[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015182168A1 - 減衰力可変機構の検査方法、検査システム及び圧力緩衝装置の検査方法 - Google Patents

減衰力可変機構の検査方法、検査システム及び圧力緩衝装置の検査方法 Download PDF

Info

Publication number
WO2015182168A1
WO2015182168A1 PCT/JP2015/052881 JP2015052881W WO2015182168A1 WO 2015182168 A1 WO2015182168 A1 WO 2015182168A1 JP 2015052881 W JP2015052881 W JP 2015052881W WO 2015182168 A1 WO2015182168 A1 WO 2015182168A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping force
vehicle
variable mechanism
force variable
current
Prior art date
Application number
PCT/JP2015/052881
Other languages
English (en)
French (fr)
Inventor
誠良 小仲井
研 一色
龍馬 神田
幸弘 織本
宏一 渋澤
山崎 智弘
Original Assignee
株式会社ショーワ
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ショーワ, 本田技研工業株式会社 filed Critical 株式会社ショーワ
Priority to US15/313,943 priority Critical patent/US10564071B2/en
Priority to DE112015002514.6T priority patent/DE112015002514B4/de
Priority to JP2016523168A priority patent/JP6516735B2/ja
Priority to CN201580028349.9A priority patent/CN106662503B/zh
Publication of WO2015182168A1 publication Critical patent/WO2015182168A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/04Suspension or damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/61Adjustable during maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0047Measuring, indicating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/46Maintenance

Definitions

  • the present invention relates to a method of testing a variable damping force mechanism, a testing system, and a method of testing a pressure shock absorber.
  • An object of the present invention is to provide an inspection method, an inspection system, and an inspection method for a pressure buffering device capable of inspecting the damping force variable mechanism of a pressure buffering device while being attached to a vehicle. I assume.
  • the pressure buffering device when the pressure buffering device is attached to the vehicle and the pressure buffering device having the damping force variable mechanism that changes the damping force according to the input signal is operated from the vehicle
  • the inspection system of the damping force variable mechanism provided with a detection device that detects the output of According to the inspection method and inspection system of the damping force variable mechanism of the present invention, when the pressure buffering device is operated with the pressure buffering device attached to the vehicle, the output from the vehicle is detected. When the damping force variable mechanism operates normally, the output from the vehicle changes. By detecting the change in the output from the vehicle, whether the damping force variable mechanism operates normally or not It can be inspected while it is attached to the vehicle.
  • the present invention is a method of inspecting a pressure buffer device of a vehicle having a damping force variable mechanism that changes a damping force according to an input signal, wherein the pressure buffering device is attached to the vehicle. An application of periodically applying a signal of any frequency between the sprung resonance frequency, the unsprung resonance frequency and the response frequency of the pressure buffer to the damping force variable mechanism, whichever is lower.
  • a plurality of types of signals having different swing widths are sequentially applied, and in the detecting step, there is a change in the vibration state of the vehicle according to changes in the plurality of types of signals. And detecting the.
  • the damping force variable mechanism of the pressure buffer device can be inspected in a state of being attached to the vehicle.
  • FIG. 1 It is a schematic diagram which shows the test
  • FIG. 1 It is a figure which shows the example of the method of applying a load to a vehicle, (A) is a method of applying a perpendicular load to a vehicle, (B) is a method of applying a load in the vehicle width direction to a vehicle, (C) is a vehicle A method of temporarily lifting upward and then dropping downward (applying a load of gravity) will be described respectively. It is a figure which shows an example of a detection apparatus (or output part). It is a schematic diagram which shows the test
  • FIG. 1 It is a schematic diagram which illustrated a vehicle load input mechanism
  • A is a figure showing a vehicle load input mechanism which applies a perpendicular load to a vehicle
  • B is a vehicle which applies a load in a vehicle width direction so that a vehicle may be rolled.
  • C is a diagram showing a vehicle load input mechanism such as a hydraulic jack that lifts the vehicle up and then lowers it.
  • FIG. 1 It is a schematic diagram which shows the inspection system of the variation which applied the damper stroke detection apparatus as a detection apparatus. We examined the difference due to pressure sense and the difference due to hearing from changing the combination of the change of the current input to the damping force variable mechanism and the frequency of this change to make the current input to the damping force variable mechanism constant. It is a table showing a list of experimental results. It is a schematic diagram which shows the test
  • (A) to (E) are the vibration amplitude (stroke) [m], the stroke speed [m / s], the applied current [A], which are input to the damping force variable mechanism of the pressure buffer device according to the third embodiment. It is a graph which shows generation
  • FIG. 1 is a schematic view showing a configuration of an inspection system 600 of a damping force variable mechanism 50 in a damper 100 200 300 400 according to a first embodiment (first embodiment) of the present invention.
  • Each of dampers 100, 200, 300, and 400 is attached corresponding to each wheel of vehicle 500, as shown in FIG.
  • FIG. 2 is a longitudinal sectional view showing the damper 100 (200, 300, 400) shown in FIG.
  • the illustrated damper 100 includes a cylinder portion 10, a piston rod 20, a piston 30, a bottom valve 40, and a damping force variable mechanism 50.
  • the cylinder portion 10 has a so-called triple pipe structure including a cylinder 11, an outer cylinder 12 and a damper case 13 sequentially from the inner side in the radial direction centering on the axis C, and an oil (an example of hydraulic oil ) Is enclosed.
  • the bottom of the cylinder portion 10 is closed by a bottom lid 14, and the upper portion is closed by a rod guide 15, an oil seal 16 and a cap 17 so that the piston rod 20 can pass through.
  • a portion of the piston rod 20 enters the inside of the rod chamber Y2 of the cylinder portion 10, and the remaining portion is exposed to the outside of the cylinder portion 10 so as to be movable along the axis C direction.
  • the piston 30 is fixed to the illustrated lower end portion of the piston rod 20 and is movable in the axial direction C integrally with the piston rod 20.
  • the piston 30 is provided movably in the direction of the axis C along the inner peripheral surface of the cylinder 11.
  • the piston 30 includes a check valve 32 pressed by a spring 33 for opening and closing the flow path 31H, and divides the space inside the cylinder 11 into a rod chamber Y2 and a piston chamber Y1.
  • the bottom valve 40 includes a valve body 41 in which a plurality of flow paths 41H are formed, and a damping valve 42 provided on the side of the piston chamber Y1 and opening and closing the flow path 41H.
  • a communication path L is formed between the cylinder 11 and the outer cylinder 12. In the vicinity of the upper end of the cylinder 11, a cylinder opening 11H for communicating the rod chamber Y2 with the communication passage L is formed.
  • a reservoir chamber R is formed between the outer cylinder 12 and the damper case 13. The piston chamber Y1 and the reservoir chamber R communicate with each other through a flow passage 41H and a recess 43 formed in the valve body 41 of the bottom valve 40.
  • the damping force variable mechanism 50 is provided outside the damper case 13.
  • the damping force variable mechanism 50 is a solenoid that makes the amount of throttling variable on the oil flow path from the communication path L to the reservoir chamber R by the excitation force generated according to the magnitude (an example of the signal) of the input current.
  • a valve 51 is provided. Then, the damping force of the damper 100 is changed by changing the throttling amount by the solenoid valve 51.
  • the solenoid valve 51 includes a coil that is energized, a fixed core that is excited by a coil that generates a magnetic field by energization, a magnetic body that is attracted to the excited fixed core, and a valve body that moves integrally with the magnetic body. All are omitted in the figure.
  • the change in the amount of throttling by the solenoid valve 51 is realized by changing the magnitude of the current flowing to the coil.
  • a harness 520 connected to a controller 510 (see FIG. 1) of the vehicle 500 is connected to the solenoid valve 51, and current flows from the controller 510 through the harness 520.
  • the check valve 32 of the piston 30 opens the flow passage 31H. Then, oil flows from the piston chamber Y1 to the rod chamber Y2. Further, oil corresponding to the volume of the piston rod 20 entering the rod chamber Y2 flows out from the cylinder opening 11H to the communication passage L, and the oil which flows out flows from the communication passage L to the damping force variable mechanism 50. The oil that has flowed into the damping force variable mechanism 50 flows to the reservoir chamber R through the throttle which is varied by the solenoid valve 51, and at this time, damping force in the compression stroke is generated.
  • FIG. 3 is a diagram showing an example of a characteristic curve of the damping force f in the extension stroke and the compression stroke of the damper 100.
  • a high current for example, a current of 0.8 [A]
  • the damper 100 has an expansion stroke (ten side), compression
  • It is a characteristic curve in the case of generating relatively high damping force (hereinafter simply referred to as high damping force) in the stroke (comp side).
  • a low current for example, a current of 0.3 [A]
  • the damper 100 has relatively low attenuation in the extension stroke and compression stroke.
  • It is a characteristic curve in the case of generating force (hereinafter, simply referred to as low damping force).
  • the characteristic curve of the damping force shown in FIG. 3 is preset according to the current or the like to be applied to the solenoid valve 51.
  • the inspection system 600 is a system for inspecting whether the damping force variable mechanism 50 operates normally.
  • the inspection system 600 of the damping force variable mechanism 50 includes the dampers 100, 200, 300, and 400 provided with the damping force variable mechanism 50 that changes the damping force according to the input current (an example of the signal).
  • the detection device 2 for detecting the output from the vehicle 500 is provided.
  • "operating the dampers 100, 200, 300, 400” means “compressing or expanding the dampers 100, 200, 300, 400".
  • a load may be applied to the vehicle 500 to move the vehicle 500, or the vehicle 500 may be run. It is possible to apply a method such as moving the vehicle 500 by moving over the bump.
  • FIG. 4A is a view showing an example of a method of applying a load to the vehicle 500, in which a load F1 in the vertical direction (hereinafter referred to as a vertical load F1) is applied to the vehicle 500, and dampers 100, 200, 300, It is a method of operating 400 (see FIG. 1).
  • the process of operating the dampers 100, 200, 300, and 400 corresponds to an example of the operation process in the inspection method of the present invention.
  • the vehicle 500 (see FIG. 1) to which the dampers 100, 200, 300, and 400 to be inspected are attached includes a harness 520 of the vehicle 500 that connects the controller 510 and the damping force variable mechanism 50.
  • the harness 520 is provided with a main harness 521 connected to the controller 510 and an inspection harness 522 for connecting the detection device 2.
  • the controller 510 is always connected to the main harness 521, and the detection device 2 is connected to the inspection harness 522 only when the inspection system 600 according to the first embodiment performs an inspection. If the harness 520 does not include the inspection harness 522, the main harness 521 may be removed from the controller 510, and the removed main harness 521 may be connected to the detection device 2. Further, the controller 510 and the detection device 2 may be connected to the main harness 521 together.
  • the detection device 2 detects, as an output from the vehicle 500, an output from each of the damping force variable mechanisms 50 of the dampers 100, 200, 300, and 400 attached to the vehicle 500. Specifically, when the solenoid valve 51 (see FIG. 2) moves normally, the damping force variable mechanism 50 is determined to be normal, and when the solenoid valve 51 does not move normally, the damping force variable mechanism 50 is determined to be abnormal. It is a thing. The normal operation of the solenoid valve 51 is performed by detecting the induced current generated in the solenoid valve 51.
  • the vertical load F1 is applied to the vehicle 500 (see FIG. 1).
  • the detection device 2 determines whether the solenoid valve 51 is operating normally, based on the presence or absence of the induced current.
  • the state in which current is not supplied to the solenoid valve 51 may be realized by the control of the controller 510 or may be realized by removing the controller 510 from the main harness 521.
  • FIG. 5 is a diagram showing an example of a specific configuration of the detection device 2.
  • the detection device 2 is provided with four lamps 2a, 2b, 2c, 2d, one rotary switch 2s, a connection portion 2e, a storage portion 2f, and a determination portion 2g in a case 2k.
  • the inspection harness 522 is connected to the connection portion 2e.
  • the rotary switch 2s selects one damping force variable mechanism 50 to be detected among the respective damping force variable mechanisms 50 of the four dampers 100, 200, 300, 400 attached to the vehicle 500 (see FIG. 1). Or a changeover switch for selecting all four simultaneously.
  • the ramp 2a corresponds to the damper 100 (see FIG. 1) of the right front wheel of the vehicle 500.
  • the lamp 2 b corresponds to the damper 200 of the left front wheel of the vehicle 500.
  • the lamp 2 c corresponds to the damper 300 of the right rear wheel of the vehicle 500.
  • the lamp 2 d corresponds to the damper 400 on the left rear wheel of the vehicle 500.
  • Each lamp 2a, 2b, 2c, 2d emits green light.
  • the storage unit 2f temporarily stores the induced current.
  • the determination unit 2g determines whether the damping force variable mechanism 50 of each of the dampers 100, 200, 300, 400 is normal based on the presence or absence of the induced current. In addition, when it is determined that the damping force variable mechanism 50 is normal, the determination unit 2g causes the corresponding lamps 2a, 2b, 2c, and 2d to emit green light. On the other hand, when the determining unit 2g does not determine that the damping force variable mechanism 50 is normal (substantially the same as the determination that it is abnormal), the determining unit 2g does not cause the corresponding lamps 2a, 2b, 2c, and 2d to emit light.
  • the determination unit 2g is a mechanism for changing the damping force of the damper 100 At 50, it is judged that the lamp 2a is normal, and the lamp 2a corresponding to the damper 100 of the right front wheel is lit in green.
  • the coil of damper 100 of the right front wheel does not generate an induced current by inspection
  • damper 100 of right front wheel The lamp 2a corresponding to is not made to emit light.
  • the action of the determination unit 2g on the other lamps 2b, 2c, 2d is the same as the action on the lamp 2a described above.
  • the operation by the detection device 2 corresponds to an example of the detection step in the inspection method of the present invention for detecting a change occurring in the vehicle 500.
  • the vertical load F1 is applied to the vehicle 500 in a state in which the detection device 2 is connected to the inspection harness 522 and no current is input to the solenoid valve 51 (see FIG. 2) See FIG. 4 (A): details will be described later).
  • the vehicle 500 moves downward, and the dampers 100, 200, 300, and 400 operate in the compression stroke.
  • the detection device 2 includes one damper 100, one damper 200, one damper 300, and one damper 400 (or all four dampers 100, 200, 300 to be inspected) selected by the rotary switch 2s (see FIG. 5). , 400), the corresponding lamps 2a, 2b, 2c, 2d are lit green.
  • the detection device 2 does not turn on the corresponding lamps 2a, 2b, 2c and 2d.
  • the inspection system 600 of the damping force variable mechanism 50 of the first embodiment whether the damping force variable mechanism 50 is normal or not with the dampers 100, 200, 300, and 400 attached to the vehicle 500 Can be inspected.
  • the first embodiment is not limited to the state in which the current is not input to the solenoid valve 51, and the following method may be applied. That is, some damping force variable mechanisms 50 have a so-called fail safe mode.
  • the fail safe mode is a mode in which when the valve moves while the solenoid valve 51 (see FIG. 2) is not energized, the valve does not move at the moment the valve moves.
  • the damping force variable mechanism 50 that shifts to the failsafe mode when the valve moves in a non-energized state is inspected with the configuration of the first embodiment, the shift to the failsafe mode is not performed. And the solenoid valve 51 needs to be energized.
  • the current input to the solenoid valve 51 is not 0 [A] but very close to 0 [A]. It is sufficient to input an extremely minute current which does not shift to the fail safe mode.
  • the micro minute current to the solenoid valve 51 may be supplied from the detection device 2. Even when the vehicle 500 is moved in a state where the extremely minute current described above is applied to the solenoid valve 51, from the solenoid valve 51 as in the case where the vehicle 500 is moved in a state where the solenoid valve 51 is not energized. Output (induced current) can be detected.
  • the dampers 100 and 200 are attached to the vehicle 500 with the dampers 100, 200, 300 and 400 provided with the damping force variable mechanism 50 that changes the damping force according to the input signal. , 300, and 400, and a detection step of detecting a change occurring in the vehicle 500 by this operation step, which corresponds to one embodiment of the inspection method of the damping force variable mechanism of the present invention. Then, according to the inspection method corresponding to the operation of the first embodiment, in a state where the dampers 100, 200, 300, 400 are attached to the vehicle 500, it is inspected whether the damping force variable mechanism 50 is normal or not. Can.
  • FIG. 6 is a diagram showing an inspection system 700 of the damping force variable mechanism 50 in the dampers 100, 200, 300, 400 according to the second embodiment.
  • the inspection system 700 of the damping force variable mechanism 50 includes the dampers 100, 200, 300, and 400 provided with the damping force variable mechanism 50 that changes the damping force according to the input current (an example of the signal).
  • the wheel load meter 4 is provided as an example of a detection device that detects an output from the vehicle 500 when the dampers 100, 200, 300, and 400 are operated in a state of being attached to the 500.
  • the inspection system 700 of the damping force variable mechanism 50 further includes a signal input device 1A for inputting a current (an example of a signal) to the damping force variable mechanism 50, and the wheel load meter 4 includes the signal input device 1A.
  • the wheel load of the vehicle 500 is detected when the vehicle 500 is moved so as to operate the dampers 100, 200, 300, and 400 in a state where the current is input to the damping force variable mechanism 50 by the above.
  • the step of moving the vehicle 500 to operate the dampers 100, 200, 300, 400 corresponds to an example of the operation step in the inspection method of the present invention.
  • the signal input device 1A in the inspection system 700 of the second embodiment is, as one example, for inputting a changing current to the damping force variable mechanism 50.
  • FIG. 7 is a diagram showing a current (an example of a signal) whose value changes and which is input to the damping force variable mechanism 50 by the signal input device 1A.
  • FIG. 7A is a diagram showing an example of current that changes to high and low, and the change period is constant and the pulse width of high and low is the same.
  • the current shown in this graph is a high current (for example, a current of 0.8 [A]) in which the dampers 100, 200, 300, 400 exhibit characteristic curves f1 and f3 (see FIG. 3) of high damping force, and A current 100 changes so as to alternately repeat a low current (for example, a current of 0.3 [A]) indicating the characteristic curves f2 and f4 of the low damping force.
  • a high current for example, a current of 0.8 [A]
  • a low current for example, a current of 0.3 [A]
  • the cycle of change in the level of the current input to the damping force variable mechanism 50 is set to be constant.
  • the fixed period of the change of the level of the current is set to, for example, 10 [Hz].
  • the magnitude (current value), period, waveform shape, and the like of the signal are not limited to those illustrated.
  • the waveform shape of the signal various shapes such as triangular waves, sawtooth waves, and the like can be applied besides rectangular waves.
  • FIG. 7B is a diagram showing an example of a current having a constant period of change of current, three levels of high, middle and low current values, and the same high, middle and low pulse widths. More specifically, FIG. 7B shows switching of three different currents, but in this example, a low current (for example, a current of 0.3 [A]) is shared as the low side current. Switch the high current (eg, 0.8 [A] current) and the middle current (eg, 0.6 [A] current) as the higher current, and the lower current and the higher The current is being oscillated between the current.
  • a low current for example, a current of 0.3 [A]
  • Switch the high current eg, 0.8 [A] current
  • the middle current eg, 0.6 [A] current
  • the current shown in FIG. 7 (B) may be input to the damping force variable mechanism 50.
  • the current shown in FIG. 7B switches between the middle current and the high current as the higher current, but the invention is not limited thereto, and the three different currents are different as the higher current. Currents of magnitude may be applied, or currents of four or more different magnitudes may be applied. Similarly, the lower current may also apply two or more different magnitudes of current.
  • FIG. 7C is a diagram showing an example of a current in which the cycle of change of current changes, the current value is high and low in two steps, and the pulse width of low current is long with respect to the pulse width of high current. is there. Such current may be input to the damping force variable mechanism 50.
  • the current shown in FIG. 7C is a current that changes at two types of frequencies, the current is not limited to this, and a current that changes at three frequencies can also be applied. It is also possible to apply a current that changes at the above frequencies.
  • the pulse width of the lower current may be the same as the pulse width of the higher current, or the pulse width of the higher current may be longer than the pulse width of the lower current.
  • FIG. 7 (D) shows a current whose cycle of change of current changes, and in which the current value has a difference between the pulse widths of high, middle and low current in three stages of high, middle and low and partially.
  • Is a diagram illustrating an example of Such current may be input to the damping force variable mechanism 50.
  • the current shown in FIG. 7D is a current that changes at two types of frequencies, the present invention is not limited to this, and a current that changes at three frequencies can also be applied. It is also possible to apply a current that changes at the above frequencies.
  • As the waveform shape of the current shown in FIGS. 7A to 7D in addition to the illustrated rectangular waves, various other shapes such as triangular waves, sawtooth waves, etc. may be applied.
  • the signal input device 1A is connected to the harness 520 instead of the controller 510 (see FIG. 1). Thereby, the signal input device 1A is connected to the damping force variable mechanism 50. Note that the signal input device 1A and the controller 510 may be connected to the harness 520 together. In the second embodiment, the harness 520 is not provided with the inspection harness 522 as shown in FIG. 1.
  • controller 510 (see FIG. 1) provided in vehicle 500 in advance can output the changing current output from signal input device 1A in the second embodiment
  • controller 510 may be used as signal input device 1A. May be used instead of In this case, the controller 510 corresponds to an example of the signal input device in the present invention.
  • a wheel load meter 4 for detecting the wheel load of each wheel of the vehicle 500 is applied as an example of the detection device in the present invention. That is, the wheel load of the vehicle 500 is an example of the output from the vehicle in the present invention.
  • the wheel load meter 4 includes wheel load detectors 4a, 4b, 4c and 4d which are disposed under the respective wheels of the vehicle 500 and detect the weight of the corresponding wheels.
  • the wheel load meter 4 outputs the presence or absence of a change in wheel load based on the wheel load detected by each wheel load detection unit 4a, 4b, 4c, 4d, and each wheel load detection unit 4a , 4 b, 4 c, 4 d and a harness 523 for connecting the output unit 3.
  • the output unit 3 can have the same configuration as that of the detection device 2 (see FIG. 5) of the first embodiment.
  • the operation by the wheel load meter 4 corresponds to an example of a detection process for detecting a change in wheel load generated in the vehicle 500.
  • the damping force that can be exerted by each of the dampers 100, 200, 300 and 400 by the current input from the signal input device 1A is the high damping force of the characteristic curve f3 shown in FIG. And the low damping force of the characteristic curve f4.
  • the vertical load F1 is applied to the vehicle 500 so that the dampers 100, 200, 300, 400 operate at the velocity Va [m / s], whereby the damping force generated by each of the dampers 100, 200, 300, 400 Changes with a constant period of 10 Hz into the high damping force f3a [N] and the low damping force f4a [N] shown in FIG.
  • the wheel load detection units 4a, 4b, 4c and 4d detect the wheel load which changes at a constant period of 10 [Hz] corresponding to the change of the damping force generated by each of the dampers 100, 200, 300 and 400. Do.
  • the wheel loads detected by the wheel load detectors 4a, 4b, 4c and 4d are input to the output unit 3 and stored in the memory 3f (see FIG. 5).
  • the damping force variable mechanism 50 of each damper 100, 200, 300, 400 does not operate normally, the damping force that can be generated by each damper 100, 200, 300, 400 does not change. Therefore, the wheel load detected by the wheel load detection units 4a, 4b, 4c, and 4d does not change at a constant cycle of 10 Hz.
  • the wheel loads detected by the wheel load detectors 4a, 4b, 4c and 4d are input to the output unit 3 and stored in the memory 3f (see FIG. 5).
  • the determination unit 3g of the output unit 3 receives changes from the wheel load detection units 4a, 4b, 4c, and 4d, and changes in the current of the wheel load stored in the storage unit 3f is input to the damping force variable mechanism 50.
  • the lamps 2a, 2b, 2c and 2d are caused to emit light depending on whether or not they have changed correspondingly.
  • the wheel load input from each wheel load detection unit 4a, 4b, 4c, 4d and stored in the storage unit 3f is input to the damping force variable mechanism 50 at a cycle of 10 [Hz of change in current] ].
  • the determination unit 3g determines that the damping force variable mechanism 50 of the damper 100, 200, 300, 400 corresponding to the wheel load detection unit 4a, 4b, 4c, 4d is normal. It is determined that it is operating. Then, the determination unit 3g causes the lamps 2a, 2b, 2c, and 2d to emit green light.
  • the wheel load input from each of the wheel load detection units 4a, 4b, 4c and 4d and stored in the storage unit 3f has a cycle 10 [Hz] of change in current input to the damping force variable mechanism 50.
  • the determination unit 3g operates the damping force variable mechanism 50 of the damper 100, 200, 300, 400 corresponding to the wheel load detection units 4a, 4b, 4c, 4d normally. I do not judge that I am doing it. As a result, the determination unit 3g does not turn on the lamps 2a, 2b, 2c, and 2d.
  • the damping force variable mechanism 50 can be inspected with the dampers 100, 200, 300, and 400 attached to the vehicle 500. .
  • the signal input device 1A since the signal input device 1A has a constant period of the change in the level of the current input to each damping force variable mechanism 50, the detection by the output unit 3 is easy.
  • the dust generated in the oil may clog the solenoid valve 51 or the like so that the movement of the valve body may be restricted.
  • the signal input device 1A inputs a current that changes to high and low to the solenoid valve 51 and the valve body slightly vibrates, so that the dust is clogged. It can be expected that it will come off.
  • the cycle of the change in the level of the current input to each wheel load detection unit 4a, 4b, 4c, 4d may be stored in the output unit 3 in advance, or each wheel load is detected from the signal input device 1A.
  • the output unit 3 may detect the period by inputting a part of the current input to the units 4a, 4b, 4c, and 4d to the output unit 3.
  • the dampers 100 and 200 are mounted on the vehicle 500 with the dampers 100, 200, 300 and 400 provided with the damping force variable mechanism 50 that changes the damping force according to the input signal. , 300, and 400, and a detection step of detecting a wheel load as a change that occurs in the vehicle 500 due to this operation step. Then, in the operation process, the dampers 100, 200, 300, and 400 are operated in a state in which the signal which is changed by the signal input device 1A is input to the damping force variable mechanism 50. Therefore, the operation of the second embodiment corresponds to an embodiment of the inspection method of the damping force variable mechanism of the present invention. Then, according to the inspection method corresponding to the operation of the second embodiment, in a state where the dampers 100, 200, 300, 400 are attached to the vehicle 500, it is inspected whether or not the damping force variable mechanism 50 is normal. Can.
  • the first and second embodiments are modes for moving the vehicle 500 and operating the dampers 100, 200, 300, and 400 by applying the vertical load F1 to the vehicle 500 (see FIGS. 1 and 6). It is not limited to the mode which moves a vehicle by this method. That is, the present invention can also apply the following aspects as a method of moving a vehicle.
  • FIGS. 4B and 4C illustrate another aspect of the method of applying the vertical load F1 to the vehicle 500.
  • the vertical load F1 is not limited to the vertical load F1 as the load applied to the vehicle 500. The point is that the load may be such that the dampers 100, 200, 300, 400 (see FIG. 6) are expanded and contracted.
  • FIG. 4B shows a method of moving the vehicle 500 by applying a load in the vehicle width direction to apply a vertical load F1 so as to roll the vehicle 500 (rotate the vehicle 500 around the longitudinal axis of the vehicle 500). It is.
  • FIG. 4C shows a method of moving the vehicle 500 by a method of lifting the vehicle 500 upward and then dropping it downward (applying a vertical load F1 called gravity).
  • the operation and effects of the first and second embodiments can be obtained as in the case of applying the vertical load F1 to the vehicle 500.
  • the method of moving the vehicle 500 by applying the vertical load F1 to the vehicle 500 may be performed manually by an inspector or the like, or may be performed by a vehicle load input mechanism which is a mechanical device. May be
  • FIGS. 8 (A), (B), (C) and FIG. 8 show vehicle load input mechanisms 9A, 9B, 9C as an aspect of a vehicle load input mechanism which is a device for moving the vehicle 500 by applying the vertical load F1 to the vehicle 500. It is the schematic diagram which illustrated.
  • the inspection systems 600 and 700 of the damping force variable mechanism 50 of each of the first and second embodiments include dampers 100, 200, 300 and 400 as shown in FIGS. 8 (A), (B), (C) and FIG. It may further include vehicle load input mechanisms 9A, 9B, 9C for moving the vehicle 500 to operate.
  • FIG. 8A is a view showing a vehicle load input mechanism 9A which causes the vehicle 500 to apply the vertical load F1, and corresponds to the load input method (operation process) of FIG. 4A.
  • the vehicle load input mechanism 9A shown in FIG. 8A is supported by the base 9A1 in contact with the road surface G, a support 9A2 extending in the vertical direction from the base 9A1, and the support 9A2 and intersects the support 9A2.
  • the arm unit 9A3 extends in a direction and can move up and down along the support unit 9A2, and a pressing unit 9A4 extending vertically downward from the arm unit 9A3 and transmitting the movement of the arm unit 9A3.
  • the vehicle load input mechanism 9A further includes a motor 9A5 provided on the base 9A1, and a transmission member 9A6 for converting the rotation of the motor 9A5 into vertical movement and moving the arm 9A3 up and down along the support 9A2. Is equipped.
  • the vehicle load input mechanism 9A drives the motor 9A5 in a state where the vehicle 500 is disposed below the pressing portion 9A4 as shown in FIG. 8A, and the pressing portion is transmitted through the transmission member 9A6 and the arm portion 9A3. By moving 9A4 downward, the vertical load F1 in the vertical direction is input to the vehicle 500 from the pressing portion 9A4.
  • FIG. 8 (B) is a view showing a vehicle load input mechanism 9B for applying a load in the vehicle width direction to input the vertical load F1 to the vehicle 500 so as to roll the vehicle 500. It corresponds to the input method (operation process).
  • the vehicle load input mechanism 9B shown in FIG. 8B is supported by the base 9B1 in contact with the road surface G, a support 9B2 extending in the vertical direction from the base 9B1, and the support 9B2 and intersects the support 9B2.
  • the arm unit 9B3 extends in the direction and is movable along the extending direction, and the pressing unit 9B4 transmits the movement of the arm unit 9B3.
  • the vehicle load input mechanism 9B converts the rotation of the motor 9B5 provided on the base 9B1 and the rotation of the motor 9B5 into a movement moving in the direction in which the arm 9B3 extends, thereby forming the arm 9B3 into the support 9B2. And a transmission member 9B6 to be moved along.
  • the vehicle load input mechanism 9B drives the motor 9B5 in a state where the vehicle 500 is disposed to the side of the pressing portion 9B4, and presses it via the transmission member 9B6 and the arm 9B3.
  • the portion 9B4 to the side the load in the vehicle width direction that causes the vehicle 500 to roll from the pressing portion 9B4 to the vehicle 500 is input, and the vertical load F1 is input.
  • FIG. 8C is a view showing a vehicle load input mechanism 9C such as a hydraulic jack that lifts the vehicle 500 upward and then lowers it, and corresponds to the load input method (operation step) of FIG. 4C.
  • a vehicle load input mechanism 9C shown in FIG. 8C is an elevating device that raises and lowers the vehicle 500.
  • the lifting device is, for example, a hydraulic jack (hereinafter also referred to as a hydraulic jack 9C).
  • the hydraulic jack 9C includes a base 9C1 installed on the road surface G, an arm 9C2 rotatably supported with respect to the base 9C1, an elevating part 9C3 provided at the tip of the arm 9C2, a base 9C1 and an arm
  • the hydraulic cylinder 9C4 is disposed between the section 9C2 and rotates the arm 9C2 with respect to the base 9C1 by expanding and contracting hydraulically, and the hydraulic cylinder 9C4 is extended to apply hydraulic pressure to the hydraulic cylinder 9C4 to input and move the vertical movement operation
  • a release button 9C6 for inputting an operation for releasing the hydraulic pressure of the hydraulic cylinder 9C4.
  • the hydraulic jack 9C is disposed between the vehicle 500 and the road surface G in a state where the hydraulic cylinder 9C4 is contracted and the arm 9C2 is folded horizontally.
  • the hydraulic pressure is applied to the hydraulic cylinder 9C4 to extend the hydraulic cylinder 9C4.
  • the arm 9C2 rotates and stands up with respect to the base 9C1.
  • the lifting and lowering portion 9C3 comes in contact with a part of the vehicle 500 and lifts the vehicle 500.
  • the hydraulic pressure inside the hydraulic cylinder 9C4 drops sharply.
  • the arm portion 9C2 to which the weight of the vehicle 500 is acting via the lifting and lowering portion 9C3 loses the upward supporting force of the hydraulic cylinder 9C4 and rapidly descends.
  • the hydraulic jack 9C inputs the vertical load F1 to the vehicle 500 by lifting the vehicle 500 upward and then dropping the vehicle 500 downward.
  • FIG. 9 is a diagram showing an example in which a so-called vibrator 9K is applied as an elevating device for raising and lowering the vehicle 500.
  • the exciter 9 K raises the vehicle 500 once and then drops the vehicle 500 downward to input the vertical load F 1 to the vehicle 500 to realize an operation process of moving the vehicle.
  • a wheel load meter 4e is installed between each wheel of the vehicle 500 and the support 9K1 of the exciter 9K corresponding to each wheel, and the damper 100 is installed by the exciter 9K. , 200, 300, 400 (see FIG. 6) to detect the wheel load of each wheel by the wheel load meter 4e.
  • the wheel load meter 4e is applied as a detection apparatus in this example, another detection apparatus can also be applied.
  • each support part 9K1 supports each wheel of the vehicle 500 separately and raises and lowers the vibration exciter 9K shown in FIG. 9, the present invention is not limited to this, and two wheels are integrally supported. It is also possible to apply a support configured to raise and lower as well as a support configured to integrally support the four wheels and to raise and lower it.
  • the operation of shaking the vehicle 500 may be any operation as long as the damper 100 (or the other damper 200, the damper 300, and the damper 400) to be inspected is operated (for example, the damper 100 is expanded and contracted).
  • the operation may be an operation (operation of inputting the vertical load F1) of the vehicle 500, which vertically pushes the vicinity of the portion of the vehicle 500 to which the damper 100 to be inspected is attached.
  • FIG. 10 shows a step 9D of a height H which gives vertical movement to the vehicle 500 traveling on the road surface G on a substantially horizontal road surface G.
  • the step 9D is an example of a vehicle load input mechanism.
  • the form shown in FIG. 10 can be applied.
  • the step 9D is a damper 100, 200, 300, 400 (see FIG. 6).
  • Perform the compression stroke operation When the vehicle 500 descends from the step 9D, the wheels of the vehicle 500 are moved so as to fall downward from above, so the step 9D causes the dampers 100, 200, 300, and 400 to perform the operation of the extension stroke.
  • a step 9D shown in FIG. 10 includes a right step 9D1 of height H on which the right wheel of the vehicle 500 rides and a left step 9D2 of height H on which the left wheel of the vehicle 500 rides.
  • the right step 9D1 and the left step 9D2 are disposed at positions shifted in the traveling direction T of the vehicle.
  • the right step 9D1 and the left step 9D2 are disposed at different positions, it is possible to shift the timing at which the right front wheel rides on the right step 9D1 and the timing at which the left front wheel rides on the left step 9D2. Can.
  • the timing at which the right rear wheel rides on the right step 9D1 is offset from the timing at which the left rear wheel rides on the left step 9D2. You can also.
  • the amount M of deviation between the right step 9D1 and the left step 9D2 is not equal to the wheel base W of the vehicle 500.
  • the amount M of deviation between the right step 9D1 and the left step 9D2 is set shorter than the wheel base W of the vehicle 500.
  • the amount M of deviation between the right step 9D1 and the left step 9D2 may be set longer than the wheel base W of the vehicle 500.
  • the right step 9D1 and the left step 9D2 may be disposed on a straight line at the same position in the traveling direction T.
  • the right step 9D1 and the left step 9D2 in the present embodiment may be integrated into a straight line to form a single step.
  • the shape of the step is not limited to a specific one, and as shown in FIG. 10, the cross section seen from the direction perpendicular to the traveling direction T may be a trapezoidal shape, or another shape, for example The cross section may be triangular or the like. Also, the height of the step (from the ground) may be different on the left and right. Further, asperities may be further provided on the surface through which the wheels of the vehicle 500 pass. The left and right steps may be at the same position in the traveling direction T.
  • step difference should just be what can input perpendicular
  • the method of applying the vertical load F1 to the vehicle 500 is not limited to the method described above, and the vehicle 500 can be loaded with the vertical load F1 so as to operate the dampers 100, 200, 300, 400 (see FIG. 6). Any other method can be applied as long as it is a method.
  • FIG. 11 is a diagram showing an example of a method of operating a damper 100, 200, 300, 400 (see FIG. 6) by inputting a load to the vehicle 500 by a so-called brake tester 9F.
  • the dampers 100, 200, 300, and 400 As a method of operating the dampers 100, 200, 300, and 400 by inputting the load on the vehicle 500 by the stopping operation from the state where the vehicle 500 is traveling, for example, as shown in FIG.
  • the wheels of the vehicle 500 are disposed between the rollers 9F1 and 9F2, and the wheels are rotated according to the rotation of the rollers 9F1 and 9F2.
  • the wheel of the vehicle 500 is moved so as to be pushed upward from below, and the brake tester 9F is damper 100, 200, 300, 400
  • the operation of the compression stroke is performed (see FIG. 6).
  • FIG. 12 shows the wheel load detection units 4a, 4b and 4c with respect to elapsed time ([seconds]: horizontal axis) when an input for operating the dampers 100, 200, 300 and 400 (see FIG. 6) is given.
  • 4d are diagrams showing changes in the detected wheel load ([kgf]: vertical axis).
  • Curve S1 in FIG. 12 represents the time-dependent change in wheel load when dampers 100, 200, 300, and 400 generate high damping force
  • curve S2 represents the time-dependent change in wheel load when generating low damping force
  • curve S3 These respectively show the time-dependent change of the wheel load in case each damping force variable mechanism 50 is operate
  • the wheel load corresponding to each damper 100, 200, 300, 400 detected by each wheel load detection unit 4a, 4b, 4c, 4d is stored in the storage unit 3f (see FIG. 5).
  • the curve S3 indicating the change with time of the wheel load detected by the wheel load detection units 4a, 4b, 4c, 4d is a switch between high damping force and low damping force
  • the number n of inflection points N may be, for example, 10 [pieces / second] or more.
  • the damping force variable mechanism 50 does not operate normally, the temporal change of the wheel load detected by the wheel load detection units 4a, 4b, 4c, 4d is the same change as the curve S1 or the curve S2.
  • the determination unit 3g (see FIG. 5) of the output unit 3 receives inflection points per elapsed time based on the wheel load stored in the storage unit 3f and input from the wheel load detection units 4a, 4b, 4c, and 4d.
  • the number n of N is counted, and the determination unit 3g determines whether or not the counted number n of inflection points N exceeds a threshold n0 which is preset and stored in the storage unit 3f.
  • the threshold value n0 may be a value or a range that can identify normality or abnormality of the operation of the damping force variable mechanism 50, and is not limited to the above-described exemplary values.
  • the determination unit 3g determines that the damping force variable mechanism 50 is operating normally, and the lamp 2a , 2b, 2c, 2d in green.
  • the determination unit 3g does not turn on the lamps 2a, 2b, 2c, and 2d.
  • the dampers 100, 200, 300, 400 provided with the damping force variable mechanism 50 that changes the damping force according to the input signal are attached to the vehicle 500. It has an operation process which operates 100, 200, 300, 400, and a detection process which detects wheel load as change which arises on vehicles 500 by this operation process. Then, in the operation process, the dampers 100, 200, 300, and 400 are operated in a state in which the signal which is changed by the signal input device 1A is input to the damping force variable mechanism 50. Therefore, each operation of these variations corresponds to the embodiment of the inspection method of the damping force variable mechanism of the present invention. And according to the inspection method corresponding to each operation of these variations, in a state where dampers 100, 200, 300, 400 are attached to vehicle 500, it is inspected whether damping force variable mechanism 50 is normal or not. Can.
  • the damping force variable mechanism 50 When the damping force variable mechanism 50 is normal, the signal output from the wheel load detection unit 4a corresponding to the right front wheel damper 100 and the signal output from the wheel load detection unit 4b corresponding to the left front wheel damper 200 Even if there is a phase shift, the profiles match. On the other hand, when one of the damping force variable mechanisms 50 is not normal, the profiles of the load signals output from the both wheel load detectors 4a and 4b do not match.
  • the determination unit 3g includes a signal output from the wheel load detection unit 4a corresponding to the right front wheel damper 100 and a signal output from the wheel load detection unit 4b corresponding to the left front wheel damper 200. If the two profiles match, it is determined that both damping force variable mechanisms 50 are operating normally, and if they are not, it is determined that at least one damping force variable mechanism 50 is not operating normally.
  • the damping force variable mechanism 50 can be inspected in a state where the dampers 100 and 200 are attached to the vehicle 500.
  • the determination unit 3g similarly compares the signal output from the damping force variable mechanism 50 of the right rear wheel damper 300 with the signal output from the damping force variable mechanism 50 of the left rear wheel damper 400.
  • the inspection system 700 can inspect the damping force variable mechanism 50 with the dampers 300 and 400 attached to the vehicle 500.
  • the reference value output when the damping force variable mechanism 50 is operating normally and the actual output A method of determination by comparison can also be applied.
  • the storage unit 3f (see FIG. 5) of the output unit 3 in the wheel load meter 4 is a reference of the signal to be output from the wheel load detection units 4a, 4b, 4c, 4d when the damping force variable mechanism 50 is normal.
  • a profile (hereinafter referred to as a model curve) is stored. This model curve may be obtained experimentally or may be obtained statistically.
  • the determination unit 3g compares the profile of the signal actually detected from each damping force variable mechanism 50 with this model curve. When the profile of the signal actually detected is within ⁇ x% of the model curve (x is a value preset as a normal range) with respect to the model curve as a result of comparison, the determination unit 3g , It is determined that the damping force variable mechanism 50 is operating normally.
  • the determination unit 3g determines that the damping force variable mechanism 50 is not operating normally. Thereby, inspection system 700 can inspect damping force variable mechanism 50 in a state where dampers 100, 200, 300, and 400 are attached to vehicle 500.
  • the change amount of the output that is output in a fixed time is The method of comparing the reference value (reference change amount) with the actual output change amount can also be applied.
  • the storage unit 3f (see FIG. 5) of the output unit 3 in the wheel load meter 4 is a signal to be output from the wheel load detection units 4a, 4b, 4c, 4d when the damping force variable mechanism 50 is normal.
  • the reference change amount in a fixed time is stored.
  • the determination unit 3g compares the amount of change over time of the signal actually detected from each damping force variable mechanism 50 with the reference amount of change stored in the storage unit 3f.
  • the determination unit 3g operates the damping force variable mechanism 50 normally. It determines that it does not do.
  • the determination unit 3g determines that the damping force variable mechanism 50 is operating normally.
  • inspection system 700 (refer to Drawing 6) can inspect damping force variable mechanism 50 in the state where dampers 100, 200, 300, and 400 were attached to vehicles 500. Note that, instead of the amount of change in the signal over a certain period of time, the size of the inflection point in the profile of the detected signal can be used as a comparison target.
  • the dampers 100, 200, 300, 400 provided with the damping force variable mechanism 50 that changes the damping force according to the input signal are attached to the vehicle 500. It has an operation process which operates 100, 200, 300, 400, and a detection process which detects wheel load as change which arises on vehicles 500 by this operation process. Therefore, each operation of these variations corresponds to the embodiment of the inspection method of the damping force variable mechanism of the present invention. And according to the inspection method corresponding to each operation of these variations, in a state where dampers 100, 200, 300, 400 are attached to vehicle 500, it is inspected whether damping force variable mechanism 50 is normal or not. Can.
  • a load detected when corresponding to a high damping force and a load detected when corresponding to a low damping force It may be determined whether each damping force variable mechanism 50 of damper 100, 200, 300, 400 is normal according to the difference between the above. In this case, it is sufficient to separately input a signal corresponding to the high damping force and a signal corresponding to the low damping force as the signals input to the damping force variable mechanisms 50 of the dampers 100, 200, 300, and 400.
  • the signal input device 1A shown in FIG. 6 may be replaced with the signal input device 1B described in parentheses.
  • the signal input device 1B switches a plurality of mutually different currents (an example of a signal) as one example and inputs the same to the damping force variable mechanism 50.
  • the plurality of currents are, for example, a high current corresponding to the dampers 100, 200, 300, 400 exhibiting the high damping force of the characteristic curves f1, f3 (see FIG. 3), and the characteristic curves f2, f4. It is a low current corresponding to exerting a low damping force.
  • the controller 510 may be used instead of the signal input device 1B as long as the controller 510 can switch and output the high current and the low current output from the signal input device 1B.
  • the vertical load F1 is applied in a state where a high current is input to the damping force variable mechanism 50 by the signal input device 1B, and the wheel load of each wheel is each wheel load detection unit until a predetermined time elapses. It is detected by 4a, 4b, 4c and 4d. The detected wheel loads are respectively input to the output unit 3 and stored in the storage unit 3f (see FIG. 5).
  • the vertical load F1 is applied in a state where a low current is input to the damping force variable mechanism 50 by the signal input device 1B, and the wheel load of each wheel is each wheel load detection unit 4a, until a predetermined time elapses. It is detected by 4b, 4c and 4d.
  • the detected wheel loads are respectively input to the output unit 3 and stored in the storage unit 3 f.
  • the order of inputting the high current and the low current may be opposite to the order described above.
  • FIG. 13 operates the dampers 100, 200, 300, 400 when the dampers 100, 200, 300, 400 (see FIG. 6) can exert a high damping force and when they exhibit a low damping force.
  • the curve S1 shown by the solid line in FIG. 13 and the curve S2 shown by the broken line respectively show changes in wheel load with time when the dampers 100, 200, 300, 400 generate high damping forces, and low damping forces.
  • the wheel load changes with time.
  • the threshold value Sk is set as a value capable of identifying whether or not there is a sufficient difference between the maximum value S1m and the maximum value S2m.
  • the case where it is identified that there is a sufficient difference is a case where it can be identified that the damping force exerted by the dampers 100, 200, 300, 400 is normally switched between the high damping force and the low damping force.
  • the case where it is not identified that there is a sufficient difference is a case where it can not be distinguished that the damping force exerted by the dampers 100, 200, 300, 400 is normally switched by the high damping force and the low damping force. .
  • the determining unit 3g determines that there is a sufficient difference between the maximum value S1m and the maximum value S2m.
  • the dampers 100, 200, 300, and 400 determine that the high damping force and the low damping force are switched to normal and the damping force variable mechanism 50 is operating normally.
  • the determination unit 3g causes the lamps 2a, 2b, 2c, and 2d to emit green light.
  • the determination unit 3g determines that there is not a sufficient difference between the maximum value S1m and the maximum value S2m. , 300, and 400, because the high damping force and the low damping force are not switched normally, it is determined that the damping force variable mechanism 50 is not operating normally. Thus, the determination unit 3g does not turn on the lamps 2a, 2b, 2c, and 2d. According to such an inspection system 700, the damping force variable mechanism 50 can be inspected with the dampers 100, 200, 300, and 400 attached to the vehicle 500.
  • the damper stroke detection device 6 is a stroke sensor 6 a that detects the expansion and contraction amount of the damper 100, 200, 300, 400 corresponding to each wheel of the vehicle 500. , 6b, 6c, 6d, the output unit 3, and a harness 523.
  • the strokes of the dampers 100, 200, 300, and 400 are an example of the output from the vehicle in the present invention.
  • the detection process using the other detection apparatus which can detect the change of the output from the vehicle 500 is also applicable.
  • the detection device can detect the change of the vehicle 500 based on the detection value corresponding to the change amount of the output accompanying the change of the vehicle 500.
  • the dampers 100, 200, 300, 400 provided with the damping force variable mechanism 50 that changes the damping force according to the input signal
  • the dampers 100, 200 are attached to the vehicle 500.
  • 300, 400 and a detection step of detecting the wheel load or the amount of expansion or contraction of the dampers 100, 200, 300, 400 as a change that occurs in the vehicle 500 due to the operation process.
  • the dampers 100, 200, 300, and 400 are operated in a state where a plurality of different signals are switched and input to the damping force variable mechanism 50 by the signal input device 1B. Therefore, each operation of these variations corresponds to the embodiment of the inspection method of the damping force variable mechanism of the present invention.
  • the detection device one that detects pressure or sound by a machine may be applied. Further, in the detection step in the present invention, a change in pressure or sound may be detected not by using a detection device but by the five senses of a person.
  • an inspection method and an inspection system of the damping force variable mechanism 50 having a detection step of performing detection by pressure or sound will be described in detail.
  • the inspection system and inspection method of this embodiment detect the vibration of the dampers 100, 200, 300, and 400 in the detection step.
  • a detection device such as a vibrator or an inspector is a part of the vehicle 500 in the vicinity where the damper 100, 200, 300, 400 to be inspected is attached.
  • the vertical load F1 is applied vertically downward, and the dampers 100, 200, 300, and 400 in the vicinity thereof are operated at the velocity Va [m / s] (operation process).
  • a current for example, see FIG. 7A
  • the current that changes to high and low is input by, for example, the signal input device 1A shown in FIG.
  • the damping force variable mechanism 50 is operating normally, the damping force f [N] at the velocity Va [m / s] of the damper 100, 200, 300, 400 is input. According to the change of the current, as shown in FIG. 3, it is changing between the high damping force f3a [N] and the low damping force f4a [N] in the compression stroke.
  • the change in damping force f [N] in this compression stroke corresponds to the change in "output from vehicle" in the present invention.
  • the cycle of change of the damping force f corresponds to the cycle of change of the current input to the damping force variable mechanism 50
  • the cycle of change of the damping force f in this embodiment is 10 [Hz]. It becomes.
  • the detection device or inspector such as the vibrator causes the vehicle 500 to apply the vertical load F1 vertically downward, and the damper 100, 200, 300 , 400 at a velocity Va [m / s], the damping forces f of the dampers 100, 200, 300, 400 have a constant cycle with high damping force f 3 a [N] and low damping force f 4 a [N] Vary between Therefore, the reaction force to the vertical load F1 that the detection device or the inspector receives from the vehicle 500 in the detection process changes.
  • the inspector manually pressing the detection device or the vehicle 500 can sense a change in the reaction force as a detection or a pressure sense (tactile sense).
  • damping force variable mechanism 50 of dampers 100, 200, 300, 400 It can be inspected in the state attached to Moreover, according to the inspection system and inspection method of the damping force variable mechanism 50 in the damper 100, 200, 300, 400 of the embodiment, the sense of the inspector or the value detected by the detection device or the reaction force transmitted to the inspector By means of (pressure sense), it is possible to judge whether or not the damping force of the dampers 100, 200, 300, 400 changes. Then, when a change is detected by the detection device or the inspector feels a change in reaction force, the inspector can determine that the damping force variable mechanism 50 is operating normally.
  • the inspector can determine that the damping force variable mechanism 50 is not operating normally.
  • the change in the reaction force transmitted to the inspector corresponds to the change in the input current. Since it has a constant cycle, it is easy to detect a change in reaction force.
  • the inspection system and inspection method of the damping force variable mechanism 50 in the dampers 100, 200, 300, and 400 of the embodiment can be determined from the vehicle 500 which can be determined by the value detected by the detection device in the detection process or the pressure of the inspector.
  • the inspection system and the inspection method of the damping force variable mechanism according to the present invention are not limited to this form. That is, as another embodiment of the inspection system and the inspection method of the present invention, for example, a change occurring in the output of the vehicle 500 according to a change of the input current is the damper 100, 200, 300, 400 in the vehicle 500. It is possible to provide an inspection system and an inspection method which causes the inspector to output the presence or absence of the sound emitted by the damping force variable mechanism 50 as the detection value of the detection device in the detection step or hearing.
  • the solenoid valve 51 of the damping force variable mechanism 50 in the damper 100, 200, 300, 400 to be inspected in the embodiment is fixed by the coil (not shown) of the solenoid valve 51 by the input of the changing current shown in FIG.
  • the excitation power of the core changes. That is, when a high current (for example, 0.8 [A] that generates a high damping force) is supplied to the coil, a relatively high excitation force is generated in the fixed core, and the magnetic valve (not shown) of the solenoid valve 51 is illustrated. The body is drawn firmly to the fixed core.
  • the suction force to the magnetic body by the fixed core is the pressure generated in the oil flow path and the initial pressing force acting on the magnetic body in the compression stroke of the damper 100, 200, 300, 400 (for example, a spring etc. Is set larger than the sum of the elastic force of the elastic body of Therefore, when a high current is supplied to the damping force variable mechanism 50, the magnetic body hits the fixed core in the compression stroke of the damper 100, 200, 300, 400 in which the pressure is applied to the flow path. A striking sound is generated when the magnetic body hits the fixed core.
  • the detection device or the inspector in the detection process can determine whether the damping force variable mechanism 50 is operating normally by determining the presence or absence of the tapping sound by hearing.
  • the reaction force from the vehicle 500 is detected in the vehicle body of the vehicle 500, not only the change in the damping force of the nearby damper 100 but also the change in the damping force of the other dampers 200 are superimposed on the vehicle body It may be transmitted. Therefore, the vehicle 500 is not directly affected by the change in the damping force of the other dampers 100, 200, 300, 400 so that the inspection for each damper 100, 200, 300, 400 can be performed accurately. Among them, it is preferable to detect a reaction force with a wheel / tire that is an unsprung element.
  • FIG. 15 shows the case where the combination of the change in the current input to the damping force variable mechanism 50 and the frequency of the change is changed to make the current input to the damping force variable mechanism 50 constant in the above embodiment. It is a table
  • surface which shows the list of the experimental result which verified the difference by pressure sense, and the difference by hearing.
  • Experimental Example 1 changes the current input to the damping force variable mechanism 50 between 0.3 [A] and 1.6 [A], and the frequency of the change is 5 [Hz].
  • Experimental example 2 changes the current input to the damping force variable mechanism 50 between 0.3 [A] and 1.6 [A], and the frequency of the change is 10 [Hz].
  • Experimental Example 3 the current input to the damping force variable mechanism 50 is changed between 0.3 [A] and 0.8 [A], and the frequency of the change is 10 [Hz]. This is an aspect exemplified in the description of the embodiment described above.
  • the examiner can feel the difference between pressure sensation and hearing in the detection step as in the case where a constant current is input to the damping force variable mechanism 50, pressure sensation and hearing
  • a constant current is input to the damping force variable mechanism 50
  • the examiner can feel the difference from the case where a constant current is input to the damping force variable mechanism 50 in the detection step according to the mode of the experimental example 2, either by the pressure sense or the auditory sense. It was possible to effectively determine whether the damping force variable mechanism 50 was normal.
  • the examiner felt both pressure and hearing in the detection step smaller than the case of inputting a constant current to the damping force variable mechanism 50 as compared to Experimental Examples 1 and 2, although the pressure sensation was small. It was possible to effectively determine whether the damping force variable mechanism 50 is normal or not by any of the hearing.
  • each detection device 2 (see FIG. 5) and the output unit 3 in the detection step light each lamp 2a etc. in green only when it is determined that the damping force variable mechanism 50 is normal
  • the present invention Is not limited to this form. That is, for example, the detection device 2 and the output unit 3 may light each lamp 2a or the like in red only when it is determined that the damping force variable mechanism 50 is not normal, or the damping force variable mechanism 50 It is also possible to light each lamp 2a etc. in green when it is judged to be normal and to light each lamp 2a etc in red when it is judged not to be normal.
  • the detection apparatus 2 and the output part 3 detect a signal by wire communication using a harness
  • the present invention is not limited to this, and a signal may be detected wirelessly.
  • the detection device 2 and the output unit 3 are provided with four lamps 2a, 2b, 2c, 2d corresponding to each of the wheels, but may be provided with only one lamp 2a.
  • the dampers 100, 200, 300, 400 (see FIGS. 1 and 6) corresponding to the respective wheels are sequentially inspected by switching the rotary switch 2s etc., and one lamp 2a is subjected to each damper 100, 200, 300 , 400 may be used in common.
  • the detection apparatus 2 and the output part 3 light the lamp 2a etc. as a display method of a test result (whether the damping force variable mechanism 50 is normal or not), the present invention is not limited to this form.
  • the detection device 2 and the output unit 3 display, for example, the numbers of the dampers 100, 200, 300, and 400 that are determined to be normal or not normal (may be numbers, symbols, etc. corresponding to the wheels) It is also good.
  • the signal of the test result that it is normal or not normal is not limited to the one displayed on the outside of the vehicle 500, and a display unit provided in the vehicle 500 (for example, a display unit of a car navigation device or a monitor of a vehicle surrounding surveillance camera Other display units such as a meter may be displayed.
  • the signal of the inspection result may be presented on a general-purpose machine (for example, a smartphone, a tablet terminal, etc.) as well as the presentation by the dedicated machine.
  • the presentation of the test results is not limited to the visual stimulation of human beings as a display, but may be by other methods as long as they are presented by auditory stimulation or tactile stimulation. Good.
  • the detection step in the present invention is a step of detecting the output from the vehicle, but as the output from the vehicle, various devices (the controller 510, the dampers 100, 200, 300, 400, etc.) and structures that constitute the vehicle It contains various outputs from the body (body etc.).
  • the inspection systems 600 and 700 and the inspection method of each of the first and second embodiments (including the variations) described above are both the cylinder 11 (see FIG. 2) in which the oil (an example of the hydraulic fluid) is enclosed and the outside of the cylinder 11 Connected to the cylinder portion 10 having the outer cylinder 12 provided on one side and the damper case 13 provided on the outer side of the outer cylinder 12 and the cylinder portion 10, and the damping force is variable according to the input signal
  • the dampers 100, 200, 300, and 400 of the so-called triple pipe provided with the damping force variable mechanism 50 to be controlled are the targets of inspection.
  • the inspection method and the inspection system of the damping force variable mechanism according to the present invention are not limited to those in which the triple pipe pressure shock absorber is the object of the inspection. That is, even if it is a single cylinder pressure shock absorber or a double cylinder (double pipe) pressure shock absorber, as long as it has a variable damping force mechanism, the variable damping force mechanism according to the present invention It is included in the scope of inspection method and inspection system.
  • the damping force variable mechanism is not limited to one that changes the damping force by the solenoid valve 51, but one that electrically changes the damping force, one that magnetically changes the damping force, mechanical damping What changes the damping force may be used as long as it can change the damping force using some kind of signal.
  • FIG. 16 is a schematic view showing an inspection method of the damping force variable mechanism 50 in the damper 100, 200, 300, 400 with the damping force variable mechanism according to the third embodiment.
  • FIG. 17 is a view showing an example of the characteristic curve of the damping force f in the extension stroke and the compression stroke of the damper 100 to which the third embodiment is applied.
  • ⁇ Characteristic curve at normal time> a high current (e.g., 1.6 [A]) of the maximum damping force normal value is input to the damping force variable mechanism 50, and the damper 100 is relative in the extension stroke (ten side) Is the characteristic curve for exerting the highest damping force (hereinafter referred to as the maximum damping force).
  • a low current (for example, 0.3 [A]) of the minimum damping force normal value is input to the damping force variable mechanism 50, and the damper 100 has the relatively lowest damping in the extension stroke. It is a characteristic curve in the case of exerting a force (hereinafter referred to as the minimum damping force).
  • an intermediate value current (e.g., 0.8 [A]) of the intermediate damping force normal value is input to the damping force variable mechanism 50, and the damper 100 has a relatively intermediate damping force in the extension stroke. It is a characteristic curve in the case of exhibiting (it is hereafter mentioned intermediate damping force).
  • a high current (for example, 1.6 [A]) of the maximum damping force normal value is input to the damping force variable mechanism 50, and the damper 100 is relative in the compression stroke (comp side) It is a characteristic curve in the case of exerting the highest damping force (hereinafter referred to as maximum damping force).
  • a low current (for example, 0.3 [A]) of the minimum damping force normal value is input to the damping force variable mechanism 50, and the damper 100 has a relatively intermediate damping force in the compression stroke. It is a characteristic curve in the case of exhibiting the lowest damping force of the normal value (hereinafter referred to as the minimum damping force).
  • an intermediate value current (e.g., 0.8 [A]) of the intermediate damping force normal value is input to the damping force variable mechanism 50, and the damper 100 has a relatively intermediate damping in the compression stroke. It is a characteristic curve in the case of exerting a force (hereinafter referred to as an intermediate damping force).
  • a high current of the maximum damping force normal value is input from the controller 510 of the vehicle 500 to the damping force variable mechanism 50, and the damper 100 is in a state of exhibiting the high damping force of the characteristic curves f1 and f4.
  • the damper 100 is operated at a velocity Va [m / s] (when the piston rod 20 is moved along the axis C with respect to the cylinder portion 10), the damping force of the damper 100 is f1a in the extension stroke. [N], f4a [N] in the compression stroke.
  • a low current having a normal value of the minimum damping force is input from the controller 510 of the vehicle 500 to the damping force variable mechanism 50, so that the damper 100 exerts the low damping force of the characteristic curves f2 and f5.
  • the damping force of the damper 100 is f2a [N] in the extension stroke and f5a [N] in the compression stroke.
  • an intermediate value current of the intermediate damping force normal value is input from the controller 510 of the vehicle 500 to the damping force variable mechanism 50, so that the damper 100 exerts the intermediate damping force of the characteristic curves f3 and f6.
  • the damping force of the damper 100 is f3a [N] in the extension stroke and f6a [N] in the compression stroke.
  • the inspector applies the load F1 vertically downward to the vehicle 500 in a cycle of about twice a second to operate the damper 100 at the velocity Va [m / s].
  • the damping force f [N] of the damper 100 changes between the high damping force f4a [N] and the low damping force f5a [N] at a constant period.
  • the intermediate damping force f6a [N] and the low damping force f5a [N] also change. Therefore, the reaction force F2 against the load F1 received by the inspector from the vehicle 500 changes.
  • the inspector who manually presses the vehicle 500 can feel a change in the reaction force F2 as a sense of touch (tactile sense). When normal, it can be detected by pressure sense (tactile sense) and vision etc.
  • dust generated in the oil may clog the solenoid valve 51 (see FIG. 2) or the like so that the valve body can not move.
  • the damping force of the damper 100 does not change.
  • the inspector feels a change in the reaction force F2 against the load F1 received from the vehicle 500 as a pressure sense (tactile) I have not.
  • a rectangular wave current (may be a sine wave current) at a frequency of about 5 Hz is applied between MIN ⁇ MAX (first fluctuation current) to obtain a vehicle Excitation of 500 (for example, an examiner manually excites) determines whether or not it is in a failure state.
  • MIN ⁇ MAX first fluctuation current
  • 500 for example, an examiner manually excites
  • the inspector can roughly detect the failure state by confirming this difference.
  • a failure may occur such that the variable width becomes narrow, and in this case, the damping force variable function operates to some extent. In the above-mentioned inspection method, failure may not be detected.
  • a high current (for example, 1.6 [A]) of the maximum damping force abnormal value is input to the damping force variable mechanism 50, and the damper 100 is damped in the compression stroke (comp side) It is a characteristic curve at the time of failure where the variable width which becomes a force abnormal value (hereinafter referred to as the maximum damping force abnormal value) becomes narrow.
  • the maximum current with a normal value of maximum damping force (for example, 1.6 [A]) showing a characteristic curve of high damping force f1 and the minimum showing a characteristic curve of low damping force f2
  • a current alternately repeating a low current for example, 0.3 [A]
  • a high current for example, the same current value as the high current (for example, 1.6 [A]) of the maximum damping force normal value
  • the damping force variable mechanism 50 can change only with the damping force shown by the solid arrow b in FIG. 17 due to the failure.
  • this kind of failure can not be detected only by MAX ⁇ MIN of the applied current. That is, with one type of applied current, although it can be confirmed that the damping force variable mechanism 50 is variable, it can not be determined whether or not the variable width is narrowed (only the presence or absence of the wheel vibration can be confirmed).
  • the inspection method of the damper of the third embodiment makes it possible to detect a failure of the damper whose variable width is narrowed, although it is variable by applying a plurality of types of currents having different swing widths.
  • the damper inspection method of the third embodiment will be specifically described.
  • the damper 100 provided with a damping force variable mechanism 50 that changes the damping force f [N] according to the input current (an example of a signal).
  • the input current an example of a signal
  • the vehicle 500 is shaken up and down to operate the damper 100, and the damping force variable mechanism The inspector is made to feel a change that occurs in the vehicle 500 in response to a change in the current input to the F.
  • FIG. 18 shows the vibration amplitude (stroke) [m], stroke speed [m / s], applied current [A], generated damping force [N], and damping force change rate [n] input to the damping force variable mechanism 50. It is a graph which shows N / s].
  • the applied current is a high current (for example, 1.6 [A]) in which the damper 100 exhibits the characteristic curves of the high damping forces f1 and f4 (see FIG. 17).
  • the swing width that changes so that the damper 100 alternately repeats a low current (for example, 0.3 [A]) indicating a characteristic curve (see FIG. 17) of the low damping forces f2 and f5 is a large current.
  • the applied current is an intermediate value current (eg, 0.8 [for example, 0.8 [D] that the damper 100 shows the characteristic curve of the intermediate damping forces f3 and f6 (see FIG. 17). A)) and the middle of the swing width which changes so that the damper 100 alternately repeats a low current (for example, 0.3 [A]) which shows the characteristic curve (refer to FIG. 17) of the low damping forces f2 and f5.
  • Current of when viewed from the low current (for example, 0.3 [A]) side, the applied current on the high current side is plural (here, 2), that is, the high current shown in the area MIN ⁇ MAX of FIG. (For example, 1.6 [A]) and an intermediate value current (for example, 0.8 [A]) shown in a region MIN ⁇ MID of FIG. 18 (C) are used.
  • the cycle of the change in the magnitude of the current input to the damping force variable mechanism 50 is made constant.
  • the constant period of the change of the high, medium, and low of the current is set to, for example, 5 [Hz] in the case where the swing width of the current is large or medium.
  • the control box (ECU) 1 (see FIG. 16) prepared for the inspection outputs a signal for generating a current, which changes to high and low in the predetermined cycle.
  • the control box 1 is connected to the damping force variable mechanism 50.
  • the controller 510 of the vehicle 500 is connected to the damping force variable mechanism 50. So, when performing the inspection method of the damper of Embodiment 3, the controller 510 is removed from the damping force variable mechanism 50 prior to connecting the control box 1. Then, the control box 1 is connected to the damping force variable mechanism 50 from which the controller 510 has been removed.
  • the controller 510 instead of replacing the controller 510 of the vehicle 500 with the control box 1 for inspection to execute the present inspection method, the controller 510 “inspects the function of the control box 1 for inspection.
  • the configuration may be provided in advance as a mode.
  • FIG. 19 is a flowchart of the damper inspection method of the third embodiment.
  • the present flow is repeatedly executed at predetermined timings by a control unit (not shown) constituting the control box 1 for inspection.
  • the control unit of the control box 1 applies MIN ⁇ MAX rectangular wave current (see FIG. 18C) (first variation current) (step S11).
  • the excitation current may be applied either simultaneously to all four wheels or one wheel at a time.
  • a rectangular wave current is used as shown in FIG. 18C, a sine wave current may be used.
  • the frequency of the excitation current is, for example, 1 to 5 Hz (preferably 5 Hz) such that the vibration is performed from the sprung resonance frequency to the unsprung resonance frequency (or the lower response frequency of the damper).
  • the frequency 5 Hz of the excitation current changes from the sprung resonance frequency to the unsprung resonance frequency or the response frequency of the damper in the damping force variable mechanism 50 in a state where the damper 100 is attached to the vehicle 500. It is a frequency at which a signal is periodically applied.
  • the change range of the excitation current in step S11 is from MIN (e.g. 0.3 [A]) to MAX (e.g. 1.6 [A]).
  • the vehicle is vibrated manually by the vibration exciter or the inspector (step S12).
  • the vehicle excitation is performed as follows.
  • the vehicle 500 is shaken up and down to make the damper 100 stroke (see FIG. 18A).
  • the frequency of vehicle excitation is stroked as large as possible at 1 to 2 Hz (see FIG. 18B).
  • a shaking device or a person who shakes it manually is used to shake the vehicle 500 up and down.
  • the bonnet is opened at the front to push the bulkhead portion in a timely manner so that the vehicle 500 is not deformed (dented, deformed, etc.).
  • the trunk In the rear, open the trunk and push around the bumper.
  • a person can sit in the opening with the trunk open and use his weight to push in time. Also, open the door, sit on the seat, press using the weight, and stroke the front and rear wheels on one side.
  • the load F1 is pressed vertically downward to the vicinity of the portion where the damper 100 to be inspected is attached, and the damper 100 is operated at the velocity Va [m / s].
  • a current that changes as MIN ⁇ MAX is input to the damping force variable mechanism 50 of the damper 100.
  • step S13 whether or not there is wheel vibration is detected by mechanical detection by a wheel vibration detection device (not shown) or detection by touch by an inspector (step S13).
  • a vibration is detected by touching the wheel with the wheel vibration detection apparatus or the inspector visually checking the wheel and using a hand.
  • the damper 100 is not stroked, when it is stroked, it behaves like hopping with a change in damping force and does not stroke smoothly. In this case, when the inspector touches the wheel with hand, he feels a jerky vibration.
  • the said vibration is detected mechanically.
  • step S13: No When there is no wheel vibration (step S13: No), it is determined that the damper 100 is defective and the present flow ends.
  • the damper 100 which fails and does not change the damping force does not vibrate, strokes smoothly, and does not feel vibration even when touching the wheel.
  • step S13: Yes the control unit of the control box 1 applies an applied current from MIN ⁇ MAX rectangular wave current application to MIN ⁇ MID rectangular wave current application (see FIG. 18C) (second variation) The current is changed to the current), and the MIN ⁇ MID rectangular wave current is applied (step S14).
  • the vehicle is vibrated manually by the vibration exciter or the inspector. That is, the control unit of control box 1 changes the excitation current change range to MIN (e.g., 0.3 [A]) ⁇ MID (e.g., 0.8 [A]), and steps S11 to S13 are performed. Perform the procedure again.
  • Step S15 it is detected whether the wheel vibration at the time of MIN ⁇ MID rectangular wave current application is smaller than the wheel vibration at the time of MIN ⁇ MAX rectangular wave current application by the touch by the wheel vibration detecting device or the inspector.
  • the wheel vibration is detected by observing the displacement of the wheel and the load F1.
  • step S15: No it is determined that the damper 100 is defective, and the present flow ends (step S16). If the wheel vibration is smaller than MIN ⁇ MAX (step S15: Yes), it is determined that the damper 100 is normal, and the present flow ends (step S17).
  • the step order of MIN ⁇ MAX rectangular wave current application and MIN ⁇ MID rectangular wave current application may be reversed.
  • variable width of the damping force variable mechanism 50 is narrowed, it can be confirmed that the variable damping force mechanism 50 is variable, but it can not be determined whether the variable width is narrowed. That is, this failure can not be detected only by MAX ⁇ MIN of one type of applied current. Therefore, in the third embodiment, in addition to the high current (for example, 1.6 [A]) shown in the area MIN ⁇ MAX in FIG. 18C, the intermediate value current shown in the area MIN ⁇ MID in FIG. (For example, 0.8 [A]) is used.
  • the damper inspection method of the third embodiment when the damper 100 is attached to the vehicle 500, either the sprung resonance frequency to the unsprung resonance frequency or the response frequency of the damper is applied to the damping force variable mechanism 50.
  • the application step of periodically applying a fluctuating current that changes in the lower direction, and applying the fluctuating current to the damping force variable mechanism 50 in this application step excites the vehicle 500 to operate the damping force variable mechanism 50 And applying a plurality of types of current in the applying step, and in the detecting step, the vehicle 500 according to changes in the plurality of types of currents. It detects whether there is a change in the vibration state.
  • the damper 100 is responding to the current value change from the difference in vibration level due to the magnitude of the current value, so that the variable width which can not be detected by one kind of current value MIN ⁇ MAX becomes narrow. Even failure can be detected. That is, although variable, failure detection of the damper whose variable width is narrowed becomes possible. As a result, the damper 100 can be identified with high accuracy in a state of being attached to the vehicle 500.
  • the damper 100 can be inspected in a state of being attached to the vehicle 500. Further, according to the damper inspection method of the third embodiment, the presence or absence of a change in the damping force of the damper 100 is determined by the pressure sense (tactile sense) of the inspector of the reaction force F2 (see FIG. 16) transmitted to the inspector. Can. When the inspector feels a change in the reaction force F2, the inspector can judge that the damping force variable mechanism 50 is operating normally. On the other hand, when the inspector feels a change in the reaction force F2, if the inspector does not feel a change in the reaction force F2, the inspector should judge that the damping force variable mechanism 50 is not operating normally. Can.
  • the change in the reaction force F2 transmitted to the inspector has a constant cycle corresponding to the change in the input current, so that the change in the reaction force F2 is detected.
  • Embodiment 3 uses the application of current of MIN ⁇ MAX and the application of current of MINIDMID, but there are a plurality of current applications besides the current application of MIN ⁇ MAX and the current application of MIN ⁇ MID. May be Specifically, using a plurality of intermediate value currents, MIN ⁇ MID1 and MIN ⁇ MID2 (where MID1 ⁇ MID2), the applied current may be changed and detected by the same inspection method.
  • the damper 100 of Embodiment 3 has the damping force variable mechanism 50 in which the damping force is varied by the current value, the change of the fluctuating current between the plurality of current values is used, but the damping force variable mechanism is a voltage In the case of driving at a constant voltage, a change in voltage application between a plurality of voltage values may be used.
  • the inspection method of the damper which concerns on Embodiment 3 is determined by the pressure sense (tactile sense) of the test person, it is not limited to the pressure sense (tactile sense) of the test person.
  • the inspector may detect the presence or absence of the sound emitted by the damping force variable mechanism 50 of the damper 100 in the vehicle 500. In this case, the determination by the pressure sense (tactile sense) of the inspector may be used in combination.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

入力される電流(信号の一例)に応じて減衰力を変化させる減衰力可変機構50を備えたダンパ100,200,300,400を車両500に取り付けた状態で、ダンパ100,200,300,400を動作させる動作工程と、車両500に取り付けられたダンパ100,200,300,400の減衰力可変機構50からの誘導電流(車両からの出力の一例)を検出する検出工程とを有し、検出工程の動作を行う検出装置2を備える。これにより、圧力緩衝装置の減衰力可変機構を、車両に取り付けたままの状態で検査することができる。

Description

減衰力可変機構の検査方法、検査システム及び圧力緩衝装置の検査方法
 本発明は、減衰力可変機構の検査方法、検査システム及び圧力緩衝装置の検査方法に関する。
 車両に取り付けられて、車両に入力される振動を減衰させる圧力緩衝装置が知られている。この圧力緩衝装置として、減衰力を変化させることができる減衰力可変機構を備えたものがある(例えば、特許文献1および特許文献2参照)。
特開2012-72857号公報 特開2013-15163号公報
 ところで、減衰力可変機構が正常に作動しているか否かを検査する場合、車両から圧力緩衝装置を取り外し、取り外された圧力緩衝装置を専用の検査機器などに設置するなどして検査している。すなわち、圧力緩衝装置を検査するには、車両から取り外して、圧力緩衝装置の単体で検査を行うしかなかった。
 しかし、検査の都度、圧力緩衝装置を車両から取り外し、検査の終了後に圧力緩衝装置を車両に再度組み付けるのは、非常に手間がかかっていた。
 本発明は、圧力緩衝装置の減衰力可変機構を、車両に取り付けたままの状態で検査することができる減衰力可変機構の検査方法、検査システム及び圧力緩衝装置の検査方法を提供することを目的とする。
 本発明は、入力される信号に応じて減衰力を変化させる減衰力可変機構を備えた圧力緩衝装置を車両に取り付けた状態で、前記圧力緩衝装置を動作させる動作工程と、前記動作工程により前記車両に生じる変化を検出する検出工程とを有する減衰力可変機構の検査方法である。
 また、本発明は、入力される信号に応じて減衰力を変化させる減衰力可変機構を備えた圧力緩衝装置を車両に取り付けた状態で、前記圧力緩衝装置を動作させたときに、前記車両からの出力を検出する検出装置を備えた減衰力可変機構の検査システムである。
 本発明の減衰力可変機構の検査方法及び検査システムによれば、圧力緩衝装置を車両に取り付けた状態で、圧力緩衝装置を動作させたときに、車両からの出力を検出する。減衰力可変機構が正常に作動している場合は、車両からの出力が変化するが、この車両からの出力の変化を検出することにより、減衰力可変機構が正常に作動しているか否かを、車両に取り付けたままの状態で検査することができる。
 また、本発明は、入力される信号に応じて減衰力を変化させる減衰力可変機構を有する車両の圧力緩衝装置の検査方法であって、前記圧力緩衝装置を前記車両に取り付けた状態で、前記減衰力可変機構に、バネ上共振周波数から、バネ下共振周波数および前記圧力緩衝装置の応答周波数のうちのどちらか低い方の周波数までの間のいずれかの周波数の信号を周期的に印加する印加工程と、前記印加工程において前記減衰力可変機構に前記信号を印加しつつ、前記減衰力可変機構を動作させるように前記車両を加振する加振工程と、前記車両の振動状態を検出する検出工程と、を有し、前記印加工程では、振れ幅が異なる複数種類の信号を順次印加し、前記検出工程では、複数種類の前記信号の変化に応じて前記車両の振動状態に変化があるかを検出することを特徴とする。
 本発明に係る減衰力可変機構の検査方法、検査システム及び圧力緩衝装置の検査方法によれば、圧力緩衝装置の減衰力可変機構を、車両に取り付けたままの状態で検査することができる。
本発明の第1の実施の形態(実施形態1)であるダンパにおける減衰力可変機構の検査システムを示す模式図である。 図1に示したダンパを示す縦断面図である。 図2に示した減衰力可変機構によって切り替えられるダンパの伸張行程及び圧縮行程における減衰力の特性曲線の一例を示す図である。 車両に荷重を掛ける方法の例を示す図であり、(A)は車両に垂直荷重を作用させる方法、(B)は車両に車幅方向への荷重を作用させる方法、(C)は車両を上方に一旦持ち上げ、その後に下方に落下させる(重力という荷重を掛ける)方法、をそれぞれ表す。 検出装置(又は出力部)の一例を示す図である。 本発明の第2の実施の形態(実施形態2)及びバリエーションであるダンパにおける減衰力可変機構の検査システムを示す模式図である。 減衰力可変機構に入力される、電流値が変化する信号を示す図であり、(A)は電流の変化の周期が一定かつ高低の電流のパルス幅が同一であるもの、(B)は電流の変化の周期が一定、電流値が高、中及び低の3段階で、かつ高、中及び低の電流のパルス幅が同一であるもの、(C)は電流の変化の周期が変化し、電流値が高及び低の2段階で、かつ高電流のパルス幅に対して低電流のパルス幅が長いもの、(D)は電流の変化の周期が変化し、電流値が高、中及び低の3段階で、かつ高、中及び低の電流のパルス幅に差があるもの、をそれぞれ示す。 車両荷重入力機構を例示した模式図であり、(A)は車両に垂直荷重を作用させる車両荷重入力機構を示す図、(B)は車両をロールさせるように車幅方向に荷重を作用させる車両荷重入力機構を示す図、(C)は車両を上方に一旦持ち上げ、その後に下降させる油圧ジャッキなどの車両荷重入力機構を示す図である。 車両を上昇及び下降させる昇降装置として、いわゆる加振機を適用した例を示す図である。 略水平な路面上に、この路面を走行する車両に上下動を与える段差という車両荷重入力機構を示す図である。 いわゆるブレーキテスタによって、車両に荷重を入力する方法の一例を示す図である。 ダンパを動作させる入力が与えられたときの、経過時間に対する輪荷重の変化を示す図である。 ダンパが高減衰力を発揮し得る状態のときと低減衰力を発揮するときとで、ダンパを動作させる同じ入力が与えられたときの、経過時間に対する輪荷重の変化を示す図である。 検出装置としてダンパストローク検出装置を適用したバリエーションの検査システムを示す模式図である。 減衰力可変機構に入力する電流の変化と、この変化の周波数との組み合わせを変えて、減衰力可変機構に入力する電流を一定にした場合との、圧覚による差異と聴覚による差異とを検証した実験結果の一覧を示す表である。 実施形態3に係る減衰力可変機構付きの圧力緩衝装置における減衰力可変機構の検査方法を示す模式図である。 実施形態3に係る圧力緩衝装置の伸張行程と圧縮行程における減衰力の特性曲線の一例を示す図である。 (A)~(E)は、実施形態3に係る圧力緩衝装置の減衰力可変機構に入力される加振振幅(ストローク)[m]、ストローク速度[m/s]、印加電流[A]、発生減衰力[N]、および減衰力変化率[N/s]を示すグラフである。 実施形態3に係る圧力緩衝装置の検査方法のフローチャートである。
 以下、本発明に係る圧力緩衝装置における減衰力可変機構の検査方法及び検査システムの実施の形態について、図面を参照して説明する。
―実施形態1―
<構成>
 図1は、本発明の第1の実施の形態(実施形態1)であるダンパ100,200,300,400における減衰力可変機構50の検査システム600の構成を示す模式図である。ダンパ100,200,300,400はそれぞれ、図1に示すように、車両500の各車輪に対応して取り付けられている。
[ダンパ100,200,300,400の構成]
 まず、実施形態1で検査の対象であるダンパ100,200,300,400について説明する。なお、ダンパ100,200,300,400は基本的な構造が共通するため、これらダンパ100,200,300,400を代表してダンパ100について、以下で説明する。
 ダンパ100,200,300,400は、後述する全ての実施形態において共通する。
 図2は、図1に示したダンパ100(200,300,400)を示す縦断面図である。図示のダンパ100は、シリンダ部10、ピストンロッド20、ピストン30、ボトムバルブ40及び減衰力可変機構50を備えている。
(概略構成)
 シリンダ部10は、軸Cを中心とした半径方向の内側から順にシリンダ11、外筒12及びダンパケース13を備えた、いわゆる三重管の構造となっていて、内部にはオイル(作動油の一例)が封入されている。シリンダ部10の底部は底蓋14によって塞がれ、上部はロッドガイド15、オイルシール16及びキャップ17によって、ピストンロッド20を通過可能に塞がれている。
 ピストンロッド20は、一部がシリンダ部10のロッド室Y2の内部に入り、残りの一部がシリンダ部10の外部に露出して、軸C方向に沿って移動可能である。
 ピストン30は、ピストンロッド20の図示下端部に固定されていて、ピストンロッド20と一体的に軸C方向に移動可能である。ピストン30は、シリンダ11の内周面に沿って軸C方向に移動可能に設けられている。ピストン30は、流路31Hを開閉する、バネ33で押えられたチェックバルブ32を備え、シリンダ11の内側の空間をロッド室Y2とピストン室Y1とに仕切っている。ボトムバルブ40は、複数の流路41Hが形成されたバルブボディ41と、ピストン室Y1の側に設けられ流路41Hを開閉する減衰バルブ42とを備える。
 シリンダ11と外筒12との間には、連絡路Lが形成されている。シリンダ11の上端の近傍には、ロッド室Y2と連絡路Lとを通じさせるシリンダ開口11Hが形成されている。外筒12とダンパケース13との間には、リザーバ室Rが形成されている。ピストン室Y1とリザーバ室Rとは、ボトムバルブ40のバルブボディ41に形成された流路41H及び凹部43を介して通じている。
(減衰力可変機構50)
 減衰力可変機構50は、ダンパケース13の外側に設けられている。この減衰力可変機構50は、入力される電流の大きさ(信号の一例)に応じて発生する励磁力により、連絡路Lからリザーバ室Rへのオイルの流路上に絞り量を可変にするソレノイドバルブ51を備えている。そして、ソレノイドバルブ51により絞り量を変化させることで、ダンパ100の減衰力を変化させる。
 ソレノイドバルブ51は、通電されるコイル、通電によって磁界を発生したコイルにより励磁される固定コア、励磁された固定コアに引き寄せられる磁性体及び磁性体と一体に動く弁体などを備えているが、いずれも図示を省略する。
 そして、ソレノイドバルブ51による絞り量の変化は、コイルへの通電流の大きさを変えることで実現されている。
 ソレノイドバルブ51には、車両500のコントローラ510(図1参照)に接続されたハーネス520が接続され、コントローラ510からハーネス520を通じて電流が流される。
 ソレノイドバルブ51に入力される電流が相対的に大きいときは、絞り量が大きくなって、減衰力可変機構50による減衰力は相対的に高いものとなる。一方、ソレノイドバルブ51に入力される電流が相対的に小さいときは、絞り量が小さくなって、減衰力可変機構50による減衰力は相対的に低いものとなる。
 なお、ソレノイドバルブ51に電流が入力されていないときは、絞り量を変化させる弁体が励磁力に拘束されずに可動する。したがって、電流が入力されていないとき、弁体は、絞りを通過するオイルによって動かされる。
[ダンパ100,200,300,400の動作]
(圧縮行程の動作)
 次に、上述した構成のダンパ100(200,300,400)の動作を説明する。
 まず、ダンパ100の圧縮行程における動作を説明する。圧縮行程においては、ピストン30が図2の軸C方向の図示下方へ移動すると、ピストン室Y1内の圧力が上昇する。このときボトムバルブ40の減衰バルブ42は、流路41Hを閉じた状態のままとなる。
 一方、ピストン30のチェックバルブ32は流路31Hを開く。そして、ピストン室Y1からロッド室Y2にオイルが流れる。さらに、ロッド室Y2に進入したピストンロッド20の体積に相当するオイルがシリンダ開口11Hから連絡路Lに流出し、流出したオイルは連絡路Lから減衰力可変機構50に流入する。
 減衰力可変機構50に流入したオイルは、ソレノイドバルブ51で可変される絞りを通じてリザーバ室Rに流れ、このとき圧縮行程における減衰力が発生する。
(伸張行程の動作)
 次に、ダンパ100の伸張行程における動作を説明する。ピストン30が、図2の軸C方向の上方へ移動すると、ピストン室Y1が負圧となる。これによって、リザーバ室Rのオイルが、ボトムバルブ40の凹部43、流路41Hを順次通り、減衰バルブ42を開いてピストン室Y1に流入する。
 さらに、ピストン30の軸C方向の上方への移動により、ロッド室Y2内の圧力は高められる。これにより、ロッド室Y2のオイルはシリンダ開口11Hから連絡路Lに流出し、流出したオイルは連絡路Lから減衰力可変機構50に流入する。
 減衰力可変機構50に流入したオイルは、ソレノイドバルブ51で可変される絞りを通じてリザーバ室Rに流れ、このとき圧縮行程における減衰力が発生する。
(減衰力可変機構50による減衰力の特性)
 ここで、減衰力可変機構50による減衰力の特性の変化について説明する。
 図3は、ダンパ100の伸張行程と圧縮行程における減衰力fの特性曲線の一例を示す図である。図中の特性曲線f1,f3は、それぞれソレノイドバルブ51(図2参照)に高電流(例えば、0.8[A]の電流)が入力されて、ダンパ100が伸張行程(ten側)、圧縮行程(comp側)において相対的に高い減衰力(以下、単に高減衰力という。)を発生する場合の特性曲線である。
 一方、図中の特性曲線f2,f4は、それぞれソレノイドバルブ51に低電流(例えば、0.3[A]の電流)が入力されて、ダンパ100が伸張行程、圧縮行程において相対的に低い減衰力(以下、単に低減衰力という。)を発生する場合の特性曲線である。
 なお、図3に示した減衰力の特性曲線は、ソレノイドバルブ51に通電させる電流等に応じて予め設定されている。
[検査システム600の構成]
 次に、実施形態1のダンパ100,200,300,400における減衰力可変機構50の検査システム600(図1参照)について説明する。
 上述した各ダンパ100,200,300,400の減衰力可変機構50は、減衰力の高低を変化させるが、例えば、オイル内に生じた塵挨等が、ソレノイドバルブ51(図2参照)に詰まるなどして、ソレノイドバルブ51の弁体が動かなくなることが起こり得る。このような場合、減衰力可変機構50は減衰力を変化させることができない。
 実施形態1の検査システム600は、減衰力可変機構50が正常に動作するか否かを検査するシステムである。
 実施形態1の減衰力可変機構50の検査システム600は、入力される電流(信号の一例)に応じて減衰力を変化させる減衰力可変機構50を備えたダンパ100,200,300,400を車両500に取り付けた状態で、ダンパ100,200,300,400を動作させたときに、車両500からの出力を検出する検出装置2(図1参照)を備えている。
 ここで、「ダンパ100,200,300,400を動作させる」とは、「ダンパ100,200,300,400を圧縮又は伸張させる」ということを表す。
 また、「車両500に取り付けた状態で、ダンパ100,200,300,400を動作させる」方法としては、車両500に対して荷重を掛けて車両500を動かしてもよいし、車両500を走行させて段差を乗り越えさせて車両500を動かすなどの方法を適用することができる。
 図4(A)は、車両500に荷重を掛ける方法の一例を示す図であり、車両500に垂直方向の荷重F1(以下、垂直荷重F1という)を作用させて、ダンパ100,200,300,400(図1参照)を動作させる方法である。
 なお、このダンパ100,200,300,400を動作させる工程は、本発明の検査方法における動作工程の一例に相当する。
(検出装置2)
 検査対象となるダンパ100,200,300,400が取り付けられた車両500(図1参照)は、コントローラ510と減衰力可変機構50とを接続する車両500のハーネス520を備えている。このハーネス520には、コントローラ510に接続されるメインハーネス521と、検出装置2を接続するための検査用ハーネス522とが備えられている。
 メインハーネス521にはコントローラ510が常に接続されており、検査用ハーネス522には、実施形態1の検査システム600により検査を行うときだけ検出装置2が接続される。
 なお、ハーネス520が検査用ハーネス522を備えていないものである場合は、メインハーネス521をコントローラ510から取り外し、この取り外されたメインハーネス521を検出装置2に接続すればよい。また、メインハーネス521にコントローラ510及び検出装置2を共に接続してもよい。
 検出装置2は、車両500からの出力として、車両500に取り付けられたダンパ100,200,300,400の各減衰力可変機構50からの出力を検出するものである。具体的には、ソレノイドバルブ51(図2参照)が正常に動く場合、減衰力可変機構50を正常と判断し、ソレノイドバルブ51が正常に動かない場合、減衰力可変機構50を異常と判断するものである。
 ソレノイドバルブ51が正常に動くか否かは、ソレノイドバルブ51に発生する誘導電流を検出することによって行う。
 つまり、ソレノイドバルブ51に電流を通電しない状態(通電流0[A]の状態)で、例えば車両500(図1参照)に垂直荷重F1を作用させる等してダンパ100,200,300,400を動作させたときに、ソレノイドバルブ51に発生する誘導電流を検出する。そして、検出装置2は、この誘導電流の有無により、ソレノイドバルブ51が正常に動作しているか否かを判断する。
 ソレノイドバルブ51に電流を通電しない状態は、コントローラ510の制御によって実現するものであってもよいし、コントローラ510をメインハーネス521から取り外すことによって実現するものであってもよい。
 図5は、検出装置2の具体的な構成の一例を示す図である。この検出装置2は、ケース2kに、4つのランプ2a,2b,2c,2dと、1つのロータリスイッチ2sと、接続部2eと、記憶部2fと、判定部2gとが設けられている。
 接続部2eは、検査用ハーネス522が接続される。ロータリスイッチ2sは、車両500(図1参照)に取り付けられた4つのダンパ100,200,300,400の各減衰力可変機構50のうち、検出対象となる減衰力可変機構50を1つ選択し、又は4つ全てを同時に選択する切り替えスイッチである。
 ランプ2aは、車両500の右前輪のダンパ100(図1参照)に対応している。ランプ2bは、車両500の左前輪のダンパ200に対応している。ランプ2cは、車両500の右後輪のダンパ300に対応している。ランプ2dは、車両500の左後輪のダンパ400に対応している。各ランプ2a,2b,2c,2dは緑色に発光する。
 記憶部2fは、各ダンパ100,200,300,400から誘導電流が入力されたときは、その誘導電流を一時的に記憶する。
 判定部2gは、誘導電流の有無に基づいて、各ダンパ100,200,300,400の減衰力可変機構50が正常か否かを判定する。また、判定部2gは、減衰力可変機構50が正常と判定したときは、対応するランプ2a,2b,2c,2dを緑色に発光させる。一方、判定部2gは、減衰力可変機構50が正常であると判定しないとき(異常であるとの判定と実質的に同じ)は、対応するランプ2a,2b,2c,2dを発光させない。
 具体的には、ロータリスイッチ2sで選択された検査対象のダンパ(例えば、右前輪のダンパ100)のコイルが、検査によって誘導電流を発生したときは、判定部2gはダンパ100の減衰力可変機構50は正常と判定し、右前輪のダンパ100に対応したランプ2aを緑色で発光させる。
 一方、この右前輪のダンパ100のコイルが、検査によって誘導電流を発生しなかったときは、判定部2gはダンパ100の減衰力可変機構50は正常であると判定しないとき、右前輪のダンパ100に対応したランプ2aを発光させない。
 判定部2gによる他のランプ2b,2c,2dに対する作用は、上述したランプ2aに対する作用と同様である。
 なお、この検出装置2による動作は、車両500に生じる変化を検出する本発明の検査方法における検出工程の一例に相当する。
<作用>
 次に、実施形態1の検査システム600の作用について説明する。
 図1に示すように、検査用ハーネス522に検出装置2が接続された状態で、かつ、ソレノイドバルブ51(図2参照)に電流を入力しない状態で、車両500に垂直荷重F1が掛けられる(図4(A)参照:詳細については後述する)。これにより、車両500は下方に動き、ダンパ100,200,300,400は圧縮行程で動作する。
 ダンパ100,200,300,400の圧縮行程では、前述したように、オイルが減衰力可変機構50の絞りを通過する。このとき、ソレノイドバルブ51が正常に動作する場合は、弁体が動かされて、ソレノイドバルブ51には誘導電流が発生する。
 この誘導電流は、検出装置2によって検出される。検出装置2は、ロータリスイッチ2s(図5参照)で選択されている1つの検査対象のダンパ100、ダンパ200、ダンパ300、ダンパ400(又は、検査対象の4つの全てのダンパ100,200,300,400)から誘導電流を検出すると、対応するランプ2a,2b,2c,2dを緑色に点灯させる。
 一方、誘導電流が検出されないときは、検出装置2は、対応するランプ2a、ランプ2b、ランプ2c、ランプ2dを点灯させない。
 このように、実施形態1の減衰力可変機構50の検査システム600によれば、ダンパ100,200,300,400を車両500に取り付けたままの状態で、減衰力可変機構50が正常か否かを検査することができる。
 なお、実施形態1は、ソレノイドバルブ51に対して電流を入力しない状態だけに限るものではなく、以下の方法を適用することもできる。
 すなわち、減衰力可変機構50には、いわゆるフェイルセーフモードを有するものがある。このフェイルセーフモードとは、ソレノイドバルブ51(図2参照)に通電されない状態で弁体が動くと、弁体が動いた瞬間に弁体を動かなくするモードである。
 このように、通電しない状態で弁体が動くとフェイルセーフモードに移行する減衰力可変機構50を実施形態1の構成で検査する場合は、フェイルセーフモードに移行しないように(弁体の動きを阻害しないように)、ソレノイドバルブ51に通電する必要がある。
 そこで、フェイルセーフモードに移行する減衰力可変機構50を実施形態1の構成で検査する場合は、ソレノイドバルブ51に入力する電流を0[A]とするのではなく、0[A]に極めて近いがフェイルセーフモードに移行しない程度の極微小電流を入力すればよい。この場合、ソレノイドバルブ51への極微小電流は、検出装置2から供給すればよい。
 なお、ソレノイドバルブ51に、上述した極微小電流を与えた状態で車両500を動かした場合であっても、ソレノイドバルブ51に通電しない状態で車両500を動かした場合と同様に、ソレノイドバルブ51からの出力(誘導電流)を検出することができる。
 上述した実施形態1の動作は、入力される信号に応じて減衰力を変化させる減衰力可変機構50を備えたダンパ100,200,300,400を車両500に取り付けた状態で、ダンパ100,200,300,400を動作させる動作工程と、この動作工程により車両500に生じる変化を検出する検出工程とを有する本発明の減衰力可変機構の検査方法の一実施の形態に相当する。そして、この実施形態1の動作に対応した検査方法によれば、ダンパ100,200,300,400を車両500に取り付けたままの状態で、減衰力可変機構50が正常か否かを検査することができる。
―実施形態2―
 次に、本発明の第2の実施形態(実施形態2)に係る検査システム700について、説明する。図6は、実施形態2であるダンパ100,200,300,400における減衰力可変機構50の検査システム700を示す図である。
<構成>
[検査システム700の構成]
 実施形態2の減衰力可変機構50の検査システム700は、入力される電流(信号の一例)に応じて減衰力を変化させる減衰力可変機構50を備えたダンパ100,200,300,400を車両500に取り付けた状態で、ダンパ100,200,300,400を動作させたときに、車両500からの出力を検出する検出装置の一例としての輪荷重計4を備えている。
 また、実施形態2の減衰力可変機構50の検査システム700は、減衰力可変機構50に電流(信号の一例)を入力する信号入力装置1Aをさらに備え、輪荷重計4は、信号入力装置1Aにより電流を減衰力可変機構50に入力した状態で、ダンパ100,200,300,400を動作させるように車両500を動かしたときに、車両500の輪荷重を検出する。
 なお、このダンパ100,200,300,400を動作させるように車両500を動かす工程は、本発明の検査方法における動作工程の一例に相当する。
(信号入力装置1A)
 ここで、実施形態2の検査システム700における信号入力装置1Aは、一例として変化する電流を減衰力可変機構50に入力するものである。
 図7は、信号入力装置1Aによって減衰力可変機構50に入力される、値が変化する電流(信号の一例)を示す図である。
 図7(A)は、高低に変化し、その変化の周期が一定かつ高低のパルス幅が同一である電流の一例を示す図である。このグラフに示した電流は、ダンパ100,200,300,400が高減衰力の特性曲線f1,f3(図3参照)を示す高電流(例えば、0.8[A]の電流)と、ダンパ100が低減衰力の特性曲線f2,f4を示す低電流(例えば、0.3[A]の電流)とを交互に繰り返すように変化する電流である。
 また、この実施形態2における信号入力装置1Aは、図7(A)に示すように、減衰力可変機構50に入力される電流の高低の変化の周期が一定に設定されている。ここでは、電流の高低の変化の一定周期が、例えば10[Hz]に設定されている。
 なお、信号の大きさ(電流値)、周期、波形形状等については、図示のものに限定されるものではない。例えば、信号の波形形状として、矩形波の他、三角波、鋸歯状波等種々のものを適用することができる。
 図7(B)は、電流の変化の周期が一定、電流値が高、中及び低の3段階で、かつ高、中及び低のパルス幅が同一である電流の一例を示す図である。詳しくは、図7(B)は、互いに異なる3つの電流を切り替えたものであるが、この例では、低い側の電流として低の電流(例えば、0.3[A]の電流)を共用し、高い方の電流として、高の電流(例えば、0.8[A]の電流)と中の電流(例えば、0.6[A]の電流)とを切り替え、低い方の電流と高い方の電流との間で、電流を振幅させている。
 そして、減衰力可変機構50に対しては、図7(B)に示した電流を入力してもよい。なお、図7(B)に示した電流は、高い方の電流として、中の電流と高の電流との2つを切り替えるものであるが、これに限らず、高い方の電流として3つの異なる大きさの電流を適用してもよいし、また、4つ以上の異なる大きさの電流を適用してもよい。
 同様に、低い方の電流も、2つ以上の異なる大きさの電流を適用してもよい。
 図7(C)は、電流の変化の周期が変化し、電流値が高及び低の2段階で、かつ高電流のパルス幅に対して低電流のパルス幅が長い電流の一例を示す図である。このような電流を減衰力可変機構50に入力してもよい。
 なお、図7(C)に示した電流は、2つの種類の周波数で変化する電流であるが、これに限らず、3つの周波数で変化する電流を適用することもできるし、また、4つ以上の周波数で変化する電流を適用することもできる。
 また、低い方の電流のパルス幅と高い方の電流のパルス幅とを同じにしてもよいし、低い方の電流のパルス幅よりも高い方の電流のパルス幅を長くしてもよい。
 図7(D)は、電流の変化の周期が変化し、かつ電流値が高、中及び低の3段階で、かつ一部で、高、中及び低の電流のパルス幅に差がある電流の一例を示す図である。このような電流を減衰力可変機構50に入力してもよい。
 なお、図7(D)に示した電流は、2つの種類の周波数で変化する電流であるが、これに限らず、3つの周波数で変化する電流を適用することもできるし、また、4つ以上の周波数で変化する電流を適用することもできる。
 図7(A)~図7(D)に示す電流の波形形状としては、例示した矩形波の他、三角波、鋸歯状波等種々のものを適用してもよい。
 そして、信号入力装置1Aは、図6に示すように、コントローラ510(図1参照)に代えてハーネス520に接続される。これにより、信号入力装置1Aは、減衰力可変機構50に接続される。なお、ハーネス520に信号入力装置1A及びコントローラ510を共に接続してもよい。この実施形態2においては、ハーネス520に、図1に示したような検査用ハーネス522は備えられていないものとする。
 なお、車両500に予め備えられているコントローラ510(図1参照)が、実施形態2における信号入力装置1Aから出力される変化する電流を出力できるものであれば、そのコントローラ510を信号入力装置1Aの代わりに用いてもよい。この場合、コントローラ510は、本発明における信号入力装置の一例に相当する。
(検出装置:輪荷重計4)
 実施形態2においては、本発明における検出装置の一例として、車両500の各車輪の輪荷重を検出する輪荷重計4が適用されている。つまり、車両500の輪荷重は、本発明における車両からの出力の一例である。
 輪荷重計4は、車両500の各車輪の下に配置されて、対応する車輪における重量を検出する輪荷重検出部4a,4b,4c,4dを備えている。また、輪荷重計4は、各輪荷重検出部4a,4b,4c,4dで検出された輪荷重に基づいて、輪荷重の変化の有無を出力する出力部3と、各輪荷重検出部4a,4b,4c,4dと出力部3とを接続するハーネス523とを備えている。
 出力部3は、実施形態1の検出装置2(図5参照)と同様の構成とすることができる。
 この輪荷重計4による動作は、車両500に生じる輪荷重の変化を検出する検出工程の一例に相当する。
<作用>
 次に、実施形態2の検査システム700の作用について説明する。
 この検査システム700によると、図6に示すように、車両500の各車輪が対応する輪荷重検出部4a,4b,4c,4dに乗せられた状態とされる。この状態で、各ダンパ100,200,300,400の減衰力可変機構50に、信号入力装置1Aから、一定周期10[Hz]で高低に変化する電流(図7(A)参照)が入力される。そして、この電流が入力されている状態で、車両500に垂直荷重F1が入力される。車両500への垂直荷重F1の入力方法は、実施形態1と同様である。
 信号入力装置1Aから入力される電流によって、各ダンパ100,200,300,400が発揮し得る減衰力は、電流の高低の変化の周期に合わせて、図3に示す特性曲線f3の高減衰力と特性曲線f4の低減衰力とに切り替えられる。
 この間に、ダンパ100,200,300,400を速度Va[m/s]で動作させるように車両500に垂直荷重F1が掛けられることで、各ダンパ100,200,300,400が発生する減衰力は、図3に示す高減衰力f3a[N]と低減衰力f4a[N]とに一定周期10[Hz]で変化する。
 この結果、輪荷重検出部4a,4b,4c,4dは、各ダンパ100,200,300,400が発生する減衰力の変化に対応して、一定周期10[Hz]で変化する輪荷重を検出する。各輪荷重検出部4a,4b,4c,4dで検出された輪荷重は、出力部3に入力され、記憶部3f(図5参照)に記憶される。
 一方、各ダンパ100,200,300,400の減衰力可変機構50が正常に動作していない場合、各ダンパ100,200,300,400が発生し得る減衰力が変化しない。したがって、輪荷重検出部4a,4b,4c,4dで検出された輪荷重は、一定周期10[Hz]で変化しない。各輪荷重検出部4a,4b,4c,4dで検出された輪荷重は、出力部3に入力され、記憶部3f(図5参照)に記憶される。
 出力部3の判定部3gは、各輪荷重検出部4a,4b,4c,4dからそれぞれ入力され、記憶部3fに記憶された輪荷重が、減衰力可変機構50に入力されている電流の変化に対応して変化したか否かに応じて、ランプ2a,2b,2c,2dを発光させる。
 具体的には、各輪荷重検出部4a,4b,4c,4dからそれぞれ入力され記憶部3fに記憶された輪荷重が、減衰力可変機構50に入力されている電流の変化の周期10[Hz]と同じ周期10[Hz]で変化した場合は、判定部3gは、その輪荷重検出部4a,4b,4c,4dに対応するダンパ100,200,300,400の減衰力可変機構50は正常に動作していると判断する。そして、判定部3gは、ランプ2a,2b,2c,2dを緑色に発光させる。
 一方、各輪荷重検出部4a,4b,4c,4dからそれぞれ入力され、記憶部3fに記憶された輪荷重が、減衰力可変機構50に入力されている電流の変化の周期10[Hz]と同じ周期10[Hz]で変化しない場合は、判定部3gは、その輪荷重検出部4a,4b,4c,4dに対応するダンパ100,200,300,400の減衰力可変機構50は正常に動作しているとは判断しない。その結果、判定部3gは、ランプ2a,2b,2c,2dを点灯させない。
 このように、実施形態2の減衰力可変機構50の検査システム700によれば、ダンパ100,200,300,400を車両500に取り付けたままの状態で減衰力可変機構50を検査することができる。
 実施形態2では、信号入力装置1Aが、各減衰力可変機構50に入力する電流の高低の変化の周期を一定にしているため、出力部3での検出が容易である。
 また、減衰力可変機構50が正常に動作しない原因として、オイル内の生じた塵挨がソレノイドバルブ51に詰まる等して弁体の動きが制限されていることがある。
 このような場合、実施形態2の検査システム700によれば、信号入力装置1Aにより、高低に変化する電流がソレノイドバルブ51に入力されて弁体が微振動することで、詰まっていた塵挨が外れることも期待できる。
 なお、各輪荷重検出部4a,4b,4c,4dに入力される電流の高低の変化の周期は、予め出力部3に記憶させておいてもよいし、信号入力装置1Aから各輪荷重検出部4a,4b,4c,4dに入力される電流の一部を出力部3に入力することで出力部3がその周期を検出するものとしてもよい。
 また、実施形態2の動作は、入力される信号に応じて減衰力を変化させる減衰力可変機構50を備えたダンパ100,200,300,400を車両500に取り付けた状態で、ダンパ100,200,300,400を動作させる動作工程と、この動作工程により車両500に生じる変化として輪荷重を検出する検出工程とを有している。そして、動作工程では、信号入力装置1Aにより変化する信号を減衰力可変機構50に入力した状態で、ダンパ100,200,300,400を動作させている。したがって、この実施形態2の動作は、本発明の減衰力可変機構の検査方法の一実施の形態に相当する。
 そして、この実施形態2の動作に対応した検査方法によれば、ダンパ100,200,300,400を車両500に取り付けたままの状態で、減衰力可変機構50が正常か否かを検査することができる。
-他の実施形態-
[車両に荷重を掛ける方法(動作工程)のバリエーション]
 実施形態1,2は、車両500(図1,6参照)に垂直荷重F1を作用させることで、車両500を動かし、ダンパ100,200,300,400を動作させる態様であるが、本発明は、この方法で車両を動かす態様に限定されるものではない。すなわち、本発明は、車両を動かす方法として、以下の態様を適用することもできる。
<停車状態の車両に荷重を掛ける態様の説明>
 図4(B),(C)は、車両500に垂直荷重F1を掛ける方法の他の態様を示す図である。
 ここで、垂直荷重F1については、車両500に掛ける荷重としては垂直荷重F1に限らない。要はダンパ100,200,300,400(図6参照)を伸縮させるような荷重であればよい。
 図4(B)は、車両500をロールさせる(車両500の前後方向の軸回りに車両500を回転させる)ように車幅方向の荷重を作用させて垂直荷重F1を掛け、車両500を動かす方法である。また、図4(C)は、車両500を上方に一旦持ち上げ、その後に下方に落下させる(重力という垂直荷重F1を掛ける)方法によって車両500を動かす方法である。
 これらの態様によっても、車両500に垂直荷重F1を作用させるのと同様に、各実施形態1,2の作用、効果を得ることができる。
 なお、車両500に垂直荷重F1を掛けて車両500を動かす方法としては、検査員等が手作業で行う方法であってもよいし、機械的な装置である車両荷重入力機構によって行うものであってもよい。
 図8(A),(B),(C)及び図9は、車両500に垂直荷重F1を掛けて車両500を動かす装置である車両荷重入力機構の態様として車両荷重入力機構9A,9B,9Cを例示した模式図である。各実施形態1,2の減衰力可変機構50の検査システム600,700は、図8(A),(B),(C)及び図9に示すように、ダンパ100,200,300,400を動作させるように車両500を動かす車両荷重入力機構9A,9B,9Cをさらに備えたものであってもよい。
(第1の車両荷重入力機構:図8(A)参照)
 図8(A)は車両500に垂直荷重F1を作用させる車両荷重入力機構9Aを示す図であり、図4(A)の荷重の入力方法(動作工程)に対応する。図8(A)に示した車両荷重入力機構9Aは、路面Gに接する基部9A1と、基部9A1から鉛直方向に伸びた支持部9A2と、支持部9A2に支持されるとともに支持部9A2に交差する方向に延び、支持部9A2に沿って上下動可能のアーム部9A3と、アーム部9A3から鉛直下方に延び、アーム部9A3の動きを伝える押圧部9A4とを備えている。また、この車両荷重入力機構9Aは、基部9A1上に設けられたモータ9A5と、モータ9A5の回転を上下動に変換して、アーム部9A3を支持部9A2に沿って上下動させる伝達部材9A6とを備えている。
 この車両荷重入力機構9Aは、図8(A)に示すように、押圧部9A4の下方に車両500を配置した状態で、モータ9A5を駆動し、伝達部材9A6、アーム部9A3を介して押圧部9A4を下方に移動させることにより、押圧部9A4から車両500に垂直方向の垂直荷重F1を入力する。
(第2の車両荷重入力機構:図8(B)参照)
 図8(B)は車両500をロールさせるように車幅方向に荷重を作用させて車両500に垂直荷重F1を入力する車両荷重入力機構9Bを示す図であり、図4(B)の荷重の入力方法(動作工程)に対応する。図8(B)に示した車両荷重入力機構9Bは、路面Gに接する基部9B1と、基部9B1から鉛直方向に延びた支持部9B2と、支持部9B2に支持されるとともに支持部9B2に交差する方向に延び、この延びた方向に沿って移動可能のアーム部9B3と、アーム部9B3の動きを伝える押圧部9B4とを備えている。また、この車両荷重入力機構9Bは、基部9B1上に設けられたモータ9B5と、モータ9B5の回転をアーム部9B3の延びた方向に移動する動きに変換して、アーム部9B3を支持部9B2に沿って移動させる伝達部材9B6とを備えている。
 この車両荷重入力機構9Bは、図8(B)に示すように、押圧部9B4の側方に車両500を配置した状態で、モータ9B5を駆動し、伝達部材9B6、アーム部9B3を介して押圧部9B4を側方に移動させることにより、押圧部9B4から車両500に、車両500をロールさせるような車幅方向の荷重を入力して垂直荷重F1を入力する。
(第3の車両荷重入力機構:図8(C)参照)
 図8(C)は車両500を上方に一旦持ち上げ、その後に下降させる油圧ジャッキなどの車両荷重入力機構9Cを示す図であり、図4(C)の荷重の入力方法(動作工程)に対応する。図8(C)に示した車両荷重入力機構9Cは、車両500を上昇及び下降させる昇降装置である。この昇降装置は、一例として油圧ジャッキ(以下、油圧ジャッキ9Cともいう。)である。
 油圧ジャッキ9Cは、路面G上に設置される基体9C1と、基体9C1に対して回転可能に支持されたアーム部9C2と、アーム部9C2の先端に設けられた昇降部9C3と、基体9C1とアーム部9C2との間に配置され、油圧で伸縮することにより基体9C1に対してアーム部9C2を回転させる油圧シリンダ9C4と、油圧シリンダ9C4を伸ばすために油圧シリンダ9C4に油圧を掛ける上下動操作が入力される操作棒9C5と、油圧シリンダ9C4の油圧を抜くための操作を入力するリリースボタン9C6とを備えている。
 油圧ジャッキ9Cは、図8(C)に示すように、油圧シリンダ9C4が縮んでアーム部9C2が水平状態に畳まれた状態で、車両500と路面Gとの間に配置される。ここで、操作棒9C5を上下動させる操作により、油圧シリンダ9C4に油圧を掛けて油圧シリンダ9C4を伸張させる。油圧シリンダ9C4の伸張に伴い、アーム部9C2が基体9C1に対して回転して立ち上がる。アーム部9C2の立ち上がりが進むにしたがって、昇降部9C3が車両500の一部に接して、車両500を持ち上げる。
 図8(C)に示すように車両500を持ち上げた状態で、リリースボタン9C6を操作することにより、油圧シリンダ9C4の内部の油圧が急激に下がる。これにより、昇降部9C3を介して車両500の重量が作用していたアーム部9C2は、油圧シリンダ9C4による上方に向かう支持力を失い、急激に下降する。
 このように、油圧ジャッキ9Cは、車両500を上方に一旦持ち上げた後に、下方に落下させることにより、車両500に垂直荷重F1を入力する。
 図9は、車両500を上昇及び下降させる昇降装置として、いわゆる加振機9Kを適用した例を示す図である。加振機9Kは、車両500を上方に一旦持ち上げた後に、下方に落下させることにより、車両500に垂直荷重F1を入力し、車両を動かす動作工程を実現する。
 図示の加振機9Kにおいては、車両500の各車輪と、各車輪に対応する加振機9Kの支持部9K1との間に、それぞれ輪荷重計4eを設置し、加振機9Kによりダンパ100,200,300,400(図6参照)を動作させ、各車輪の輪荷重を輪荷重計4eにより検出する。なお、この例では、検出装置として輪荷重計4eを適用しているが、他の検出装置を適用することもできる。
 なお、図9に示した加振機9Kは、各支持部9K1が車両500の各車輪を各別に支持するとともに上昇及び下降させるものであるが、これに限らず、2つの車輪を一体に支持するとともに上昇及び下降させるように構成された支持部や、4つの車輪を一体に支持するとともに上昇及び下降させるように構成された支持部を適用することもできる。
 また、この車両500を揺する操作は、検査対象のダンパ100(又は他のダンパ200、ダンパ300、ダンパ400)を動作させる(例えば、ダンパ100を伸縮させる)ものであればよいため、例えば、検査員が車両500のうち、検査対象のダンパ100が取り付けられた部位の近傍部分を鉛直下方に押す操作(垂直荷重F1を入力する操作)であってもよい。
<走行状態の車両に荷重を掛ける態様>
(バリエーション1:車両走行状態による荷重入力)
 上述した各実施形態の検査システムや検査方法において、車両500を動かし、ダンパ100,200,300,400を動作させる動作工程の態様としては、上述したように停車した車両500に垂直荷重F1を作用させる方法に限定されるものではない。すなわち、本発明は、走行する車両に荷重を作用させるものであってもよい。
 以下、走行する車両に荷重を作用させる態様について説明する。
 図10は、略水平な路面G上に、この路面Gを走行する車両500に上下動を与える高さHの段差9Dを配置したものであり、この段差9Dが車両荷重入力機構の一例となる。
 車両500を走行させて段差を乗り越えさせて車両500を動かす方法としては、例えば図10に示す形態を適用することができる。
 路面Gを走行する車両500の車輪が段差9Dに乗り上げるとき、車両500の車輪は下方から上方に突き上げられるように動かされるため、段差9Dは、ダンパ100,200,300,400(図6参照)に圧縮行程の動作を行わせる。
 なお、車両500が段差9Dから降りるとき、車両500の車輪は上方から下方に落下するように動かされるため、段差9Dは、ダンパ100,200,300,400に伸張行程の動作を行わせる。
 図10に示した形態の段差9Dは、車両500の右車輪が乗り上げる高さHの右用段差9D1と、車両500の左車輪が乗り上げる高さHの左用段差9D2とを備えている。そして、右用段差9D1と左用段差9D2とは、車両の進行方向Tにおいてずれた位置に配置されている。
 このように、右用段差9D1と左用段差9D2とがずれた位置に配置されていることにより、右前輪が右用段差9D1に乗り上げるタイミングと、左前輪が左用段差9D2に乗り上げるタイミングとをずらすことができる。同様に、右用段差9D1と左用段差9D2とがずれた位置に配置された構成は、右後輪が右用段差9D1に乗り上げるタイミングと、左後輪が左用段差9D2に乗り上げるタイミングとをずらすこともできる。
 右用段差9D1と左用段差9D2とのずれの量Mは、車両500のホイールベースWと等しくないことが好ましい。図10に示した形態では、右用段差9D1と左用段差9D2とのずれの量Mは、車両500のホイールベースWよりも短く設定されている。これにより、車両500の右前輪が右用段差9D1に乗り上げるタイミングと、車両500の左後輪が左用段差9D2に乗り上げるタイミングとをずらすことができる。なお、右用段差9D1と左用段差9D2とのずれの量Mは、車両500のホイールベースWよりも長く設定されていてもよい。
 本発明においては、必ずしも上述した形態のように、車両500の各車輪がいずれかの段差9Dに乗り上げるタイミングをそれぞれずらす必要はない。したがって、右用段差9D1と左用段差9D2とを、進行方向Tの等しい位置に、一直線上に配置してもよい。この場合、本実施の形態における右用段差9D1と左用段差9D2とを一直線上に伸びるように一体化した1つの段差としてもよい。
 なお、段差の形状は特定のものに限定されず、図10に示すような、進行方向Tに対して垂直方向から見た断面が台形形状のものであってもよいし、その他の形状、例えば断面が三角形状等のものであってもよい。また、段差の(地上からの)高さについても、左右で異なるようにしてもよい。また、車両500の車輪が通過する面についても、さらに凹凸を設けてもよい。なお、左右の段差は、進行方向Tに対して同一の位置であってもよい。段差は、要するに、高低差を設けることで車両500に垂直荷重F1(図6等参照)を入力できるものであればよい。
 車両500への垂直荷重F1の掛け方は、上述した方法に限定されるものではなく、ダンパ100,200,300,400(図6参照)を動作させるように車両500に垂直荷重F1を掛けられる方法であれば、他のいかなる方法も適用することができる。
(バリエーション2:車輪停止動作による荷重入力)
 図11は、いわゆるブレーキテスタ9Fによって、車両500に荷重を入力してダンパ100,200,300,400(図6参照)を動作させる方法の一例を示す図である。
 車両500を走行させた状態から停止動作による車両500への荷重を入力してダンパ100,200,300,400を動作させる方法としては、例えば、図11に示すように、ブレーキテスタ9Fの一対のローラ9F1,9F2の間に車両500の車輪を配置し、ローラ9F1,9F2の回転にしたがって車輪を回転させる。車輪を回転させた状態からブレーキによる制動動作で車輪の回転を停止させたとき、車両500の車輪は下方から上方に突き上げられるように動かされ、ブレーキテスタ9Fは、ダンパ100,200,300,400(図6参照)に圧縮行程の動作を行わせる。
 一方、車輪の回転を停止させた状態から制動動作を解除することにより、車輪の停止状態が解除されて、車両500の車輪は上方から下方に落下するように動かされ、ブレーキテスタ9Fは、ダンパ100,200,300,400に伸張行程の動作を行わせる。
 なお、図11において、伸縮量検出器の一例として、後述する車両500の各車輪に対応したダンパ100,200,300,400の伸縮量を検出するストロークセンサ6a,6b,6c,6d(後述する図14参照)を備えているが、これに限らず、他の検出装置を設けてもよい。
[検出装置のバリエーション]
(バリエーション1:変曲点の数で判定)
 実施形態2における輪荷重計4(図6参照)の出力部3による判定の方法としては、輪荷重検出部4a,4b,4c,4dで得られた輪荷重の変化の曲線に生じる変曲点の数に基づく判定を適用することもできる。
 すなわち、図12は、ダンパ100,200,300,400(図6参照)を動作させる入力が与えられたときの、経過時間([秒]:横軸)に対する輪荷重検出部4a,4b,4c,4dの検出した輪荷重([kgf]:縦軸)の変化を示す図である。図12の曲線S1は、ダンパ100,200,300,400が高減衰力を発生するときの輪荷重の経時変化、曲線S2は、低減衰力を発生するときの輪荷重の経時変化、曲線S3は、各減衰力可変機構50が正常に動作している場合の輪荷重の経時変化をそれぞれ示す。
 各輪荷重検出部4a,4b,4c,4dで検出された各ダンパ100,200,300,400に対応した輪荷重は、記憶部3f(図5参照)に記憶される。
 減衰力可変機構50が正常に動作している場合、輪荷重検出部4a,4b,4c,4dで検出される輪荷重の経時変化を示す曲線S3は、高減衰力と低減衰力との切り替えによって生じる変曲点Nが多数存在し、電流の高低の変化の周波数が10[Hz]のときは、変曲点Nの数nは、例えば10[個/秒間]以上存在しうる。
 一方、減衰力可変機構50が正常に動作していない場合、輪荷重検出部4a,4b,4c,4dで検出される輪荷重の経時変化は、曲線S1又は曲線S2と同様の変化となる。したがって、経時変化の曲線における変曲点Nの数nは、減衰力可変機構50が正常に動作している場合の変曲点Nの数(=(例えば、電流の高低の変化の周波数が10[Hz]のときは、)10[個/秒間]以上)に比べて少ない数となる。
 出力部3の判定部3g(図5参照)は、各輪荷重検出部4a,4b,4c,4dから入力され、記憶部3fに記憶された輪荷重に基づいて、経過時間当たりの変曲点Nの数nを計数し、判定部3gは、計数された変曲点Nの数nが予め設定され記憶部3fに記憶された閾値n0を超えたか否かを判定する。
 閾値n0は、例えば、信号入力装置1Aから減衰力可変機構50に入力される電流の高低の変化の周期10[Hz]の1/2程度の値(=5[個/秒間])である。閾値n0は、減衰力可変機構50の動作の正常又は異常を識別し得る値や範囲であればよく、上述した例示の値に限定されない。
 判定部3gは、計数された変曲点Nの数nが閾値n0を超えた(n0≦n)と判定したときは、減衰力可変機構50が正常に動作していると判定し、ランプ2a,2b,2c,2dを緑色で発光させる。計数された変曲点Nの数nが閾値n0を下回った(n<n0)と判定したときは、減衰力可変機構50が正常に動作していないと判定する。これにより、判定部3gはランプ2a,2b,2c,2dを点灯させない。
 これにより、検査システム700(図6参照)は、ダンパ100,200,300,400を車両500に取り付けたままの状態で減衰力可変機構50を検査することができる。
 なお、これら実施形態のバリエーションの各動作も、入力される信号に応じて減衰力を変化させる減衰力可変機構50を備えたダンパ100,200,300,400を車両500に取り付けた状態で、ダンパ100,200,300,400を動作させる動作工程と、この動作工程により車両500に生じる変化として輪荷重を検出する検出工程とを有している。そして、動作工程では、信号入力装置1Aにより変化する信号を減衰力可変機構50に入力した状態で、ダンパ100,200,300,400を動作させている。したがって、これらのバリエーションの各動作は、本発明の減衰力可変機構の検査方法の実施の形態に相当する。
 そして、これらのバリエーションの各動作に対応した検査方法によれば、ダンパ100,200,300,400を車両500に取り付けたままの状態で、減衰力可変機構50が正常か否かを検査することができる。
(バリエーション2:右車輪と左車輪との比較による判定)
 実施形態2における輪荷重計4(図6参照)の出力部3による判定の方法としては、右前輪のダンパ100に対応した輪荷重検出部4aから出力された信号と、左前輪のダンパ200に対応した輪荷重検出部4bから出力された信号とを比較し、その異同に応じてダンパ100,200の減衰力可変機構50が正常か否かを判定するようにしてもよい。
 減衰力可変機構50が正常である場合は、右前輪のダンパ100に対応した輪荷重検出部4aから出力された信号と、左前輪のダンパ200に対応した輪荷重検出部4bから出力された信号とは、位相のずれがあったとしても、そのプロフィールは一致する。一方、いずれか一方の減衰力可変機構50が正常でない場合は、両輪荷重検出部4a,4bから出力された荷重の信号のプロフィールは一致しない。
 そこで、判定部3g(図5参照)を、右前輪のダンパ100に対応した輪荷重検出部4aから出力された信号と、左前輪のダンパ200に対応した輪荷重検出部4bから出力された信号とのプロフィールが一致するときは、両減衰力可変機構50は正常に動作していると判定し、一致しないときは、少なくとも一方の減衰力可変機構50は正常に動作していないと判定するように構成することで、ダンパ100,200を車両500に取り付けたままの状態で減衰力可変機構50を検査することができる。
 右後輪のダンパ300の減衰力可変機構50から出力された信号と、左後輪のダンパ400の減衰力可変機構50から出力された信号とについても、判定部3gが同様に比較することで、検査システム700は、ダンパ300,400を車両500に取り付けたままの状態で減衰力可変機構50を検査することができる。
(バリエーション3:基準値との比較による判定)
 実施形態2における輪荷重計4(図6参照)の出力部3による判定の方法としては、減衰力可変機構50が正常に動作している場合に出力される基準値と、実際の出力との比較により判定する方法を適用することもできる。
 例えば、輪荷重計4における出力部3の記憶部3f(図5参照)は、減衰力可変機構50が正常な場合に輪荷重検出部4a,4b,4c,4dから出力されるべき信号の基準プロフィール(以下、モデルカーブという)を記憶している。このモデルカーブは、実験的に得られたものであってもよいし、統計的に得られたものであってもよい。
 判定部3gは、各減衰力可変機構50から実際に検出された信号のプロフィールを、このモデルカーブと比較する。
 そして、比較の結果、実際に検出された信号のプロフィールがモデルカーブに対して、モデルカーブの±x%以内(xは、正常範囲として予め設定された値)にあるときは、判定部3gは、減衰力可変機構50が正常に動作していると判定する。
 一方、実際に検出された信号のプロフィールがモデルカーブに対して、モデルカーブの±x%以内にないときは、判定部3gは、減衰力可変機構50が正常に動作していないと判定する。
 これにより、検査システム700は、ダンパ100,200,300,400を車両500に取り付けたままの状態で減衰力可変機構50を検査することができる。
(バリエーション4:検出装置(変化量の基準値との比較による判定))
 実施形態2における輪荷重計4(図6参照)の出力部3による判定の方法としては、減衰力可変機構50が正常に動作している場合に、一定時間に出力される出力の変化量の基準値(基準変化量)と、実際の出力の変化量との比較による方法を適用することもできる。
 例えば、輪荷重計4における出力部3の記憶部3f(図5参照)は、減衰力可変機構50が正常な場合に輪荷重検出部4a,4b,4c,4dから出力されるべき信号の、一定時間における基準変化量を記憶している。
 判定部3gは、各減衰力可変機構50から実際に検出された信号の、一定時間における変化量を、記憶部3fに記憶された基準変化量と比較する。
 そして、比較の結果、実際に検出された信号の、一定時間における変化量が、基準変化量に対して大きいか、又は小さい場合には、判定部3gは、減衰力可変機構50が正常に動作していないと判定する。一方、実際に検出された信号の、一定時間における変化量が、基準変化量と一致する場合には、判定部3gは、減衰力可変機構50が正常に動作していると判定する。
 これにより、検査システム700(図6参照)は、ダンパ100,200,300,400を車両500に取り付けたままの状態で減衰力可変機構50を検査することができる。
 なお、信号の、一定時間における変化量に代えて、検出された信号のプロフィールにおける屈曲点の大きさを、比較対象とすることもできる。
 なお、これら実施形態のバリエーションの各動作も、入力される信号に応じて減衰力を変化させる減衰力可変機構50を備えたダンパ100,200,300,400を車両500に取り付けた状態で、ダンパ100,200,300,400を動作させる動作工程と、この動作工程により車両500に生じる変化として輪荷重を検出する検出工程とを有している。したがって、これらのバリエーションの各動作は、本発明の減衰力可変機構の検査方法の実施の形態に相当する。
 そして、これらのバリエーションの各動作に対応した検査方法によれば、ダンパ100,200,300,400を車両500に取り付けたままの状態で、減衰力可変機構50が正常か否かを検査することができる。
(バリエーション5:高減衰力時の検出荷重と低減衰力時の検出荷重との差で判定)
 実施形態2における輪荷重計4(図6参照)の出力部3による判定の方法としては、高減衰力に対応したときに検出される荷重と、低減衰力に対応したときに検出される荷重との差に応じて、ダンパ100,200,300,400の各減衰力可変機構50が正常か否かを判定するようにしてもよい。
 この場合、ダンパ100,200,300,400の各減衰力可変機構50に入力する信号を、高減衰力に対応した信号と低減衰力に対応した信号とを別々に入力すればよい。
 具体的には、図6に示した信号入力装置1Aを、括弧に記載した信号入力装置1Bに代えればよい。
 信号入力装置1Bは、一例として互いに異なる複数の電流(信号の一例)を切り替えて減衰力可変機構50に入力するものである。これらの複数の電流は、一例として、ダンパ100,200,300,400が特性曲線f1,f3(図3参照)の高減衰力を発揮するのに対応した高電流と、特性曲線f2,f4の低減衰力を発揮するのに対応した低電流とである。
 なお、コントローラ510が、信号入力装置1Bから出力される高電流と低電流とを切り替えて出力できるものであれば、コントローラ510を信号入力装置1Bの代わりに用いてもよい。
 この場合、まず、信号入力装置1Bにより減衰力可変機構50に高電流が入力された状態で垂直荷重F1が掛けられ、一定の時間が経過するまで、各車輪の輪荷重が各輪荷重検出部4a,4b,4c,4dにより検出される。検出された輪荷重は、それぞれ出力部3に入力され、記憶部3f(図5参照)に記憶される。次に、信号入力装置1Bにより減衰力可変機構50に低電流が入力された状態で垂直荷重F1が掛けられ、一定の時間が経過するまで、各車輪の輪荷重が各輪荷重検出部4a,4b,4c,4dにより検出される。検出された輪荷重は、それぞれ出力部3に入力され、記憶部3fに記憶される。
 なお、高電流と低電流とを入力する順序は、上述した順序と反対であってもよい。
 図13は、ダンパ100,200,300,400(図6参照)が高減衰力を発揮し得る状態のときと低減衰力を発揮するときとで、ダンパ100,200,300,400を動作させる同じ入力が与えられたときの、経過時間([秒間]:横軸)に対するダンパ100,200,300,400に対応した輪荷重([kgf]:縦軸)の変化を示す図である。図13の実線で示した曲線S1及び破線で示した曲線S2はそれぞれ、ダンパ100,200,300,400が高減衰力を発生するときの輪荷重の経時変化、低減衰力を発生するときの輪荷重の経時変化を示す。減衰力可変機構50が正常に作動しているときは、曲線S1と曲線S2とは互いに異なった曲線となる。特に、曲線S1における輪荷重の最大値S1mと曲線S2における輪荷重の最大値S2mとには大きな差ΔSが生じる。
 出力部3の判定部3g(図5参照)は、記憶部3fに記憶された高電流に対応した輪荷重のうち最大値S1mを選択し、低電流に対応した輪荷重のうち最大値S2mを選択する。そして、判定部3gは、選択した2つの最大値S1m,S2mの差ΔS(=|S2m-S1m|)を算出し、差ΔSと記憶部3fに記憶されている閾値Skとを比較する。
 閾値Skは、最大値S1mと最大値S2mとの間に十分な差があるか否かを識別可能な値として設定されたものである。十分な差があると識別される場合とは、ダンパ100,200,300,400の発揮する減衰力が高減衰力と低減衰力とで正常に切り替えられていると識別できる場合である。一方、十分な差があると識別されない場合とは、ダンパ100,200,300,400の発揮する減衰力が高減衰力と低減衰力とで正常に切り替えられているとは識別できない場合である。
 判定部3gは、差ΔSと閾値Skとを比較した結果、差ΔSが閾値Sk以上であったとき(Sk≦ΔS)は、最大値S1mと最大値S2mとの間に十分な差があると判定し、ダンパ100,200,300,400は高減衰力と低減衰力とが正常に切り替えられていて減衰力可変機構50は正常に動作していると判定する。これにより、判定部3gはランプ2a,2b,2c,2dを緑色で発光させる。
 比較の結果、差ΔSが閾値Sk未満であったとき(ΔS<Sk)は、判定部3gは、最大値S1mと最大値S2mとの間に十分な差がないと判定し、ダンパ100,200,300,400は高減衰力と低減衰力とが正常に切り替えられていないため減衰力可変機構50は正常に動作していないと判定する。これにより、判定部3gはランプ2a,2b,2c,2dを点灯させない。
 このような検査システム700によれば、ダンパ100,200,300,400を車両500に取り付けたままの状態で減衰力可変機構50を検査することができる。
(出力の種別に対応したバリエーション)
 上述した実施形態2及び変形例(バリエーション1~5)は、検出工程での車両500の変化の検出を、検出装置として輪荷重計4を適用して行うものであるが、本発明は、これらの形態に限定されるものではない。すなわち、上述した実施形態2及び変形例において、検出工程での車両500の変化の検出を、輪荷重計4に代えて、図14に示すダンパストローク検出装置6を適用して行うこともできる。
 ここで、図14に示すように、ダンパストローク検出装置6(伸縮量検出器の一例)は、車両500の各車輪に対応したダンパ100,200,300,400の伸縮量を検出するストロークセンサ6a,6b,6c,6dと、出力部3と、ハーネス523とを備えている。この場合、ダンパ100,200,300,400のストロークが、本発明における車両からの出力の一例となる。
 なお、車両500からの出力の変化を検出することができるその他の検出装置を用いた検出工程を適用することもできる。検出装置は、車両500の変化に伴う出力の変化量に対応した検出値に基づいて、車両500の変化を検出することができる。
 この実施形態のバリエーションの動作も、入力される信号に応じて減衰力を変化させる減衰力可変機構50を備えたダンパ100,200,300,400を車両500に取り付けた状態で、ダンパ100,200,300,400を動作させる動作工程と、この動作工程により車両500に生じる変化として輪荷重又はダンパ100,200,300,400の伸縮量を検出する検出工程とを有している。そして、動作工程では、信号入力装置1Bにより、互いに異なる複数の信号を切り替えて減衰力可変機構50に入力した状態で、ダンパ100,200,300,400を動作させている。したがって、これらのバリエーションの各動作は、本発明の減衰力可変機構の検査方法の実施の形態に相当する。
 そして、これらのバリエーションの各動作に対応した検査方法によれば、ダンパ100,200,300,400を車両500に取り付けたままの状態で、減衰力可変機構50が正常か否かを検査することができる。
 また、検出装置としては、圧力や音を機械によって検出するものを適用してもよい。また、本発明における検出工程では、検出装置を用いるのではなく、人の五感により、圧力や音の変化を検出するものであってもよい。
 以下、圧力や音による検出を行う検出工程を有する減衰力可変機構50の検査方法及び検査システムについて詳述する。
 車両500に垂直荷重F1を作用させた状態で、入力される電流を変化させる動作工程により、入力された電流の変化に応じて、車両500からの出力に変化が生じる。この車両500からの出力の変化は、車両500のダンパ100,200,300,400からの反力の変化である振動として現れる。この実施の形態の検査システム及び検査方法は、検出工程で、このダンパ100,200,300,400の振動を検出するものである。
 すなわち、この実施の形態の検査方法及び検査システムにおいては、加振機等の検出装置又は検査員が、車両500のうち検査対象のダンパ100,200,300,400が取り付けられている近傍の部分に、鉛直下方に垂直荷重F1を掛けて、その近傍のダンパ100,200,300,400を速度Va[m/s]で動作させる(動作工程)。このとき、ダンパ100,200,300,400の減衰力可変機構50には、高低に変化する電流(例えば、図7(A)参照)が入力されている。高低に変化する電流は、例えば図6に示した信号入力装置1Aによって入力される。
 したがって、減衰力可変機構50が正常に動作している場合であれば、ダンパ100,200,300,400の速度Va[m/s]での減衰力f[N]は、この入力されている電流の変化に応じて、図3に示す通り圧縮行程における高減衰力f3a[N]と低減衰力f4a[N]との間で変化している。この圧縮行程における減衰力f[N]の変化が、本発明における「車両からの出力」の変化に相当する。
 また、この減衰力fの変化の周期は、減衰力可変機構50に入力される電流の変化の周期に対応しているため、この実施の形態における減衰力fの変化の周期は10[Hz]となる。
 このように、実施の形態の検査方法及び検査システムによれば、加振機などの検出装置又は検査員が車両500に対して鉛直下方に垂直荷重F1を作用させて、ダンパ100,200,300,400を速度Va[m/s]で動作させている期間中、ダンパ100,200,300,400の減衰力fが一定周期で高減衰力f3a[N]と低減衰力f4a[N]との間で変化する。したがって、検出工程において検出装置又は検査員が車両500から受ける、垂直荷重F1に対する反力は変化する。
 この結果、検出装置又は車両500を手で押している検査員は、その反力の変化を検出又は圧覚(触覚)として手に感じることが可能となる。
 一方、例えば、オイル内に生じた塵挨等が、ソレノイドバルブ51(図2参照)に詰まるなどして、ソレノイドバルブ51の弁体が動かなくなることが起こり得る。このような場合、減衰力可変機構50は減衰力を変化させることができない。
 そしてこのように減衰力が変化しないダンパ100,200,300,400を、この実施の形態の検査システム及び検査方法によって検査した場合、検出工程において検出装置又は検査員が車両500から受ける、垂直荷重F1に対する反力に変化がない。この結果、検出装置又は車両500を手で押している検査員は、その反力の変化を検出又は圧覚(触覚)として手に感じることがない。
 このように、実施の形態のダンパ100,200,300,400における減衰力可変機構50の検査システム及び検査方法によれば、ダンパ100,200,300,400の減衰力可変機構50を、車両500に取り付けたままの状態で検査することができる。
 また、実施の形態のダンパ100,200,300,400における減衰力可変機構50の検査システム及び検査方法によれば、検出装置で検出された値又は検査員に伝えられる反力を検査員の感覚(圧覚)により、ダンパ100,200,300,400の減衰力の変化の有無を判断することができる。そして、検出装置で変化を検出又は検査員が反力の変化を感じた場合は、検査員は、減衰力可変機構50は正常に動作していると判断することができる。一方、検出装置で変化を検出しない場合又は検査員が反力の変化を感じない場合は、検査員は、減衰力可変機構50は正常に動作していないと判断することができる。
 また、実施の形態のダンパ100,200,300,400における減衰力可変機構50の検査システム及び検査方法によれば、検査員に伝えられる反力の変化が、入力される電流の変化に対応して一定周期となるため、反力の変化を検知しやすい。
 実施の形態のダンパ100,200,300,400における減衰力可変機構50の検査システム及び検査方法は、検出工程における検出装置で検出された値又は検査員の圧覚で判定可能となる、車両500からの反力の変化すなわちダンパ100,200,300,400の振動を出力させるものであるが、本発明に係る減衰力可変機構の検査システム及び検査方法はこの形態に限定されるものではない。
 すなわち、本発明の検査システム及び検査方法の他の実施の形態としては、例えば、入力される電流の変化に応じて車両500の出力に生じる変化が、車両500におけるダンパ100,200,300,400の減衰力可変機構50が発する音の有無であり、この音の有無を、検出工程における検出装置の検出値又は聴覚として検査員に出力させる検査システム及び検査方法とすることができる。
 実施の形態で検査の対象となるダンパ100,200,300,400における減衰力可変機構50のソレノイドバルブ51は、図7に示した変化する電流の入力によって、ソレノイドバルブ51の図示しないコイルによる固定コアの励磁力が変化する。すなわち、コイルに高電流(例えば、高減衰力を発生する0.8[A])が通電されたときは、固定コアに、相対的に高い励磁力が発生し、ソレノイドバルブ51の図示しない磁性体は固定コアに強く引き寄せられる。
 そして、この固定コアによる磁性体への吸引力は、ダンパ100,200,300,400の圧縮行程において、オイルの流路に生じる圧力と磁性体に作用する初期的な押圧力(例えば、スプリング等の弾性体による弾性力)との総和よりも大きく設定されている。したがって、減衰力可変機構50に高電流が通電されたときは、流路に圧力が作用していているダンパ100,200,300,400の圧縮行程において、磁性体は固定コアに当たる。この磁性体が固定コアに当たるときに打音が発生する。
 一方、コイルに低電流(例えば、低減衰力を発生する0.3[A])が通電されたときは、固定コアに、相対的に低い励磁力が発生し、このとき、磁性体は固定コアに弱く引き寄せられる。
 そして、この固定コアによる磁性体への吸引力は、ダンパ100,200,300,400の圧縮行程において流路に生じる圧力と磁性体に作用する初期的な押圧力との総和よりも小さく設定されている。したがって、減衰力可変機構50に低電流が通電されたときは、流路に圧力が作用しているダンパ100,200,300,400の圧縮行程において、磁性体は固定コアに衝突しない状態となり、衝突による打音は発生しない。
 つまり、車両荷重入力機構又は検査員が、車両500のうち検査対象のダンパ100,200,300,400が取り付けられている近傍の部分に、鉛直下方に垂直荷重F1(図6参照)を掛けると、ダンパ100,200,300,400は流路に圧力が作用する圧縮行程にある。
 この状態で、減衰力可変機構50が正常に動作しているときは、減衰力可変機構50に入力されている電流の高低の変化にしたがって、磁性体が固定コアに当たった状態と固定コアから離れた状態とを繰り返す。そして、磁性体が固定コアから離れた状態から固定コアに当たった状態に切り替わったときに、打音が発生する。
 一方、減衰力可変機構50が正常に作動していないときは、ダンパ100,200,300,400の圧縮行程において減衰力可変機構50に入力される電流を変化させても、打音が発生しない。
 したがって、検出工程における検出装置又は検査員は、この打音の有無を聴覚で判定することにより、検査員は減衰力可変機構50が正常に動作しているか否かを判断することができる。
 また、車両500からの反力を、車両500の車体において検出する場合、車体には、近傍のダンパ100の減衰力の変化だけでなく、他のダンパ200等の減衰力の変化も重畳して伝達する可能性がある。したがって、各ダンパ100,200,300,400ごとの検査を精度よく行うことができるように、他のダンパ100,200,300,400の減衰力の変化の影響を直接受けることがない、車両500のうち、ばね下の要素であるホイール・タイヤで反力を検出することが好ましい。
[実験例]
 図15は、上述した実施の形態において、減衰力可変機構50に入力する電流の変化と、この変化の周波数との組み合わせを変えて、減衰力可変機構50に入力する電流を一定にした場合との、圧覚による差異と聴覚による差異とを検証した実験結果の一覧を示す表である。
 図15において、実験例1は、減衰力可変機構50に入力する電流を、0.3[A]と1.6[A]との間で変化させ、その変化の周波数を5[Hz]としたものである。
 実験例2は、減衰力可変機構50に入力する電流を、0.3[A]と1.6[A]との間で変化させ、その変化の周波数を10[Hz]としたものである。
 実験例3は、減衰力可変機構50に入力する電流を、0.3[A]と0.8[A]との間で変化させ、その変化の周波数を10[Hz]としたものであり、上述した実施の形態の説明において例示した態様である。
 この実験結果によると、実験例1の態様によれば、検出工程において検査員は圧覚、聴覚ともに、減衰力可変機構50に一定電流を入力した場合との差異を感じることができ、圧覚、聴覚のいずれによっても、減衰力可変機構50が正常か否かを有効に判断することができた。
 また、実験例2の態様によっても、検出工程において検査員は圧覚、聴覚ともに、減衰力可変機構50に一定電流を入力した場合との差異を感じることができ、圧覚、聴覚のいずれによっても、減衰力可変機構50が正常か否かを有効に判断することができた。
 実験例3の態様によると、検出工程において検査員は圧覚、聴覚ともに、実験例1,2に比べると減衰力可変機構50に一定電流を入力した場合との差異は小さく感じたが、圧覚、聴覚のいずれによっても、減衰力可変機構50が正常か否かを有効に判断することができた。
(出力部3等のバリエーション)
 検出工程における各検出装置2(図5参照)及び出力部3は、減衰力可変機構50が正常であると判定した場合にのみ、各ランプ2a等を緑色に点灯するものであるが、本発明はこの形態に限定されない。すなわち、検出装置2及び出力部3は、例えば、減衰力可変機構50が正常でないと判定した場合にのみ各ランプ2a等を赤色で点灯するものであってもよいし、減衰力可変機構50が正常であると判定した場合に各ランプ2a等を緑色で点灯し、正常でないと判定した場合に各ランプ2a等を赤色で点灯するものであってもよい。
 また、検出装置2及び出力部3は、ハーネスを用いて有線で信号を検出するようにしているが、本発明はこれに限らず、無線で信号を検出するものとしてもよい。
 検出装置2及び出力部3は、各車輪に1個ずつ対応して4個のランプ2a,2b,2c,2dが備えられているが、1個のランプ2aだけ備えるものであってもよい。この場合、ロータリスイッチ2s等の切替えで各車輪に対応するダンパ100,200,300,400(図1,6参照)を順次検査するものとし、1個のランプ2aを各ダンパ100,200,300,400の検査に共通して使用する構成とすればよい。
 また、検出装置2及び出力部3は、検査結果(減衰力可変機構50が正常か否か)の表示方法として、ランプ2a等を点灯させるものであるが、本発明はこの形態に限定されず、検出装置2及び出力部3は、例えば、正常又は正常でないと判定したダンパ100,200,300,400の番号(車輪に対応した番号、記号等であってもよい)を表示するようにしてもよい。
 正常又は正常でないとの検査結果の信号は、車両500の外部で表示するものに限定されず、車両500が備えている表示部(例えば、カーナビゲーション装置の表示部や、車両周囲監視カメラのモニタ、その他メーター等表示部)に表示させるようにしてもよい。
 また、検査結果の信号は、専用機による提示に限らず、汎用機(例えば、スマートフォンやタブレット端末機等)に提示させるようにしてもよい。
 さらに、検査結果の提示は、表示という人間の視覚的な刺激によるものに限定されず、聴覚的な刺激や、触覚的な刺激によって提示するものであれば、他の方法によるものであってもよい。
 なお、記憶部2f,3f及び判定部2g,3gのうち少なくとも一方を、車両500の内部(車室内等)に配置した検出装置2及び出力部3に設けてもよい。
 また、本発明における検出工程は、車両からの出力を検出する工程であるが、車両からの出力としては車両を構成する種々の装置(コントローラ510やダンパ100、200,300,400等)や構造体(車体等)からの種々の出力を含むものである。
[ダンパのバリエーション]
 上述した各実施形態1,2(バリエーションを含む)の検査システム600,700及び検査方法はいずれも、オイル(作動液の一例)が封入されたシリンダ11(図2参照)と、シリンダ11の外方に設けられた外筒12と、外筒12の外方に設けられたダンパケース13とを有するシリンダ部10と、シリンダ部10に接続されて、入力される信号に応じて減衰力を可変させる減衰力可変機構50とを備えたいわゆる三重管のダンパ100,200,300,400を、検査の対象としたものである。
 しかし、本発明に係る減衰力可変機構の検査方法及び検査システムは、三重管の圧力緩衝装置を検査の対象とするものに限定されるものではない。すなわち、単筒の圧力緩衝装置であっても、複筒(二重管)の圧力緩衝装置であっても、減衰力可変機構を備えているものであれば、本発明に係る減衰力可変機構の検査方法及び検査システムの範囲に含む。
 また、減衰力可変機構は、ソレノイドバルブ51で減衰力を変化させるものに限定されるものではなく、電気的に減衰力を変化させるもの、磁気的に減衰力を変化させるもの、機械的に減衰力を変化させるもの等、要するに何らかの信号を用いて減衰力を変化できるものであればよい。
-実施形態3-
 次に、実施形態3について、適宜図面を参照しながら詳細に説明する。なお、以下の説明において、他の実施形態と共通する部分には同一の符号を付し重複した説明を省略する。
 図16は、実施形態3に係る減衰力可変機構付きのダンパ100,200,300,400における減衰力可変機構50の検査方法を示す模式図である。
 次に、実施形態3における、ダンパ(可変ダンパ)の検査方法について説明する。
 まず、ダンパの伸張行程と圧縮行程における減衰力fの特性曲線について述べる。
 図17は、実施形態3が適用されるダンパ100の伸張行程と圧縮行程における減衰力fの特性曲線の一例を示す図である。
<正常時の特性曲線>
 図17中の特性曲線f1は、減衰力可変機構50に最大減衰力正常値の高電流(例えば、1.6[A])が入力されて、ダンパ100が伸張行程(ten側)において相対的に最も高い減衰力(以下、最大減衰力という。)を発揮する場合の特性曲線である。
 図17中の特性曲線f2は、減衰力可変機構50に最小減衰力正常値の低電流(例えば、0.3[A])が入力されて、ダンパ100が伸張行程において相対的に最も低い減衰力(以下、最小減衰力という。)を発揮する場合の特性曲線である。
 図中の特性曲線f3は、減衰力可変機構50に中間減衰力正常値の中間値電流(例えば、0.8[A])が入力されて、ダンパ100が伸張行程において相対的に中間減衰力(以下、中間減衰力という。)を発揮する場合の特性曲線である。
 一方、図中の特性曲線f4は、減衰力可変機構50に最大減衰力正常値の高電流(例えば、1.6[A])が入力されて、ダンパ100が圧縮行程(comp側)において相対的に最も高い減衰力(以下、最大減衰力という。)を発揮する場合の特性曲線である。
 図17中の特性曲線f5は、減衰力可変機構50に最小減衰力正常値の低電流(例えば、0.3[A])が入力されて、ダンパ100が圧縮行程において相対的に中間減衰力正常値の最も低い減衰力(以下、最小減衰力という。)を発揮する場合の特性曲線である。
 図17中の特性曲線f6は、減衰力可変機構50に中間減衰力正常値の中間値電流(例えば、0.8[A])が入力されて、ダンパ100が圧縮行程において相対的に中間減衰力(以下、中間減衰力という。)を発揮する場合の特性曲線である。
 ここで、減衰力可変機構50に車両500のコントローラ510から最大減衰力正常値の高電流を入力して、ダンパ100が特性曲線f1,f4の高減衰力を発揮する状態とする。この状態で、例えば速度Va[m/s]でダンパ100を動作させる(シリンダ部10に対してピストンロッド20を軸C方向に沿って移動させる)と、ダンパ100の減衰力は伸張行程ではf1a[N]、圧縮行程ではf4a[N]となる。
 一方、減衰力可変機構50に車両500のコントローラ510から最小減衰力正常値の低電流を入力して、ダンパ100が特性曲線f2,f5の低減衰力を発揮する状態とする。この状態で、例えば速度Va[m/s]でダンパ100を動作させると、ダンパ100の減衰力は伸張行程ではf2a[N]、圧縮行程ではf5a[N]となる。
 さらに、減衰力可変機構50に車両500のコントローラ510から中間減衰力正常値の中間値電流を入力して、ダンパ100が特性曲線f3,f6の中間減衰力を発揮する状態とする。この状態で、例えば速度Va[m/s]でダンパ100を動作させると、ダンパ100の減衰力は伸張行程ではf3a[N]、圧縮行程ではf6a[N]となる。
<減衰力可変機構50の正常動作時>
 減衰力可変機構50が正常に動作している場合であれば、ダンパ100の速度Va[m/s]での減衰力f[N]は、この入力されている電流の変化に応じて、図17に示すように圧縮行程における高減衰力f4a[N]と低減衰力f5a[N]との間で変化する。このとき、中間減衰力f6a[N]と低減衰力f5a[N]との間でも変化している。この圧縮行程における減衰力f[N]の変化が、本発明における「車両に生じる変化」に相当する。
 また、この減衰力f[N]の変化の周期は、減衰力可変機構50に入力される電流の変化の周期に対応しているため、実施形態3における減衰力f[N]の変化の周期は、5[Hz]となる。
 このように、実施形態3では、1秒間に2回程度の周期で検査員が車両500に対して鉛直下方に荷重F1を作用させて、ダンパ100を速度Va[m/s]で動作させている期間中、ダンパ100の減衰力f[N]が、一定周期で高減衰力f4a[N]と低減衰力f5a[N]との間で変化する。このとき、中間減衰力f6a[N]と低減衰力f5a[N]との間でも変化している。したがって、検査員が車両500から受ける、荷重F1に対する反力F2は変化する。この結果、車両500を手で押している検査員は、その反力F2の変化を圧覚(触覚)として手に感じることが可能となる。正常時の場合、ホイールが跳ねるなど圧覚(触覚)および視覚で検知できる。
 例えば、オイル内に生じた塵埃が、ソレノイドバルブ51(図2参照)に詰まるなどして、弁体が移動することができなくなることが起こり得る。このような場合、減衰力可変機構50に入力される電流を変化させても、ダンパ100の減衰力は変化しなくなる。そして、このように減衰力が変化しないダンパ100を、実施形態3の検査方法によって検査した場合、検査員が車両500から受ける、荷重F1に対する反力F2の変化を圧覚(触覚)として手に感じることがない。
<可変幅が狭くなる失陥時の特性曲線>
 実施形態3のダンパの検査方法では、基本的には、後記するように5Hz程度の周波数で矩形波電流(サイン波電流でもよい)をMIN⇔MAX(第1変動電流)間で印加して車両500を加振(例えば、検査員が手動により加振)することで失陥状態か否かを判断する。
 正常なダンパ100では、上記検査方法で車両500の挙動や音が電流に合わせて変化するのに対して、減衰力可変機構50(可変バルブ部分)が目詰まりなどを起こすと減衰力が変化しなくなり、車両挙動や音が変化しなくなる(正常ならば例えば、前記のようにホイールが跳ねたりする)。検査員は、この差異を確認することで失陥状態をおおよそ検出することができる。
 しかしながら、減衰力可変機構50(可変バルブ部分)の詰まり方や壊れ方によっては、可変幅が狭くなるような失陥が起こる可能性があり、この場合、ある程度の減衰力可変機能は動作しているため、上記検査方法では失陥を検知できないことがある。
 上記MAX⇔MINだけでは失陥を検出できない例について説明する。
 図17中破線の特性曲線f7は、減衰力可変機構50に最大減衰力異常値の高電流(例えば、1.6[A])が入力されて、ダンパ100が伸張行程(ten側)において減衰力異常値(以下、最大減衰力異常値という。)となる可変幅が狭くなる失陥時の特性曲線である。
 図17中破線の特性曲線f8は、減衰力可変機構50に最大減衰力異常値の高電流(例えば、1.6[A])が入力されて、ダンパ100が圧縮行程(comp側)において減衰力異常値(以下、最大減衰力異常値という。)となる可変幅が狭くなる失陥時の特性曲線である。
 図17の破線矢印aに示すように、高減衰力f1の特性曲線を示す最大減衰力正常値の高電流(例えば、1.6[A])と、低減衰力f2の特性曲線を示す最小減衰力正常値の低電流(例えば、0.3[A])とを交互に繰り返す電流を印加して車両500を加振すると、ダンパ100の減衰力可変機構50が失陥していなければ可変する。
 しかしながら、減衰力可変機構50に可変幅が狭くなるような失陥が発生した場合、最大減衰力正常値の高電流(例えば、1.6[A])と同じ電流値の高電流(例えば、1.6[A])を印加したとしても、当該失陥により減衰力可変機構50は、図17の実線矢印bに示す減衰力でしか可変しない。この場合には、印加電流のMAX⇔MINだけでは、この種の失陥を検出できない。つまり、1種類の印加電流では、減衰力可変機構50が可変することは確認できても可変幅が狭くなっているか否かの判断はできない(ホイール振動の有無のみ確認できる)。
 実施形態3のダンパの検査方法は、振れ幅の異なる複数種類の電流を印加することによって、可変はするものの、可変幅が狭くなったダンパの失陥検出を可能にするものである。
 次に、実施形態3のダンパの検査方法について具体的に説明する。
 実施形態3のダンパの検査方法は、入力される電流(信号の一例)に応じて減衰力f[N]を変化させる減衰力可変機構50を備えたダンパ100を、図16に示すように車両500に取り付けた状態で、減衰力可変機構50に、例えばはじめに高低の振れ幅で変化する信号(電流)を入力しつつ、ダンパ100を動作させるように車両500を上下に揺らし、減衰力可変機構50に入力される電流の変化に応じて車両500に生じる変化を検査員に感じさせる。
 図18は、減衰力可変機構50に入力される加振振幅(ストローク)[m]、ストローク速度[m/s]、印加電流[A]、発生減衰力[N]、および減衰力変化率[N/s]を示すグラフである。
<印加電流の高低>
 図18(C)の領域MIN⇔MAXに示すように、印加電流は、ダンパ100が高減衰力f1,f4の特性曲線(図17参照)を示す高電流(例えば、1.6[A])と、ダンパ100が低減衰力f2,f5の特性曲線(図17参照)を示す低電流(例えば、0.3[A])とを交互に繰り返すように変化する振れ幅が大きな電流である。さらに、図18(C)の領域MIN⇔MIDに示すように、印加電流は、ダンパ100が中間減衰力f3,f6の特性曲線(図17参照)を示す中間値電流(例えば、0.8[A])と、ダンパ100が低減衰力f2,f5の特性曲線(図17参照)を示す低電流(例えば、0.3[A])とを交互に繰り返すように変化する振れ幅が中位の電流である。
 特に、前記低電流(例えば、0.3[A])側から見て、高電流側の印加電流は、複数(ここでは2)、すなわち図18(C)の領域MIN⇔MAXに示す高電流(例えば、1.6[A])と、図18(C)の領域MIN⇔MIDに示す中間値電流(例えば、0.8[A])とを用いる。
<印加電流の周期>
 実施形態3のダンパの検査方法は、図18(C)に示すように、減衰力可変機構50に入力される電流の高低の変化の周期を一定にする。ここでは、電流の高中低の変化の一定周期は、電流の振れ幅が大きい場合も中位の場合も例えば5[Hz]に設定されている。
<コントロールボックス1による電流印加と失陥検出>
 上記一定周期で高低に変化する電流は、検査用に用意されたコントロールボックス(ECU)1(図16参照)は、電流を発生させる信号を出力する。コントロールボックス1は、減衰力可変機構50に接続される。実施形態3のダンパの検査方法を実行しない場合(非検査時)は、減衰力可変機構50には、車両500のコントローラ510が接続されている。そこで、実施形態3のダンパの検査方法を実行する場合、コントロールボックス1を接続するのに先立って、コントローラ510を減衰力可変機構50から取り外す。そして、コントローラ510が取り外された減衰力可変機構50に、コントロールボックス1を接続する。
 なお、実施形態3のように、車両500のコントローラ510を検査用のコントロールボックス1に置換して本検査方法を実行するのではなく、コントローラ510が、検査用のコントロールボックス1の機能を「検査モード」として予め備える構成でもよい。
 次に、実施形態3のダンパの検査方法の手順について説明する。
 図19は、実施形態3のダンパの検査方法のフローチャートである。本フローは、検査用のコントロールボックス1を構成する制御部(図示省略)によって所定タイミング毎に繰り返し実行される。
 まず、コントロールボックス1の制御部は、MIN⇔MAX矩形波電流(図18(C)参照)(第1変動電流)を印加する(ステップS11)。
 加振電流は、四輪同時に加える態様でも一輪ずつ印加する態様のいずれでもよい。実施形態3では、図18(C)に示すように矩形波電流を用いているが、サイン波電流でもよい。また、加振電流の周波数は、バネ上共振周波数からバネ下共振周波数(もしくはダンパの応答周波数の低い方)で加振するような周波数とし、例えば1~5Hz(5Hzが好ましい)である。因みに、加振電流の周波数5Hzは、ダンパ100を車両500に取り付けた状態で、減衰力可変機構50にバネ上共振周波数からバネ下共振周波数または前記ダンパの応答周波数のどちらか低い方で変化する信号を周期的に印加する周波数である。ステップS11における加振電流の変化範囲は、MIN(例えば0.3[A])からMAX(例えば1.6[A])で印加する。
 次いで、加振装置または検査員の手動により車両加振する(ステップS12)。
 車両加振は、具体的には下記のようにして実行する。
 電流印加状態で、車両500を上下に揺らし、ダンパ100をストロークさせる(図18(A)参照)。車両加振の周波数は、1~2Hzでできるだけ大きくストロークさせる(図18(B)参照)。車両500を揺らす手法としては、上下に揺らす加振装置または人が手動により揺らす。人が揺らす場合には、車両500にデフォーム(へこみ、変形など)を与えないよう、フロントではボンネットを開けバルクヘッド部分をタイミングよく押す。また、リアでは、トランクを開け、バンパー付近を押す。例えば、トランクを開けた開口部に、人が腰掛け、体重を利用してタイミングよく押す。また、ドアを開け、シートに座り、体重を利用して押し、片側の前後輪をストロークさせる。このように、人が揺らす場合には、検査対象のダンパ100が取り付けられた部位の近傍部分を鉛直下方に荷重F1で押し、ダンパ100を速度Va[m/s]で動作させる。このとき、ダンパ100の減衰力可変機構50には、MIN⇔MAXに変化する電流が入力されている。
 次いで、ホイール振動検出装置(図示省略)による機械的な検出または検査員による感触による検知により、ホイール振動があるか否かを検知する(ステップS13)。
 ここで、ダンパ100の減衰力可変機構50の失陥の検出には、上記ホイール振動検出装置、または検査員によるホイールの目視と手でホイールに触れることで振動を検知する。失陥していないダンパ100は、ストロークさせると、減衰力の変化に伴いホッピングのような挙動を起こし、滑らかにストロークしない。この場合、検査員がホイールに手で触れると、ごつごつした振動を感じる。また、ホイール振動検出装置を用いる場合、当該振動を機械的に検出する。
 ホイール振動がない場合(ステップS13:No)、ダンパ100が失陥であると判定して本フローを終了する。
 失陥しており減衰力が変化しないダンパ100は、振動せず、滑らかにストロークし、ホイールに触っても振動を感じない。
 ホイール振動がある場合(ステップS13:Yes)、コントロールボックス1の制御部は、印加電流をMIN⇔MAX矩形波電流印加からMIN⇔MID矩形波電流印加(図18(C)参照)(第2変動電流)に変更し、このMIN⇔MID矩形波電流を印加する(ステップS14)。なお、図示は省略しているが、このステップS14の後に、加振装置または検査員の手動により車両加振する。
 すなわち、コントロールボックス1の制御部は、加振電流変化範囲を、MIN(例えば0.3[A])⇔MID(例えば0.8[A])に変更して、上記ステップS11ないしステップS13における手順を再度実行する。
 図19のフローに戻って、ホイール振動検出装置または検査員による感触によりMIN⇔MID矩形波電流印加時のホイール振動がMIN⇔MAX矩形波電流印加時のホイール振動と比べて小さいか否かを検知する(ステップS15)。前記したように、ホイールの変位と荷重F1を観測することによりホイール振動を検知する。
 MIN⇔MAXと比べてホイール振動が同じか大きい場合(ステップS15:No)、ダンパ100が失陥であると判定して本フローを終了する(ステップS16)。
 MIN⇔MAXと比べてホイール振動が小さい場合(ステップS15:Yes)、ダンパ100は正常であると判定して本フローを終了する(ステップS17)。なお、MIN⇔MAX矩形波電流印加とMIN⇔MID矩形波電流印加のステップ順序を逆にしてもよい。
 図18(D)および図18(E)を参照して、実施形態3のダンパの検査方法の作用効果を説明する。
 図18(D)のダンパ100の発生減衰力[N]の変化に伴って、図18(E)の丸囲みa,b,cに示すように、正常なダンパ100では、急激な減衰力変化が発生し、ホイールが大きく振動する。これに対して、失陥があるダンパ100では、かかるホイール振動は発生しない。このように、入力される電流の変化に応じた車両500に生じる変化(ホイール振動発生の有無)により、ダンパ100の減衰力可変機構50を、車両500に取り付けたままの状態で検査することができる。
 しかし、減衰力可変機構50に可変幅が狭くなるような失陥が発生した場合、減衰力可変機構50が可変することは確認できても可変幅が狭くなっているか否かの判断はできない。すなわち、1種類の印加電流のMAX⇔MINだけでは、この失陥を検出できない。そこで、実施形態3では、図18(C)の領域MIN⇔MAXに示す高電流(例えば、1.6[A])に加え、さらに図18(C)の領域MIN⇔MIDに示す中間値電流(例えば、0.8[A])を用いる。
 これにより、図18(D)のダンパ100の発生減衰力[N]の変化に伴って、図18(E)の丸囲みd,e,fに示すように、正常なダンパ100では、印加電流の変化幅を小さく(MIN(例えば0.3[A])⇔MID(例えば0.8[A])に変更)しても、急激な減衰力変化が発生し、ホイールが振動する(ただし、ホイールの振動は、印加電流の変化幅を小さくするに伴って小さくなる)。したがって、可変幅が狭くなったダンパ100はMIN⇔MID矩形波印加により、小さいながらでもホイールが振動する。また、また、可変幅が狭くなったダンパ100では、MIN⇔MAX矩形波印加によるホイールの振動も小さい。以上をまとめると、下記のようになる。
(1)正常なダンパ:
   MIN⇔MAX矩形波印加→ホイール振動大
   MIN⇔MID矩形波印加→ホイール振動小
(2)可変幅が狭くなったダンパ:
   MIN⇔MAX矩形波印加→ホイール振動小
   MIN⇔MID矩形波印加→ホイール振動小
(3)可変しなくなったダンパ:
   ホイール振動なし
 以上説明したように、実施形態3のダンパの検査方法は、ダンパ100を車両500に取り付けた状態で、減衰力可変機構50にバネ上共振周波数からバネ下共振周波数または前記ダンパの応答周波数のどちらか低い方で変化する変動電流を周期的に印加する印加工程と、この印加工程において減衰力可変機構50に変動電流を印加しつつ、減衰力可変機構50を動作させるように車両500を加振する加振工程と、車両500の振動状態を検出する検出工程と、を有し、印加工程では、複数種類の電流を印加し、検出工程では、複数種類の電流の変化に応じて車両500の振動状態に変化があるかを検出する。
 これにより、電流値の大きさによる振動レベルの違いから電流値変化にダンパ100が応答していることがわかるので、一種類の電流値であるMIN⇔MAXでは検出できない可変幅が狭くなるような失陥であっても検出可能となる。すなわち、可変はするものの、可変幅が狭くなったダンパの失陥検知が可能となる。その結果、ダンパ100を、車両500に取り付けたままの状態で精度良く特定することができる。
 また、実施形態3のダンパの検査方法によれば、ダンパ100を、車両500に取り付けたままの状態で検査することができる。
 また、実施形態3のダンパの検査方法によれば、検査員に伝えられる反力F2(図16参照)の検査員の圧覚(触覚)により、ダンパ100の減衰力の変化の有無を判断することができる。そして、検査員が反力F2の変化を感じた場合は、検査員は、減衰力可変機構50は正常に動作していると判断することができる。一方、検査員が反力F2の変化を感じた場合は、検査員が反力F2の変化を感じない場合は、検査員は、減衰力可変機構50は正常に動作していないと判断することができる。
 また、実施形態3のダンパの検査方法によれば、検査員に伝えられる反力F2の変化が、入力される電流の変化に対応して一定周期となるため、反力F2の変化を検知しやすい利点がある。
 以上、実施形態3に係るダンパの検査方法について、図面を参照して詳細に説明したが、本発明はこれらの実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能であることは言うまでもない。
 例えば、実施形態3は、MIN⇔MAXの電流印加とMIN⇔MIDの電流印加を用いているが、電流印加は、MIN⇔MAXの電流印加とMIN⇔MIDの電流印加の他に、さらに複数あってもよい。具体的には、中間値電流を複数、MIN⇔MID1,MIN⇔MID2(但し、MID1<MID2)用いて、同様の検査方法により印加電流を変更して検知するようにしてもよい。
 また、実施形態3のダンパ100は、電流値で減衰力が可変される減衰力可変機構50を有するため、複数の電流値間の変動電流の変化を用いているが、減衰力可変機構が電圧で駆動する場合、複数の電圧値間の電圧印加の変化でもよい。
 また、実施形態3に係るダンパの検査方法は、検査員の圧覚(触覚)により判定しているが、検査員の圧覚(触覚)に限定されるものではない。例えば、車両500におけるダンパ100の減衰力可変機構50が発する音の有無を、検査員が検知してもよい。この場合、検査員の圧覚(触覚)による判定とを併用してもよい。
2…検出装置、50…減衰力可変機構、100,200,300,400…ダンパ、500…車両、F1…垂直荷重

Claims (19)

  1.  入力される信号に応じて減衰力を変化させる減衰力可変機構を備えた圧力緩衝装置を車両に取り付けた状態で、前記圧力緩衝装置を動作させる動作工程と、前記動作工程により前記車両に生じる変化を検出する検出工程とを有する減衰力可変機構の検査方法。
  2.  前記減衰力可変機構に信号を入力する信号入力装置をさらに備え、
     前記動作工程は、前記信号入力装置により前記信号を前記減衰力可変機構に入力した状態で、前記圧力緩衝装置を動作させる請求項1に記載の減衰力可変機構の検査方法。
  3.  前記信号入力装置は、前記信号として変化する信号を前記減衰力可変機構に入力するものである請求項2に記載の減衰力可変機構の検査方法。
  4.  前記信号入力装置は、前記減衰力可変機構に入力される前記信号の変化の周期を一定にする請求項3に記載の減衰力可変機構の検査方法。
  5.  前記信号入力装置は、前記信号として互いに異なる複数の信号を切り替えて前記減衰力可変機構に入力するものである請求項3に記載の減衰力可変機構の検査方法。
  6.  前記検出工程は、前記車両の各車輪の輪荷重を検出する工程である請求項2に記載の減衰力可変機構の検査方法。
  7.  前記検出工程は、前記圧力緩衝装置の伸縮量を検出する工程である請求項2に記載の減衰力可変機構の検査方法。
  8.  前記検出工程は、前記圧力緩衝装置の振動を検出する工程である請求項2に記載の減衰力可変機構の検査方法。
  9.  前記検出工程は、前記圧力緩衝装置の音を検出する工程である請求項2に記載の減衰力可変機構の検査方法。
  10.  前記車両からの出力を、前記車両のばね下で検出する請求項8又は9に記載の減衰力可変機構の検査方法。
  11.  前記動作工程は、車両荷重入力機構により前記車両を動かす工程である請求項1に記載の減衰力可変機構の検査方法。
  12.  前記車両荷重入力機構は、前記車両を上昇及び下降させる昇降装置である請求項11に記載の減衰力可変機構の検査方法。
  13.  前記車両荷重入力機構は、走行する車両に上下動を与える段差である請求項11に記載の減衰力可変機構の検査方法。
  14.  前記圧力緩衝装置は、作動液が封入されたシリンダと前記シリンダの外方に設けられた外筒と前記外筒の外方に設けられたケースとを有するシリンダ部を備え、前記減衰力可変機構は前記シリンダ部に接続されている請求項1から13に記載の減衰力可変機構の検査方法。
  15.  入力される信号に応じて減衰力を変化させる減衰力可変機構を備えた圧力緩衝装置を車両に取り付けた状態で、前記圧力緩衝装置を動作させたときに、前記車両からの出力を検出する検出装置を備えた減衰力可変機構の検査システム。
  16.  入力される信号に応じて減衰力を変化させる減衰力可変機構を有する車両の圧力緩衝装置の検査方法であって、
     前記圧力緩衝装置を前記車両に取り付けた状態で、前記減衰力可変機構に、バネ上共振周波数から、バネ下共振周波数および前記圧力緩衝装置の応答周波数のうちのどちらか低い方の周波数までの間のいずれかの周波数の信号を周期的に印加する印加工程と、
     前記印加工程において前記減衰力可変機構に前記信号を印加しつつ、前記減衰力可変機構を動作させるように前記車両を加振する加振工程と、
     前記車両の振動状態を検出する検出工程と、を有し、
     前記印加工程では、振れ幅が異なる複数種類の信号を順次印加し、
     前記検出工程では、複数種類の前記信号の変化に応じて前記車両の振動状態に変化があるかを検出することを特徴とする圧力緩衝装置の検査方法。
  17.  前記複数種類の信号とは、
     前記振れ幅が最小値と最大値間で変動する信号と、
     前記最小値と前記最大値と間に中間値を設け、前記振れ幅が前記最小値と前記中間値間で変動する信号とを少なくとも含むことを特徴とする請求項16に記載の圧力緩衝装置の検査方法。
  18.  前記検出工程では、前記車両の振動状態として、前記車両のバネ下の振動状態を検出することを特徴とする請求項16に記載の圧力緩衝装置の検査方法。
  19.  前記圧力緩衝装置は、電流値で減衰力が可変される前記減衰力可変機構を有し、
     前記信号の変化は、複数の前記電流値間の変動電流の変化であることを特徴とする請求項16または請求項17に記載の圧力緩衝装置の検査方法。
PCT/JP2015/052881 2014-05-28 2015-02-02 減衰力可変機構の検査方法、検査システム及び圧力緩衝装置の検査方法 WO2015182168A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/313,943 US10564071B2 (en) 2014-05-28 2015-02-02 Method and system for inspecting damping force variable mechanism, and method for inspecting pressure damping device
DE112015002514.6T DE112015002514B4 (de) 2014-05-28 2015-02-02 Untersuchungsverfahren und Untersuchungssystem für einen Mechanismus mit variabler Dämpfungskraft und Untersuchungsverfahren für eine Druckdämpfungsvorrichtung
JP2016523168A JP6516735B2 (ja) 2014-05-28 2015-02-02 減衰力可変機構の検査方法及び圧力緩衝装置の検査方法
CN201580028349.9A CN106662503B (zh) 2014-05-28 2015-02-02 用于阻尼力可变机构的检查方法和系统及压力阻尼装置的检查方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014109709 2014-05-28
JP2014-109709 2014-05-28
JP2014-110665 2014-05-28
JP2014110665 2014-05-28

Publications (1)

Publication Number Publication Date
WO2015182168A1 true WO2015182168A1 (ja) 2015-12-03

Family

ID=54698511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052881 WO2015182168A1 (ja) 2014-05-28 2015-02-02 減衰力可変機構の検査方法、検査システム及び圧力緩衝装置の検査方法

Country Status (5)

Country Link
US (1) US10564071B2 (ja)
JP (1) JP6516735B2 (ja)
CN (1) CN106662503B (ja)
DE (1) DE112015002514B4 (ja)
WO (1) WO2015182168A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181065A (ja) * 2016-03-28 2017-10-05 日立オートモティブシステムズ株式会社 シリンダ装置の検査装置および検査方法
WO2020250829A1 (ja) * 2019-06-13 2020-12-17 株式会社ブリヂストン 防振装置設計支援装置、防振装置設計支援プログラム及び防振装置設計支援方法
JP2020201894A (ja) * 2019-06-13 2020-12-17 株式会社ブリヂストン 防振装置設計支援装置、防振装置設計支援プログラム及び防振装置設計支援方法
JP2020201230A (ja) * 2019-06-13 2020-12-17 株式会社ブリヂストン 防振装置設計支援装置、防振装置設計支援プログラム及び防振装置設計支援方法
JP7550083B2 (ja) 2021-03-09 2024-09-12 日立Astemo株式会社 減衰機構の検査方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102427742B1 (ko) 2016-04-29 2022-08-01 엘지디스플레이 주식회사 롤러블 연성표시장치
US20190025160A1 (en) * 2017-07-21 2019-01-24 GM Global Technology Operations LLC Determination of damper health state using indirect measurements
CN107677461B (zh) * 2017-09-11 2018-11-13 东莞理工学院 用于油压减振器阻尼阀试验的测试模块和系统及试验方法
DE102019206351A1 (de) * 2018-11-07 2020-05-07 Zf Friedrichshafen Ag Verfahren zur Ermittlung wenigstens eines Zustandsparameters einer Dämpfungseinrichtung eines Kraftfahrzeugs
DE102020111915B3 (de) * 2020-05-04 2021-06-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Ermittlung von Fahrzeugkenngrößen
CN111882697B (zh) * 2020-07-31 2021-11-16 中国汽车工程研究院股份有限公司 一种基于概率突变法则的电压异常单体的识别算法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382901U (ja) * 1976-12-11 1978-07-08
JPS6299409U (ja) * 1985-12-13 1987-06-24
JPH0432741A (ja) * 1990-05-29 1992-02-04 Mazda Motor Corp サスペンション装置の診断方法
JPH0735654A (ja) * 1993-07-16 1995-02-07 Nissan Motor Co Ltd アクティブサスペンションの性能試験装置
JPH07186669A (ja) * 1993-12-27 1995-07-25 Nissan Motor Co Ltd サスペンション制御装置
JPH09264820A (ja) * 1996-03-27 1997-10-07 Banzai:Kk 車両用アブソーバテスター
JP2007064969A (ja) * 2005-08-26 2007-03-15 Bose Corp 車両サスペンションの試験および実証法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU186814B (en) * 1983-11-14 1985-09-30 Transinnov Koezlekedesi Muesza Method and apparatus for qualifying the shock absorption of sprung running gear provided with felxible tyre particularly for road motor vehicle one
DE3545087A1 (de) 1985-12-19 1987-07-02 Langlechner Richard Gmbh Verfahren und vorrichtung zur ueberpruefung des fahrwerks eines kraftfahrzeuges
DE102004021131B3 (de) * 2004-04-29 2005-10-20 Zahnradfabrik Friedrichshafen Verfahren zur Überprüfung von Schwingungsdämpfern in Kraftfahrzeugen
US7299117B2 (en) 2005-04-06 2007-11-20 Gm Global Technology Operations, Inc. Methods for evaluating dynamic characteristics of vehicle dampers at low velocities
CN100489481C (zh) 2005-09-14 2009-05-20 上海工程技术大学 汽车减振器阻尼力不解体快速测试方法
KR100842031B1 (ko) 2007-01-30 2008-06-27 주식회사 만도 쇽업소버의 솔레노이드 밸브
DE102008002484A1 (de) * 2008-06-17 2009-12-24 Robert Bosch Gmbh Verfahren zum Prüfen eines Schwingungsdämpfers eines Kraftfahrzeugs im eingebauten Zustand sowie Schwingungsdämpfer-Prüfsystem für ein Kraftfahrzeug
CN101821119B (zh) 2008-12-01 2012-03-14 丰田自动车株式会社 电磁悬架系统
JP5626638B2 (ja) 2010-09-29 2014-11-19 日立オートモティブシステムズ株式会社 緩衝器
DE102011100313A1 (de) 2011-05-04 2012-11-08 Audi Ag Verfahren zur Diagnose eines Funktionszustands einer Komponente eines aktiven Fahrwerks eines Kraftwagens
JP5769522B2 (ja) 2011-06-30 2015-08-26 日立オートモティブシステムズ株式会社 緩衝器
WO2013185132A1 (en) * 2012-06-08 2013-12-12 Msi Defense Solutions, Llc An electronically adjustable damper and system
JP6067455B2 (ja) * 2013-03-28 2017-01-25 株式会社ショーワ 自動二輪車の車高調整装置
JP6031025B2 (ja) * 2013-12-24 2016-11-24 Kyb株式会社 ダンパ制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382901U (ja) * 1976-12-11 1978-07-08
JPS6299409U (ja) * 1985-12-13 1987-06-24
JPH0432741A (ja) * 1990-05-29 1992-02-04 Mazda Motor Corp サスペンション装置の診断方法
JPH0735654A (ja) * 1993-07-16 1995-02-07 Nissan Motor Co Ltd アクティブサスペンションの性能試験装置
JPH07186669A (ja) * 1993-12-27 1995-07-25 Nissan Motor Co Ltd サスペンション制御装置
JPH09264820A (ja) * 1996-03-27 1997-10-07 Banzai:Kk 車両用アブソーバテスター
JP2007064969A (ja) * 2005-08-26 2007-03-15 Bose Corp 車両サスペンションの試験および実証法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181065A (ja) * 2016-03-28 2017-10-05 日立オートモティブシステムズ株式会社 シリンダ装置の検査装置および検査方法
WO2020250829A1 (ja) * 2019-06-13 2020-12-17 株式会社ブリヂストン 防振装置設計支援装置、防振装置設計支援プログラム及び防振装置設計支援方法
JP2020201894A (ja) * 2019-06-13 2020-12-17 株式会社ブリヂストン 防振装置設計支援装置、防振装置設計支援プログラム及び防振装置設計支援方法
JP2020201230A (ja) * 2019-06-13 2020-12-17 株式会社ブリヂストン 防振装置設計支援装置、防振装置設計支援プログラム及び防振装置設計支援方法
JP7190972B2 (ja) 2019-06-13 2022-12-16 株式会社プロスパイラ 防振装置設計支援装置、防振装置設計支援プログラム及び防振装置設計支援方法
JP7208864B2 (ja) 2019-06-13 2023-01-19 株式会社プロスパイラ 防振装置設計支援装置、防振装置設計支援プログラム及び防振装置設計支援方法
JP7550083B2 (ja) 2021-03-09 2024-09-12 日立Astemo株式会社 減衰機構の検査方法

Also Published As

Publication number Publication date
DE112015002514T5 (de) 2017-09-21
JP6516735B2 (ja) 2019-05-22
JPWO2015182168A1 (ja) 2017-04-20
CN106662503A (zh) 2017-05-10
DE112015002514B4 (de) 2022-12-29
US10564071B2 (en) 2020-02-18
CN106662503B (zh) 2020-03-31
US20170199103A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6516735B2 (ja) 減衰力可変機構の検査方法及び圧力緩衝装置の検査方法
JP3401161B2 (ja) 転動疲労試験装置、及び転動疲労試験方法
Novikov et al. Research and testing complex for analysis of vehicle suspension units
JP6300957B2 (ja) 回転検査スタンドおよび回転検査スタンドの動作方法
TWI588380B (zh) 用於自行車之吸震器
CN110476049B (zh) 车辆测试装置
JPH0562940B2 (ja)
CN101511616A (zh) 用于控制半主动悬挂的方法和设备
KR101642872B1 (ko) 진동 검사 장치 및 방법
Warczek et al. The method for identification of damping coefficient of the trucks suspension
KR20170010146A (ko) 체적변화형 에어스프링의 특성 검사 장치
WO2018056005A1 (ja) タイヤの転がり抵抗評価装置
JP2016065856A (ja) 衝撃試験機
Natarajan et al. Alternate electrical tests for extracting mechanical parameters of MEMS accelerometer sensors
KR101172746B1 (ko) 롤러코스터 휠 시험장치
CN107727404B (zh) 用于确定机动车辆底盘部件的高频多自由度动态特性的系统和方法
JP3993593B2 (ja) 防振部材の評価装置
CN107664530A (zh) 激振器
JP2021025948A (ja) 衝撃試験装置および衝撃試験方法
Ventura et al. An embedded system to assess the automotive shock absorber condition under vehicle operation
CN109334642B (zh) 防碰撞装置
Michalakoudis et al. Experimental identification of shock absorber knocking noise using various input waveforms
Koulocheris et al. Dynamic analysis of the suspension system of a heavy vehicle through experimental and simulation procedure
Malmedahl et al. Analysis of automotive damper data and design of a portable measurement system
RU2164675C2 (ru) Способ диагностики управляющих устройств и систем автотранспортных средств

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523168

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15313943

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002514

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15799312

Country of ref document: EP

Kind code of ref document: A1