[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015182002A1 - アレーアンテナ装置 - Google Patents

アレーアンテナ装置 Download PDF

Info

Publication number
WO2015182002A1
WO2015182002A1 PCT/JP2014/075314 JP2014075314W WO2015182002A1 WO 2015182002 A1 WO2015182002 A1 WO 2015182002A1 JP 2014075314 W JP2014075314 W JP 2014075314W WO 2015182002 A1 WO2015182002 A1 WO 2015182002A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna element
antenna
array
detection
detection result
Prior art date
Application number
PCT/JP2014/075314
Other languages
English (en)
French (fr)
Inventor
南 義明
悠司 小田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US15/309,867 priority Critical patent/US10218086B2/en
Priority to DE112014006707.5T priority patent/DE112014006707B4/de
Priority to JP2016523096A priority patent/JP6172390B2/ja
Priority to CN201480079194.7A priority patent/CN106415931B/zh
Publication of WO2015182002A1 publication Critical patent/WO2015182002A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4454Monopulse radar, i.e. simultaneous lobing phase comparisons monopulse, i.e. comparing the echo signals received by an interferometric antenna arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns

Definitions

  • the present invention relates to an array antenna device.
  • the grating lobe may appear within the scanning range ( ⁇ to ⁇ ) of the main lobe.
  • the target direction may be detected erroneously. For this reason, it is desirable to prevent the grating lobe from occurring within the scanning range of the main lobe.
  • the distance d between the element antennas is made sufficiently small with respect to the wavelength ⁇ , it is possible to prevent the grating lobe from being generated in the scanning range of the main lobe regardless of the directivity angle of the main lobe.
  • the wavelength ⁇ and the distance d between the element antennas are restricted by various other conditions, and it is difficult to set the wavelength ⁇ and the distance d between the element antennas outside the upper and lower limits of these conditions.
  • the array antenna device described in Patent Document 1 includes a transmission array antenna and a reception array antenna that are configured by arranging a plurality of element antennas on a straight line at equal intervals.
  • the element antenna of the receiving array antenna multiplies the integer M by the wavelength so as to have an M-th grating lobe of the array factor of the receiving array antenna in the vicinity of the first null generating angle in the array element pattern of the element antenna.
  • the element antenna of the transmitting array antenna is arranged at an integer N so that the generation angle of the Nth grating lobe of the array factor of the transmission array antenna matches the generation angle of the Mth grating lobe. It is arranged with an interval consisting of a quotient obtained by multiplying the element antenna intervals and dividing by the integer M. .
  • the grating lobe is suppressed by taking the product of the directivity patterns of two types of array antenna element arrangements.
  • there is a null point where the antenna gain is extremely low in the generation angle of the grating lobe and the antenna element directivity (element factor). By making the formed angle coincide with each other, the remaining grating lobes are also suppressed.
  • Patent Document 1 the conventional technique for suppressing the grating lobe (Patent Document 1, etc.) does not assume that beam scanning is performed. Therefore, when beam scanning is performed, the angle at which the grating lobe is generated changes accordingly. . In such a case, the grating lobe generation angle does not match the null point formation angle. As a result, there are cases where it becomes impossible to suppress all grating lobes within a desired detection angle range.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an array antenna apparatus that can eliminate erroneous detection due to grating lobes when beam scanning is performed in an array antenna.
  • An array antenna apparatus includes a first antenna element array arranged at an element interval having a predetermined periodicity, and an element having a predetermined periodicity different from the periodicity in the first antenna element array.
  • An array antenna device in which a plurality of antenna elements are arranged so as to include a second antenna element arrangement arranged at intervals, the detection result by the array antenna of the first antenna element arrangement, and the second antenna element arrangement Based on the comparison of the detection result of the antenna element array of the array antenna, a control unit that removes erroneous detection due to the grating lobe, the first element interval that is the antenna element interval of the first antenna element array, The second element interval that is the antenna element interval of the second antenna element array is set as an antenna element interval that satisfies Equation 1.
  • An integer multiple of the interval of the minimum antenna element spacing 0 ⁇ D ⁇ (0.5 ⁇ / sin ⁇ ) (Formula 1) (In Equation 1, D indicates the minimum antenna element interval, ⁇ indicates a predetermined maximum detection angle, and ⁇ indicates the wavelength of the radio wave)
  • D indicates the minimum antenna element interval
  • indicates a predetermined maximum detection angle
  • indicates the wavelength of the radio wave
  • a first integer that is an integer that is an integer multiple of the minimum antenna element interval, and a second integer that is an integer that is an integer multiple of the minimum antenna element interval, Are relatively disjoint, and both satisfy a positive integer of 2 or more.
  • each antenna element corresponding to the first antenna element array and the second antenna element array is parallel to the array antennas of the first antenna element array and the second antenna element array. It is preferable to arrange
  • each antenna element corresponding to the first antenna element array and the second antenna element array is a position of the antenna element of the first antenna element array and the second antenna element array. It is preferable that the first antenna element array and the second antenna element array are combined in a straight line and arranged in series in a state where at least one is stacked.
  • the array antenna apparatus of the present invention there is an effect that erroneous detection due to a grating lobe can be eliminated when beam scanning is performed in the array antenna.
  • FIG. 1 is a diagram illustrating an example of a configuration of an array antenna device according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of an array antenna according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a phase relationship of received waves.
  • FIG. 4 is a diagram illustrating an example of array antenna directivity.
  • FIG. 5 is a diagram illustrating an example of a directivity pattern in the first embodiment.
  • FIG. 6 is a flowchart illustrating an example of processing in the first embodiment.
  • FIG. 7 is a diagram illustrating an example of the configuration of the array antenna apparatus according to the second embodiment.
  • FIG. 8 is a diagram illustrating an example of an array antenna according to the second embodiment.
  • FIG. 9 is a diagram illustrating an example of the configuration of the array antenna apparatus according to the third embodiment.
  • FIG. 10 is a diagram illustrating an example of the arrangement of antenna elements in the third embodiment.
  • FIG. 11 is a diagram illustrating an example of selectable antenna element intervals in the third embodiment.
  • FIG. 12 is a diagram illustrating an example of a directivity pattern at each antenna element interval in the third embodiment.
  • FIG. 13 is a flowchart illustrating an example of processing in the third embodiment.
  • an embodiment of an array antenna device as a radar device including an array antenna having an array antenna arrangement structure according to the present invention will be described in detail with reference to the drawings.
  • this invention is not limited by this embodiment.
  • constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art or those that are substantially the same.
  • FIG. 1 is a diagram illustrating an example of a configuration of an array antenna device 100 according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of an array antenna according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a phase relationship of received waves.
  • FIG. 4 is a diagram (polar coordinate display) showing an example of array antenna directivity.
  • FIG. 5 is a diagram illustrating an example of a directivity pattern in the first embodiment.
  • FIG. 6 is a flowchart illustrating an example of processing in the first embodiment.
  • the array antenna device 100 includes a first array antenna 20, a second array antenna 30, and a control unit 40.
  • first array antenna 20 and the second array antenna 30 will be described with reference to FIG.
  • the first array antenna 20 is an array antenna in which the antenna elements 10 are arranged in a straight line at intervals of K1 times the minimum antenna element interval D.
  • the second array antenna 30 is an array antenna in which the antenna elements 10 are arranged on a straight line at intervals of K2 times the minimum antenna element interval D.
  • K1 and K2 are relatively prime and both are positive integers of 2 or more.
  • a non-prime relationship and a positive integer greater than or equal to 2 means a relationship between two numbers in the case where the two integers have no common divisor other than 1 and ⁇ 1.
  • positive integers that are relatively disjoint and that are both 2 or more may be referred to as “disjoint 2 or more positive integers”.
  • the relatively positive positive integer of 2 or more is preferably 3 or more.
  • the “minimum antenna element interval” is an antenna element interval set so as not to generate a grating lobe in a predetermined detection angle range when performing beam scanning.
  • the predetermined detection angle range is ⁇ ⁇ degrees
  • the minimum antenna element interval D needs to be set to a range represented by the following formula 1.
  • 90 degrees
  • the antenna element interval needs to be smaller than 0.5 ⁇ .
  • indicates the wavelength of the transmitted / received radio wave. 0 ⁇ D ⁇ (0.5 ⁇ / sin ⁇ ) (Formula 1)
  • the phase relationship when receiving radio waves arriving from the desired direction is equal due to phase circulation (an event that 360 degrees return to 0 degrees).
  • the desired direction is the direction in which the target exists
  • the other arrival direction is the grating direction.
  • a lobe equivalent to the main lobe in the desired direction in which the target exists is generated in the grating direction. This lobe is a grating lobe.
  • the antenna element interval needs to be less than 0.5 ⁇ / sin ⁇ as shown in Equation 1.
  • the minimum antenna element interval D satisfying Equation 1 is set, and two positive integers (K1, K2) times different from each other in the minimum antenna element interval D.
  • Antenna elements are arranged at intervals.
  • each two positive integers (K1, K2) are two or more positive integers that are relatively prime.
  • the array antenna in this embodiment has an array antenna arrangement structure that is arranged so as to include two types of array antenna element arrangements.
  • the antenna element spacing of the two types of array antenna element arrays is an integral multiple (D ⁇ K1, D ⁇ K2) of the minimum antenna element spacing, which is an antenna element spacing set so as not to generate grating lobes in a predetermined detection angle range.
  • each integer is a positive integer of 2 or more that is relatively prime.
  • the array antenna in the present embodiment includes a first array antenna 20 and a second array antenna 30 configured to include two types of array antenna element arrays, respectively.
  • the first array antenna 20 is an array antenna in which a plurality of antenna elements 10 are arranged at an element interval having a predetermined periodicity (antenna element interval of D ⁇ K1 in FIG. 2).
  • the second array antenna 30 includes a plurality of antenna elements 10 at an element interval (a D ⁇ K2 antenna element interval in FIG. 2) having a predetermined periodicity different from the periodicity in the first antenna element array. This is an array antenna.
  • the first element interval (the antenna element interval of D ⁇ K1 in FIG. 2) that is the antenna element interval of the first antenna element array and the second element interval that is the antenna element interval of the second antenna element array.
  • the antenna element interval of D ⁇ K2 is an interval that is an integral multiple (K1, K2) of the minimum antenna element interval D that is set as an antenna element interval that satisfies Equation 1.
  • the first integer K1 that is an integer that makes this first element interval an integer multiple of the minimum antenna element interval, and the second integer K2 that is an integer that makes this second element interval an integer multiple of the minimum antenna element are: It is satisfied that the relations are disjoint and both are positive integers of 2 or more.
  • both the first element interval and the second element interval can be arranged at an interval of 0.5 times or more the radio wave wavelength ⁇ .
  • the array antenna in the present embodiment it is possible to eliminate erroneous detection due to the grating lobe while arranging the antenna elements at a wide interval.
  • the array antenna apparatus of the present embodiment it is possible to eliminate erroneous detection due to grating lobes within a predetermined detection angle range ( ⁇ to ⁇ ) (beam scanning range). That is, by comparing the detection results obtained by the array antenna having two types of element arrangements, the detection peak due to the grating lobe within the beam scanning range can be determined. In this way, erroneous detection due to grating lobes can be eliminated when beam scanning is performed with an array antenna.
  • control unit 40 eliminates erroneous detection due to the grating lobe based on the comparison between the detection result of the array antenna of the first antenna element array and the detection result of the array antenna of the second antenna element array.
  • the detection result by the array antenna of the first antenna element array and the detection result by the array antenna of the second antenna element array are the two types of array antenna element arrays detected by the angle detectors 60-1 and 60-2 described later. It is the detection result of the angle of the target based on the received signal.
  • the control unit 40 includes distance / speed detection units 50-1 and 50-2, angle detection units 60-1 and 60-2, and a comparison detection unit 70. Each processing unit of the following control unit 40 will be described.
  • the distance / velocity detection units 50-1 and 50-2 detect the distance / velocity of the target from the signals received by the antenna elements 10 of the first array antenna 20 and the second array antenna 30, respectively.
  • Distance / speed detection means In the present embodiment, the distance / velocity detectors 50-1 and 50-2 detect the distance / velocity of the target for each antenna element by the distance / velocity detection method used in the technical field.
  • the distance / velocity detection units 50-1 and 50-2 output the detection results of the target distance and velocity to the angle detection units 60-1 and 60-2, respectively.
  • the angle detection units 60-1 and 60-2 are angle detection means for detecting the angle of the target using the detection results of the distance / speed detection units 50-1 and 50-2, respectively.
  • This detection result includes the detection result in the grating lobe in addition to the detection result in the main lobe.
  • the angle detectors 60-1 and 60-2 detect the angle of the target by an angle detection method used in the technical field.
  • Each of the angle detection units 60-1 and 60-2 outputs the detection result of the target angle to the comparison detection unit 70.
  • each antenna element 10 corresponding to the first antenna element array and the second antenna element array has array antennas of the first antenna element array and the second antenna element array arranged in parallel.
  • each antenna element 10 corresponding to the first antenna element array and the second antenna element array corresponds to one end of the first antenna element array and the second antenna element array.
  • the array antennas of the first antenna element array and the second antenna element array may be arranged in parallel with the positions of the antenna elements 10 to be aligned.
  • the directivity patterns in the first array antenna 20 and the second array antenna 30 are the first directivity pattern shown in the upper part of FIG. 5 and the second directivity pattern shown in the lower part of FIG.
  • the upper diagram of FIG. 5 shows the directivity pattern of the first array antenna 20 in which the antenna elements 10 are arranged at an interval K1 times the minimum antenna element interval D as the first directivity pattern.
  • grading lobes occur around +42 degrees and ⁇ 42 degrees.
  • 5 shows an example of the directivity pattern of the second array antenna 30 in which the antenna elements 10 are arranged at intervals of K2 times the minimum antenna element interval D as the second directivity pattern.
  • the lower diagram of FIG. 5 is a directivity pattern when the main lobe is oriented in the 0 degree direction, and grading lobes are generated in the vicinity of +30 degrees and ⁇ 30 degrees, and in the vicinity of +90 degrees and ⁇ 90 degrees.
  • the first directional pattern and the second directional pattern have overlapping grating lobe positions that occur within the detection angle range when beam scanning is performed with a main lobe within a predetermined detection angle range.
  • a ghost (virtual image) caused by the grating lobe can be discriminated and removed.
  • a ghost means a virtual image of a target that does not actually exist at that angle, which is obtained as a result of detecting a target with a grating lobe instead of a main lobe.
  • the comparison detection unit 70 of the control unit 40 is a comparison detection unit that compares detection results of two types of array antennas. If this detection result is detected by the main lobe, the angle of either detection peak is equal and the level difference is small. On the other hand, if detected by the grating lobe, the angles detected by the two types of array antennas are different, and a level difference will occur if they are compared at the same angle. The comparison detection unit 70 detects this difference and removes it as a ghost by the grating lobe. Then, the comparison detection unit 70 outputs the remaining result as a detection result.
  • the comparison detection unit 70 compares the detection result obtained by the first array antenna 20 and the detection result obtained by the second array antenna 30 as shown in FIG. 5, and removes a peak whose angle difference or level difference is larger than a predetermined threshold value. By doing so, only the detection result by the main lobe is output. More specifically, for example, the comparison detection unit 70 compares the detection result by the first array antenna 20 and the detection result by the second array antenna 30 as shown in FIG. The specified peak in the other directivity pattern is identified with respect to the specified reference peak selected as the peak, and this reference peak when the angle difference or level difference between these peaks is greater than the specified threshold is determined. Remove.
  • the first antenna element array is a group of antenna elements 10 arranged on a straight line at an interval of K1 times the minimum antenna element interval D in the first array antenna 20.
  • the second antenna element array is a group of antenna elements 10 arranged in a straight line in the second array antenna 30 at intervals of K2 times the minimum antenna element interval D.
  • the distance / velocity detector 50-1 detects the distance / velocity of the target from the signals received by the antenna elements 10 of the first array antenna 20 (step S10).
  • the distance / speed detector 50-2 detects the distance / speed of the target from the signals received by the antenna elements 10 of the second array antenna 30 (step S11).
  • the angle detector 60-1 detects the angle of the target using the detection result detected by the distance / velocity detector 50-1 in step S10 (step S12).
  • the angle detector 60-2 detects the angle of the target using the detection result detected by the distance / velocity detector 50-2 in step S11 (step S13).
  • the detection results in steps S10 to S13 include the detection result in the grating lobe in addition to the detection result in the main lobe.
  • the comparison detection unit 70 detects the angle detection result of the first antenna element array detected by the angle detection unit 60-1 in step S12, and the second detection result detected by the angle detection unit 60-2 in step S13. Based on the angle detection result of the antenna element array, the peak angle in the angle detection result is compared (step S14).
  • the comparison detection unit 70 determines whether or not the peak angle difference is equal to or less than the threshold (angle difference ⁇ threshold) based on the comparison result regarding the peak angle obtained by the process of step S14 (step S15).
  • step S15 the comparison detection unit 70 identifies the peak of the closest detection angle in the detection result by the second array antenna with respect to the reference peak in the detection result by the first array antenna, and the angular difference between these peaks. Is larger than the threshold (angle difference> threshold) (step S15: No), the reference peak is determined as a virtual image (step S16). In other words, in step S16, when the difference in the angle at which the peak appears in the detection result between the first array antenna and the second array antenna is larger than the threshold, the comparison detection unit 70 is the detection result by the grating lobe. Is determined.
  • the angular characteristic of the detection result is similar to the directivity pattern, and thus the description will be made assuming that the directivity pattern of FIG. 5 is the detection result.
  • the difference in angle between the reference peak detected near ⁇ 90 degrees in the lower figure and the peak detected near ⁇ 42 degrees in the upper figure is It is about 48 degrees, and it is determined that the angle difference is larger than the threshold value.
  • the peak detected at around ⁇ 90 degrees in the figure below is determined to be the detection result by the grating lobe.
  • step S22 the comparison detection unit 70 determines whether or not the processing has been completed for all peaks of the first detection result and the second detection result.
  • step S22 when the comparison detection unit 70 determines that the processing has not been completed for all peaks (step S22: No), the process returns to step S14, and the comparison detection unit of steps S14 to S21 is performed for each peak. The process according to 70 is repeated.
  • the comparison detection unit 70 performs the processing of steps S14 to S21 based on the detection results of the first and second array antennas detected by the angle detection units 60-1 and 60-2 in steps S12 and S13.
  • the angle of the peak is compared for another peak that has not been performed (step S14).
  • the comparison detection unit 70 determines whether or not the peak angle difference is equal to or smaller than the threshold (angle difference ⁇ threshold) based on the comparison result regarding the peak angle obtained by the process of step S14 (step S15). ).
  • step S15 the comparison detection unit 70 specifies the peak of the closest detection angle in the other detection result with respect to the reference peak in the one detection result, and the angle difference between these peaks is a threshold value. If it is determined below (angle difference ⁇ threshold) (step S15: Yes), the levels of these peaks are further compared (step S17). Then, the comparison detection unit 70 determines whether the level difference between these peaks is equal to or less than a threshold (level difference ⁇ threshold) based on the comparison result regarding the peak levels obtained by the process of step S ⁇ b> 17 ( Step S18).
  • a threshold level difference ⁇ threshold
  • the comparison detection unit 70 when it is determined in step S15 that the peak angle difference is equal to or less than the threshold value (angle difference ⁇ threshold value), the comparison detection unit 70 subsequently compares the peak level in step S17.
  • the comparison detection unit 70 determines that the peak may be a detection result of the main lobe when the angle difference at which the peak appears in the detection result of the first array antenna and the second array antenna is less than or equal to the threshold value. It is determined that there is.
  • the angle difference between the peaks to be compared is small, if the level difference between these peaks is large, there is a possibility that the detection result is not the main lobe but the grating lobe.
  • the comparison detection unit 70 further sets the peak level to be equal to or lower than the threshold value (level difference ⁇ threshold value) for the peak determined that the peak angle difference is equal to or lower than the threshold value and that there is a possibility of detection by the main lobe. ) Or greater than the threshold (level difference> threshold).
  • step S18 the comparison detection unit 70 identifies the peak of the closest detection angle in the other detection result with respect to the reference peak in the one detection result, and the level difference between these peaks is equal to or less than the threshold value (level When it is determined that (difference ⁇ threshold) (step S18: Yes), the reference peak is determined as a true target (step S19). In other words, in step S19, the comparison detection unit 70 determines that the difference in the angle at which the peak appears in the angle detection result between the first array antenna and the second array antenna is equal to or less than the threshold, and the peak level difference is the threshold. If it is below, this peak is determined to be a detection result by the main lobe.
  • the comparison detection unit 70 indicates that the peak detected near 0 degrees in the following diagram is the detection result by the grating lobe. It is determined that the detection result is a main lobe detected in a desired direction where the target exists.
  • the comparison detection unit 70 registers the detection result of the target determined to be the detection result by the main lobe in step S19 (step S20).
  • the comparison detection unit 70 determines whether or not the processing has been completed for all peaks (step S22). In step S22, the comparison detection unit 70 determines whether or not the processing has been completed for all peaks of the first detection result and the second detection result. Here, in step S22, when the comparison detection unit 70 determines that the processing has not been completed for all peaks (step S22: No), the comparison detection unit 70 returns to step S14 again, and the comparison detection of steps S14 to S21 is performed for each peak. The processing by the unit 70 is repeated.
  • the comparison detection unit 70 performs the processing of steps S14 to S21 based on the detection results of the first array antenna and the second array antenna detected by the angle detection units 60-1 and 60-2 in steps S12 and S13.
  • the angle of the peak is compared for another peak that has not been performed (step S14).
  • the comparison detection unit 70 determines whether or not the peak angle difference is equal to or smaller than the threshold (angle difference ⁇ threshold) based on the comparison result regarding the peak angle obtained by the process of step S14 (step S15). ).
  • step S15 the comparison detection unit 70 specifies the peak of the closest detection angle in the other detection result with respect to the reference peak in the one detection result, and the angle difference between these peaks is a threshold value. If it is determined below (angle difference ⁇ threshold) (step S15: Yes), the levels of these peaks are further compared (step S17). Then, the comparison detection unit 70 determines whether the level difference between these peaks is equal to or less than a threshold (level difference ⁇ threshold) based on the comparison result regarding the peak levels obtained by the process of step S ⁇ b> 17 ( Step S18).
  • a threshold level difference ⁇ threshold
  • step S18 the comparison detection unit 70 specifies the peak of the closest detection angle in the other detection result with respect to the reference peak in one detection result, and the level difference between these peaks is larger than the threshold ( When it is determined that (level difference> threshold) (step S18: No), this reference peak is determined to be a virtual image (step S21).
  • step S21 the comparison detection unit 70 has a possibility that the peak is the detection result by the main lobe because the angle difference at which the peak appears in the detection result by the first array antenna and the second array antenna is equal to or less than the threshold value.
  • the level difference is larger than the threshold, it is determined that this peak is a detection result by the grating lobe.
  • step S21 the comparison detection unit 70 removes the peak determined to be a virtual image without registering it as a detection result, and then determines whether or not the processing has been completed for all peaks (step S21). S22). In step S22, the comparison detection unit 70 determines whether or not the processing has been completed for all peaks of the first detection result and the second detection result.
  • the comparison detection unit 70 then repeats the processing of steps S14 to S21 for all the peaks, and as a result, when it is determined that the processing has been completed for all the peaks in step S22 (step S22: Yes), that is, the first detection result. If it is determined that the processing has been completed for all the peaks of the second detection result, the detection result of the main lobe is removed in a state where the detection result of the grating lobe is removed based on the detection result of the target registered in step S20. The detection result including it is output (step S23). Thereafter, the process shown in FIG.
  • the antenna elements can be arranged at a wide interval, so that a thin beam can be realized with a small number of elements, and the angular resolution can be improved. Further, it can be determined whether the result detected by each array antenna is due to the main lobe or the grating lobe, and ghosts due to the grating lobe can be removed. As a result, false detection of the target can be reduced. Therefore, according to array antenna apparatus 100 in the first embodiment, erroneous detection due to a grating lobe can be satisfactorily removed from the detection result of the array antenna.
  • FIG. 7 is a diagram illustrating an example of the configuration of the array antenna apparatus according to the second embodiment.
  • FIG. 8 is a diagram illustrating an example of an array antenna according to the second embodiment.
  • the array antenna apparatus 200 includes a third array antenna 80 and a control unit 40.
  • the third array antenna 80 will be described with reference to FIG.
  • the antenna elements 10 are arranged at positions K1 times and K2 times the minimum antenna element interval D, and the antenna elements 10 on the left end are used as a common antenna element on a straight line.
  • 10 is an array antenna.
  • K1 and K2 are relatively positive positive integers of 2 or more.
  • the third array antenna 80 is an array antenna configured by combining the two first array antennas 20 and the second array antenna 30 shown in FIG. In the first array antenna 20 and the second array antenna 30, if the first antenna element from the left in FIG. 2 is common, the minimum antenna element interval D is K1 times as in the third array antenna 80 shown in FIG. The antenna element is arranged at a position K2 times.
  • each antenna element corresponding to the two types of array antenna element arrays has two types of array elements in a state where at least one position of the antenna elements of the two types of array antenna element arrays is overlapped. Antenna element arrays are combined in a straight line and arranged in series. Specifically, each antenna element corresponding to the first antenna element array and the second antenna element array overlaps at least one position of the antenna elements of the first antenna element array and the second antenna element array. In this state, the first antenna element array and the second antenna element array are combined in a straight line and arranged in series.
  • the radar apparatus As a result, the size of the array antenna device 200 itself can be reduced, and the mountability to the vehicle can be improved. Further, by appropriately selecting positive integers K1 and K2 that are relatively prime two or more, the number of antenna elements 10 that are continuously arranged at the minimum antenna element interval D can be made two, and the feeding section is By making it possible to install the two antenna elements 10 arranged side by side in the left and right vacant spaces, it is possible to mount the feeding portion even if the minimum antenna element interval D is small.
  • control unit 40 includes distance / speed detection units 50-1 and 50-2, angle detection units 60-1 and 60-2, and a comparison detection unit 70. Each processing unit of the following control unit 40 will be described.
  • the distance / speed detection units 50-1 and 50-2 are distance / speed detection means for detecting the distance / velocity of the target from the signals received by the antenna elements 10 of the third array antenna 80, respectively. is there.
  • the distance / velocity detectors 50-1 and 50-2 perform detection processing by selecting a signal of each necessary antenna element 10 among the antenna elements 10 on the third array antenna 80.
  • the distance / velocity detection unit 50-1 selects a signal of the antenna element 10 arranged at a position K1 times the minimum antenna element interval D among the antenna elements 10 on the third array antenna 80. Detection process.
  • the distance / velocity detecting unit 50-2 selects a signal of the antenna element 10 arranged at a position K2 times the minimum antenna element interval D from the antenna elements 10 on the third array antenna 80, and performs detection processing. I do.
  • the distance / velocity detection units 50-1 and 50-2 output the detection results of the target distance and velocity to the angle detection units 60-1 and 60-2, respectively.
  • the angle detection units 60-1 and 60-2 are angle detection means for detecting the angle of the target using the detection results of the distance / speed detection units 50-1 and 50-2, respectively.
  • This detection result includes the detection result in the grating lobe in addition to the detection result in the main lobe.
  • Each of the angle detection units 60-1 and 60-2 outputs the detection result of the target angle to the comparison detection unit 70.
  • the comparison detection unit 70 is arranged in the antenna element 10 on the third array antenna 80 at a position K1 times the minimum antenna element interval D and at a position K2 times the minimum antenna element interval D. It is a comparison detection means which compares the detection result of the angle obtained from the antenna element 10 made. Similarly to the first embodiment, the comparison detection unit 70 detects a difference in the angle detection result, removes a difference that is large as a ghost due to a grating lobe, and outputs the remaining result as a detection result.
  • the first antenna element array includes the antenna elements 10 arranged in a straight line in the third array antenna 80 at intervals of K1 times the minimum antenna element interval D. It is a group.
  • the second antenna element array is a group of antenna elements 10 arranged in a straight line in the third array antenna 80 at intervals of K2 times the minimum antenna element interval D.
  • the present invention is not limited to this.
  • the array antenna apparatus 200 according to the second embodiment combines the distance / velocity detection units 50-1 and 50-2 and the angle detection units 60-1 and 2 into one system, and selects and processes only signals of necessary antenna elements. Thus, the processing unit may be simplified.
  • FIG. 9 is a diagram illustrating an example of the configuration of the array antenna apparatus according to the third embodiment.
  • FIG. 9 is also a diagram illustrating an example of the configuration of the array antenna device according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example of the arrangement of antenna elements in the third embodiment.
  • FIG. 11 is a diagram illustrating an example of selectable antenna element intervals in the third embodiment.
  • FIG. 12 is a diagram illustrating an example of a directivity pattern at each antenna element interval in the third embodiment.
  • FIG. 13 is a flowchart illustrating an example of processing in the third embodiment.
  • the array antenna apparatus 300 includes the third array antenna 80 shown in FIG.
  • the third array antenna 80 is an array antenna in which the antenna elements 10 are arranged at positions K1 and K2 times the minimum antenna element interval D, and the antenna elements 10 are arranged on a straight line with the leftmost antenna element 10 in common. is there. K1 and K2 are relatively positive positive integers of 2 or more.
  • the array antenna apparatus 300 includes a third array antenna 80 and a control unit 40.
  • the control unit 40 includes distance / speed detection units 50-1 to 50-8 corresponding to the number of antenna elements 10 in the third array antenna 80, antenna element selection unit 55, angle detection unit 60, and detection. And a result processing unit 90. Each processing unit of the following control unit 40 will be described.
  • the distance / speed detection units 50-1 to 50-8 are distance / speed detection means for detecting the distance / velocity of the target from the signals received by the antenna elements 10 of the third array antenna 80, respectively. is there.
  • the distance / velocity detection units 50-1 to 50-8 receive the signals of the corresponding antenna elements 10 on the third array antenna 80 and perform detection processing.
  • the distance / velocity detection unit 50-1 receives the signal of the leftmost antenna element 10 among the antenna elements 10 on the third array antenna 80, and performs detection processing.
  • the distance / velocity detection unit 50-2 selects the signal of the second antenna element 10 from the left end and performs detection processing.
  • the distance / speed detector 50-3 receives the signal of the third antenna element 10 from the left end and performs detection processing. Similarly, the distance / speed detectors 50-4 to 50-8 select the signals of the fourth to eighth antenna elements 10 from the left end and perform detection processing. The distance / velocity detection units 50-1 to 50-8 output the detection results of the target distance / velocity to the antenna element selection unit 55, respectively.
  • the antenna element selection unit 55 is an antenna element selection unit that selects a necessary antenna element 10. Specifically, the antenna element selection unit 55 holds the detection results of each antenna element output from the distance / velocity detection units 50-1 to 50-8, and the subsequent angle detection unit 60 uses them for the detection process. The combination of antenna elements to be selected is selected.
  • Example 1 shows an array antenna composed of five antenna elements arranged at intervals of D ⁇ 4 and five antenna elements arranged at intervals of D ⁇ 3. In Example 1, the leftmost antenna element and the second antenna element from the right end are made common among these antenna elements.
  • Example 2 shows an array antenna including six antenna elements arranged at intervals of D ⁇ 5 and six antenna elements arranged at intervals of D ⁇ 3. In Example 2, the second antenna element from the left end and the second antenna element from the right end are made common among these antenna elements.
  • Example 3 shows an array antenna composed of six antenna elements arranged at intervals of D ⁇ 5 and six antenna elements arranged at intervals of D ⁇ 4. In Example 3, the leftmost antenna element and the second antenna element from the right end are made common among these antenna elements.
  • the antenna element selection unit 55 appropriately selects a combination of antenna elements used by the angle detection unit 60 for detection processing from Examples 1 to 3 shown in FIG.
  • it is not limited to the example shown in FIG. 10, It can select from many antenna element arrangement examples other than the example shown in FIG. FIG. 10 shows an example in which the number of antenna elements having a D ⁇ K1 interval and the number of antenna elements having a D ⁇ K2 interval are the same, but the number of antenna elements may be different.
  • a combination of antenna elements having intervals other than the D ⁇ K1 interval and the D ⁇ K2 interval can also be used.
  • intervals where the integers (1, 2, 3, 4, 5 in FIG. 11) that make the antenna element interval an integer multiple of the minimum antenna element interval D are not relatively disjoint are omitted.
  • a combination of D ⁇ 5 can be selected.
  • the angle detector 60 detects the angle of the target using the distance / velocity detection result detected by the distance / velocity detector 50 corresponding to the antenna element selected by the antenna element selector 55. It is. This detection result includes the detection result in the grating lobe in addition to the detection result in the main lobe.
  • the angle detection unit 60 outputs the detection result of the target angle to the detection result processing unit 90.
  • the detection result processing unit 90 eliminates erroneous detection due to the grating lobe by comparing the detection results detected by the angle detection unit 60 corresponding to the combination of the antenna elements selected by the antenna element selection unit 55.
  • the detection result processing means for outputting the detection result.
  • FIG. 10 when the combination of D ⁇ 3 and D ⁇ 4 is selected by the antenna element selection unit 55 (in the case of Example 1 in FIG. 10), when the detection results of both angles are compared by the detection result processing unit 90, FIG. As shown, peaks near +42 degrees and ⁇ 42 degrees detected in the case of D ⁇ 3, peaks near +90 degrees and ⁇ 90 degrees detected in the case of D ⁇ 4, and peaks near +30 degrees and ⁇ 30 degrees. As for the peaks, although the level difference of the received intensity is not more than the threshold (level difference ⁇ threshold), the angle difference of the detection angle is larger than the threshold (angle difference> threshold), so these peaks are the detection results by the grating lobe. It is determined.
  • the difference between the received intensity levels of the peaks near +0 degrees and ⁇ 0 degrees detected in the case of D ⁇ 3 and the peaks near +0 degrees and ⁇ 0 degrees detected in the case of D ⁇ 4 is a threshold value. Since it is below (level difference ⁇ threshold) and the angle difference of the detection angle is also below the threshold (angle difference ⁇ threshold), it is determined that these peaks are detection results by the main lobe.
  • FIG. 10 when the combination of D ⁇ 3 and D ⁇ 5 is selected by the antenna element selection unit 55 (in the case of Example 2 in FIG. 10), when the detection results of both angles are compared by the detection result processing unit 90, FIG. As shown, peaks near +42 degrees and ⁇ 42 degrees detected in the case of D ⁇ 3, peaks near +52 degrees and ⁇ 52 degrees detected in the case of D ⁇ 5, and peaks near +23 degrees and ⁇ 23 degrees. As for the peaks, although the level difference of the received intensity is not more than the threshold (level difference ⁇ threshold), the angle difference of the detection angle is larger than the threshold (angle difference> threshold), so these peaks are the detection results by the grating lobe. It is determined.
  • the difference between the received intensity levels of the peaks near +0 degrees and ⁇ 0 degrees detected in the case of D ⁇ 3 and the peaks near +0 degrees and ⁇ 0 degrees detected in the case of D ⁇ 5 is a threshold value. Since it is below (level difference ⁇ threshold) and the angle difference of the detection angle is also below the threshold (angle difference ⁇ threshold), it is determined that these peaks are detection results by the main lobe.
  • the difference between the received intensity levels of the peaks near +0 degrees and ⁇ 0 degrees detected in the case of D ⁇ 4 and the peaks near +0 degrees and ⁇ 0 degrees detected in the case of D ⁇ 5 is a threshold value. Since it is below (level difference ⁇ threshold) and the angle difference of the detection angle is also below the threshold (angle difference ⁇ threshold), it is determined that these peaks are detection results by the main lobe.
  • the angle difference threshold value used when the detection result processing unit 90 compares the detection results of the two angles is set appropriately between the peaks for each combination selected by the antenna element selection unit 55. It is assumed that the difference between the detected angles is set to a value that can be determined.
  • the angle at which the grating lobe appears also differs. Therefore, as in this embodiment, the detection result by the directivity pattern obtained from the combination of the plurality of antenna element spacings. Thus, it is possible to eliminate erroneous detection due to the grating lobe.
  • the distance / speed detectors 50-1 to 50-8 detect the distance / speed of the target from the signals received by the antenna elements 10 of the third array antenna 80, respectively (step S40).
  • the antenna element selection unit 55 holds the detection result of each antenna element output from the distance / velocity detection units 50-1 to 50-8 in step S40, and the angle detection unit 60 performs detection processing in the subsequent step S42. A combination of antenna elements to be used is selected (step S41).
  • the angle detection unit 60 detects the target angle using the distance / velocity detection result detected by the distance / velocity detection unit 50 corresponding to the antenna element selected by the antenna element selection unit 55 in step S41. (Step S42).
  • the angle detection unit 60 records the detection result of the angle detected in step S42 (step S43).
  • the detection result includes a detection result in the grating lobe in addition to the detection result in the main lobe.
  • the antenna element selection unit 55 After recording the angle detection result by the angle detection unit 60 in step S43, the antenna element selection unit 55 further determines whether or not the processing has been completed for all combinations in order to process each combination of antenna elements ( Step S44).
  • step S44 when the antenna element selection unit 55 determines that the processing has not been completed for all combinations in step S44 (step S44: No), the process returns to step S41, and for each combination of antenna elements, step is performed. The processes of S41 to S43 are repeated.
  • step S44 If the antenna element selection unit 55 repeats the processing of steps S41 to S43 for all combinations, and determines that the processing for all combinations is completed in step S44 (step S44: Yes), the process proceeds to step S45. To do.
  • the detection result processing unit 90 compares the angle of the peak included in the angle detection result based on the angle detection result recorded for each combination in step S43 (step S45).
  • the detection result processing unit 90 determines whether or not the peak angle difference is equal to or less than a threshold (angle difference ⁇ threshold) based on the comparison result regarding the peak angle obtained by the process of step S45 (step S46). .
  • step S46 the detection result processing unit 90 identifies the peak of the closest detection angle in the other detection result with respect to the reference peak in the one detection result, and the angle difference between these peaks is larger than the threshold value.
  • this reference peak is determined as a virtual image (step S47).
  • the detection result processing unit 90 determines that the peak is a virtual image in step S47, the detection result processing unit 90 removes the peak determined to be a virtual image without registering it as a detection result, and then completes the processing for all the peaks in order to perform processing for each peak. Is determined (step S53). In step S53, the detection result processing unit 90 determines whether the processing has been completed for all peaks of the first detection result and the second detection result.
  • step S53 if the detection result processing unit 90 determines that the processing has not been completed for all peaks (step S53: No), the process returns to step S45, and the detection results of steps S45 to S52 are determined for each peak. The processing by the processing unit 90 is repeated.
  • step S45 the description of the processing of the third embodiment is continued.
  • the detection result processing unit 90 compares the peak angle with respect to another peak that has not been processed in steps S45 to S52 (step S45). . Then, the detection result processing unit 90 determines whether or not the peak angle difference is equal to or smaller than the threshold (angle difference ⁇ threshold) based on the comparison result regarding the peak angle obtained by the process of step S45 (step S45). S46).
  • step S46 the detection result processing unit 90 identifies the peak of the closest detection angle in the other detection result with respect to the reference peak in one detection result, and the angular difference between these peaks is determined.
  • the threshold angle difference ⁇ threshold
  • step S48 the levels of these peaks are further compared.
  • step S49 the detection result processing unit 90 determines whether the level difference between these peaks is equal to or less than a threshold value (level difference ⁇ threshold value) based on the comparison result regarding the peak level obtained by the process of step S48. (Step S49).
  • step S49 the detection result processing unit 90 identifies the peak of the closest detection angle in the other detection result with respect to the reference peak in one detection result, and the level difference between these peaks is equal to or less than the threshold value ( If it is determined that level difference ⁇ threshold (step S49: Yes), the reference peak is determined as a true target (step S50).
  • the detection result processing unit 90 registers the detection result of the target determined to be the detection result by the main lobe in step S50 (step S51).
  • the detection result processing unit 90 determines whether or not processing has been completed for all peaks (step S53). In step S53, the detection result processing unit 90 determines whether the processing has been completed for all peaks of the first detection result and the second detection result. Here, in step S53, if the detection result processing unit 90 determines that the processing has not been completed for all peaks (step S53: No), the process returns to step S45 again, and detection of steps S45 to S52 is performed for each peak. The processing by the result processing unit 90 is repeated.
  • the detection result processing unit 90 Based on the angle detection result recorded for each combination in step S43, the detection result processing unit 90 compares the peak angle with respect to another peak that has not been subjected to the processing in steps S45 to S52 (step S45). ). Then, the detection result processing unit 90 determines whether or not the peak angle difference is equal to or smaller than the threshold (angle difference ⁇ threshold) based on the comparison result regarding the peak angle obtained by the process of step S45 (step S45). S46).
  • step S46 the detection result processing unit 90 identifies the peak of the closest detection angle in the other detection result with respect to the reference peak in one detection result, and the angular difference between these peaks is determined.
  • the threshold angle difference ⁇ threshold
  • step S48 the levels of these peaks are further compared.
  • step S49 the detection result processing unit 90 determines whether the level difference between these peaks is equal to or less than a threshold value (level difference ⁇ threshold value) based on the comparison result regarding the peak level obtained by the process of step S48. (Step S49).
  • step S49 the detection result processing unit 90 specifies the peak of the closest detection angle in the other detection result with respect to the reference peak in one detection result, and the level difference between these peaks is larger than the threshold value.
  • this reference peak is determined to be a virtual image (step S52).
  • the detection result processing unit 90 determines that the peak is a virtual image in step S52, the detection result processing unit 90 removes the peak determined to be a virtual image without registering it as a detection result, and then determines whether the processing has been completed for all peaks ( Step S53). In step S53, the detection result processing unit 90 determines whether the processing has been completed for all peaks of the first detection result and the second detection result.
  • step S53 the detection result processing unit 90 repeats the processing of steps S45 to S52 for all peaks, and as a result, it is determined in step S53 that the processing has been completed for all peaks (step S53: Yes), that is, the first detection.
  • step S54 the detection result by the main lobe in a state where false detection by the grating lobe is removed based on the detection result of the target registered in step S51 Is output (step S54). Thereafter, the process shown in FIG.
  • the detection result of each antenna element is held, the angle detection is repeated by changing the combination to be used, and the result is used for the grating lobe.
  • the detection result can be removed.
  • both sides of the antenna elements lined up with the minimum antenna element interval D can be opened widely, whereby the feeding portion to the antenna element can be released to the left and right of the antenna elements lined up with the minimum antenna element interval D. Even if the element spacing D is set to be small, it is easy to mount the power feeding circuit.
  • the example in which the processing of steps S41 to S43 is repeated for each combination until all combinations of antenna elements are completed in step S44 of FIG. 13 is not limited thereto.
  • the processes in steps S41 to S43 may be repeated for the combination of antenna elements selected in step S41. For example, if only the combination of D ⁇ 4 and D ⁇ 5 (example 3 in FIG. 10) and the combination of D ⁇ 3 and D ⁇ 5 (example 2 in FIG. 10) are selected in step S41, these For the two combinations, the processing of steps S41 to S43 may be repeated.
  • the array antenna devices 100 to 300 of the first to third embodiments including the array antenna having the arrangement structure of the present embodiment as described below, erroneous detection by the grating lobe of the prior art It is possible to solve the problems in the technology for removing the.
  • Patent Document 1 discloses that a grating lobe is set by a product of transmission / reception antenna patterns as a relationship in which the transmission antenna array interval and the reception antenna array interval are set to a prime integer ratio and the grating lobes do not overlap each other.
  • An array antenna with suppressed is described.
  • the antenna element interval is set so that a grating lobe is generated at the null position of the element antenna pattern.
  • the array antenna apparatus of this embodiment has an array antenna apparatus that is arranged so as to include two types of array antenna element arrays.
  • the antenna element interval between the two types of array antenna element arrays is the minimum antenna element interval that is an antenna element interval that is set so as not to generate a grating lobe in the predetermined detection angle range (beam scanning range) shown in Equation 1.
  • the integers are relatively prime and both are positive integers of 2 or more.
  • the detection peak due to the grating lobe within the beam scanning range can be determined. In this way, erroneous detection due to grating lobes can be eliminated when beam scanning is performed with an array antenna.
  • an array antenna device in which the antenna elements of the receiving antenna are arranged at a narrow interval that does not generate a grating lobe in the detection angle range can be considered, but the overall antenna size decreases as the antenna element array interval is set to be narrower. There is a problem that the width of the beam formed thereby becomes wider, that is, the angular resolution is deteriorated. Further, in such an array antenna device, since the antenna elements are arranged at a narrow interval, there is a problem that a feeding port cannot be arranged between the antenna elements. For example, when ⁇ 90 degree beam scanning is performed, the antenna element interval needs to be 0.5 ⁇ or less. However, when power is supplied to the waveguide by this, the lateral width of the waveguide is already 0.5 wavelength. Because of the above, a waveguide cannot be arranged between antenna elements.
  • the array antenna apparatus provided with the array antenna having the arrangement structure of the present embodiment is configured so that wide-angle beam scanning is possible while the antenna element interval is wide.
  • using an array antenna that can be decomposed into two types of array antenna element arrays with different antenna element intervals target detection processing is performed at each antenna element interval, and the results are compared.
  • wide-angle beam scanning is realized by discriminating and removing ghosts caused by grating lobes.
  • an element interval wider than the minimum element interval can be secured at various locations of the array antenna, so that the waveguide can be arranged between the antenna elements.
  • the beam width when the space between the array antenna elements is made larger becomes narrower. Therefore, the angular resolution is improved as compared with the array antenna arranged with the same number of elements and the minimum element spacing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

 本発明のアレーアンテナ装置は、2種類のアレーアンテナ素子配列を含むように配置されるアレーアンテナ装置であって、2種類のアレーアンテナ素子配列のアンテナ素子間隔は、所定の検知角度範囲でグレーティングローブを生じさせないように設定されたアンテナ素子間隔である最小アンテナ素子間隔の整数倍であり、各整数は互いに素な2以上の正の整数である。

Description

アレーアンテナ装置
 本発明は、アレーアンテナ装置に関する。
 メインローブを-α~αの角度範囲で電子的に走査してターゲット検出を行うためのアレーアンテナにおいては、素子アンテナ間距離をd、送受信電波の波長をλとすると、d>0.5λ/sinαのときには、グレーティングローブがメインローブの走査範囲(-α~α)内に現れる場合がある。
 グレーティングローブがメインローブの走査範囲内に現れると、ターゲットの方向を誤って検知するおそれがある。そのため、グレーティングローブがメインローブの走査範囲内で生じないようにすることが望ましい。
 ここで、波長λに対して素子アンテナ間距離dを十分に小さくすれば、メインローブの指向角度にかかわらず、グレーティングローブがメインローブの走査範囲内に生じないようにすることができる。しかし、波長λ及び素子アンテナ間距離dは他の様々な条件の制約を受けており、これらの条件の上限や下限を外れて波長λ及び素子アンテナ間距離dを設定することは難しい。
 そこで、従来からグレーティングローブによる誤検出を除去する技術が開発されている。
 例えば、特許文献1に記載のアレーアンテナ装置では、複数の素子アンテナを等間隔かつ一直線上に配置して構成される送信アレーアンテナ及び受信アレーアンテナを備え、互いに素な整数をM、Nとし、受信アレーアンテナの素子アンテナは、素子アンテナのアレー素子パターンにおける第1ヌル発生角近傍に、受信アレーアンテナのアレーファクタの第Mグレーティングローブを有するよう、整数Mに波長を乗算し第1ヌル発生角で除算した商で配置され、送信アレーアンテナの素子アンテナは、送信アレーアンテナのアレーファクタの第Nグレーティングローブの発生角度が第Mグレーティングローブの発生角と一致するよう、整数Nに受信アレーアンテナの素子アンテナの間隔を乗算し整数Mで除算した商からなる間隔で配置される。
 このように、特許文献1に記載の技術では、2種類のアレーアンテナ素子配列の指向性パターンの積をとることで、グレーティングローブを抑圧する。但し、これだけではビーム走査の角度範囲内のグレーティングローブの全てを抑圧することは難しいため、更に、グレーティングローブの発生角度と、アンテナ素子指向性(エレメントファクタ)において著しくアンテナ利得が低いヌル・ポイントが形成される角度と、を一致させることで、残りのグレーティングローブも抑圧している。
特開2012-120144号公報
 しかしながら、従来のグレーティングローブを抑圧する技術(特許文献1等)においては、ビーム走査を行うことを前提としていないため、ビーム走査を行うと、それに合わせてグレーティングローブが発生する角度も変化してしまう。このような場合、グレーティングローブ発生角度とヌル・ポイント形成角度とが一致しなくなる。その結果、所望の検知角度範囲内において全てのグレーティングローブを抑圧することができなくなる場合が生じる。
 本発明は、上記の事情に鑑みてなされたものであって、アレーアンテナにおいてビーム走査を行う場合に、グレーティングローブによる誤検出を除去することができるアレーアンテナ装置を提供することを目的とする。
 本発明のアレーアンテナ装置は、所定の周期性を持った素子間隔で配列される第一のアンテナ素子配列と、前記第一のアンテナ素子配列における周期性とは異なる所定の周期性を持った素子間隔で配列される第二のアンテナ素子配列と、を含むように複数のアンテナ素子が配列されたアレーアンテナ装置であって、前記第一のアンテナ素子配列のアレーアンテナによる検出結果と、前記第二のアンテナ素子配列のアレーアンテナによる検出結果と、の比較に基づいて、グレーティングローブによる誤検出を除去する制御部を備え、前記第一のアンテナ素子配列のアンテナ素子間隔である第一素子間隔と、前記第二のアンテナ素子配列のアンテナ素子間隔である第二素子間隔とは、共に、数式1を満たすようなアンテナ素子間隔として設定される最小アンテナ素子間隔の整数倍の間隔であり、
  0<D<(0.5λ/sinα)  ・・・(数式1)
(数式1において、Dは最小アンテナ素子間隔を示し、αは所定の最大検知角度を示し、λは電波の波長を示す)
 前記第一素子間隔を前記最小アンテナ素子間隔の整数倍とする整数である第一の整数と、前記第二素子間隔を前記最小アンテナ素子間隔の整数倍とする整数である第二の整数と、は互いに素な関係であり、且つ、共に2以上の正の整数であることを満たすことを特徴とする。
 上記アレーアンテナ装置において、前記第一のアンテナ素子配列及び前記第二のアンテナ素子配列に夫々対応する各アンテナ素子は、前記第一のアンテナ素子配列及び前記第二のアンテナ素子配列のアレーアンテナが並列に配置されることが好ましい。
 上記アレーアンテナ装置において、前記第一のアンテナ素子配列及び前記第二のアンテナ素子配列に夫々対応する各アンテナ素子は、前記第一のアンテナ素子配列及び前記第二のアンテナ素子配列のアンテナ素子の位置を少なくとも1箇所重ねた状態で、前記第一のアンテナ素子配列及び前記第二のアンテナ素子配列が一直線上で組み合わさって直列に配置されることが好ましい。
 本発明に係るアレーアンテナ装置によれば、アレーアンテナにおいてビーム走査を行う場合に、グレーティングローブによる誤検出を除去することができるという効果を奏する。
図1は、実施形態1におけるアレーアンテナ装置の構成の一例を示す図である。 図2は、実施形態1におけるアレーアンテナの一例を示す図である。 図3は、受信波の位相関係の一例を示す図である。 図4は、アレーアンテナ指向性の一例を示す図である。 図5は、実施形態1における指向性パターンの一例を示す図である。 図6は、実施形態1における処理の一例を示すフローチャートである。 図7は、実施形態2におけるアレーアンテナ装置の構成の一例を示す図である。 図8は、実施形態2におけるアレーアンテナの一例を示す図である。 図9は、実施形態3におけるアレーアンテナ装置の構成の一例を示す図である。 図10は、実施形態3におけるアンテナ素子の配置の一例を示す図である。 図11は、実施形態3における選択可能なアンテナ素子間隔の一例を示す図である。 図12は、実施形態3における各アンテナ素子間隔での指向性パターンの一例を示す図である。 図13は、実施形態3における処理の一例を示すフローチャートである。
 以下に、本発明にかかるアレーアンテナの配置構造を有するアレーアンテナを備えたレーダ装置としてのアレーアンテナ装置の実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるものあるいは実質的に同一のものが含まれる。
 [実施形態1]
 実施形態1について、図1~図6を参照して説明する。図1は、実施形態1におけるアレーアンテナ装置100の構成の一例を示す図である。図2は、実施形態1におけるアレーアンテナの一例を示す図である。図3は、受信波の位相関係の一例を示す図である。図4は、アレーアンテナ指向性の一例を示す図(極座標表示)である。図5は、実施形態1における指向性パターンの一例を示す図である。図6は、実施形態1における処理の一例を示すフローチャートである。
 図1に示すように、実施形態1におけるアレーアンテナ装置100は、第1アレーアンテナ20と、第2アレーアンテナ30と、制御部40とを備えて構成される。
 ここで、図2を参照して、第1アレーアンテナ20及び第2アレーアンテナ30について説明する。
 図2に示すように、第1アレーアンテナ20は、アンテナ素子10を最小アンテナ素子間隔DのK1倍の間隔で一直線上に配置したアレーアンテナである。第2アレーアンテナ30は、アンテナ素子10を最小アンテナ素子間隔DのK2倍の間隔で一直線上に配置したアレーアンテナである。K1及びK2は、互いに素な関係であり、かつ、共に2以上の正の整数である。
 ここで、「互いに素な関係であり、かつ、共に2以上の正の整数」とは、2つの整数が1と-1以外に公約数を持たない場合の2数の関係である「互いに素な関係」になる正の整数のうち、1を除く2以上の正の整数であることを意味する。本実施形態において、互いに素な関係であり、かつ、共に2以上の正の整数は、「互いに素な2以上の正の整数」と呼ぶことがある。ここで、互いに素な2以上の正の整数は、3以上であることが好ましい。
 本実施形態において、「最小アンテナ素子間隔」とは、ビーム走査を行う場合において所定の検知角度範囲でグレーティングローブを生じさせないように設定されたアンテナ素子間隔である。例えば、所定の検知角度範囲を±α度とすると、最小アンテナ素子間隔Dは、以下の数式1で示す範囲に設定する必要がある。例えば「α=90度」である場合には、アンテナ素子間隔は、0.5λより小さい値とする必要がある。λは、送受信電波の波長を示す。
  0<D<(0.5λ/sinα)   ・・・(数式1)
 ここで図2に加え、図3及び図4を参照して、最小アンテナ素子間隔Dを数式1で示す範囲に設定する理由を説明する。
 図3に示すように、アレーアンテナのアンテナ素子間隔が比較的広いと、位相の循環性(360度が0度に戻るという事象)により所望方向から到来した電波を受信した場合の位相関係が等しくなる別の到来方向が存在する場合がある。ここで、所望方向はターゲットが存在する方向であり、別の到来方向はグレーティング方向である。この場合、図4に示すように、ターゲットが存在する所望方向のメインローブと同等のローブがグレーティング方向に生じる。このローブがグレーティングローブである。
 レーダ用アンテナでグレーティングローブが発生すると、受信した信号が所望方向から到来したものか、グレーティング方向から到来したものか判別できずにターゲットの方向を誤検出する可能性がある。このグレーティングローブがメインローブの走査範囲(-α~α)で生じないようにするにはアンテナ素子間隔を数式1に示すように0.5λ/sinα未満にする必要がある。
 そこで、図2に示すように、本実施形態におけるアレーアンテナでは、数式1を満たす最小アンテナ素子間隔Dを設定し、この最小アンテナ素子間隔Dの異なる2つの正の整数(K1,K2)倍の間隔でアンテナ素子を配置している。ここで、各2つの正の整数(K1,K2)は、互いに素な2以上の正の整数である。
 このように、本実施形態におけるアレーアンテナは、図2に示すように、2種類のアレーアンテナ素子配列を含むように配置されるアレーアンテナの配置構造を有している。この2種類のアレーアンテナ素子配列のアンテナ素子間隔は、所定の検知角度範囲でグレーティングローブを生じさせないように設定されたアンテナ素子間隔である最小アンテナ素子間隔の整数倍(D×K1,D×K2)であり、各整数は互いに素な2以上の正の整数である。
 具体的には、図2に示すように、本実施形態におけるアレーアンテナは、2種類のアレーアンテナ素子配列を夫々含むにように構成された第1アレーアンテナ20と第2アレーアンテナ30を含む。第1アレーアンテナ20は、所定の周期性を持った素子間隔(図2において、D×K1のアンテナ素子間隔)で複数のアンテナ素子10が配列されたアレーアンテナである。また、第2アレーアンテナ30は、第一のアンテナ素子配列における周期性とは異なる所定の周期性を持った素子間隔(図2において、D×K2のアンテナ素子間隔)で複数のアンテナ素子10が配列されたアレーアンテナである。
 ここで、第一のアンテナ素子配列のアンテナ素子間隔である第一素子間隔(図2において、D×K1のアンテナ素子間隔)と、第二のアンテナ素子配列のアンテナ素子間隔である第二素子間隔(図2において、D×K2のアンテナ素子間隔)とは、共に、数式1を満たすようなアンテナ素子間隔として設定される最小アンテナ素子間隔Dの整数倍(K1,K2)の間隔である。この第一素子間隔を最小アンテナ素子間隔の整数倍とする整数である第一の整数K1と、この第二素子間隔を最小アンテナ素子の整数倍とする整数である第二の整数K2と、は互いに素な関係であり、且つ、共に2以上の正の整数であることを満たしている。よって、第一素子間隔と第二素子間隔とは共に、電波の波長λの0.5倍以上の間隔で配置することができる。これにより、本実施形態におけるアレーアンテナでは、アンテナ素子を広い間隔で配置しながらグレーティングローブによる誤検出を除去することができる。その結果、本実施形態のアレーアンテナ装置によれば、所定の検知角度範囲(-α~α)(ビーム走査範囲)内では、グレーティングローブによる誤検出を除去することが可能となる。すなわち、2種類の素子配置のアレーアンテナによる検出結果を比較することで、ビーム走査範囲内のグレーティングローブによる検出ピークを判別することができる。このように、アレーアンテナにおいてビーム走査を行う場合に、グレーティングローブによる誤検出を除去できるようになる。
 図1に戻り、実施形態1のアレーアンテナ装置100の構成の説明を続ける。
 図1において、制御部40は、第一のアンテナ素子配列のアレーアンテナによる検出結果と、第二のアンテナ素子配列のアレーアンテナによる検出結果と、の比較に基づいて、グレーティングローブによる誤検出を除去する制御手段である。第一のアンテナ素子配列のアレーアンテナによる検出結果及び第二のアンテナ素子配列のアレーアンテナによる検出結果は、後述の角度検出部60-1~2で検出される2種類のアレーアンテナ素子配列夫々で受信した信号に基づくターゲットの角度の検出結果である。ここで、制御部40は、距離・速度検出部50-1~2と、角度検出部60-1~2と、比較検出部70とを備える。以下の制御部40の各処理部について説明する。
 制御部40のうち、距離・速度検出部50-1~2は、夫々、第1アレーアンテナ20及び第2アレーアンテナ30の各アンテナ素子10で受信した信号から、ターゲットの距離・速度を検出する距離・速度検出手段である。本実施形態において、距離・速度検出部50-1~2は、当該技術分野で用いられる距離・速度の検出手法によってアンテナ素子毎にターゲットの距離・速度を検出する。距離・速度検出部50-1~2は、夫々、ターゲットの距離・速度の検出結果を角度検出部60-1~2へ出力する。
 制御部40のうち、角度検出部60-1~2は、夫々、距離・速度検出部50-1~2の検出結果を用いてターゲットの角度を検出する角度検出手段である。この検出結果にはメインローブでの検出結果以外にグレーティングローブでの検出結果も含まれている。本実施形態において、角度検出部60-1~2は、当該技術分野で用いられる角度の検出手法によってターゲットの角度を検出する。角度検出部60-1~2は、夫々、ターゲットの角度の検出結果を比較検出部70へ出力する。
 ここで、図2及び図5を参照し、2種類のアレーアンテナ素子配列による検出結果の一例を示す。
 実施形態1では、図2に示すように、アンテナ素子間隔が異なる2種類のアレーアンテナが並列に配置される。実施形態1において、第一のアンテナ素子配列及び第二のアンテナ素子配列に夫々対応する各アンテナ素子10は、第一のアンテナ素子配列及び第二のアンテナ素子配列のアレーアンテナが並列に配置される。一例として、図2に示すように、第一のアンテナ素子配列及び第二のアンテナ素子配列に夫々対応する各アンテナ素子10は、第一のアンテナ素子配列及び第二のアンテナ素子配列の一端に対応するアンテナ素子10の位置を揃えた状態で、第一のアンテナ素子配列及び第二のアンテナ素子配列のアレーアンテナが並列に配置されていてもよい。
 このような2種類のアレーアンテナ素子配列(図2において、第一のアンテナ素子配列及び第二のアンテナ素子配列)を有することにより、アンテナ素子間隔の異なる2種類のアレーアンテナ素子配列(図2において、第1アレーアンテナ20及び第2アレーアンテナ30)における指向性パターンは、夫々、図5の上部に示す第一指向性パターンと、図5の下部に示す第二指向性パターンとなる。
 図5において、計算条件は、D=0.5λ、K1=3、K2=4である。図5の上図は、第一指向性パターンとして、最小アンテナ素子間隔DのK1倍の間隔でアンテナ素子10が配置された第1アレーアンテナ20の指向性パターンを示している。図5の上図は、+42度及び-42度付近でグレーディングローブが生じている。また、図5の下図は、第二指向性パターンとして、最小アンテナ素子間隔DのK2倍の間隔でアンテナ素子10が配置された第2アレーアンテナ30の指向性パターンの一例を示している。図5の下図は、メインローブを0度方向に向けた場合の指向性パターンであり、+30度と-30度付近、及び、+90度と-90度付近にグレーディングローブが生じている。
 図5に示すように、第一指向性パターン及び第二指向性パターンは、所定の検知角度範囲内をメインローブでビーム走査する場合には、当該検知角度範囲内で生じるグレーティングローブの位置が重なることはなくなる。図5に示すように、所定の検知角度範囲内で生じるグレーティングローブの位置が重なることがなくなった結果、後述する比較検出部70において2種類のアレーアンテナ素子配列による検出結果を比較することにより、グレーティングローブによるゴースト(虚像)を判別し除去することができるようになる。本実施形態においてゴーストとは、メインローブではなくグレーティングローブでターゲットを検出した結果得られる、実際にその角度には存在しないターゲットの虚像を意味する。
 図1に戻り、制御部40のうち、比較検出部70は、2種類のアレーアンテナでの検出結果の比較を行う比較検出手段である。この検出結果がメインローブで検出したものであれば、どちらの検出ピークの角度も等しくレベル差も小さくなる。一方、グレーティングローブで検出したものであれば2種類のアレーアンテナで検出した角度は異なり、同じ角度で比較すればレベル差が生じることとなる。比較検出部70は、この差を検出し、グレーティングローブによるゴーストとして除去する。そして、比較検出部70は、残った結果を検出結果として出力する。例えば、比較検出部70は、図5に示すような第1アレーアンテナ20による検出結果と第2アレーアンテナ30による検出結果とを比較し、角度差やレベル差が所定の閾値より大きいピークを除去することで、メインローブによる検出結果のみを出力する。より具体的には、例えば、比較検出部70は、図5に示すような第1アレーアンテナ20による検出結果と第2アレーアンテナ30による検出結果とを比較し、一方の指向性パターンにおいて基準となるピークとして選定した所定の基準ピークに対して、もう一方の指向性パターンにおける所定のピークを特定し、これらのピーク間の角度差やレベル差が所定の閾値より大きくなる場合のこの基準ピークを除去する。
 以上のように構成された実施形態1のアレーアンテナ装置100による検出結果出力処理の一例について図6を参照して説明する。
 図6において、第一のアンテナ素子配列は、第1アレーアンテナ20において、最小アンテナ素子間隔DのK1倍の間隔で一直線上に並べられたアンテナ素子10の一群である。第二のアンテナ素子配列は、第2アレーアンテナ30において、最小アンテナ素子間隔DのK2倍の間隔で一直線上に並べられたアンテナ素子10の一群である。
 図6に示すように、第一のアンテナ素子配列において、距離・速度検出部50-1は、第1アレーアンテナ20の各アンテナ素子10で受信した信号からターゲットの距離・速度を検出する(ステップS10)。同様に、第二のアンテナ素子配列において、距離・速度検出部50-2は、第2アレーアンテナ30の各アンテナ素子10で受信した信号からターゲットの距離・速度を検出する(ステップS11)。
 第一のアンテナ素子配列において、角度検出部60-1は、ステップS10にて距離・速度検出部50-1により検出された検出結果を用いてターゲットの角度を検出する(ステップS12)。同様に、第二のアンテナ素子配列において、角度検出部60-2は、ステップS11にて距離・速度検出部50-2により検出された検出結果を用いてターゲットの角度を検出する(ステップS13)。なお、ステップS10~S13までの検出結果には、メインローブでの検出結果以外にグレーティングローブでの検出結果も含まれている。
 比較検出部70は、ステップS12にて角度検出部60-1により検出された第一のアンテナ素子配列の角度の検出結果と、ステップS13にて角度検出部60-2により検出された第二のアンテナ素子配列の角度の検出結果と、に基づいて、角度の検出結果におけるピークの角度を比較する(ステップS14)。
 比較検出部70は、ステップS14の処理により得られたピークの角度に関する比較結果に基づいて、ピークの角度差が閾値以下(角度差≦閾値)であるか否かを判定する(ステップS15)。
 比較検出部70は、ステップS15にて、第1アレーアンテナによる検出結果における基準のピークに対して、第2アレーアンテナによる検出結果における最も近い検出角度のピークを特定し、これらのピークの角度差が閾値より大きい(角度差>閾値)と判定した場合(ステップS15:No)、この基準のピークを虚像と判定する(ステップS16)。言い換えると、ステップS16で比較検出部70は、第一のアレーアンテナと第二のアレーアンテナとの検出結果においてピークが現れる角度の差が閾値より大きい場合、このピークはグレーティングローブによる検出結果であると判定する。ターゲットが0度方向のみに存在する場合には、検出結果の角度特性は指向性パターンと相似となるので、図5の指向性パターンを検出結果とみなして説明を行う。図5の上図と下図を比較した場合、下図の-90度付近で検出された基準とするピークと、それに対して上図の-42度付近で検出されたピークとの角度の差は、約48度であり、角度差が閾値よりも大きいと判定される。この場合、下図の-90度付近で検出されたピークはグレーティングローブによる検出結果であると判定される。
 比較検出部70は、ステップS16においてピークを虚像と判定した場合、虚像と判定したピークを検出結果として登録せず除去した上で、更にピーク毎に処理すべく、全ピークについて処理を終了したか否かを判定する(ステップS22)。ステップS22において、比較検出部70は、第一の検出結果及び第二の検出結果の全ピークについて処理を終了したか否かを判定する。
 ここで、ステップS22において、比較検出部70は、全ピークについて処理を終了していない(ステップS22:No)と判定した場合、ステップS14へ戻り、ピーク毎に、ステップS14~S21の比較検出部70による処理を繰り返す。
 ステップS14に戻り、実施形態1の処理の説明を続ける。比較検出部70は、ステップS12及びステップS13にて角度検出部60-1~2により検出された第一のアレーアンテナと第二のアレーアンテナによる検出結果に基づいて、ステップS14~S21の処理を行っていない別のピークについて、ピークの角度を比較する(ステップS14)。そして、比較検出部70は、ステップS14の処理により得られたピークの角度に関する比較結果に基づいて、ピークの角度差が閾値以下(角度差≦閾値)であるか否かを判定する(ステップS15)。
 続いて、比較検出部70は、ステップS15にて、一方の検出結果における基準のピークに対して、もう一方の検出結果における最も近い検出角度のピークを特定し、これらのピークの角度差が閾値以下(角度差≦閾値)であると判定した場合(ステップS15:Yes)、更にこれらのピークのレベルを比較する(ステップS17)。そして、比較検出部70は、ステップS17の処理により得られたピークのレベルに関する比較結果に基づいて、これらのピークのレベル差が閾値以下(レベル差≦閾値)であるか否かを判定する(ステップS18)。
 本実施形態において、比較検出部70は、ステップS15にてピークの角度差が閾値以下(角度差≦閾値)であると判定した場合、続いてステップS17においてこのピークのレベルを比較する。言い換えると、ステップS17で比較検出部70は、第一のアレーアンテナと第二のアレーアンテナによる検出結果においてピークが現れる角度差が閾値以下である場合、このピークはメインローブによる検出結果の可能性があると判定する。ここで、比較対象のピーク間における角度差が小さくとも、これらのピーク間のレベル差が大きければ、メインローブではなくグレーティングローブによる検出結果である可能性もある。この場合、ピークの角度差だけでなくレベル差も閾値以下であるならばメインローブによる検出結果であると判定できる。そこで、ステップS18において、比較検出部70は、ピークの角度差が閾値以下でありメインローブによる検出結果の可能性があると判定されたピークについて、更にピークのレベルが閾値以下(レベル差≦閾値)であるか、又は、閾値より大きいか(レベル差>閾値)を判定している。
 比較検出部70は、ステップS18にて、一方の検出結果における基準のピークに対して、もう一方の検出結果における最も近い検出角度のピークを特定し、これらのピークのレベル差が閾値以下(レベル差≦閾値)であると判定した場合(ステップS18:Yes)、この基準のピークを真ターゲットと判定する(ステップS19)。言い換えると、ステップS19で比較検出部70は、第一のアレーアンテナと第二のアレーアンテナとの角度の検出結果においてピークが現れる角度の差が閾値以下であり、且つ、ピークのレベル差が閾値以下である場合、このピークはメインローブによる検出結果であると判定する。図5の指向性パターンをターゲットが0度方向のみに存在する場合の検出結果とみなして説明すると、図5の上図と下図を比較した場合、下図の0度付近で検出された基準とするピークと、それに対して上図の0度付近で検出されたピークとの角度差はなく、角度差が閾値以下であると判定される。この場合、下図の0度付近で検出されたピークはメインローブによる検出結果である可能性が高いと判定される。更に、上図の0度付近で検出されたピークのレベルは1であり、下図の0度付近で検出されたピークのレベルも1であるためレベル差もなく、レベル差が閾値以下であると判定される。よって、比較検出部70は、ステップS19において、角度差が閾値以下であり且つレベル差が閾値以下であると判定される場合、下図の0度付近で検出されたピークはグレーティングローブによる検出結果ではなく、ターゲットが存在する所望方向に検出されるメインローブによる検出結果であると判定する。
 比較検出部70は、ステップS19でメインローブによる検出結果であると判定したターゲットの検出結果を登録する(ステップS20)。
 比較検出部70は、全ピークについて処理を終了したか否かを判定する(ステップS22)。ステップS22において、比較検出部70は、第一の検出結果及び第二の検出結果の全ピークについて処理を終了したか否かを判定する。ここで、ステップS22において、比較検出部70は、全ピークについて処理を終了していない(ステップS22:No)と判定した場合、再度ステップS14へ戻り、ピーク毎に、ステップS14~S21の比較検出部70による処理を繰り返す。
 再度ステップS14に戻り、実施形態1の処理の説明を続ける。比較検出部70は、ステップS12及びステップS13にて角度検出部60-1~2により検出された第一のアレーアンテナと第二のアレーアンテナによる検出結果に基づいて、ステップS14~ステップS21の処理を行っていない更に別のピークについて、ピークの角度を比較する(ステップS14)。そして、比較検出部70は、ステップS14の処理により得られたピークの角度に関する比較結果に基づいて、ピークの角度差が閾値以下(角度差≦閾値)であるか否かを判定する(ステップS15)。
 続いて、比較検出部70は、ステップS15にて、一方の検出結果における基準のピークに対して、もう一方の検出結果における最も近い検出角度のピークを特定し、これらのピークの角度差が閾値以下(角度差≦閾値)であると判定した場合(ステップS15:Yes)、更にこれらのピークのレベルを比較する(ステップS17)。そして、比較検出部70は、ステップS17の処理により得られたピークのレベルに関する比較結果に基づいて、これらのピークのレベル差が閾値以下(レベル差≦閾値)であるか否かを判定する(ステップS18)。
 比較検出部70は、ステップS18にて、一方の検出結果における基準のピークに対して、もう一方の検出結果における最も近い検出角度のピークを特定し、これらのピークのレベル差が閾値より大きい(レベル差>閾値)と判定した場合(ステップS18:No)、この基準のピークを虚像と判定する(ステップS21)。言い換えると、ステップS21で比較検出部70は、第一のアレーアンテナと第二のアレーアンテナによる検出結果においてピークが現れる角度差が閾値以下であるので、ピークはメインローブによる検出結果である可能性があったが、レベル差が閾値より大きい場合は、このピークは、グレーティングローブによる検出結果であると判定する。
 比較検出部70は、ステップS21においてピークを虚像と判定した場合、虚像と判定したピークを検出結果として登録せずに除去した上で、全ピークについて処理を終了したか否かを判定する(ステップS22)。ステップS22において、比較検出部70は、第一の検出結果及び第二の検出結果の全ピークについて処理を終了したか否かを判定する。
 そして、比較検出部70は、全ピークについてステップS14~S21の処理を繰り返した結果、ステップS22において全ピークについて処理を終了した(ステップS22:Yes)と判定した場合、すなわち、第一の検出結果及び第二の検出結果の全ピークについて処理を終了したと判定した場合、ステップS20にて登録されたターゲットの検出結果に基づいて、グレーティングローブによる検出結果を除去した状態でメインローブによる検出結果を含む検出結果を出力する(ステップS23)。その後、図6に示した処理を終了する。
 このように、実施形態1におけるアレーアンテナ装置100によれば、アンテナ素子を広い間隔で配置できるため、少ない素子数で細いビームを実現でき、角度分解能を向上させることができる。また、それぞれのアレーアンテナで検出した結果がメインローブによるものか、グレーティングローブによるものかを判別でき、グレーティングローブによるゴーストを除去でき、その結果、ターゲットの誤検出を減らすことができる。したがって、実施形態1におけるアレーアンテナ装置100によれば、アレーアンテナにおける検出結果から、グレーティングローブによる誤検出を良好に除去することができる。
 [実施形態2]
 実施形態2について、図7及び図8を参照して説明する。図7は、実施形態2におけるアレーアンテナ装置の構成の一例を示す図である。図8は、実施形態2におけるアレーアンテナの一例を示す図である。
 図7に示すように、実施形態2におけるアレーアンテナ装置200は、第3アレーアンテナ80と、制御部40とを備えて構成される。
 ここで、図8を参照して、第3アレーアンテナ80について説明する。
 図8に示すように、第3アレーアンテナ80は、最小アンテナ素子間隔DのK1倍とK2倍の位置にアンテナ素子10を配置し、且つ、左端のアンテナ素子10を共通として一直線上にアンテナ素子10を配置したアレーアンテナである。K1及びK2は互いに素な2以上の正の整数である。
 言い換えると、この第3アレーアンテナ80は、上述の図2に示した2つの第1アレーアンテナ20及び第2アレーアンテナ30を組み合わせて構成されたアレーアンテナである。第1アレーアンテナ20及び第2アレーアンテナ30において、図2中左から1番目のアンテナ素子を共通とすると、図8に示す第3アレーアンテナ80のように、最小アンテナ素子間隔DのK1倍とK2倍の位置にアンテナ素子が配置されることになる。
 このように、実施形態2では、2種類のアレーアンテナ素子配列に対応する各アンテナ素子は、当該2種類のアレーアンテナ素子配列のアンテナ素子の位置を少なくとも1箇所重ねた状態で、2種類のアレーアンテナ素子配列が一直線上で組み合わさって直列に配置される。具体的には、第一のアンテナ素子配列及び第二のアンテナ素子配列に夫々対応する各アンテナ素子は、第一のアンテナ素子配列及び第二のアンテナ素子配列のアンテナ素子の位置を少なくとも1箇所重ねた状態で、第一のアンテナ素子配列及び第二のアンテナ素子配列が一直線上で組み合わさって直列に配置される。
 このような2種類のアレーアンテナ素子配列(第一のアンテナ素子配列及び第二のアンテナ素子配列)を含むように構成された第3アレーアンテナ80では、アレーアンテナが1つになるため、レーダ装置としてのアレーアンテナ装置200自体のサイズを小さくすることができ、車両への搭載性を向上させることができる。また、互いに素な2以上の正の整数であるK1とK2を適切に選択することで、最小アンテナ素子間隔Dで連続して並ぶアンテナ素子10は2個とすることができ、給電部をこの2個連続して並んだアンテナ素子10の左右の空いたスペースに設置可能とすることで、最小アンテナ素子間隔Dが小さくても給電部を実装することが可能となる。
 図7に戻り、実施形態2のアレーアンテナ装置200の構成の説明を続ける。
 図7において、制御部40は、距離・速度検出部50-1~2と、角度検出部60-1~2と、比較検出部70とを備える。以下の制御部40の各処理部について説明する。
 制御部40のうち、距離・速度検出部50-1~2は、夫々、第3アレーアンテナ80の各アンテナ素子10で受信した信号から、ターゲットの距離・速度を検出する距離・速度検出手段である。実施形態2において、距離・速度検出部50-1~2は、第3アレーアンテナ80上のアンテナ素子10のうち、夫々必要なアンテナ素子10の信号を選択して検出処理を行う。具体的には、距離・速度検出部50-1は、第3アレーアンテナ80上のアンテナ素子10のうち、最小アンテナ素子間隔DのK1倍の位置に配置されたアンテナ素子10の信号を選択して検出処理を行う。また、距離・速度検出部50-2は、第3アレーアンテナ80上のアンテナ素子10のうち、最小アンテナ素子間隔DのK2倍の位置に配置されたアンテナ素子10の信号を選択して検出処理を行う。距離・速度検出部50-1~2は、夫々、ターゲットの距離・速度の検出結果を角度検出部60-1~2へ出力する。
 制御部40のうち、角度検出部60-1~2は、夫々、距離・速度検出部50-1~2の検出結果を用いてターゲットの角度を検出する角度検出手段である。この検出結果にはメインローブでの検出結果以外にグレーティングローブでの検出結果も含まれている。角度検出部60-1~2は、夫々、ターゲットの角度の検出結果を比較検出部70へ出力する。
 比較検出部70は、第3アレーアンテナ80上のアンテナ素子10のうち、最小アンテナ素子間隔DのK1倍の位置に配置されたアンテナ素子10と、最小アンテナ素子間隔DのK2倍の位置に配置されたアンテナ素子10とから得られた角度の検出結果の比較を行う比較検出手段である。比較検出部70は、実施形態1と同様に、角度の検出結果の差を検出し、その差が大きいものはグレーティングローブによるゴーストであるとして除去して、残った結果を検出結果として出力する。
 以上のように構成された実施形態2のアレーアンテナ装置200による検出結果出力処理の一例については、実施形態1における処理の一例を示す図6と同様であるため説明を省略する。ここで、実施形態2では、図8に示すように第一のアンテナ素子配列は、第3アレーアンテナ80において、最小アンテナ素子間隔DのK1倍の間隔で一直線上に並べられたアンテナ素子10の一群である。第二のアンテナ素子配列は、第3アレーアンテナ80において、最小アンテナ素子間隔DのK2倍の間隔で一直線上に並べられたアンテナ素子10の一群である。
 なお、実施形態2のアレーアンテナ装置200として、距離・速度検出部50-1~2と、角度検出部60-1~2とが2系統で構成される例を説明したが、これに限定されない。実施形態2のアレーアンテナ装置200は、距離・速度検出部50-1~2と、角度検出部60-1~2とを1系統に纏め、必要なアンテナ素子の信号のみを選択して処理することで、処理部を簡略化した構成としてもよい。
 [実施形態3]
 実施形態3について、図9~図13を参照して説明する。図9は、実施形態3におけるアレーアンテナ装置の構成の一例を示す図である。なお、図9は、上述の実施形態2におけるアレーアンテナ装置の構成の一例を示す図でもある。図10は、実施形態3におけるアンテナ素子の配置の一例を示す図である。図11は、実施形態3における選択可能なアンテナ素子間隔の一例を示す図である。図12は、実施形態3における各アンテナ素子間隔での指向性パターンの一例を示す図である。図13は、実施形態3における処理の一例を示すフローチャートである。
 図9に示すように、実施形態3におけるアレーアンテナ装置300は、図8に示した第3アレーアンテナ80を備える。第3アレーアンテナ80は、最小アンテナ素子間隔DのK1倍とK2倍の位置にアンテナ素子10を配置し、且つ、左端のアンテナ素子10を共通として一直線上にアンテナ素子10を配置したアレーアンテナである。K1及びK2は互いに素な2以上の正の整数である。
 図9において、実施形態3におけるアレーアンテナ装置300は、第3アレーアンテナ80と、制御部40とを備えて構成される。実施形態3において、制御部40は、第3アレーアンテナ80中のアンテナ素子10の個数分の距離・速度検出部50-1~8と、アンテナ素子選択部55と、角度検出部60と、検出結果処理部90とを備える。以下の制御部40の各処理部について説明する。
 制御部40のうち、距離・速度検出部50-1~8は、夫々、第3アレーアンテナ80の各アンテナ素子10で受信した信号から、ターゲットの距離・速度を検出する距離・速度検出手段である。実施形態3において、距離・速度検出部50-1~8は、第3アレーアンテナ80上の対応するアンテナ素子10の信号を受信して検出処理を行う。具体的には、距離・速度検出部50-1は、第3アレーアンテナ80上のアンテナ素子10のうち、左端のアンテナ素子10の信号を受信して検出処理を行う。また、距離・速度検出部50-2は、左端から2番目のアンテナ素子10の信号を選択して検出処理を行う。距離・速度検出部50-3は、左端から3番目のアンテナ素子10の信号を受信して検出処理を行う。同様に、距離・速度検出部50-4~8は、夫々、左端から4~8番目のアンテナ素子10の信号を選択して検出処理を行う。距離・速度検出部50-1~8は、夫々、ターゲットの距離・速度の検出結果をアンテナ素子選択部55へ出力する。
 アンテナ素子選択部55は、必要なアンテナ素子10を選択するアンテナ素子選択手段である。具体的には、アンテナ素子選択部55は、距離・速度検出部50-1~8から出力される各アンテナ素子での検出結果を保持しておき、後の角度検出部60が検出処理に使用するアンテナ素子の組み合わせを選択する。
 ここで、図10を参照して、アンテナ素子選択部55による選択されたアンテナ素子間隔とその配置の例について説明する。図10は、例1としてK1=3,K2=4の場合におけるアンテナ素子配置、例2としてK1=3,K2=5の場合におけるアンテナ素子配置、及び、例3としてK1=4,K2=5の場合におけるアンテナ素子配置の一例を示している。
 例1は、D×4の間隔で配置された5つのアンテナ素子と、D×3の間隔で配置された5つのアンテナ素子とから構成されるアレーアンテナを示している。例1では、これらアンテナ素子のうち左端のアンテナ素子と右端から2番目のアンテナ素子とを共通させている。例2は、D×5の間隔で配置された6つのアンテナ素子と、D×3の間隔で配置された6つのアンテナ素子とから構成されるアレーアンテナを示している。例2では、これらアンテナ素子のうち左端から2番目のアンテナ素子と右端から2番目のアンテナ素子とを共通させている。例3は、D×5の間隔で配置された6つのアンテナ素子と、D×4の間隔で配置された6つのアンテナ素子から構成されるアレーアンテナを示している。例3では、これらアンテナ素子のうち左端のアンテナ素子と右端から2番目のアンテナ素子とを共通させている。
 例えば、アンテナ素子選択部55は、図10に示した例1~例3から、適宜、角度検出部60が検出処理に使用するアンテナ素子の組み合わせを選択する。なお、図10に示す例に限定されず、図10に示す例以外の多くのアンテナ素子配置例から選択可能である。また、図10において、D×K1間隔のアンテナ素子数と、D×K2間隔のアンテナ素子数とが同数となる場合の例を示したが、これらのアンテナ素子数は異なっていてもよい。
 この他、図11に示すように、実施形態3の構成では、D×K1間隔とD×K2間隔以外の間隔のアンテナ素子の組み合わせも使用することができる。図11において、アンテナ素子間隔を最小アンテナ素子間隔Dの整数倍とする整数(図11において、1,2,3,4,5)同士が互いに素な関係とならない間隔は省略している。図11は、図10の例1(K1=3,K2=4の場合)の組み合わせを選択した場合に、アンテナ素子間隔がD×4とD×3以外にも、D×2とD×1とD×5の組み合わせを選択可能であることを示している。
 図9に戻り、実施形態3の構成の説明を続ける。角度検出部60は、アンテナ素子選択部55で選択されたアンテナ素子に対応する、距離・速度検出部50で検出された距離・速度の検出結果を用いて、ターゲットの角度を検出する角度検出手段である。この検出結果にはメインローブでの検出結果以外にグレーティングローブでの検出結果も含まれている。角度検出部60は、ターゲットの角度の検出結果を検出結果処理部90へ出力する。
 ここで、図12を参照して、指向性パターンについて説明する。図12は、D=0.5λの場合の各アンテナ素子間隔(D×1~D×5)での指向性パターン(アレーファクタ)の一例を示している。これらは全て、メインローブを0度方向に向けた場合の指向性パターンである。アンテナ素子間隔がD×2の場合、グレーティングローブは、+90度及び-90度付近に生じる。アンテナ素子間隔がD×3の場合、グレーティングローブは、+42度及び-42度付近に生じる。アンテナ素子間隔がD×4の場合、グレーティングローブは、+30度及び-30度付近と、+90度及び-90度付近に生じる。アンテナ素子間隔がD×5の場合、グレーティングローブは、+23度及び-23度付近と、+52度及び-52度付近に生じる。
 図9に戻り、実施形態3の構成の説明を続ける。検出結果処理部90は、アンテナ素子択部55で選択されたアンテナ素子の組み合わせに対応する、角度検出部60により検出された検出結果を用いて比較することでグレーティングローブによる誤検出を除去した上で、検出結果を出力する検出結果処理手段である。
 この検出結果処理部90の処理の一例について、図12の指向性パターンを、ターゲットが0度方向にのみ存在する場合の検出結果とみなして説明する。
 例えば、アンテナ素子選択部55でD×3とD×4の組み合わせを選択した場合(図10の例1の場合)、検出結果処理部90によって両者の角度の検出結果を比較すると、図12に示すように、D×3の場合に検出された+42度及び-42度付近のピーク、D×4の場合に検出された+90度及び-90度付近のピークと+30度及び-30度付近のピークについては、受信強度のレベル差が閾値以下であるものの(レベル差≦閾値)、検出角度の角度差が閾値より大きいため(角度差>閾値)、これらのピークはグレーティングローブによる検出結果であると判定される。一方、D×3の場合に検出された+0度及び-0度付近のピークと、D×4の場合に検出された+0度及び-0度付近のピークとは、受信強度のレベル差が閾値以下であり(レベル差≦閾値)、且つ、検出角度の角度差も閾値以下であるため(角度差≦閾値)、これらのピークはメインローブによる検出結果であると判定される。
 また、アンテナ素子選択部55でD×3とD×5の組み合わせを選択した場合(図10の例2の場合)、検出結果処理部90によって両者の角度の検出結果を比較すると、図12に示すように、D×3の場合に検出された+42度及び-42度付近のピーク、D×5の場合に検出された+52度及び-52度付近のピークと+23度及び-23度付近のピークについては、受信強度のレベル差が閾値以下であるものの(レベル差≦閾値)、検出角度の角度差が閾値より大きいため(角度差>閾値)、これらのピークはグレーティングローブによる検出結果であると判定される。一方、D×3の場合に検出された+0度及び-0度付近のピークと、D×5の場合に検出された+0度及び-0度付近のピークとは、受信強度のレベル差が閾値以下であり(レベル差≦閾値)、且つ、検出角度の角度差も閾値以下であるため(角度差≦閾値)、これらのピークはメインローブによる検出結果であると判定される。
 また、アンテナ素子選択部55でD×4とD×5の組み合わせを選択した場合(図10の例3の場合)、検出結果処理部90によって両者の角度の検出結果を比較すると、図12に示すように、D×4の場合に検出された+90度及び-90度付近のピークと+30度及び-30度付近のピーク、D×5の場合に検出された+52度及び-52度付近のピークと+23度及び-23度付近のピークについては、受信強度のレベル差が閾値以下であるものの(レベル差≦閾値)、検出角度の角度差が閾値より大きいため(角度差>閾値)、これらのピークはグレーティングローブによる検出結果であると判定される。一方、D×4の場合に検出された+0度及び-0度付近のピークと、D×5の場合に検出された+0度及び-0度付近のピークとは、受信強度のレベル差が閾値以下であり(レベル差≦閾値)、且つ、検出角度の角度差も閾値以下であるため(角度差≦閾値)、これらのピークはメインローブによる検出結果であると判定される。
 なお、本実施形態において、検出結果処理部90によって両者の角度の検出結果を比較する際に用いられる角度差の閾値は、アンテナ素子選択部55で選択された組み合わせ毎に、適切にピーク間の検出角度の角度差を判定可能な値に設定されるものとする。
 図12に示すように、各アンテナ素子間隔が異なると、グレーティングローブが現れる角度も異なってくるため、本実施形態のように、複数のアンテナ素子間隔の組み合わせから得られた指向性パターンによる検出結果を比較することで、グレーティングローブによる誤検出を除去することが可能となる。
 以上のように構成された実施形態3のアレーアンテナ装置300による検出結果出力処理の一例について図13を参照して説明する。
 図13に示すように、距離・速度検出部50-1~8は、夫々、第3アレーアンテナ80の各アンテナ素子10で受信した信号から、ターゲットの距離・速度を検出する(ステップS40)。
 アンテナ素子選択部55は、ステップS40にて距離・速度検出部50-1~8から出力される各アンテナ素子での検出結果を保持しておき、後のステップS42で角度検出部60が検出処理に使用するアンテナ素子の組み合わせを選択する(ステップS41)。
 角度検出部60は、ステップS41にてアンテナ素子選択部55で選択されたアンテナ素子に対応する、距離・速度検出部50で検出された距離・速度の検出結果を用いて、ターゲットの角度を検出する(ステップS42)。
 角度検出部60は、ステップS42で検出した角度の検出結果を記録する(ステップS43)。なお、この検出結果にはメインローブでの検出結果以外にグレーティングローブでの検出結果も含まれている。
 アンテナ素子選択部55は、ステップS43にて角度検出部60により角度の検出結果を記録した後、更にアンテナ素子の組み合わせ毎に処理すべく、全組み合わせについて処理を終了したか否かを判定する(ステップS44)。
 ここで、ステップS44において、アンテナ素子選択部55は、ステップS44において全組み合わせについて処理を終了していない(ステップS44:No)と判定した場合、ステップS41へ戻り、アンテナ素子の組み合わせ毎に、ステップS41~S43の処理を繰り返す。
 そして、アンテナ素子選択部55は、全組み合わせについてステップS41~S43の処理を繰り返した結果、ステップS44において全組み合わせについて処理を終了した(ステップS44:Yes)と判定した場合、ステップS45の処理へ移行する。
 検出結果処理部90は、ステップS43で組み合わせ毎に記録された角度の検出結果に基づいて、角度の検出結果に含まれるピークの角度を比較する(ステップS45)。
 検出結果処理部90は、ステップS45の処理により得られたピークの角度に関する比較結果に基づいて、ピークの角度差が閾値以下(角度差≦閾値)であるか否かを判定する(ステップS46)。
 検出結果処理部90は、ステップS46にて、一方の検出結果における基準のピークに対して、もう一方の検出結果における最も近い検出角度のピークを特定し、これらのピークの角度差が閾値より大きい(角度差>閾値)と判定した場合(ステップS46:No)、この基準のピークを虚像と判定する(ステップS47)。
 検出結果処理部90は、ステップS47においてピークを虚像と判定した場合、虚像と判定したピークを検出結果として登録せず除去した上で、更にピーク毎に処理するべく、全ピークについて処理を終了したか否かを判定する(ステップS53)。ステップS53において、検出結果処理部90は、第一の検出結果及び第二の検出結果の全ピークについて処理を終了したか否かを判定する。
 ここで、ステップS53において、検出結果処理部90は、全ピークについて処理を終了していない(ステップS53:No)と判定した場合、ステップS45へ戻り、ピーク毎に、ステップS45~S52の検出結果処理部90による処理を繰り返す。
 ステップS45に戻り、実施形態3の処理の説明を続ける。検出結果処理部90は、ステップS43で組み合わせ毎に記録された角度の検出結果に基づいて、ステップS45~ステップS52の処理を行っていない別のピークについて、ピークの角度を比較する(ステップS45)。そして、検出結果処理部90は、ステップS45の処理により得られたピークの角度に関する比較結果に基づいて、ピークの角度差が閾値以下(角度差≦閾値)であるか否かを判定する(ステップS46)。
 続いて、検出結果処理部90は、ステップS46にて、一方の検出結果における基準のピークに対して、もう一方の検出結果における最も近い検出角度のピークを特定し、これらのピークの角度差が閾値以下(角度差≦閾値)であると判定した場合(ステップS46:Yes)、更にこれらのピークのレベルを比較する(ステップS48)。そして、検出結果処理部90は、ステップS48の処理により得られたピークのレベルに関する比較結果に基づいて、これらのピークのレベル差が閾値以下(レベル差≦閾値)であるか否かを判定する(ステップS49)。
 検出結果処理部90は、ステップS49にて、一方の検出結果における基準のピークに対して、もう一方の検出結果における最も近い検出角度のピークを特定し、これらのピークのレベル差が閾値以下(レベル差≦閾値)であると判定した場合(ステップS49:Yes)、この基準のピークを真ターゲットと判定する(ステップS50)。
 検出結果処理部90は、ステップS50でメインローブによる検出結果であると判定したターゲットの検出結果を登録する(ステップS51)。
 検出結果処理部90は、全ピークについて処理を終了したか否かを判定する(ステップS53)。ステップS53において、検出結果処理部90は、第一の検出結果及び第二の検出結果の全ピークについて処理を終了したか否かを判定する。ここで、ステップS53において、検出結果処理部90は、全ピークについて処理を終了していない(ステップS53:No)と判定した場合、再度ステップS45へ戻り、ピーク毎に、ステップS45~S52の検出結果処理部90による処理を繰り返す。
 再度ステップS45に戻り、実施形態3の処理の説明を続ける。検出結果処理部90は、ステップS43で組み合わせ毎に記録された角度の検出結果に基づいて、ステップS45~ステップS52の処理を行っていない更に別のピークについて、ピークの角度を比較する(ステップS45)。そして、検出結果処理部90は、ステップS45の処理により得られたピークの角度に関する比較結果に基づいて、ピークの角度差が閾値以下(角度差≦閾値)であるか否かを判定する(ステップS46)。
 続いて、検出結果処理部90は、ステップS46にて、一方の検出結果における基準のピークに対して、もう一方の検出結果における最も近い検出角度のピークを特定し、これらのピークの角度差が閾値以下(角度差≦閾値)であると判定した場合(ステップS46:Yes)、更にこれらのピークのレベルを比較する(ステップS48)。そして、検出結果処理部90は、ステップS48の処理により得られたピークのレベルに関する比較結果に基づいて、これらのピークのレベル差が閾値以下(レベル差≦閾値)であるか否かを判定する(ステップS49)。
 検出結果処理部90は、ステップS49にて、一方の検出結果における基準のピークに対して、もう一方の検出結果における最も近い検出角度のピークを特定し、これらのピークのレベル差が閾値より大きい(レベル差>閾値)と判定した場合(ステップS49:No)、この基準のピークを虚像と判定する(ステップS52)。
 検出結果処理部90は、ステップS52においてピークを虚像と判定した場合、虚像と判定したピークを検出結果として登録せずに除去した上で、全ピークについて処理を終了したか否かを判定する(ステップS53)。ステップS53において、検出結果処理部90は、第一の検出結果及び第二の検出結果の全ピークについて処理を終了したか否かを判定する。
 そして、検出結果処理部90は、全ピークについてステップS45~S52の処理を繰り返した結果、ステップS53において全ピークについて処理を終了した(ステップS53:Yes)と判定した場合、すなわち、第一の検出結果及び第二の検出結果の全ピークについて処理を終了したと判定した場合、ステップS51にて登録されたターゲットの検出結果に基づいて、グレーティングローブによる誤検出を除去した状態でメインローブによる検出結果を出力する(ステップS54)。その後、図13に示した処理を終了する。
 このように、実施形態3におけるアレーアンテナ装置300によれば、各アンテナ素子での検出結果を保持しておき、その使用する組み合わせを変えて角度検出を繰り返し、それらの結果を使ってグレーティングローブによる検出結果を除去することができる。更に、最小アンテナ素子間隔Dで並ぶアンテナ素子の両側を大きく開けることができ、これによりアンテナ素子への給電部を、最小アンテナ素子間隔Dで並ぶアンテナ素子の左右に逃がすことができるため、最小アンテナ素子間隔Dを小さく設定しても給電回路を実装するのが容易となる。
 なお、実施形態3では、図13のステップS44でアンテナ素子の全組み合わせが終了するまで、組み合わせ毎にステップS41~S43の処理を繰り返す例を説明したが、これに限定されない。実施形態3では、ステップS41で選択されたアンテナ素子の組み合わせについて、ステップS41~S43の処理を繰り返してもよい。例えば、ステップS41でD×4とD×5の組み合わせ(図10の例3)、及び、D×3とD×5の組み合わせ(図10の例2)の場合のみを選択した場合、これらの2つの組み合わせについて、ステップS41~S43の処理を繰り返してもよい。
 以上説明したように、本実施形態の配置構造を有するアレーアンテナを備えた実施形態1~3のアレーアンテナ装置100~300によれば、以下に説明するように、従来技術のグレーティングローブによる誤検出を除去する技術における問題点を解決することができる。
 例えば特許文献1には、送信アンテナのアレー間隔と受信アンテナのアレー間隔が互いに素な整数の比となるように設定して、グレーティングローブが互いに重ならない関係として、送受アンテナパターンの積によってグレーティングローブを抑圧したアレーアンテナが記載されている。この特許文献1に記載のアレーアンテナ装置では、素子アンテナパターンのヌル位置にグレーティングローブが発生するようにアンテナ素子間隔を設定している。ところで、特許文献1に記載の技術においては、ビーム走査を行うことは前提とされていない。このため、もしビーム走査を行った場合には素子アンテナパターンのヌル位置と送受信アンテナのグレーティングローブ位置が一致しなくなるので、検知角度範囲内において、一部のグレーティングローブが抑圧されずに残ってしまう可能性があるという問題点があった。
 これに対して、本実施形態のアレーアンテナ装置は、2種類のアレーアンテナ素子配列を含むように、配置されるアレーアンテナ装置を有している。ここで、2種類のアレーアンテナ素子配列のアンテナ素子間隔は、数式1に示す所定の検知角度範囲(ビーム走査範囲)でグレーティングローブを生じさせないように設定されたアンテナ素子間隔である最小アンテナ素子間隔の整数倍であり、各整数は互いに素な関係であり、且つ、共に2以上の正の整数である。これにより、本実施形態のアレーアンテナ装置によれば、所定の検知角度範囲(-α~α)(ビーム走査範囲)内では、グレーティングローブによる誤検出を除去することが可能となる。すなわち、2種類のアレーアンテナによる検出結果を比較することで、ビーム走査範囲内のグレーティングローブによる検出ピークを判別することができる。このように、アレーアンテナにおいてビーム走査を行う場合に、グレーティングローブによる誤検出を除去できるようになる。
 この他、受信アンテナのアンテナ素子を検出角度範囲でグレーティングローブが生じない狭い間隔で並べたアレーアンテナ装置が考えられるが、アンテナ素子配列の間隔をより狭く設定するほど、全体のアンテナサイズが小さくなり、これによって形成されるビームの幅がより広くなる、すなわち角度分解能が悪化するという問題点がある。また、このようなアレーアンテナ装置においては、アンテナ素子が狭い間隔で並んでいるため、各アンテナ素子間に給電ポートを配置できないという問題点がある。例えば、±90度のビーム走査を行う場合にはアンテナ素子間隔は0.5λ以下とする必要があるが、これに導波管で給電する場合には導波管の横幅がすでに0.5波長以上あるため、アンテナ素子間に導波管を配置することはできない。
 本実施形態の配置構造を有するアレーアンテナを備えたアレーアンテナ装置は、アンテナ素子間隔を広くとっていながらも、広角のビーム走査が可能なように構成されている。具体的には、本実施形態では、アンテナ素子間隔が異なる2種類のアレーアンテナ素子配列に分解できるアレーアンテナを用いて、それぞれのアンテナ素子間隔でターゲット検出処理を行い、その結果の比較を行うことでグレーティングローブによるゴーストを判別して除去することで広角のビーム走査を実現している。これにより、最小素子間隔より広い素子間隔をアレーアンテナの所々に確保できるため、アンテナ素子間へ導波管を配置することができるようになる。また、アレーアンテナ素子の間隔をより大きく取った場合のビーム幅は、より狭くなる。このため、同じ素子数で最小素子間隔で配列されたアレーアンテナよりも、角度分解能が向上する。
 10 アンテナ素子
 20 第1アレーアンテナ
 30 第2アレーアンテナ
 40 制御部
 50 距離・速度検出部
 55 アンテナ素子選択部
 60 角度検出部
 70 比較検出部
 80 第3アレーアンテナ
 90 検出結果処理部
 100,200,300 アレーアンテナ装置

Claims (3)

  1.  所定の周期性を持った素子間隔で配列される第一のアンテナ素子配列と、前記第一のアンテナ素子配列における周期性とは異なる所定の周期性を持った素子間隔で配列される第二のアンテナ素子配列と、を含むように複数のアンテナ素子が配列されたアレーアンテナ装置であって、
     前記第一のアンテナ素子配列のアレーアンテナによる検出結果と、前記第二のアンテナ素子配列のアレーアンテナによる検出結果と、の比較に基づいて、グレーティングローブによる誤検出を除去する制御部を備え、
     前記第一のアンテナ素子配列のアンテナ素子間隔である第一素子間隔と、前記第二のアンテナ素子配列のアンテナ素子間隔である第二素子間隔とは、共に、数式1を満たすようなアンテナ素子間隔として設定される最小アンテナ素子間隔の整数倍の間隔であり、
      0<D<(0.5λ/sinα)  ・・・(数式1)
    (数式1において、Dは最小アンテナ素子間隔を示し、αは所定の最大検知角度を示し、λは電波の波長を示す)
     前記第一素子間隔を前記最小アンテナ素子間隔の整数倍とする整数である第一の整数と、前記第二素子間隔を前記最小アンテナ素子間隔の整数倍とする整数である第二の整数と、は互いに素な関係であり、且つ、共に2以上の正の整数であることを満たす
    ことを特徴とするアレーアンテナ装置。
  2.  前記第一のアンテナ素子配列及び前記第二のアンテナ素子配列に夫々対応する各アンテナ素子は、前記第一のアンテナ素子配列及び前記第二のアンテナ素子配列のアレーアンテナが並列に配置されることを特徴とする請求項1に記載のアレーアンテナ装置。
  3.  前記第一のアンテナ素子配列及び前記第二のアンテナ素子配列に夫々対応する各アンテナ素子は、前記第一のアンテナ素子配列及び前記第二のアンテナ素子配列のアンテナ素子の位置を少なくとも1箇所重ねた状態で、前記第一のアンテナ素子配列及び前記第二のアンテナ素子配列が一直線上で組み合わさって直列に配置されることを特徴とする請求項1に記載のアレーアンテナ装置。
PCT/JP2014/075314 2014-05-29 2014-09-24 アレーアンテナ装置 WO2015182002A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/309,867 US10218086B2 (en) 2014-05-29 2014-09-24 Array antenna device
DE112014006707.5T DE112014006707B4 (de) 2014-05-29 2014-09-24 Array-antennenvorrichtung
JP2016523096A JP6172390B2 (ja) 2014-05-29 2014-09-24 アレーアンテナ装置
CN201480079194.7A CN106415931B (zh) 2014-05-29 2014-09-24 阵列天线装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014111772 2014-05-29
JP2014-111772 2014-05-29

Publications (1)

Publication Number Publication Date
WO2015182002A1 true WO2015182002A1 (ja) 2015-12-03

Family

ID=54698370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075314 WO2015182002A1 (ja) 2014-05-29 2014-09-24 アレーアンテナ装置

Country Status (5)

Country Link
US (1) US10218086B2 (ja)
JP (1) JP6172390B2 (ja)
CN (1) CN106415931B (ja)
DE (1) DE112014006707B4 (ja)
WO (1) WO2015182002A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105589058A (zh) * 2016-01-29 2016-05-18 宋春丽 一种天线装置及三维雷达系统
JP2018116000A (ja) * 2017-01-20 2018-07-26 三菱電機株式会社 レーダ装置および物体認識方法
WO2019146643A1 (ja) * 2018-01-24 2019-08-01 株式会社デンソー レーダ装置
JP2021162448A (ja) * 2020-03-31 2021-10-11 株式会社Soken レーダ装置
CN113811786A (zh) * 2019-05-17 2021-12-17 三菱电机株式会社 天线装置及雷达装置
JP2022539444A (ja) * 2020-06-08 2022-09-09 浙江大学 1ビット量子化信号の仮想ドメインの統計量に基づいて再構成されたコプライムアレイの到来方向の推定方法
US11677159B2 (en) * 2018-11-15 2023-06-13 Kabushiki Kaisha Toshiba Electronic apparatus and imaging method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10886615B2 (en) * 2015-08-18 2021-01-05 Maxlinear, Inc. Interleaved multi-band antenna arrays
JP6365494B2 (ja) * 2015-10-07 2018-08-01 株式会社デンソー アンテナ装置及び物標検出装置
US10416680B2 (en) * 2017-03-14 2019-09-17 Aptiv Technologies Limited Angle finding for a detector having a paired staggered array
CN107611624B (zh) * 2017-08-24 2020-10-23 电子科技大学 低旁瓣的基于互质思想的分子阵布阵方法
DE102019125973A1 (de) 2018-09-28 2020-04-02 Panasonic Intellectual Property Management Co., Ltd. Radar-Vorrichtung
US10741906B2 (en) * 2018-09-28 2020-08-11 Apple Inc. Electronic devices having communications and ranging capabilities
CN109358322B (zh) * 2018-10-25 2020-10-16 森思泰克河北科技有限公司 前向目标检测雷达和方法
JP7361263B2 (ja) * 2019-03-20 2023-10-16 パナソニックIpマネジメント株式会社 レーダ装置
JP7413672B2 (ja) * 2019-07-25 2024-01-16 日本電気株式会社 アンテナ装置、無線送信機、無線受信機、及び無線通信システム
US11435438B2 (en) * 2019-12-30 2022-09-06 Woven Planet North America, Inc. Dynamic sparse radar array for scenarios
CN111142064B (zh) * 2020-01-06 2023-09-15 中国人民解放军火箭军工程大学 一种提高阵列自由度和虚拟孔径的阵列设置方法
EP3862772A1 (en) * 2020-02-04 2021-08-11 Aptiv Technologies Limited Radar device
WO2021215566A1 (ko) * 2020-04-24 2021-10-28 포항공과대학교 산학협력단 무선 통신 시스템에서 안테나 어레이를 통해 신호를 전송하기 위한 장치 및 방법
US11460567B2 (en) * 2020-05-29 2022-10-04 Nxp B.V. Radar apparatus and method
CN112164898B (zh) * 2020-09-09 2021-07-20 南京航空航天大学 一种双洞互质阵列天线结构
CN112162240A (zh) * 2020-09-25 2021-01-01 五邑大学 基于互质阵列的稀疏频率波形产生方法、装置及存储介质
US11644565B2 (en) * 2020-10-13 2023-05-09 Aptiv Technologies Limited Radar system with sparse primary array and dense auxiliary array
US11619705B2 (en) 2020-10-20 2023-04-04 Aptiv Technologies Limited Radar system with modified orthogonal linear antenna subarrays
CN114696116A (zh) * 2020-12-31 2022-07-01 华为技术有限公司 一种天线子阵列、天线阵列、极化重构的方法及装置
US11714180B2 (en) 2021-01-29 2023-08-01 Aptiv Technologies Limited Radar system to detect angles in bistatic and monostatic scenarios
US11808846B2 (en) 2021-02-12 2023-11-07 Aptiv Technologies Limited Angle-finding process for sparse uniform arrays
US11927664B2 (en) 2021-02-25 2024-03-12 Nxp B.V. Radar-based detection using angle of arrival estimation based on sparse array processing
US11906651B2 (en) * 2021-02-25 2024-02-20 Nxp B.V. Radar-based detection using sparse array processing
US11791570B1 (en) * 2022-07-20 2023-10-17 United States Of America As Represented By The Secretary Of The Navy Grating lobe cancellation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308223A (ja) * 1992-04-28 1993-11-19 Tech Res & Dev Inst Of Japan Def Agency 2周波共用アンテナ
JP2012120144A (ja) * 2010-11-10 2012-06-21 Mitsubishi Electric Corp アレーアンテナ装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11231040A (ja) * 1998-02-12 1999-08-27 Toyota Motor Corp レーダ装置
JP5130079B2 (ja) 2007-02-28 2013-01-30 株式会社デンソーアイティーラボラトリ 電子走査式レーダ装置及び受信用アレーアンテナ
JP5142950B2 (ja) * 2008-11-10 2013-02-13 三菱電機株式会社 アレーアンテナ
EP2230863A3 (en) * 2009-03-16 2015-04-22 Actix GmbH Method for approximating and optimizing gains in capacity and coverage resulting from deployment of multi-antennas in cellular radio networks
DE102009029503A1 (de) 2009-09-16 2011-03-24 Robert Bosch Gmbh Radarsensorvorrichtung mit wenigstens einer planaren Antenneneinrichtung
JP5617334B2 (ja) 2010-05-10 2014-11-05 富士通株式会社 レーダ装置及び目標探知方法
US9124006B2 (en) * 2011-03-11 2015-09-01 Autoliv Asp, Inc. Antenna array for ultra wide band radar applications
CN102916262B (zh) * 2011-08-04 2015-03-04 中国电信股份有限公司 多模天线与基站
JP5952233B2 (ja) 2013-01-30 2016-07-13 株式会社日本自動車部品総合研究所 アンテナ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308223A (ja) * 1992-04-28 1993-11-19 Tech Res & Dev Inst Of Japan Def Agency 2周波共用アンテナ
JP2012120144A (ja) * 2010-11-10 2012-06-21 Mitsubishi Electric Corp アレーアンテナ装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105589058A (zh) * 2016-01-29 2016-05-18 宋春丽 一种天线装置及三维雷达系统
CN105589058B (zh) * 2016-01-29 2019-05-31 宋春丽 一种天线装置及三维雷达系统
JP2018116000A (ja) * 2017-01-20 2018-07-26 三菱電機株式会社 レーダ装置および物体認識方法
WO2019146643A1 (ja) * 2018-01-24 2019-08-01 株式会社デンソー レーダ装置
JP2019128234A (ja) * 2018-01-24 2019-08-01 株式会社デンソー レーダ装置
US11677159B2 (en) * 2018-11-15 2023-06-13 Kabushiki Kaisha Toshiba Electronic apparatus and imaging method
CN113811786A (zh) * 2019-05-17 2021-12-17 三菱电机株式会社 天线装置及雷达装置
JP2021162448A (ja) * 2020-03-31 2021-10-11 株式会社Soken レーダ装置
JP7372193B2 (ja) 2020-03-31 2023-10-31 株式会社Soken レーダ装置
JP2022539444A (ja) * 2020-06-08 2022-09-09 浙江大学 1ビット量子化信号の仮想ドメインの統計量に基づいて再構成されたコプライムアレイの到来方向の推定方法
JP7205942B2 (ja) 2020-06-08 2023-01-17 浙江大学 1ビット量子化信号の仮想ドメインの統計量に基づいて再構成されたコプライムアレイの到来方向の推定方法

Also Published As

Publication number Publication date
US20170149147A1 (en) 2017-05-25
DE112014006707B4 (de) 2021-07-29
JP6172390B2 (ja) 2017-08-02
US10218086B2 (en) 2019-02-26
CN106415931A (zh) 2017-02-15
CN106415931B (zh) 2019-08-16
JPWO2015182002A1 (ja) 2017-04-20
DE112014006707T5 (de) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6172390B2 (ja) アレーアンテナ装置
US9964631B2 (en) Radar apparatus and antenna apparatus
EP3916427B1 (en) Radar apparatus and method
JP6036529B2 (ja) レーダ装置
US20140368374A1 (en) Radar apparatus and antenna apparatus
JP4545460B2 (ja) レーダ装置およびアンテナ装置
JP6279212B2 (ja) Mimoレーダシステム、及び信号処理装置
JP2016001175A (ja) 自動車レーダー用の混成型データ適応及び決定適応アンテナアレイ
EP2613169A1 (en) Grating lobe mitigation in presence of simultaneous receive beams
JP2012120144A (ja) アレーアンテナ装置
JP6523350B2 (ja) レーダ装置および物体認識方法
JP2015226291A (ja) 電子走査方式の車両用アンテナ装置
Liu et al. Two-dimensional sparse arrays with hole-free coarray and reduced mutual coupling
JP7023563B2 (ja) Mimoレーダー用アンテナ構造
KR102052712B1 (ko) 위상 배열 레이더의 부엽 차단 시스템
JP7150388B2 (ja) アレーアンテナおよびアレーアンテナの信号処理装置
JP5025564B2 (ja) アレーアンテナ、アレーアンテナの配置方法、アダプティブアンテナ、電波方向探知装置
EP1540765A1 (en) Method for enhancing the measuring accuracy in an antenna array
WO2022130710A1 (ja) レーダ装置
US7126532B2 (en) Apparatus for tracing an optimal direction to receive satellite signal in active phase array antenna system
JP2022065429A (ja) レーダ装置
JP2007198872A (ja) アンテナ装置、イメージ検出方法、方位検出方法及びレーダ装置
JP7447513B2 (ja) ソーナー装置と目標方位算出方法及びプログラム
JP2019071529A (ja) アレーアンテナ装置
KR102415269B1 (ko) 레이더 장치 및 레이더 장치에 이용되는 안테나 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523096

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15309867

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006707

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893305

Country of ref document: EP

Kind code of ref document: A1