WO2015181994A1 - Retroreflector and stereoscopic display device using same - Google Patents
Retroreflector and stereoscopic display device using same Download PDFInfo
- Publication number
- WO2015181994A1 WO2015181994A1 PCT/JP2014/071654 JP2014071654W WO2015181994A1 WO 2015181994 A1 WO2015181994 A1 WO 2015181994A1 JP 2014071654 W JP2014071654 W JP 2014071654W WO 2015181994 A1 WO2015181994 A1 WO 2015181994A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- retroreflector
- optical block
- mirror
- mirror surfaces
- unit optical
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/12—Reflex reflectors
- G02B5/136—Reflex reflectors plural reflecting elements forming part of a unitary body
Definitions
- the present invention relates to a retroreflector in which incident light and reflected light pass through substantially the same path, and a stereoscopic image display apparatus using the same.
- a retroreflector using a transparent sphere or a three-surface corner cube is applied to traffic signs, image projection devices (see Patent Documents 1 and 2) and the like because the directions of incident light and reflected light substantially coincide. It is known that a retroreflector using a three-sided corner cube obtains stronger reflected light than using a transparent sphere.
- the three-sided corner cube has a shape obtained by cutting out the corners of a cube, there is a problem that it is difficult to form a retroreflector by arranging a large number of three-sided corner cubes uniformly.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a retroreflector that can be relatively easily manufactured and a stereoscopic image display apparatus using the retroreflector.
- the retroreflector according to the first aspect of the present invention that meets the above-described object has first and second mirror surfaces that intersect at right angles and third and fourth mirror surfaces that are orthogonal to the first and second mirror surfaces.
- the unit optical blocks are arranged in a plane.
- the material of the unit optical block may be hollow, but it is preferable to use transparent glass or transparent plastic.
- the first to fourth mirror surfaces are usually formed by plating or vapor-depositing a metal.
- one surface (ceiling surface) which is a non-mirror surface of the unit optical block serves as both a light incident surface and a light exit surface. Rays entering from one surface are reflected by the first, second and third or fourth mirror surfaces and exit from the one surface.
- a retroreflector according to a second invention is the retroreflector according to the first invention, wherein the first and second mirror surfaces are at the bottom of the unit optical block, and the third and fourth mirror surfaces are The unit optical blocks are respectively formed on the side surfaces.
- a retroreflector according to a third invention is the retroreflector according to the first or second invention, wherein the distance between the third and fourth mirror surfaces is the width of the first and second mirror surfaces. It is in the range of 0.5 to 3 times the total length.
- the distance between the third and fourth mirror surfaces is smaller than the total width of the first and second mirror surfaces, the effective area of the third and fourth mirror surfaces is reduced. The effective area of the mirror surface is reduced.
- a retroreflector according to a fourth invention is the retroreflector according to the first to third inventions, wherein a plurality of the unit optical blocks are arranged in a straight line to form a long optical block.
- the optical block bodies having the same shape are arranged in parallel to constitute a planar retroreflector.
- the long optical block bodies may be arranged side by side with a gap or may be arranged side by side closely.
- Adjacent optical block bodies may be arranged 1) with the positions of the crests and troughs matched, and 2) the crests and troughs may be shifted. Further, adjacent optical block bodies may be arranged close to or in contact with each other.
- a retroreflector according to a fifth invention is the retroreflector according to any of the first to fourth inventions, wherein the unit optical blocks are arranged in a planar shape by aligning the directions of the ceiling surfaces of the unit optical blocks. They are arranged side by side.
- a stereoscopic image display device is a planar retroreflector according to the first to fifth aspects of the present invention, and a half mirror disposed upright on the retroreflector.
- the end of the half mirror may be in contact with the retroreflector or may have a gap.
- the angle between the planar retroreflector and the half mirror is preferably a right angle, but may be inclined (for example, an inclination angle ⁇ : 60 degrees or more and less than 90 degrees).
- the retroreflectors according to the first to fifth inventions are transparent units having first and second mirror surfaces intersecting at right angles and third and fourth mirror surfaces orthogonal to the first and second mirror surfaces. Since the optical blocks are formed side by side, the structure is simpler than the conventional corner cube, and unit optical blocks of any size can be manufactured at low cost. In particular, by using a long optical block body formed by arranging a plurality of unit optical blocks in a straight line, a retroreflector can be manufactured more easily and inexpensively.
- the stereoscopic image display device according to the sixth invention can be formed by combining the retroreflector according to the first to fifth inventions with a half mirror, and can be manufactured easily and inexpensively.
- FIG. (A) is a front view of the unit optical block of the retroreflector according to the first embodiment of the present invention, and (B) is a side view thereof.
- (A) is a perspective view of an optical block body of a retroreflector according to a second embodiment of the present invention, (B) is a front view of the retroreflector, and (C) is a side view of the retroreflector.
- FIG. (A) is a front view of a retroreflector according to a modification of the second embodiment of the present invention, and (B) is a plan view of the retroreflector.
- (A) is a front view of the optical block body of the retroreflector which concerns on the 3rd Example of this invention
- (B) is a side view of the same retroreflector.
- BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of the three-dimensional image display apparatus which concerns on one Example of this invention, (A) is a general view, (B), (C) is an expansion explanatory drawing of the a part of (A), respectively.
- the retroreflector 10 has a large number (for example, 1000 to 50000) arranged in a planar shape (for example, a planar shape). It consists of a unit optical block 15.
- Each unit optical block 15 includes a first mirror surface 11 and a second mirror surface 12 connected to each other at a right angle on the bottom, and the first and second mirror surfaces 11 and 12 are orthogonal to the front and rear side surfaces. 3 and a transparent body having fourth mirror surfaces 13 and 14.
- each unit optical block 15 is a square or a rectangle having the same size shape in plan view, each unit block can be arranged without a gap, and a more precise retroreflector 10 can be formed.
- Each unit optical block 15 may be hollow, and the first to fourth mirror surfaces 11 to 14 may simply be mirrors.
- the material of the block unit optical block 15 may be transparent glass, transparent plastic (for example, acrylic, (Polycarbonate, nylon, polypropylene, cycloolefin resin, etc.), and the first to fourth mirror surfaces 11 to 14 may be formed by metal vapor deposition.
- transparent plastic for example, acrylic, (Polycarbonate, nylon, polypropylene, cycloolefin resin, etc.
- the first to fourth mirror surfaces 11 to 14 may be formed by metal vapor deposition.
- the vertical width L of the unit optical block 15 (that is, the distance between the third and fourth mirror surfaces 13 and 14) L is a total length of the widths W1 and W2 of the first and second mirror surfaces 11 and 12, for example, 0. It is preferably 5 to 3 times (more preferably 1 to 2 times).
- the vertical width L of the unit optical block 15 is too long, reflection does not occur three times and the reflected light is easily scattered.
- the vertical width L of the unit optical block 15 is short, multiple reflection occurs at the third and fourth mirror surfaces 13 and 14 and scattering of reflected light is caused.
- the height H of the unit optical block 15 (vertical distance from the crests of the first and second mirror surfaces 11 and 12 to the ceiling surface 20a) is set in the range of (0.707 to 3) ⁇ W1, for example. (The same applies to the following embodiments).
- FIGS. 1 (A) and 1 (B) a single unit optical block 15 shown in FIGS. 1 (A) and 1 (B) will be described.
- the incident light A viewed in the direction of the arrows is reflected on the first and second mirror surfaces 11 and 12. Reflected at points B and C, reflected at point D on the fourth mirror surface 14, and reflected in the same direction as incident light A (reflected light E).
- the retroreflector 18 according to the second embodiment is a long and straight line in which a plurality of unit optical blocks 15 (one of which is indicated by a two-dot chain line in FIG.
- the optical block bodies 19 are arranged in parallel.
- the first and second mirror surfaces 11 and 12 arranged at right angles are continuously formed in a triangular wave shape on the bottom of the optical block body 19, and the first and second mirror surfaces 11 and 12 are formed on the side surfaces.
- Orthogonal third and fourth mirror surfaces 13 and 14 are formed.
- the third and fourth mirror surfaces 13 and 14 are formed in parallel on both side surfaces of the long optical block body 19.
- the unit optical blocks 15 are arranged so that the directions of the ceiling surface 20a (see FIG. 1) are aligned, and the unit optical blocks 15 are arranged in a plane (the same applies to the following embodiments).
- the material of the base material of the optical block body 19 is made of highly transparent glass or transparent resin.
- a flat plate made of glass or transparent resin is produced by press molding, roller molding, or injection molding of transparent resin to produce a flat plate material.
- One surface of the original plate material is a flat surface, and the other surface is an uneven surface that finally forms the first and second mirror surfaces 11 and 12 in a wave shape.
- the original plate material is cut with a predetermined dimension (L), and the cut end surface is polished as necessary to produce a substrate.
- One surface (ceiling surface 20) of this base material is covered with a peelable vapor deposition prevention sheet, and metal vapor deposition is performed to form first to fourth mirror surfaces 11 to 14. Thereafter, the vapor deposition prevention sheet is peeled off, and cleaning is performed if necessary to produce a long optical block body 19.
- the optical block bodies 19 having the same shape are arranged in parallel as described above. However, when the optical block bodies 19 are arranged side by side, the adjacent optical block bodies 19 are arranged. The case where the valley portion 21 and the mountain portion 22 formed on the bottom are made to coincide with each other, and the case where the valley portion 21 and the mountain portions 22 of the adjacent optical block body 19 are not made to coincide with each other (that is, the valley portion 21 and the mountain portion). 22).
- the retroreflector 18 is used in contact with the long optical block body 19 or arranged in parallel in close proximity. Therefore, the retroreflector 18 can be manufactured at low cost.
- the bottom portion is uneven, but the first and second mirror surfaces 11 and 12 are continuously formed trough portions.
- 21 can be filled with a transparent or opaque resin 24 and the bottom can be flat.
- 3A and 3B show a retroreflector 26 in which a valley portion 21 formed at the bottom is filled with a resin 24, and the ceiling surface 20 and the bottom surface 25 are processed into a flat shape. As a result, the first and second mirror surfaces 11 and 12 of the retroreflector 26 are not chipped or wrinkled.
- a retroreflector 28 according to a third embodiment of the present invention will be described.
- Long optical block bodies 29 constituting the retroreflector 28 are arranged side by side in an inclined state (inclination angle ⁇ ).
- Such a retroreflector 28 is formed by mounting the optical block 29 on the tilt table 30 and fixing it.
- the side surfaces of the adjacent optical block bodies 29 do not need to contact each other. This makes it closer to a cubic corner body (three-sided corner cube).
- the adjacent mounting base 30 can also be formed continuously by press or injection molding.
- the ceiling surface (upper surface) 32 of the optical block body 29 is transparent to form a light incident surface and a light output surface.
- a planar half mirror 35 is erected on top of the planar retroreflector 26.
- the retroreflector 26 is rectangular (width g, depth f), the width of the half mirror 35 is approximately the same as the depth f of the retroreflector 26, and the height is, for example, recursive. It is about 0.5 to 1 times the lateral width g of the reflector 26.
- each of the long optical block bodies 19 constituting the retroreflector 26 faces the depth direction (that is, the direction orthogonal to the paper surface in FIG. 5), and the third and fourth Mirrors 13 and 14 are arranged side by side in the horizontal direction.
- each optical block body 19 may be directed in the lateral direction, and the third and fourth mirrors 13 and 14 may be directed in the depth direction.
- the retroreflector 26 may be configured, and the direction of the optical block body 19 arranged in parallel may be arranged obliquely with respect to the half mirror 35 in plan view.
- the operation of the stereoscopic image display device 34 will be described.
- the light beam from the object P passes through the half mirror 35,
- the light enters the optical block body 19 from the oblique direction through the ceiling surface 20 to the retroreflector 26.
- the light rays entering the optical block body 19 are reflected by the first and second mirror surfaces 11 and 12 and the third or fourth mirror surfaces 13 and 14 arranged at right angles, and reflected from the ceiling surface 20 as reflected light. Idemitsu.
- This path is substantially the same as the path of light entering the optical block body 19.
- the reflected light from the ceiling surface 20 is reflected by the half mirror 35 to form a real image Q.
- each optical block body 19 with respect to the linear half mirror 35 in plan view is preferably determined in advance by experiments so that the real image Q to be formed has the maximum luminance.
- the standing angle of the half mirror 35 is changed, the image forming position and the brightness are also changed. Therefore, it is preferable to adjust to an optimum angle.
- the resolution of the image to be reproduced is determined by the size of each unit optical block 15 of the optical block body 19, a larger number and a finer real image can be obtained.
- the present invention is not limited to the above-described embodiments, and the configuration thereof can be changed without changing the gist of the present invention. Furthermore, the present invention is also applicable to the case where a part of the retroreflectors according to the first to third embodiments is selected to form another shape of the retroreflector.
- the retroreflector according to the present invention has a simple structure, it can be manufactured at a lower cost than a conventional three-sided corner cube.
- a stereoscopic image display device having pixels of any size can be formed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
A stereoscopic display device (34) is configured by combining a retroreflector (26) and a half mirror (35). The retroreflector is formed by a side-by-side arrangement of unit optical blocks (15) each including a first and second mirror face (11, 12) intersecting each other at a right angle, and a third and fourth mirror face (13, 14) orthogonal to the first and second mirror faces (11, 12). The first and second mirror faces (11, 12) are formed on the bottom of each unit optical block (15), and the third and fourth mirror faces (13, 14) are formed on the sides of each unit optical block (15). Incident light entering a unit optical block (15) from a prescribed direction is reflected parallel to the incident light via the first and second mirror faces (11, 12), and the third or fourth mirror face (13, 14).
Description
本発明は入射光と反射光が略同一の経路を通過する再帰性反射体及びこれを用いた立体像表示装置に関する。
The present invention relates to a retroreflector in which incident light and reflected light pass through substantially the same path, and a stereoscopic image display apparatus using the same.
透明球体や3面コーナーキューブを用いた再帰性反射体は、入射光と反射光の方向が略一致するので、交通標識や画像投影装置(特許文献1、2参照)等に応用されている。そして、透明球体を用いる場合より、3面コーナーキューブを用いた再帰性反射体の方がより強い反射光を得ることが知られている。
A retroreflector using a transparent sphere or a three-surface corner cube is applied to traffic signs, image projection devices (see Patent Documents 1 and 2) and the like because the directions of incident light and reflected light substantially coincide. It is known that a retroreflector using a three-sided corner cube obtains stronger reflected light than using a transparent sphere.
しかしながら、3面コーナーキューブは立方体の角を切り出した形状をしているので、微小の3面コーナーキューブを多数均一に並べて再帰性反射体を形成することは難しいという問題があった。
However, since the three-sided corner cube has a shape obtained by cutting out the corners of a cube, there is a problem that it is difficult to form a retroreflector by arranging a large number of three-sided corner cubes uniformly.
本発明はかかる事情に鑑みてなされたもので、比較的製造を容易になし得る再帰性反射体及びこれを用いた立体像表示装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and an object thereof is to provide a retroreflector that can be relatively easily manufactured and a stereoscopic image display apparatus using the retroreflector.
前記目的に沿う第1の発明に係る再帰性反射体は、直角に交わる第1、第2の鏡面と、前記第1、第2の鏡面に直交する第3、第4の鏡面とを有する透明の単位光学ブロックが面状に並べて配置されている。ここで、単位光学ブロックの素材は中空でもよいが、透明ガラス、透明プラスチックを用いるのが好ましい。なお、第1~第4の鏡面は通常は、金属をめっき又は蒸着することによって形成する。また、単位光学ブロックの非鏡面となった一面(天井面)は入光面と出光面を兼用している。一面から入った光線が、第1、第2の鏡面及び第3又は第4の鏡面で反射して一面から出る。
The retroreflector according to the first aspect of the present invention that meets the above-described object has first and second mirror surfaces that intersect at right angles and third and fourth mirror surfaces that are orthogonal to the first and second mirror surfaces. The unit optical blocks are arranged in a plane. Here, the material of the unit optical block may be hollow, but it is preferable to use transparent glass or transparent plastic. The first to fourth mirror surfaces are usually formed by plating or vapor-depositing a metal. In addition, one surface (ceiling surface) which is a non-mirror surface of the unit optical block serves as both a light incident surface and a light exit surface. Rays entering from one surface are reflected by the first, second and third or fourth mirror surfaces and exit from the one surface.
第2の発明に係る再帰性反射体は、第1の発明に係る再帰性反射体において、前記第1、第2の鏡面は前記単位光学ブロックの底部に、前記第3、第4の鏡面は前記単位光学ブロックの側面に、それぞれ形成されている。
A retroreflector according to a second invention is the retroreflector according to the first invention, wherein the first and second mirror surfaces are at the bottom of the unit optical block, and the third and fourth mirror surfaces are The unit optical blocks are respectively formed on the side surfaces.
第3の発明に係る再帰性反射体は、第1、第2の発明に係る再帰性反射体において、前記第3、第4の鏡面の間隔は、前記第1、第2の鏡面の幅を合計した長さの0.5~3倍の範囲にある。ここで、第3、第4の鏡面の間隔が第1、第2の鏡面の幅の合計より小さいと、第3、第4の鏡面の有効面積が減り、大きくても第3、第4の鏡面の有効面積が減る。
A retroreflector according to a third invention is the retroreflector according to the first or second invention, wherein the distance between the third and fourth mirror surfaces is the width of the first and second mirror surfaces. It is in the range of 0.5 to 3 times the total length. Here, if the distance between the third and fourth mirror surfaces is smaller than the total width of the first and second mirror surfaces, the effective area of the third and fourth mirror surfaces is reduced. The effective area of the mirror surface is reduced.
第4の発明に係る再帰性反射体は、第1~第3の発明に係る再帰性反射体において、複数の前記単位光学ブロックを直線状に並べて長尺の光学ブロック体を形成している。そして、同一形状の前記光学ブロック体が平行に並べて配置されて、面状の再帰性反射体を構成している。ここで、長尺の光学ブロック体は隙間を設けて並べて配置してもよいし、密接して並べて配置してもよい。また、隣り合う光学ブロック体は、1)山部と谷部の位置をそれぞれ一致させて並べてもよいし、2)山部と谷部をずらしてもよい。また、隣り合う光学ブロック体を近接又は当接させて配置してもよい。
A retroreflector according to a fourth invention is the retroreflector according to the first to third inventions, wherein a plurality of the unit optical blocks are arranged in a straight line to form a long optical block. The optical block bodies having the same shape are arranged in parallel to constitute a planar retroreflector. Here, the long optical block bodies may be arranged side by side with a gap or may be arranged side by side closely. Adjacent optical block bodies may be arranged 1) with the positions of the crests and troughs matched, and 2) the crests and troughs may be shifted. Further, adjacent optical block bodies may be arranged close to or in contact with each other.
第5の発明に係る再帰性反射体は、第1~第4の発明に係る再帰性反射体において、前記各単位光学ブロックの天井面の向きを揃えて、該各単位光学ブロックが平面状に並べて配置されている。
A retroreflector according to a fifth invention is the retroreflector according to any of the first to fourth inventions, wherein the unit optical blocks are arranged in a planar shape by aligning the directions of the ceiling surfaces of the unit optical blocks. They are arranged side by side.
そして、第6の発明に係る立体像表示装置は、第1~第5の発明に係る平面状の再帰性反射体と、該再帰性反射体の上に立設して配置されるハーフミラーとを有する。
ここで、ハーフミラーの端部は再帰性反射体に接していてもよいし、隙間を有していてもよい。また、平面状の再帰性反射体とハーフミラーの角度は直角であるのが好ましいが、傾斜(例えば、傾斜角度θ:60度以上90度未満)していてもよい。 A stereoscopic image display device according to a sixth aspect of the present invention is a planar retroreflector according to the first to fifth aspects of the present invention, and a half mirror disposed upright on the retroreflector. Have
Here, the end of the half mirror may be in contact with the retroreflector or may have a gap. The angle between the planar retroreflector and the half mirror is preferably a right angle, but may be inclined (for example, an inclination angle θ: 60 degrees or more and less than 90 degrees).
ここで、ハーフミラーの端部は再帰性反射体に接していてもよいし、隙間を有していてもよい。また、平面状の再帰性反射体とハーフミラーの角度は直角であるのが好ましいが、傾斜(例えば、傾斜角度θ:60度以上90度未満)していてもよい。 A stereoscopic image display device according to a sixth aspect of the present invention is a planar retroreflector according to the first to fifth aspects of the present invention, and a half mirror disposed upright on the retroreflector. Have
Here, the end of the half mirror may be in contact with the retroreflector or may have a gap. The angle between the planar retroreflector and the half mirror is preferably a right angle, but may be inclined (for example, an inclination angle θ: 60 degrees or more and less than 90 degrees).
第1~第5の発明に係る再帰性反射体は、直角に交わる第1、第2の鏡面と、第1、第2の鏡面に直交する第3、第4の鏡面とを有する透明の単位光学ブロックが並べて形成されているので、従来のコーナーキューブより構造が簡単であり、任意のサイズの単位光学ブロックを廉価に製造できる。
特に、複数の単位光学ブロックを直線状に並べて形成した長尺の光学ブロック体を用いることにより、更に簡単にかつ安価に再帰性反射体を製造できる。
また、第6の発明に係る立体像表示装置は、第1~第5の発明に係る再帰性反射体と、ハーフミラーとを組み合わせることによって形成でき、しかも、簡単かつ安価に製造できる。 The retroreflectors according to the first to fifth inventions are transparent units having first and second mirror surfaces intersecting at right angles and third and fourth mirror surfaces orthogonal to the first and second mirror surfaces. Since the optical blocks are formed side by side, the structure is simpler than the conventional corner cube, and unit optical blocks of any size can be manufactured at low cost.
In particular, by using a long optical block body formed by arranging a plurality of unit optical blocks in a straight line, a retroreflector can be manufactured more easily and inexpensively.
The stereoscopic image display device according to the sixth invention can be formed by combining the retroreflector according to the first to fifth inventions with a half mirror, and can be manufactured easily and inexpensively.
特に、複数の単位光学ブロックを直線状に並べて形成した長尺の光学ブロック体を用いることにより、更に簡単にかつ安価に再帰性反射体を製造できる。
また、第6の発明に係る立体像表示装置は、第1~第5の発明に係る再帰性反射体と、ハーフミラーとを組み合わせることによって形成でき、しかも、簡単かつ安価に製造できる。 The retroreflectors according to the first to fifth inventions are transparent units having first and second mirror surfaces intersecting at right angles and third and fourth mirror surfaces orthogonal to the first and second mirror surfaces. Since the optical blocks are formed side by side, the structure is simpler than the conventional corner cube, and unit optical blocks of any size can be manufactured at low cost.
In particular, by using a long optical block body formed by arranging a plurality of unit optical blocks in a straight line, a retroreflector can be manufactured more easily and inexpensively.
The stereoscopic image display device according to the sixth invention can be formed by combining the retroreflector according to the first to fifth inventions with a half mirror, and can be manufactured easily and inexpensively.
続いて、添付した図面を参照しながら、本発明を具体化した実施例について説明する。
図1(A)、(B)に示すように、本発明の第1の実施例に係る再帰性反射体10は面状(例えば、平面状)に並べられた多数(例えば1000~50000)の単位光学ブロック15からなっている。各単位光学ブロック15は、底部に直角に連結配置された第1、第2の鏡面11、12を、正面側と背面側の側面に、第1、第2の鏡面11、12に直交する第3、第4の鏡面13、14を有する透明体からなる。 Next, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIGS. 1A and 1B, theretroreflector 10 according to the first embodiment of the present invention has a large number (for example, 1000 to 50000) arranged in a planar shape (for example, a planar shape). It consists of a unit optical block 15. Each unit optical block 15 includes a first mirror surface 11 and a second mirror surface 12 connected to each other at a right angle on the bottom, and the first and second mirror surfaces 11 and 12 are orthogonal to the front and rear side surfaces. 3 and a transparent body having fourth mirror surfaces 13 and 14.
図1(A)、(B)に示すように、本発明の第1の実施例に係る再帰性反射体10は面状(例えば、平面状)に並べられた多数(例えば1000~50000)の単位光学ブロック15からなっている。各単位光学ブロック15は、底部に直角に連結配置された第1、第2の鏡面11、12を、正面側と背面側の側面に、第1、第2の鏡面11、12に直交する第3、第4の鏡面13、14を有する透明体からなる。 Next, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIGS. 1A and 1B, the
図1(A)、(B)には、一つの単位光学ブロック15を示しているが、再帰性反射体10として使用する場合は、多数の単位光学ブロック15を縦横に並べて配置する。この場合、各単位光学ブロック15が、平面視して同一寸法形状の正方形又は長方形とすると、各単位ブロックを隙間なく配置でき、より精密な再帰性反射体10を形成できる。
通常、多数の単位光学ブロック15を平面状に並べるのが好ましいが、変形可能な布地や曲面の上に配置することもできる。各単位光学ブロック15は、中空で、第1~第4の鏡面11~14が単に鏡からなっていてもよいし、塊状の単位光学ブロック15の素材を透明ガラス、透明プラスチック(例えば、アクリル、ポリカーボネイト、ナイロン、ポリプロピレン、シクロオレフィン系樹脂等)とし、第1~第4の鏡面11~14を金属蒸着によって形成してもよい。 1A and 1B show one unitoptical block 15, but when used as the retroreflector 10, a large number of unit optical blocks 15 are arranged side by side in the vertical and horizontal directions. In this case, if each unit optical block 15 is a square or a rectangle having the same size shape in plan view, each unit block can be arranged without a gap, and a more precise retroreflector 10 can be formed.
Usually, it is preferable to arrange a large number of unitoptical blocks 15 in a planar shape, but they can be arranged on a deformable fabric or curved surface. Each unit optical block 15 may be hollow, and the first to fourth mirror surfaces 11 to 14 may simply be mirrors. The material of the block unit optical block 15 may be transparent glass, transparent plastic (for example, acrylic, (Polycarbonate, nylon, polypropylene, cycloolefin resin, etc.), and the first to fourth mirror surfaces 11 to 14 may be formed by metal vapor deposition.
通常、多数の単位光学ブロック15を平面状に並べるのが好ましいが、変形可能な布地や曲面の上に配置することもできる。各単位光学ブロック15は、中空で、第1~第4の鏡面11~14が単に鏡からなっていてもよいし、塊状の単位光学ブロック15の素材を透明ガラス、透明プラスチック(例えば、アクリル、ポリカーボネイト、ナイロン、ポリプロピレン、シクロオレフィン系樹脂等)とし、第1~第4の鏡面11~14を金属蒸着によって形成してもよい。 1A and 1B show one unit
Usually, it is preferable to arrange a large number of unit
単位光学ブロック15の縦幅(即ち、第3、第4の鏡面13、14の間隔)Lは、第1、第2の鏡面11、12の幅W1、W2を合計した長さの例えば0.5~3倍(1~2倍がより好ましい)とするのが好ましい。単位光学ブロック15の縦幅Lが長過ぎると、3回反射が起こらず反射光が散乱し易い。また、単位光学ブロック15の縦幅Lが短いと、第3、第4の鏡面13、14で多重反射が起こり、反射光の散乱を招く。また、単位光学ブロック15の高さH(第1、第2の鏡面11、12の山部から天井面20aまでの垂直距離)は、例えば(0.707~3)×W1の範囲で設定するのが好ましい(以下の実施の形態においても同じ)。
The vertical width L of the unit optical block 15 (that is, the distance between the third and fourth mirror surfaces 13 and 14) L is a total length of the widths W1 and W2 of the first and second mirror surfaces 11 and 12, for example, 0. It is preferably 5 to 3 times (more preferably 1 to 2 times). When the vertical width L of the unit optical block 15 is too long, reflection does not occur three times and the reflected light is easily scattered. In addition, when the vertical width L of the unit optical block 15 is short, multiple reflection occurs at the third and fourth mirror surfaces 13 and 14 and scattering of reflected light is caused. Further, the height H of the unit optical block 15 (vertical distance from the crests of the first and second mirror surfaces 11 and 12 to the ceiling surface 20a) is set in the range of (0.707 to 3) × W1, for example. (The same applies to the following embodiments).
この再帰性反射体10の動作に関して、図1(A)、(B)に示す一つの単位光学ブロック15について説明すると、矢視する入射光Aは、第1、第2の鏡面11、12の点B、Cで反射し、第4の鏡面14の点Dで反射して、入射光Aと同じ方向に反射(反射光E)する。なお、単位光学ブロック15の寸法(サイズ)を大きくすると、入射光と反射光の位置がずれて元位置には光が帰らない。そこで、個々の単位光学ブロック15の寸法を小さくして(例えば、L=0.5~3mmとして)、多数の単位光学ブロック15を並べて配置するのがよい。
Regarding the operation of the retroreflector 10, a single unit optical block 15 shown in FIGS. 1 (A) and 1 (B) will be described. The incident light A viewed in the direction of the arrows is reflected on the first and second mirror surfaces 11 and 12. Reflected at points B and C, reflected at point D on the fourth mirror surface 14, and reflected in the same direction as incident light A (reflected light E). Note that when the dimension (size) of the unit optical block 15 is increased, the positions of the incident light and the reflected light are shifted, and the light does not return to the original position. Therefore, it is preferable to arrange a large number of unit optical blocks 15 side by side by reducing the size of each unit optical block 15 (for example, L = 0.5 to 3 mm).
続いて、図2(A)~(C)を参照しながら、本発明の第2の実施例に係る再帰性反射体18について説明する。なお、第1の実施例に係る再帰性反射体10と同一の構成要素については、同一の番号を付して詳しい説明を省略する。第2の実施例に係る再帰性反射体18は、単位光学ブロック15(図2(A)にその一つを二点鎖線で示す)を横方向に複数連結して一体化した長尺かつ直線状の光学ブロック体19を平行に並べて形成されている。従って、光学ブロック体19の底部には、直角に配置された第1、第2の鏡面11、12が連続して三角波状に形成され、側面には第1、第2の鏡面11、12と、直交する第3、第4の鏡面13、14が形成されている。第3、第4の鏡面13、14は平行となって、長尺の光学ブロック体19の両側面に形成されている。また、各単位光学ブロック15は天井面20a(図1参照)の向きを揃えて、各単位光学ブロック15は平面状に並べて配置されている(以下の実施例においても同じ)。
Subsequently, a retroreflector 18 according to a second embodiment of the present invention will be described with reference to FIGS. 2 (A) to (C). In addition, about the component same as the retroreflector 10 which concerns on a 1st Example, the same number is attached | subjected and detailed description is abbreviate | omitted. The retroreflector 18 according to the second embodiment is a long and straight line in which a plurality of unit optical blocks 15 (one of which is indicated by a two-dot chain line in FIG. The optical block bodies 19 are arranged in parallel. Therefore, the first and second mirror surfaces 11 and 12 arranged at right angles are continuously formed in a triangular wave shape on the bottom of the optical block body 19, and the first and second mirror surfaces 11 and 12 are formed on the side surfaces. , Orthogonal third and fourth mirror surfaces 13 and 14 are formed. The third and fourth mirror surfaces 13 and 14 are formed in parallel on both side surfaces of the long optical block body 19. In addition, the unit optical blocks 15 are arranged so that the directions of the ceiling surface 20a (see FIG. 1) are aligned, and the unit optical blocks 15 are arranged in a plane (the same applies to the following embodiments).
光学ブロック体19の基材の材質は透明度の高いガラス又は透明樹脂により構成される。基材の製造にあっては、ガラス又は透明樹脂からなる平板をプレス成形、ローラ成形によって、又は透明樹脂を射出成形して平板状の原板材を製造する。この原板材は一面が平面状となって、他面は最終的には第1、第2の鏡面11、12を波状に形成する凹凸面となっている。この原板材を所定寸法(L)で切断し、切断端面は必要に応じて研磨して基材を製造する。この基材の一面(天井面20)を剥離可能な蒸着防止シートで覆い、金属蒸着を行い、第1~第4の鏡面11~14を形成する。この後、蒸着防止シートを剥がして、必要な場合は洗浄を行い、長尺の光学ブロック体19を製造する。
The material of the base material of the optical block body 19 is made of highly transparent glass or transparent resin. In the production of the base material, a flat plate made of glass or transparent resin is produced by press molding, roller molding, or injection molding of transparent resin to produce a flat plate material. One surface of the original plate material is a flat surface, and the other surface is an uneven surface that finally forms the first and second mirror surfaces 11 and 12 in a wave shape. The original plate material is cut with a predetermined dimension (L), and the cut end surface is polished as necessary to produce a substrate. One surface (ceiling surface 20) of this base material is covered with a peelable vapor deposition prevention sheet, and metal vapor deposition is performed to form first to fourth mirror surfaces 11 to 14. Thereafter, the vapor deposition prevention sheet is peeled off, and cleaning is performed if necessary to produce a long optical block body 19.
再帰性反射体18を構成する場合は、前述のように、同一形状の光学ブロック体19を平行に並べて形成するが、光学ブロック体19を並べて配置する際には、隣り合う光学ブロック体19の底部に形成されている谷部21と山部22とをそれぞれ一致させる場合と、隣り合う光学ブロック体19の谷部21、及び山部22同士を一致させない場合(即ち、谷部21と山部22をずらす場合)とがある。再帰性反射体18は、この長尺の光学ブロック体19を当接して、又は近接して並列に並べて使用する。従って、安価に再帰性反射体18を製造することができる。
When the retroreflector 18 is configured, the optical block bodies 19 having the same shape are arranged in parallel as described above. However, when the optical block bodies 19 are arranged side by side, the adjacent optical block bodies 19 are arranged. The case where the valley portion 21 and the mountain portion 22 formed on the bottom are made to coincide with each other, and the case where the valley portion 21 and the mountain portions 22 of the adjacent optical block body 19 are not made to coincide with each other (that is, the valley portion 21 and the mountain portion). 22). The retroreflector 18 is used in contact with the long optical block body 19 or arranged in parallel in close proximity. Therefore, the retroreflector 18 can be manufactured at low cost.
なお、第1、第2の実施例に係る再帰性反射体10、18において、底部には凹凸が形成されているが、第1、第2の鏡面11、12が形成された連続する谷部21に透明又は不透明の樹脂24を充填し、底部を平面とすることもできる。図3(A)、(B)には、底部に形成された谷部21に樹脂24が充填され、更に天井面20及び底面25が平面状に加工された再帰性反射体26を示す。これによって、再帰性反射体26の第1、第2の鏡面11、12が欠けたり、疵が付くことが無くなる。
In addition, in the retroreflectors 10 and 18 according to the first and second embodiments, the bottom portion is uneven, but the first and second mirror surfaces 11 and 12 are continuously formed trough portions. 21 can be filled with a transparent or opaque resin 24 and the bottom can be flat. 3A and 3B show a retroreflector 26 in which a valley portion 21 formed at the bottom is filled with a resin 24, and the ceiling surface 20 and the bottom surface 25 are processed into a flat shape. As a result, the first and second mirror surfaces 11 and 12 of the retroreflector 26 are not chipped or wrinkled.
続いて、図4(A)、(B)に示すように本発明の第3の実施例に係る再帰性反射体28について説明する。再帰性反射体28を構成する長尺の光学ブロック体29が傾斜状態(傾斜角θ)で並べて配置されている。このような、再帰性反射体28は、光学ブロック体29を傾斜台30に載せて固定することによって形成される。この場合、隣り合う光学ブロック体29は側面が当接する必要はない。これによって、よりキュービックコーナー体(3面コーナーキューブ)に近くなる。また、プレス又はインジェクション成形によって、隣り合う載置台30は連続して形成することもできる。光学ブロック体29の天井面(上面)32は透明となって入光面及び出光面を形成する。
Subsequently, as shown in FIGS. 4A and 4B, a retroreflector 28 according to a third embodiment of the present invention will be described. Long optical block bodies 29 constituting the retroreflector 28 are arranged side by side in an inclined state (inclination angle θ). Such a retroreflector 28 is formed by mounting the optical block 29 on the tilt table 30 and fixing it. In this case, the side surfaces of the adjacent optical block bodies 29 do not need to contact each other. This makes it closer to a cubic corner body (three-sided corner cube). Moreover, the adjacent mounting base 30 can also be formed continuously by press or injection molding. The ceiling surface (upper surface) 32 of the optical block body 29 is transparent to form a light incident surface and a light output surface.
次に、図5(A)~(C)を参照しながら、以上の再帰性反射体26(10、18においても同様)を使用した本発明の一実施例に係る立体像表示装置34について説明する。
平面状の再帰性反射体26の上部に平面状のハーフミラー35を立設する。再帰性反射体26はこの実施例では矩形(横幅g、奥行きf)となって、ハーフミラー35の幅は再帰性反射体26の奥行きfと同一程度となって、高さは例えば、再帰性反射体26の横幅gの0.5~1倍程度となっている。 Next, with reference to FIGS. 5A to 5C, a stereoscopicimage display device 34 according to an embodiment of the present invention using the above retroreflector 26 (the same applies to 10 and 18) will be described. To do.
Aplanar half mirror 35 is erected on top of the planar retroreflector 26. In this embodiment, the retroreflector 26 is rectangular (width g, depth f), the width of the half mirror 35 is approximately the same as the depth f of the retroreflector 26, and the height is, for example, recursive. It is about 0.5 to 1 times the lateral width g of the reflector 26.
平面状の再帰性反射体26の上部に平面状のハーフミラー35を立設する。再帰性反射体26はこの実施例では矩形(横幅g、奥行きf)となって、ハーフミラー35の幅は再帰性反射体26の奥行きfと同一程度となって、高さは例えば、再帰性反射体26の横幅gの0.5~1倍程度となっている。 Next, with reference to FIGS. 5A to 5C, a stereoscopic
A
図5(B)に示すように、再帰性反射体26を構成する長尺の各光学ブロック体19が奥行き方向(即ち、図5において紙面に直交する方向)に向いて、第3、第4のミラー13、14が横方向に並んで配置されている。ここで、図5(C)に示すように、各光学ブロック体19が横方向に向いて、第3、第4のミラー13、14が奥行き方向に向いてもよい。
また、再帰性反射体26を構成し、平行に並べて配置された光学ブロック体19の向きを、平面視して、ハーフミラー35に対して斜めに配置してもよい。 As shown in FIG. 5B, each of the longoptical block bodies 19 constituting the retroreflector 26 faces the depth direction (that is, the direction orthogonal to the paper surface in FIG. 5), and the third and fourth Mirrors 13 and 14 are arranged side by side in the horizontal direction. Here, as shown in FIG. 5C, each optical block body 19 may be directed in the lateral direction, and the third and fourth mirrors 13 and 14 may be directed in the depth direction.
Further, theretroreflector 26 may be configured, and the direction of the optical block body 19 arranged in parallel may be arranged obliquely with respect to the half mirror 35 in plan view.
また、再帰性反射体26を構成し、平行に並べて配置された光学ブロック体19の向きを、平面視して、ハーフミラー35に対して斜めに配置してもよい。 As shown in FIG. 5B, each of the long
Further, the
立体像表示装置34の動作について説明すると、自ら光又は反射光を発する対象物Pを立体像表示装置34に対して特定場所に配置すると、対象物Pからの光線はハーフミラー35を通過し、再帰性反射体26に斜め方向から天井面20を通って光学ブロック体19に入光する。光学ブロック体19に入光した光線は、それぞれ直角に配置された第1、第2の鏡面11、12と第3又は第4の鏡面13、14で反射して、天井面20から反射光として出光する。この経路は、光学ブロック体19に入光した光の経路と略同一である。天井面20からの反射光は、ハーフミラー35で反射して、実像Qを形成する。
The operation of the stereoscopic image display device 34 will be described. When the object P that emits light or reflected light is arranged at a specific location with respect to the stereoscopic image display device 34, the light beam from the object P passes through the half mirror 35, The light enters the optical block body 19 from the oblique direction through the ceiling surface 20 to the retroreflector 26. The light rays entering the optical block body 19 are reflected by the first and second mirror surfaces 11 and 12 and the third or fourth mirror surfaces 13 and 14 arranged at right angles, and reflected from the ceiling surface 20 as reflected light. Idemitsu. This path is substantially the same as the path of light entering the optical block body 19. The reflected light from the ceiling surface 20 is reflected by the half mirror 35 to form a real image Q.
なお、ハーフミラー35を通過した後、天井面20から入光しても、それぞれ直角となった鏡面に3回反射しなかった光は、仮にハーフミラー35では反射したとしても、結像に寄与しないので、散乱光となる。
また、平面視して直線状のハーフミラー35に対する各光学ブロック体19の向きは、結像する実像Qが最大輝度になるように、予め実験して決めるのがよい。また、ハーフミラー35の立設角度が変わると、結像位置や明るさも変わるので、最適な角度に調整するのが好ましい。
更に、光学ブロック体19の各単位光学ブロック15の寸法が再生される画像の解像度を決定するので、より数が多く、細かい方が鮮明な実像が得られる。 In addition, even if light is incident on theceiling surface 20 after passing through the half mirror 35 and is not reflected by the mirror surfaces that are perpendicular to each other, the light that has not been reflected three times contributes to image formation even if it is reflected by the half mirror 35. Since it does not, it becomes scattered light.
Further, the orientation of eachoptical block body 19 with respect to the linear half mirror 35 in plan view is preferably determined in advance by experiments so that the real image Q to be formed has the maximum luminance. Further, when the standing angle of the half mirror 35 is changed, the image forming position and the brightness are also changed. Therefore, it is preferable to adjust to an optimum angle.
Furthermore, since the resolution of the image to be reproduced is determined by the size of each unitoptical block 15 of the optical block body 19, a larger number and a finer real image can be obtained.
また、平面視して直線状のハーフミラー35に対する各光学ブロック体19の向きは、結像する実像Qが最大輝度になるように、予め実験して決めるのがよい。また、ハーフミラー35の立設角度が変わると、結像位置や明るさも変わるので、最適な角度に調整するのが好ましい。
更に、光学ブロック体19の各単位光学ブロック15の寸法が再生される画像の解像度を決定するので、より数が多く、細かい方が鮮明な実像が得られる。 In addition, even if light is incident on the
Further, the orientation of each
Furthermore, since the resolution of the image to be reproduced is determined by the size of each unit
本発明は前記した実施例に限定されるものではなく、本発明の要旨を変更しない範囲でその構成を変更することもできる。
更に、第1~第3の実施例に係る再帰性反射体の一部の構成要素を選んで、別形状の再帰性反射体を形成する場合も、本発明は適用される。 The present invention is not limited to the above-described embodiments, and the configuration thereof can be changed without changing the gist of the present invention.
Furthermore, the present invention is also applicable to the case where a part of the retroreflectors according to the first to third embodiments is selected to form another shape of the retroreflector.
更に、第1~第3の実施例に係る再帰性反射体の一部の構成要素を選んで、別形状の再帰性反射体を形成する場合も、本発明は適用される。 The present invention is not limited to the above-described embodiments, and the configuration thereof can be changed without changing the gist of the present invention.
Furthermore, the present invention is also applicable to the case where a part of the retroreflectors according to the first to third embodiments is selected to form another shape of the retroreflector.
本発明に係る再帰性反射体は構造が簡単であるので、従来の3面コーナーキューブに比較して安価に製造できる。また、用途に応じて第1~第4の鏡面のサイズを決定すれば、任意の大きさのピクセルを有する立体像表示装置を形成できる。
Since the retroreflector according to the present invention has a simple structure, it can be manufactured at a lower cost than a conventional three-sided corner cube. In addition, if the sizes of the first to fourth mirror surfaces are determined according to the application, a stereoscopic image display device having pixels of any size can be formed.
10:再帰性反射体、11:第1の鏡面、12:第2の鏡面、13:第3の鏡面、14:第4の鏡面、15:単位光学ブロック、18:再帰性反射体、19:光学ブロック体、20、20a:天井面、21:谷部、22:山部、24:樹脂、25:底面、26:再帰性反射体、28:再帰性反射体、29:光学ブロック体、30:傾斜台、32:天井面、34:立体像表示装置、35:ハーフミラー
10: retroreflector, 11: first mirror surface, 12: second mirror surface, 13: third mirror surface, 14: fourth mirror surface, 15: unit optical block, 18: retroreflector, 19: Optical block, 20, 20a: Ceiling, 21: Valley, 22: Mountain, 24: Resin, 25: Bottom, 26: Retroreflector, 28: Retroreflector, 29: Optical block, 30 : Tilting table, 32: ceiling surface, 34: stereoscopic image display device, 35: half mirror
Claims (6)
- 直角に交わる第1、第2の鏡面と、前記第1、第2の鏡面に直交する第3、第4の鏡面とを有する透明の単位光学ブロックが面状に並べて配置されたことを特徴とする再帰性反射体。 Transparent unit optical blocks having first and second mirror surfaces intersecting at right angles and third and fourth mirror surfaces orthogonal to the first and second mirror surfaces are arranged in a plane. Retroreflector to do.
- 請求項1記載の再帰性反射体において、前記第1、第2の鏡面は前記単位光学ブロックの底部に、前記第3、第4の鏡面は前記単位光学ブロックの側面に、それぞれ形成されていることを特徴とする再帰性反射体。 2. The retroreflector according to claim 1, wherein the first and second mirror surfaces are formed on a bottom portion of the unit optical block, and the third and fourth mirror surfaces are formed on a side surface of the unit optical block. A retroreflector characterized by that.
- 請求項1又は2記載の再帰性反射体において、前記第3、第4の鏡面の間隔は、前記第1、第2の鏡面の幅を合計した長さの0.5~3倍の範囲にあることを特徴とする再帰性反射体。 3. The retroreflector according to claim 1, wherein a distance between the third and fourth mirror surfaces is in a range of 0.5 to 3 times a total length of the widths of the first and second mirror surfaces. A retroreflector characterized by being.
- 請求項1~3のいずれか1記載の再帰性反射体において、複数の前記単位光学ブロックを直線状に並べて長尺の光学ブロック体が形成され、同一形状の前記光学ブロック体が平行に並べて配置されていることを特徴とする再帰性反射体。 The retroreflector according to any one of claims 1 to 3, wherein a plurality of the unit optical blocks are linearly arranged to form a long optical block body, and the optical block bodies having the same shape are arranged in parallel. A retroreflector characterized in that
- 請求項1~4のいずれか1記載の再帰性反射体において、前記各単位光学ブロックの天井面の向きを揃えて、該各単位光学ブロックが平面状に並べて配置されていることを特徴とする再帰性反射体。 The retroreflector according to any one of claims 1 to 4, wherein the unit optical blocks are arranged side by side in a plane with the direction of the ceiling surface of each unit optical block aligned. Retroreflector.
- 請求項1~5のいずれか1記載の平面状の再帰性反射体と、該再帰性反射体の上に立設して配置されるハーフミラーとを有することを特徴とする立体像表示装置。 A stereoscopic image display device comprising: the planar retroreflector according to any one of claims 1 to 5; and a half mirror arranged upright on the retroreflector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016523093A JPWO2015181994A1 (en) | 2014-05-27 | 2014-08-19 | Retroreflector and stereoscopic image display apparatus using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-109308 | 2014-05-27 | ||
JP2014109308 | 2014-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015181994A1 true WO2015181994A1 (en) | 2015-12-03 |
Family
ID=54698364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/071654 WO2015181994A1 (en) | 2014-05-27 | 2014-08-19 | Retroreflector and stereoscopic display device using same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015181994A1 (en) |
WO (1) | WO2015181994A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3163333A4 (en) * | 2014-06-27 | 2018-02-14 | Asukanet Company, Ltd. | Retroreflector, and stereoscopic image display device and method using same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009025776A (en) * | 2007-06-21 | 2009-02-05 | National Institute Of Information & Communication Technology | Real mirror video image forming optical system |
JP2011511303A (en) * | 2007-12-21 | 2011-04-07 | キム,ヒョンシク | Retroreflector |
-
2014
- 2014-08-19 WO PCT/JP2014/071654 patent/WO2015181994A1/en active Application Filing
- 2014-08-19 JP JP2016523093A patent/JPWO2015181994A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009025776A (en) * | 2007-06-21 | 2009-02-05 | National Institute Of Information & Communication Technology | Real mirror video image forming optical system |
JP2011511303A (en) * | 2007-12-21 | 2011-04-07 | キム,ヒョンシク | Retroreflector |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3163333A4 (en) * | 2014-06-27 | 2018-02-14 | Asukanet Company, Ltd. | Retroreflector, and stereoscopic image display device and method using same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015181994A1 (en) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6118004B1 (en) | Retroreflector | |
WO2015198499A1 (en) | Retroreflector, and stereoscopic image display device and method using same | |
JP5820955B1 (en) | Retroreflector and stereoscopic image display device using the same | |
JP2020064086A (en) | Aerial video output device | |
US20110235201A1 (en) | Two-image-point imaging optical device | |
WO2014174693A1 (en) | Stereoscopic image display device and stereoscopic image display method | |
KR101982621B1 (en) | Image display device and image display method | |
JP5466793B1 (en) | 3D image display apparatus and 3D image display method | |
JP6357361B2 (en) | Retroreflector and stereoscopic image display device using the same | |
WO2015181994A1 (en) | Retroreflector and stereoscopic display device using same | |
US20060176565A1 (en) | Prism lens film and flat light emitting device | |
JP5667729B2 (en) | Optical imaging device | |
JP2016057346A (en) | Retroreflector and manufacturing method therefor | |
JP6465681B2 (en) | Optical imaging device | |
JP2017142438A (en) | Optical image formation device and method | |
JP6257723B2 (en) | 3D image display device | |
KR101928135B1 (en) | Optical film for display and display device comprising the same | |
JP6014063B2 (en) | 3D image display apparatus and 3D image display method | |
JP2020003655A (en) | Retroreflective reflector | |
KR20170021597A (en) | Optical film for display | |
JP4677244B2 (en) | Prism lens film and planar light emitting device | |
KR101649825B1 (en) | Display Device | |
JP2015200793A (en) | Stereoscopic image display device and stereoscopic image display method | |
KR20170069982A (en) | Optical film for display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14893021 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016523093 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14893021 Country of ref document: EP Kind code of ref document: A1 |