[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2015177914A1 - Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and train car - Google Patents

Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and train car Download PDF

Info

Publication number
WO2015177914A1
WO2015177914A1 PCT/JP2014/063633 JP2014063633W WO2015177914A1 WO 2015177914 A1 WO2015177914 A1 WO 2015177914A1 JP 2014063633 W JP2014063633 W JP 2014063633W WO 2015177914 A1 WO2015177914 A1 WO 2015177914A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor device
type
trench
conductivity type
Prior art date
Application number
PCT/JP2014/063633
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 手賀
広行 吉元
久本 大
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2016520883A priority Critical patent/JP6336055B2/en
Priority to PCT/JP2014/063633 priority patent/WO2015177914A1/en
Publication of WO2015177914A1 publication Critical patent/WO2015177914A1/en

Links

Images

Classifications

    • H01L29/12
    • H01L29/78

Definitions

  • the present invention relates to a semiconductor device, a method for manufacturing a semiconductor device, a power conversion device, a three-phase motor system, an automobile, and a railway vehicle, and more particularly to improvement in reliability.
  • Si power MISFET Metal Insulator Semiconductor Effect Transistor
  • a power MISFET (hereinafter referred to as a SiC power MISFET) using a silicon carbide (SiC) substrate (hereinafter referred to as a SiC substrate) can have a higher breakdown voltage and a lower loss than a Si power MISFET. It is. For this reason, particular attention is focused in the field of power-saving or environment-friendly inverter technology.
  • the SiC power MISFET can reduce the on-resistance at the same breakdown voltage as compared with the Si power MISFET. This is because silicon carbide (SiC) has a dielectric breakdown electric field strength that is about seven times larger than that of silicon (Si), and the epitaxial layer serving as a drift layer can be thinned. However, considering the original characteristics that should be obtained from silicon carbide (SiC), it cannot be said that sufficient characteristics have been obtained yet, and further reduction of the on-resistance is desired from the viewpoint of efficient use of energy. ing.
  • One of the problems to be solved regarding the on-resistance of a SiC power MISFET having a DMOS (Double diffused Metal Oxide Semiconductor) structure is a channel parasitic resistance.
  • the channel parasitic resistance In a low withstand voltage 600V withstand voltage DMOS, the channel parasitic resistance is the main cause of the parasitic resistance, and in a high withstand voltage 3300V withstand voltage DMOS, it is next to the drift resistance. Therefore, this reduction in channel parasitic resistance is necessary for the SiC power MISFET.
  • the reason why the channel parasitic resistance is high is the low channel mobility of the Si (0001) surface, which is the channel surface of the DMOS.
  • a trench is formed so as to dig a groove in a part of the p-type body layer of the DMOS and outside the body layer.
  • a method for widening the typical channel width is disclosed.
  • the use of the (11-20) plane or the (1-100) plane capable of obtaining a high channel mobility has been studied.
  • Patent Document 2 discloses a method of relaxing an electric field applied to a gate insulating film by forming a part of a p-type body layer at a position lower than a gate insulating film formed under a trench.
  • Patent Document 1 and Patent Document 2 are structures in which a part of the trench structure is exposed outside the p-type body layer, the electric field applied to the gate insulating film is higher than that of a normal DMOS. Therefore, even if the initial breakdown voltage is equal to or higher than the desired breakdown voltage, the reliability of the gate insulating film decreases with time. Therefore, the inventors of the present application have studied a structure that can be expected to have high reliability by suppressing the electric field applied to the gate insulating film while being a trench type that can be expected to have high channel mobility.
  • An object of the present invention is to provide a silicon carbide semiconductor device with high performance and high reliability by using a trench structure and suppressing an electric field applied to a gate insulating film below the trench. As a result, the technology which realizes high performance of the power conversion device, the three-phase motor system, the automobile, and the railway vehicle is provided.
  • a first conductivity type semiconductor substrate a drain electrode formed on the back side of the semiconductor substrate, a first conductivity type drift layer formed on the semiconductor substrate, and a first conductivity type source.
  • a first conductivity type current diffusion layer electrically connected to the drift region, a second conductivity type body layer in contact with the source region and the current diffusion layer, a source region, a body layer, and a current
  • a trench extending to the diffusion layer and shallower than the body layer and having a bottom surface in contact with the body layer; a gate insulating film formed on an inner wall of the trench; and a gate electrode formed on the gate insulating film;
  • a silicon carbide semiconductor device with high performance and high reliability can be provided.
  • high performance of the power conversion device, the three-phase motor system, the automobile, and the railway vehicle can be realized.
  • FIG. 10 is a cross-sectional view of a main part taken along line AA ′ in FIG.
  • FIG. 10 is a main part cross-sectional view taken along line BB ′ in FIG. It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention.
  • FIG. 1 is a circuit diagram of the power converter device (inverter) of the Example of this invention. It is a circuit diagram of the power converter device (inverter) of the Example of this invention. It is a block diagram of the electric vehicle of the Example of this invention. 1 is a circuit diagram of a boost converter according to an embodiment of the present invention. 1 is a configuration diagram of a railway vehicle according to an embodiment of the present invention. It is a principal part bird's-eye view of the SiC power MISFET structure of the Example of this invention. It is a principal part top view which shows the positional relationship of the gate electrode of the polycrystalline silicon of the semiconductor chip of the Example of this invention, a source contact part, and a gate contact part.
  • FIG. 1 is a top view of an essential part of a semiconductor chip 1 of this embodiment having a plurality of vertical SiC power MISFET structures 6.
  • FIG. 2 is a bird's-eye view of the main part of the SiC power MISFET structure 6.
  • a semiconductor chip 1 which is a semiconductor device of the present embodiment includes an active region (SiC) positioned below a source wiring electrode 2 in which a plurality of n-channel SiC power MISFET structures 6 are connected in parallel.
  • the peripheral formation region includes a plurality of p-type floating field limiting rings (FLRs) 3 formed so as to surround the active region in plan view, and the plurality of p in plan view.
  • An n-type guard ring 4 is formed so as to surround the type FLR 3.
  • SiC epitaxial substrate On the surface side of the active region of an n-type silicon carbide (SiC) epitaxial substrate (hereinafter referred to as a SiC epitaxial substrate), a gate electrode of an SiC power MISFET, an n ++ type source region, a channel region, and the like are formed. An n + type drain region of the SiC power MISFET is formed on the back surface side of the epitaxial substrate.
  • SiC epitaxial substrate On the surface side of the active region of an n-type silicon carbide (SiC) epitaxial substrate (hereinafter referred to as a SiC epitaxial substrate), a gate electrode of an SiC power MISFET, an n ++ type source region, a channel region, and the like are formed.
  • An n + type drain region of the SiC power MISFET is formed on the back surface side of the epitaxial substrate.
  • the semiconductor chip 1 can have a high breakdown voltage.
  • FIG. 1 illustrates an example in which three p-type FLRs 3 are formed, the present invention is not limited to this.
  • the n ++ type guard ring 4 has a function of protecting the SiC power MISFET formed in the active region.
  • the plurality of SiC power MISFETs 6 formed in the active region have a stripe pattern in plan view, and the gate electrodes of all the SiC power MISFETs are gated by lead wires (gate bus lines) connected to the respective stripe patterns.
  • the wiring electrode 8 is electrically connected.
  • the plurality of SiC power MISFETs 6 are covered with the source wiring electrodes 2, and the source and body potential fixing layers of the respective SiC power MISFETs 6 are connected to the source wiring electrodes 2.
  • the source wiring electrode 2 is connected to the external wiring through the opening 7 of the insulating film.
  • the gate wiring electrode 8 is formed away from the source wiring electrode 2 and is connected to the gate electrode of each SiC power MISFET 6.
  • the gate wiring electrode 8 is connected to an external wiring through the opening 5.
  • the n + -type drain region formed on the back side of the n-type SiC epitaxial substrate is electrically connected to a drain wiring electrode (not shown) formed on the entire back surface of the n-type SiC epitaxial substrate. is doing.
  • n + -type SiC substrate made of silicon carbide (SiC) (substrate) 101 surface (first main surface) made of, n + -type low silicon carbide impurity concentration than SiC substrate 101 (SiC)
  • SiC substrate 101 silicon carbide (SiC)
  • first main surface silicon carbide impurity concentration than SiC substrate 101 (SiC)
  • SiC epitaxial substrate 104 is constituted by an n + type SiC substrate 101 and an n ⁇ type epitaxial layer 102 including a portion to become a drift layer.
  • the thickness of the n ⁇ -type epitaxial layer 102 is, for example, about 5 to 50 ⁇ m.
  • a p-type body layer (well region) 105 is formed in the n ⁇ -type epitaxial layer 102 with a predetermined depth (first depth) from the surface of the n ⁇ -type epitaxial layer 102. .
  • a p ++ type body layer potential fixing region 106 is formed in contact with the p type body layer 105. Further, it has a predetermined depth (third depth) from the surface of the n ⁇ -type epitaxial layer 102, and in contact with the p-type body layer 105 in the p-type body layer 105, nitrogen and impurities are introduced.
  • An n ++ type source region 107 is formed.
  • the epitaxial layer 102 between the p-type body layer 105 and the p-type body layer 105 is in contact with the p-type body layer 105 on both sides and has a predetermined depth (fourth depth) from the surface of the n ⁇ -type epitaxial layer 102.
  • the n-type current diffusion layer 108 is formed with a depth.
  • the current diffusion layer 108 is formed on the drift layer and is electrically connected to the drift layer. Since the fourth depth is shallower than the first depth, a p-type body layer 105 exists between the current diffusion layer 108 and the SiC substrate 101. Since the third depth is shallower than the first depth, p-type body layer 105 exists between source region 107 and SiC substrate 101.
  • a trench 109 having a predetermined depth (fifth depth) from the surface of the n ⁇ -type epitaxial layer 102 is formed in the p-type body layer 105.
  • the trench 109 extends so as to cover the n + -type source region 107 and the n-type current diffusion layer 108.
  • the depth (fifth depth) of the trench 109 from the surface of the n ⁇ -type epitaxial layer 102 is shallower than the depth (first depth) of the p-type body layer 105. Since the depth (fifth depth) of the trench 109 is shallower than the depth (first depth) of the p-type body layer 105, the bottom surface of the trench 109 is in contact with the p-type body layer 105.
  • the trench 109 extends to the current diffusion layer 108 in a range above the region where the p-type body layer 105 exists between the current diffusion layer 108 and the SiC substrate 101. Further, trench 109 extends to source region 107 in a range above the region where p-type body layer 105 exists between source region 107 and SiC substrate 101. Therefore, the bottom surface of the trench 109 is surrounded by the p-type body layer 105.
  • a gate insulating film 110 is formed on the surface of the trench 109, the surface of the p-type body layer 105, and the surface of the epitaxial layer 102 sandwiched between the p-type body layer 105.
  • a gate electrode 111 is formed on the gate insulating film 110 above the p-type body layer 105.
  • the depth (first depth) of the p-type body layer 105 from the surface of the epitaxial layer 102 is, for example, about 0.5 to 2.0 ⁇ m.
  • the depth (third depth) of the n ++ type source region 107 from the surface of the epitaxial layer 102 is shallower than the first depth, for example, about 0.1 to 0.6 ⁇ m.
  • the depth (fourth depth) of the n + -type current diffusion layer region 108 from the surface of the epitaxial layer 102 is shallower than the first depth, for example, about 0.1 to 0.7 ⁇ m.
  • the depth (fifth depth) of the trench 109 from the surface of the epitaxial layer 102 is shallower than the first depth, for example, about 0.1 to 1.5 ⁇ m.
  • the depth of the trench 109 from the surface of the epitaxial layer 102 (fifth depth) is deeper than the third depth and the fourth depth, but the fifth depth is the third depth and A configuration shallower than the fourth depth may be employed.
  • the bottom surface of the trench 109 is a p-type body layer. Surrounded by 105.
  • the source region 107 exists between the bottom surface of the trench 109 in the source region 107 and the p-type body layer 105.
  • the current diffusion layer region 108 exists between the bottom surface of the trench 109 in the current diffusion layer region 108 and the p-type body layer 105.
  • the length of the trench 109 in the direction parallel to the channel length is, for example, about 1 to 3 ⁇ m.
  • the length of the trench 109 in the direction parallel to the channel width (that is, the width of the trench) is, for example, about 0.1 to 2 ⁇ m.
  • the distance (trench interval) between the trench 109 and the trench 109 in the direction parallel to the channel width is, for example, about 0.1 to 2 ⁇ m.
  • the depth (second depth) of the p ++ type body layer potential fixing region 106 from the surface of the epitaxial layer 102 is, for example, about 0.1 to 0.3 ⁇ m.
  • ⁇ and “+” are signs representing relative impurity concentrations of n-type or p-type conductivity. For example, in the case of n-type, “n ⁇ ”, “n”, “n + The impurity concentration of the n-type impurity increases in the order of “n ++ ”.
  • a preferable range of the impurity concentration of the n + -type SiC substrate 101 is, for example, 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3
  • a preferable range of the impurity concentration of the n ⁇ -type epitaxial layer 102 is, for example, 1 ⁇ 10 14 to
  • a preferable range of the impurity concentration of 1 ⁇ 10 17 cm ⁇ 3 and the p-type body layer 105 is, for example, 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the preferable range of the impurity concentration of the n ++ type source region 107 is, for example, 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3
  • the preferable range of the impurity concentration of the n-type current diffusion region 108 is, for example, 5 ⁇ 10. 16 to 5 ⁇ 10 18 cm ⁇ 3
  • a preferable range of the impurity concentration of the p ++ type body layer potential fixing region 106 is, for example, a range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the channel region of the SiC power MISFET 6 of this embodiment is the surface of the trench 109 and the surface of the p-type body layer 105 sandwiched between the trenches 109.
  • the JFET region is a region between the p-type body layer 105 and the p-type body layer 105.
  • a gate insulating film 110 is formed on the channel region, and a gate electrode 111 is formed on the gate insulating film 110.
  • the gate electrode 111 is not formed in a portion where the p-type body layer 105 is not provided below the JFET region.
  • the semiconductor device of this example can be expected to have a higher channel mobility than the channel region on the surface of the SiC epitaxial substrate 104. Further, by forming the trench 109, the channel width is increased as compared with a normal DMOS not forming a trench, and a high current density can be expected. Furthermore, according to the present embodiment, since the side surface of the trench 109 becomes the channel region of the silicon carbide semiconductor device, when a 4 ° off Si (0001) plane substrate is used as the SiC substrate 101, the (11-20) plane ( The 1-100) plane can be used as the channel plane. Therefore, a higher channel mobility can be expected as compared with the case where the surface of the (0001) plane of SiC substrate 101 is simply used as the channel region.
  • the bottom surface of the trench 109 has the p-type body layer 105, which is compared with a normal trench structure MOSFET structure.
  • the electric field applied to the gate insulating film formed on the trench surface when the withstand voltage is maintained can be greatly relaxed.
  • the electric field applied to the gate insulating film can be further reduced.
  • the end portion of the gate electrode 111 of this embodiment is formed in the range above the p-type body layer 105. That is, p-type body layer 105 exists between the end of gate electrode 111 and SiC substrate 101. Therefore, the gate electrode 111 is not formed on the JFET region where the p-type body layer 105 does not exist below, and the oxide film electric field on the JFET region at the time of holding the withstand voltage is greatly reduced as compared with the normal DMOS structure. Is possible.
  • FIG. 3 is a process diagram for explaining the semiconductor device manufacturing method (processes P1 to P6) of this example.
  • FIG. 17, FIG. 18, and FIG. 18 are cross-sectional views of main parts showing an enlarged part of the SiC power MISFET 6 formation region (element formation region) of the semiconductor device of this example.
  • FIG. 16 is a top view of an essential part of a semiconductor chip on which the SiC power MISFET 6 is mounted.
  • an n + -type 4H—SiC substrate 101 is prepared.
  • An n-type impurity is introduced into the n + -type SiC substrate 101.
  • the n-type impurity is, for example, nitrogen (N), and the impurity concentration of the n-type impurity is, for example, 1 ⁇ 10 18 to 1 ⁇ . It is in the range of 10 21 cm ⁇ 3 .
  • the n + -type SiC substrate 101 has both a Si surface and a C surface, but the surface of the n + -type SiC substrate 101 may be either an Si surface or a C surface.
  • an n ⁇ type epitaxial layer 102 of silicon carbide (SiC) is formed on the surface (first main surface) of the n + type SiC substrate 101 by an epitaxial growth method.
  • the n ⁇ type epitaxial layer 102 is doped with an n type impurity lower than the impurity concentration of the n + type SiC substrate 101.
  • the impurity concentration of the n ⁇ -type epitaxial layer 102 depends on the element rating of the SiC power MISFET, but is in the range of 1 ⁇ 10 14 to 1 ⁇ 10 17 cm ⁇ 3 , for example.
  • the thickness of the n ⁇ -type epitaxial layer 102 is, for example, 5 to 50 ⁇ m.
  • n + -type rear surface of the SiC substrate 101 (second principal surface) from a predetermined depth up to the (sixth depth), n + -type on the back surface of the SiC substrate 101 of n + -type drain region 103 Form.
  • the impurity concentration of the n + -type drain region 103 is, for example, in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • a mask M 1 is formed on the surface of the n ⁇ -type epitaxial layer 102.
  • the thickness of the mask M1 is, for example, about 1.0 to 3.0 ⁇ m.
  • the width of the mask M1 in the element formation region is, for example, about 1.0 to 5.0 ⁇ m.
  • an inorganic material SiO 2 film, Si film, SiN film, organic material resist film, or polyimide film can be used.
  • the p-type body layer 105 is formed in the element formation region of the n ⁇ -type epitaxial layer 102.
  • a p-type FLR 3 is simultaneously formed around the element formation region.
  • the structure of the terminal portion is not limited to this, and may be, for example, a junction termination extension (JTE) structure.
  • the depth (first depth) of the p-type body layer 105 from the surface of the epitaxial layer 102 is, for example, about 0.5 to 2.0 ⁇ m.
  • the impurity concentration of the p-type body layer 105 is, for example, in the range of 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the mask M2 is formed of, for example, a resist film.
  • the thickness of the mask M2 is, for example, about 0.5 to 3 ⁇ m.
  • An opening is provided only in a region where the potential fixing region 106 of the p ++ type body layer for fixing the potential of the p type body layer 105 in a later step is formed.
  • aluminum atoms (Al) are ion-implanted as p-type impurities into the n ⁇ -type epitaxial layer 102 through the mask M2, thereby forming the potential fixing region 106 of the p ++ -type body layer.
  • the depth (second depth) of the p ++ type body layer potential fixing region 106 from the surface of the epitaxial layer 102 is, for example, about 0.1 to 0.3 ⁇ m.
  • the impurity concentration of the p ++ type body layer potential fixing region 106 is, for example, in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the mask M3 is formed of, for example, a resist film.
  • the thickness of the mask M3 is, for example, about 0.5 to 3 ⁇ m.
  • An opening is provided in a region where an n ++ type source region 107 is formed in a later step.
  • an opening is also provided in a region where the guard ring 4 is formed on the outer periphery of the FLR 3.
  • nitrogen atoms (N) are ion-implanted as n-type impurities into the n ⁇ -type epitaxial layer 102 through the mask M3 to form an n ++ -type source region 107 in the element formation region.
  • an n ++ type guard ring 4 is formed in the peripheral formation region.
  • the depth (third depth) from the surface of the epitaxial layer 102 of the n ++ type source region 107 and the n ++ type guard ring 4 is, for example, about 0.1 to 0.6 ⁇ m.
  • the impurity concentration of the n ++ type source region 107 and the n ++ type guard ring 4 is, for example, in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the mask M4 is formed of, for example, a resist film.
  • the thickness of the mask M4 is, for example, about 0.5 to 3 ⁇ m.
  • An opening is provided in a region where the n + -type current diffusion region 108 is formed in a later step.
  • nitrogen atoms (N) are ion-implanted as n-type impurities into the n ⁇ -type epitaxial layer 102 through the mask M4 to form an n + -type current diffusion region 108 in the element formation region.
  • the depth (fourth depth) of the n + -type current diffusion region 108 from the surface of the epitaxial layer 102 is, for example, about 0.1 to 0.7 ⁇ m.
  • the impurity concentration of the n + -type current diffusion region 108 is, for example, in the range of 5 ⁇ 10 16 to 5 ⁇ 10 18 cm ⁇ 3 .
  • a carbon (C) film is deposited on the front and back surfaces of the SiC epitaxial substrate 104 by, for example, plasma CVD.
  • the thickness of the carbon (C) film is, for example, about 0.03 ⁇ m.
  • FIGS. 9A to 9C a mask M5 is formed of, for example, a resist film.
  • FIG. 9A is a top view of relevant parts in the main manufacturing process of the semiconductor chip 1.
  • FIG. 9B is a main-portion cross-sectional view taken along line AA ′ in FIG.
  • FIG. 9C is a main-portion cross-sectional view taken along line BB ′ in FIG.
  • the thickness of the mask M5 is, for example, about 0.5 to 3 ⁇ m.
  • An opening is provided in a region where the trench 109 is formed in a later step.
  • a trench 109 is formed in the p-type body layer 105 using a dry etching process.
  • the depth Z (fifth depth) of the trench 109 is, for example, about 0.1 to 1.5 ⁇ m.
  • the length X of the trench 109 in the direction parallel to the channel length direction is, for example, about 1 to 3 ⁇ m.
  • the width Y1 of the trench 109 in the direction perpendicular to the channel length direction is, for example, about 0.1 to 2 ⁇ m.
  • An interval Y2 (trench interval) between the trenches 109 in a direction orthogonal to the channel length direction is, for example, about 0.1 to 2 ⁇ m.
  • a gate insulating film 110 is formed on the first main surface side surface including the inner wall of the trench 109.
  • the gate insulating film 110 is made of, for example, a SiO 2 film formed by a thermal CVD method.
  • the thickness of the gate insulating film 110 is, for example, about 0.005 to 0.15 ⁇ m.
  • an n-type polycrystalline silicon (Si) film 111 ⁇ / b> A is formed on the gate insulating film 110.
  • the thickness of the n-type polycrystalline silicon (Si) film 111A is, for example, about 0.01 to 4 ⁇ m.
  • the gate electrode 111 is formed by processing the polycrystalline silicon (Si) film 111A by a dry etching method using a mask M6 (photoresist film). At this time, the polycrystalline silicon (Si) film 111A on the JFET region sandwiched between the p-type body layers 105 is removed. Thereby, the end portion of the gate electrode 111 is formed above the p-type body layer 105.
  • the gate electrode 111 is light-oxidized.
  • dry oxidation is 900 ° C. for about 30 minutes.
  • an interlayer insulating film 112 is formed on the surface on the first main surface side so as to cover the gate electrode 111 and the gate insulating film 110 by, for example, a plasma CVD method.
  • the interlayer insulating film 112 and the gate insulating film 110 are processed by the dry etching method, and a part of the n ++ type source region 107 and the p Opening CNT_S reaching ++ type body layer potential fixing region 106 is formed.
  • first metal film by, for example, sputtering, nickel (for example, nickel) is formed so as to cover the inside (side surface and bottom surface) of the interlayer insulating film 112 and the opening CNT_S on the surface on the first main surface side. Ni) is deposited.
  • the thickness of the first metal film is, for example, about 0.05 ⁇ m.
  • the first metal film by performing a silicidation heat treatment at 600 to 1000 ° C., the first metal film, a part of the n ++ type source region 107 and the p ++ type body layer potential fixing region 106 are formed on the bottom surface of the opening CNT_S.
  • a nickel silicide (NiSi) layer is exposed on the bottom surface of the opening CNT_S and part of the n ++ type source region 107 and the p ++ type It is formed on each surface of body layer potential fixing region 106. Subsequently, the unreacted first metal film is removed by a wet etching method. In the wet etching method, for example, sulfuric acid / hydrogen peroxide is used.
  • FIG. 16 shows the positions of the polycrystalline silicon gate electrode 111, the metal silicide film 113 as the source contact portion, and the opening CNT_G117 corresponding to the gate contact portion of the semiconductor chip on which the plurality of SiC power MISFETs are mounted according to the present embodiment. It is a principal part top view which shows a relationship.
  • the formation portion of the opening CNT_G117 is a portion located at the string end of the element formed in a string shape. Although illustration is omitted, the interlayer insulating film 112 is processed using a mask (photoresist film) to form an opening CNT_G 117 reaching the gate electrode 111.
  • a laminated film composed of a film and an aluminum (Al) film is deposited.
  • the thickness of the aluminum (Al) film is preferably 2.0 ⁇ m or more, for example.
  • the third metal film 114 is processed to electrically connect a part of the n ++ type source region 107 and the p ++ type body layer potential fixing region 106 via the metal silicide layer 113 in the opening CNT_S.
  • the source wiring electrode 2 connected to the gate electrode 111 and the gate wiring electrode 8 electrically connected through the gate electrode 111 and the opening CNT_G117 are formed.
  • an SiO 2 film or a polyimide film is deposited as a passivation film so as to cover the gate wiring electrode 8 and the source wiring electrode 2.
  • the passivation film is processed to form a passivation.
  • the source electrode opening 7 and the gate electrode opening 5 are formed.
  • a second metal film is deposited on the back surface of the n + -type SiC substrate 101 by, for example, sputtering.
  • the thickness of the second metal film is, for example, about 0.1 ⁇ m.
  • a drain wiring electrode 116 is formed so as to cover the metal silicide layer 115.
  • the drain wiring electrode 116 is formed by depositing a laminated film of a Ti film, a Ni film, and a gold (Au) film in a total thickness of 0.5 to 1 ⁇ m.
  • the semiconductor device of this embodiment can be manufactured.
  • Example 1 the opening CNT_G117 is formed at the end of the element formation region.
  • a part of the SiC power MISFET formation region (element formation region) of the silicon carbide semiconductor device of FIG. 19 is shown enlarged.
  • the opening CNT_G117 is formed on the element, and the gate wiring electrode formed in the opening CNT_G117 is connected to the gate electrode 111 of polycrystalline silicon.
  • FIG. 20 is a plan view of the main part, and the gate wiring electrode and the source contact portion in the opening CNT_G117 which is the gate contact portion.
  • the gate electrode 111 can be formed in a string shape and connected to the gate wiring electrode 117 without being routed. it can.
  • a rectangle, a hexagon, a polygon, a circle, or the like can be selected.
  • the gate electrodes 111 as shown in FIG. 20 can be arranged in a staggered manner in addition to the lattice shape.
  • the manufacturing method of the semiconductor device of this example is the same as that of Example 1, and the process chart of FIG. 3 is common to Example 1 and Example 2.
  • the gate electrode 111 is formed in a string shape and connected to the gate wiring electrode in the opening CNT_G117 formed of a metal having a sheet resistance lower than that of polycrystalline silicon. Therefore, the gate resistance is small, and the delay during the switching operation can be suppressed.
  • the channel width can be further increased when the gate electrode 111 is formed in a square shape rather than in a string shape. Therefore, the current density can be further increased as compared with the first embodiment. Therefore, higher performance than that of the first embodiment can be obtained.
  • FIG. 21 is a circuit diagram of the power converter (inverter) of the present embodiment.
  • the inverter of this embodiment includes a SiC power MISFET 304 that is a switching element and a diode 305 in a power module 302.
  • the SiC power MISFET 304 and the diode 305 are connected in antiparallel between the power supply voltage (Vcc) and the input potential of the load (for example, motor) 301 via the terminals 306 to 310 (upper arm).
  • the SiC power MISFET element 304 and the diode 305 are also connected in antiparallel between the input potential of the load 301 and the ground potential (GND) (lower arm).
  • the load 301 is provided with two SiC power MISFETs 304 and two diodes 305 in each single phase, and is provided with six switching elements 304 and six diodes 5 in three phases.
  • a control circuit 303 is connected to the gate electrode of each SiC power MISFET 304 via terminals 311 and 312, and the SiC power MISFET 304 is controlled by the control circuit 303. Therefore, the inverter of the present embodiment can drive the load 301 by controlling the current flowing through the SiC power MISFET 304 constituting the power module 302 by the control circuit 303.
  • the function of the SiC power MISFET 304 in the power module 302 will be described below.
  • the control circuit 303 controls the SiC power MISFET 304 to perform a pulse width modulation operation that dynamically changes the pulse width of the rectangular wave.
  • the output rectangular wave is smoothed by passing through the inductor, and becomes a pseudo desired sine wave.
  • the SiC power MISFET 304 creates a rectangular wave for performing this pulse width modulation operation.
  • the SiC power MISFET 304 By using the semiconductor device of the first embodiment or the second embodiment described above for the SiC power MISFET 304, for example, since the on-resistance of the SiC power MISFET 304 is small, the structure such as a heat sink for cooling is reduced, and the power module 302 can be reduced in size and weight, and thus the power converter can be reduced in size and weight. Moreover, since the reliability of the gate insulating film of the SiC power MISFET 304 is high, the life of the power module 302 can be extended.
  • the power conversion device of this embodiment can be a three-phase motor system.
  • the load 301 shown in FIG. 20 described above is a three-phase motor, and a three-phase motor system is used by using the power conversion device including the semiconductor device described in the first embodiment or the second embodiment described above as a switching element. Can be reduced in size and performance.
  • FIG. 22 is a circuit diagram showing the power conversion device (inverter) of this embodiment.
  • the inverter of this embodiment includes a SiC power MISFET 404 as a switching element in the power module 402.
  • a SiC power MISFET 404 is connected between the power supply voltage (Vcc) and the input potential of the load (for example, motor) 401 via terminals 405 to 409 (upper arm), and the input potential of the load 401
  • the SiC power MISFET element 404 is also connected between the ground potential (GND) and the ground potential (GND) (lower arm). That is, in the load 401, two SiC power MISFETs 404 are provided for each single phase, and six switching elements 404 are provided for three phases.
  • a control circuit 403 is connected to the gate electrode of each SiC power MISFET 304 via terminals 410 and 411, and the SiC power MISFET 404 is controlled by the control circuit 403. Therefore, in the inverter of this embodiment, the load 401 can be driven by controlling the current flowing through the SiC power MISFET 404 in the power module 402 by the control circuit 403.
  • the SiC power MISFET 404 in the power module 402 will be described below.
  • the present embodiment also has a function of generating a rectangular wave for performing a pulse width modulation operation as in the third embodiment.
  • the SiC power MISFET 404 also serves as the diode 305 of the third embodiment.
  • the load 401 includes an inductance like a motor
  • the SiC power MISFET 404 is turned OFF, the energy stored in the inductance must be released (return current).
  • the diode 305 plays this role.
  • the SiC power MISFET 404 plays a role of flowing a circulating current.
  • the gate of the SiC power MISFET 404 is turned ON during the return, and the SiC power MISFET 404 is reversely conducted.
  • the return conduction loss is determined not by the characteristics of the diode but by the characteristics of the SiC power MISFET 404. Further, when performing synchronous rectification drive, in order to prevent the upper and lower arms from being short-circuited, a non-operation time is required in which both the upper and lower SiC power MISFETs are turned off. During this non-operation time, the built-in PN diode formed by the drift layer and the p-type body layer of the SiC power MISFET 404 is driven. However, the carrier distance of SiC is shorter than that of Si, and the loss during the non-operation time is small. For example, it is equivalent to the case where the diode 305 of the third embodiment is an SiC Schottky barrier diode.
  • the loss during reflux is reduced by the high performance of the SiC power MISFET 404. And higher performance is possible. Further, since the reflux diode is not provided separately from the SiC power MISFET 404, the power module 402 can be further reduced in size.
  • the power conversion device of this embodiment can be a three-phase motor system.
  • the load 401 shown in FIG. 21 is a three-phase motor, and the power module 402 includes the semiconductor device according to the first embodiment or the second embodiment described above, thereby reducing the size and performance of the three-phase motor system. Can be realized.
  • Example 3 The three-phase motor system described in Example 3 or Example 4 can be used for vehicles such as hybrid vehicles, electric vehicles, and fuel cell vehicles.
  • vehicles such as hybrid vehicles, electric vehicles, and fuel cell vehicles.
  • FIGS. 23 is a schematic diagram showing the configuration of the electric vehicle of this embodiment.
  • FIG. 24 is a circuit diagram of the boost converter of this embodiment.
  • the electric vehicle of the present embodiment drives a three-phase motor 503 that allows power to be input / output to / from a drive shaft 502 to which the drive wheels 501a and 501b are connected, and the three-phase motor 503.
  • An inverter 504 and a battery 505 are provided.
  • the electric vehicle of this embodiment includes a boost converter 508, a relay 509, and an electronic control unit 510.
  • the boost converter 508 is connected to a power line 506 to which an inverter 504 is connected and a battery 505. It is connected to the power line 507.
  • the three-phase motor 503 is a synchronous generator motor including a rotor embedded with permanent magnets and a stator wound with a three-phase coil.
  • the inverter 504 the inverter described in the third embodiment or the fourth embodiment can be used.
  • the boost converter 508 has a configuration in which a reactor 511 and a smoothing capacitor 112 are connected to an inverter 513.
  • the inverter 513 is the same as the inverter described in the fourth embodiment, and the element configuration in the inverter is the same.
  • the switching element is the SiC power MISFET 514 as in the fourth embodiment, and the synchronous rectification driving is performed.
  • the electronic control unit 510 shown in FIG. 23 includes a microprocessor, a storage device, and an input / output port.
  • a signal from a sensor that detects the rotor position of the three-phase motor 503, a charge / discharge value of the battery 505, and the like. Receive. Then, a signal for controlling inverter 504, boost converter 508, and relay 509 is output.
  • the power converters of the above-described third embodiment and the above-described fourth embodiment can be used for the inverter 504 and the boost converter 508 which are power converters.
  • the three-phase motor system of the third embodiment or the fourth embodiment described above can be used for a three-phase motor system including the three-phase motor 503 and the inverter 504.
  • the electric vehicle has been described.
  • the above-described three-phase motor system can be similarly applied to a hybrid vehicle that also uses an engine and a fuel cell vehicle in which the battery 505 is a fuel cell stack.
  • FIG. 25 is a circuit diagram including a converter and an inverter of the railway vehicle of the present embodiment.
  • electric power is supplied to the railway vehicle from the overhead line OW (for example, 25 kV) via the pantograph PG.
  • the voltage is stepped down to 1.5 kV via the transformer 609 and converted from alternating current to direct current by the converter 607.
  • the inverter 602 converts the direct current into the alternating current through the capacitor 608, and the three-phase motor as the load 601 is driven.
  • the element configuration in the converter 607 may be a SiC power MISFET and a diode used together as in the third embodiment, or a SiC power MISFET alone as in the fourth embodiment.
  • the switching element is synchronously rectified and driven as the SiC power MISFET 604 as in the fourth embodiment.
  • the control circuit described in the fourth embodiment is omitted.
  • symbol RT indicates a track
  • symbol WH indicates a wheel.
  • the converter 607 can use the power conversion device of the third or fourth embodiment.
  • the three-phase motor system according to the third or fourth embodiment can be used for a three-phase motor system including the load 601, the inverter 602, and the control circuit.
  • FIG. 26 shows a bird's-eye view of the main part of the SiC power MISFET of this example.
  • the difference between the present embodiment and the first embodiment is that a part of the gate electrode 711 is left on the JFET region as shown in FIG.
  • By leaving a part of the gate electrode 711 on the JFET region it is not necessary to secure a margin for arrangement between the end of the gate electrode on the JFET region side and the end of the p-type body layer, thereby reducing the cell length. Can do. Therefore, the on-resistance can be further reduced.
  • FIG. 27 shows a layout of the SiC power MISFET of this example.
  • the gate contact opening CNT_G717 is formed at the end of the element formation region. Therefore, the process of this embodiment is easier than that of the second embodiment, and the yield can be improved and the cost can be reduced.
  • FIGS. FIG. 28 to FIG. 30 are enlarged cross-sectional views showing a part of the SiC power MISFET structure formation region (element formation region) of the silicon carbide semiconductor device.
  • an n ⁇ type epitaxial layer 702 is formed on the surface (first main surface) of an n + type SiC substrate (substrate) 701 as shown in FIG. Then, an SiC epitaxial substrate 704 composed of an n + type SiC substrate 701 and an n ⁇ type epitaxial layer 702 is formed.
  • the impurity concentration of the n + -type SiC substrate 701 is, for example, in the range of 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3
  • the impurity concentration of the n ⁇ -type epitaxial layer 702 is 1 ⁇ 10 14 to 1 ⁇ 10 6. The range is 17 cm ⁇ 3 .
  • an n + -type drain region 703 is formed on the back surface (second main surface) of the n + -type SiC substrate 701.
  • the impurity concentration of the n + -type drain region 703 is, for example, in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • a p-type body layer 705 is formed in the element formation region of the n ⁇ -type epitaxial layer 702.
  • a p-type FLR is formed around the element formation region at the time of ion implantation.
  • the impurity concentration of the p-type body layer 705 is, for example, in the range of 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3 .
  • a p-type impurity for example, aluminum atoms (Al) is ion-implanted into the n ⁇ -type epitaxial layer 702 through a mask (not shown).
  • a potential fixing region 706 of the p ++ type body layer is formed in the p type body layer 705.
  • the impurity concentration of the potential fixing region 706 of the p ++ type body layer is, for example, in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • nitrogen atoms (N) are ion-implanted as n-type impurities into the n ⁇ -type epitaxial layer 702 through the mask to form an n ++ -type source region 707 in the element formation region (not shown).
  • the impurity concentration of the n ++ type source region 707 is, for example, in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • nitrogen atoms (N) are ion-implanted as n-type impurities into the n ⁇ -type epitaxial layer 702 through the mask to form an n + -type current diffusion region 708 in the element formation region (not shown).
  • the impurity concentration of the n + -type current diffusion region 708 is, for example, in the range of 5 ⁇ 10 16 to 5 ⁇ 10 18 cm ⁇ 3 .
  • each ion-implanted impurity is activated (not shown).
  • a trench mask is formed, and a trench 709 is formed in the p-type body layer 705 using a dry etching process (not shown).
  • a gate insulating film 710 is formed on the surface on the first main surface side including the inner wall of the trench 709.
  • the gate insulating film 710 is made of, for example, a SiO 2 film formed by a thermal CVD method (not shown).
  • the thickness of the gate insulating film 710 is, for example, about 0.005 to 0.15 ⁇ m.
  • an n-type polycrystalline silicon (Si) film 711A is formed on the gate insulating film 710.
  • the thickness of the n-type polycrystalline silicon (Si) film 711A is, for example, about 0.01 to 4 ⁇ m.
  • a polycrystalline silicon (Si) film 711A is processed by a dry etching method using a mask M6 '(photoresist film) to form a gate electrode 711.
  • the polycrystalline silicon (Si) film 711A on the JFET region sandwiched between the p-type body layers 705 remains.
  • an interlayer insulating film 712 is formed (not shown), and an opening reaching a part of the n ++ type source region 707 and the p ++ type body layer potential fixing region 706 is formed (not shown).
  • a metal silicide layer 713 is formed on the surface of the part (not shown).
  • an opening 717 for a gate contact is formed (not shown), a source wiring electrode 714 and a gate wiring electrode (not shown) are formed, and a passivation film (not shown) is formed.
  • a metal silicide 715 and a drain electrode 716 are formed on the back surface side of the n + -type SiC substrate 701. Thereafter, external wirings are electrically connected to the source wiring electrode, the gate wiring electrode, and the drain wiring electrode, respectively.
  • the cell length can be shortened as compared with Embodiment 1 and Embodiment 2, it is possible to further reduce the on-resistance by providing more cells on a semiconductor chip having the same area.
  • the gate electrode 711 can be routed like a wiring, the process is easy, the yield can be improved, and the cost can be reduced.
  • FIG. 31 shows a bird's-eye view of the main part of the SiC power MISFET of this example.
  • a thick insulating film 817 is formed on part of the p-type body layer 805 and the n + -type current diffusion region 808 and on the JFET region as shown in FIG. In the point.
  • the thick insulating film 817 is covered with the n + -type current diffusion region 808 in a range that does not affect the on-resistance, so that the on-resistance can be lowered similarly to the seventh embodiment.
  • the withstand voltage can be further increased as compared with the seventh embodiment.
  • FIGS. 32 to 36 are cross-sectional views of main parts showing a part of the SiC power MISFET structure formation region (element formation region) of the silicon carbide semiconductor device in an enlarged manner.
  • an n ⁇ type epitaxial layer 802 is formed on the surface (first main surface) of an n + type SiC substrate (substrate) 801. Then, a SiC epitaxial substrate 804 composed of an n + type SiC substrate 801 and an n ⁇ type epitaxial layer 802 is formed.
  • the impurity concentration of the n + -type SiC substrate 801 is, for example, in the range of 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3
  • the impurity concentration of the n ⁇ -type epitaxial layer 802 is 1 ⁇ 10 14 to 1 ⁇ 10 The range is 17 cm ⁇ 3 .
  • n + type drain region 803 is formed on the back surface (second main surface) of the n + type SiC substrate 801.
  • the impurity concentration of the n + -type drain region 803 is, for example, in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • n ⁇ -type epitaxial layer 802 aluminum atoms (Al) are ion-implanted as p-type impurities into the n ⁇ -type epitaxial layer 802 through the mask (not shown).
  • Al aluminum atoms
  • a p-type body layer 805 is formed in the element formation region of the n ⁇ -type epitaxial layer 802.
  • a p-type FLR is formed around the element formation region at the same time.
  • the impurity concentration of the p-type body layer 805 is, for example, in the range of 1 ⁇ 10 16 to 1 ⁇ 10 19 cm ⁇ 3 .
  • the potential fixing region 806 of the p ++ type body layer is formed in the p type body layer 805.
  • the impurity concentration of the potential fixing region 806 of the p ++ type body layer is, for example, in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • nitrogen atoms (N) are ion-implanted as n-type impurities into the n ⁇ -type epitaxial layer 802 through the mask to form an n ++ -type source region 807 in the element formation region (not shown).
  • the impurity concentration of the n ++ type source region 807 is, for example, in the range of 1 ⁇ 10 19 to 1 ⁇ 10 21 cm ⁇ 3 .
  • nitrogen atoms (N) are ion-implanted as n-type impurities into the n ⁇ -type epitaxial layer 802 through the mask to form an n + -type current diffusion region 808 in the element formation region (not shown).
  • the impurity concentration of the n + -type current diffusion region 808 is, for example, in the range of 5 ⁇ 10 16 to 5 ⁇ 10 18 cm ⁇ 3 .
  • each ion-implanted impurity is activated (not shown).
  • a trench mask is formed, and a trench 809 is formed in the p-type body layer 805 using a dry etching process (not shown).
  • an insulating film 817 thicker than the gate insulating film is formed on the p-type body layer 805, a part on the n + -type current diffusion region 808, and the JFET region.
  • an oxide film is deposited by plasma CVD to 0.05 to 0.5 ⁇ m (not shown), a resist mask is formed, and then part of the oxide film is removed by wet etching so that it is thicker than the gate insulating film.
  • An insulating film 817 is formed (not shown).
  • a gate insulating film 810 is formed on the surface on the first main surface side including the inner wall of the trench 809.
  • the gate insulating film 810 is made of, for example, a SiO 2 film formed by a thermal CVD method (not shown).
  • the thickness of the gate insulating film 810 is, for example, about 0.005 to 0.15 ⁇ m.
  • an n-type polycrystalline silicon (Si) film 811A is formed on the gate insulating film 810.
  • the thickness of the n-type polycrystalline silicon (Si) film 811A is, for example, about 0.01 to 4 ⁇ m.
  • a polycrystalline silicon (Si) film 811A is processed by a dry etching method using a mask M6 ′′ (photoresist film) to form a gate electrode 811.
  • a mask M6 ′′ photoresist film
  • an interlayer insulating film 812 is formed (not shown), and an opening reaching a part of the n ++ type source region 807 and the p ++ type body layer potential fixing region 806 is formed (not shown).
  • a metal silicide layer 813 is formed on the surface of the part (not shown).
  • an opening 817 for a gate contact is formed (not shown), a source wiring electrode 814 and a gate wiring electrode (not shown) are formed, and a passivation film (not shown) is formed.
  • a metal silicide 815 and a drain electrode 816 are formed on the back surface side of the n + -type SiC substrate 801. Thereafter, external wirings are electrically connected to the source wiring electrode, the gate wiring electrode, and the drain wiring electrode, respectively.
  • the insulating film 817 thicker than the gate insulating film is formed on a part of the n + -type current diffusion region 808 and on the JFET region, a higher withstand voltage can be obtained than in the seventh embodiment. it can.
  • 1 Semiconductor chip
  • 2 Source wiring electrode (SiC power MISFET forming region, element forming region), 3: p-type floating field limiting ring, 4: n ++ type guard ring, 5: gate opening Part: 6: SiC power MISFET structure, 7: source opening, 8: gate wiring electrode, 101: n + type SiC substrate (substrate), 102: n ⁇ type epitaxial layer, 103: n + type drain Region: 104: SiC epitaxial substrate, 105: p-type body layer (well region), 106: p ++- type body layer potential fixing region, 107: n ++- type source region, 108: n + -type current diffusion region 109: trench, 110: gate insulating film, 111: gate electrode.

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

The purpose of the present invention is to provide a vertical MOSFET structure having high functionality and high reliability, by using a trench structure and curbing an electrical field applied to a gate insulation film of the lower part of the trench. The present invention provides a semiconductor device comprising: a first conductivity-type semiconductor substrate; a drain electrode formed on the rear side of the semiconductor substrate; a first conductivity-type drift layer that is formed on the semiconductor substrate; a first conductivity-type source region; a first conductivity-type current diffusion layer that is electrically connected to the drift layer; a second conductivity-type body layer that is contact with the source region and the current diffusion layer; a trench that extends to the source region, the body layer, and the current diffusion layer, that is shallower than the body layer, and the bottom surface of which is in contact with the body layer; a gate insulation film that is formed on the inner walls of the trench; and a gate electrode that is formed on the gate insulation film. Due to this configuration, high functionality and high reliability can be achieved.

Description

半導体装置、半導体装置の製造方法、電力変換装置、3相モータシステム、自動車、および鉄道車両Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and railway vehicle
 本発明は、半導体装置、半導体装置の製造方法、電力変換装置、3相モータシステム、自動車、および鉄道車両に関し、特に信頼性向上に関する。 The present invention relates to a semiconductor device, a method for manufacturing a semiconductor device, a power conversion device, a three-phase motor system, an automobile, and a railway vehicle, and more particularly to improvement in reliability.
 パワー半導体デバイスの一つであるパワー金属絶縁膜半導体電界効果トランジスタ(MISFET:Metal Insulator Semiconductor Field Effect Transistor)において、従来は、珪素(Si)基板を用いたパワーMISFET(以下、SiパワーMISFETと記す)が主流であった。 In a power metal insulating film semiconductor field effect transistor (MISFET: Metal Insulator Semiconductor Effect Transistor), which is one of power semiconductor devices, conventionally, a power MISFET using a silicon (Si) substrate (hereinafter referred to as Si power MISFET). Was the mainstream.
 それに対して、炭化珪素(SiC)基板(以下、SiC基板と記す)を用いたパワーMISFET(以下、SiCパワーMISFETと記す)はSiパワーMISFETと比較して、高耐圧化および低損失化が可能である。このため、省電力または環境配慮型のインバータ技術の分野において、特に注目が集まっている。 In contrast, a power MISFET (hereinafter referred to as a SiC power MISFET) using a silicon carbide (SiC) substrate (hereinafter referred to as a SiC substrate) can have a higher breakdown voltage and a lower loss than a Si power MISFET. It is. For this reason, particular attention is focused in the field of power-saving or environment-friendly inverter technology.
 SiCパワーMISFETは、SiパワーMISFETと比較して、同耐圧ではオン抵抗の低抵抗化が可能である。これは、炭化珪素(SiC)は、珪素(Si)と比較して絶縁破壊電界強度が約7倍と大きく、ドリフト層となるエピタキシャル層を薄くできることに起因する。しかし、炭化珪素(SiC)から得られるべき本来の特性から考えると、未だ十分な特性が得られているとは言えず、エネルギーの高効率利用の観点から、更なるオン抵抗の低減が望まれている。 The SiC power MISFET can reduce the on-resistance at the same breakdown voltage as compared with the Si power MISFET. This is because silicon carbide (SiC) has a dielectric breakdown electric field strength that is about seven times larger than that of silicon (Si), and the epitaxial layer serving as a drift layer can be thinned. However, considering the original characteristics that should be obtained from silicon carbide (SiC), it cannot be said that sufficient characteristics have been obtained yet, and further reduction of the on-resistance is desired from the viewpoint of efficient use of energy. ing.
 DMOS(Double diffused Metal oxide Semiconductor)構造のSiCパワーMISFETのオン抵抗に関して解決すべき課題の一つが、チャネル寄生抵抗である。低耐圧の600V耐圧のDMOSでは、チャネル寄生抵抗が寄生抵抗の主因であり、高耐圧の3300V耐圧のDMOSにおいても、ドリフト抵抗の次に高い。したがって、このチャネル寄生抵抗の低減がSiCパワーMISFETには必要となる。 One of the problems to be solved regarding the on-resistance of a SiC power MISFET having a DMOS (Double diffused Metal Oxide Semiconductor) structure is a channel parasitic resistance. In a low withstand voltage 600V withstand voltage DMOS, the channel parasitic resistance is the main cause of the parasitic resistance, and in a high withstand voltage 3300V withstand voltage DMOS, it is next to the drift resistance. Therefore, this reduction in channel parasitic resistance is necessary for the SiC power MISFET.
 チャネル寄生抵抗が高い要因はDMOSのチャネル面となるSi(0001)面のチャネル移動度の低さにある。この問題を解決するために、たとえば、特許文献1に記載されているように、DMOSのp型のボディ層の一部、及び、ボディ層の外部に溝を掘るようにトレンチを形成し、実効的なチャネル幅を広くする方法が開示されている。また、チャネル寄生抵抗を低減するために、高チャネル移動度が得られる(11-20)面や(1-100)面の利用が検討されている。(11-20)面や(1-100)面などの高チャネル移動度の面を利用するためには、(0001)面の基板にトレンチ型構造のMOSFET構造を形成する必要がある。しかし、トレンチ型構造のMOSFET構造は、ゲート絶縁膜及びゲートの一部が耐圧を支えるp型のボディ層下部だけではなく、ドリフト層直上に形成されるため、ゲート絶縁膜に絶縁耐圧を越える電界が印加され、絶縁破壊に至る。そこで、トレンチ構造を有しながら、ゲート絶縁膜にかかる電界を緩和する試みがなされている。特許文献2には、p型のボディ層の一部をトレンチ下部に形成されたゲート絶縁膜より低い位置に形成することにより、ゲート絶縁膜にかかる電界を緩和する方法が開示されている。 The reason why the channel parasitic resistance is high is the low channel mobility of the Si (0001) surface, which is the channel surface of the DMOS. In order to solve this problem, for example, as described in Patent Document 1, a trench is formed so as to dig a groove in a part of the p-type body layer of the DMOS and outside the body layer. A method for widening the typical channel width is disclosed. In order to reduce the channel parasitic resistance, the use of the (11-20) plane or the (1-100) plane capable of obtaining a high channel mobility has been studied. In order to use a surface with a high channel mobility such as the (11-20) plane or the (1-100) plane, it is necessary to form a MOSFET structure having a trench structure on the (0001) plane substrate. However, in the MOSFET structure of the trench type structure, the gate insulating film and a part of the gate are formed not only below the p-type body layer supporting the breakdown voltage but also directly above the drift layer. Is applied, leading to dielectric breakdown. Therefore, attempts have been made to relax the electric field applied to the gate insulating film while having a trench structure. Patent Document 2 discloses a method of relaxing an electric field applied to a gate insulating film by forming a part of a p-type body layer at a position lower than a gate insulating film formed under a trench.
国際公開第2010/110246号International Publication No. 2010/110246 特開2009-260253号公報JP 2009-260253 A
 しかしながら、特許文献1、特許文献2の何れもトレンチ構造の一部がp型のボディ層の外部に露出する構造であるため、ゲート絶縁膜にかかる電界が通常のDMOSと比較して高い。したがって、初期耐圧が所望の耐圧以上であったとしても、ゲート絶縁膜の信頼性が経時的に低下してしまう。そこで本願発明者等は、高チャネル移動度が期待できるトレンチ型でありながら、ゲート絶縁膜にかかる電界を抑えることで、高い信頼性も期待できる構造について検討した。 However, since both Patent Document 1 and Patent Document 2 are structures in which a part of the trench structure is exposed outside the p-type body layer, the electric field applied to the gate insulating film is higher than that of a normal DMOS. Therefore, even if the initial breakdown voltage is equal to or higher than the desired breakdown voltage, the reliability of the gate insulating film decreases with time. Therefore, the inventors of the present application have studied a structure that can be expected to have high reliability by suppressing the electric field applied to the gate insulating film while being a trench type that can be expected to have high channel mobility.
 本発明の目的は、トレンチ構造を用い、かつ、トレンチ下部のゲート絶縁膜にかかる電界を抑えることで、高性能かつ高信頼性の炭化珪素半導体装置を提供することにある。ひいては、電力変換装置、3相モータシステム、自動車、および鉄道車両の高性能化を実現する技術を提供する。 An object of the present invention is to provide a silicon carbide semiconductor device with high performance and high reliability by using a trench structure and suppressing an electric field applied to a gate insulating film below the trench. As a result, the technology which realizes high performance of the power conversion device, the three-phase motor system, the automobile, and the railway vehicle is provided.
 本発明では、第1導電型の半導体基板と、半導体基板の裏面側に形成されているドレイン電極と、半導体基板上に形成されている第1導電型のドリフト層と、第1導電型のソース領域と、ドリフト層と電気的に接続している第1導電型の電流拡散層と、ソース領域と電流拡散層とに接している第2導電型のボディ層と、ソース領域とボディ層と電流拡散層とに延在し、ボディ層よりも浅く、底面がボディ層に接しているトレンチと、トレンチの内壁に形成されているゲート絶縁膜と、ゲート絶縁膜上に形成されているゲート電極と、を有する半導体装置とすることで、上述の課題を解決する。 In the present invention, a first conductivity type semiconductor substrate, a drain electrode formed on the back side of the semiconductor substrate, a first conductivity type drift layer formed on the semiconductor substrate, and a first conductivity type source. A first conductivity type current diffusion layer electrically connected to the drift region, a second conductivity type body layer in contact with the source region and the current diffusion layer, a source region, a body layer, and a current A trench extending to the diffusion layer and shallower than the body layer and having a bottom surface in contact with the body layer; a gate insulating film formed on an inner wall of the trench; and a gate electrode formed on the gate insulating film; Thus, the above-described problem is solved.
 本発明によれば、高性能かつ高信頼性の炭化珪素半導体装置を提供することができる。ひいては、電力変換装置、3相モータシステム、自動車、および鉄道車両の高性能化を実現することができる。 According to the present invention, a silicon carbide semiconductor device with high performance and high reliability can be provided. As a result, high performance of the power conversion device, the three-phase motor system, the automobile, and the railway vehicle can be realized.
本発明の実施例の半導体チップの要部上面図である。It is a principal part top view of the semiconductor chip of the Example of this invention. 本発明の実施例のSiCパワーMISFET構造の要部鳥瞰図である。It is a principal part bird's-eye view of the SiC power MISFET structure of the Example of this invention. 本発明の実施例の半導体装置の製造方法を説明するための工程図である。It is process drawing for demonstrating the manufacturing method of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部上面図である。It is a principal part top view of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 図9(a)の線分AA’での要部断面図である。FIG. 10 is a cross-sectional view of a main part taken along line AA ′ in FIG. 図9(a)の線分BB’での要部断面図である。FIG. 10 is a main part cross-sectional view taken along line BB ′ in FIG. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体チップの多結晶シリコンのゲート電極、ソースコンタクト部、およびゲートコンタクト部の位置関係を示す要部上面図である。It is a principal part top view which shows the positional relationship of the gate electrode of the polycrystalline silicon of the semiconductor chip of the Example of this invention, a source contact part, and a gate contact part. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例のSiCパワーMISFETの要部断面図である。It is principal part sectional drawing of SiC power MISFET of the Example of this invention. 本発明の実施例の半導体チップの多結晶シリコンのゲート電極、ソースコンタクト部、およびゲートコンタクト部の位置関係を示す要部上面図である。It is a principal part top view which shows the positional relationship of the gate electrode of the polycrystalline silicon of the semiconductor chip of the Example of this invention, a source contact part, and a gate contact part. 本発明の実施例の電力変換装置(インバータ)の回路図である。It is a circuit diagram of the power converter device (inverter) of the Example of this invention. 本発明の実施例の電力変換装置(インバータ)の回路図である。It is a circuit diagram of the power converter device (inverter) of the Example of this invention. 本発明の実施例の電気自動車の構成図である。It is a block diagram of the electric vehicle of the Example of this invention. 本発明の実施例の昇圧コンバータの回路図である。1 is a circuit diagram of a boost converter according to an embodiment of the present invention. 本発明の実施例の鉄道車両の構成図である。1 is a configuration diagram of a railway vehicle according to an embodiment of the present invention. 本発明の実施例のSiCパワーMISFET構造の要部鳥瞰図である。It is a principal part bird's-eye view of the SiC power MISFET structure of the Example of this invention. 本発明の実施例の半導体チップの多結晶シリコンのゲート電極、ソースコンタクト部、およびゲートコンタクト部の位置関係を示す要部上面図である。It is a principal part top view which shows the positional relationship of the gate electrode of the polycrystalline silicon of the semiconductor chip of the Example of this invention, a source contact part, and a gate contact part. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例のSiCパワーMISFET構造の要部鳥瞰図である。It is a principal part bird's-eye view of the SiC power MISFET structure of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention. 本発明の実施例の半導体装置の製造工程を説明するための半導体装置の製造過程の要部断面図である。It is principal part sectional drawing of the manufacturing process of the semiconductor device for demonstrating the manufacturing process of the semiconductor device of the Example of this invention.
 以下の実施の形態において、便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other, and one is the other. There are some or all of the modifications, details, supplementary explanations, and the like.
 また、以下の実施の形態で用いる図面においては、平面図であっても図面を見易くするためにハッチングを付す場合もある。また、以下の実施の形態を説明するための全図において、同一機能を有するものは原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本発明の実施の形態を図面に基づいて詳細に説明する。 Also, in the drawings used in the following embodiments, hatching may be added to make the drawings easy to see even if they are plan views. In all the drawings for explaining the following embodiments, components having the same function are denoted by the same reference numerals in principle, and repeated description thereof is omitted. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明の半導体装置の実施例について図1および図2を用いて説明する。図1は、複数の縦型SiCパワーMISFET構造6を有する本実施例の半導体チップ1の要部上面図である。図2は、SiCパワーMISFET構造6の要部鳥瞰図である。 Embodiments of the semiconductor device of the present invention will be described with reference to FIGS. FIG. 1 is a top view of an essential part of a semiconductor chip 1 of this embodiment having a plurality of vertical SiC power MISFET structures 6. FIG. 2 is a bird's-eye view of the main part of the SiC power MISFET structure 6.
 図1に示すように、本実施例の半導体装置である半導体チップ1は、複数のnチャネル型のSiCパワーMISFET構造6が並列接続されたソース配線用電極2の下方に位置するアクティブ領域(SiCパワーMISFET形成領域、素子形成領域)と、平面視において上記アクティブ領域を囲む周辺形成領域とを有する。周辺形成領域には、平面視において上記アクティブ領域を囲むように形成された複数のp型のフローティング・フィールド・リミッティング・リング(FLR:Floating Field Limited Ring)3と、平面視において上記複数のp型のFLR3を囲むように形成されたn型のガードリング4が形成されている。 As shown in FIG. 1, a semiconductor chip 1 which is a semiconductor device of the present embodiment includes an active region (SiC) positioned below a source wiring electrode 2 in which a plurality of n-channel SiC power MISFET structures 6 are connected in parallel. A power MISFET formation region, an element formation region) and a peripheral formation region surrounding the active region in plan view. The peripheral formation region includes a plurality of p-type floating field limiting rings (FLRs) 3 formed so as to surround the active region in plan view, and the plurality of p in plan view. An n-type guard ring 4 is formed so as to surround the type FLR 3.
 n型の炭化珪素(SiC)エピタキシャル基板(以下、SiCエピタキシャル基板と記す)のアクティブ領域の表面側に、SiCパワーMISFETのゲート電極、n++型のソース領域、およびチャネル領域等が形成され、SiCエピタキシャル基板の裏面側に、SiCパワーMISFETのn型のドレイン領域が形成されている。 On the surface side of the active region of an n-type silicon carbide (SiC) epitaxial substrate (hereinafter referred to as a SiC epitaxial substrate), a gate electrode of an SiC power MISFET, an n ++ type source region, a channel region, and the like are formed. An n + type drain region of the SiC power MISFET is formed on the back surface side of the epitaxial substrate.
 複数のp型のFLR3をアクティブ領域の周辺に形成することにより、オフ時において、最大電界部分が順次外側のp型のFLR3へ移り、最外周のp型のフローティング・フィールド・リミッティング・リング3で降伏するようになるので、半導体チップ1を高耐圧とすることが可能となる。図1では、3個のp型のFLR3が形成されている例を図示しているが、これに限定されるものではない。また、n++型のガードリング4は、アクティブ領域に形成されたSiCパワーMISFETを保護する機能を有する。 By forming a plurality of p-type FLRs 3 at the periphery of the active region, the maximum electric field portion sequentially moves to the outer p-type FLR 3 when off, and the outermost p-type floating field limiting ring 3 Therefore, the semiconductor chip 1 can have a high breakdown voltage. Although FIG. 1 illustrates an example in which three p-type FLRs 3 are formed, the present invention is not limited to this. The n ++ type guard ring 4 has a function of protecting the SiC power MISFET formed in the active region.
 アクティブ領域内に形成された複数のSiCパワーMISFET6は、平面視においてストライプパターンとなっており、それぞれのストライプパターンに接続する引出配線(ゲートバスライン)によって、全てのSiCパワーMISFETのゲート電極はゲート配線用電極8と電気的に接続している。 The plurality of SiC power MISFETs 6 formed in the active region have a stripe pattern in plan view, and the gate electrodes of all the SiC power MISFETs are gated by lead wires (gate bus lines) connected to the respective stripe patterns. The wiring electrode 8 is electrically connected.
 また、複数のSiCパワーMISFET6はソース配線用電極2に覆われており、それぞれのSiCパワーMISFET6のソースおよびボディ層の電位固定層はソース配線用電極2に接続されている。ソース配線用電極2は絶縁膜の開口部7を通じて外部配線と接続されている。ゲート配線用電極8はソース配線用電極2と互いに離間して形成されており、それぞれのSiCパワーMISFET6のゲート電極と接続されている。ゲート配線用電極8は、開口部5を通じて外部配線と接続されている。また、n型のSiCエピタキシャル基板の裏面側に形成されたn型のドレイン領域は、n型のSiCエピタキシャル基板の裏面全面に形成されたドレイン配線用電極(図示せず)と電気的に接続している。 Further, the plurality of SiC power MISFETs 6 are covered with the source wiring electrodes 2, and the source and body potential fixing layers of the respective SiC power MISFETs 6 are connected to the source wiring electrodes 2. The source wiring electrode 2 is connected to the external wiring through the opening 7 of the insulating film. The gate wiring electrode 8 is formed away from the source wiring electrode 2 and is connected to the gate electrode of each SiC power MISFET 6. The gate wiring electrode 8 is connected to an external wiring through the opening 5. Further, the n + -type drain region formed on the back side of the n-type SiC epitaxial substrate is electrically connected to a drain wiring electrode (not shown) formed on the entire back surface of the n-type SiC epitaxial substrate. is doing.
 次に、本実施例のSiCパワーMISFET6の構造を、図2を用いて説明する。 Next, the structure of the SiC power MISFET 6 of this embodiment will be described with reference to FIG.
 炭化珪素(SiC)からなるn型のSiC基板(基板)101の表面(第1主面)上に、n型のSiC基板101よりも不純物濃度の低い炭化珪素(SiC)からなるn型のエピタキシャル層102が形成されており、n型のSiC基板101と、ドリフト層となる部分を含むn型のエピタキシャル層102と、からSiCエピタキシャル基板104が構成されている。n型のエピタキシャル層102の厚さは、例えば5~50μm程度である。 On the n + -type SiC substrate made of silicon carbide (SiC) (substrate) 101 surface (first main surface) made of, n + -type low silicon carbide impurity concentration than SiC substrate 101 (SiC) n - A type epitaxial layer 102 is formed, and an SiC epitaxial substrate 104 is constituted by an n + type SiC substrate 101 and an n type epitaxial layer 102 including a portion to become a drift layer. The thickness of the n -type epitaxial layer 102 is, for example, about 5 to 50 μm.
 n型のエピタキシャル層102の表面から所定の深さ(第1深さ)を有して、n型のエピタキシャル層102内にはp型のボディ層(ウェル領域)105が形成されている。図2中の図示は省略するが、p型のボディ層105に接してp++型のボディ層電位固定領域106が形成されている。さらに、n型のエピタキシャル層102の表面から所定の深さ(第3深さ)を有して、p型のボディ層105内にはp型のボディ層105に接して、窒素を不純物とするn++型のソース領域107が形成されている。p型のボディ層105とp型のボディ層105の間のエピタキシャル層102には両側のp型のボディ層105に接して、n型のエピタキシャル層102の表面から所定の深さ(第4深さ)を有して、n型の電流拡散層108が形成されている。電流拡散層108は、ドリフト層上に形成されており、ドリフト層と電気的に接続している。第4深さは第1深さより浅いので、電流拡散層108とSiC基板101の間には、p型のボディ層105が存在する。第3深さは第1深さより浅いので、ソース領域107とSiC基板101の間には、p型のボディ層105が存在する。 A p-type body layer (well region) 105 is formed in the n -type epitaxial layer 102 with a predetermined depth (first depth) from the surface of the n -type epitaxial layer 102. . Although not shown in FIG. 2, a p ++ type body layer potential fixing region 106 is formed in contact with the p type body layer 105. Further, it has a predetermined depth (third depth) from the surface of the n -type epitaxial layer 102, and in contact with the p-type body layer 105 in the p-type body layer 105, nitrogen and impurities are introduced. An n ++ type source region 107 is formed. The epitaxial layer 102 between the p-type body layer 105 and the p-type body layer 105 is in contact with the p-type body layer 105 on both sides and has a predetermined depth (fourth depth) from the surface of the n -type epitaxial layer 102. The n-type current diffusion layer 108 is formed with a depth. The current diffusion layer 108 is formed on the drift layer and is electrically connected to the drift layer. Since the fourth depth is shallower than the first depth, a p-type body layer 105 exists between the current diffusion layer 108 and the SiC substrate 101. Since the third depth is shallower than the first depth, p-type body layer 105 exists between source region 107 and SiC substrate 101.
 p型のボディ層105には、n型のエピタキシャル層102の表面から所定の深さ(第5深さ)のトレンチ109が形成されている。ここで、トレンチ109は、n型のソース領域107とn型の電流拡散層108にかかるように延在している。トレンチ109のn型のエピタキシャル層102の表面からの深さ(第5深さ)は、p型のボディ層105の深さ(第1深さ)よりも浅い。トレンチ109の深さ(第5深さ)は、p型のボディ層105の深さ(第1深さ)よりも浅いので、トレンチ109の底面は、p型のボディ層105に接している。また、本実施例では、トレンチ109は、電流拡散層108とSiC基板101の間にp型のボディ層105が存在する領域の上方の範囲で、電流拡散層108に延在している。さらに、トレンチ109は、ソース領域107とSiC基板101の間にp型のボディ層105が存在する領域の上方の範囲で、ソース領域107に延在している。したがって、トレンチ109の底面は、p型のボディ層105に囲まれている。トレンチ109の表面とp型のボディ層105の表面とp型のボディ層105に挟まれたエピタキシャル層102の表面には、ゲート絶縁膜110が形成されている。p型のボディ層105の上方のゲート絶縁膜110上には、ゲート電極111が形成されている。 A trench 109 having a predetermined depth (fifth depth) from the surface of the n -type epitaxial layer 102 is formed in the p-type body layer 105. Here, the trench 109 extends so as to cover the n + -type source region 107 and the n-type current diffusion layer 108. The depth (fifth depth) of the trench 109 from the surface of the n -type epitaxial layer 102 is shallower than the depth (first depth) of the p-type body layer 105. Since the depth (fifth depth) of the trench 109 is shallower than the depth (first depth) of the p-type body layer 105, the bottom surface of the trench 109 is in contact with the p-type body layer 105. In this embodiment, the trench 109 extends to the current diffusion layer 108 in a range above the region where the p-type body layer 105 exists between the current diffusion layer 108 and the SiC substrate 101. Further, trench 109 extends to source region 107 in a range above the region where p-type body layer 105 exists between source region 107 and SiC substrate 101. Therefore, the bottom surface of the trench 109 is surrounded by the p-type body layer 105. A gate insulating film 110 is formed on the surface of the trench 109, the surface of the p-type body layer 105, and the surface of the epitaxial layer 102 sandwiched between the p-type body layer 105. A gate electrode 111 is formed on the gate insulating film 110 above the p-type body layer 105.
 p型のボディ層105のエピタキシャル層102の表面からの深さ(第1深さ)は、例えば0.5~2.0μm程度である。また、n++型のソース領域107のエピタキシャル層102の表面からの深さ(第3深さ)は、第1深さよりも浅く、例えば0.1~0.6μm程度である。一方、n型の電流拡散層領域108のエピタキシャル層102の表面からの深さ(第4深さ)は、第1深さよりも浅く、例えば0.1~0.7μm程度である。トレンチ109のエピタキシャル層102の表面からの深さ(第5深さ)は、第1深さよりも浅く、例えば0.1~1.5μm程度である。なお、本実施例では、トレンチ109のエピタキシャル層102の表面からの深さ(第5深さ)は、第3深さおよび第4深さよりも深いが、第5深さを第3深さおよび第4深さよりも浅い構成にすることもできる。第5深さが第3深さおよび第4深さよりも深い構成、第5深さが第3深さおよび第4深さよりも浅い構成のいずれにおいても、トレンチ109の底面はp型のボディ層105に囲まれる。第5深さを第3深さよりも浅い構成にした場合には、ソース領域107にあるトレンチ109の底面とp型のボディ層105の間には、ソース領域107が存在する。第5深さを第4深さよりも浅い構成にした場合には、電流拡散層領域108にあるトレンチ109の底面とp型のボディ層105の間には、電流拡散層領域108が存在する。トレンチ109のチャネル長に並行な方向の長さは、例えば1~3μm程度である。トレンチ109のチャネル幅に並行な方向の長さ(すなわちトレンチの幅)は、例えば0.1~2μm程度である。チャネル幅に並行な方向のトレンチ109とトレンチ109の間の距離(トレンチ間隔)は、例えば0.1~2μm程度である。図示は省略するがp++型のボディ層電位固定領域106のエピタキシャル層102の表面からの深さ(第2深さ)は、例えば0.1~0.3μm程度である。 The depth (first depth) of the p-type body layer 105 from the surface of the epitaxial layer 102 is, for example, about 0.5 to 2.0 μm. In addition, the depth (third depth) of the n ++ type source region 107 from the surface of the epitaxial layer 102 is shallower than the first depth, for example, about 0.1 to 0.6 μm. On the other hand, the depth (fourth depth) of the n + -type current diffusion layer region 108 from the surface of the epitaxial layer 102 is shallower than the first depth, for example, about 0.1 to 0.7 μm. The depth (fifth depth) of the trench 109 from the surface of the epitaxial layer 102 is shallower than the first depth, for example, about 0.1 to 1.5 μm. In this embodiment, the depth of the trench 109 from the surface of the epitaxial layer 102 (fifth depth) is deeper than the third depth and the fourth depth, but the fifth depth is the third depth and A configuration shallower than the fourth depth may be employed. In either the configuration in which the fifth depth is deeper than the third depth and the fourth depth and the fifth depth is shallower than the third depth and the fourth depth, the bottom surface of the trench 109 is a p-type body layer. Surrounded by 105. When the fifth depth is shallower than the third depth, the source region 107 exists between the bottom surface of the trench 109 in the source region 107 and the p-type body layer 105. When the fifth depth is shallower than the fourth depth, the current diffusion layer region 108 exists between the bottom surface of the trench 109 in the current diffusion layer region 108 and the p-type body layer 105. The length of the trench 109 in the direction parallel to the channel length is, for example, about 1 to 3 μm. The length of the trench 109 in the direction parallel to the channel width (that is, the width of the trench) is, for example, about 0.1 to 2 μm. The distance (trench interval) between the trench 109 and the trench 109 in the direction parallel to the channel width is, for example, about 0.1 to 2 μm. Although not shown, the depth (second depth) of the p ++ type body layer potential fixing region 106 from the surface of the epitaxial layer 102 is, for example, about 0.1 to 0.3 μm.
 なお、「-」および「+」は、導電型がn型またはp型の相対的な不純物濃度を表記した符号であり、例えばn型の場合、「n」、「n」、「n」、「n++」の順にn型不純物の不純物濃度は高くなる。 Note that “−” and “+” are signs representing relative impurity concentrations of n-type or p-type conductivity. For example, in the case of n-type, “n ”, “n”, “n + The impurity concentration of the n-type impurity increases in the order of “n ++ ”.
 n型のSiC基板101の不純物濃度の好ましい範囲は、例えば1×1018~1×1021cm-3、n型のエピタキシャル層102の不純物濃度の好ましい範囲は、例えば1×1014~1×1017cm-3、p型のボディ層105の不純物濃度の好ましい範囲は、例えば1×1016~1×1019cm-3である。また、n++型のソース領域107の不純物濃度の好ましい範囲は、例えば1×1019~1×1021cm-3、n型の電流拡散領域108の不純物濃度の好ましい範囲は、例えば5×1016~5×1018cm-3である。p++型のボディ層電位固定領域106の不純物濃度の好ましい範囲は、例えば1×1019~1×1021cm-3の範囲である。 A preferable range of the impurity concentration of the n + -type SiC substrate 101 is, for example, 1 × 10 18 to 1 × 10 21 cm −3 , and a preferable range of the impurity concentration of the n -type epitaxial layer 102 is, for example, 1 × 10 14 to A preferable range of the impurity concentration of 1 × 10 17 cm −3 and the p-type body layer 105 is, for example, 1 × 10 16 to 1 × 10 19 cm −3 . The preferable range of the impurity concentration of the n ++ type source region 107 is, for example, 1 × 10 19 to 1 × 10 21 cm −3 , and the preferable range of the impurity concentration of the n-type current diffusion region 108 is, for example, 5 × 10. 16 to 5 × 10 18 cm −3 . A preferable range of the impurity concentration of the p ++ type body layer potential fixing region 106 is, for example, a range of 1 × 10 19 to 1 × 10 21 cm −3 .
 本実施例のSiCパワーMISFET6のチャネル領域は、トレンチ109の表面およびトレンチ109にはさまれたp型のボディ層105の表面である。また、JFET領域はp型のボディ層105とp型のボディ層105の間の領域である。チャネル領域上にはゲート絶縁膜110が形成され、ゲート絶縁膜110上にはゲート電極111が形成されている。但し、ゲート電極111は、JFET領域上の内の下方にp型のボディ層105が設けられていない部分には形成されていない。 The channel region of the SiC power MISFET 6 of this embodiment is the surface of the trench 109 and the surface of the p-type body layer 105 sandwiched between the trenches 109. The JFET region is a region between the p-type body layer 105 and the p-type body layer 105. A gate insulating film 110 is formed on the channel region, and a gate electrode 111 is formed on the gate insulating film 110. However, the gate electrode 111 is not formed in a portion where the p-type body layer 105 is not provided below the JFET region.
 次に、本実施例のSiCパワーMISFET6の特徴を、図2を用いて説明する。図2に示すように、本実施例の半導体装置は、トレンチ109側面がチャネル領域となるため、SiCエピタキシャル基板104表面のチャネル領域と比較して高いチャネル移動度が期待できる。また、トレンチ109を形成することによって、トレンチを形成しない通常のDMOSと比較してチャネル幅が大きくなり、高い電流密度が期待できる。さらに、本実施例によれば、トレンチ109側面が炭化珪素半導体装置のチャネル領域となるため、4°オフSi(0001)面基板をSiC基板101として用いた場合、(11-20)面や(1-100)面をチャネル面として利用することができる。したがって、単にSiC基板101の(0001)面の表面をチャネル領域として利用する場合と比べて高いチャネル移動度が期待できる。 Next, features of the SiC power MISFET 6 of this embodiment will be described with reference to FIG. As shown in FIG. 2, since the side surface of the trench 109 serves as a channel region, the semiconductor device of this example can be expected to have a higher channel mobility than the channel region on the surface of the SiC epitaxial substrate 104. Further, by forming the trench 109, the channel width is increased as compared with a normal DMOS not forming a trench, and a high current density can be expected. Furthermore, according to the present embodiment, since the side surface of the trench 109 becomes the channel region of the silicon carbide semiconductor device, when a 4 ° off Si (0001) plane substrate is used as the SiC substrate 101, the (11-20) plane ( The 1-100) plane can be used as the channel plane. Therefore, a higher channel mobility can be expected as compared with the case where the surface of the (0001) plane of SiC substrate 101 is simply used as the channel region.
 また、本実施例の半導体装置は、トレンチ109はp型のボディ層105よりも浅いのでトレンチ109の底面にはp型のボディ層105があり、通常のトレンチ型構造のMOSFET構造と比較して、耐圧保持時にトレンチ表面に形成されたゲート絶縁膜にかかる電界を大幅に緩和することができる。さらに本実施例では、上述のようにトレンチ109の底面がp型のボディ層105に囲まれているので、さらにゲート絶縁膜にかかる電界を緩和することができる。以上より、高チャネル移動度と広いチャネル幅による、通常のトレンチ型構造のSiCパワーMOSFET並みの高い電流密度と、高い絶縁膜信頼性による高信頼と、を両立したSiCパワーMOSFETを提供することが可能である。さらに、本実施例のゲート電極111の端部は、p型のボディ層105の上方の範囲内に形成される。すなわち、ゲート電極111の端部とSiC基板101の間には、p型のボディ層105が存在する。したがって、下方にp型のボディ層105が存在しないJFET領域上にゲート電極111は形成されず、耐圧保持時にかかるJFET領域上の酸化膜電界を通常のDMOS構造と比較して大幅に緩和することが可能である。 Further, in the semiconductor device of this embodiment, since the trench 109 is shallower than the p-type body layer 105, the bottom surface of the trench 109 has the p-type body layer 105, which is compared with a normal trench structure MOSFET structure. The electric field applied to the gate insulating film formed on the trench surface when the withstand voltage is maintained can be greatly relaxed. Furthermore, in this embodiment, since the bottom surface of the trench 109 is surrounded by the p-type body layer 105 as described above, the electric field applied to the gate insulating film can be further reduced. As described above, it is possible to provide a SiC power MOSFET that achieves both high current density equivalent to that of a normal trench type SiC power MOSFET with high channel mobility and wide channel width, and high reliability due to high insulation film reliability. Is possible. Further, the end portion of the gate electrode 111 of this embodiment is formed in the range above the p-type body layer 105. That is, p-type body layer 105 exists between the end of gate electrode 111 and SiC substrate 101. Therefore, the gate electrode 111 is not formed on the JFET region where the p-type body layer 105 does not exist below, and the oxide film electric field on the JFET region at the time of holding the withstand voltage is greatly reduced as compared with the normal DMOS structure. Is possible.
 本実施例の半導体装置の製造方法について図3~図18を用いて工程順に説明する。図3は、本実施例の半導体装置の製造方法(工程P1~P6)を説明する工程図である。図4~図15、図17、および図18は、本実施例の半導体装置のSiCパワーMISFET6形成領域(素子形成領域)の一部を拡大して示す要部断面図である。図16は、SiCパワーMISFET6が搭載された半導体チップの要部上面図である。 The manufacturing method of the semiconductor device of this embodiment will be described in the order of steps with reference to FIGS. FIG. 3 is a process diagram for explaining the semiconductor device manufacturing method (processes P1 to P6) of this example. 4 to 15, FIG. 17, FIG. 18, and FIG. 18 are cross-sectional views of main parts showing an enlarged part of the SiC power MISFET 6 formation region (element formation region) of the semiconductor device of this example. FIG. 16 is a top view of an essential part of a semiconductor chip on which the SiC power MISFET 6 is mounted.
 <工程P1> 
  まず、図4に示すように、n型の4H-SiC基板101を用意する。n型のSiC基板101には、n型不純物が導入されている、このn型不純物は、例えば窒素(N)であり、このn型不純物の不純物濃度は、例えば1×1018~1×1021cm-3の範囲である。また、n型のSiC基板101はSi面とC面との両面を有するが、n型のSiC基板101の表面はSi面またはC面のどちらでもよい。
<Process P1>
First, as shown in FIG. 4, an n + -type 4H—SiC substrate 101 is prepared. An n-type impurity is introduced into the n + -type SiC substrate 101. The n-type impurity is, for example, nitrogen (N), and the impurity concentration of the n-type impurity is, for example, 1 × 10 18 to 1 ×. It is in the range of 10 21 cm −3 . The n + -type SiC substrate 101 has both a Si surface and a C surface, but the surface of the n + -type SiC substrate 101 may be either an Si surface or a C surface.
 次に、n型のSiC基板101の表面(第1主面)にエピタキシャル成長法により炭化珪素(SiC)のn型のエピタキシャル層102を形成する。n型のエピタキシャル層102には、n型のSiC基板101の不純物濃度よりも低いn型不純物が導入されている。n型のエピタキシャル層102の不純物濃度は、SiCパワーMISFETの素子定格に依存するが、例えば1×1014~1×1017cm-3の範囲である。また、n型のエピタキシャル層102の厚さは、例えば5~50μmである。以上の工程により、n型のSiC基板101およびn型のエピタキシャル層102からなるSiCエピタキシャル基板104が形成される。 Next, an n type epitaxial layer 102 of silicon carbide (SiC) is formed on the surface (first main surface) of the n + type SiC substrate 101 by an epitaxial growth method. The n type epitaxial layer 102 is doped with an n type impurity lower than the impurity concentration of the n + type SiC substrate 101. The impurity concentration of the n -type epitaxial layer 102 depends on the element rating of the SiC power MISFET, but is in the range of 1 × 10 14 to 1 × 10 17 cm −3 , for example. The thickness of the n -type epitaxial layer 102 is, for example, 5 to 50 μm. Through the above steps, SiC epitaxial substrate 104 including n + type SiC substrate 101 and n type epitaxial layer 102 is formed.
 <工程P2>
  次に、n型のSiC基板101の裏面(第2主面)から所定の深さ(第6深さ)に至るまで、n型のSiC基板101の裏面にn型のドレイン領域103を形成する。n型のドレイン領域103の不純物濃度は、例えば1×1019~1×1021cm-3の範囲である。
<Process P2>
Then, n + -type rear surface of the SiC substrate 101 (second principal surface) from a predetermined depth up to the (sixth depth), n + -type on the back surface of the SiC substrate 101 of n + -type drain region 103 Form. The impurity concentration of the n + -type drain region 103 is, for example, in the range of 1 × 10 19 to 1 × 10 21 cm −3 .
 次に、図5に示すように、n型のエピタキシャル層102の表面上に、マスクM1を形成する。マスクM1の厚さは、例えば1.0~3.0μm程度である。素子形成領域におけるマスクM1の幅は、例えば1.0~5.0μm程度である。マスク材料としては無機材料のSiO膜、Si膜、SiN膜や有機材料のレジスト膜、ポリイミド膜を用いることができる。 Next, as shown in FIG. 5, a mask M 1 is formed on the surface of the n -type epitaxial layer 102. The thickness of the mask M1 is, for example, about 1.0 to 3.0 μm. The width of the mask M1 in the element formation region is, for example, about 1.0 to 5.0 μm. As the mask material, an inorganic material SiO 2 film, Si film, SiN film, organic material resist film, or polyimide film can be used.
 次に、マスクM1越しに、n型のエピタキシャル層102にp型不純物として、例えばアルミニウム原子(Al)をイオン注入する。これにより、n型のエピタキシャル層102の素子形成領域にp型のボディ層105を形成する。なお、図示は省略するが、同時に素子形成領域周辺にp型のFLR3を形成する。終端部の構造としては、これに限定されるものではなく、例えばジャンクション・ターミネーション・エクステンション(JTE:Junction Termination Extension)構造であってもよい。 Next, for example, aluminum atoms (Al) are ion-implanted as a p-type impurity into the n -type epitaxial layer 102 through the mask M1. Thus, the p-type body layer 105 is formed in the element formation region of the n -type epitaxial layer 102. Although not shown, a p-type FLR 3 is simultaneously formed around the element formation region. The structure of the terminal portion is not limited to this, and may be, for example, a junction termination extension (JTE) structure.
 p型のボディ層105のエピタキシャル層102の表面からの深さ(第1深さ)は、例えば0.5~2.0μm程度である。また、p型のボディ層105の不純物濃度は、例えば1×1016~1×1019cm-3の範囲である。 The depth (first depth) of the p-type body layer 105 from the surface of the epitaxial layer 102 is, for example, about 0.5 to 2.0 μm. The impurity concentration of the p-type body layer 105 is, for example, in the range of 1 × 10 16 to 1 × 10 19 cm −3 .
 次に、図6に示すように、マスクM1を除去した後、マスクM2を例えば、レジスト膜で形成する。マスクM2の厚さは、例えば0.5~3μm程度である。後の工程においてp型のボディ層105の電位を固定するp++型のボディ層の電位固定領域106が形成される領域のみに開口部分が設けられている。 Next, as shown in FIG. 6, after removing the mask M1, the mask M2 is formed of, for example, a resist film. The thickness of the mask M2 is, for example, about 0.5 to 3 μm. An opening is provided only in a region where the potential fixing region 106 of the p ++ type body layer for fixing the potential of the p type body layer 105 in a later step is formed.
 次に、マスクM2越しに、n型のエピタキシャル層102にp型不純物として、例えばアルミニウム原子(Al)をイオン注入して、p++型のボディ層の電位固定領域106を形成する。p++型のボディ層電位固定領域106のエピタキシャル層102の表面からの深さ(第2深さ)は、例えば0.1~0.3μm程度である。p++型のボディ層電位固定領域106の不純物濃度は、例えば1×1019~1×1021cm-3の範囲である。 Next, for example, aluminum atoms (Al) are ion-implanted as p-type impurities into the n -type epitaxial layer 102 through the mask M2, thereby forming the potential fixing region 106 of the p ++ -type body layer. The depth (second depth) of the p ++ type body layer potential fixing region 106 from the surface of the epitaxial layer 102 is, for example, about 0.1 to 0.3 μm. The impurity concentration of the p ++ type body layer potential fixing region 106 is, for example, in the range of 1 × 10 19 to 1 × 10 21 cm −3 .
 次に、図7に示すように、マスクM2を除去した後、マスクM3を例えば、レジスト膜で形成する。マスクM3の厚さは、例えば0.5~3μm程度である。後の工程においてn++型のソース領域107が形成される領域に開口部分が設けられている。また、図示は省略するが、FLR3の外周にガードリング4が形成される領域にも開口部が設けられている。 Next, as shown in FIG. 7, after removing the mask M2, the mask M3 is formed of, for example, a resist film. The thickness of the mask M3 is, for example, about 0.5 to 3 μm. An opening is provided in a region where an n ++ type source region 107 is formed in a later step. Although not shown, an opening is also provided in a region where the guard ring 4 is formed on the outer periphery of the FLR 3.
 次に、マスクM3越しに、n型のエピタキシャル層102にn型不純物として、窒素原子(N)をイオン注入して、素子形成領域にn++型のソース領域107を形成する。またこの際、図示は省略するが、周辺形成領域にn++型のガードリング4を形成する。n++型のソース領域107およびn++型のガードリング4のエピタキシャル層102の表面からの深さ(第3深さ)は、例えば0.1~0.6μm程度である。また、n++型のソース領域107およびn++型のガードリング4の不純物濃度は、例えば1×1019~1×1021cm-3の範囲である。 Next, nitrogen atoms (N) are ion-implanted as n-type impurities into the n -type epitaxial layer 102 through the mask M3 to form an n ++ -type source region 107 in the element formation region. At this time, although not shown, an n ++ type guard ring 4 is formed in the peripheral formation region. The depth (third depth) from the surface of the epitaxial layer 102 of the n ++ type source region 107 and the n ++ type guard ring 4 is, for example, about 0.1 to 0.6 μm. The impurity concentration of the n ++ type source region 107 and the n ++ type guard ring 4 is, for example, in the range of 1 × 10 19 to 1 × 10 21 cm −3 .
 次に、図8に示すように、マスクM3を除去した後、マスクM4を例えば、レジスト膜で形成する。マスクM4の厚さは、例えば0.5~3μm程度である。後の工程においてn型の電流拡散領域108が形成される領域に開口部分が設けられている。 Next, as shown in FIG. 8, after removing the mask M3, the mask M4 is formed of, for example, a resist film. The thickness of the mask M4 is, for example, about 0.5 to 3 μm. An opening is provided in a region where the n + -type current diffusion region 108 is formed in a later step.
 次に、マスクM4越しに、n型のエピタキシャル層102にn型不純物として、窒素原子(N)をイオン注入して、素子形成領域にn型の電流拡散領域108を形成する。n型の電流拡散領域108のエピタキシャル層102の表面からの深さ(第4深さ)は、例えば0.1~0.7μm程度である。また、n型の電流拡散領域108の不純物濃度は、例えば5×1016~5×1018cm-3の範囲である。 Next, nitrogen atoms (N) are ion-implanted as n-type impurities into the n -type epitaxial layer 102 through the mask M4 to form an n + -type current diffusion region 108 in the element formation region. The depth (fourth depth) of the n + -type current diffusion region 108 from the surface of the epitaxial layer 102 is, for example, about 0.1 to 0.7 μm. The impurity concentration of the n + -type current diffusion region 108 is, for example, in the range of 5 × 10 16 to 5 × 10 18 cm −3 .
 <工程P3>
  次に、マスクM4を除去した後、図示は省略するが、SiCエピタキシャル基板104の表面上および裏面上に、例えばプラズマCVD法により炭素(C)膜を堆積する。炭素(C)膜の厚さは、例えば0.03μm程度である。この炭素(C)膜により、SiCエピタキシャル基板104の表面および裏面を被覆した後、SiCエピタキシャル基板104に1500℃以上の温度で2~3分程度の熱処理を施す。これにより、SiCエピタキシャル基板104にイオン注入した各不純物の活性化を行う。熱処理後は、炭素(C)膜を、例えば酸素プラズマ処理により除去する。
<Process P3>
Next, after removing the mask M4, although not shown, a carbon (C) film is deposited on the front and back surfaces of the SiC epitaxial substrate 104 by, for example, plasma CVD. The thickness of the carbon (C) film is, for example, about 0.03 μm. After covering the front and back surfaces of SiC epitaxial substrate 104 with this carbon (C) film, heat treatment is performed on SiC epitaxial substrate 104 at a temperature of 1500 ° C. or higher for about 2 to 3 minutes. Thereby, each impurity ion-implanted into SiC epitaxial substrate 104 is activated. After the heat treatment, the carbon (C) film is removed by, for example, oxygen plasma treatment.
 <工程P4>
  次に、図9(a)~(c)に示すように、マスクM5を例えば、レジスト膜で形成する。図9(a)は、半導体チップ1の本製造工程での要部上面図である。図9(b)は、図9(a)の線分AA’での要部断面図である。図9(c)は、図9(a)の線分BB’での要部断面図である。マスクM5の厚さは、例えば0.5~3μm程度である。後の工程においてトレンチ109が形成される領域に開口部分が設けられている。
<Process P4>
Next, as shown in FIGS. 9A to 9C, a mask M5 is formed of, for example, a resist film. FIG. 9A is a top view of relevant parts in the main manufacturing process of the semiconductor chip 1. FIG. 9B is a main-portion cross-sectional view taken along line AA ′ in FIG. FIG. 9C is a main-portion cross-sectional view taken along line BB ′ in FIG. The thickness of the mask M5 is, for example, about 0.5 to 3 μm. An opening is provided in a region where the trench 109 is formed in a later step.
 次に、ドライエッチングプロセスを用いてp型のボディ層105にトレンチ109を形成する。トレンチ109の深さZ(第5深さ)は、例えば0.1~1.5μm程度である。トレンチ109のチャネル長方向に並行な方向の長さXは、例えば1~3μm程度である。トレンチ109のチャネル長方向に直交する方向の長さである幅Y1は、例えば0.1~2μm程度である。チャネル長方向に直交する方向のトレンチ109間の間隔Y2(トレンチ間隔)は、例えば0.1~2μm程度である。 Next, a trench 109 is formed in the p-type body layer 105 using a dry etching process. The depth Z (fifth depth) of the trench 109 is, for example, about 0.1 to 1.5 μm. The length X of the trench 109 in the direction parallel to the channel length direction is, for example, about 1 to 3 μm. The width Y1 of the trench 109 in the direction perpendicular to the channel length direction is, for example, about 0.1 to 2 μm. An interval Y2 (trench interval) between the trenches 109 in a direction orthogonal to the channel length direction is, for example, about 0.1 to 2 μm.
 <工程P5>
  次に、図10に示すように、マスクM5を除去した後、トレンチ109の内壁を含む第1主面側の表面にゲート絶縁膜110を形成する。ゲート絶縁膜110は、例えば熱CVD法により形成されたSiO膜からなる。ゲート絶縁膜110の厚さは、例えば0.005~0.15μm程度である。
<Process P5>
Next, as shown in FIG. 10, after removing the mask M <b> 5, a gate insulating film 110 is formed on the first main surface side surface including the inner wall of the trench 109. The gate insulating film 110 is made of, for example, a SiO 2 film formed by a thermal CVD method. The thickness of the gate insulating film 110 is, for example, about 0.005 to 0.15 μm.
 次に、図11に示すように、ゲート絶縁膜110上に、n型の多結晶珪素(Si)膜111Aを形成する。n型の多結晶珪素(Si)膜111Aの厚さは、例えば0.01~4μm程度である。 Next, as shown in FIG. 11, an n-type polycrystalline silicon (Si) film 111 </ b> A is formed on the gate insulating film 110. The thickness of the n-type polycrystalline silicon (Si) film 111A is, for example, about 0.01 to 4 μm.
 次に、図12に示すように、マスクM6(ホトレジスト膜)を用いて、多結晶珪素(Si)膜111Aをドライエッチング法により加工して、ゲート電極111を形成する。この際に、p型のボディ層105に挟まれたJFET領域上の多結晶珪素(Si)膜111Aは除去する。これにより、ゲート電極111の端部は、p型のボディ層105の上方に形成される。 Next, as shown in FIG. 12, the gate electrode 111 is formed by processing the polycrystalline silicon (Si) film 111A by a dry etching method using a mask M6 (photoresist film). At this time, the polycrystalline silicon (Si) film 111A on the JFET region sandwiched between the p-type body layers 105 is removed. Thereby, the end portion of the gate electrode 111 is formed above the p-type body layer 105.
 次に、図示は省略するが、マスクM6を除去した後、ゲート電極111をライト酸化する。ライト酸化の条件としては、例えば、ドライ酸化900℃、30分程度である。 Next, although not shown, after removing the mask M6, the gate electrode 111 is light-oxidized. As conditions for light oxidation, for example, dry oxidation is 900 ° C. for about 30 minutes.
 <工程P6>
  次に、図13に示すように、第1主面側の表面上にゲート電極111およびゲート絶縁膜110を覆うように、例えばプラズマCVD法により、層間絶縁膜112を形成する。
<Process P6>
Next, as shown in FIG. 13, an interlayer insulating film 112 is formed on the surface on the first main surface side so as to cover the gate electrode 111 and the gate insulating film 110 by, for example, a plasma CVD method.
 次に、図14に示すように、マスクM7(ホトレジスト膜)を用いて、層間絶縁膜112およびゲート絶縁膜110をドライエッチング法により加工して、n++型のソース領域107の一部およびp++型のボディ層電位固定領域106に達する開口部CNT_Sを形成する。 Next, as shown in FIG. 14, using the mask M7 (photoresist film), the interlayer insulating film 112 and the gate insulating film 110 are processed by the dry etching method, and a part of the n ++ type source region 107 and the p Opening CNT_S reaching ++ type body layer potential fixing region 106 is formed.
 次に、図15に示すように、マスクM7を除去した後、開口部CNT_Sの底面に露出しているn++型のソース領域107の一部およびp++型のボディ層電位固定領域106のそれぞれの表面に金属シリサイド層113を形成する。 Next, as shown in FIG. 15, after removing the mask M7, a part of the n ++ type source region 107 and the p ++ type body layer potential fixing region 106 exposed on the bottom surface of the opening CNT_S, respectively. A metal silicide layer 113 is formed on the surface.
 図示は省略するが、まず、第1主面側の表面上に層間絶縁膜112および開口部CNT_Sの内部(側面および底面)を覆うように、例えばスパッタリング法により第1金属膜として、例えばニッケル(Ni)を堆積する。この第1金属膜の厚さは、例えば0.05μm程度である。続いて、600~1000℃のシリサイド化熱処理を施すことにより、開口部CNT_Sの底面において、第1金属膜と、n++型のソース領域107の一部およびp++型のボディ層電位固定領域106のそれぞれの表面と、を反応させて、金属シリサイド層113として、例えばニッケルシリサイド(NiSi)層を開口部CNT_Sの底面に露出しているn++型のソース領域107の一部およびp++型のボディ層電位固定領域106のそれぞれの表面に形成する。続いて、未反応の第1金属膜をウェットエッチング法により除去する。ウェットエッチング法には、例えば硫酸過水が用いられる。 Although illustration is omitted, first, as a first metal film by, for example, sputtering, nickel (for example, nickel) is formed so as to cover the inside (side surface and bottom surface) of the interlayer insulating film 112 and the opening CNT_S on the surface on the first main surface side. Ni) is deposited. The thickness of the first metal film is, for example, about 0.05 μm. Subsequently, by performing a silicidation heat treatment at 600 to 1000 ° C., the first metal film, a part of the n ++ type source region 107 and the p ++ type body layer potential fixing region 106 are formed on the bottom surface of the opening CNT_S. As a metal silicide layer 113, a nickel silicide (NiSi) layer, for example, is exposed on the bottom surface of the opening CNT_S and part of the n ++ type source region 107 and the p ++ type It is formed on each surface of body layer potential fixing region 106. Subsequently, the unreacted first metal film is removed by a wet etching method. In the wet etching method, for example, sulfuric acid / hydrogen peroxide is used.
 次に、素子形成領域の終端にゲートコンタクト用の開口部CNT_G117を形成する。図16は、本実施例による複数のSiCパワーMISFETが搭載された半導体チップの多結晶シリコンのゲート電極111、ソースコンタクト部である金属シリサイド膜113、およびゲートコンタクト部に対応する開口部CNT_G117の位置関係を示す要部上面図である。開口部CNT_G117の形成箇所は、ストリング状に形成した素子のストリング端に位置する部分である。図示は省略するが、マスク(ホトレジスト膜)を用いて、層間絶縁膜112を加工して、ゲート電極111に達する開口部CNT_G117を形成する。 Next, an opening CNT_G117 for gate contact is formed at the end of the element formation region. FIG. 16 shows the positions of the polycrystalline silicon gate electrode 111, the metal silicide film 113 as the source contact portion, and the opening CNT_G117 corresponding to the gate contact portion of the semiconductor chip on which the plurality of SiC power MISFETs are mounted according to the present embodiment. It is a principal part top view which shows a relationship. The formation portion of the opening CNT_G117 is a portion located at the string end of the element formed in a string shape. Although illustration is omitted, the interlayer insulating film 112 is processed using a mask (photoresist film) to form an opening CNT_G 117 reaching the gate electrode 111.
 次に、図17に示すように、n++型のソース領域107の一部およびp++型のボディ層電位固定領域106のそれぞれの表面に形成された金属シリサイド膜113に達する開口部CNT_Sの内部と、ゲート電極111に達する開口部CNT_G117(図示は省略)の内部と、を含む第1主面側の表面上に、第3金属膜114として、例えばチタン(Ti)膜と窒化チタン(TiN)膜とアルミニウム(Al)膜とからなる積層膜を堆積する。アルミニウム(Al)膜の厚さは、例えば2.0μm以上が好ましい。続いて、第3金属膜114を加工することにより、開口部CNT_S内の金属シリサイド層113を介してn++型のソース領域107の一部およびp++型のボディ層電位固定領域106と電気的に接続するソース配線用電極2と、ゲート電極111と開口部CNT_G117を通して電気的に接続するゲート配線用電極8と、を形成する。 Next, as shown in FIG. 17, the inside of the opening CNT_S reaching the metal silicide film 113 formed on the surface of a part of the n ++ type source region 107 and the p ++ type body layer potential fixing region 106. And, for example, a titanium (Ti) film and titanium nitride (TiN) as the third metal film 114 on the surface on the first main surface side including the inside of the opening CNT_G117 (not shown) reaching the gate electrode 111. A laminated film composed of a film and an aluminum (Al) film is deposited. The thickness of the aluminum (Al) film is preferably 2.0 μm or more, for example. Subsequently, the third metal film 114 is processed to electrically connect a part of the n ++ type source region 107 and the p ++ type body layer potential fixing region 106 via the metal silicide layer 113 in the opening CNT_S. The source wiring electrode 2 connected to the gate electrode 111 and the gate wiring electrode 8 electrically connected through the gate electrode 111 and the opening CNT_G117 are formed.
 次に、図示は省略するが、SiO膜もしくはポリイミド膜をパッシベーション膜としてゲート配線用電極8およびソース配線用電極2を覆うように堆積させる。 Next, although not shown, an SiO 2 film or a polyimide film is deposited as a passivation film so as to cover the gate wiring electrode 8 and the source wiring electrode 2.
 次に、図示は省略するが、パッシベーション膜を加工してパッシベーションを形成する。その際に、ソース電極開口部7とゲート電極開口部5を形成する。 Next, although not shown, the passivation film is processed to form a passivation. At that time, the source electrode opening 7 and the gate electrode opening 5 are formed.
 次に、図示は省略するが、n型のSiC基板101の裏面に、例えばスパッタリング法により第2金属膜を堆積する。この第2金属膜の厚さは、例えば0.1μm程度である。 Next, although not shown, a second metal film is deposited on the back surface of the n + -type SiC substrate 101 by, for example, sputtering. The thickness of the second metal film is, for example, about 0.1 μm.
 次に、図18に示すように、レーザーシリサイド化熱処理を施すことにより、第2金属膜とn型のSiC基板101とを反応させて、n型のSiC基板101の裏面側に形成されたn型のドレイン領域103を覆うように金属シリサイド層115を形成する。続いて、金属シリサイド層115を覆うように、ドレイン配線用電極116を形成する。ドレイン配線用電極116として、Ti膜とNi膜と金(Au)膜の積層膜を合計で0.5~1μm堆積させて形成する。 Next, as shown in FIG. 18, by applying the laser silicidation heat treatment, by reacting an SiC substrate 101 of the second metal film and the n + -type is formed on the back surface side of the SiC substrate 101 of n + -type A metal silicide layer 115 is formed so as to cover the n + -type drain region 103. Subsequently, a drain wiring electrode 116 is formed so as to cover the metal silicide layer 115. The drain wiring electrode 116 is formed by depositing a laminated film of a Ti film, a Ni film, and a gold (Au) film in a total thickness of 0.5 to 1 μm.
 その後、ソース配線用電極2、ゲート配線用電極8、およびドレイン配線用電極116に、それぞれ外部配線が電気的に接続される。以上のように、本実施例の半導体装置を製造することができる。 Thereafter, external wirings are electrically connected to the source wiring electrode 2, the gate wiring electrode 8, and the drain wiring electrode 116, respectively. As described above, the semiconductor device of this embodiment can be manufactured.
 本実施例と前述した実施例1との相違点は、レイアウトにある。実施例1では、開口部CNT_G117を素子形成領域の終端に形成するが、本実施例では、図19の炭化珪素半導体装置のSiCパワーMISFET形成領域(素子形成領域)の一部を拡大して示す要部断面図に示すように、開口部CNT_G117が素子上に形成され、開口部CNT_G117内に形成されているゲート配線用電極が多結晶シリコンのゲート電極111に接続している。 The difference between the present embodiment and the first embodiment described above is in the layout. In Example 1, the opening CNT_G117 is formed at the end of the element formation region. In this example, a part of the SiC power MISFET formation region (element formation region) of the silicon carbide semiconductor device of FIG. 19 is shown enlarged. As shown in the cross-sectional view of the main part, the opening CNT_G117 is formed on the element, and the gate wiring electrode formed in the opening CNT_G117 is connected to the gate electrode 111 of polycrystalline silicon.
 このように、素子上に開口部CNT_G117内のゲート配線用電極を設けることにより、図20に要部平面図で、ゲートコンタクト部である開口部CNT_G117内のゲート配線用電極、ソースコンタクト部である開口部CNT_S内の金属シリサイド層113、および多結晶シリコンのゲート電極111の位置関係を示したように、ゲート電極111をストリング状に形成し引き回すことなく、ゲート配線用電極117に接続することができる。なお、図20に示すような正方形状のゲート電極111以外に、長方形、六角形、多角形、円なども選択できる。また、図20に示すようなゲート電極111を格子状に並べる以外に千鳥状など互い違いに並べることもできる。本実施例の半導体装置の製造方法は、実施例1と同様であり、図3の工程表は実施例1と実施例2で共通である。 As described above, by providing the gate wiring electrode in the opening CNT_G117 on the element, FIG. 20 is a plan view of the main part, and the gate wiring electrode and the source contact portion in the opening CNT_G117 which is the gate contact portion. As shown in the positional relationship between the metal silicide layer 113 in the opening CNT_S and the gate electrode 111 of polycrystalline silicon, the gate electrode 111 can be formed in a string shape and connected to the gate wiring electrode 117 without being routed. it can. In addition to the square gate electrode 111 as shown in FIG. 20, a rectangle, a hexagon, a polygon, a circle, or the like can be selected. Further, the gate electrodes 111 as shown in FIG. 20 can be arranged in a staggered manner in addition to the lattice shape. The manufacturing method of the semiconductor device of this example is the same as that of Example 1, and the process chart of FIG. 3 is common to Example 1 and Example 2.
 このように、本実施例によれば、ゲート電極111をストリング状に形成し引き回すことなく、シート抵抗が多結晶シリコンより低い金属で形成されている開口部CNT_G117内のゲート配線用電極に接続することができるため、ゲート抵抗が小さく、スイッチング動作時の遅延を抑えることができる。また、ゲート電極111をストリング状に形成するよりも、正方形状に形成した方が、チャネル幅をさらに広げることが可能である。したがって、実施例1と比較して、さらに電流密度を高くすることができる。したがって、実施例1よりも、さらに高い性能を得ることができる。 Thus, according to this embodiment, the gate electrode 111 is formed in a string shape and connected to the gate wiring electrode in the opening CNT_G117 formed of a metal having a sheet resistance lower than that of polycrystalline silicon. Therefore, the gate resistance is small, and the delay during the switching operation can be suppressed. In addition, the channel width can be further increased when the gate electrode 111 is formed in a square shape rather than in a string shape. Therefore, the current density can be further increased as compared with the first embodiment. Therefore, higher performance than that of the first embodiment can be obtained.
 本実施例では、前述の実施例1のSiCパワーMISFET、または前述の実施例2のSiCパワーMISFETを備えた電力変換装置について説明する。図21は、本実施例の電力変換装置(インバータ)の回路図である。 In this example, a power conversion device including the SiC power MISFET of Example 1 described above or the SiC power MISFET of Example 2 described above will be described. FIG. 21 is a circuit diagram of the power converter (inverter) of the present embodiment.
 図21に示すように、本実施例のインバータは、パワーモジュール302内に、スイッチング素子であるSiCパワーMISFET304と、ダイオード305とを有する。各単相において、端子306~310を介して、電源電圧(Vcc)と負荷(例えばモータ)301の入力電位との間にSiCパワーMISFET304とダイオード305とが逆並列に接続されており(上アーム)、負荷301の入力電位と接地電位(GND)との間にもSiCパワーMISFET素子304とダイオード305とが逆並列に接続されている(下アーム)。つまり、負荷301では各単相に2つのSiCパワーMISFET304と2つのダイオード305が設けられており、3相で6つのスイッチング素子304と6つのダイオード5が設けられている。そして、個々のSiCパワーMISFET304のゲート電極には、端子311、312を介して、制御回路303が接続されており、この制御回路303によってSiCパワーMISFET304が制御されている。従って、本実施例のインバータは、制御回路303でパワーモジュール302を構成するSiCパワーMISFET304を流れる電流を制御することにより、負荷301を駆動することができる。 As shown in FIG. 21, the inverter of this embodiment includes a SiC power MISFET 304 that is a switching element and a diode 305 in a power module 302. In each single phase, the SiC power MISFET 304 and the diode 305 are connected in antiparallel between the power supply voltage (Vcc) and the input potential of the load (for example, motor) 301 via the terminals 306 to 310 (upper arm). The SiC power MISFET element 304 and the diode 305 are also connected in antiparallel between the input potential of the load 301 and the ground potential (GND) (lower arm). In other words, the load 301 is provided with two SiC power MISFETs 304 and two diodes 305 in each single phase, and is provided with six switching elements 304 and six diodes 5 in three phases. A control circuit 303 is connected to the gate electrode of each SiC power MISFET 304 via terminals 311 and 312, and the SiC power MISFET 304 is controlled by the control circuit 303. Therefore, the inverter of the present embodiment can drive the load 301 by controlling the current flowing through the SiC power MISFET 304 constituting the power module 302 by the control circuit 303.
 パワーモジュール302内での、SiCパワーMISFET304の機能について以下に説明する。負荷301として、例えばモータを制御駆動させるためには所望の電圧の正弦波を負荷301に入力する必要がある。制御回路303はSiCパワーMISFET304を制御し、矩形波のパルス幅を動的に変化させるパルス幅変調動作を行っている。出力された矩形波はインダクタを経ることで、平滑化され、擬似的な所望の正弦波となる。SiCパワーMISFET304は、このパルス幅変調動作を行うための矩形波を作り出す。 The function of the SiC power MISFET 304 in the power module 302 will be described below. For example, in order to control and drive a motor as the load 301, it is necessary to input a sine wave having a desired voltage to the load 301. The control circuit 303 controls the SiC power MISFET 304 to perform a pulse width modulation operation that dynamically changes the pulse width of the rectangular wave. The output rectangular wave is smoothed by passing through the inductor, and becomes a pseudo desired sine wave. The SiC power MISFET 304 creates a rectangular wave for performing this pulse width modulation operation.
 SiCパワーMISFET304に、前述の実施例1または前述の実施例2の半導体装置を用いることにより、例えば、SiCパワーMISFET304のオン抵抗が小さいので、冷却のためのヒートシンクなどの構造を小さくし、パワーモジュール302を小型化および軽量化することができ、ひいては電力変換装置を小型化および軽量化することができる。また、SiCパワーMISFET304のゲート絶縁膜の信頼性が高いので、パワーモジュール302を長寿命化することができる。 By using the semiconductor device of the first embodiment or the second embodiment described above for the SiC power MISFET 304, for example, since the on-resistance of the SiC power MISFET 304 is small, the structure such as a heat sink for cooling is reduced, and the power module 302 can be reduced in size and weight, and thus the power converter can be reduced in size and weight. Moreover, since the reliability of the gate insulating film of the SiC power MISFET 304 is high, the life of the power module 302 can be extended.
 また、本実施例の電力変換装置は、3相モータシステムとすることができる。前述の図20に示した負荷301は3相モータであり、スイッチング素子に前述の実施例1または前述の実施例2において説明した半導体装置を備えた電力変換装置を用いることにより、3相モータシステムの小型化や高性能化を実現することができる。 Also, the power conversion device of this embodiment can be a three-phase motor system. The load 301 shown in FIG. 20 described above is a three-phase motor, and a three-phase motor system is used by using the power conversion device including the semiconductor device described in the first embodiment or the second embodiment described above as a switching element. Can be reduced in size and performance.
 本実施例では、前述の実施例1のSiCパワーMISFET、または前述の実施例2のSiCパワーMISFETを備える電力変換装置を説明する。図22は、本実施例の電力変換装置(インバータ)を示す回路図である。 In this example, a power conversion device including the SiC power MISFET of Example 1 described above or the SiC power MISFET of Example 2 described above will be described. FIG. 22 is a circuit diagram showing the power conversion device (inverter) of this embodiment.
 図22に示すように、本実施例のインバータは、パワーモジュール402内にスイッチング素子としてSiCパワーMISFET404を備えている。各単相において、端子405~409を介して、電源電圧(Vcc)と負荷(例えばモータ)401の入力電位との間にSiCパワーMISFET404が接続されており(上アーム)、負荷401の入力電位と接地電位(GND)との間にもSiCパワーMISFET素子404が接続されている(下アーム)。つまり、負荷401では各単相に2つのSiCパワーMISFET404が設けられており、3相で6つのスイッチング素子404が設けられている。そして、個々のSiCパワーMISFET304のゲート電極には、端子410、411を介して、制御回路403が接続されており、この制御回路403によってSiCパワーMISFET404が制御されている。従って、本実施例のインバータでは、制御回路403でパワーモジュール402内のSiCパワーMISFET404を流れる電流を制御することにより、負荷401を駆動することができる。 As shown in FIG. 22, the inverter of this embodiment includes a SiC power MISFET 404 as a switching element in the power module 402. In each single phase, a SiC power MISFET 404 is connected between the power supply voltage (Vcc) and the input potential of the load (for example, motor) 401 via terminals 405 to 409 (upper arm), and the input potential of the load 401 The SiC power MISFET element 404 is also connected between the ground potential (GND) and the ground potential (GND) (lower arm). That is, in the load 401, two SiC power MISFETs 404 are provided for each single phase, and six switching elements 404 are provided for three phases. A control circuit 403 is connected to the gate electrode of each SiC power MISFET 304 via terminals 410 and 411, and the SiC power MISFET 404 is controlled by the control circuit 403. Therefore, in the inverter of this embodiment, the load 401 can be driven by controlling the current flowing through the SiC power MISFET 404 in the power module 402 by the control circuit 403.
 パワーモジュール402内のSiCパワーMISFET404の機能について以下に説明する。SiCパワーMISFETの機能の1つとして、本実施例でも実施例3と同様に、パルス幅変調動作を行うための矩形波を作り出す機能を有している。本実施例ではさらに、SiCパワーMISFET404は、実施例3のダイオード305の役割も担う。例えば、モータのように負荷401にインダクタンスを含む場合、SiCパワーMISFET404をOFFしたとき、インダクタンスに蓄えられたエネルギーを必ず放出しなければならない(還流電流)。実施例3では、ダイオード305がこの役割を担う。一方、本実施例では、同期整流駆動を用いるので、環流電流を流す役割をSiCパワーMISFET404が担う。本実施例の同期整流駆動では、還流時にSiCパワーMISFET404のゲートをONにし、SiCパワーMISFET404を逆導通させる。 The function of the SiC power MISFET 404 in the power module 402 will be described below. As one of the functions of the SiC power MISFET, the present embodiment also has a function of generating a rectangular wave for performing a pulse width modulation operation as in the third embodiment. In the present embodiment, the SiC power MISFET 404 also serves as the diode 305 of the third embodiment. For example, when the load 401 includes an inductance like a motor, when the SiC power MISFET 404 is turned OFF, the energy stored in the inductance must be released (return current). In the third embodiment, the diode 305 plays this role. On the other hand, in the present embodiment, since the synchronous rectification drive is used, the SiC power MISFET 404 plays a role of flowing a circulating current. In the synchronous rectification driving of the present embodiment, the gate of the SiC power MISFET 404 is turned ON during the return, and the SiC power MISFET 404 is reversely conducted.
 したがって、還流時導通損失はダイオードの特性ではなく、SiCパワーMISFET404の特性で決まる。また、同期整流駆動を行う場合、上下アームが短絡することを防ぐため、上下のSiCパワーMISFETが共にOFFとなる不動作時間が必要となる。この不動作時間の間はSiCパワーMISFET404のドリフト層とp型ボディ層によって形成される内蔵PNダイオードが駆動する。ただし、SiCはキャリアの走行距離がSiより短く、不動作時間の間の損失は小さく、例えば、実施例3のダイオード305をSiCショットキーバリアダイオードとした場合と、同等である。 Therefore, the return conduction loss is determined not by the characteristics of the diode but by the characteristics of the SiC power MISFET 404. Further, when performing synchronous rectification drive, in order to prevent the upper and lower arms from being short-circuited, a non-operation time is required in which both the upper and lower SiC power MISFETs are turned off. During this non-operation time, the built-in PN diode formed by the drift layer and the p-type body layer of the SiC power MISFET 404 is driven. However, the carrier distance of SiC is shorter than that of Si, and the loss during the non-operation time is small. For example, it is equivalent to the case where the diode 305 of the third embodiment is an SiC Schottky barrier diode.
 このように、本実施例では、SiCパワーMISFET404に、前述の実施例1または前述の実施例2の半導体装置を用いることにより、例えば、SiCパワーMISFET404が高性能な分、還流時の損失を小さくでき、さらなる高性能化が可能になる。また、還流ダイオードをSiCパワーMISFET404とは別に設けないため、パワーモジュール402をさらに小型化することができる。 As described above, in this embodiment, by using the semiconductor device of the first embodiment or the second embodiment described above for the SiC power MISFET 404, for example, the loss during reflux is reduced by the high performance of the SiC power MISFET 404. And higher performance is possible. Further, since the reflux diode is not provided separately from the SiC power MISFET 404, the power module 402 can be further reduced in size.
 また、本実施例の電力変換装置は、3相モータシステムとすることができる。図21に示した負荷401は3相モータであり、パワーモジュール402に、前述の実施例1または前述の実施例2の半導体装置を備えることにより、3相モータシステムの小型化や高性能化を実現することができる。 Also, the power conversion device of this embodiment can be a three-phase motor system. The load 401 shown in FIG. 21 is a three-phase motor, and the power module 402 includes the semiconductor device according to the first embodiment or the second embodiment described above, thereby reducing the size and performance of the three-phase motor system. Can be realized.
 実施例3または実施例4で説明した3相モータシステムは、ハイブリット自動車、電気自動車、燃料電池自動車などの自動車に用いることができる。本実施例では、3相モータシステムを搭載した自動車を、図23および図24を用いて説明する。図23は、本実施例の電気自動車の構成を示す概略図である。図24は、本実施例の昇圧コンバータの回路図である。 The three-phase motor system described in Example 3 or Example 4 can be used for vehicles such as hybrid vehicles, electric vehicles, and fuel cell vehicles. In this embodiment, an automobile equipped with a three-phase motor system will be described with reference to FIGS. FIG. 23 is a schematic diagram showing the configuration of the electric vehicle of this embodiment. FIG. 24 is a circuit diagram of the boost converter of this embodiment.
 図23に示すように、本実施例の電気自動車は、駆動輪501aおよび駆動輪501bが接続された駆動軸502に動力を入出力可能とする3相モータ503と、3相モータ503を駆動するためのインバータ504と、バッテリ505と、を備える。さらに、本実施例の電気自動車は、昇圧コンバータ508と、リレー509と、電子制御ユニット510と、を備え、昇圧コンバータ508は、インバータ504が接続された電力ライン506と、バッテリ505が接続された電力ライン507とに接続されている。 As shown in FIG. 23, the electric vehicle of the present embodiment drives a three-phase motor 503 that allows power to be input / output to / from a drive shaft 502 to which the drive wheels 501a and 501b are connected, and the three-phase motor 503. An inverter 504 and a battery 505 are provided. Furthermore, the electric vehicle of this embodiment includes a boost converter 508, a relay 509, and an electronic control unit 510. The boost converter 508 is connected to a power line 506 to which an inverter 504 is connected and a battery 505. It is connected to the power line 507.
 3相モータ503は、永久磁石が埋め込まれたロータと、3相コイルが巻回されたステータとを備えた同期発電電動機である。インバータ504には、前述の実施例3または前述の実施例4において説明したインバータを用いることができる。 The three-phase motor 503 is a synchronous generator motor including a rotor embedded with permanent magnets and a stator wound with a three-phase coil. As the inverter 504, the inverter described in the third embodiment or the fourth embodiment can be used.
 昇圧コンバータ508は図24に示すように、インバータ513に、リアクトル511および平滑用コンデンサ112が接続された構成からなる。インバータ513は、例えば、前述の実施例4で説明したインバータと同様であり、インバータ内の素子構成も同じである。本実施例でも、実施例4と同様にスイッチング素子をSiCパワーMISFET514とし、同期整流駆動させる。 As shown in FIG. 24, the boost converter 508 has a configuration in which a reactor 511 and a smoothing capacitor 112 are connected to an inverter 513. For example, the inverter 513 is the same as the inverter described in the fourth embodiment, and the element configuration in the inverter is the same. Also in the present embodiment, the switching element is the SiC power MISFET 514 as in the fourth embodiment, and the synchronous rectification driving is performed.
 図23の電子制御ユニット510は、マイクロプロセッサと、記憶装置と、入出力ポートとを備えており、3相モータ503のロータ位置を検出するセンサからの信号、またはバッテリ505の充放電値などを受信する。そして、インバータ504、昇圧コンバータ508、およびリレー509を制御するための信号を出力する。 The electronic control unit 510 shown in FIG. 23 includes a microprocessor, a storage device, and an input / output port. A signal from a sensor that detects the rotor position of the three-phase motor 503, a charge / discharge value of the battery 505, and the like. Receive. Then, a signal for controlling inverter 504, boost converter 508, and relay 509 is output.
 このように、本実施例によれば、電力変換装置であるインバータ504および昇圧コンバータ508に、前述の実施例3および前述の実施例4の電力変換装置を用いることができる。また、3相モータ503、およびインバータ504などからなる3相モータシステムに、前述の実施例3または前述の実施例4の3相モータシステムを用いることができる。これにより、電気自動車の省エネルギー化、小型化、軽量化や電力変換装置の省スペース化を図ることができる。 Thus, according to the present embodiment, the power converters of the above-described third embodiment and the above-described fourth embodiment can be used for the inverter 504 and the boost converter 508 which are power converters. Further, the three-phase motor system of the third embodiment or the fourth embodiment described above can be used for a three-phase motor system including the three-phase motor 503 and the inverter 504. Thereby, the energy saving of an electric vehicle, size reduction, weight reduction, and space saving of a power converter device can be achieved.
 なお、本実施例では、電気自動車について説明したが、エンジンも併用するハイブリット自動車、バッテリ505が燃料電池スタックとなった燃料電池自動車にも同様に上述の3相モータシステムを適用することができる。 In the present embodiment, the electric vehicle has been described. However, the above-described three-phase motor system can be similarly applied to a hybrid vehicle that also uses an engine and a fuel cell vehicle in which the battery 505 is a fuel cell stack.
 実施例3および実施例4の3相モータシステムは、鉄道車両に用いることができる。本実施例では、3相モータシステムを用いた鉄道車両を図25を用いて説明する。図25は、本実施例の鉄道車両のコンバータおよびインバータを含む回路図である。 The three-phase motor system of Example 3 and Example 4 can be used for a railway vehicle. In this embodiment, a railway vehicle using a three-phase motor system will be described with reference to FIG. FIG. 25 is a circuit diagram including a converter and an inverter of the railway vehicle of the present embodiment.
 図25に示すように、鉄道車両には架線OW(例えば25kV)からパンタグラフPGを介して電力が供給される。トランス609を介して電圧が1.5kVまで降圧され、コンバータ607で交流から直流に変換される。さらに、キャパシタ608を介してインバータ602で直流から交流に変換されて、負荷601である3相モータが駆動される。コンバータ607内の素子構成は実施例3のようにSiCパワーMISFETおよびダイオードを併用してもよく、また実施例4のようにSiCパワーMISFET単独でもよい。 As shown in FIG. 25, electric power is supplied to the railway vehicle from the overhead line OW (for example, 25 kV) via the pantograph PG. The voltage is stepped down to 1.5 kV via the transformer 609 and converted from alternating current to direct current by the converter 607. Further, the inverter 602 converts the direct current into the alternating current through the capacitor 608, and the three-phase motor as the load 601 is driven. The element configuration in the converter 607 may be a SiC power MISFET and a diode used together as in the third embodiment, or a SiC power MISFET alone as in the fourth embodiment.
 本実施例では、実施例4のようにスイッチング素子をSiCパワーMISFET604として同期整流駆動させる。なお、図25では、実施例4で説明した制御回路は省略している。また、図中、符号RTは線路、符号WHは車輪を示す。 In this embodiment, the switching element is synchronously rectified and driven as the SiC power MISFET 604 as in the fourth embodiment. In FIG. 25, the control circuit described in the fourth embodiment is omitted. Moreover, in the figure, symbol RT indicates a track, and symbol WH indicates a wheel.
 このように本実施例によればコンバータ607に、実施例3または実施例4の電力変換装置を用いることができる。また、負荷601、インバータ602、および制御回路からなる3相モータシステムに、実施例3または実施例4の3相モータシステムを用いることができる。これにより、鉄道車両の省エネルギー化や、3相モータシステムを含む床下部品の小型化による低床化および軽量化を図ることができる。 Thus, according to the present embodiment, the converter 607 can use the power conversion device of the third or fourth embodiment. Further, the three-phase motor system according to the third or fourth embodiment can be used for a three-phase motor system including the load 601, the inverter 602, and the control circuit. As a result, energy saving of the railway vehicle and reduction in floor and weight by downsizing the underfloor parts including the three-phase motor system can be achieved.
 図26に、本実施例のSiCパワーMISFETの要部鳥瞰図を示す。本実施例と実施例1との相違点は、図26に示すように、JFET領域上にゲート電極711の一部を残す点にある。JFET領域上にゲート電極711の一部を残すことにより、ゲート電極のJFET領域側端部とp型のボディ層の端部との配置のマージンを確保する必要がなく、セル長を短くすることができる。よって、よりオン抵抗の低減が可能である。 FIG. 26 shows a bird's-eye view of the main part of the SiC power MISFET of this example. The difference between the present embodiment and the first embodiment is that a part of the gate electrode 711 is left on the JFET region as shown in FIG. By leaving a part of the gate electrode 711 on the JFET region, it is not necessary to secure a margin for arrangement between the end of the gate electrode on the JFET region side and the end of the p-type body layer, thereby reducing the cell length. Can do. Therefore, the on-resistance can be further reduced.
 図27に、本実施例のSiCパワーMISFETのレイアウトを示す。本実施例では、レイアウトとして、実施例2のように、各素子のゲート電極711にゲート配線用電極を接続する必要がなく、図27のようにゲート電極711を引き回すことで、各素子にゲート電位を供給することができる。本実施例でのゲートコンタクト用の開口部CNT_G717の形成箇所は、素子形成領域端部である。したがって、本実施例は実施例2と比較して、プロセスが容易であり、歩留りの向上とコストの低減が可能である。 FIG. 27 shows a layout of the SiC power MISFET of this example. In the present embodiment, it is not necessary to connect a gate wiring electrode to the gate electrode 711 of each element as in the second embodiment, and the gate electrode 711 is routed as shown in FIG. A potential can be supplied. In this embodiment, the gate contact opening CNT_G717 is formed at the end of the element formation region. Therefore, the process of this embodiment is easier than that of the second embodiment, and the yield can be improved and the cost can be reduced.
 本実施例による炭化珪素半導体装置の製造方法について図28~図30を用いて工程順に説明する。図28~図30は炭化珪素半導体装置のSiCパワーMISFET構造形成領域(素子形成領域)の一部を拡大して示す要部断面図である。 A method for manufacturing a silicon carbide semiconductor device according to the present embodiment will be described in the order of steps with reference to FIGS. FIG. 28 to FIG. 30 are enlarged cross-sectional views showing a part of the SiC power MISFET structure formation region (element formation region) of the silicon carbide semiconductor device.
 実施例1および実施例2と同様にして、図28に示すように、n型のSiC基板(基板)701の表面(第1主面)上にn型のエピタキシャル層702を形成して、n型のSiC基板701とn型のエピタキシャル層702とからなるSiCエピタキシャル基板704を形成する。n型のSiC基板701の不純物濃度は、例えば1×1018~1×1021cm-3の範囲であり、n型のエピタキシャル層702の不純物濃度は、1×1014~1×1017cm-3の範囲である。続いて、n型のSiC基板701の裏面(第2主面)にn型のドレイン領域703を形成する。n型のドレイン領域703の不純物濃度は、例えば1×1019~1×1021cm-3の範囲である。 In the same manner as in Example 1 and Example 2, an n type epitaxial layer 702 is formed on the surface (first main surface) of an n + type SiC substrate (substrate) 701 as shown in FIG. Then, an SiC epitaxial substrate 704 composed of an n + type SiC substrate 701 and an n type epitaxial layer 702 is formed. The impurity concentration of the n + -type SiC substrate 701 is, for example, in the range of 1 × 10 18 to 1 × 10 21 cm −3 , and the impurity concentration of the n -type epitaxial layer 702 is 1 × 10 14 to 1 × 10 6. The range is 17 cm −3 . Subsequently, an n + -type drain region 703 is formed on the back surface (second main surface) of the n + -type SiC substrate 701. The impurity concentration of the n + -type drain region 703 is, for example, in the range of 1 × 10 19 to 1 × 10 21 cm −3 .
 次に、マスク越しに、n型のエピタキシャル層702にp型不純物として、例えばアルミニウム原子(Al)をイオン注入する(図示は省略)。これにより、n型のエピタキシャル層702の素子形成領域にp型のボディ層705を形成する。なお、図示は省略するが、イオン注入の際に素子形成領域周辺にp型のFLRを形成する。p型のボディ層705の不純物濃度は、例えば1×1016~1×1019cm-3の範囲である。 Next, for example, aluminum atoms (Al) are ion-implanted as a p-type impurity into the n -type epitaxial layer 702 through a mask (not shown). As a result, a p-type body layer 705 is formed in the element formation region of the n -type epitaxial layer 702. Although illustration is omitted, a p-type FLR is formed around the element formation region at the time of ion implantation. The impurity concentration of the p-type body layer 705 is, for example, in the range of 1 × 10 16 to 1 × 10 19 cm −3 .
 次に、マスク越しに、n型のエピタキシャル層702にp型不純物、例えばアルミニウム原子(Al)をイオン注入する(図示は省略)。これにより、p型のボディ層705内にp++型のボディ層の電位固定領域706を形成する。p++型のボディ層の電位固定領域706の不純物濃度は、例えば1×1019~1×1021cm-3の範囲である。 Next, a p-type impurity, for example, aluminum atoms (Al) is ion-implanted into the n -type epitaxial layer 702 through a mask (not shown). As a result, a potential fixing region 706 of the p ++ type body layer is formed in the p type body layer 705. The impurity concentration of the potential fixing region 706 of the p ++ type body layer is, for example, in the range of 1 × 10 19 to 1 × 10 21 cm −3 .
 次に、マスク越しに、n型のエピタキシャル層702にn型不純物として、窒素原子(N)をイオン注入して、素子形成領域にn++型のソース領域707を形成する(図示は省略)。n++型のソース領域707の不純物濃度は、例えば1×1019~1×1021cm-3の範囲である。 Next, nitrogen atoms (N) are ion-implanted as n-type impurities into the n -type epitaxial layer 702 through the mask to form an n ++ -type source region 707 in the element formation region (not shown). . The impurity concentration of the n ++ type source region 707 is, for example, in the range of 1 × 10 19 to 1 × 10 21 cm −3 .
 次に、マスク越しに、n型のエピタキシャル層702にn型不純物として、窒素原子(N)をイオン注入して、素子形成領域にn型の電流拡散領域708を形成する(図示は省略)。n型の電流拡散領域708の不純物濃度は、例えば5×1016~5×1018cm-3の範囲である。 Next, nitrogen atoms (N) are ion-implanted as n-type impurities into the n -type epitaxial layer 702 through the mask to form an n + -type current diffusion region 708 in the element formation region (not shown). ). The impurity concentration of the n + -type current diffusion region 708 is, for example, in the range of 5 × 10 16 to 5 × 10 18 cm −3 .
 次に、イオン注入した各不純物の活性化を行う(図示は省略)。次に、トレンチマスクを形成し、ドライエッチングプロセスを用いてp型のボディ層705にトレンチ709を形成する(図示せず)。次に、トレンチ709の内壁を含む第1主面側の表面にゲート絶縁膜710を形成する。ゲート絶縁膜710は、例えば熱CVD法により形成されたSiO膜からなる(図示せず)。ゲート絶縁膜710の厚さは、例えば0.005~0.15μm程度である。 Next, each ion-implanted impurity is activated (not shown). Next, a trench mask is formed, and a trench 709 is formed in the p-type body layer 705 using a dry etching process (not shown). Next, a gate insulating film 710 is formed on the surface on the first main surface side including the inner wall of the trench 709. The gate insulating film 710 is made of, for example, a SiO 2 film formed by a thermal CVD method (not shown). The thickness of the gate insulating film 710 is, for example, about 0.005 to 0.15 μm.
 次に、図28に示すように、ゲート絶縁膜710上に、n型の多結晶珪素(Si)膜711Aを形成する。n型の多結晶珪素(Si)膜711Aの厚さは、例えば0.01~4μm程度である。 Next, as shown in FIG. 28, an n-type polycrystalline silicon (Si) film 711A is formed on the gate insulating film 710. The thickness of the n-type polycrystalline silicon (Si) film 711A is, for example, about 0.01 to 4 μm.
 次に、図29に示すように、マスクM6’(ホトレジスト膜)を用いて、多結晶珪素(Si)膜711Aをドライエッチング法により加工して、ゲート電極711を形成する。この際に、p型のボディ層705に挟まれたJFET領域上の多結晶珪素(Si)膜711Aは残す。 Next, as shown in FIG. 29, a polycrystalline silicon (Si) film 711A is processed by a dry etching method using a mask M6 '(photoresist film) to form a gate electrode 711. At this time, the polycrystalline silicon (Si) film 711A on the JFET region sandwiched between the p-type body layers 705 remains.
 その後、層間絶縁膜712を形成し(図示せず)、n++型のソース領域707の一部およびp++型のボディ層電位固定領域706に達する開口部を形成し(図示せず)、開口部表面に金属シリサイド層713を形成する(図示せず)。次に、ゲートコンタクト用の開口部717を形成し(図示せず)、ソース配線用電極714とゲート配線用電極(図示せず)を形成し、パッシベーション膜を(図示せず)形成する。次に、図30に示すように、n型のSiC基板701の裏面側に金属シリサイド715とドレイン用電極716を形成する。その後、ソース配線用電極、ゲート配線用電極、およびドレイン配線用電極にそれぞれ外部配線が電気的に接続される。 Thereafter, an interlayer insulating film 712 is formed (not shown), and an opening reaching a part of the n ++ type source region 707 and the p ++ type body layer potential fixing region 706 is formed (not shown). A metal silicide layer 713 is formed on the surface of the part (not shown). Next, an opening 717 for a gate contact is formed (not shown), a source wiring electrode 714 and a gate wiring electrode (not shown) are formed, and a passivation film (not shown) is formed. Next, as shown in FIG. 30, a metal silicide 715 and a drain electrode 716 are formed on the back surface side of the n + -type SiC substrate 701. Thereafter, external wirings are electrically connected to the source wiring electrode, the gate wiring electrode, and the drain wiring electrode, respectively.
 本実施例では、実施例1および実施例2と比較してセル長を短くできるので、同じ面積の半導体チップにより多くのセルを設けることで、さらなるオン抵抗の低減が可能である。また、本実施例では、ゲート電極711を配線のように引き回すことが可能であり、プロセスが容易であり、歩留りの向上とコストの低減が可能である。 In this embodiment, since the cell length can be shortened as compared with Embodiment 1 and Embodiment 2, it is possible to further reduce the on-resistance by providing more cells on a semiconductor chip having the same area. In this embodiment, the gate electrode 711 can be routed like a wiring, the process is easy, the yield can be improved, and the cost can be reduced.
 図31に、本実施例のSiCパワーMISFETの要部鳥瞰図を示す。本実施例と実施例7との相違点は、図31に示すようにp型のボディ層805及びn型の電流拡散領域808上の一部及びJFET領域上に厚い絶縁膜817を形成する点にある。本実施例では、厚い絶縁膜817に覆われているのは、n型の電流拡散領域808の内のオン抵抗に影響のない範囲なので、実施例7と同様にオン抵抗を低くできる。また、厚い絶縁膜817をゲート電極811とJFET領域の間に形成することにより、実施例7に比べて、さらに絶縁耐圧を高くできる。 FIG. 31 shows a bird's-eye view of the main part of the SiC power MISFET of this example. The difference between the present embodiment and the seventh embodiment is that a thick insulating film 817 is formed on part of the p-type body layer 805 and the n + -type current diffusion region 808 and on the JFET region as shown in FIG. In the point. In this embodiment, the thick insulating film 817 is covered with the n + -type current diffusion region 808 in a range that does not affect the on-resistance, so that the on-resistance can be lowered similarly to the seventh embodiment. Further, by forming the thick insulating film 817 between the gate electrode 811 and the JFET region, the withstand voltage can be further increased as compared with the seventh embodiment.
 本実施例の炭化珪素半導体装置の製造方法を、図32~図36を用いて工程順に説明する。図32~図36は、炭化珪素半導体装置のSiCパワーMISFET構造形成領域(素子形成領域)の一部を拡大して示す要部断面図である。 A method for manufacturing the silicon carbide semiconductor device of this example will be described in the order of steps with reference to FIGS. 32 to 36 are cross-sectional views of main parts showing a part of the SiC power MISFET structure formation region (element formation region) of the silicon carbide semiconductor device in an enlarged manner.
 実施例1および実施例2と同様にして、図32に示すように、n型のSiC基板(基板)801の表面(第1主面)上にn型のエピタキシャル層802を形成して、n型のSiC基板801とn型のエピタキシャル層802とからなるSiCエピタキシャル基板804を形成する。n型のSiC基板801の不純物濃度は、例えば1×1018~1×1021cm-3の範囲であり、n型のエピタキシャル層802の不純物濃度は、1×1014~1×1017cm-3の範囲である。続いて、n型のSiC基板801の裏面(第2主面)にn型のドレイン領域803を形成する。n型のドレイン領域803の不純物濃度は、例えば1×1019~1×1021cm-3の範囲である。 Similarly to Example 1 and Example 2, as shown in FIG. 32, an n type epitaxial layer 802 is formed on the surface (first main surface) of an n + type SiC substrate (substrate) 801. Then, a SiC epitaxial substrate 804 composed of an n + type SiC substrate 801 and an n type epitaxial layer 802 is formed. The impurity concentration of the n + -type SiC substrate 801 is, for example, in the range of 1 × 10 18 to 1 × 10 21 cm −3 , and the impurity concentration of the n -type epitaxial layer 802 is 1 × 10 14 to 1 × 10 The range is 17 cm −3 . Subsequently, an n + type drain region 803 is formed on the back surface (second main surface) of the n + type SiC substrate 801. The impurity concentration of the n + -type drain region 803 is, for example, in the range of 1 × 10 19 to 1 × 10 21 cm −3 .
 次に、マスク越しに、n型のエピタキシャル層802にp型不純物として、例えばアルミニウム原子(Al)をイオン注入する(図示は省略)。これにより、n型のエピタキシャル層802の素子形成領域にp型のボディ層805を形成する。なお、図示は省略するが、同時に素子形成領域周辺にp型のFLRを形成する。p型のボディ層805の不純物濃度は、例えば1×1016~1×1019cm-3の範囲である。 Next, for example, aluminum atoms (Al) are ion-implanted as p-type impurities into the n -type epitaxial layer 802 through the mask (not shown). As a result, a p-type body layer 805 is formed in the element formation region of the n -type epitaxial layer 802. Although not shown, a p-type FLR is formed around the element formation region at the same time. The impurity concentration of the p-type body layer 805 is, for example, in the range of 1 × 10 16 to 1 × 10 19 cm −3 .
 次に、マスク越しに、n型のエピタキシャル層802にp型不純物として、例えばアルミニウム原子(Al)をイオン注入する(図示は省略)。これにより、p型のボディ層805内にp++型のボディ層の電位固定領域806を形成する。p++型のボディ層の電位固定領域806の不純物濃度は、例えば1×1019~1×1021cm-3の範囲である。 Next, for example, aluminum atoms (Al) are ion-implanted as p-type impurities into the n -type epitaxial layer 802 through the mask (not shown). As a result, the potential fixing region 806 of the p ++ type body layer is formed in the p type body layer 805. The impurity concentration of the potential fixing region 806 of the p ++ type body layer is, for example, in the range of 1 × 10 19 to 1 × 10 21 cm −3 .
 次に、マスク越しに、n型のエピタキシャル層802にn型不純物として、窒素原子(N)をイオン注入して、素子形成領域にn++型のソース領域807を形成する(図示は省略)。n++型のソース領域807の不純物濃度は、例えば1×1019~1×1021cm-3の範囲である。 Next, nitrogen atoms (N) are ion-implanted as n-type impurities into the n -type epitaxial layer 802 through the mask to form an n ++ -type source region 807 in the element formation region (not shown). . The impurity concentration of the n ++ type source region 807 is, for example, in the range of 1 × 10 19 to 1 × 10 21 cm −3 .
 次に、マスク越しに、n型のエピタキシャル層802にn型不純物として、窒素原子(N)をイオン注入して、素子形成領域にn型の電流拡散領域808を形成する(図示は省略)。n型の電流拡散領域808の不純物濃度は、例えば5×1016~5×1018cm-3の範囲である。 Next, nitrogen atoms (N) are ion-implanted as n-type impurities into the n -type epitaxial layer 802 through the mask to form an n + -type current diffusion region 808 in the element formation region (not shown). ). The impurity concentration of the n + -type current diffusion region 808 is, for example, in the range of 5 × 10 16 to 5 × 10 18 cm −3 .
 次に、イオン注入した各不純物の活性化を行う(図示は省略)。次に、トレンチマスクを形成し、ドライエッチングプロセスを用いてp型のボディ層805にトレンチ809を形成する(図示せず)。次に、図32に示すように、p型のボディ層805、n型の電流拡散領域808上の一部、およびJFET領域上にゲート絶縁膜よりも厚い絶縁膜817を形成する。たとえば、プラズマCVDによって、酸化膜を0.05~0.5μm堆積させ(図示せず)、レジストマスクを形成した後、ウェットエッチングで酸化膜を一部除去することで、ゲート絶縁膜よりも厚い絶縁膜817を形成する(図示せず)。 Next, each ion-implanted impurity is activated (not shown). Next, a trench mask is formed, and a trench 809 is formed in the p-type body layer 805 using a dry etching process (not shown). Next, as shown in FIG. 32, an insulating film 817 thicker than the gate insulating film is formed on the p-type body layer 805, a part on the n + -type current diffusion region 808, and the JFET region. For example, an oxide film is deposited by plasma CVD to 0.05 to 0.5 μm (not shown), a resist mask is formed, and then part of the oxide film is removed by wet etching so that it is thicker than the gate insulating film. An insulating film 817 is formed (not shown).
 次に、図33に示すように、トレンチ809の内壁を含む第1主面側の表面にゲート絶縁膜810を形成する。ゲート絶縁膜810は、例えば熱CVD法により形成されたSiO膜からなる(図示せず)。ゲート絶縁膜810の厚さは、例えば0.005~0.15μm程度である。 Next, as shown in FIG. 33, a gate insulating film 810 is formed on the surface on the first main surface side including the inner wall of the trench 809. The gate insulating film 810 is made of, for example, a SiO 2 film formed by a thermal CVD method (not shown). The thickness of the gate insulating film 810 is, for example, about 0.005 to 0.15 μm.
 次に、図34に示すように、ゲート絶縁膜810上に、n型の多結晶珪素(Si)膜811Aを形成する。n型の多結晶珪素(Si)膜811Aの厚さは、例えば0.01~4μm程度である。 Next, as shown in FIG. 34, an n-type polycrystalline silicon (Si) film 811A is formed on the gate insulating film 810. The thickness of the n-type polycrystalline silicon (Si) film 811A is, for example, about 0.01 to 4 μm.
 次に、図35に示すように、マスクM6’’(ホトレジスト膜)を用いて、多結晶珪素(Si)膜811Aをドライエッチング法により加工して、ゲート電極811を形成する。この際に、p型のボディ層805に挟まれたJFET領域上の多結晶珪素(Si)膜811Aは残す。 Next, as shown in FIG. 35, a polycrystalline silicon (Si) film 811A is processed by a dry etching method using a mask M6 ″ (photoresist film) to form a gate electrode 811. At this time, the polycrystalline silicon (Si) film 811A on the JFET region sandwiched between the p-type body layers 805 remains.
 その後、層間絶縁膜812を形成し(図示せず)、n++型のソース領域807の一部およびp++型のボディ層電位固定領域806に達する開口部を形成し(図示せず)、開口部表面に金属シリサイド層813を形成する(図示せず)。次に、ゲートコンタクト用の開口部817を形成し(図示せず)、ソース配線用電極814とゲート配線用電極(図示せず)を形成し、パッシベーション膜を(図示せず)形成する。次に、図36に示すように、n型のSiC基板801の裏面側に金属シリサイド815とドレイン用電極816を形成する。その後、ソース配線用電極、ゲート配線用電極、およびドレイン配線用電極にそれぞれ外部配線が電気的に接続される。 Thereafter, an interlayer insulating film 812 is formed (not shown), and an opening reaching a part of the n ++ type source region 807 and the p ++ type body layer potential fixing region 806 is formed (not shown). A metal silicide layer 813 is formed on the surface of the part (not shown). Next, an opening 817 for a gate contact is formed (not shown), a source wiring electrode 814 and a gate wiring electrode (not shown) are formed, and a passivation film (not shown) is formed. Next, as shown in FIG. 36, a metal silicide 815 and a drain electrode 816 are formed on the back surface side of the n + -type SiC substrate 801. Thereafter, external wirings are electrically connected to the source wiring electrode, the gate wiring electrode, and the drain wiring electrode, respectively.
 本実施例では、n型の電流拡散領域808上の一部及びJFET領域上にゲート絶縁膜よりも厚い絶縁膜817を形成するため、実施例7よりも、さらに高い絶縁耐圧を得ることができる。 In this embodiment, since the insulating film 817 thicker than the gate insulating film is formed on a part of the n + -type current diffusion region 808 and on the JFET region, a higher withstand voltage can be obtained than in the seventh embodiment. it can.
1:半導体チップ、2:ソース配線用電極(SiCパワーMISFET形成領域、素子形成領域)、3:p型のフローティング・フィールド・リミッティング・リング、4:n++型のガードリング、5:ゲート開口部、6:SiCパワーMISFET構造、7:ソース開口部、8:ゲート配線用電極、101:n型のSiC基板(基板)、102:n型のエピタキシャル層、103:n型のドレイン領域、104:SiCエピタキシャル基板、105:p型のボディ層(ウェル領域)、106:p++型のボディ層電位固定領域、107:n++型のソース領域、108:n型の電流拡散領域、109:トレンチ、110:ゲート絶縁膜、111:ゲート電極。 1: Semiconductor chip, 2: Source wiring electrode (SiC power MISFET forming region, element forming region), 3: p-type floating field limiting ring, 4: n ++ type guard ring, 5: gate opening Part: 6: SiC power MISFET structure, 7: source opening, 8: gate wiring electrode, 101: n + type SiC substrate (substrate), 102: n type epitaxial layer, 103: n + type drain Region: 104: SiC epitaxial substrate, 105: p-type body layer (well region), 106: p ++- type body layer potential fixing region, 107: n ++- type source region, 108: n + -type current diffusion region 109: trench, 110: gate insulating film, 111: gate electrode.

Claims (15)

  1.  第1不純物濃度を有する第1導電型の半導体基板と、
     前記半導体基板の裏面側に形成されている裏面電極と、
     前記半導体基板上に形成されている前記第1不純物濃度よりも低い第2不純物濃度の前記第1導電型の第1領域と、
     前記第1導電型の第2領域と、
     前記第1領域と電気的に接続している前記第1導電型の第3領域と、
     前記第2領域と前記第3領域とに接している、前記第1導電型とは反対の第2導電型の第4領域と、
     前記第2領域と、前記第4領域と、前記第3領域と、に延在し、前記第4領域よりも浅く、底面が前記第4領域に接しているトレンチと、
     前記トレンチの内壁に形成されている絶縁膜と、
     前記絶縁膜上に形成されているゲート電極と、を有することを特徴とする半導体装置。
    A first conductivity type semiconductor substrate having a first impurity concentration;
    A back electrode formed on the back side of the semiconductor substrate;
    A first region of the first conductivity type having a second impurity concentration lower than the first impurity concentration formed on the semiconductor substrate;
    A second region of the first conductivity type;
    A third region of the first conductivity type electrically connected to the first region;
    A fourth region of a second conductivity type opposite to the first conductivity type in contact with the second region and the third region;
    A trench extending in the second region, the fourth region, and the third region, shallower than the fourth region and having a bottom surface in contact with the fourth region;
    An insulating film formed on the inner wall of the trench;
    And a gate electrode formed on the insulating film.
  2.  請求項1に記載の半導体装置において、
     前記トレンチに接している前記第3領域の部分と前記半導体基板の間には、前記第4領域が存在することを特徴とする半導体装置。
    The semiconductor device according to claim 1,
    4. The semiconductor device according to claim 1, wherein the fourth region exists between a portion of the third region in contact with the trench and the semiconductor substrate.
  3.  請求項1に記載の半導体装置において、
     前記トレンチに接している前記第2領域の部分と前記半導体基板の間には、前記第4領域が存在することを特徴とする半導体装置。
    The semiconductor device according to claim 1,
    4. The semiconductor device according to claim 1, wherein the fourth region exists between a portion of the second region in contact with the trench and the semiconductor substrate.
  4.  請求項1に記載の半導体装置において、
     前記ゲート電極の端部と前記半導体基板の間には、前記第4領域が存在することを特徴とする半導体装置。
    The semiconductor device according to claim 1,
    The semiconductor device is characterized in that the fourth region exists between an end of the gate electrode and the semiconductor substrate.
  5.  請求項1に記載の半導体装置において、
     前記半導体基板は炭化珪素を材質としていることを特徴とする半導体装置。
    The semiconductor device according to claim 1,
    A semiconductor device characterized in that the semiconductor substrate is made of silicon carbide.
  6.  請求項1に記載の半導体装置をスイッチング素子として有する電力変換装置。 A power converter having the semiconductor device according to claim 1 as a switching element.
  7.  請求項6に記載の電力変換装置で直流電力を交流電力に変換し、3相モータを駆動する3相モータシステム。 A three-phase motor system that converts DC power to AC power by the power conversion device according to claim 6 and drives a three-phase motor.
  8.  請求項7に記載の3相モータシステムで車輪を駆動する自動車。 An automobile in which wheels are driven by the three-phase motor system according to claim 7.
  9.  請求項7に記載の3相モータシステムで車輪を駆動する鉄道車両。 A railway vehicle that drives wheels with the three-phase motor system according to claim 7.
  10.  第1導電型の半導体基板と、
     前記半導体基板の裏面側に形成されているドレイン電極と、
     前記半導体基板上に形成されている前記第1導電型のドリフト層と、
     前記第1導電型のソース領域と、
     前記ドリフト層と電気的に接続している前記第1導電型の電流拡散層と、
     前記ソース領域と前記電流拡散層とに接している、前記第1導電型とは反対の第2導電型のボディ層と、
     前記ソース領域と、前記ボディ層と、前記電流拡散層と、に延在し、前記ボディ層よりも浅く、底面が前記ボディ層に接しているトレンチと、
     前記トレンチの内壁に形成されているゲート絶縁膜と、
     前記ゲート絶縁膜上に形成されているゲート電極と、を有することを特徴とする半導体装置。
    A first conductivity type semiconductor substrate;
    A drain electrode formed on the back side of the semiconductor substrate;
    A drift layer of the first conductivity type formed on the semiconductor substrate;
    A source region of the first conductivity type;
    A current diffusion layer of the first conductivity type electrically connected to the drift layer;
    A body layer of a second conductivity type opposite to the first conductivity type, in contact with the source region and the current diffusion layer;
    A trench extending to the source region, the body layer, and the current diffusion layer, shallower than the body layer and having a bottom surface in contact with the body layer;
    A gate insulating film formed on the inner wall of the trench;
    And a gate electrode formed on the gate insulating film.
  11.  請求項10に記載の半導体装置において、
     前記トレンチに接している前記電流拡散領域の部分と前記半導体基板の間には、前記ボディ層が存在することを特徴とする半導体装置。
    The semiconductor device according to claim 10.
    The semiconductor device according to claim 1, wherein the body layer exists between a portion of the current diffusion region in contact with the trench and the semiconductor substrate.
  12.  請求項10に記載の半導体装置において、
     前記トレンチに接している前記ソース領域の部分と前記半導体基板の間には、前記ボディ層が存在することを特徴とする半導体装置。
    The semiconductor device according to claim 10.
    The semiconductor device is characterized in that the body layer exists between a portion of the source region in contact with the trench and the semiconductor substrate.
  13.  請求項10に記載の半導体装置において、
     前記ゲート電極の端部と前記半導体基板の間には、前記ボディ層が存在することを特徴とする半導体装置。
    The semiconductor device according to claim 10.
    The semiconductor device is characterized in that the body layer exists between an end of the gate electrode and the semiconductor substrate.
  14.  請求項10に記載の半導体装置において、
     前記半導体基板は炭化珪素を材質としていることを特徴とする半導体装置。
    The semiconductor device according to claim 10.
    A semiconductor device characterized in that the semiconductor substrate is made of silicon carbide.
  15.  第1導電型のエピタキシャル層が形成されている前記第1導電型の炭化珪素半導体基板を準備し、
     前記エピタキシャル層内に第1導電型とは反対の第2導電型の第1領域を形成し、
     前記第1領域内に前記第1導電型の第2領域を形成し、
     前記エピタキシャル層内で、前記第2領域と間隔を空けて前記第1領域を一部に含む領域に、前記第1導電型の第3領域を形成し、
     前記第2領域と、前記第1領域と、前記第3領域と、に延在するトレンチを形成し、
     前記トレンチの内壁に絶縁膜を形成し、
     前記絶縁膜上にゲート電極を形成することを特徴とする半導体装置の製造方法。
    Preparing the first conductivity type silicon carbide semiconductor substrate on which the first conductivity type epitaxial layer is formed;
    Forming a first region of a second conductivity type opposite to the first conductivity type in the epitaxial layer;
    Forming a second region of the first conductivity type in the first region;
    Forming a third region of the first conductivity type in a region including the first region in a part of the epitaxial layer and spaced apart from the second region;
    Forming a trench extending in the second region, the first region, and the third region;
    Forming an insulating film on the inner wall of the trench;
    A method of manufacturing a semiconductor device, comprising forming a gate electrode on the insulating film.
PCT/JP2014/063633 2014-05-23 2014-05-23 Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and train car WO2015177914A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016520883A JP6336055B2 (en) 2014-05-23 2014-05-23 Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and railway vehicle
PCT/JP2014/063633 WO2015177914A1 (en) 2014-05-23 2014-05-23 Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and train car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063633 WO2015177914A1 (en) 2014-05-23 2014-05-23 Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and train car

Publications (1)

Publication Number Publication Date
WO2015177914A1 true WO2015177914A1 (en) 2015-11-26

Family

ID=54553607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063633 WO2015177914A1 (en) 2014-05-23 2014-05-23 Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and train car

Country Status (2)

Country Link
JP (1) JP6336055B2 (en)
WO (1) WO2015177914A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108030A (en) * 2015-12-11 2017-06-15 株式会社日立製作所 Semiconductor device and manufacturing method thereof, power module, power converter, vehicle, and railway vehicle
JP2017112171A (en) * 2015-12-15 2017-06-22 株式会社日立製作所 Semiconductor device, power module, power conversion device, automobile and railway vehicle
JP2019503591A (en) * 2016-02-02 2019-02-07 アーベーベー・シュバイツ・アーゲー Power semiconductor devices
JP2019195030A (en) * 2018-05-02 2019-11-07 株式会社日立製作所 Semiconductor device and manufacturing method for semiconductor device
CN111627987A (en) * 2020-05-29 2020-09-04 东莞南方半导体科技有限公司 Fin channel structure SiC field effect transistor device
JP2020155486A (en) * 2019-03-18 2020-09-24 株式会社東芝 Semiconductor device, inverter circuit, driving device, vehicle, and elevator
CN113039651A (en) * 2018-11-14 2021-06-25 株式会社日立功率半导体 Semiconductor device and power conversion device using the same
DE112019006470T5 (en) 2018-12-25 2021-09-02 Hitachi, Ltd. SILICON CARBIDE SEMICONDUCTOR COMPONENT, POWER CONVERTER DEVICE, THREE-PHASE ENGINE SYSTEM, AUTOMOTIVE AND RAIL TRANSPORT
CN117238972A (en) * 2023-11-16 2023-12-15 深圳基本半导体有限公司 Groove type silicon carbide MOSFET device structure and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267570A (en) * 2000-03-15 2001-09-28 Mitsubishi Electric Corp Semiconductor device and method of manufacturing semiconductor device
JP2001274398A (en) * 1999-10-19 2001-10-05 Denso Corp Semiconductor device and its manufacturing method
JP2012043955A (en) * 2010-08-18 2012-03-01 Toshiba Corp Semiconductor device and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9024328B2 (en) * 2013-07-02 2015-05-05 General Electric Company Metal-oxide-semiconductor (MOS) devices with increased channel periphery and methods of manufacture
JP6135383B2 (en) * 2013-08-07 2017-05-31 住友電気工業株式会社 Silicon carbide semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274398A (en) * 1999-10-19 2001-10-05 Denso Corp Semiconductor device and its manufacturing method
JP2001267570A (en) * 2000-03-15 2001-09-28 Mitsubishi Electric Corp Semiconductor device and method of manufacturing semiconductor device
JP2012043955A (en) * 2010-08-18 2012-03-01 Toshiba Corp Semiconductor device and method of manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017108030A (en) * 2015-12-11 2017-06-15 株式会社日立製作所 Semiconductor device and manufacturing method thereof, power module, power converter, vehicle, and railway vehicle
JP2017112171A (en) * 2015-12-15 2017-06-22 株式会社日立製作所 Semiconductor device, power module, power conversion device, automobile and railway vehicle
JP2019503591A (en) * 2016-02-02 2019-02-07 アーベーベー・シュバイツ・アーゲー Power semiconductor devices
JP7051566B2 (en) 2018-05-02 2022-04-11 株式会社日立製作所 Semiconductor devices and methods for manufacturing semiconductor devices
JP2019195030A (en) * 2018-05-02 2019-11-07 株式会社日立製作所 Semiconductor device and manufacturing method for semiconductor device
DE102019111106B4 (en) 2018-05-02 2023-09-28 Hitachi, Ltd. SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE
CN113039651A (en) * 2018-11-14 2021-06-25 株式会社日立功率半导体 Semiconductor device and power conversion device using the same
DE112019006470T5 (en) 2018-12-25 2021-09-02 Hitachi, Ltd. SILICON CARBIDE SEMICONDUCTOR COMPONENT, POWER CONVERTER DEVICE, THREE-PHASE ENGINE SYSTEM, AUTOMOTIVE AND RAIL TRANSPORT
US11978794B2 (en) 2018-12-25 2024-05-07 Hitachi, Ltd. Silicon carbide semiconductor device, power conversion device, three-phase motor system, automobile, and railway vehicle
DE112019006470B4 (en) 2018-12-25 2024-08-01 Hitachi, Ltd. SILICON CARBIDE SEMICONDUCTOR DEVICE, POWER CONVERSION DEVICE, THREE-PHASE MOTOR SYSTEM, AUTOMOTIVE AND RAILWAY TRANSPORTATION
JP2020155486A (en) * 2019-03-18 2020-09-24 株式会社東芝 Semiconductor device, inverter circuit, driving device, vehicle, and elevator
JP6992021B2 (en) 2019-03-18 2022-01-13 株式会社東芝 Semiconductor devices, inverter circuits, drives, vehicles, and elevators
CN111627987A (en) * 2020-05-29 2020-09-04 东莞南方半导体科技有限公司 Fin channel structure SiC field effect transistor device
CN117238972A (en) * 2023-11-16 2023-12-15 深圳基本半导体有限公司 Groove type silicon carbide MOSFET device structure and preparation method thereof
CN117238972B (en) * 2023-11-16 2024-04-16 深圳基本半导体有限公司 Groove type silicon carbide MOSFET device structure and preparation method thereof

Also Published As

Publication number Publication date
JPWO2015177914A1 (en) 2017-04-20
JP6336055B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6309656B2 (en) Semiconductor device and manufacturing method thereof, power conversion device, three-phase motor system, automobile and railway vehicle
JP6336055B2 (en) Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and railway vehicle
JP6290457B2 (en) Semiconductor device and manufacturing method thereof, power conversion device, three-phase motor system, automobile, and railway vehicle
JP6923457B2 (en) Silicon Carbide Semiconductor Devices and Their Manufacturing Methods, Power Converters, Automobiles and Rail Vehicles
WO2017029748A1 (en) Semiconductor device, power module, power converter, vehicle, and train carriage
WO2020100534A1 (en) Semiconductor device and electric power conversion device using same
US10236370B2 (en) Semiconductor device and method of manufacturing the same, power converter, three-phase motor system, automobile and railway vehicle
JP6255111B2 (en) Semiconductor device, inverter module, inverter, railway vehicle, and manufacturing method of semiconductor device
JP6283122B2 (en) Semiconductor switching element and method for manufacturing silicon carbide semiconductor device
WO2016002057A1 (en) Semiconductor device, power module, power conversion device, three-phase motor system, automobile, and railway vehicle
JP6843561B2 (en) Semiconductor devices and power converters
JP6273020B2 (en) Semiconductor device, power module, power conversion device, automobile and railway vehicle
JP6556892B2 (en) Semiconductor device, semiconductor device manufacturing method, power conversion device, three-phase motor system, automobile, and railway vehicle
JP6259931B2 (en) Semiconductor device and power conversion device
JP7002998B2 (en) Semiconductor devices and their manufacturing methods, power conversion devices, three-phase motor systems, automobiles, and railroad vehicles
JP6473073B2 (en) Semiconductor device, power module, power conversion device, automobile and railway vehicle
JP7051566B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP2018101789A (en) Semiconductor switching element and manufacturing method for silicon carbide semiconductor device
JP6662695B2 (en) Method for manufacturing silicon carbide semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016520883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892547

Country of ref document: EP

Kind code of ref document: A1