WO2015182088A1 - ポリアミド繊維およびこれを用いた繊維構造物、並びに衣類 - Google Patents
ポリアミド繊維およびこれを用いた繊維構造物、並びに衣類 Download PDFInfo
- Publication number
- WO2015182088A1 WO2015182088A1 PCT/JP2015/002575 JP2015002575W WO2015182088A1 WO 2015182088 A1 WO2015182088 A1 WO 2015182088A1 JP 2015002575 W JP2015002575 W JP 2015002575W WO 2015182088 A1 WO2015182088 A1 WO 2015182088A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- polyamide
- component
- nylon
- water
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/60—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B17/00—Selection of special materials for underwear
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/12—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/01—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof
- D06M11/05—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof with water, e.g. steam; with heavy water
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
- D01D5/34—Core-skin structure; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
- D01D5/36—Matrix structure; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/10—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/18—Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/24—Polymers or copolymers of alkenylalcohols or esters thereof; Polymers or copolymers of alkenylethers, acetals or ketones
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/34—Polyamides
Definitions
- the present invention relates to a polyamide fiber constituting a garment used for, for example, sports use or inner use and a fiber structure using the same.
- synthetic fibers such as polyester fibers and polyamide fibers such as nylon-6 and nylon-6,6 have excellent physical and chemical properties, so they are widely used not only for clothing but also for industrial applications. It has a valuable industrial value.
- polyester fibers are low in hygroscopicity and water absorption, the actual situation is that their application to clothes that require hygroscopicity and water absorption such as underwear, pants, sheets and towels is limited. Therefore, for example, a method for improving moisture absorption and water absorption, which can be said to be the greatest defect, has been proposed for polyester fibers.
- an ethylene-vinyl alcohol copolymer which is a saponified ethylene-vinyl acetate copolymer, is replaced with other thermoplastic polymers such as polyester, polyamide, polyolefin and the like.
- thermoplastic polymers such as polyester, polyamide, polyolefin and the like.
- nylon fibers are used for inner and socks, but it is difficult to sufficiently improve comfort in fiber structures and clothes made of nylon fibers simply by imparting hygroscopicity to the nylon fibers themselves. Therefore, a hygroscopic / water-absorbing stretchable fiber capable of adjusting the humidity is required.
- the present invention has been made in view of the above-described problems, and has a good hygroscopic property, reversibly greatly expands and contracts by absorbing and releasing water, and a polyamide fiber from which a fiber structure excellent in comfort can be obtained.
- An object is to provide a fiber structure using the same, and clothing.
- the polyamide fiber of the present invention is characterized in that the degree of orientation is 0.7 or more and 0.85 or less.
- the polyamide fiber of the present invention has an orientation degree of 0.7 or more and 0.85 or less.
- degree of orientation is less than 0.7, sufficient dyeing fastness cannot be obtained.
- degree of orientation is more than 0.85, the reversible stretch-shrinkage property due to water absorption / release is insufficient, and the texture of the woven / knitted fabric is insufficient.
- the fiber structure which is not fully opened and closed and has excellent comfort cannot be obtained.
- a fiber structure for example, a woven or knitted fabric
- polyamide fibers having an orientation degree of 0.7 or more and 0.85 or less
- sweat when sweat is absorbed, the polyamide fibers are stretched.
- the woven / knitted eyes can open and release moisture inside the garment, and when dry, the polyamide fibers shrink and return to the original length, thereby clogging the woven / knitted eyes and It becomes possible to provide a woven or knitted fabric excellent in comfort having a so-called self-adjusting function that does not escape temperature.
- the degree of orientation of the polyamide fiber is preferably 0.72 or more, and more preferably 0.75 or more. Moreover, 0.83 or less is preferable, 0.8 or less is more preferable, and less than 0.80 is further more preferable. Further, the degree of orientation of the polyamide resin is calculated by the measuring method described in the examples described later.
- the polyamide fiber of the present invention has a moisture absorption rate of 5% or more at a temperature of 35 ° C. and a humidity of 95% RH, and a water absorption elongation rate of 5% or more at a temperature of 20 ° C. and a humidity of 65% RH. Is preferred. If the moisture absorption rate is less than 5%, a sticky feeling or stuffiness will occur. If the water absorption elongation rate is less than 5%, the reversible stretching / shrinking characteristics due to water absorption / release will be insufficient, and the eyes of the woven or knitted fabric will open or close sufficiently. Therefore, a fiber structure excellent in comfort cannot be obtained.
- a fiber structure for example, a woven or knitted fabric, using a polyamide fiber having the above-described moisture absorption rate and water absorption elongation rate, a woven or knitted fabric having the above-mentioned self-regulating function and further excellent in comfort is provided. It becomes possible to do.
- the moisture absorption rate is preferably 5% or more and 30% or less, and more preferably 8% or more and 25% or less.
- the water absorption elongation rate is preferably 5% or more, more preferably 7% or more, further preferably 8% or more, and particularly preferably 10% or more.
- the water absorption elongation rate is preferably 30% or less, more preferably 25% or less, and further preferably 20% or less.
- the moisture absorption rate and water absorption elongation rate of the polyamide resin are calculated by the measurement method described in the examples described later.
- the crimp elongation of the polyamide fiber is preferably 1.5% or more and 10% or less, more preferably 2% or more and 8% or less, and further preferably 2.5% or more and 5.8% or less.
- a raw silk-like (silk-like) texture is obtained, so that a soft touch is achieved and the touch is good.
- polyamide used in the present invention examples include polycaprolamide (nylon-6), poly- ⁇ -aminoheptanoic acid (nylon-7), polyundecanamide (nylon-11), polyethylenediamine adipamide (nylon- 2,6), polytetramethylene adipamide (nylon-4,6), polyhexamethylene adipamide (nylon-6,6), polyhexamethylene sebamide (nylon-2,10), polyhexamethylene Dodecanamide (Nylon-6,12), Polyoctamethylene adipamide (Nylon-8,6), Polydecanomethylene adipamide (Nylon-10,6), Polydodecamethylene sebacamide (Nylon-10, 8).
- Caprolactam / laurin lactam copolymer (nylon-6 / 12), caprolactam / ⁇ -aminononanoic acid copolymer (nylon-6 / 9), caprolactam / hexamethylene adipate copolymer (nylon-6 / 6,6) ), Lauric lactam / hexamethylenediamine adipate copolymer (nylon-12 / 6,6), hexamethylenediamine adipate / hexamethylenediamine sebacate copolymer (nylon-6,6 / 6,10), ethylenediamine adipate / Hexamethylenediamine adipate copolymer (nylon-2,6 / 6,6), caprolactam / hexamethylenediamine adipate / hexamethylenediamine sebacate copolymer (nylon-6,6 / 6,10) and the like.
- the most suitable polyamide for the present invention includes nylon-6 and nylon-6,6, and nylon-6 is more preferable from the viewpoint of low cost, high versatility, and excellent hygroscopicity.
- the copolymer include nylon-6 / 6,6 and nylon-6 / 12.
- the composition of the 6 component and 12 component in nylon-6 / 12 is not particularly limited.
- the 12 component is preferably 50 mol% or less, more preferably 40 mol% or less.
- the polyamide copolymer may contain an antistatic agent, a lubricant, an anti-blocking agent, a stabilizer, a dye, a pigment, and the like.
- the production method of the polyamide fiber of the present invention is not limited as long as it has the above-described degree of orientation, water absorption, and water absorption elongation.
- it can be suitably obtained by dissolving and removing the B component using a composite fiber composed of a polyamide component (A component) and another soluble component (B component).
- a component polyamide component
- B component another soluble component
- the other soluble component plays an important role in controlling the structure.
- a water-soluble thermoplastic polyvinyl alcohol polymer can be used as the polymer used for the component B.
- This polyvinyl alcohol polymer preferably has a viscosity average polymerization degree of 200 to 500, a saponification degree of 90 to 99.99 mol%, and a melting point of 160 to 230 ° C.
- the polyvinyl alcohol-based polymer may be a homopolymer or a copolymer, but from the viewpoint of melt spinnability, water solubility, and fiber physical properties, ethylene, propylene, etc.
- the polyamide fiber of this invention can be obtained suitably by removing a water-soluble thermoplastic polyvinyl alcohol-type polymer with hot water.
- a polyester polymer having a high alkali dissolution rate (easily alkali-reduced polyester polymer) can be used.
- examples of such an easily alkali-reduced polyester polymer include 1 to 5 mol% of 5-sodium sulfoisophthalic acid and 5 to 30 wt% of polyalkylene glycol, and conventionally used diol components and dicarboxylic acids.
- a copolyester obtained by copolymerizing the component or polylactic acid can be employed.
- the polyamide fiber of the present invention can be suitably obtained by removing the easily alkali-reduced polyester polymer by alkali treatment.
- the fiber cross section of the composite fiber for forming the polyamide fiber of the present invention is preferably a cross section covered with 50% or more of a soluble component (B component), and the entire surface is covered with the B component.
- a cross section is more preferable. That is, it is preferably a core-sheath cross section in which the polyamide component is a core component and the B component is a sheath component, or a sea-island cross section in which the polyamide component is an island component and the B component is a sea component.
- the composite ratio (A: B) of the polyamide component (component A) and the soluble component (component B) is preferably 90:10 to 40:60 (weight ratio), 80 : 20 to 60:40 (weight ratio) is more preferable, and the ratio of the two can be adjusted according to the fiber shape.
- the structure control of polyamide becomes difficult, desired hygroscopicity and a water absorption extension performance cannot be obtained, and humidity control may become difficult.
- the cross-sectional shape of the composite fiber of the present invention is not particularly limited as long as the B component is dissolved and removed by hot water treatment or alkali treatment, and no crack is generated in the A component.
- a concentric type, an eccentric type A multi-core type may be used.
- a multi-leaf shape as shown in FIG. 3 or a modified cross-sectional shape such as a triangle or a flat shape may be used.
- FIG. 4 it is also possible to provide a hollow portion inside the component A, and the cross-sectional shape may be a hollow shape such as a single-hole hollow or a two-hole hollow or higher hollow.
- the single fiber fineness of the polyamide fiber of the present invention is not particularly limited, but is preferably 0.03 to 10 dtex. Furthermore, it can be used not only as a long fiber but also as a short fiber or a shortcut fiber.
- the conjugate fiber of the present invention can be formed using a known conjugate spinning device. .
- the heat treatment temperature at the time of drawing is set to less than 100 ° C., preferably 80 ° C. or less, and the draw ratio is set to less than 2 times.
- the temperature setting is similarly set to less than 100 ° C., preferably 80 ° C. or less, and the draw ratio is suppressed to less than 2 times.
- the temperature is set to 100 ° C. or higher, or when the draw ratio is set to 2 times or more, it becomes difficult to control the structure of the polyamide, and a desired degree of orientation, hygroscopicity / water-absorbing extensibility cannot be obtained. There is a case.
- the polyamide fiber of the present invention can be used as various fiber structures (fiber assemblies).
- the “fiber structure” means a multifilament yarn, a spun yarn, a woven or knitted fabric, a nonwoven fabric, paper, an artificial leather, and a filling material made of only the polyamide fiber of the present invention, or the polyamide fiber of the present invention.
- Woven knitted fabrics and nonwoven fabrics used for example, knitted and woven fabrics with other fibers such as natural fibers, chemical fibers, synthetic fibers and semi-synthetic fibers, blended yarns, blended yarns, twisted yarns, entangled yarns and crimped yarns It may be a woven or knitted fabric, a mixed cotton nonwoven fabric, a fiber laminate, or the like used as the processed yarn.
- the weight ratio of the present polyamide fiber to the whole of the woven or knitted fabric or the nonwoven fabric is preferably 15% by weight or more, more preferably 18% by weight or more, and particularly preferably 23% by weight or more. Further, after forming, knitting or non-woven fabric, if necessary, raising treatment by raising a needle cloth or other finishing process may be performed.
- the polyamide fiber of this invention via the above-mentioned composite fiber, after removing B component, you may manufacture a fiber structure using the obtained polyamide single fiber, and composite fiber is used. Then, the B component may be removed after the fiber structure is manufactured.
- modified PVA 60: 40 (weight ratio)
- the prepared polyamide fiber was scraped and treated with boiling water for 30 minutes under no tension, and then air-dried and conditioned at a temperature of 20 ° C. and a humidity of 65% RH. Thereafter, in a non-contact 160 ° C. environment, the yarn subjected to dry heat treatment for 2 minutes under no tension was left in an environment of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours. Next, the length of the yarn measured by applying a load of 0.88 ⁇ 10 ⁇ 3 cN / dtex to the yarn left for 24 hours was defined as “the length of the yarn when dried”. Thereafter, the yarn was immersed in softened water adjusted to 20 ° C.
- Example 2 As component B, polyethylene terephthalate (copolymerized PET) having an intrinsic viscosity [ ⁇ ] of 0.52 dL / g obtained by copolymerizing 8% by weight of polyethylene glycol having a molecular weight of 2000 and 5% by mole of 5-sodium sulfoisophthalic acid was used. Except for the above, polyamide fibers were produced in the same manner as in Example 1, and the degree of orientation, the moisture absorption rate, the water absorption elongation rate, the crimp elongation rate, and the wearing evaluation of the fabric were evaluated. The results are shown in Table 1.
- Examples 3 to 4 As shown in Table 1, polyamide fibers were prepared in the same manner as in Example 1, except that the component A was changed to nylon-6,6 (Example 3) or nylon-6 / 12 (Example 4). Then, the degree of orientation, the moisture absorption rate, the water absorption elongation rate, the crimp elongation rate, and the wearing evaluation of the woven fabric were evaluated. The results are shown in Table 1.
- Example 5 As shown in Table 1, a polyamide fiber was produced and oriented in the same manner as in Example 1 except that the cross section of the composite fiber was changed to FIG. 2 (Example 5) or FIG. 4 (Example 6). The degree of measurement, the moisture absorption rate, the water absorption elongation rate, the crimp elongation rate, and the wearing evaluation of the woven fabric were evaluated. The results are shown in Table 1.
- Example 1 A polyamide fiber was prepared in the same manner as in Example 1 except that no soluble component (B component) was used, and the degree of orientation, moisture absorption, water absorption elongation, crimp elongation, Wearing evaluation was performed. The results are shown in Table 1.
- Example 2 In the same manner as in Example 1, the composite fiber (fineness: 275 dtex) having a cross section shown in FIG. 1 was discharged from the composite spinning nozzle. Next, after the yarn discharged from the spinneret is cooled by a horizontal blowing type cooling air device having a length of 1.0 m, a spinning oil containing an antistatic component and a smoothing component not containing water is used. Granted. Next, the film was drawn through a roller at a speed of 1000 m / min, continuously stretched without wringing, stretched 2.5 times while being heat-set at 150 ° C., and 110 dtex / 24 filament at 2500 m / min. A composite fiber was produced.
- a circular knitted fabric was produced from the obtained conjugate fiber using a circular knitting machine (28 gauge).
- the knitted fabric was subjected to a scouring step (90 ° C. ⁇ 20 minutes) with hot water to dissolve and remove the modified PVA, thereby obtaining a polyamide fiber of this comparative example.
- Example 1 the degree of orientation of the polyamide fiber, the measurement of the water absorption elongation rate, and the evaluation of wearing the fabric were performed. The moisture absorption rate and crimp elongation rate were not measured. The results are shown in Table 1.
- Example 3 A polyamide fiber was prepared in the same manner as in Example 1 except that the component A was changed to nylon-12, and the degree of orientation, the water absorption elongation rate, and the wearing evaluation of the fabric were evaluated. The moisture absorption rate and crimp elongation rate were not measured. The results are shown in Table 1.
- Example 4 In the same manner as in Example 1, the composite fiber (fineness: 275 dtex) having a cross section shown in FIG. 1 was discharged from the composite spinning nozzle. Next, after the yarn discharged from the spinneret is cooled by a horizontal blowing type cooling air device having a length of 1.0 m, a spinning oil containing an antistatic component and a smoothing component not containing water is used. Granted. Next, the undrawn yarn was obtained through a roller at a speed of 2000 m / min. Next, a circular knitted fabric was produced from the obtained undrawn yarn using a circular knitting machine (28 gauge). The knitted fabric was subjected to a scouring step (90 ° C. ⁇ 20 minutes) with hot water to dissolve and remove the modified PVA, thereby obtaining a polyamide fiber of this comparative example.
- a scouring step 90 ° C. ⁇ 20 minutes
- Example 1 the degree of orientation of the polyamide fiber, the measurement of the water absorption elongation rate, and the evaluation of wearing the fabric were performed. The moisture absorption rate and crimp elongation rate were not measured. The results are shown in Table 1.
- the polyamide fibers of Comparative Examples 1 to 3 have an orientation degree of 0.85 or more, the water absorption elongation at a temperature of 20 ° C. and a humidity of 65% RH is less than 5%, which is compared with Examples 1 to 6. In addition, it can be seen that the excellent humidity control effect is not exhibited, and the feeling of wearing of the obtained knitted fabric is extremely inferior.
- the nylon-12 used has a high degree of orientation as shown in Table 1 because of its high hydrophobicity and high crystal orientation among polyamide resins. As a result, the resulting knitted fabric has a high degree of orientation. It can be seen that the water absorption extensibility does not appear and the feeling of wearing is remarkably inferior.
- the polyamide fiber of Comparative Example 4 has an orientation degree of less than 0.7, it is found that the water absorption elongation property becomes too large, and as a result, the wearing feeling is remarkably inferior.
- Example 7 Nylon-6 with a reduced viscosity of 1.80 dL / g (concentration in orthochlorophenol 1 g / dL, 30 ° C.) as the polyamide component (A component), and the other soluble component (B component) is a thermoplastic modified polyvinyl.
- Example 2 Further, in the same manner as in Example 1, the degree of orientation of the polyamide fiber, the moisture absorption rate, the water absorption elongation rate, the crimp elongation rate, and the wearing evaluation of the fabric were evaluated. The results are shown in Table 2.
- Example 8 As the component B, in Example 8, polyethylene terephthalate (copolymerized PET) having an intrinsic viscosity [ ⁇ ] of 0.52 dL / g obtained by copolymerizing 8% by weight of polyethylene glycol having a molecular weight of 2000 and 5% by mole of 5-sodium sulfoisophthalic acid.
- polylactic acid was used as the soluble component (B component), and the ratio of nylon-6 to B component was changed to 67:33.
- a polyamide fiber was prepared, and the orientation degree, moisture absorption rate, water absorption elongation rate, crimp elongation rate of the polyamide fiber, and evaluation of wearing of the woven fabric were evaluated. The results are shown in Table 2.
- Example 10 As shown in Table 2, a polyamide fiber was prepared in the same manner as in Example 7 except that the component A was changed to nylon-6,6 (Example 10) or nylon-6 / 12 (Example 11). Then, the degree of orientation, the moisture absorption rate, the water absorption elongation rate, the crimp elongation rate, and the wearing evaluation of the woven fabric were evaluated. The results are shown in Table 2.
- Example 12 As shown in Table 2, a polyamide fiber was prepared in the same manner as in Example 7 except that the cross section of the composite fiber was changed to FIG. 2 (Example 12) or FIG. The degree of measurement, the moisture absorption rate, the water absorption elongation rate, the crimp elongation rate, and the wearing evaluation of the woven fabric were evaluated. The results are shown in Table 2.
- Example 5 In the same manner as in Example 7, the composite fiber (fineness: 220 dtex) having a cross section shown in FIG. 1 was discharged from the composite spinning nozzle. Next, after the yarn discharged from the spinneret is cooled by a horizontal blowing type cooling air device having a length of 1.0 m, a spinning oil containing an antistatic component and a smoothing component not containing water is used. Granted. Next, the film was drawn through a roller at a speed of 1000 m / min, continuously stretched without wringing, stretched 2.5 times while being heat-set at 150 ° C., and 110 dtex / 24 filament at 2500 m / min. A composite fiber was produced.
- a circular knitted fabric was produced from the obtained conjugate fiber using a circular knitting machine (28 gauge).
- the knitted fabric was subjected to a scouring step (90 ° C. ⁇ 20 minutes) with hot water to dissolve and remove the modified PVA, thereby obtaining a polyamide fiber of this comparative example.
- Example 2 the moisture absorption rate and water absorption elongation rate of the polyamide fiber were measured, and the wearing evaluation of the fabric was performed. The moisture absorption rate and crimp elongation rate were not measured. The results are shown in Table 2.
- Example 6 A polyamide fiber was prepared in the same manner as in Example 7 except that the component A was changed to nylon-12, and the moisture absorption rate and the water absorption elongation rate were measured, and the wearing of the fabric was evaluated. The moisture absorption rate and crimp elongation rate were not measured. The results are shown in Table 2.
- the polyamide fibers of Examples 7 to 13 have a moisture absorption rate of 5% or more at a temperature of 35 ° C. and a humidity of 95% RH, and water absorption at a temperature of 20 ° C. and a humidity of 65% RH. Since the elongation rate is 5% or more, it can be seen that an excellent humidity control effect is exhibited and the obtained knitted fabric has an excellent wearing feeling.
- the polyamide fibers of Comparative Examples 5 to 6 have a moisture absorption rate of less than 5% at a temperature of 35 ° C. and a humidity of 95% RH, and a water absorption elongation rate of 5% at a temperature of 20 ° C. and a humidity of 65% RH. Therefore, it can be seen that, compared with Examples 7 to 13, an excellent humidity control effect is not exhibited, and the wearing feeling of the obtained knitted fabric is remarkably inferior.
- the nylon-12 used has a high hydrophobicity among the polyamide resins and a high crystal orientation, so that the moisture absorption rate is extremely lowered as shown in Table 2. It can be seen that the water-absorbing elongation of the knitted fabric does not appear and the feeling of wearing is remarkably inferior.
- the polyamide fiber of the present invention has good moisture absorption and release, and reversibly expands and contracts by absorbing and releasing water, so that it exhibits a self-regulating function in which the opening of the fiber structure is changed by absorbing and releasing water, and a fiber structure excellent in comfort. You can get things. For this reason, it is most suitable for the clothing field, and exhibits excellent performance in applications such as sportswear, underwear, lining, stockings, and socks.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Multicomponent Fibers (AREA)
- Knitting Of Fabric (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Artificial Filaments (AREA)
- Woven Fabrics (AREA)
Abstract
Description
(ポリアミド繊維の作製)
ポリアミド成分(A成分)として還元粘度1.80dL/g(オルソクロロフェノール中濃度1g/dL、30℃)のナイロン-6、溶解可能な成分(B成分)として熱可塑性の変性ポリビニルアルコール(変性PVA)(クラレ社製、ケン化度:98.5、エチレン含有量:8.0モル%、重合度:390)を用いた。そして、A成分とB成分とを別々の押出機で溶融させ、ナイロン-6:変性PVA=60:40(重量比)に設定し、図1に示す横断面の複合繊維を複合紡糸ノズルより吐出させた。次いで、紡糸口金より吐出された糸条を、長さ1.0mの横吹付け型冷却風装置により冷却した後、紡糸油剤として、水を含まない制電剤成分と平滑剤成分からなるものを用いて付与した。次いで、ローラーを介して、3500m/分の引取り速度で巻き取り、111dtex/24フィラメントの複合繊維を製造した。なお、繊維化工程性は良好であった。次いで、得られた複合繊維を、丸編機(28ゲージ)を用いて丸編地を作製した。そして、この編地に、熱水による精練工程(90℃×20分)を施し、変性PVAを溶解除去し、本実施例のポリアミド繊維を得た。
次いで、作製したポリアミド繊維の配向度を測定した。なお、ポリアミド繊維の配向度は、以下の測定装置、測定条件により測定した。
検出器:2次元PSPC・Hi-STAR
測定条件:電流=110mA、電圧=45kV、カメラ距離=15cm、コリメーター径=0.5mm、露光時間=1200sec、2θ軸=22°、ω軸=0°、χ軸=90°(赤道線)・0°(子午線)
サンプルはヤーン1本とした。赤道線はサンプルが垂直方向に、子午線はサンプルが水平方向になるようχ軸の角度を変更した。
2θ=9.7~11.7°、χ=-150~-30°、ステップ幅=0.1°
配向度:A=(360-ΣWi)/360
次いで、作製したポリアミド繊維を温度が35℃、湿度が90%RHの条件に調節した恒温恒湿室中において、24時間、調湿し、絶乾試料の重量と調湿試料の重量から次式により吸湿率を求めた。以上の結果を表2に示す。
吸湿率(%)=(調湿試料の重量-絶乾試料の重量)×100/絶乾試料の重量
作製したポリアミド繊維をかせ取りし、無緊張下にて、30分間、沸水で処理した後、温度20℃、湿度65%RHで風乾・調湿した。その後、非接触の160℃環境下において、無緊張下で2分間、乾熱処理した糸を、温度20℃、湿度65%RHの環境下に24時間放置した。次いで、24時間放置後の糸に、0.88×10-3cN/dtexの荷重を掛けて測定した糸の長さを「乾燥時の糸の長さ」とした。その後、この糸を20℃に調節された軟化水中に1分間、浸漬後、水中から引き上げ、繊維表面に残存している水分を温度が20℃、湿度が65%RHの環境下において風乾させた濾紙で挟み、水平台の上に載置させ、1.5g/cm2の重しを乗せて、2秒間、放置して繊維表面の余分な水分を拭き取った後、10秒後に0.88×10-3cN/dtexの荷重を掛けて測定した長さを「吸水時の糸の長さ」とした。そして、下記の式により、ポリアミド樹脂の吸水伸長率を計算した。なお、全ての測定は、温度が20℃、湿度が65%RHの環境下で行った。
吸水伸長率(%)=(吸水時の糸の長さ-乾燥時の糸の長さ)/乾燥時の糸の長さ×100
作製したポリアミド繊維を、筒編み機を用いて丸編地とし、これを任意に選んだパネラー10人のひじとひざにつけ、1日過ごしてもらい、ベタツキ感、ムレ感の官能評価を実施した。なお、「ベタツキ感、ムレ感が少なく、非常に優れている」を2点、「優れている」を1点、「劣る」を0点とし、その合計点から、以下の4段階で評価した。以上の結果を表1に示す。
A:合計点が15点以上
B:合計点が8~14点
C:合計点が5点~7点
D:合計点が4点以下
ポリアミド繊維をワク周1.125mの検尺機を用い、巻数20回の小かせを作製した。次に、得られた小かせを無荷重下で98℃、5分間沸騰水中で熱処理後、一昼夜恒温恒湿(温度20±2℃、相対湿度65±2%)の室内に放置した。調湿された繊維に2mg/dの荷重をかけ1分後にかせ長L1を測定した。次に、小かせに0.1g/dの荷重をかけ1分後にかせ長L2を測定した。捲縮伸長率は以下の式で表される。
捲縮伸長率(%)=(L2-L1)/L2×100
ここで、g/dは、1デニールあたりのグラム数を表す。
以上の結果を、表1に示す。
B成分として、分子量2000のポリエチレングリコール8重量%と5-ナトリウムスルホイソフタル酸5モル%とを共重合した極限粘度数〔η〕0.52dL/gのポリエチレンテレフタレート(共重合PET)を用いたこと以外は、実施例1と同様にしてポリアミド繊維を作製し、配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表1に示す。
表1に示すように、A成分をナイロン-6,6(実施例3)、またはナイロン-6/12(実施例4)に変更したこと以外は、実施例1と同様にしてポリアミド繊維を作製し、配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表1に示す。
表1に示すように、複合繊維の横断面を図2(実施例5)、または図4(実施例6)に変更したこと以外は、実施例1と同様にしてポリアミド繊維を作製し、配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表1に示す。
溶解可能な成分(B成分)を使用しなかったこと以外は、実施例1と同様にしてポリアミド繊維を作製し、配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表1に示す。
実施例1と同様の方法により、図1に示す横断面の複合繊維(繊度:275dtex)を複合紡糸ノズルより吐出させた。次いで、紡糸口金より吐出された糸条を、長さ1.0mの横吹付け型冷却風装置により冷却した後、紡糸油剤として、水を含まない制電剤成分と平滑剤成分からなるものを用いて付与した。次いで、ローラーを介して、1000m/分の速度で引き取り、捲取ることなく連続して延伸し、150℃で熱セットしながら、2.5倍に延伸して、2500m/分で110dtex/24フィラメントの複合繊維を製造した。次いで、得られた複合繊維を、丸編機(28ゲージ)を用いて丸編地を作製した。そして、この編地に、熱水による精練工程(90℃×20分)を施し、変性PVAを溶解除去し、本比較例のポリアミド繊維を得た。
A成分をナイロン-12に変更したこと以外は、実施例1と同様にしてポリアミド繊維を作製し、配向度、吸水伸長率の測定、及び織物の着用評価を行った。なお、吸湿率及び捲縮伸長率の測定は行わなかった。以上の結果を表1に示す。
実施例1と同様の方法により、図1に示す横断面の複合繊維(繊度:275dtex)を複合紡糸ノズルより吐出させた。次いで、紡糸口金より吐出された糸条を、長さ1.0mの横吹付け型冷却風装置により冷却した後、紡糸油剤として、水を含まない制電剤成分と平滑剤成分からなるものを用いて付与した。次いで、ローラーを介して、2000m/分の速度で引き取り、未延伸糸を得た。次いで、得られた未延伸糸を、丸編機(28ゲージ)を用いて丸編地を作製した。そして、この編地に、熱水による精練工程(90℃×20分)を施し、変性PVAを溶解除去し、本比較例のポリアミド繊維を得た。
ポリアミド成分(A成分)として還元粘度1.80dL/g(オルソクロロフェノール中濃度1g/dL、30℃)のナイロン-6、もう一方の溶解可能な成分(B成分)には熱可塑性の変性ポリビニルアルコール(変性PVA)(クラレ社製、ケン化度:98.5、エチレン含有量:8.0モル%、重合度:380)を用いた。そして、A成分とB成分とを別々の押出機で溶融させ、ナイロン-6:変性PVA=70:30(重量比)に設定し、図1に示す横断面の複合繊維を複合紡糸ノズルより吐出させた。次いで、紡糸口金より吐出された糸条を、長さ1.0mの横吹付け型冷却風装置により冷却した後、紡糸油剤として、水を含まない制電剤成分と平滑剤成分からなるものを用いて付与した。次いで、ローラーを介して、3500m/分の引取り速度で巻き取り、111dtex/24フィラメントの複合繊維を製造した。なお、繊維化工程性は良好であった。次いで、得られた複合繊維を、丸編機(28ゲージ)を用いて丸編地を作製した。そして、この編地に、熱水による精練工程(90℃×20分)を施し、変性PVAを溶解除去した。
B成分として、実施例8では、分子量2000のポリエチレングリコール8重量%と5-ナトリウムスルホイソフタル酸5モル%とを共重合した極限粘度数〔η〕0.52dL/gのポリエチレンテレフタレート(共重合PET)を用い、実施例9では、溶解可能な成分(B成分)としてポリ乳酸を用いるとともに、ナイロン-6とB成分との比率を67:33に変更したこと以外は、実施例7と同様にしてポリアミド繊維を作製し、ポリアミド繊維の配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表2に示す。
表2に示すように、A成分をナイロン-6,6(実施例10)、またはナイロン-6/12(実施例11)に変更したこと以外は、実施例7と同様にしてポリアミド繊維を作製し、配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表2に示す。
表2に示すように、複合繊維の横断面を図2(実施例12)、または図3(実施例13)に変更したこと以外は、実施例7と同様にしてポリアミド繊維を作製し、配向度、吸湿率、吸水伸長率、捲縮伸長率の測定、及び織物の着用評価を行った。以上の結果を表2に示す。
実施例7と同様の方法により、図1に示す横断面の複合繊維(繊度:220dtex)を複合紡糸ノズルより吐出させた。次いで、紡糸口金より吐出された糸条を、長さ1.0mの横吹付け型冷却風装置により冷却した後、紡糸油剤として、水を含まない制電剤成分と平滑剤成分からなるものを用いて付与した。次いで、ローラーを介して、1000m/分の速度で引き取り、捲取ることなく連続して延伸し、150℃で熱セットしながら、2.5倍に延伸して、2500m/分で110dtex/24フィラメントの複合繊維を製造した。次いで、得られた複合繊維を、丸編機(28ゲージ)を用いて丸編地を作製した。そして、この編地に、熱水による精練工程(90℃×20分)を施し、変性PVAを溶解除去し、本比較例のポリアミド繊維を得た。
A成分をナイロン-12に変更したこと以外は、実施例7と同様にしてポリアミド繊維を作製し、吸湿率、吸水伸長率の測定、及び織物の着用評価を行った。なお、吸湿率及び捲縮伸長率の測定は行わなかった。以上の結果を表2に示す。
2 複合繊維の溶解可能な成分(B成分)
3 複合繊維の中空部
Claims (9)
- 配向度が0.7以上0.85以下であることを特徴とするポリアミド繊維。
- 温度が35℃、湿度が95%RHにおける吸湿率が5%以上であり、温度が20℃、湿度が65%RHにおける吸水伸長率が5%以上である請求項1に記載のポリアミド樹脂。
- 水溶性熱可塑性ポリビニルアルコール系重合体とポリアミドとの複合繊維において、前記水溶性熱可塑性ポリビニルアルコール系重合体を熱水で除去することにより得られる請求項1または請求項2に記載のポリアミド繊維。
- 易アルカリ減量ポリエステル系重合体とポリアミドとの複合繊維において、前記易アルカリ減量ポリエステル系重合体をアルカリ処理で除去することにより得られる請求項1または請求項2に記載のポリアミド繊維。
- 前記ポリアミドがナイロン-6である請求項3または請求項4に記載のポリアミド繊維。
- 吸放水により可逆的に伸縮する請求項1~請求項5のいずれか1項に記載のポリアミド繊維。
- 請求項1~6のいずれか1項に記載のポリアミド繊維により、少なくとも一部が構成された繊維構造物。
- 請求項7に記載の繊維構造物からなる衣類。
- 下着、スポーツウェアー、裏地、ストッキング、及び靴下からなる群より選択される1種である請求項8に記載の衣類。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/314,051 US20170191190A1 (en) | 2014-05-26 | 2015-05-21 | Polyamide fibers, fiber structure using same, and clothing |
CN201580028308.XA CN106574404B (zh) | 2014-05-26 | 2015-05-21 | 聚酰胺纤维及用该聚酰胺纤维制成的纤维结构物和衣物 |
EP15798772.8A EP3150751B1 (en) | 2014-05-26 | 2015-05-21 | Polyamide fibers, fiber structure using same, and clothing |
JP2016523131A JPWO2015182088A1 (ja) | 2014-05-26 | 2015-05-21 | ポリアミド繊維およびこれを用いた繊維構造物、並びに衣類 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-108167 | 2014-05-26 | ||
JP2014108167 | 2014-05-26 | ||
JP2014-175654 | 2014-08-29 | ||
JP2014175654 | 2014-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015182088A1 true WO2015182088A1 (ja) | 2015-12-03 |
Family
ID=54698443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/002575 WO2015182088A1 (ja) | 2014-05-26 | 2015-05-21 | ポリアミド繊維およびこれを用いた繊維構造物、並びに衣類 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20170191190A1 (ja) |
EP (1) | EP3150751B1 (ja) |
JP (2) | JPWO2015182088A1 (ja) |
CN (1) | CN106574404B (ja) |
TW (1) | TWI695098B (ja) |
WO (1) | WO2015182088A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018184674A (ja) * | 2017-04-24 | 2018-11-22 | Kbセーレン株式会社 | 複合繊維、布帛および繊維構造体の製造方法ならびに衣類 |
EP3514269B1 (en) * | 2016-09-14 | 2022-04-13 | Kureha Corporation | Vinylidene fluoride resin fibers and sheet-like structure |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI687562B (zh) * | 2018-03-23 | 2020-03-11 | 新光合成纖維股份有限公司 | 具有吸濕伸長變化之複合纖維 |
EP3922123B1 (en) * | 2019-03-05 | 2023-11-01 | ASICS Corporation | Anti-slip member for article of equipment or sport gear, article of equipment, and article of sport gear |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5766116A (en) * | 1980-10-08 | 1982-04-22 | Asahi Chem Ind Co Ltd | High-flexibility, high-elongation polyamide fiber |
JP2003293224A (ja) * | 2002-03-29 | 2003-10-15 | Kuraray Co Ltd | 高吸湿・吸水性ポリビニルアルコール共重合体複合繊維 |
JP2006124905A (ja) * | 2002-08-05 | 2006-05-18 | Toray Ind Inc | ナノポーラスファイバー |
JP2007303019A (ja) * | 2006-05-10 | 2007-11-22 | Toray Ind Inc | ナノファイバー織編物およびその製造方法 |
JP2010229582A (ja) * | 2009-03-26 | 2010-10-14 | Teijin Techno Products Ltd | パラ型全芳香族コポリアミド繊維の製造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5214132B2 (ja) * | 1972-11-22 | 1977-04-19 | ||
JP3379142B2 (ja) * | 1993-05-19 | 2003-02-17 | 東レ株式会社 | ナイロン66ゴム補強用コード |
JP3510731B2 (ja) * | 1996-04-12 | 2004-03-29 | ユニチカ株式会社 | 微細孔中空ポリアミド繊維及びその製造方法 |
ES2216425T3 (es) * | 1998-12-16 | 2004-10-16 | Kuraray Co., Ltd. | Fibras termoplasticas de alcohol polivinilico y su procedimiento de preparacion. |
CN101003681A (zh) * | 2002-08-05 | 2007-07-25 | 东丽株式会社 | 多孔纤维 |
KR101119051B1 (ko) * | 2002-10-23 | 2012-03-16 | 도레이 카부시키가이샤 | 나노섬유 집합체, 하이브리드섬유, 섬유구조체, 및 그들의 제조방법 |
CN100363541C (zh) * | 2002-10-23 | 2008-01-23 | 东丽株式会社 | 纳米纤维集合体、聚合物合金纤维、混合纤维、纤维结构体以及它们的制造方法 |
WO2006025610A1 (ja) * | 2004-09-03 | 2006-03-09 | Teijin Fibers Limited | 複合繊維 |
CN101313091A (zh) * | 2005-10-19 | 2008-11-26 | 东丽株式会社 | 卷曲弹力丝及其制造方法、纤维结构体 |
CN101074503A (zh) * | 2006-05-16 | 2007-11-21 | 东丽纤维研究所(中国)有限公司 | 聚合物合金纤维及生产方法 |
JP2007332479A (ja) * | 2006-06-13 | 2007-12-27 | Unitica Fibers Ltd | 混合物紡糸繊維 |
KR101398699B1 (ko) * | 2010-10-12 | 2014-05-27 | 아사히 가세이 셍이 가부시키가이샤 | 다층 구조 편지 |
CN102877188A (zh) * | 2011-07-15 | 2013-01-16 | 东丽纤维研究所(中国)有限公司 | 一种吸湿性聚酰胺纤维纺织品及其生产方法 |
CN103422190B (zh) * | 2012-05-15 | 2016-05-25 | 东丽纤维研究所(中国)有限公司 | 一种分割型复合纤维及其制得的超细纤维织物 |
-
2015
- 2015-05-21 US US15/314,051 patent/US20170191190A1/en not_active Abandoned
- 2015-05-21 EP EP15798772.8A patent/EP3150751B1/en active Active
- 2015-05-21 CN CN201580028308.XA patent/CN106574404B/zh active Active
- 2015-05-21 WO PCT/JP2015/002575 patent/WO2015182088A1/ja active Application Filing
- 2015-05-21 JP JP2016523131A patent/JPWO2015182088A1/ja active Pending
- 2015-05-25 TW TW104116603A patent/TWI695098B/zh active
-
2019
- 2019-11-05 JP JP2019200710A patent/JP6793238B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5766116A (en) * | 1980-10-08 | 1982-04-22 | Asahi Chem Ind Co Ltd | High-flexibility, high-elongation polyamide fiber |
JP2003293224A (ja) * | 2002-03-29 | 2003-10-15 | Kuraray Co Ltd | 高吸湿・吸水性ポリビニルアルコール共重合体複合繊維 |
JP2006124905A (ja) * | 2002-08-05 | 2006-05-18 | Toray Ind Inc | ナノポーラスファイバー |
JP2007303019A (ja) * | 2006-05-10 | 2007-11-22 | Toray Ind Inc | ナノファイバー織編物およびその製造方法 |
JP2010229582A (ja) * | 2009-03-26 | 2010-10-14 | Teijin Techno Products Ltd | パラ型全芳香族コポリアミド繊維の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3150751A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3514269B1 (en) * | 2016-09-14 | 2022-04-13 | Kureha Corporation | Vinylidene fluoride resin fibers and sheet-like structure |
JP2018184674A (ja) * | 2017-04-24 | 2018-11-22 | Kbセーレン株式会社 | 複合繊維、布帛および繊維構造体の製造方法ならびに衣類 |
JP7050424B2 (ja) | 2017-04-24 | 2022-04-08 | Kbセーレン株式会社 | 複合繊維、布帛および繊維構造体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015182088A1 (ja) | 2017-06-08 |
TWI695098B (zh) | 2020-06-01 |
EP3150751A4 (en) | 2017-05-24 |
EP3150751A1 (en) | 2017-04-05 |
US20170191190A1 (en) | 2017-07-06 |
TW201608070A (zh) | 2016-03-01 |
EP3150751B1 (en) | 2021-09-08 |
CN106574404A (zh) | 2017-04-19 |
JP6793238B2 (ja) | 2020-12-02 |
CN106574404B (zh) | 2021-01-15 |
JP2020037763A (ja) | 2020-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6577589B2 (ja) | 布帛および繊維製品 | |
JP6793238B2 (ja) | ポリアミド繊維の製造方法 | |
JP6545368B2 (ja) | 糸条および布帛および繊維製品 | |
JP2006118062A (ja) | 湿潤時に空隙率が低下する織編物およびその製造方法および繊維製品 | |
WO2013141033A1 (ja) | ポリメチルペンテン複合繊維またはポリメチルペンテン多孔質繊維およびそれらからなる繊維構造体 | |
JP2009024272A (ja) | 冷感に優れた編地および繊維製品 | |
JP2011012367A (ja) | 軽量性に優れた布帛および繊維製品 | |
JP5881284B2 (ja) | 布帛および繊維製品 | |
JP2009167565A (ja) | ストレッチ性編地およびその製造方法および繊維製品 | |
JP2011157646A (ja) | ポリエステル極細繊維 | |
JP5216970B2 (ja) | ポリエステル編地およびその製造方法および繊維製品 | |
JP5662007B2 (ja) | 立毛布帛および立毛布帛製品 | |
JP2007231452A (ja) | 複合繊維 | |
JP2006207052A (ja) | 立毛布帛および繊維製品 | |
JP4414854B2 (ja) | 吸湿時に通気性が向上する撥水性織編物および繊維製品 | |
JP2010059570A (ja) | 織物および繊維製品 | |
JP2018178335A (ja) | 靴下およびその製造方法 | |
CN114657654A (zh) | 芯鞘复合纤维及其应用、异形纤维 | |
JP4567500B2 (ja) | 吸水により立体的に構造変化する布帛および繊維製品 | |
JP2012207361A (ja) | 極細繊維及び該極細繊維を含むワイピングクロス | |
JP2019065435A (ja) | 糸条および布帛および繊維製品 | |
JP2008274478A (ja) | 感湿潜在捲縮複合繊維 | |
JP4866109B2 (ja) | 仮撚加工糸 | |
KR20230107544A (ko) | 직편물 | |
JP2006207065A (ja) | 湿潤時にベンチレーション効果を呈する衣服 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15798772 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016523131 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15314051 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015798772 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015798772 Country of ref document: EP |