaining capacity acquisition unit 308, as compared with the charge / discharge control device 302 shown in FIG.
  • the charge / discharge control device 302a includes a charge / discharge command value determining unit 306a instead of the charge / discharge command value determining unit 306.
  • Other components are the same as those shown in FIG.
  • the remaining capacity acquisition unit 308 acquires the remaining capacity information of the storage battery 301.
  • the remaining capacity information of the storage battery 301 is information regarding the remaining capacity of the storage battery 301, and specifically indicates the remaining capacity of the storage battery 301. As described above, the remaining capacity is also expressed as a remaining charge, and is also referred to as a state of charge (SOC) or an amount of stored electricity.
  • the remaining capacity of the storage battery 301 is the remaining capacity of the electric power charged in the storage battery 301.
  • the remaining capacity may be expressed as a ratio with respect to the total capacity of the storage battery 301, or may be expressed as a ratio with respect to a partial capacity of the storage battery 301.
  • the remaining capacity acquisition unit 308 acquires not the entire remaining capacity of the storage battery 301 but the remaining capacity for frequency adjustment.
  • a range corresponding to a remaining capacity of 20% to 80% of the total capacity of the storage battery 301 may be used for frequency adjustment.
  • the remaining capacity of 20% to 80% of the total capacity of the storage battery 301 corresponds to the remaining capacity of 0% to 100% for frequency adjustment.
  • the remaining capacity with respect to the total capacity of the storage battery 301 is 20%
  • the remaining capacity for frequency adjustment is 0%.
  • the remaining capacity with respect to the total capacity of the storage battery 301 is 80%
  • the remaining capacity for frequency adjustment is 100%.
  • the remaining capacity acquisition unit 308 may calculate the remaining capacity for frequency adjustment based on Equation 4 below.
  • Equation 4 The upper and lower limits of Equation 4 indicate the upper and lower limits of the range corresponding to the remaining capacity of 0% to 100% for frequency adjustment in the entire capacity.
  • the remaining capacity for frequency adjustment when the remaining capacity for frequency adjustment is lower than 0%, the remaining capacity for frequency adjustment may be set to 0%.
  • the remaining capacity for frequency adjustment when the remaining capacity for frequency adjustment exceeds 100%, the remaining capacity for frequency adjustment may be set to 100%.
  • the frequency deviation calculation unit 305a calculates a frequency deviation indicating a difference between the standard frequency and the system frequency. Specifically, the frequency deviation calculation unit 305a acquires the system frequency measured by the system frequency measurement unit 303, and calculates the difference between the measured system frequency and a predetermined standard frequency, thereby obtaining the frequency. Calculate the deviation.
  • the frequency deviation indicating the difference between the system frequency and the reference frequency may be expressed as frequency deviation A or simply A.
  • the frequency deviation indicating the difference between the system frequency and the standard frequency may be expressed as the frequency deviation B or simply B.
  • the frequency deviation calculation unit 305 calculates the frequency deviation A, and the frequency deviation calculation unit 305a calculates the frequency deviation B.
  • the charge / discharge command value determination unit 306a determines (selects) the charge / discharge command value. Specifically, the charge / discharge command value determination unit 306a is calculated by the remaining capacity acquired by the remaining capacity acquisition unit 308, the frequency deviation A calculated by the frequency deviation calculation unit 305, and the frequency deviation calculation unit 305a. The frequency deviation B is acquired. Then, the charge / discharge command value determination unit 306a determines the charge / discharge command value based on the acquired remaining capacity, the calculated frequency deviation A, and the calculated frequency deviation B.
  • the charge / discharge command value determination unit 306a calculates a power value indicating charge / discharge power for bringing the system frequency close to the standard frequency. When the calculated charge / discharge command value is 0 or less and the remaining capacity is 50% or less, the charge / discharge command value determination unit 306a determines the calculated power value as the charge / discharge command value. Further, when the calculated charge / discharge command value is 0 or more and the remaining capacity is 50% or more, the charge / discharge command value determination unit 306a determines the calculated power value as the charge / discharge command value.
  • the charge / discharge command value determination unit 306a calculates a power value indicating the charge / discharge power for bringing the system frequency close to the reference frequency. Then, the charge / discharge command value determination unit 306a determines the calculated power value as the charge / discharge command value.
  • FIG. 9 is a flowchart showing the operation of the charge / discharge control device 302a shown in FIG.
  • the remaining capacity acquisition unit 308 acquires the remaining capacity of the storage battery 301 (S301). For example, the remaining capacity acquisition unit 308 acquires the remaining capacity of the storage battery 301 by receiving information indicating the remaining capacity of the storage battery 301 from the storage battery 301 through communication.
  • the system frequency measuring unit 303 measures the system frequency (S302).
  • the reference frequency update unit 304 updates the reference frequency based on the measured system frequency (S303). These operations are the same as those in the first embodiment.
  • the frequency deviation calculation unit 305 calculates a frequency deviation A indicating a difference between the updated reference frequency and the measured system frequency (S304). More specifically, the frequency deviation calculation unit 305 calculates the frequency deviation A based on the following formula 5.
  • Frequency deviation A system frequency ⁇ reference frequency (Formula 5)
  • the frequency deviation calculation unit 305a calculates a frequency deviation B indicating a difference between the standard frequency of the power system and the measured system frequency (S305). More specifically, the frequency deviation calculation unit 305a calculates the frequency deviation B based on the following Expression 6.
  • Frequency deviation B System frequency-Standard frequency (Equation 6)
  • the standard frequency is 50 Hz
  • Expression 6 is replaced with Expression 7.
  • Frequency deviation B system frequency ⁇ 50 Hz (Expression 7)
  • the charging / discharging command value determination unit 306a calculates a charging / discharging command value (power value) indicating charging / discharging power for bringing the system frequency close to the standard frequency (S306). More specifically, the charge / discharge command value determination unit 306a calculates a charge / discharge command value based on the following Equation 8.
  • Charge / discharge command value frequency deviation B / -appropriate frequency width x charge / discharge variable width (Equation 8)
  • the charge / discharge variable width and the appropriate frequency width of Expression 8 are the same as those of Expression 2.
  • the charge / discharge command value determination unit 306a calculates the charge / discharge command value based on the following Equation 9.
  • Charge / discharge command value frequency deviation B / ⁇ 0.2 Hz ⁇ charge / discharge variable width (Equation 9)
  • the charge / discharge command value determination unit 306a may change the charge / discharge variable width based on the remaining capacity. For example, when the remaining capacity is in the vicinity of 0% or 100%, sufficient charge / discharge is difficult. Therefore, the charge / discharge command value determination unit 306a increases the charge / discharge variable width as the remaining capacity approaches 50%, and the charge / discharge variable width decreases as the remaining capacity approaches 0% or 100%. The variable discharge width may be changed.
  • the charge / discharge command value determining unit 306a determines whether the calculated charge / discharge command value is 0 or less and the remaining capacity is 50% or less (S307). Further, the charge / discharge command value determination unit 306a determines whether or not the calculated charge / discharge command value is 0 or more and the remaining capacity is 50% or more (S308).
  • 50% is used as the threshold value, but the threshold value is not limited to 50%. In these two determinations (S307, S308), two different threshold values may be used.
  • the charge / discharge command value determination unit 306a determines the calculated charge / discharge command value as the final charge / discharge command value.
  • the charge / discharge command value determination unit 306a is based on the frequency deviation A, and the charge / discharge command value indicating the power of charge / discharge for bringing the system frequency close to the reference frequency. (Power value) is calculated (S309). More specifically, the charge / discharge command value determination unit 306a calculates the charge / discharge command value based on the following Equation 10.
  • Charge / discharge command value frequency deviation A / -appropriate frequency width x charge / discharge variable width (Equation 10) That is, the frequency deviation A is used in place of the frequency deviation B in calculating the charge / discharge command value.
  • the charge / discharge command value determination unit 306a calculates the charge / discharge command value based on the following Equation 11.
  • Charge / discharge command value frequency deviation A / ⁇ 0.2 Hz ⁇ charge / discharge variable width (Equation 11) Then, the charge / discharge command value determining unit 306a determines the charge / discharge command value calculated based on the frequency deviation A as the final charge / discharge command value.
  • the charge / discharge control unit 307 causes the storage battery 301 to perform charge / discharge corresponding to the power indicated by the finally determined charge / discharge command value (S310).
  • FIG. 10 is a diagram showing charge / discharge command values determined by the operation shown in FIG.
  • a charge / discharge command value based on the frequency deviation A is applied to the discharge in a state where the remaining capacity is less than 50%.
  • a charge / discharge command value based on the frequency deviation B is applied to charging in a state where the remaining capacity is smaller than 50%.
  • a charge / discharge command value based on the frequency deviation B is applied to the discharge in a state where the remaining capacity is greater than 50%.
  • a charge / discharge command value based on the frequency deviation A is applied to charging in a state where the remaining capacity is greater than 50%.
  • the reference frequency is updated to follow the system frequency. Therefore, the absolute value of the frequency deviation A indicating the difference between the system frequency and the reference frequency is assumed to be smaller than the absolute value of the frequency deviation B indicating the difference between the system frequency and the standard frequency. Conversely, the absolute value of the frequency deviation B is assumed to be larger than the absolute value of the frequency deviation A. Therefore, the absolute value of the charge / discharge command value based on the frequency deviation B is assumed to be larger than the absolute value of the charge / discharge command value based on the frequency deviation A.
  • the charging / discharging control device 302a increases the power of charging by applying a charging / discharging command value based on the frequency deviation B to charging in a state where the remaining capacity is small. Moreover, the charge / discharge control apparatus 302a increases the electric power of discharge by applying the charge / discharge command value based on the frequency deviation B to the discharge in a state where the remaining capacity is large.
  • the charge / discharge control device 302a can effectively use the resources of the storage battery 301. Moreover, the charge / discharge control apparatus 302a can reduce the load of the other power generation system that performs FR by using the power value for bringing the system frequency close to the standard frequency as the charge / discharge command value.
  • charge / discharge control device 302a uses the remaining capacity and the charge / discharge command value based on frequency deviation B to charge / discharge command value based on frequency deviation A and the charge based on frequency deviation B. Switching between discharge command values.
  • the charge / discharge control device 302a uses the remaining capacity and the charge / discharge command value based on the frequency deviation A to switch between the charge / discharge command value based on the frequency deviation A and the charge / discharge command value based on the frequency deviation B. Good.
  • the charge / discharge control device 302a may first calculate a charge / discharge command value based on the frequency deviation A.
  • the charge / discharge control device 302 a A charge / discharge command value based on the frequency deviation B may be calculated.
  • the charge / discharge control apparatus in the present embodiment determines a base point based on the remaining capacity of the storage battery, and determines (selects) a charge / discharge command value based on the determined base point.
  • FIG. 11 is a block diagram showing the charge / discharge control apparatus in the present embodiment.
  • the charge / discharge control device 302b shown in FIG. 11 further includes a base point determination unit 309, compared to the charge / discharge control device 302a shown in FIG. Further, the charge / discharge control device 302b includes a charge / discharge command value determination unit 306b instead of the charge / discharge command value determination unit 306a.
  • Other components are the same as those shown in FIG.
  • the base point determination unit 309 determines a base point based on the remaining capacity.
  • the base point indicates power that causes the storage battery 301 to perform charge / discharge when the system frequency matches the target frequency in the operation of bringing the system frequency close to the target frequency.
  • the target frequency is a reference frequency or a standard frequency.
  • the base point is used for calculating the charge / discharge command value.
  • the base point determination unit 309 determines the base point so that the remaining capacity does not approach 0% or 100%.
  • the base point determination unit 309 calculates a base point based on the following Expression 12.
  • the base point determination unit 309 calculates a base point based on Expression 13 below.
  • the base point determination unit 309 calculates a base point based on the following Expression 14.
  • Base point constant C ⁇ (remaining capacity ⁇ threshold E1) / ⁇ 100 ⁇ (threshold E2 ⁇ threshold E1) ⁇ (Equation 12)
  • Base point constant C ⁇ (remaining capacity ⁇ threshold E2) / ⁇ 100 ⁇ (threshold E2 ⁇ threshold E1) ⁇ (Expression 13)
  • Base point 0 (Formula 14)
  • the constant C in Expression 12 and Expression 13 is arbitrarily set in advance.
  • the constant C may be the maximum value of charge / discharge power of the storage battery 301.
  • Base point constant C ⁇ (remaining capacity ⁇ 45%) / 90% (Equation 15)
  • Base point constant C ⁇ (remaining capacity ⁇ 55%) / 90% (Equation 16)
  • the base point determination unit 309 calculates a base point based on Equation 15 when the remaining capacity is smaller than 45%.
  • the base point determination part 309 calculates a base point based on the following formula
  • the base point determination unit 309 calculates a base point based on Equation 14.
  • the base point determination unit 309 uses Expression 12 or Expression 13 as a base point used for calculating the charge / discharge command value. Set the offset determined by. Thereby, the base point determination unit 309 decreases the discharge amount and increases the charge amount when the remaining capacity is smaller than the threshold value E1. Further, the base point determination unit 309 increases the discharge amount and decreases the charge amount when the remaining capacity is larger than the threshold value E2.
  • the charge / discharge command value determination unit 306b determines (selects) the charge / discharge command value using the determined base point. Specifically, the charge / discharge command value determination unit 306b is calculated by the base point determined by the base point determination unit 309, the frequency deviation A calculated by the frequency deviation calculation unit 305, and the frequency deviation calculation unit 305a. The frequency deviation B is acquired. Then, the charge / discharge command value determination unit 306b determines the charge / discharge command value based on the determined base point, the calculated frequency deviation A, and the calculated frequency deviation B.
  • the charge / discharge command value determination unit 306b calculates a power value indicating the charge / discharge power for bringing the system frequency close to the standard frequency.
  • the charge / discharge command value determination unit 306b determines the calculated power value as the charge / discharge command value.
  • the charge / discharge command value determination unit 306b determines the calculated power value as the charge / discharge command value.
  • the charge / discharge command value determination unit 306b calculates a power value indicating the charge / discharge power for bringing the system frequency close to the reference frequency. And charging / discharging command value determination part 306b determines the calculated electric power value as charging / discharging command value.
  • the charge / discharge command value determination unit 306b may determine the charge / discharge variable width based on the remaining capacity or the base point, and may determine the charge / discharge command value based on the determined charge / discharge variable width.
  • FIG. 12 is a flowchart showing the operation of the charge / discharge control device 302b shown in FIG.
  • the remaining capacity acquisition unit 308 acquires the remaining capacity of the storage battery 301 (S401). This operation is the same as in the second embodiment.
  • the base point determination unit 309 determines a base point based on the remaining capacity of the storage battery 301 (S402).
  • the system frequency measuring unit 303 measures the system frequency (S403).
  • the reference frequency update unit 304 updates the reference frequency based on the measured system frequency (S404).
  • the frequency deviation calculation unit 305 calculates a frequency deviation A indicating a difference between the updated reference frequency and the measured system frequency (S405).
  • the frequency deviation calculation unit 305a calculates a frequency deviation B indicating a difference between the standard frequency of the power system and the measured system frequency (S406).
  • the charging / discharging command value determination unit 306b calculates a charging / discharging command value (power value) indicating charging / discharging power for bringing the system frequency close to the standard frequency (S407). More specifically, the charge / discharge command value determination unit 306b calculates the charge / discharge command value based on the following Expression 17.
  • Charge / discharge command value frequency deviation B / ⁇ frequency appropriate width ⁇ charge / discharge variable width + base point (Equation 17)
  • the frequency deviation B, charge / discharge variable width, and appropriate frequency width in Expression 17 are the same as in Expression 8.
  • the charge / discharge command value determination unit 306b calculates the charge / discharge command value based on the following Equation 18.
  • Charge / discharge command value frequency deviation B / ⁇ 0.2 Hz ⁇ charge / discharge variable width + base point (Formula 18)
  • the charge / discharge command value determination unit 306b uses the predetermined maximum value as the calculated charge / discharge command value.
  • the charge / discharge command value determination unit 306b uses the predetermined minimum value as the calculated charge / discharge command value.
  • the predetermined maximum value and the predetermined minimum value correspond to the maximum value of charge / discharge power of the storage battery 301.
  • the charge / discharge command value determining unit 306b sets the base point so that the calculated charge / discharge command value does not exceed a predetermined maximum value and the calculated charge / discharge command value does not fall below a predetermined minimum value. Based on this, the charge / discharge variable width may be changed. Specifically, the charge / discharge command value determination unit 306b may use a value obtained by subtracting the absolute value of the base point from the maximum value of the charge / discharge power of the storage battery 301 as the charge / discharge variable width.
  • the charge / discharge command value determination unit 306b determines whether the calculated charge / discharge command value is 0 or less and the base point is 0 or less (S408). Furthermore, the charge / discharge command value determination unit 306b determines whether or not the calculated charge / discharge command value is 0 or more and the base point is 0 or more (S409).
  • the charge / discharge command value determination unit 306b determines the calculated charge / discharge command value as the final charge / discharge command value.
  • the charge / discharge command value determination unit 306b is based on the frequency deviation A, and the charge / discharge command value indicating the power of charge / discharge for bringing the system frequency close to the reference frequency. (Power value) is calculated (S410). More specifically, the charge / discharge command value determination unit 306b calculates the charge / discharge command value based on the following Equation 19.
  • Charge / discharge command value frequency deviation A / ⁇ frequency appropriate width ⁇ charge / discharge variable width + base point (Equation 19) That is, the frequency deviation A is used in place of the frequency deviation B in calculating the charge / discharge command value.
  • the charge / discharge command value determination unit 306b calculates the charge / discharge command value based on the following Equation 20.
  • Charge / discharge command value frequency deviation A / ⁇ 0.2 Hz ⁇ charge / discharge variable width + base point (Equation 20)
  • the charge / discharge command value determination unit 306b uses the predetermined maximum value as the calculated charge / discharge command value.
  • the charge / discharge command value determination unit 306b uses the predetermined minimum value as the calculated charge / discharge command value.
  • the predetermined maximum value and the predetermined minimum value correspond to the maximum value of charge / discharge power of the storage battery 301.
  • the charge / discharge command value determination unit 306b determines that the calculated charge / discharge command value does not exceed a predetermined maximum value and that the calculated charge / discharge command value is a predetermined value.
  • the charge / discharge variable width may be changed based on the base point so as not to fall below the minimum value.
  • the charge / discharge command value determining unit 306b determines the charge / discharge command value calculated based on the frequency deviation A as the final charge / discharge command value.
  • the charge / discharge control unit 307 causes the storage battery 301 to perform charge / discharge corresponding to the power indicated by the finally determined charge / discharge command value (S411).
  • FIG. 13 is a diagram showing charge / discharge command values determined by the operation shown in FIG. A charge / discharge command value based on the frequency deviation A is applied to the discharge in a state where the base point is smaller than 0. Further, a charge / discharge command value based on the frequency deviation A is applied to charging in a state where the base point is greater than 0. In other cases, a charge / discharge command value based on the frequency deviation B is applied.
  • the absolute value of the charge / discharge command value based on the frequency deviation B is assumed to be larger than the absolute value of the charge / discharge command value based on the frequency deviation A. Further, when the base point is smaller than 0, it is assumed that sufficient charging is possible. Further, when the base point is larger than 0, it is assumed that sufficient discharge is possible. When the base point is 0, it is assumed that sufficient charge / discharge is possible.
  • the charging / discharging control device 302b increases the power of charging by applying a charging / discharging command value based on the frequency deviation B to charging in a state where the base point is smaller than 0. Moreover, the charge / discharge control apparatus 302b increases the electric power of discharge by applying the charge / discharge command value based on the frequency deviation B to the discharge in a state where the base point is larger than zero. In addition, the charge / discharge control device 302b increases the charge / discharge power by applying a charge / discharge command value based on the frequency deviation B to charge / discharge in a state where the base point is zero.
  • the charge / discharge control device 302b can effectively use the resources of the storage battery 301. Moreover, the charge / discharge control apparatus 302b can reduce the load of the other electric power generation system which performs FR by using the electric power value for making a system
  • charge / discharge control device 302b uses the base point and the charge / discharge command value based on frequency deviation B to charge / discharge command value based on frequency deviation A and the charge based on frequency deviation B. Switching between discharge command values.
  • the charge / discharge control device 302b uses the base point and the charge / discharge command value based on the frequency deviation A to switch between the charge / discharge command value based on the frequency deviation A and the charge / discharge command value based on the frequency deviation B. Good.
  • the charge / discharge control device 302b may first calculate a charge / discharge command value based on the frequency deviation A.
  • the charge / discharge control device 302b A charge / discharge command value based on the frequency deviation B may be calculated.
  • the charge / discharge control device in the present embodiment determines a base point based on the remaining capacity of the storage battery, and determines a charge / discharge command value based on the determined base point. And the charging / discharging control apparatus in this Embodiment suppresses generation
  • FIG. 14 is a block diagram showing a charge / discharge control apparatus according to the present embodiment.
  • the charge / discharge control device 302c shown in FIG. 14 includes a charge / discharge command value determination unit 306c instead of the charge / discharge command value determination unit 306b.
  • Other components are the same as those of the charge / discharge control device 302b shown in FIG.
  • the charge / discharge command value determination unit 306c determines the charge / discharge command value.
  • the operation of charge / discharge command value determination unit 306c is substantially the same as that of charge / discharge command value determination unit 306b of the third embodiment.
  • the charge / discharge command value determining unit 306c indicates the power of the reversal operation before the charge / discharge command value based on the frequency deviation B is determined as the final charge / discharge command value. It is determined whether or not.
  • the charge / discharge command value determination unit 306c sets the charge / discharge command value to 0.
  • 15 and 16 are flowcharts showing the operation of the charge / discharge control device 302c shown in FIG.
  • the operation shown in FIG. 15 is almost the same as the operation of the third embodiment. However, when the base point is 0 or less and the charge / discharge command value based on the frequency deviation B is 0 or less (Yes in S408), or the base point is 0 or more and based on the frequency deviation B The operation when the charge / discharge command value is 0 or more (Yes in S409) is different from that of the third embodiment.
  • the charge / discharge control device 302c determines whether the system frequency is smaller than the standard frequency (50 Hz) and the charge / discharge command value based on the frequency deviation B is 0 or more. (S501). Further, the charge / discharge control device 302c determines whether or not the system frequency is higher than the standard frequency (50 Hz) and the charge / discharge command value based on the frequency deviation B is 0 or less (S502).
  • the charge / discharge control device 302c When the system frequency is smaller than the standard frequency and the charge / discharge command value based on the frequency deviation B is 0 or more (Yes in S501), the charge / discharge control device 302c finally sets the charge / discharge command value based on the frequency deviation B. Determined as a typical charge / discharge command value. When the system frequency is higher than the standard frequency and the charge / discharge command value based on the frequency deviation B is 0 or less (Yes in S502), the charge / discharge control device 302c finally sets the charge / discharge command value based on the frequency deviation B. Is determined as a typical charge / discharge command value.
  • the charge / discharge control device 302c sets the charge / discharge command value to 0 (S503). That is, the charge / discharge control device 302c determines the charge / discharge command value set to 0 as the final charge / discharge command value.
  • the charge / discharge control device 302c sets the charge / discharge command value to zero. Further, when the base point is 0 or more, the charge / discharge command value based on the frequency deviation B is greater than 0, and the system frequency is equal to or higher than the standard frequency, the charge / discharge control device 302c sets the charge / discharge command value to 0. To do.
  • FIG. 17 is a diagram showing charge / discharge command values determined by the operations shown in FIGS. 15 and 16.
  • FIG. 17 shows a prohibited range as compared with the third embodiment shown in FIG. In the prohibited range, the charge / discharge command value is set to zero. That is, the charge / discharge command value is changed to 0.
  • the base point indicates the charge / discharge power in a state where the system frequency matches the target frequency in the operation of bringing the system frequency close to the target frequency.
  • the base point may be determined to be a value different from 0 based on the remaining capacity.
  • the charge / discharge control device 302c sets the charge / discharge command value to 0. That is, the charge / discharge control device 302c determines a value at which charging / discharging is not performed as a final charge / discharge command value. In the control period in which a value at which charging / discharging is not performed is determined as the charging / discharging command value, the charging / discharging control unit 307 does not charge / discharge the storage battery 301. That is, the charge / discharge control unit 307 causes the storage battery 301 to stop charging / discharging. Thereby, the charging / discharging control apparatus 302c suppresses generation
  • Embodiment 5 The charge / discharge control apparatus in Embodiment 5 controls charge / discharge of the storage battery system via a communication network. That is, the configuration and operation of the fifth embodiment will be described below with reference to FIG. 18 and FIG.
  • FIG. 18 is a system configuration diagram of a frequency control system including the charge / discharge control device according to the fifth embodiment.
  • FIG. 19 is a sequence diagram showing processing of the charge / discharge control device and the storage battery system in the fifth embodiment.
  • FIG. 18 further shows a sensor 207 and a communication network 208 in comparison with the components shown in FIG. Further, instead of the storage battery systems 204 and 206 and the charge / discharge control device 302, storage battery systems 204d and 206d and a charge / discharge control device 302d are shown.
  • the other components in FIG. 18 are the same as the components shown in FIG.
  • the charge / discharge control device 302d may be configured as an external controller provided outside the storage battery system 204d, for example. Further, the charge / discharge control device 302d may be configured as a server, for example. In this case, the charge / discharge control device 302d may control a plurality of storage battery systems 204d, 206d and the like that are distributed and arranged at different locations.
  • the communication network 208 is a network for the charge / discharge control device 302d and the storage battery systems 204d and 206d to communicate with each other.
  • the communication network 208 may be constructed with a wired LAN that conforms to the IEEE 802.3 standard, a wireless LAN that conforms to the IEEE 802.11a, b, g standard, or a public communication line such as a mobile phone line. .
  • Sensor 207 is a sensor for measuring the system frequency.
  • the charge / discharge control device 302 d acquires information indicating the system frequency from the sensor 207.
  • the storage battery system 204d includes a storage battery 301.
  • the storage battery system 204d has a communication unit (not shown) which is a communication interface for communicating with the charge / discharge control device 302d via the communication network 208.
  • the storage battery system 204d performs charging / discharging with respect to the storage battery 301 by being controlled via the communication network 208 from the charging / discharging control apparatus 302d.
  • the storage battery system 204d includes a control unit (not shown).
  • the control unit controls the storage battery 301 based on the charge / discharge command value received from the charge / discharge control device 302d.
  • the configuration and operation of the storage battery system 204d are the same as those of the storage battery system 204 except for the configuration and operation controlled via the communication network 208.
  • the storage battery system 206d is a component similar to the storage battery system 204d.
  • the charge / discharge control device 302d has the same components as any of the charge / discharge control devices 302, 302a, 302b, and 302c in the first to fourth embodiments.
  • the charge / discharge control device 302d includes a communication unit (not shown) that is a communication interface for communicating with the storage battery systems 204d and 206d via the communication network 208.
  • the charge / discharge control device 302d measures the system frequency via the sensor 207. Then, the charging / discharging control device 302d controls the storage battery systems 204d, 206d via the communication network 208 so that charging / discharging is executed based on the measured system frequency.
  • the configuration and operation of the charge / discharge control device 302d are the same as those of the charge / discharge control devices 302, 302a, 302b, and 302c in the first to fourth embodiments. It is the same as any one of.
  • the charge / discharge control device 302d controls the two storage battery systems 204d and 206d.
  • the charge / discharge control device 302d may control one storage battery system or may control three or more storage battery systems.
  • the charge / discharge control device 302d distributes the charge / discharge power executed as a whole to the storage battery systems 204d, 206d, and determines charge / discharge command values corresponding to the storage battery systems 204d, 206d.
  • the charge / discharge control device 302d transmits charge / discharge command values to the storage battery systems 204d, 206d to control charge / discharge of the storage battery systems 204d, 206d.
  • the storage battery systems 204d and 206d transmit the maximum value of charge / discharge power to the charge / discharge control apparatus 302d via the communication network 208.
  • the charge / discharge control device 302d receives the maximum value of charge / discharge power from the storage battery systems 204d, 206d. Then, the charge / discharge control device 302d determines the charge / discharge power value of the storage battery systems 204d and 206d so as to be proportional to the maximum value of the charge / discharge power, and uses the determined charge / discharge power value as the charge / discharge command value. 204d and 206d.
  • the charge / discharge control device 302d can cause the storage battery systems 204d and 206d to perform charge / discharge corresponding to the maximum value of the charge / discharge power.
  • the charge / discharge control device 302d acquires the remaining capacity from the storage battery systems 204d and 206d via the communication network 208, and based on the remaining capacity, as shown in the second to fourth embodiments, the storage battery system 204d. , 206d may be controlled.
  • the charge / discharge control device 302 d in the present embodiment can control the plurality of storage battery systems 204 d and 206 d via the communication network 208.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the software that realizes the charge / discharge control device of each of the above embodiments is the following program.
  • the program causes the computer to measure a system frequency, which is a frequency of the power system, for each predetermined control period, and to update a reference frequency using the system frequency for each control period.
  • a frequency deviation calculating step for calculating a frequency deviation indicating a difference between the reference frequency and the system frequency for each control period, and using the frequency deviation to bring the system frequency close to the reference frequency.
  • the charge / discharge control device of each of the above embodiments controls a power storage system such as a lead storage battery, NAS battery, nickel metal hydride, redox flow battery, lithium ion battery, or flywheel as the storage battery. Good. Further, the charge / discharge control device may control charge / discharge of not only a stationary power storage system but also a mobile power storage system such as an EV (electric vehicle).
  • a power storage system such as a lead storage battery, NAS battery, nickel metal hydride, redox flow battery, lithium ion battery, or flywheel.
  • the charge / discharge control device may control charge / discharge of not only a stationary power storage system but also a mobile power storage system such as an EV (electric vehicle).
  • each component of the charge / discharge control device may be a circuit.
  • These circuits may constitute one circuit as a whole, or may be separate circuits.
  • Each of these circuits may be a general-purpose circuit or a dedicated circuit.
  • the charge / discharge control device has been described based on the embodiment, but the present disclosure is not limited to this embodiment. Unless it deviates from the gist of the present disclosure, various modifications conceived by those skilled in the art have been made in this embodiment, and forms constructed by combining components in different embodiments are also within the scope of one or more aspects. May be included.
  • a process executed by a specific processing unit may be executed by another processing unit instead of the specific processing unit.
  • the order of the plurality of processes may be changed, and the plurality of processes may be executed in parallel.
  • the present disclosure can be used for a charge / discharge control device that performs frequency adjustment by controlling charge / discharge of the power storage system, and is applicable to a frequency control device, a frequency adjustment system, a storage battery system, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本開示の一態様に係る充放電制御装置は、系統周波数を測定する周波数測定部(303)と、基準周波数を更新する基準周波数更新部(304)と、基準周波数と系統周波数との差を示す周波数偏差を算出する周波数偏差算出部(305)と、周波数偏差を用いて電力指令値を決定する指令値決定部(306)と、電力貯蔵システムに電力を充放電させる充放電制御部(307)とを備え、基準周波数更新部(304)は、反転動作が発生するか否かを判定し、反転動作が発生しないと判定した場合、系統周波数の時間的な変動にローパスフィルタを適用することによって得られる周波数に基準周波数が一致するように基準周波数を更新し、反転動作が発生すると判定した場合、系統周波数に基準周波数が一致するように基準周波数を更新する。

Description

充放電制御装置および充放電制御方法
 本開示は、電力貯蔵システムの充放電を制御する充放電制御装置等に関する。
 従来、電力貯蔵システム(蓄電池等)の充放電を制御する技術として、特許文献1および特許文献2に記載の技術がある。
特開2008-178215号公報 特開2011-55671号公報
 しかしながら、電力系統の周波数を調整するためのFR(周波数調整:Frequency Regulation)が電力貯蔵システムを用いて行われる場合、充放電の反転動作(リバース動作)によって電力系統の周波数が標準周波数から遠ざかる可能性がある。
 そこで、本開示は、周波数調整における蓄電池の反転動作の発生を抑制することができる充放電制御装置等を提供する。
 本開示の一態様に係る充放電制御装置は、所定の制御期間ごとに、電力系統の周波数である系統周波数を測定する周波数測定部と、前記制御期間ごとに、前記系統周波数を用いて基準周波数を更新する基準周波数更新部と、前記制御期間ごとに、前記基準周波数および前記系統周波数の差を示す第1の周波数偏差を算出する第1の周波数偏差算出部と、前記第1の周波数偏差を用いて、前記系統周波数を前記基準周波数に近づけるための充放電の電力を示す第1の電力指令値を決定する指令値決定部と、前記第1の電力指令値を用いて電力貯蔵システムに電力を充放電させる充放電制御部とを備え、前記基準周波数更新部は、前記基準周波数、前記系統周波数および前記電力系統の標準周波数を用いて、前記系統周波数を前記標準周波数から遠ざける方向に対応する充放電である反転動作が前記電力貯蔵システムにおいて発生するか否かを判定し、前記反転動作が発生しないと判定した場合、前記系統周波数の時間的な変動に対してローパスフィルタを適用することで得られる周波数に前記基準周波数が一致するように前記基準周波数を更新し、前記反転動作が発生すると判定した場合、前記系統周波数に前記基準周波数が一致するように前記基準周波数を更新する。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の充放電制御装置は、反転動作の発生を抑制することができる。
図1は、参考例における充放電指令値を示す図である。 図2は、実施の形態1における周波数調整システムを示すシステム構成図である。 図3は、実施の形態1における充放電制御装置のブロック図である。 図4は、実施の形態1における充放電制御装置の動作を示すフローチャートである。 図5は、実施の形態1における基準周波数更新部の動作を示すフローチャートである。 図6は、実施の形態1における基準周波数の変動を示す図である。 図7は、実施の形態1における充放電指令値を示す図である。 図8は、実施の形態2における充放電制御装置のブロック図である。 図9は、実施の形態2における充放電制御装置の動作を示すフローチャートである。 図10は、実施の形態2における充放電指令値を示す図である。 図11は、実施の形態3における充放電制御装置のブロック図である。 図12は、実施の形態3における充放電制御装置の動作を示すフローチャートである。 図13は、実施の形態3における充放電指令値を示す図である。 図14は、実施の形態4における充放電制御装置のブロック図である。 図15は、実施の形態4における充放電制御装置の動作を示すフローチャートである。 図16は、実施の形態4における充放電制御装置の動作を示すフローチャートである。 図17は、実施の形態4における充放電指令値を示す図である。 図18は、実施の形態5における周波数調整システムを示すシステム構成図である。 図19は、実施の形態5における充放電制御装置および蓄電池システムの処理を示すシーケンス図である。
 (本発明の基礎となった知見)
 本発明者は、「背景技術」の欄において記載した、電力貯蔵システムの充放電を制御する技術に関し、課題を見出した。以下、詳細に記載する。
 従来、電力系統の周波数を調整するFR(周波数調整:Frequency Regulation)が検討されている。
 特許文献1には、発電設備および充放電設備を用いて負荷変動に対応する技術が開示されている。負荷変動は、長周期変動および短周期変動を含んでいる。発電設備が供給電力を増加または減少させることにより、電力変動幅が大きい長周期変動に対応できる。一方、容量が小さい充放電設備は、電力を充放電することにより電力変動幅が小さい短周期変動に対応できる。
 また、特許文献2では、ガスエンジン発電機が追従できなかった負荷変動をニッケル水素電池等が補うことによって、負荷変動に追従する技術が開示されている。特許文献2では、ガスエンジン発電機が追従すべき負荷変動の長周期成分を抽出するために、LPF(ローパスフィルター)が用いられている。もとの変動成分から上記のLPFを介した変動成分を引いた成分にニッケル水素電池が追従することで、ニッケル水素電池が短周期の変動成分のみに対応する。
 このように、発電機が長周期の負荷変動のみに対して追従するように制御され、蓄電池が短周期の負荷変動のみに対して追従するように制御される場合がある。このような技術がFRに用いられることにより、電力系統の周波数が、標準周波数を含む適正範囲に調整される。
 標準周波数は、電力会社ごとに予め定められた周波数である。例えば、日本では、50Hzおよび60Hzの2種類の標準周波数が存在する。標準周波数を含む適正範囲は、例えば、標準周波数の±0.2Hzである。電力系統の周波数(以下、系統周波数とも呼ぶ)は、電力の需給に応じて変動する。そこで、FRによって系統周波数の変動が抑制される。
 具体的には、需要が大きく供給が小さくなれば、系統周波数は低くなる。反対に、需要が小さく供給が大きくなれば、系統周波数は高くなる。例えば、蓄電池を用いてFRを行う充放電制御装置は、系統周波数が高い場合、蓄電池に充電させることにより電力系統の電力を消費する。また、充放電制御装置は、系統周波数が低い場合、蓄電池に放電させることにより電力系統へ電力を供給する。これにより、充放電制御装置は系統周波数の変動を抑制する。
 一方、充放電制御装置が、系統周波数のうち短周期の変動のみに対して追従するように蓄電池の充放電を制御する場合がある。例えば、他の発電システムが、系統周波数の変動のうち長周期の変動に対して追従するように動作するという前提において、充放電制御装置は、系統周波数のうち短周期の変動のみに対して追従するように蓄電池の充放電を制御する。
 図1は、系統周波数のうち短周期の変動のみに対して追従するように蓄電池の充放電を制御する充放電制御装置が決定する充放電指令値を示す図である。充放電制御装置は、ローパスフィルタ等によって、系統周波数の長周期変動成分に対応する基準周波数を取得する。そして、充放電制御装置は、系統周波数が基準周波数を上回る場合に充電が行われ、系統周波数が基準周波数を下回る場合に放電が行われるように、充放電指令値を決定する。
 これにより、充放電制御装置は、基準周波数に系統周波数を近づけるように充放電を制御する。
 しかしながら、基準周波数に系統周波数を近づけることにより、系統周波数が標準周波数から遠ざかる場合がある。具体的には、図1の例では、全ての時間において、系統周波数が標準周波数(50Hz)を下回っている。そのため、系統周波数を標準周波数に近づけるためには、蓄電池の放電が行われた方がよい。しかし、図1の例において、系統周波数が基準周波数を上回っている時間帯では、充電が行われる。
 このように、蓄電池を充電すべき時間帯に放電する動作、或いは、蓄電池を放電すべき時間帯に充電する動作を本開示では反転動作(リバース動作)と呼ぶ。このような反転動作は、結果として、系統周波数を標準周波数から遠ざけるため、電力系統の安定化にとって望ましくない。そのため、蓄電池の充放電の反転動作が発生することを防止することが望ましい。
 そこで、本開示の一態様に係る充放電制御装置は、所定の制御期間ごとに、電力系統の周波数である系統周波数を測定する周波数測定部と、前記制御期間ごとに、前記系統周波数を用いて基準周波数を更新する基準周波数更新部と、前記制御期間ごとに、前記基準周波数および前記系統周波数の差を示す第1の周波数偏差を算出する第1の周波数偏差算出部と、前記第1の周波数偏差を用いて、前記系統周波数を前記基準周波数に近づけるための充放電の電力を示す第1の電力指令値を決定する指令値決定部と、前記第1の電力指令値を用いて電力貯蔵システムに電力を充放電させる充放電制御部とを備え、前記基準周波数更新部は、前記基準周波数、前記系統周波数および前記電力系統の標準周波数を用いて、前記系統周波数を前記標準周波数から遠ざける方向に対応する充放電である反転動作が前記電力貯蔵システムにおいて発生するか否かを判定し、前記反転動作が発生しないと判定した場合、前記系統周波数の時間的な変動に対してローパスフィルタを適用することで得られる周波数に前記基準周波数が一致するように前記基準周波数を更新し、前記反転動作が発生すると判定した場合、前記系統周波数に前記基準周波数が一致するように前記基準周波数を更新する。
 これにより、反転動作が発生すると判定された場合、基準周波数は、系統周波数に一致するように更新される。すなわち、反転動作が発生すると判定された場合、充放電制御装置は、電力貯蔵システムに充放電を行わせない。その結果、充放電制御装置は、反転動作の発生を抑制できる。
 例えば、前記基準周波数更新部は、前記反転動作が発生しないと判定された制御期間ごとに、前記基準周波数を一定値ずつ変化させることにより、前記基準周波数を更新してもよい。
 これにより、充放電制御装置は、移動平均等と比べて、低変動周波数を求める際の演算量を削減できる。
 また、例えば、前記基準周波数更新部は、前記系統周波数が前記標準周波数よりも小さい場合、前記反転動作が発生しないと判定された制御期間ごとに前記基準周波数を一定値ずつ減少させることにより、前記基準周波数を更新してもよい。
 これにより、充放電制御装置は、低い系統周波数に基準周波数を徐々に近づけることができる。
 また、例えば、前記基準周波数更新部は、前記系統周波数が前記標準周波数よりも大きい場合、前記反転動作が発生しないと判定された制御期間ごとに前記基準周波数を一定値ずつ増加させることにより、前記基準周波数を更新してもよい。
 これにより、充放電制御装置は、高い系統周波数に基準周波数を徐々に近づけることができる。
 また、例えば、前記基準周波数更新部は、前記系統周波数および前記標準周波数を端点とする区間に前記基準周波数が含まれる場合、前記反転動作が発生しないと判定し、前記区間に前記基準周波数が含まれない場合、前記反転動作が発生すると判定してもよい。
 これにより、充放電制御装置は、基準周波数が所定の範囲に含まれるか否かに基づいて、反転動作が発生するか否かを適切に判定することができる。
 また、例えば、前記基準周波数更新部は、前記基準周波数が前記標準周波数以下で前記系統周波数よりも大きい場合、または、前記基準周波数が前記標準周波数以上で前記系統周波数よりも小さい場合、前記反転動作が発生しないと判定し、前記基準周波数が前記標準周波数よりも大きく前記系統周波数以上である場合、または、前記基準周波数が前記標準周波数よりも小さく前記系統周波数以下である場合、前記反転動作が発生すると判定してもよい。
 これにより、充放電制御装置は、基準周波数、系統周波数および標準周波数の関係に基づいて、反転動作が発生するか否かを適切に判定することができる。
 また、例えば、前記充放電制御装置は、さらに、前記電力貯蔵システムの充電残量に関する情報を取得する残容量取得部と、前記標準周波数および前記系統周波数の差を示す第2の周波数偏差を算出する第2の周波数偏差算出部とを備え、前記指令値決定部は、前記第2の周波数偏差を用いて、前記系統周波数を前記標準周波数に近づけるための充放電の電力を示す第2の電力指令値を決定し、前記充電残量に関する情報を用いて、前記第1の電力指令値および前記第2の電力指令値を含む複数の電力指令値から電力指令値を選択し、前記充放電制御部は、選択された前記電力指令値を用いて前記電力貯蔵システムに電力を充放電させてもよい。
 これにより、充放電制御装置は、電力貯蔵システムの残容量に基づいて、電力貯蔵システムの充放電を制御することができる。例えば、充放電制御装置は、残容量に基づいて、より大きな変動に対応(応答)できる。
 また、例えば、前記指令値決定部は、(i)前記充電残量が所定の閾値以下であり、かつ、前記第2の電力指令値が放電の電力を示していない場合、または、(ii)前記充電残量が前記所定の閾値以上であり、かつ、前記第2の電力指令値が充電の電力を示していない場合、前記第2の電力指令値を前記電力指令値として選択し、(i)前記充電残量が前記所定の閾値よりも大きく、かつ、前記第2の電力指令値が充電の電力を示している場合、または、(ii)前記充電残量が前記所定の閾値よりも小さく、かつ、前記第2の電力指令値が放電の電力を示している場合、前記第1の電力指令値を前記電力指令値として選択してもよい。
 これにより、充放電制御装置は、電力貯蔵システムの残容量に基づいて、系統周波数を基準周波数に近づける動作、および、系統周波数を標準周波数に近づける動作のうち一方を適切に選択することができる。
 また、例えば、前記充放電制御装置は、さらに、前記電力貯蔵システムの充電残量に関する情報を取得する残容量取得部と、前記標準周波数および前記系統周波数の差を示す第2の周波数偏差を算出する第2の周波数偏差算出部と、前記充電残量に関する情報を用いて、前記系統周波数が前記基準周波数に一致する場合に前記電力貯蔵システムに充放電させる電力を示すベースポイントを決定するベースポイント決定部とを備え、前記指令値決定部は、前記第1の周波数偏差および前記ベースポイントを用いて、前記第1の電力指令値を決定し、前記第2の周波数偏差および前記ベースポイントを用いて、前記系統周波数を前記標準周波数に近づけるための充放電の電力を示す第2の電力指令値を決定し、前記ベースポイントを用いて、前記第1の電力指令値および前記第2の電力指令値を含む複数の電力指令値から電力指令値を選択し、前記充放電制御部は、選択された前記電力指令値を用いて、前記電力貯蔵システムに電力を充放電させてもよい。
 これにより、充放電制御装置は、ベースポイントに基づいて、電力貯蔵システムの充放電を制御することができる。
 また、例えば、前記ベースポイント決定部は、前記充電残量が第1の閾値よりも小さい場合、または、前記充電残量が第2の閾値よりも大きい場合、前記ベースポイントにオフセットを設定し、前記指令値決定部は、前記オフセットが設定された前記ベースポイントを用いて、前記複数の電力指令値に含まれる前記電力指令値を決定してもよい。
 これにより、充放電制御装置は、ベースポイントに基づいて、充放電が適切に調整される。
 また、例えば、前記ベースポイント決定部は、前記ベースポイントに前記オフセットを設定することにより、前記充電残量が前記第1の閾値よりも小さく、かつ、前記電力指令値が放電の電力を示す場合の前記電力指令値に対応する放電量を、前記ベースポイントに前記オフセットを設定しない場合よりも減少させ、前記充電残量が前記第1の閾値よりも小さく、かつ、前記電力指令値が充電の電力を示す場合の前記電力指令値に対応する充電量を、前記ベースポイントに前記オフセットを設定しない場合よりも増加させてもよい。
 これにより、残容量が小さい場合、ベースポイントに基づいて、充電量が大きくなり、放電量が小さくなるように、充放電が調整される。
 また、例えば、前記ベースポイント決定部は、前記ベースポイントに前記オフセットを設定することにより、前記充電残量が前記第2の閾値よりも大きく、かつ、前記電力指令値が放電の電力を示す場合の前記電力指令値に対応する放電量を、前記ベースポイントに前記オフセットを設定しない場合よりも増加させ、前記充電残量が前記第2の閾値よりも大きく、かつ、前記電力指令値が充電の電力を示す場合の前記電力指令値に対応する充電量を、前記ベースポイントに前記オフセットを設定しない場合よりも減少させてもよい。
 これにより、残容量が大きい場合、ベースポイントに基づいて、充電量が小さくなり、放電量が大きくなるように、充放電が調整される。
 また、例えば、前記指令値決定部は、(i)前記ベースポイントが放電の電力を示しておらず、かつ、前記第2の電力指令値が放電の電力を示していない場合、または、(ii)前記ベースポイントが充電の電力を示しておらず、かつ、前記第2の電力指令値が充電の電力を示していない場合、前記第2の電力指令値を前記電力指令値として選択し、(i)前記ベースポイントが放電の電力を示しており、かつ、前記第2の電力指令値が充電の電力を示している場合、または、(ii)前記ベースポイントが充電の電力を示しており、かつ、前記第2の電力指令値が放電の電力を示している場合、前記第1の電力指令値を前記電力指令値として選択してもよい。
 これにより、充放電制御装置は、ベースポイントに基づいて、系統周波数を基準周波数に近づける動作、および、系統周波数を標準周波数に近づける動作のうち一方を適切に選択することができる。
 また、例えば、前記指令値決定部は、前記電力指令値が前記反転動作の電力を示す場合、当該電力指令値に代えて前記電力貯蔵システムが充放電しない値を新たな電力指令値として選択し、前記充放電制御部は、前記電力貯蔵システムが充放電しない値が前記新たな電力指令値として選択された制御期間において、前記電力貯蔵システムに充放電を停止させてもよい。
 これにより、充放電制御装置は、反転動作が行われないように、充放電指令値を決定することができる。
 また、例えば、前記指令値決定部は、(i)前記ベースポイントが放電の電力を示しておらず、かつ、前記第2の電力指令値が充電の電力を示しており、かつ、前記系統周波数が前記標準周波数以下である場合、または、(ii)前記ベースポイントが充電の電力を示しておらず、かつ、前記第2の電力指令値が放電の電力を示しており、かつ、前記系統周波数が前記標準周波数以上である場合、前記電力貯蔵システムが充放電しない値を前記電力指令値として選択し、前記充放電制御部は、前記電力貯蔵システムが充放電しない値が前記電力指令値として選択された制御期間において、前記電力貯蔵システムに充放電を停止させてもよい。
 これにより、充放電制御装置は、ベースポイントの適用に基づく反転動作の発生を適切に抑制することができる。
 さらに、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、以下の実施の形態で示される充放電制御装置は、周波数制御装置と表現されてもよい。
 また、充放電は、充電および放電の少なくとも一方に対応する。また、ここでは、充放電の電力を示す値について、負の値は充電の電力を示し、正の値は放電の電力を示す場合がある。正負の関係は、逆でもよい。また、充放電の電力を示す値は、充電も放電も行われない状態に対応する値(0)である場合がある。また、充放電の電力の大きさは、充電か放電かにかかわらず、充放電の電力を示す値の絶対値を意味する場合がある。また、電力は、その値(大きさ)を意味する場合がある。
 (実施の形態1)
 実施の形態1における充放電制御装置は、測定された系統周波数、および、電力系統の標準周波数に基づいて、系統周波数を近づける目標の基準周波数を更新する。
 図2は、実施の形態1における充放電制御装置を含む周波数制御システムのシステム構成図である。図2には、配電用変圧器201、配電線202、負荷203、205、および、蓄電池システム204、206が示されている。
 配電用変圧器201は、系統運用者が提供する電力系統に接続され、電力系統から供給される電力を負荷203、205に供給するため適切な電圧に変換する変圧器である。系統運用者は電力系統を運用する事業者である。
 配電線202は、配電用変圧器201および負荷203、205を電気的に接続し、配電用変圧器201が供給する電力を負荷203、205に供給するための電力配線である。
 負荷203、205は、電力系統から供給される電力を消費する機器である。負荷203、205は、例えば、家庭用電気機器などである。
 蓄電池システム204、206は、電力系統から供給された電力の充電、または、電力系統へ供給される電力の放電を行う。蓄電池システム204、206は、上記のように充電または放電を行うことで、電力系統から供給される電力の周波数を基準周波数に近づける。図2のように、蓄電池システム204は、蓄電池301および充放電制御装置302を備える。蓄電池システム206は、蓄電池システム204と同様の構成要素を備えてもよい。
 蓄電池301は、充放電制御装置302による制御に従って、充電または放電を行う。ここでは、蓄電池301は、DC/ACインバータ(図示しない)を含む蓄電装置である。
 充放電制御装置302は、蓄電池301に充放電を実行させる。そして、充放電制御装置302は、系統周波数を基準周波数に近づけるための周波数調整を行う。系統周波数は、電力系統の周波数であり、具体的には、電力系統の電力の周波数である。より具体的には、系統周波数は、電力系統から供給される電力の周波数である。
 例えば、充放電制御装置302は、電力系統から供給される電力の周波数を測定することにより、系統周波数を測定する。そして、充放電制御装置302は、測定された系統周波数に基づいて、系統周波数を基準周波数に近づけるように、蓄電池301の充放電を制御する。
 なお、配電用変圧器201および配電線202は、電力系統に含まれてもよい。また、より多くの負荷および蓄電池システムが、配電線202に接続されてもよい。
 図3は、図2に示された充放電制御装置302のブロック図である。充放電制御装置302は、系統周波数測定部303、基準周波数更新部304、周波数偏差算出部305、充放電指令値決定部306、および、充放電制御部307を備える。
 系統周波数測定部303は、系統周波数を測定する周波数測定部である。系統周波数測定部303は、系統周波数を測定するためのセンサを介して、系統周波数を測定してもよい。
 基準周波数更新部304は、基準周波数を更新する。具体的には、基準周波数更新部304は、系統周波数測定部303で測定された系統周波数を取得し、測定された系統周波数に基づいて、所定の基準周波数を更新する。
 例えば、基準周波数更新部304は、系統周波数よりも基準周波数の方が標準周波数から離れている場合、基準周波数が系統周波数に一致するように、基準周波数を更新する。基準周波数更新部304は、基準周波数よりも系統周波数の方が標準周波数から離れている場合、基準周波数が系統周波数に所定の変化幅で近づくように、基準周波数を更新する。
 周波数偏差算出部305は、周波数偏差を算出する。周波数偏差は、系統周波数と基準周波数との差を示す。具体的には、周波数偏差算出部305は、系統周波数測定部303で測定された系統周波数、および、基準周波数更新部304で更新された基準周波数を取得として、測定された系統周波数と、更新された基準周波数とに基づいて、周波数偏差を算出する。
 充放電指令値決定部306は、充放電指令値を算出することにより、充放電指令値を決定する指令値決定部である。充放電指令値は、蓄電池301に充放電を実行させる電力を示す。充放電指令値は、電力値または電力指令値と表現される場合がある。
 例えば、充放電指令値決定部306は、周波数偏差算出部305で算出された周波数偏差を取得し、算出された周波数偏差に基づいて、系統周波数を基準周波数に近づけるための電力を示す電力値を算出する。そして、充放電指令値決定部306は、算出された電力値を充放電指令値として決定する。
 ここでは、負の充放電指令値は、充電に対応する。正の充放電指令値は、放電に対応する。ここで示される正および負の関係は、一例であって、逆でもよい。
 充放電制御部307は、蓄電池301の充放電を制御する。すなわち、充放電制御部307は、蓄電池301に充放電を実行させる。具体的には、充放電制御部307は、充放電指令値決定部306で決定された充放電指令値を取得し、決定された充放電指令値に基づいて、蓄電池301の充放電を制御する。例えば、充放電制御部307は、充放電指令値を蓄電池301に送信することにより、蓄電池301に充放電を実行させる。
 蓄電池301は、充放電を実行する。具体的には、蓄電池301は、充放電制御部307から充放電指令値を受信し、充放電指令値に基づいて、蓄電池301内のインバータを動作させることにより、充放電を実行する。
 図4は、図3に示された充放電制御装置302の動作を示すフローチャートである。
 まず、系統周波数測定部303は、系統周波数を測定する(S101)。
 次に、基準周波数更新部304は、測定された系統周波数に基づいて、基準周波数を更新する(S102)。基準周波数更新部304は、基準周波数、系統周波数および標準周波数に基づいて、反転動作が発生するか否かを判定する。基準周波数更新部304は、反転動作が発生しないと判定した場合、低変動周波数に基準周波数を一致させる。低変動周波数は、系統周波数の時間的な変動に対してローパスフィルタを適用することで得られる周波数である。一方、基準周波数更新部304は、反転動作が発生すると判定した場合、系統周波数に基準周波数を一致させる。
 例えば、基準周波数更新部304は、系統周波数および標準周波数を端点とする区間(周波数範囲)に基準周波数が含まれる場合、反転動作が発生しないと判定する。逆に、基準周波数更新部304は、系統周波数および標準周波数を端点とする区間(周波数範囲)に基準周波数が含まれない場合、反転動作が発生すると判定する。基準周波数更新部304のより具体的な動作については、後述する。
 次に、周波数偏差算出部305は、更新された基準周波数と、測定された系統周波数との差を示す周波数偏差を算出する(S103)。周波数偏差算出部305は、以下の式1に基づいて、周波数偏差を算出する。
 周波数偏差=系統周波数-基準周波数   ・・・(式1)
 次に、充放電指令値決定部306は、周波数偏差に基づいて、系統周波数を基準周波数に近づけるための充放電の電力を示す充放電指令値を決定する(S104)。充放電指令値決定部306は、以下の式2に基づいて、充放電指令値を算出する。
 充放電指令値=周波数偏差/-周波数適正幅×充放電可変幅   ・・・(式2)
 式2において、周波数適正幅は、系統周波数の適正範囲に対応する。例えば、標準周波数が50Hzであり、系統周波数の適正範囲が49.8Hzから50.2Hzまでの場合、周波数適正幅は、0.2Hzである。周波数適正幅が0.2Hzである場合、充放電指令値決定部306は、以下の式3に基づいて、充放電指令値を算出する。
 充放電指令値=周波数偏差/-0.2Hz×充放電可変幅   ・・・(式3)
 充放電可変幅は、蓄電池301の充放電電力の最大値に対応する。蓄電池301の充放電電力の最大値は、蓄電池301のインバータの容量に依存する。
 次に、充放電制御部307は、充放電指令値によって示される電力に対応する充放電を蓄電池301に実行させる(S105)。
 例えば、更新された基準周波数が50.1Hzであり、測定された系統周波数が50.2Hzである場合、周波数偏差は0.1Hzである。そして、周波数適正幅が0.2Hzであり、充放電可変幅が20kWである場合、充放電指令値は-10kW(=0.1Hz/-0.2Hz×20kW)である。この場合、充放電制御部307は、-10kWに対応する充放電を蓄電池301に実行させる。すなわち、充放電制御部307は、10kWの電力の充電を蓄電池301に実行させる。
 充放電制御装置302は、上記の動作を所定の制御期間ごとに繰り返す。所定の制御期間は、例えば、1秒または4秒等である。
 次に、基準周波数更新部304のより具体的な動作を示す。
 図5は、図3に示された基準周波数更新部304の動作を示すフローチャートである。図5に示される動作は、主に、図4に示された基準周波数を更新する動作(S102)に対応する。
 まず、基準周波数更新部304は、基準周波数を標準周波数に設定することにより、基準周波数を初期化する(S201)。実施の形態1では、基準周波数は50Hzに設定される。
 次に、基準周波数更新部304は、系統周波数測定部303で測定された系統周波数を取得する(S202)。
 次に、基準周波数更新部304は、基準周波数が系統周波数よりも大きく標準周波数(50Hz)以下であるか否かを判定する(S203)。基準周波数が系統周波数よりも大きく標準周波数以下である場合(S203でYes)、基準周波数更新部304は、反転動作が発生しないと判定する。この場合、基準周波数更新部304は、基準周波数を徐々に減らす。例えば、基準周波数更新部304は、基準周波数を0.02Hz/分の速度で減らす(S204)。
 次に、基準周波数更新部304は、基準周波数が系統周波数よりも小さく標準周波数(50Hz)以上であるか否かを判定する(S205)。基準周波数が系統周波数よりも小さく標準周波数以上である場合(S205でYes)、基準周波数更新部304は、反転動作が発生しないと判定する。この場合、基準周波数更新部304は、基準周波数を徐々に増やす。例えば、基準周波数更新部304は、基準周波数を0.02Hz/分の速度で増やす(S206)。
 そして、基準周波数が上記の条件を満たさない場合(S203でNoかつS205でNo)、基準周波数更新部304は、反転動作が発生すると判定する。この場合、基準周波数更新部304は、基準周波数を系統周波数に一致させる(S207)。
 基準周波数更新部304は、系統周波数を取得してから基準周波数を更新するまでの一連の動作を所定の制御期間ごとに繰り返す。
 図6は、実施の形態1における基準周波数の変動を示す図である。例えば、基準周波数が系統周波数よりも大きく標準周波数以下である場合、基準周波数更新部304は、基準周波数を少しずつ低くする(t<t+2の期間)。これにより、基準周波数更新部304は、低変動周波数に基準周波数を一致させる。一方、更新前(変更前)の基準周波数が新たに測定された系統周波数以下であり標準周波数よりも小さい場合、基準周波数更新部304は、基準周波数を系統周波数に一致させる(t≧t+2の期間)。
 図7は、実施の形態1における充放電指令値を示す図である。図7には、上記の動作に基づいて、更新される基準周波数が示されている。系統周波数および標準周波数は、図1の例と同じである。図7に示された全ての時間帯において、基準周波数は系統周波数以上である。したがって、全ての時間帯において、充放電指令値は、放電を示す値、または、充放電が実行されない値である。そして、系統周波数を標準周波数から遠ざける充電が実行されない。よって、反転動作の発生が抑制される。
 以上の通り、実施の形態1における充放電制御装置302は、充放電の反転動作が発生すると判定された場合、基準周波数が系統周波数に一致するように基準周波数を更新する。すなわち、充放電制御装置302は、充放電の反転動作が発生すると判定された場合、蓄電池301に充放電を実行させない。これにより、充放電制御装置302は、反転動作の発生を抑制できる。
 なお、本実施の形態において、基準周波数更新部304は、更新前の基準周波数に基づいて、反転動作が発生するか否かを判定している。しかし、基準周波数更新部304は、更新後の基準周波数に基づいて、反転動作が発生するか否かを判定してもよい。そして、反転動作が発生すると判定された場合、基準周波数更新部304は、基準周波数が系統周波数に一致するように、更新された基準周波数をさらに更新してもよい。
 また、基準周波数更新部304は、反転動作が発生するか否かにかかわらず、基準周波数が低変動周波数に一致するように、基準周波数を更新してもよい。そして、充放電指令値決定部306は、更新された基準周波数に基づいて、反転動作が発生するか否かを判定してもよい。そして、充放電指令値決定部306は、反転動作が発生すると判定した場合、充放電が実行されない値を充放電指令値として決定してもよい。これにより、反転動作の発生が抑制される。この場合、低変動周波数は、系統周波数の移動平均でもよい。
 (実施の形態2)
 実施の形態2における充放電制御装置は、蓄電池の残容量に基づいて、充放電指令値を決定(選択)する。なお、残容量は、充電残量とも表現される。また、以下の説明における残容量取得部および残容量情報は、同様に、充電残量取得部および充電残量情報と表現されてもよい。
 図8は、実施の形態2における充放電制御装置のブロック図である。図8に示された充放電制御装置302aは、図3に示された充放電制御装置302と比較して、さらに、周波数偏差算出部305aおよび残容量取得部308を備える。また、充放電制御装置302aは、充放電指令値決定部306に代えて、充放電指令値決定部306aを備える。その他の構成要素は、図3に示された構成要素と同様である。
 残容量取得部308は、蓄電池301の残容量情報を取得する。蓄電池301の残容量情報は、蓄電池301の残容量に関する情報であり、具体的には、蓄電池301の残容量を示す。残容量は、上述した通り、充電残量とも表現され、充電状態(SOC:State Of Charge)、または、蓄電量とも呼ばれる。蓄電池301の残容量は、蓄電池301に充電された電力の残容量である。残容量は、蓄電池301の全容量に対する割合で表現されてもよいし、蓄電池301の一部の容量に対する割合で表現されてもよい。
 例えば、蓄電池301の全容量のうち一部のみが、周波数調整に用いられてもよい。この場合、残容量取得部308は、蓄電池301の全体の残容量ではなく、周波数調整のための残容量を取得する。
 具体的には、蓄電池301の全容量うち20%~80%の残容量に対応する範囲が、周波数調整のために用いられてもよい。この場合、蓄電池301の全容量うち20%~80%の残容量が、周波数調整のための0%~100%の残容量に対応する。蓄電池301の全容量に対する残容量が20%である場合、周波数調整のための残容量は0%である。蓄電池301の全容量に対する残容量が80%である場合、周波数調整のための残容量は100%である。
 残容量取得部308は、以下の式4に基づいて、周波数調整のための残容量を算出してもよい。
 周波数調整のための残容量=100×(全容量に対する残容量-下限)/(上限-下限)   ・・・(式4)
 式4の上限および下限は、全容量において、周波数調整のための0%~100%の残容量に対応する範囲の上限および下限を示す。式4において、周波数調整のための残容量が0%よりも下回る場合、周波数調整のための残容量は0%と定められてもよい。また、式4において、周波数調整のための残容量が100%よりも上回る場合、周波数調整のための残容量は100%と定められてもよい。
 周波数偏差算出部305aは、標準周波数と系統周波数との差を示す周波数偏差を算出する。具体的には、周波数偏差算出部305aは、系統周波数測定部303で測定された系統周波数を取得し、測定された系統周波数と、予め定められた標準周波数との差を算出することにより、周波数偏差を算出する。
 以降、系統周波数と基準周波数との差を示す周波数偏差は、周波数偏差A、または、単にAと表現される場合がある。系統周波数と標準周波数との差を示す周波数偏差は、周波数偏差B、または、単にBと表現される場合がある。周波数偏差算出部305が、周波数偏差Aを算出し、周波数偏差算出部305aが、周波数偏差Bを算出する。
 充放電指令値決定部306aは、充放電指令値を決定(選択)する。具体的には、充放電指令値決定部306aは、残容量取得部308で取得された残容量、周波数偏差算出部305で算出された周波数偏差A、および、周波数偏差算出部305aで算出された周波数偏差Bを取得する。そして、充放電指令値決定部306aは、取得された残容量、算出された周波数偏差A、および、算出された周波数偏差Bに基づいて、充放電指令値を決定する。
 例えば、充放電指令値決定部306aは、周波数偏差Bに基づいて、系統周波数を標準周波数に近づけるための充放電の電力を示す電力値を算出する。算出された充放電指令値が0以下であり、残容量が50%以下である場合、充放電指令値決定部306aは、算出された電力値を充放電指令値として決定する。また、算出された充放電指令値が0以上であり、残容量が50%以上である場合、充放電指令値決定部306aは、算出された電力値を充放電指令値として決定する。
 その他の場合、充放電指令値決定部306aは、周波数偏差Aに基づいて、系統周波数を基準周波数に近づけるための充放電の電力を示す電力値を算出する。そして、充放電指令値決定部306aは、算出された電力値を充放電指令値として決定する。
 図9は、図8に示された充放電制御装置302aの動作を示すフローチャートである。
 まず、残容量取得部308は、蓄電池301の残容量を取得する(S301)。例えば、残容量取得部308は、通信によって、蓄電池301の残容量を示す情報を蓄電池301から受信することにより、蓄電池301の残容量を取得する。
 次に、系統周波数測定部303は、系統周波数を測定する(S302)。次に、基準周波数更新部304は、測定された系統周波数に基づいて、基準周波数を更新する(S303)。これらの動作は、実施の形態1と同様である。
 次に、周波数偏差算出部305は、更新された基準周波数と、測定された系統周波数との差を示す周波数偏差Aを算出する(S304)。より具体的には、周波数偏差算出部305は、以下の式5に基づいて、周波数偏差Aを算出する。
 周波数偏差A=系統周波数-基準周波数   ・・・(式5)
 次に、周波数偏差算出部305aは、電力系統の標準周波数と、測定された系統周波数との差を示す周波数偏差Bを算出する(S305)。より具体的には、周波数偏差算出部305aは、以下の式6に基づいて、周波数偏差Bを算出する。
 周波数偏差B=系統周波数-標準周波数   ・・・(式6)
 ここでは、標準周波数は50Hzであるため、式6は、式7に置き換えられる。
 周波数偏差B=系統周波数-50Hz   ・・・(式7)
 次に、充放電指令値決定部306aは、周波数偏差Bに基づいて、系統周波数を標準周波数に近づけるための充放電の電力を示す充放電指令値(電力値)を算出する(S306)。より具体的には、充放電指令値決定部306aは、以下の式8に基づいて、充放電指令値を算出する。
 充放電指令値=周波数偏差B/-周波数適正幅×充放電可変幅   ・・・(式8)
 式8の充放電可変幅および周波数適正幅は、式2と同様である。周波数適正幅が0.2Hzである場合、充放電指令値決定部306aは、以下の式9に基づいて、充放電指令値を算出する。
 充放電指令値=周波数偏差B/-0.2Hz×充放電可変幅   ・・・(式9)
 充放電指令値決定部306aは、残容量に基づいて充放電可変幅を変更してもよい。例えば、残容量が0%または100%の付近である場合、十分な充放電が困難である。したがって、充放電指令値決定部306aは、残容量が50%に近づくほど充放電可変幅が大きくなり、残容量が0%または100%に近づくほど、充放電可変幅が小さくなるように、充放電可変幅を変更してもよい。
 次に、充放電指令値決定部306aは、算出された充放電指令値が0以下であり、かつ、残容量が50%以下であるか否かを判定する(S307)。さらに、充放電指令値決定部306aは、算出された充放電指令値が0以上であり、かつ、残容量が50%以上であるか否かを判定する(S308)。ここでは、50%が閾値として用いられているが、閾値は50%に限られない。また、これらの2つの判定(S307、S308)において、互いに異なる2つの閾値が用いられてもよい。
 算出された充放電指令値が0以下であり、かつ、残容量が50%以下である場合(S307でYes)、または、算出された充放電指令値が0以上であり、かつ、残容量が50%以上である場合(S308でYes)、充放電指令値決定部306aは、算出された充放電指令値を最終的な充放電指令値として決定する。
 一方、その他の場合(S307でNoかつS308でNo)、充放電指令値決定部306aは、周波数偏差Aに基づいて、系統周波数を基準周波数に近づけるための充放電の電力を示す充放電指令値(電力値)を算出する(S309)。より具体的には、充放電指令値決定部306aは、以下の式10に基づいて、充放電指令値を算出する。
 充放電指令値=周波数偏差A/-周波数適正幅×充放電可変幅   ・・・(式10)
 すなわち、充放電指令値の算出に周波数偏差Bに代えて周波数偏差Aが用いられる。周波数適正幅が0.2Hzである場合、充放電指令値決定部306aは、以下の式11に基づいて、充放電指令値を算出する。
 充放電指令値=周波数偏差A/-0.2Hz×充放電可変幅   ・・・(式11)
 そして、充放電指令値決定部306aは、周波数偏差Aに基づいて算出された充放電指令値を最終的な充放電指令値として決定する。
 次に、充放電制御部307は、最終的に決定された充放電指令値によって示される電力に対応する充放電を蓄電池301に実行させる(S310)。
 図10は、図9に示された動作によって決定される充放電指令値を示す図である。残容量が50%よりも小さい状態における放電には、周波数偏差Aに基づく充放電指令値が適用される。残容量が50%よりも小さい状態における充電には、周波数偏差Bに基づく充放電指令値が適用される。残容量が50%よりも大きい状態における放電には、周波数偏差Bに基づく充放電指令値が適用される。残容量が50%よりも大きい状態における充電には、周波数偏差Aに基づく充放電指令値が適用される。
 基準周波数は、系統周波数に追従するように更新される。したがって、系統周波数と基準周波数との差を示す周波数偏差Aの絶対値は、系統周波数と標準周波数との差を示す周波数偏差Bの絶対値よりも小さいと想定される。逆に、周波数偏差Bの絶対値は、周波数偏差Aの絶対値よりも大きいと想定される。したがって、周波数偏差Bに基づく充放電指令値の絶対値は、周波数偏差Aに基づく充放電指令値の絶対値よりも大きいと想定される。
 そこで、充放電制御装置302aは、残容量が小さい状態における充電に、周波数偏差Bに基づく充放電指令値を適用することにより、充電の電力を大きくする。また、充放電制御装置302aは、残容量が大きい状態における放電に、周波数偏差Bに基づく充放電指令値を適用することにより、放電の電力を大きくする。
 これにより、充放電制御装置302aは、蓄電池301の資源を有効に利用することができる。また、充放電制御装置302aは、系統周波数を標準周波数に近づけるための電力値を充放電指令値として用いることにより、FRを実行するその他の発電システムの負荷を軽減することができる。
 なお、本実施の形態において、充放電制御装置302aは、残容量と、周波数偏差Bに基づく充放電指令値とを用いて、周波数偏差Aに基づく充放電指令値と、周波数偏差Bに基づく充放電指令値とを切り替えている。充放電制御装置302aは、残容量と、周波数偏差Aに基づく充放電指令値とを用いて、周波数偏差Aに基づく充放電指令値と、周波数偏差Bに基づく充放電指令値とを切り替えてもよい。
 つまり、充放電制御装置302aは、先に、周波数偏差Aに基づく充放電指令値を算出してもよい。そして、残容量と、周波数偏差Aに基づく充放電指令値との組み合わせが、図10において、周波数偏差Bに基づく充放電指令値が適用される範囲に該当する場合、充放電制御装置302aは、周波数偏差Bに基づく充放電指令値を算出してもよい。
 (実施の形態3)
 本実施の形態における充放電制御装置は、蓄電池の残容量に基づいて、ベースポイントを決定し、決定されたベースポイントに基づいて、充放電指令値を決定(選択)する。
 図11は、本実施の形態における充放電制御装置を示すブロック図である。図11に示された充放電制御装置302bは、図8に示された充放電制御装置302aと比較して、さらに、ベースポイント決定部309を備える。また、充放電制御装置302bは、充放電指令値決定部306aに代えて、充放電指令値決定部306bを備える。その他の構成要素は、図8に示された構成要素と同様である。
 ベースポイント決定部309は、残容量に基づいて、ベースポイントを決定する。ベースポイントは、系統周波数を目標周波数に近づける動作において系統周波数が目標周波数に一致している場合に蓄電池301に充放電を実行させる電力を示す。目標周波数は基準周波数または標準周波数である。本実施の形態において、ベースポイントは、充放電指令値の算出に用いられる。ベースポイント決定部309は、残容量が0%または100%に近づかないように、ベースポイントを決定する。
 例えば、ベースポイント決定部309は、残容量が閾値E1よりも小さい場合、以下の式12に基づいて、ベースポイントを算出する。また、ベースポイント決定部309は、残容量が閾値E2(閾値E1<閾値E2)よりも大きい場合、以下の式13に基づいて、ベースポイントを算出する。ベースポイント決定部309は、残容量が閾値E1以上であり閾値E2以下である場合、以下の式14に基づいて、ベースポイントを算出する。
 ベースポイント=定数C×(残容量-閾値E1)/{100-(閾値E2-閾値E1)}   ・・・(式12)
 ベースポイント=定数C×(残容量-閾値E2)/{100-(閾値E2-閾値E1)}   ・・・(式13)
 ベースポイント=0   ・・・(式14)
 式12および式13の定数Cは、予め任意に設定される。定数Cは、蓄電池301の充放電電力の最大値でもよい。閾値E1が45%であり、閾値E2が55%である場合、式12および式13は、式15および式16に置き換えられる。
 ベースポイント=定数C×(残容量-45%)/90%   ・・・(式15)
 ベースポイント=定数C×(残容量-55%)/90%   ・・・(式16)
 この場合、ベースポイント決定部309は、残容量が45%よりも小さい場合、式15に基づいて、ベースポイントを算出する。また、ベースポイント決定部309は、残容量が55%よりも大きい場合、以下の式16に基づいて、ベースポイントを算出する。ベースポイント決定部309は、残容量が45%以上55%以下である場合、式14に基づいて、ベースポイントを算出する。
 すなわち、ベースポイント決定部309は、残容量が閾値E1よりも小さい場合、または、残容量が閾値E2よりも大きい場合、充放電指令値の算出に用いられるベースポイントに、式12または式13等で定められるオフセットを設定する。これにより、ベースポイント決定部309は、残容量が閾値E1よりも小さい場合に、放電量を減少させ、充電量を増加させる。また、ベースポイント決定部309は、残容量が閾値E2よりも大きい場合に、放電量を増加させ、充電量を減少させる。
 充放電指令値決定部306bは、決定されたベースポイントを用いて、充放電指令値を決定(選択)する。具体的には、充放電指令値決定部306bは、ベースポイント決定部309で決定されたベースポイント、周波数偏差算出部305で算出された周波数偏差A、および、周波数偏差算出部305aで算出された周波数偏差Bを取得する。そして、充放電指令値決定部306bは、決定されたベースポイント、算出された周波数偏差A、および、算出された周波数偏差Bに基づいて、充放電指令値を決定する。
 例えば、充放電指令値決定部306bは、周波数偏差Bおよびベースポイントに基づいて、系統周波数を標準周波数に近づけるための充放電の電力を示す電力値を算出する。算出された充放電指令値が0以下であり、ベースポイントが0以下である場合、充放電指令値決定部306bは、算出された電力値を充放電指令値として決定する。また、算出された充放電指令値が0以上であり、ベースポイントが0以上である場合、充放電指令値決定部306bは、算出された電力値を充放電指令値として決定する。
 その他の場合、充放電指令値決定部306bは、周波数偏差Aに基づいて、系統周波数を基準周波数に近づけるための充放電の電力を示す電力値を算出する。そして、充放電指令値決定部306bは、算出された電力値を充放電指令値として決定する。
 充放電指令値決定部306bは、残容量またはベースポイントに基づいて、充放電可変幅を決定し、決定された充放電可変幅に基づいて、充放電指令値を決定してもよい。
 図12は、図11に示された充放電制御装置302bの動作を示すフローチャートである。
 まず、残容量取得部308は、蓄電池301の残容量を取得する(S401)。この動作は、実施の形態2と同様である。
 次に、ベースポイント決定部309は、蓄電池301の残容量に基づいて、ベースポイントを決定する(S402)。
 次に、系統周波数測定部303は、系統周波数を測定する(S403)。次に、基準周波数更新部304は、測定された系統周波数に基づいて、基準周波数を更新する(S404)。次に、周波数偏差算出部305は、更新された基準周波数と、測定された系統周波数との差を示す周波数偏差Aを算出する(S405)。次に、周波数偏差算出部305aは、電力系統の標準周波数と、測定された系統周波数との差を示す周波数偏差Bを算出する(S406)。これらの動作は、実施の形態2と同様である。
 次に、充放電指令値決定部306bは、周波数偏差Bに基づいて、系統周波数を標準周波数に近づけるための充放電の電力を示す充放電指令値(電力値)を算出する(S407)。より具体的には、充放電指令値決定部306bは、以下の式17に基づいて、充放電指令値を算出する。
 充放電指令値=周波数偏差B/-周波数適正幅×充放電可変幅+ベースポイント   ・・・(式17)
 式17の周波数偏差B、充放電可変幅および周波数適正幅は、式8と同様である。周波数適正幅が0.2Hzである場合、充放電指令値決定部306bは、以下の式18に基づいて、充放電指令値を算出する。
 充放電指令値=周波数偏差B/-0.2Hz×充放電可変幅+ベースポイント   ・・・(式18)
 算出された充放電指令値が、所定の最大値を上回る場合、充放電指令値決定部306bは、所定の最大値を算出された充放電指令値として用いる。また、算出された充放電指令値が、所定の最小値を下回る場合、充放電指令値決定部306bは、算出された充放電指令値として所定の最小値を用いる。所定の最大値および所定の最小値は、蓄電池301の充放電電力の最大値に対応する。
 充放電指令値決定部306bは、算出される充放電指令値が所定の最大値を上回らないように、および、算出される充放電指令値が所定の最小値を下回らないように、ベースポイントに基づいて、充放電可変幅を変更してもよい。具体的には、充放電指令値決定部306bは、蓄電池301の充放電電力の最大値からベースポイントの絶対値を減算することにより得られる値を充放電可変幅として用いてもよい。
 次に、充放電指令値決定部306bは、算出された充放電指令値が0以下であり、かつ、ベースポイントが0以下であるか否かを判定する(S408)。さらに、充放電指令値決定部306bは、算出された充放電指令値が0以上であり、かつ、ベースポイントが0以上であるか否かを判定する(S409)。
 算出された充放電指令値が0以下であり、かつ、ベースポイントが0以下である場合(S408でYes)、または、算出された充放電指令値が0以上であり、かつ、ベースポイントが0以上である場合(S409でYes)、充放電指令値決定部306bは、算出された充放電指令値を最終的な充放電指令値として決定する。
 一方、その他の場合(S408でNoかつS409でNo)、充放電指令値決定部306bは、周波数偏差Aに基づいて、系統周波数を基準周波数に近づけるための充放電の電力を示す充放電指令値(電力値)を算出する(S410)。より具体的には、充放電指令値決定部306bは、以下の式19に基づいて、充放電指令値を算出する。
 充放電指令値=周波数偏差A/-周波数適正幅×充放電可変幅+ベースポイント   ・・・(式19)
 すなわち、充放電指令値の算出に周波数偏差Bに代えて周波数偏差Aが用いられる。周波数適正幅が0.2Hzである場合、充放電指令値決定部306bは、以下の式20に基づいて、充放電指令値を算出する。
 充放電指令値=周波数偏差A/-0.2Hz×充放電可変幅+ベースポイント   ・・・(式20)
 周波数偏差Bの場合と同様に、算出された充放電指令値が、所定の最大値を上回る場合、充放電指令値決定部306bは、所定の最大値を算出された充放電指令値として用いる。また、算出された充放電指令値が、所定の最小値を下回る場合、充放電指令値決定部306bは、算出された充放電指令値として所定の最小値を用いる。所定の最大値および所定の最小値は、蓄電池301の充放電電力の最大値に対応する。
 また、周波数偏差Bの場合と同様に、充放電指令値決定部306bは、算出される充放電指令値が所定の最大値を上回らないように、および、算出される充放電指令値が所定の最小値を下回らないように、ベースポイントに基づいて、充放電可変幅を変更してもよい。
 そして、充放電指令値決定部306bは、周波数偏差Aに基づいて算出された充放電指令値を最終的な充放電指令値として決定する。
 次に、充放電制御部307は、最終的に決定された充放電指令値によって示される電力に対応する充放電を蓄電池301に実行させる(S411)。
 図13は、図12に示された動作によって決定される充放電指令値を示す図である。ベースポイントが0よりも小さい状態における放電には、周波数偏差Aに基づく充放電指令値が適用される。また、ベースポイントが0よりも大きい状態における充電には、周波数偏差Aに基づく充放電指令値が適用される。その他において、周波数偏差Bに基づく充放電指令値が適用される。
 上述したように、周波数偏差Bに基づく充放電指令値の絶対値は、周波数偏差Aに基づく充放電指令値の絶対値よりも大きいと想定される。また、ベースポイントが0よりも小さい場合、十分な充電が可能であると想定される。また、ベースポイントが0よりも大きい場合、十分な放電が可能であると想定される。また、ベースポイントが0である場合、十分な充放電が可能であると想定される。
 そこで、充放電制御装置302bは、ベースポイントが0よりも小さい状態における充電に、周波数偏差Bに基づく充放電指令値を適用することにより、充電の電力を大きくする。また、充放電制御装置302bは、ベースポイントが0よりも大きい状態における放電に、周波数偏差Bに基づく充放電指令値を適用することにより、放電の電力を大きくする。また、充放電制御装置302bは、ベースポイントが0である状態における充放電に、周波数偏差Bに基づく充放電指令値を適用することにより、充放電の電力を大きくする。
 これにより、充放電制御装置302bは、蓄電池301の資源を有効に利用することができる。また、充放電制御装置302bは、系統周波数を標準周波数に近づけるための電力値を充放電指令値として用いることにより、FRを実行するその他の発電システムの負荷を軽減することができる。
 なお、本実施の形態において、充放電制御装置302bは、ベースポイントと、周波数偏差Bに基づく充放電指令値とを用いて、周波数偏差Aに基づく充放電指令値と、周波数偏差Bに基づく充放電指令値とを切り替えている。充放電制御装置302bは、ベースポイントと、周波数偏差Aに基づく充放電指令値とを用いて、周波数偏差Aに基づく充放電指令値と、周波数偏差Bに基づく充放電指令値とを切り替えてもよい。
 つまり、充放電制御装置302bは、先に、周波数偏差Aに基づく充放電指令値を算出してもよい。そして、ベースポイントと、周波数偏差Aに基づく充放電指令値との組み合わせが、図13において、周波数偏差Bに基づく充放電指令値が適用される範囲に該当する場合、充放電制御装置302bは、周波数偏差Bに基づく充放電指令値を算出してもよい。
 (実施の形態4)
 本実施の形態における充放電制御装置は、蓄電池の残容量に基づいて、ベースポイントを決定し、決定されたベースポイントに基づいて、充放電指令値を決定する。そして、本実施の形態における充放電制御装置は、ベースポイントの適用に基づく反転動作の発生を抑制する。
 図14は、本実施の形態における充放電制御装置を示すブロック図である。図14に示された充放電制御装置302cは、図11に示された充放電制御装置302bと比較して、充放電指令値決定部306bに代えて、充放電指令値決定部306cを備える。その他の構成要素は、図11に示された充放電制御装置302bの構成要素と同様である。
 充放電指令値決定部306cは、充放電指令値を決定する。充放電指令値決定部306cの動作は、実施の形態3の充放電指令値決定部306bとほぼ同じである。ただし、充放電指令値決定部306cは、周波数偏差Bに基づく充放電指令値を最終的な充放電指令値と決定する前に、周波数偏差Bに基づく充放電指令値が反転動作の電力を示すか否かを判定する。そして、周波数偏差Bに基づく充放電指令値が反転動作の電力を示す場合、充放電指令値決定部306cは、充放電指令値を0に設定する。
 図15および図16は、図14に示された充放電制御装置302cの動作を示すフローチャートである。
 図15に示された動作は、実施の形態3の動作とほぼ同じである。ただし、ベースポイントが0以下であり、かつ、周波数偏差Bに基づく充放電指令値が0以下である場合(S408でYes)、または、ベースポイントが0以上であり、かつ、周波数偏差Bに基づく充放電指令値が0以上である場合(S409でYes)の動作が実施の形態3とは異なる。
 この場合、図16に示されるように、充放電制御装置302cは、系統周波数が標準周波数(50Hz)よりも小さく、周波数偏差Bに基づく充放電指令値が0以上であるか否かを判定する(S501)。また、充放電制御装置302cは、系統周波数が標準周波数(50Hz)よりも大きく、周波数偏差Bに基づく充放電指令値が0以下であるか否かを判定する(S502)。
 そして、系統周波数が標準周波数よりも小さく、周波数偏差Bに基づく充放電指令値が0以上である場合(S501でYes)、充放電制御装置302cは、周波数偏差Bに基づく充放電指令値を最終的な充放電指令値として決定する。また、系統周波数が標準周波数よりも大きく、周波数偏差Bに基づく充放電指令値が0以下である場合(S502でYes)、充放電制御装置302cは、周波数偏差Bに基づく充放電指令値を最終的な充放電指令値として決定する。
 一方、その他の場合、充放電制御装置302cは、充放電指令値を0に設定する(S503)。すなわち、充放電制御装置302cは、0に設定された充放電指令値を最終的な充放電指令値として決定する。
 上記の複数の条件(S408、S409、S501、S502)の組み合わせに基づいて、具体的には、ベースポイントが0以下であり、周波数偏差Bに基づく充放電指令値が0よりも小さく、系統周波数が標準周波数以下である場合、充放電制御装置302cは、充放電指令値を0に設定する。また、ベースポイントが0以上であり、周波数偏差Bに基づく充放電指令値が0よりも大きく、系統周波数が標準周波数以上である場合、充放電制御装置302cは、充放電指令値を0に設定する。
 図17は、図15および図16に示された動作によって決定される充放電指令値を示す図である。図17には、図13に示された実施の形態3と比較して、禁止の範囲が示されている。禁止の範囲では、充放電指令値が0に設定される。すなわち、充放電指令値が0に変更される。
 上述したように、ベースポイントは、系統周波数を目標周波数に近づける動作において系統周波数が目標周波数に一致している状態における充放電の電力を示す。そして、ベースポイントは、残容量に基づいて、0とは異なる値に決定される場合がある。このようなベースポイントを用いて充放電指令値を決定することで、反転動作が発生する可能性がある。
 そこで、充放電指令値が反転動作の電力を示している場合、充放電制御装置302cは、充放電指令値を0に設定する。つまり、充放電制御装置302cは、充放電が行われない値を最終的な充放電指令値として決定する。充放電が行われない値が充放電指令値として決定された制御期間において、充放電制御部307は、蓄電池301に充放電させない。すなわち、充放電制御部307は、蓄電池301に充放電を停止させる。これにより、充放電制御装置302cは、ベースポイントの適用に基づく反転動作の発生を抑制する。
 (実施の形態5)
 実施の形態5における充放電制御装置は、通信ネットワークを介して蓄電池システムの充放電を制御する。即ち、充放電以下、図18および図19を用いて実施の形態5の構成および動作を説明する。
 図18は、実施の形態5における充放電制御装置を含む周波数制御システムのシステム構成図である。図19は、実施の形態5における充放電制御装置および蓄電池システムの処理を示すシーケンス図である。
 図18には、図2に示された構成要素と比較して、さらに、センサ207および通信ネットワーク208が示されている。また、蓄電池システム204、206、および、充放電制御装置302に代えて、蓄電池システム204d、206d、および、充放電制御装置302dが示されている。図18のその他の構成要素は、図2に示された構成要素と同じである。
 実施の形態5において、充放電制御装置302dは、例えば蓄電池システム204dの外部に設けられる外部コントローラとして構成されてもよい。また、充放電制御装置302dは、例えばサーバとして構成されてもよい。この場合、充放電制御装置302dは、それぞれ異なる場所に分散配置された複数の蓄電池システム204d、206d等を制御してもよい。
 通信ネットワーク208は、充放電制御装置302dと蓄電池システム204d、206dとが互いに通信するためのネットワークである。例えば、通信ネットワーク208は、IEEE802.3規格等に適合する有線LAN、IEEE802.11a、b、g規格等に適合する無線LAN、または、携帯電話回線等である公衆通信回線で構築されてもよい。
 センサ207は、系統周波数を測定するためのセンサである。充放電制御装置302dは、センサ207から系統周波数を示す情報を取得する。
 蓄電池システム204dは、蓄電池301を備える。
 蓄電池システム204dは、通信ネットワーク208を介して充放電制御装置302dと通信するための通信インタフェースである通信部(図示せず)を有する。蓄電池システム204dは、充放電制御装置302dから通信ネットワーク208を介して制御されることにより、蓄電池301に対する充放電を実行する。
 ここで、蓄電池システム204dは、制御部(図示せず)を備える。制御部は、充放電制御装置302dから受信した充放電指令値に基づいて蓄電池301を制御する。
 蓄電池システム204dの構成および動作は、通信ネットワーク208を介して制御される構成および動作を除いて、蓄電池システム204と同様である。また、蓄電池システム206dは、蓄電池システム204dと同様の構成要素である。
 充放電制御装置302dは、実施の形態1~4における充放電制御装置302、302a、302b、302cのいずれかと同様の構成要素を有する。また、充放電制御装置302dは、通信ネットワーク208を介して蓄電池システム204d、206dと通信するための通信インタフェースである通信部(図示せず)を有する。
 例えば、充放電制御装置302dは、センサ207を介して、系統周波数を測定する。そして、充放電制御装置302dは、測定された系統周波数に基づいて、充放電が実行されるように通信ネットワーク208を介して蓄電池システム204d、206dを制御する。
 通信ネットワーク208を介して蓄電池システム204d、206dを制御する構成および動作を除いて、充放電制御装置302dの構成および動作は、実施の形態1~4における充放電制御装置302、302a、302b、302cのいずれかと同様である。
 ここでは、充放電制御装置302dは、2つの蓄電池システム204d、206dを制御している。充放電制御装置302dは、1つの蓄電池システムを制御してもよいし、3つ以上の蓄電池システムを制御してもよい。
 充放電制御装置302dは、全体で実行される充放電の電力を蓄電池システム204d、206dに分配して、蓄電池システム204d、206dに対応する充放電指令値を決定する。充放電制御装置302dは、蓄電池システム204d、206dに対して充放電指令値を送信して、蓄電池システム204d、206dの充放電を制御する。
 例えば、蓄電池システム204d、206dは、通信ネットワーク208を介して、充放電電力の最大値を充放電制御装置302dに送信する。充放電制御装置302dは、蓄電池システム204d、206dから充放電電力の最大値を受信する。そして、充放電制御装置302dは、充放電電力の最大値に比例するように蓄電池システム204d、206dの充放電の電力値を決定し、決定した充放電の電力値を充放電指令値として蓄電池システム204d、206dに送信する。
 これにより、充放電制御装置302dは、充放電電力の最大値に対応する充放電を蓄電池システム204d、206dに実行させることができる。
 また、充放電制御装置302dは、通信ネットワーク208を介して、蓄電池システム204d、206dから残容量を取得し、実施の形態2~4に示されたように、残容量に基づいて、蓄電池システム204d、206dの充放電を制御してもよい。
 以上のように、本実施の形態における充放電制御装置302dは、通信ネットワーク208を介して、複数の蓄電池システム204d、206dを制御することができる。
 なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態の充放電制御装置などを実現するソフトウェアは、次のようなプログラムである。
 すなわち、このプログラムは、コンピュータに、所定の制御期間ごとに、電力系統の周波数である系統周波数を測定する周波数測定ステップと、前記制御期間ごとに、前記系統周波数を用いて基準周波数を更新する基準周波数更新ステップと、前記制御期間ごとに、前記基準周波数および前記系統周波数の差を示す周波数偏差を算出する周波数偏差算出ステップと、前記周波数偏差を用いて、前記系統周波数を前記基準周波数に近づけるための充放電の電力を示す電力指令値を決定する指令値決定ステップと、前記電力指令値を用いて、電力貯蔵システムに電力を充放電させる充放電制御ステップとを含み、前記基準周波数更新ステップでは、前記基準周波数、前記系統周波数および前記電力系統の標準周波数を用いて、前記系統周波数を前記標準周波数から遠ざける方向に対応する充放電である反転動作が前記電力貯蔵システムにおいて発生するか否かを判定し、前記反転動作が発生しないと判定した場合、前記系統周波数の時間的な変動に対してローパスフィルタを適用することで得られる周波数に前記基準周波数が一致するように、前記基準周波数を更新し、前記反転動作が発生すると判定した場合、前記系統周波数に前記基準周波数が一致するように、前記基準周波数を更新する充放電制御方法を実行させる。
 また、上記各実施の形態の充放電制御装置は、鉛蓄電池、NAS電池、ニッケル水素、レドックスフロー電池、リチウムイオン電池、または、フライホイール等である電力貯蔵システムを上記の蓄電池として制御してもよい。また、充放電制御装置は、定置型の電力貯蔵システムだけでなく、EV(電気自動車)などのような移動型の電力貯蔵システムの充放電を制御してもよい。
 また、充放電制御装置の各構成要素は、回路でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
 以上、一つまたは複数の態様に係る充放電制御装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 例えば、上記各実施の形態において、特定の処理部が実行する処理を特定の処理部の代わりに別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。
 本開示は、電力貯蔵システムの充放電を制御することにより周波数調整を行う充放電制御装置に利用可能であり、周波数制御装置、周波数調整システム、および、蓄電池システム等に適用可能である。
  201 配電用変圧器
  202 配電線
  203,205 負荷
  204,204d,206,206d 蓄電池システム
  207 センサ
  208 通信ネットワーク
  301 蓄電池
  302,302a,302b,302c,302d 充放電制御装置
  303 系統周波数測定部(周波数測定部)
  304 基準周波数更新部
  305,305a 周波数偏差算出部
  306,306a,306b,306c 充放電指令値決定部(指令値決定部)
  307 充放電制御部
  308 残容量取得部
  309 ベースポイント決定部

Claims (16)

  1.  所定の制御期間ごとに、電力系統の周波数である系統周波数を測定する周波数測定部と、
     前記制御期間ごとに、前記系統周波数を用いて基準周波数を更新する基準周波数更新部と、
     前記制御期間ごとに、前記基準周波数および前記系統周波数の差を示す第1の周波数偏差を算出する第1の周波数偏差算出部と、
     前記第1の周波数偏差を用いて、前記系統周波数を前記基準周波数に近づけるための充放電の電力を示す第1の電力指令値を決定する指令値決定部と、
     前記第1の電力指令値を用いて電力貯蔵システムに電力を充放電させる充放電制御部とを備え、
     前記基準周波数更新部は、
     前記基準周波数、前記系統周波数および前記電力系統の標準周波数を用いて、前記系統周波数を前記標準周波数から遠ざける方向に対応する充放電である反転動作が前記電力貯蔵システムにおいて発生するか否かを判定し、
     前記反転動作が発生しないと判定した場合、前記系統周波数の時間的な変動に対してローパスフィルタを適用することで得られる周波数に前記基準周波数が一致するように前記基準周波数を更新し、
     前記反転動作が発生すると判定した場合、前記系統周波数に前記基準周波数が一致するように前記基準周波数を更新する
     充放電制御装置。
  2.  前記基準周波数更新部は、前記反転動作が発生しないと判定された制御期間ごとに、前記基準周波数を一定値ずつ変化させることにより、前記基準周波数を更新する
     請求項1に記載の充放電制御装置。
  3.  前記基準周波数更新部は、前記系統周波数が前記標準周波数よりも小さい場合、前記反転動作が発生しないと判定された制御期間ごとに前記基準周波数を一定値ずつ減少させることにより、前記基準周波数を更新する
     請求項2に記載の充放電制御装置。
  4.  前記基準周波数更新部は、前記系統周波数が前記標準周波数よりも大きい場合、前記反転動作が発生しないと判定された制御期間ごとに前記基準周波数を一定値ずつ増加させることにより、前記基準周波数を更新する
     請求項2または3に記載の充放電制御装置。
  5.  前記基準周波数更新部は、
     前記系統周波数および前記標準周波数を端点とする区間に前記基準周波数が含まれる場合、前記反転動作が発生しないと判定し、
     前記区間に前記基準周波数が含まれない場合、前記反転動作が発生すると判定する
     請求項1~4のいずれか1項に記載の充放電制御装置。
  6.  前記基準周波数更新部は、
     前記基準周波数が前記標準周波数以下で前記系統周波数よりも大きい場合、または、前記基準周波数が前記標準周波数以上で前記系統周波数よりも小さい場合、前記反転動作が発生しないと判定し、
     前記基準周波数が前記標準周波数よりも大きく前記系統周波数以上である場合、または、前記基準周波数が前記標準周波数よりも小さく前記系統周波数以下である場合、前記反転動作が発生すると判定する請求項5に記載の充放電制御装置。
  7.  前記充放電制御装置は、さらに、
     前記電力貯蔵システムの充電残量に関する情報を取得する残容量取得部と、
     前記標準周波数および前記系統周波数の差を示す第2の周波数偏差を算出する第2の周波数偏差算出部とを備え、
     前記指令値決定部は、
     前記第2の周波数偏差を用いて、前記系統周波数を前記標準周波数に近づけるための充放電の電力を示す第2の電力指令値を決定し、
     前記充電残量に関する情報を用いて、前記第1の電力指令値および前記第2の電力指令値を含む複数の電力指令値から電力指令値を選択し、
     前記充放電制御部は、選択された前記電力指令値を用いて前記電力貯蔵システムに電力を充放電させる
     請求項1~6のいずれか1項に記載の充放電制御装置。
  8.  前記指令値決定部は、
     (i)前記充電残量が所定の閾値以下であり、かつ、前記第2の電力指令値が放電の電力を示していない場合、または、(ii)前記充電残量が前記所定の閾値以上であり、かつ、前記第2の電力指令値が充電の電力を示していない場合、前記第2の電力指令値を前記電力指令値として選択し、
     (i)前記充電残量が前記所定の閾値よりも大きく、かつ、前記第2の電力指令値が充電の電力を示している場合、または、(ii)前記充電残量が前記所定の閾値よりも小さく、かつ、前記第2の電力指令値が放電の電力を示している場合、前記第1の電力指令値を前記電力指令値として選択する
     請求項7に記載の充放電制御装置。
  9.  前記充放電制御装置は、さらに、
     前記電力貯蔵システムの充電残量に関する情報を取得する残容量取得部と、
     前記標準周波数および前記系統周波数の差を示す第2の周波数偏差を算出する第2の周波数偏差算出部と、
     前記充電残量に関する情報を用いて、前記系統周波数が前記基準周波数に一致する場合に前記電力貯蔵システムに充放電させる電力を示すベースポイントを決定するベースポイント決定部とを備え、
     前記指令値決定部は、
     前記第1の周波数偏差および前記ベースポイントを用いて、前記第1の電力指令値を決定し、
     前記第2の周波数偏差および前記ベースポイントを用いて、前記系統周波数を前記標準周波数に近づけるための充放電の電力を示す第2の電力指令値を決定し、
     前記ベースポイントを用いて、前記第1の電力指令値および前記第2の電力指令値を含む複数の電力指令値から電力指令値を選択し、
     前記充放電制御部は、選択された前記電力指令値を用いて、前記電力貯蔵システムに電力を充放電させる
     請求項1~6のいずれか1項に記載の充放電制御装置。
  10.  前記ベースポイント決定部は、前記充電残量が第1の閾値よりも小さい場合、または、前記充電残量が第2の閾値よりも大きい場合、前記ベースポイントにオフセットを設定し、
     前記指令値決定部は、前記オフセットが設定された前記ベースポイントを用いて、前記複数の電力指令値に含まれる前記電力指令値を決定する
     請求項9に記載の充放電制御装置。
  11.  前記ベースポイント決定部は、前記ベースポイントに前記オフセットを設定することにより、
     前記充電残量が前記第1の閾値よりも小さく、かつ、前記電力指令値が放電の電力を示す場合の前記電力指令値に対応する放電量を、前記ベースポイントに前記オフセットを設定しない場合よりも減少させ、
     前記充電残量が前記第1の閾値よりも小さく、かつ、前記電力指令値が充電の電力を示す場合の前記電力指令値に対応する充電量を、前記ベースポイントに前記オフセットを設定しない場合よりも増加させる
     請求項10に記載の充放電制御装置。
  12.  前記ベースポイント決定部は、前記ベースポイントに前記オフセットを設定することにより、
     前記充電残量が前記第2の閾値よりも大きく、かつ、前記電力指令値が放電の電力を示す場合の前記電力指令値に対応する放電量を、前記ベースポイントに前記オフセットを設定しない場合よりも増加させ、
     前記充電残量が前記第2の閾値よりも大きく、かつ、前記電力指令値が充電の電力を示す場合の前記電力指令値に対応する充電量を、前記ベースポイントに前記オフセットを設定しない場合よりも減少させる
     請求項10または11に記載の充放電制御装置。
  13.  前記指令値決定部は、
     (i)前記ベースポイントが放電の電力を示しておらず、かつ、前記第2の電力指令値が放電の電力を示していない場合、または、(ii)前記ベースポイントが充電の電力を示しておらず、かつ、前記第2の電力指令値が充電の電力を示していない場合、前記第2の電力指令値を前記電力指令値として選択し、
     (i)前記ベースポイントが放電の電力を示しており、かつ、前記第2の電力指令値が充電の電力を示している場合、または、(ii)前記ベースポイントが充電の電力を示しており、かつ、前記第2の電力指令値が放電の電力を示している場合、前記第1の電力指令値を前記電力指令値として選択する
     請求項9~12のいずれか1項に記載の充放電制御装置。
  14.  前記指令値決定部は、前記電力指令値が前記反転動作の電力を示す場合、当該電力指令値に代えて前記電力貯蔵システムが充放電しない値を新たな電力指令値として選択し、
     前記充放電制御部は、前記電力貯蔵システムが充放電しない値が前記新たな電力指令値として選択された制御期間において、前記電力貯蔵システムに充放電を停止させる
     請求項9~13のいずれか1項に記載の充放電制御装置。
  15.  前記指令値決定部は、(i)前記ベースポイントが放電の電力を示しておらず、かつ、前記第2の電力指令値が充電の電力を示しており、かつ、前記系統周波数が前記標準周波数以下である場合、または、(ii)前記ベースポイントが充電の電力を示しておらず、かつ、前記第2の電力指令値が放電の電力を示しており、かつ、前記系統周波数が前記標準周波数以上である場合、前記電力貯蔵システムが充放電しない値を前記電力指令値として選択し、
     前記充放電制御部は、前記電力貯蔵システムが充放電しない値が前記電力指令値として選択された制御期間において、前記電力貯蔵システムに充放電を停止させる
     請求項13に記載の充放電制御装置。
  16.  所定の制御期間ごとに、電力系統の周波数である系統周波数を測定する周波数測定ステップと、
     前記制御期間ごとに、前記系統周波数を用いて基準周波数を更新する基準周波数更新ステップと、
     前記制御期間ごとに、前記基準周波数および前記系統周波数の差を示す周波数偏差を算出する周波数偏差算出ステップと、
     前記周波数偏差を用いて、前記系統周波数を前記基準周波数に近づけるための充放電の電力を示す電力指令値を決定する指令値決定ステップと、
     前記電力指令値を用いて電力貯蔵システムに電力を充放電させる充放電制御ステップとを含み、
     前記基準周波数更新ステップでは、
     前記基準周波数、前記系統周波数および前記電力系統の標準周波数を用いて、前記系統周波数を前記標準周波数から遠ざける方向に対応する充放電である反転動作が前記電力貯蔵システムにおいて発生するか否かを判定し、
     前記反転動作が発生しないと判定した場合、前記系統周波数の時間的な変動に対してローパスフィルタを適用することで得られる周波数に前記基準周波数が一致するように前記基準周波数を更新し、
     前記反転動作が発生すると判定した場合、前記系統周波数に前記基準周波数が一致するように前記基準周波数を更新する
     充放電制御方法。
PCT/JP2014/003566 2014-06-06 2014-07-04 充放電制御装置および充放電制御方法 WO2015186161A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201507083QA SG11201507083QA (en) 2014-06-06 2014-07-04 Charge/discharge control device and charge/discharge control method
US14/848,246 US9787123B2 (en) 2014-06-06 2015-09-08 Charge/discharge control device and charge/discharge control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-118003 2014-06-06
JP2014118003A JP5915957B2 (ja) 2014-06-06 2014-06-06 充放電制御装置および充放電制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/848,246 Continuation US9787123B2 (en) 2014-06-06 2015-09-08 Charge/discharge control device and charge/discharge control method

Publications (1)

Publication Number Publication Date
WO2015186161A1 true WO2015186161A1 (ja) 2015-12-10

Family

ID=54766266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003566 WO2015186161A1 (ja) 2014-06-06 2014-07-04 充放電制御装置および充放電制御方法

Country Status (4)

Country Link
US (1) US9787123B2 (ja)
JP (1) JP5915957B2 (ja)
SG (1) SG11201507083QA (ja)
WO (1) WO2015186161A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960985A (zh) * 2016-01-08 2017-07-18 松下知识产权经营株式会社 服务器装置的控制方法和服务器装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040033B (zh) * 2017-05-25 2023-04-07 沈阳清能院清洁能源有限公司 一种充电电路
KR102067830B1 (ko) 2017-09-25 2020-01-17 효성중공업 주식회사 Ess 출력 제어 방법
CN107800146B (zh) * 2017-11-16 2020-02-21 国网四川省电力公司电力科学研究院 兼顾一次调频和超低频振荡抑制的调速器参数优化方法
US20190245368A1 (en) * 2018-02-02 2019-08-08 Johnson Controls Technology Company Frequency response control system with clipping parameter determination
JP7411226B2 (ja) * 2020-07-29 2024-01-11 ネクストエナジー・アンド・リソース株式会社 出力制御装置
FI129785B (en) * 2021-03-03 2022-08-31 Sympower Oy Power balancing reserve for the power grid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016077A (ja) * 2010-06-29 2012-01-19 Tokyo Electric Power Co Inc:The 電力系統の周波数制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511773B1 (en) * 2000-06-30 2003-01-28 Lithium Energy Associates, Inc. Lithium rechargeable inorganic electrolyte cell
GB0511361D0 (en) * 2005-06-03 2005-07-13 Responsiveload Ltd Grid responsive control device
JP5100132B2 (ja) 2007-01-18 2012-12-19 株式会社東芝 周波数調整システムおよび周波数調整方法
EP2190097B1 (en) * 2008-11-25 2012-05-16 ABB Research Ltd. Method for operating an energy storage system
JP5435633B2 (ja) 2009-09-03 2014-03-05 清水建設株式会社 分散型電源の制御方法
US9589735B2 (en) * 2013-03-11 2017-03-07 King Abdullah University Of Science Materials that include conch shell structures, methods of making conch shell structures, and devices for storing energy
JP6156726B2 (ja) * 2013-03-27 2017-07-05 パナソニックIpマネジメント株式会社 給電装置および充電システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012016077A (ja) * 2010-06-29 2012-01-19 Tokyo Electric Power Co Inc:The 電力系統の周波数制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960985A (zh) * 2016-01-08 2017-07-18 松下知识产权经营株式会社 服务器装置的控制方法和服务器装置
CN106960985B (zh) * 2016-01-08 2019-10-15 松下知识产权经营株式会社 服务器装置的控制方法和服务器装置

Also Published As

Publication number Publication date
SG11201507083QA (en) 2016-01-28
JP5915957B2 (ja) 2016-05-11
JP2015231317A (ja) 2015-12-21
US20150380956A1 (en) 2015-12-31
US9787123B2 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
JP5915957B2 (ja) 充放電制御装置および充放電制御方法
JP6183727B2 (ja) 周波数制御方法、周波数制御装置、及び、蓄電池システム
JP2011024395A (ja) 充電装置と電子機器
US10369895B2 (en) Power supply controller
JPWO2012098794A1 (ja) 電池制御装置
JP2012016077A (ja) 電力系統の周波数制御装置
CN107076800A (zh) 电池容量监测器
JP2011155799A (ja) 充電回路、移動機及び充電方法
JP2015186316A (ja) 二次電池の充電システム及び方法並びに電池パック
JP6536857B2 (ja) 受電電力制御装置および受電電力制御方法
JP6200086B2 (ja) 蓄電池制御装置
JP2015177628A (ja) 蓄電池制御方法、制御装置、および蓄電池制御システム
JPWO2012132459A1 (ja) 車載用充電装置
KR20130067413A (ko) 통합 충전 제어 시스템
JP6210337B2 (ja) 受電電力制御方法、受電電力制御装置および電気機器
JP6210419B2 (ja) 電力制御方法および電力制御装置
JP2016131434A (ja) エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム
JPWO2013128727A1 (ja) 調整機器制御システム、調整機器制御方法、蓄電池システムおよびプログラム
JP2012205454A (ja) デマンドコントロール装置
KR102311949B1 (ko) 배터리 충방전 제어 장치 및 그 충방전 제어 방법
JP2015116094A (ja) 充放電制御装置及び蓄電池制御システム
JP2018046604A (ja) 電力制御システムおよび電力制御方法
JP2022182742A (ja) 蓄電池管理システム
JP2018169237A (ja) 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
JP6213931B2 (ja) グループ制御方法およびグループ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893939

Country of ref document: EP

Kind code of ref document: A1