WO2015174591A1 - High-density sulfonated multiblock polymer and electrochemical system comprising same - Google Patents
High-density sulfonated multiblock polymer and electrochemical system comprising same Download PDFInfo
- Publication number
- WO2015174591A1 WO2015174591A1 PCT/KR2014/010099 KR2014010099W WO2015174591A1 WO 2015174591 A1 WO2015174591 A1 WO 2015174591A1 KR 2014010099 W KR2014010099 W KR 2014010099W WO 2015174591 A1 WO2015174591 A1 WO 2015174591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solvent
- solution
- catalyst
- multiblock copolymer
- oligomer
- Prior art date
Links
- 0 *c1ccccc1 Chemical compound *c1ccccc1 0.000 description 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N c1ccccc1 Chemical compound c1ccccc1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/20—Polysulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/20—Polysulfones
- C08G75/23—Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G81/00—Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/06—Polysulfones; Polyethersulfones
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a high density sulfonated multiblock type polymer and an electrochemical system including the same.
- perfluorinated electrolyte membranes are very expensive (800 $ / m 2 ) due to complex manufacturing processes, despite the superior mechanical strength and electrochemical properties, and low glass transition temperatures due to fluorinated structures. It works as a disadvantage.
- hydrocarbon polymer electrolyte membrane shows a very high ion conductivity in the high humidity region, but shows a tendency of very low ion conductivity in the low humidity region.
- rate of water migration is slow due to the low phase separation between the hydrophilic and hydrophobic components containing sulfonic acid groups, and the concentration of protons dissociated is low due to the acidity of the sulfonic acid groups.
- a multiblock polymer having a hydrophilic block and a hydrophobic block has been synthesized to achieve high ionic conductivity.
- the chemical structure and ionicity of the hydrophilic block into which the sulfonic acid group is introduced play a decisive role in improving the ionic conductivity, and if possible, the development of a hydrophilic block having a high ion exchange capacity (Ion Exchange Capacity, IEC) is required.
- IEC Ion Exchange Capacity
- the present invention is to provide a sulfonic acid multiblock type polymer having a high density of the sulfonic acid group of the hydrophilic block has an improved ion conductivity, in particular a very high molecular weight, an electrochemical system including the same and a method for producing the same.
- One aspect of the invention is (A) dissolving hydrophobic oligomer in a first solvent to obtain a first solution, (B) dissolving hydrophilic oligomer in a second solvent to obtain a second solution, (C) agent It relates to a method for producing a multiblock copolymer comprising the step of contacting the first solution and the second solution.
- Another aspect of the invention relates to an electrolyte membrane for an electrochemical system comprising a multiblock copolymer prepared according to various embodiments of the invention.
- Another aspect of the invention relates to an electrochemical system comprising a multiblock copolymer prepared according to various embodiments of the invention.
- the method for producing a multiblock copolymer according to the present invention not only the molecular weight and ion exchange capacity and the yield of the copolymer can be improved, but also the molecular weight uniformity can be improved.
- the multiblock copolymer according to the present invention has improved proton ion conductivity under low-humidity conditions, and can obtain a very improved effect of proton ion conductivity in the full-humidity region compared with the conventional fluorinated commercial electrolyte membrane.
- Example 1 shows the GPC results of the multiblock copolymer prepared in Example 1a.
- Figure 2 shows the NMR results of the multiblock copolymer prepared in Example 1a.
- Figure 3 shows the GPC results of the multiblock copolymer prepared in Example 1b.
- Figure 4 shows the NMR results of the multiblock copolymer prepared in Example 1b.
- Figure 5 shows the humidity dependence of the proton conductivity measured at 80 °C.
- ⁇ and ⁇ are data of the multiblock copolymers prepared in Examples 1a and 1b, respectively, and ⁇ and ⁇ show data of Aquivion and NRE 212, which are commercially available polymers.
- One aspect of the invention is (A) dissolving hydrophobic oligomer in a first solvent to obtain a first solution, (B) dissolving hydrophilic oligomer in a second solvent to obtain a second solution, (C) agent It relates to a method for producing a multiblock copolymer comprising the step of contacting the first solution and the second solution.
- a block copolymer typically, in order to prepare a block copolymer, polymerization is carried out by adding a hydrophilic oligomer and a hydrophobic oligomer to the same solvent.
- the multiblock copolymer of the present invention is polymerized in the same solvent, the molecular weight is increased. There is a limit. Therefore, in the present invention, it was confirmed that the multiblock copolymer can be obtained at a high molecular weight by dissolving each other in different solvents as described above and contacting them with the above configuration.
- step (C) may be performed by adding a second solution to the first solution.
- the second solution in which the hydrophilic oligomer is dissolved in the first solution in which the hydrophobic oligomer is dissolved has an ion exchange capacity (IEC) value. This is because a largely increased multiblock copolymer can be synthesized.
- the dosing can be performed by dropwise addition.
- the amount of precipitated in the solution can be reduced, and the amount of unreacted oligomer can be reduced as compared with the case where the amount of unreacted oligomer can be increased, thereby increasing the obtainable polymer yield.
- the dosing can be performed by adding dropwise at the same time interval.
- a multiblock copolymer having a uniform molecular weight could be obtained by maintaining the same time interval of dropwise dropping.
- the first solvent may be selected from dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), DMF, NMP, diphenylsulfone, chlorobenzene and a mixture of two or more thereof.
- DMAc dimethylacetamide
- DMSO dimethyl sulfoxide
- NMP diphenylsulfone
- chlorobenzene chlorobenzene and a mixture of two or more thereof.
- DMAc dimethylacetamide
- DMAc dimethyl sulfoxide
- NMP diphenylsulfone
- chlorobenzene chlorobenzene
- the second solvent may be selected from dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), DMF, NMP, diphenylsulfone, chlorobenzene and a mixture of two or more thereof.
- DMAc dimethylacetamide
- DMSO dimethyl sulfoxide
- NMP diphenylsulfone
- chlorobenzene chlorobenzene and a mixture of two or more thereof.
- DMSO dimethyl sulfoxide
- a mixed solvent in which DMAc and DMSO are mixed at a volume ratio of 100: 0.5 to 5 is used as the first solvent, and a mixture of DMSO and DMac is mixed at a volume ratio of 100: 0.5 to 5 as the second solvent.
- Solvent is used.
- the molecular weight is greatly increased and the thermal and mechanical properties of the block copolymer are greatly improved.
- the hydrophobic oligomer has a structure of Formula 1
- the hydrophilic oligomer has a structure of Formula 2 or Formula 3
- the multiblock copolymer has a structure of Formula 4.
- P is one selected from H, K, Na, Si (CH 3 ) 3
- Q is one selected from F, Cl, and NO 2
- R is an inorganic cation selected from H, K, Li, Na, Rb, Cs or N + R 1 R 2 R 3 R 4 (ammonium), P + R 1 R 2 R 3 R 4 (phosphonium), N + NR 1 R 2 R 3 R 4 R 5 (imidazorium), NH + R 1 R 2 R 3 R 4 R 5 (pyridinium), pyrrolidium, sulfonium;
- X and Y are each a number in the range of 5-50; N is an integer from 2 to 50.
- R 1 , R 2 , R 3 , R 4 , and R 5 are the same as or different from each other, and each independently a C 1 to C 7 linear or branched alkyl group.
- alkyl include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl and the like.
- R 1 , R 2 , R 3 , R 4 are the same as or different from each other, and each independently a linear or branched aromatic.
- aromatics include, but are not limited to, benzyl, phenyl, biphenyl, and the like.
- R 1 , R 2 , R 3 , R 4 may be the same or different from each other, and each independently may contain a C 1 to C 7 linear or branched alkyl group and aromatic at the same time.
- the molecular weight and polydispersity index (PDI) can be improved, and it was confirmed that the inorganic cation is preferable.
- the step (A) may be carried out by further adding a catalyst to the first solvent, wherein the catalyst which may be used is potassium carbonate, NaOH, KOH, CsF and mixtures of two or more thereof. .
- the catalyst which may be used is potassium carbonate, NaOH, KOH, CsF and mixtures of two or more thereof.
- the step (A) may be carried out by further adding a catalyst to the second solvent, wherein the catalyst that may be used is potassium carbonate, NaOH, KOH, CsF and mixtures of two or more thereof. .
- the catalyst that may be used is potassium carbonate, NaOH, KOH, CsF and mixtures of two or more thereof.
- the molecular weight of the polymerized multiblock copolymer becomes more uniform and thus the polydipersity index , PDI) was significantly lowered.
- the dosage of the catalyst is preferably adjusted to 0.1 to 10 mmol per 10 mL of the first solvent.
- the catalyst input amount is less than the lower limit of the following range, even if the catalyst input amount is increased, there is no effect of increasing the molecular weight.
- the catalyst input amount is exceeded, the catalyst is increased within the above range because the molecular weight decreases. It is preferable to add.
- the molecular weight of the polymerized multiblock copolymer becomes more uniform and thus the polydispersity index ( polydipersity index, PDI) was found to be significantly lower.
- PDI polydipersity index
- calcium carbonate converts HF, a by-product of the reaction, into insoluble Ca 2 F, thereby inhibiting the decomposition reaction.
- potassium carbonate is preferably added in 5 to 100 times the amount of the catalyst in a molar ratio.
- Another aspect of the present invention relates to an electrolyte membrane for an electrochemical cell including a multiblock copolymer prepared according to various embodiments of the present invention.
- Another aspect of the invention relates to an electrochemical cell comprising a multiblock copolymer prepared according to various embodiments of the invention.
- electrochemical cells to which the present invention may be applied include, but are not limited to, a fuel cell, a battery, a redox flow battery, a direct methanol fuel cell, a metal / air rechargeable battery, and the like.
- the hydrophilic oligomer portion (hydrophilic segment) of the present invention has an extremely high hydrophilicity since it has a high density of sulfonic acid group concentration.
- hydrophilic and hydrophobic segment precursors are respectively purified and synthesized, and in particular, hydrophilic segment precursors are purified using an improved purification method such as dialysis.
- this improved purification method allows the synthesis of high molecular weight block copolymers.
- the high partial ion exchange capacity of the hydrophilic segment enables the synthesis of sulfonated multiblock polymers showing high ion conductivity.
- one embodiment of the present invention relates to a sulfonated polymer electrolyte showing a high ion conductivity and a method for manufacturing the same, and to produce a multiblock copolymer showing a high ion conductivity, a hydrophilic segment block having a very high concentration of sulfonic acid groups. Should be used.
- hydrophilic segments include sulfonated polysulfones, sulfonated polyether ketones, sulfonated poly (para-) phenylenes, sulfonated polyimides, sulfonated polybenzimidazoles, mainly as sulfonated polyether sulfones as shown in the examples. You can choose from.
- the molecular weight of the hydrophilic oligomer usable in the present invention may be 2,000 to 100,000 Da, has a very high ion exchange capacity, and is characterized by having a halogen terminal (-F, -Cl).
- the hydrophobic oligomer can be selected from polyether ketone, sulfonated polysulfone, sulfonated polyacetal, sulfonated poly (p-phenylene), sulfonated polyimide, sulfonated polybenzimidazole, etc. in addition to the structures shown in the examples.
- the use of partially fluorinated hydrophobic oligomers is also preferred and has a halogen terminal or a hydroxyl group terminal.
- Polymerization using sulfonated oligomers as precursors facilitates the control of ion exchange capacity and the synthesis of high molecular weight multiblock copolymers due to high purity.
- the precipitate thus obtained was completely dissolved in 100 mL of ultrapure water and dialyzed with a 1,000 kDa dialysis network.
- the salinity of the external aqueous solution was continuously measured during dialysis, and the external aqueous solution was continuously exchanged until the salinity no longer increased.
- the solution in the dialysis membrane was dried with a reduced pressure evaporator, and the resulting high ion conductivity hydrophilic precursor oligomer was dried completely through vacuum drying.
- the precipitate thus obtained was completely dissolved in 100 mL of ultrapure water and dialyzed with a 1,000 kDa dialysis network.
- the salinity of the external aqueous solution was continuously measured during dialysis, and the external aqueous solution was continuously exchanged until the salinity no longer increased.
- the solution in the dialysis membrane was dried with a reduced pressure evaporator, and the obtained hydrophilic precursor oligomer showing high ion conductivity was dried completely through vacuum drying.
- the obtained precipitate thus obtained was once more rinsed in methanol, filtered through a membrane filter to obtain a hydrophobic precursor oligomer, and then dried completely by vacuum drying.
- Example 1a In a 100 mL three-necked flask, a condenser connected to a cooling water and a mechanical stirrer were connected and purged with nitrogen.
- the hydrophilic precursor oligomer (0.1 mmol, 0.76 g) of the above-prepared Example 1a was dissolved in 2.5 mL of DMSO to obtain a hydrophilic oligomer solution.
- the hydrophobic precursor oligomer (0.1 mmol, 0.42 g of the above-prepared Example 1c) was dried. ) was dissolved in 1.5 mL of DMAc to prepare a hydrophobic oligomer solution.
- FIGS. 1 and 2 GPC results and NMR results of the multiblock copolymer thus prepared are shown in FIGS. 1 and 2, respectively.
- Figure 5 shows the humidity dependence of the proton conductivity measured at 80 °C.
- FIGS. 3 and 4 The GPC and NMR results of the multiblock copolymer thus prepared are shown in FIGS. 3 and 4, respectively.
- Figure 5 shows the humidity dependence of the proton conductivity measured at 80 °C.
- Example 1a the hydrophobic oligomer was first dissolved together with the catalyst in the three-necked flask, and the hydrophilic oligomer solution was slowly injected to increase the molecular weight without causing precipitation. Except, the experiment was conducted in the same manner as in Example 1a. As a result, the ion exchange capacity (IEC) was measured at 3.2 meq / g, it was confirmed that compared with Example 1a above.
- IEC ion exchange capacity
- the hydrophilic oligomer solution was dropped dropwise into the hydrophobic oligomer solution, but the polymerization was conducted in the same manner as in Example 2 except that the polymerization was performed by uniformly adding the injection interval within the range of 1 to 3 seconds. As a result, the dry mass of the finally obtained copolymer was measured to be 0.94 g, which was further increased to 0.83 g of Example 2.
- the hydrophilic oligomer solution was dropped drop by drop into the hydrophobic oligomer solution, but the polymerization was conducted in the same manner as in Example 3 except that the polymerization was performed by uniformly adding the input interval to 1 second.
- the polydispersity index (PDI) of the finally obtained copolymer was observed to be lower than that of Example 3, confirming that the obtained polymer molecular weight became more uniform.
- Example 4 The experiment was conducted in the same manner as in Example 4, except that calcium carbonate was further added in a ratio of 10 mmol per mmol of potassium carbonate to prepare a hydrophobic oligomeric solution. As a result, the number average molecular weight of the finally obtained copolymer was observed to be 193 kDa, confirming that the molecular weight increased compared with 151 kDa of Example 4.
- Example 4 The experiment was carried out in the same manner as in Example 4 except that calcium carbonate was further added in a ratio of 10 mmol per mmol of the solution to prepare a hydrophilic oligomer solution. As a result, the number average molecular weight of the finally obtained copolymer was observed to be 365 kDa, confirming that the molecular weight increased significantly compared with 151 kDa of Example 4.
- the reaction was monitored by GPC in 1 hour increments and maintained in the same state until reaching the desired molecular weight, and the reaction was terminated after about 24 hours. After the reaction was completed by dropping the solution dropwise in water to obtain a precipitate, and filtered with a membrane filter to obtain a precipitate only. The precipitate thus obtained was completely dried by vacuum drying. As a result, it was confirmed that the number average molecular weight of the final obtained copolymer was only about 10% level compared with Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Fuel Cell (AREA)
- Polyethers (AREA)
Abstract
The present invention relates to a method for preparing a multiblock copolymer, the method comprising the steps of: (A) dissolving a hydrophobic oligomer in a first solvent to obtain a first solution; (B) dissolving a hydrophilic oligomer in a second solvent to obtain a second solution; and (C) bringing the first solution and the second solution into contact with each other, to an electrolyte membrane for an electrochemical battery, containing the multiblock copolymer thus prepared, and to an electrochemical battery comprising the same. The method for preparing a multiblock copolymer according to the present invention has advantages of: increasing the molecular weight, ion-exchange capacity, and yield of the copolymer; improving the uniformity of the molecular weight; having improved proton ion conductivity under a low-humidity condition; and obtaining very improved proton ion conductivity in all humidity regions, compared with the conventional commercial fluorinated electrolyte membrane.
Description
본 발명은 고밀도 술폰산화 멀티블록형 고분자 및 이를 포함하는 전기화학 시스템에 관한 것이다.The present invention relates to a high density sulfonated multiblock type polymer and an electrochemical system including the same.
연료전지의 핵심 부품인 전해질막의 장기 성능 향상을 위한 노력들이 최근에 많이 진행 중이다. 가격 경쟁력을 갖추는 동시에 성능 향상을 위해서는 저습도에서의 높은 이온전도 특성이 매우 중요한 요소이다.Efforts have recently been made to improve the long-term performance of electrolyte membranes, a key component of fuel cells. High ionic conductivity at low humidity is a very important factor for improving price performance and improving performance.
여러 타입의 전해질막 중에서 과불소화 전해질막은 기계적 강도 및 전기화학적 특성의 우수성에도 불구하고, 복잡한 제조공정으로 인해 막의 가격이 매우 고가이며(800 $/m2), 불소화 구조로 인해 낮은 유리 전이 온도가 단점으로 작용한다.Of the various types of electrolyte membranes, perfluorinated electrolyte membranes are very expensive (800 $ / m 2 ) due to complex manufacturing processes, despite the superior mechanical strength and electrochemical properties, and low glass transition temperatures due to fluorinated structures. It works as a disadvantage.
이러한 과불소화 전해질막의 대안으로, 탄화수소 고분자의 개발이 활발히 이루어져 왔는데, 탄화수소 고분자 전해질막은 고습도 영역에서 매우 높은 이온전도도를 나타내지만, 저습도 영역에서는 이온전도도가 매우 떨어지는 경향을 보여주고 있다. 이는 과불소화 전해질막에 비하여 술폰산기 함유 친수성과 소수성 성분 간의 낮은 상 분리로 인하여 물의 이동 속도가 느리고, 술폰산기의 산성도가 낮아 해리되는 양성자의 농도가 낮은 것으로 알려져 있다. 이러한 문제점을 극복하기 위해서 최근에는 친수성 블록과 소수성 블록을 가지는 멀티블록 고분자를 합성하여 높은 이온전도도를 꾀하고 있다.As an alternative to the perfluorinated electrolyte membrane, the development of a hydrocarbon polymer has been actively carried out. The hydrocarbon polymer electrolyte membrane shows a very high ion conductivity in the high humidity region, but shows a tendency of very low ion conductivity in the low humidity region. Compared to the perfluorinated electrolyte membrane, it is known that the rate of water migration is slow due to the low phase separation between the hydrophilic and hydrophobic components containing sulfonic acid groups, and the concentration of protons dissociated is low due to the acidity of the sulfonic acid groups. In order to overcome this problem, recently, a multiblock polymer having a hydrophilic block and a hydrophobic block has been synthesized to achieve high ionic conductivity.
또한, 가격경쟁력을 갖추는 동시에 연료전지의 성능 향상을 위해서는 저습도에서 높은 이온전도 특성을 보이도록 하는 것이 중요하다. 최근 상용화된 불소계 고분자인 나피온과 경쟁할 수 있는 (멀티)블록형 탄화수소 고분자의 개발이 활발히 이루어지고 있는데, 이러한 멀티블록형 고분자는 대체로 친수성 블록과 소수성 블록이 교대로 연결되어 있는 구조로 이루어진다.In addition, it is important to have high ion conductivity at low humidity to improve the performance of the fuel cell while maintaining the price competitiveness. Recently, development of (multi) block hydrocarbon polymers capable of competing with Nafion, a commercially available fluorine polymer, has been actively conducted. Such a multiblock polymer has a structure in which hydrophilic blocks and hydrophobic blocks are alternately connected.
이 중에, 술폰산기가 도입된 친수성 블록의 화학적 구조 및 이온성이 이온전도도를 향상시키는데 결정적인 역할을 하는데, 가능하면 높은 이온교환용량(Ion Exchange Capacity, IEC)을 가지는 친수성 블록의 개발이 요구된다.Among them, the chemical structure and ionicity of the hydrophilic block into which the sulfonic acid group is introduced play a decisive role in improving the ionic conductivity, and if possible, the development of a hydrophilic block having a high ion exchange capacity (Ion Exchange Capacity, IEC) is required.
이러한 매우 높은 IEC를 가지는 친수성블록을 사용하는 블록고분자를 합성하는 경우에는 친수성 블록의 용해도가 매우 떨어져서 고분자량의 블록고분자를 합성하는 것이 문제점으로 지적되어왔다. 현재까지 매우 높은 IEC를 함유하는 블록고분자의 성공은 보고되지 않았으며, 본 특허에서는 친수성 올리고머의 용해도를 상승시키는 방법을 도입하여 고분자량의 블록고분자를 얻어내는 데 성공하였다.In the case of synthesizing block polymers using a hydrophilic block having such a very high IEC, it has been pointed out that synthesis of high molecular weight block polymers due to the poor solubility of the hydrophilic block. To date, no success of block polymers containing very high IEC has been reported. In this patent, a method of increasing the solubility of hydrophilic oligomers has been introduced to obtain a high molecular weight block polymer.
따라서, 본 발명은 친수성블록의 술폰산기의 밀도가 매우 높아서 향상된 이온전도도를 가지며, 특히 분자량이 매우 높은 술폰산화 멀티블록형 고분자, 이를 포함하는 전기화학 시스템 및 이의 제조방법을 제공하고자 한다. Accordingly, the present invention is to provide a sulfonic acid multiblock type polymer having a high density of the sulfonic acid group of the hydrophilic block has an improved ion conductivity, in particular a very high molecular weight, an electrochemical system including the same and a method for producing the same.
본 발명의 일 측면은 (A) 제1 용매에 소수성 올리고머를 용해시켜 제1 용액을 수득하는 단계, (B) 제2 용매에 친수성 올리고머를 용해시켜 제2 용액을 수득하는 단계, (C) 제1 용액과 제2 용액을 접촉시키는 단계를 포함하는 멀티블록 공중합체 제조방법에 관한 것이다.One aspect of the invention is (A) dissolving hydrophobic oligomer in a first solvent to obtain a first solution, (B) dissolving hydrophilic oligomer in a second solvent to obtain a second solution, (C) agent It relates to a method for producing a multiblock copolymer comprising the step of contacting the first solution and the second solution.
본 발명의 다른 측면은 본 발명의 여러 구현예에 따라 제조된 멀티블록 공중합체를 포함하는 전기화학 시스템용 전해질막에 관한 것이다.Another aspect of the invention relates to an electrolyte membrane for an electrochemical system comprising a multiblock copolymer prepared according to various embodiments of the invention.
본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따라 제조된 멀티블록 공중합체를 포함하는 전기화학 시스템에 관한 것이다.Another aspect of the invention relates to an electrochemical system comprising a multiblock copolymer prepared according to various embodiments of the invention.
본 발명에 따른 멀티블록 공중합체의 제조방법에 따르면, 공중합체의 분자량과 이온교환능력 및 수득 수율을 향상시킬 수 있을 뿐만 아니라, 분자량 균일성도 높일 수 있다.According to the method for producing a multiblock copolymer according to the present invention, not only the molecular weight and ion exchange capacity and the yield of the copolymer can be improved, but also the molecular weight uniformity can be improved.
또한, 본 발명에 따른 멀티블록 공중합체는 저가습 조건 하에서 향상된 양성자 이온전도도를 가지게 되며, 종래 불소화 상용(commercial) 전해질막과 비교하여 전습도 영역에서 양성자 이온전도도가 매우 향상된 효과를 얻을 수 있다.In addition, the multiblock copolymer according to the present invention has improved proton ion conductivity under low-humidity conditions, and can obtain a very improved effect of proton ion conductivity in the full-humidity region compared with the conventional fluorinated commercial electrolyte membrane.
도 1은 실시예 1a에서 제조한 멀티블록 공중합체의 GPC 결과를 보여준다.1 shows the GPC results of the multiblock copolymer prepared in Example 1a.
도 2는 실시예 1a에서 제조한 멀티블록 공중합체의 NMR 결과를 보여준다.Figure 2 shows the NMR results of the multiblock copolymer prepared in Example 1a.
도 3은 실시예 1b에서 제조한 멀티블록 공중합체의 GPC 결과를 보여준다.Figure 3 shows the GPC results of the multiblock copolymer prepared in Example 1b.
도 4는 실시예 1b에서 제조한 멀티블록 공중합체의 NMR 결과를 보여준다.Figure 4 shows the NMR results of the multiblock copolymer prepared in Example 1b.
도 5는 80 ℃에서 측정한 양성자 전도도의 습도 의존성를 보여주고 있다. 여기서, △와 □는 각각 실시예 1a와 1b에서 제조한 멀티블록 공중합체의 데이터이고, ○와 ▽는 상용으로 구매한 고분자인 Aquivion와 NRE 212의 데이터를 보여준다.Figure 5 shows the humidity dependence of the proton conductivity measured at 80 ℃. Here, Δ and □ are data of the multiblock copolymers prepared in Examples 1a and 1b, respectively, and ○ and ▽ show data of Aquivion and NRE 212, which are commercially available polymers.
본 발명의 일 측면은 (A) 제1 용매에 소수성 올리고머를 용해시켜 제1 용액을 수득하는 단계, (B) 제2 용매에 친수성 올리고머를 용해시켜 제2 용액을 수득하는 단계, (C) 제1 용액과 제2 용액을 접촉시키는 단계를 포함하는 멀티블록 공중합체 제조방법에 관한 것이다.One aspect of the invention is (A) dissolving hydrophobic oligomer in a first solvent to obtain a first solution, (B) dissolving hydrophilic oligomer in a second solvent to obtain a second solution, (C) agent It relates to a method for producing a multiblock copolymer comprising the step of contacting the first solution and the second solution.
통상적으로, 블록 공중합체를 제조하기 위해서 친수성 올리고머와 소수성 올리고머를 동일한 용매에 투입하여 중합을 수행하는데, 본 발명의 멀티블록 공중합체를 이와 같이 동일한 용매에서 중합을 수행하는 경우에는 분자량을 높이는 데에 한계가 있다. 따라서, 본 발명에서는 이러한 한계를 극복하기 위한 구성으로 위와 같이 서로 다른 용매에 각각 용해시켜 이를 접촉하게 함으로써 멀티블록 공중합체를 높은 분자량으로 얻을 수 있음을 확인하였다.Typically, in order to prepare a block copolymer, polymerization is carried out by adding a hydrophilic oligomer and a hydrophobic oligomer to the same solvent. When the multiblock copolymer of the present invention is polymerized in the same solvent, the molecular weight is increased. There is a limit. Therefore, in the present invention, it was confirmed that the multiblock copolymer can be obtained at a high molecular weight by dissolving each other in different solvents as described above and contacting them with the above configuration.
일 구현예에 따르면, 상기 (C) 단계는 제1 용액에 제2 용액을 투입함으로써 수행될 수 있다. 이는, 제1 용액과 제2 용액이 서로 상 분리가 일어나는 경우에, 소수성 올리고머가 용해되어 있는 제1 용액에 친수성 올리고머가 용해되어 있는 제2 용액을 투입하는 것이, 이온교환용량(IEC) 값이 크게 증가한 멀티블록 공중합체를 합성할 수 있기 때문이다.According to one embodiment, step (C) may be performed by adding a second solution to the first solution. In the case where phase separation occurs between the first solution and the second solution, the second solution in which the hydrophilic oligomer is dissolved in the first solution in which the hydrophobic oligomer is dissolved has an ion exchange capacity (IEC) value. This is because a largely increased multiblock copolymer can be synthesized.
다른 구현예에 따르면, 위 투입은 한 방울씩(dropwise) 첨가함으로써 수행될 수 있다. 이와 같이, 한 방울씩 투입함으로써 용액 내 침전해버리는 양을 줄일 수 있어, 그렇지 않은 경우에 비하여 미반응 올리고머의 양을 줄일 수 있어 수득 가능한 고분자 수율을 높일 수 있음을 확인하였다.According to another embodiment, the dosing can be performed by dropwise addition. As such, it was confirmed that by dropwise addition, the amount of precipitated in the solution can be reduced, and the amount of unreacted oligomer can be reduced as compared with the case where the amount of unreacted oligomer can be increased, thereby increasing the obtainable polymer yield.
또 다른 구현예에 따르면, 위 투입은 동일한 시간 간격으로 한 방울씩 첨가함으로써 수행될 수 있다. 이와 같이, 한 방울씩 투입하는 시간 간격을 동일하게 유지함으로써, 균일한 분자량의 멀티블록 공중합체를 얻을 수 있음을 확인하였다.According to another embodiment, the dosing can be performed by adding dropwise at the same time interval. As such, it was confirmed that a multiblock copolymer having a uniform molecular weight could be obtained by maintaining the same time interval of dropwise dropping.
또 다른 구현예에 따르면, 상기 제1 용매는 디메틸아세트아미드(DMAc), 디메틸 설폭사이드(DMSO), DMF, NMP, 디페닐술폰, 클로로벤젠 및 이들 2종 이상의 혼합액 중에서 선택될 수 있다. 이 중에서, 디메틸아세트아미드(DMAc)를 사용하는 것이 소수성 올리고머를 용해시키는 측면에서 다른 용매에 비해 유리하다.According to another embodiment, the first solvent may be selected from dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), DMF, NMP, diphenylsulfone, chlorobenzene and a mixture of two or more thereof. Of these, the use of dimethylacetamide (DMAc) is advantageous over other solvents in terms of dissolving hydrophobic oligomers.
또 다른 구현예에 따르면, 상기 제2 용매는 디메틸아세트아미드(DMAc), 디메틸 설폭사이드(DMSO), DMF, NMP, 디페닐술폰, 클로로벤젠 및 이들 2종 이상의 혼합액 중에서 선택될 수 있다. 이 중에서, 디메틸설폭사이드(DMSO)를 사용하는 것이 친수성 올리고머를 용해시키는 측면에서 다른 용매에 비해 유리하다.According to another embodiment, the second solvent may be selected from dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), DMF, NMP, diphenylsulfone, chlorobenzene and a mixture of two or more thereof. Of these, the use of dimethyl sulfoxide (DMSO) is advantageous over other solvents in terms of dissolving hydrophilic oligomers.
또 다른 구현예에 따르면, 상기 제1 용매로 DMAc와 DMSO를 부피비 100 : 0.5 내지 5로 혼합한 혼합 용매를 사용하고, 상기 제2 용매로 DMSO와 DMac를 부피비 100 : 0.5 내지 5로 혼합한 혼합 용매를 사용한다. 이러한 혼합 용매를 사용하는 경우에, 각각 단독 용매를 사용하는 경우에 비하여, 분자량이 크게 증가하여 블록 공중합체의 열적 특성과 기계적 특성이 크게 향상됨을 확인하였다.According to another embodiment, a mixed solvent in which DMAc and DMSO are mixed at a volume ratio of 100: 0.5 to 5 is used as the first solvent, and a mixture of DMSO and DMac is mixed at a volume ratio of 100: 0.5 to 5 as the second solvent. Solvent is used. In the case of using such a mixed solvent, compared with the case of using a single solvent, it was confirmed that the molecular weight is greatly increased and the thermal and mechanical properties of the block copolymer are greatly improved.
또 다른 구현예에 따르면, 상기 소수성 올리고머는 화학식 1의 구조를 가지고, 상기 친수성 올리고머는 화학식 2 또는 화학식 3의 구조를 가지며, 상기 멀티블록 공중합체는 화학식 4의 구조를 가진다.According to another embodiment, the hydrophobic oligomer has a structure of Formula 1, the hydrophilic oligomer has a structure of Formula 2 or Formula 3, the multiblock copolymer has a structure of Formula 4.
[화학식 1][Formula 1]
[화학식 2][Formula 2]
[화학식 3][Formula 3]
이때, 상기 P는 H, K, Na, Si(CH3)3 중에서 선택된 1종이고; 상기 Q는 F, Cl, NO2 중에서 선택된 1종이며; 상기 R은 H, K, Li, Na, Rb, Cs 중에서 선택된 무기 양이온이거나 또는 N+R1R2R3R4 (암모늄), P+R1R2R3R4 (포스포니움), N+NR1R2R3R4R5 (이미다조리움), NH+R1R2R3R4R5 (피리디니움), 피롤리디움, 설포니움 중에서 선택된 유기 양이온이고; 상기 X와 Y는 각각 5 내지 50 범위 내의 수이고; 상기 n은 2 내지 50의 정수이다.In this case, P is one selected from H, K, Na, Si (CH 3 ) 3 ; Q is one selected from F, Cl, and NO 2 ; R is an inorganic cation selected from H, K, Li, Na, Rb, Cs or N + R 1 R 2 R 3 R 4 (ammonium), P + R 1 R 2 R 3 R 4 (phosphonium), N + NR 1 R 2 R 3 R 4 R 5 (imidazorium), NH + R 1 R 2 R 3 R 4 R 5 (pyridinium), pyrrolidium, sulfonium; X and Y are each a number in the range of 5-50; N is an integer from 2 to 50.
위 R1, R2, R3, R4, R5는 서로 동일하거나 상이하고, 각각 독립적으로 C1 내지 C7의 직쇄 또는 가지형 알킬기이다. 이러한 알킬의 예에는 메틸, 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, sec-부틸, tert-부틸 등이 포함되나, 이에 한정되지 않는다.R 1 , R 2 , R 3 , R 4 , and R 5 are the same as or different from each other, and each independently a C 1 to C 7 linear or branched alkyl group. Examples of such alkyl include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl and the like.
또한, 위 R1, R2, R3, R4는 서로 동일하거나 상이하고, 각각 독립적으로 직쇄 또는 가지형 방향족이다. 이러한 방향족의 예에는 벤질, 페닐, 비페닐 등이 포함되나, 이에 한정되지 않는다.In addition, the above R 1 , R 2 , R 3 , R 4 are the same as or different from each other, and each independently a linear or branched aromatic. Examples of such aromatics include, but are not limited to, benzyl, phenyl, biphenyl, and the like.
또한, 위 R1, R2, R3, R4는 서로 동일하거나 상이하고, 각각 독립적으로 C1 내지 C7의 직쇄 또는 가지형 알킬기와 방향족을 동시에 함유하는 경우도 가능하다.In addition, the above R 1 , R 2 , R 3 , R 4 may be the same or different from each other, and each independently may contain a C 1 to C 7 linear or branched alkyl group and aromatic at the same time.
특히, 위 R을 유기 양이온으로 하는 경우 분자량과 다중 분산 지수(polydispersity index, PDI)를 향상시킬 수 있어, 무기 양이온보다 바람직함을 확인하였다.In particular, when using R as the organic cation, the molecular weight and polydispersity index (PDI) can be improved, and it was confirmed that the inorganic cation is preferable.
위에서 언급한 바와 같이, 소수성 올리고머와 친수성 올리고머를 중합함에 있어서, 동일한 용매에서 중합하는 경우에 비해 서로 다른 용매에 각각 용해되어 중합을 수행하는 경우, 더욱 높은 분자량을 얻을 수 있게 된다.As mentioned above, in the polymerization of the hydrophobic oligomer and the hydrophilic oligomer, higher molecular weights can be obtained when the polymerization is performed by dissolving in different solvents, respectively, as compared with polymerization in the same solvent.
특히 위와 같은 구조의 소수성 올리고머와 친수성 올리고머롤 통해 위 구조의 멀티블록 공중합체를 제조하는 경우에는, 이와 같이 높은 분자량을 얻을 수 있다는 점 외에도, 한 방울씩 투입하는 시간 간격을 굳이 동일하게 유지하지 않더라도 균일한 분자량의 멀티블록 공중합체를 얻을 수 있는 또 다른 장점이 있음을 추가로 확인하였다.In particular, in the case of preparing the multi-block copolymer of the above structure through the hydrophobic oligomer and hydrophilic oligomer of the structure as described above, in addition to the high molecular weight can be obtained, even if the time interval of drop-by-dropping does not necessarily keep the same It was further confirmed that there is another advantage of obtaining a multiblock copolymer of uniform molecular weight.
또 다른 구현예에 따르면, 상기 제1 용매에 촉매를 추가로 투입함으로써 상기 (A) 단계를 수행할 수 있고, 여기서 사용될 수 있는 촉매는 탄산칼륨, NaOH, KOH, CsF 및 이들 2종 이상의 혼합물이다. 위와 같이, 촉매를 추가로 투입하여 소수성 올리고머 용액을 제조함으로써, 그렇지 않은 경우에 비하여 분자량을 더욱 증가시킬 수 있다는 점을 확인하였다.According to another embodiment, the step (A) may be carried out by further adding a catalyst to the first solvent, wherein the catalyst which may be used is potassium carbonate, NaOH, KOH, CsF and mixtures of two or more thereof. . As described above, by further adding a catalyst to prepare a hydrophobic oligomer solution, it was confirmed that the molecular weight can be further increased compared to the other case.
또 다른 구현예에 따르면, 상기 제2 용매에 촉매를 추가로 투입함으로써 상기 (A) 단계를 수행할 수 있고, 여기서 사용될 수 있는 촉매는 탄산칼륨, NaOH, KOH, CsF 및 이들 2종 이상의 혼합물이다. 위와 같이, 촉매를 추가로 투입하여 친수성 올리고머 용액을 제조함으로써, 그렇지 않은 경우에 비하여 분자량을 더욱 증가시킬 수 있다는 점을 확인하였다.According to another embodiment, the step (A) may be carried out by further adding a catalyst to the second solvent, wherein the catalyst that may be used is potassium carbonate, NaOH, KOH, CsF and mixtures of two or more thereof. . As described above, by further adding a catalyst to prepare a hydrophilic oligomer solution, it was confirmed that the molecular weight can be further increased compared to the case.
특히, 친수성 올리고머와 소수성 올리고머를 제조할 때 모두 위 촉매를 사용하는 경우에는, 어느 한 경우에만 촉매를 사용하는 경우와는 달리, 중합된 멀티블록 공중합의 분자량이 더욱 균일해져 다분산지수(polydipersity index, PDI)가 크게 낮아짐을 확인하였다.In particular, when the above catalyst is used to prepare both the hydrophilic oligomer and the hydrophobic oligomer, unlike the case where the catalyst is used in only one case, the molecular weight of the polymerized multiblock copolymer becomes more uniform and thus the polydipersity index , PDI) was significantly lowered.
또 다른 구현예에 따르면, 상기 촉매의 투입량은 상기 제1 용매 10 mL 당 0.1 내지 10 mmol로 조절하는 것이 바람직하다. 상기 촉매 투입량이 하기 범위의 하한값 미만인 경우에는 촉매 투입량을 늘리더라도 분자량 증가 효과가 없고, 상기 범위의 상한값을 초과하는 경우에는 촉매 투입량을 늘리면 오히려 분자량이 감소하는 효과를 보이므로, 위 범위 내로 촉매를 투입하는 것이 바람직하다.According to another embodiment, the dosage of the catalyst is preferably adjusted to 0.1 to 10 mmol per 10 mL of the first solvent. When the catalyst input amount is less than the lower limit of the following range, even if the catalyst input amount is increased, there is no effect of increasing the molecular weight. When the catalyst input amount is exceeded, the catalyst is increased within the above range because the molecular weight decreases. It is preferable to add.
또 다른 구현예에 따르면, 친수성 올리고머와 소수성 올리고머로부터 블록 공중합체를 제조할 때 위 촉매에 과량의 탄산칼슘을 추가하여 사용하는 경우에는, 중합된 멀티블록 공중합의 분자량이 더욱 균일해져 다분산지수(polydipersity index, PDI)가 크게 낮아짐을 확인하였다. 이는 탄산칼슘이 반응 중의 부산물인 HF를 불용인 Ca2F으로 변환시켜 분해 반응을 억제하는 효과가 있기 때문이다. 이때 탄산칼륨은 몰비로 촉매량의 5배 내지 100배로 넣는 것이 바람직하다.According to another embodiment, when an excess calcium carbonate is added to the above catalyst when preparing a block copolymer from hydrophilic oligomer and hydrophobic oligomer, the molecular weight of the polymerized multiblock copolymer becomes more uniform and thus the polydispersity index ( polydipersity index, PDI) was found to be significantly lower. This is because calcium carbonate converts HF, a by-product of the reaction, into insoluble Ca 2 F, thereby inhibiting the decomposition reaction. At this time, potassium carbonate is preferably added in 5 to 100 times the amount of the catalyst in a molar ratio.
본 발명의 다른 측면은 본 발명의 여러 구현예에 따라 제조된 멀티블록 공중합체를 포함하는 전기화학 전지용 전해질막에 관한 것이다.Another aspect of the present invention relates to an electrolyte membrane for an electrochemical cell including a multiblock copolymer prepared according to various embodiments of the present invention.
본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따라 제조된 멀티블록 공중합체를 포함하는 전기화학 전지에 관한 것이다.Another aspect of the invention relates to an electrochemical cell comprising a multiblock copolymer prepared according to various embodiments of the invention.
본 발명이 적용될 수 있는 전기화학 전지의 예에는 연료전지, 배터리, 레독스 플로우 배터리(redox flow battery), 직접 메탄올 연료전지, 금속/공기 재충전 전지 등을 들 수 있으나, 이에 한정되지는 않는다.Examples of electrochemical cells to which the present invention may be applied include, but are not limited to, a fuel cell, a battery, a redox flow battery, a direct methanol fuel cell, a metal / air rechargeable battery, and the like.
이하에서는 본 발명의 여러 구현예에 관해 더욱 상세히 설명한다.Hereinafter, various embodiments of the present invention will be described in more detail.
본 발명의 친수성 올리고머 부분(친수성 세그먼트)은 고밀도의 술폰산기 농도를 가지므로 극도로 높은 친수성을 가진다.The hydrophilic oligomer portion (hydrophilic segment) of the present invention has an extremely high hydrophilicity since it has a high density of sulfonic acid group concentration.
이와 같이 극도로 높은 친수성으로 인해서, 친수성 및 소수성 세그먼트 전구체를 각각 정제하여 합성하고, 특히 친수성세그먼트 전구체는 투석 등 향상된 정제방법을 이용하여 정제하게 된다. 또한, 이렇게 향상된 정제 방법으로 인해 높은 분자량의 블록공중합체의 합성이 가능하다.Due to such extremely high hydrophilicity, hydrophilic and hydrophobic segment precursors are respectively purified and synthesized, and in particular, hydrophilic segment precursors are purified using an improved purification method such as dialysis. In addition, this improved purification method allows the synthesis of high molecular weight block copolymers.
또한, 친수성 세그먼트의 높은 부분 이온교환능력으로 인해 높은 이온전도성을 보이는 술폰산화 멀티블록 고분자의 합성이 가능하게 된다.In addition, the high partial ion exchange capacity of the hydrophilic segment enables the synthesis of sulfonated multiblock polymers showing high ion conductivity.
이를 통해, 저가습 조건 하에서 향상된 양성자 이온전도도를 가지게 되고, 기존의 불소화 상용 전해질막에 비해 전습도 영역에서 더욱 우수한 양성자 이온전도도를 보이게 된다.As a result, it has an improved proton ion conductivity under low-humidity conditions, and shows better proton ion conductivity in the entire humidity range than the conventional fluorinated commercial electrolyte membrane.
즉, 본 발명의 일 구현예는 높은 이온전도성을 보이는 술폰산화된 고분자 전해질 및 그 제조방법에 관한 것이고, 높은 이온전도성을 보이는 멀티블록 공중합체를 제조하기 위해서는 술폰산기의 농도가 매우 높은 친수성 세그먼트 블록을 사용해야 한다.That is, one embodiment of the present invention relates to a sulfonated polymer electrolyte showing a high ion conductivity and a method for manufacturing the same, and to produce a multiblock copolymer showing a high ion conductivity, a hydrophilic segment block having a very high concentration of sulfonic acid groups. Should be used.
이러한 친수성 세그먼트는 실시예에 제시된 바와 같이 술폰산화 폴리에테르 술폰을 중심으로 술폰산화 폴리술폰, 술폰산화 폴리에테르 키톤, 술폰산화 폴리(파라-)페닐렌, 술폰산화 폴리이미드, 술폰산화 폴리벤지미다졸 등에서 선택이 가능하다.These hydrophilic segments include sulfonated polysulfones, sulfonated polyether ketones, sulfonated poly (para-) phenylenes, sulfonated polyimides, sulfonated polybenzimidazoles, mainly as sulfonated polyether sulfones as shown in the examples. You can choose from.
또한, 본 발명에서 사용 가능한 친수성 올리고머의 분자량은 2,000 내지 100,000 Da일 수 있고, 매우 높은 이온교환용량을 가지며, 할로겐 말단(-F, -Cl)을 가지는 특징이 있다.In addition, the molecular weight of the hydrophilic oligomer usable in the present invention may be 2,000 to 100,000 Da, has a very high ion exchange capacity, and is characterized by having a halogen terminal (-F, -Cl).
한편, 소수성 올리고머는 실시예에 제시된 구조 외에도 폴리에테르케톤, 술폰산화 폴리술폰, 술폰산화 폴리아세탈, 술폰산화 폴리(p-페닐렌), 술폰산화 폴리이미드, 술폰산화 폴리벤지미다졸 등에서 선택이 가능하고, 또는 부분 불소화된 소수성 올리고머의 사용도 바람직하며, 할로겐 말단 또는 히드록실기 말단을 가진다.On the other hand, the hydrophobic oligomer can be selected from polyether ketone, sulfonated polysulfone, sulfonated polyacetal, sulfonated poly (p-phenylene), sulfonated polyimide, sulfonated polybenzimidazole, etc. in addition to the structures shown in the examples. In addition, the use of partially fluorinated hydrophobic oligomers is also preferred and has a halogen terminal or a hydroxyl group terminal.
술폰산화된 올리고머를 전구체로 사용하여 중합함으로써 이온교환용량 조절이 용이하고 고순도로 인해 고분자량의 멀티블록 공중합체의 합성이 가능하다는 장점이 있다.Polymerization using sulfonated oligomers as precursors facilitates the control of ion exchange capacity and the synthesis of high molecular weight multiblock copolymers due to high purity.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백하다.Hereinafter, the present invention will be described in more detail with reference to examples and the like, but the scope and contents of the present invention are not limited or interpreted by the following examples. Moreover, it is clear that a person skilled in the art can easily carry out the present invention, in which no experimental results are specifically presented, based on the disclosure of the present invention including the following examples.
실시예Example
제조예 1a: 고이온전도성 친수성 전구체 올리고머의 합성 (1)Preparation Example 1a: Synthesis of High Ion Conductive Hydrophilic Precursor Oligomer (1)
100 mL 삼구 플라스크에 냉각수가 연결된 콘덴서와 미케니컬 스터러를 연결하고 질소를 퍼징하였다. 반응 전에 미리 건조시킨 sodium 3,3`-disulfonated-4,4`-difluorodiphenyl sulfone (8.0 mmol, 3.67 g), potassium hydroquinone sulfonate (7.3 mmol, 1.66 g), potassium carbonate (8.7 mmol, 1.21 g), DMSO 16 mL를 상기의 삼구 플라스크에 넣고 130 ℃에서 반응시켰다. 1 시간 단위로 GPC로 모니터링하며 원하는 분자량으로 오를 때까지 같은 상태로 유지하고 약 24 시간 후 반응을 종료하였다.In a 100 mL three-necked flask, a condenser connected to a cooling water and a mechanical stirrer were connected and purged with nitrogen. Pre-dried sodium 3,3`-disulfonated-4,4`-difluorodiphenyl sulfone (8.0 mmol, 3.67 g), potassium hydroquinone sulfonate (7.3 mmol, 1.66 g), potassium carbonate (8.7 mmol, 1.21 g), DMSO 16 mL was added to the above three-neck flask and reacted at 130 ° C. The reaction was monitored by GPC in 1 hour increments and maintained in the same state until reaching the desired molecular weight, and the reaction was terminated after about 24 hours.
위 반응이 종료된 용액에 세라이트를 10 g 첨가하여 1 시간 동안 교반시켰다. 이 용액을 멤브레인 필터로 투과 정제함으로써 침전물을 제거한 용액을 수득하였다. 이 용액을 500 mL 이소프로필알코올에 한 방울씩 떨어뜨려 침전을 얻어낸 후, 멤브레인 필터로 필터링하여 침전물인 친수성 전구체 올리고머를 얻었다.10 g of celite was added to the solution to which the reaction was completed, followed by stirring for 1 hour. The solution was purified by permeation with a membrane filter to obtain a solution from which the precipitate was removed. This solution was dropped dropwise into 500 mL isopropyl alcohol to obtain a precipitate, and then filtered through a membrane filter to obtain a hydrophilic precursor oligomer as a precipitate.
이렇게 얻어진 침전물을 100 mL의 초순수에 완전히 용해시켜 1,000 kDa 투석망으로 투석을 실시하였다. 투석 시 외부 수용액의 염도를 지속적으로 측정하여 염도가 더 이상 증가하지 않을 때까지 외부 수용액을 지속적으로 교환해주었다. 외부 수용액의 염도가 더 이상 증가하지 않으면 투석 막내의 용액을 감압 증발기로 건조시켰고, 얻어진 높은 이온전도성을 보이는 친수성 전구체 올리고머를 진공 건조를 통해 완전히 건조시켰다.The precipitate thus obtained was completely dissolved in 100 mL of ultrapure water and dialyzed with a 1,000 kDa dialysis network. The salinity of the external aqueous solution was continuously measured during dialysis, and the external aqueous solution was continuously exchanged until the salinity no longer increased. When the salinity of the external aqueous solution no longer increased, the solution in the dialysis membrane was dried with a reduced pressure evaporator, and the resulting high ion conductivity hydrophilic precursor oligomer was dried completely through vacuum drying.
제조예 1b: 고이온전도성 친수성 전구체 올리고머의 합성 (2)Preparation Example 1b: Synthesis of High Ion Conductive Hydrophilic Precursor Oligomer (2)
100 mL 삼구 플라스크에 냉각수가 연결된 콘덴서와 미케니컬 스터러를 연결하고 질소를 퍼징하였다. 반응 전에 미리 건조시킨 sodium 3,3`-disulfonated-4,4`-difluorodiphenyl sulfone (3.1 mmol, 1.41 g), disodium 3,6-dihydroxynaphthalene-2,7-disulphonate (2.8 mmol, 1.02 g), potassium carbonate (3.4 mmol, 0.47 g), DMSO 6 mL를 상기의 삼구 플라스크에 넣고 130 ℃에서 반응시켰다. 1 시간 단위로 GPC로 모니터링하며 원하는 분자량으로 오를 때까지 같은 상태로 유지하고 약 24 시간 후 반응을 종료하였다.In a 100 mL three-necked flask, a condenser connected to a cooling water and a mechanical stirrer were connected and purged with nitrogen. Pre-dried sodium 3,3`-disulfonated-4,4`-difluorodiphenyl sulfone (3.1 mmol, 1.41 g), disodium 3,6-dihydroxynaphthalene-2,7-disulphonate (2.8 mmol, 1.02 g), potassium carbonate (3.4 mmol, 0.47 g) and 6 mL of DMSO were added to the three neck flask and reacted at 130 ° C. The reaction was monitored by GPC in 1 hour increments and maintained in the same state until reaching the desired molecular weight, and the reaction was terminated after about 24 hours.
위 반응이 종류된 용액에 세라이트를 10 g 첨가하여 1 시간 동안 교반시켰다. 이 용액을 멤브레인 필터로 투과 정제함으로써 침전물을 제거한 용액을 수득하였다. 이 용액을 500 mL 이소프로필알코올에 한 방울씩 떨어뜨려 침전을 얻어낸 후, 멤브레인 필터로 필터링하여 침전물인 친수성 전구체 올리고머를 얻었다.10 g of celite was added to the solution containing the above reaction and stirred for 1 hour. The solution was purified by permeation with a membrane filter to obtain a solution from which the precipitate was removed. This solution was dropped dropwise into 500 mL isopropyl alcohol to obtain a precipitate, and then filtered through a membrane filter to obtain a hydrophilic precursor oligomer as a precipitate.
이렇게 얻어진 침전물을 100 mL의 초순수에 완전히 용해시켜 1,000 kDa 투석망으로 투석을 실시하였다. 투석 시 외부 수용액의 염도를 지속적으로 측정하여 염도가 더 이상 증가하지 않을 때까지 외부 수용액을 지속적으로 교환해주었다. 외부 수용액의 염도가 더 이상 증가하지 않으면 투석막내의 용액을 감압 증발기로 건조시켰고, 얻어진 높은 이온전도성을 보이는 친수성 전구체 올리고머를 진공 건조를 통해 완전히 건조시켰다.The precipitate thus obtained was completely dissolved in 100 mL of ultrapure water and dialyzed with a 1,000 kDa dialysis network. The salinity of the external aqueous solution was continuously measured during dialysis, and the external aqueous solution was continuously exchanged until the salinity no longer increased. When the salinity of the external aqueous solution no longer increased, the solution in the dialysis membrane was dried with a reduced pressure evaporator, and the obtained hydrophilic precursor oligomer showing high ion conductivity was dried completely through vacuum drying.
제조예 1c: 소수성 전구체 올리고머의 합성Preparation Example 1c: Synthesis of Hydrophobic Precursor Oligomer
100 mL 삼구 플라스크에 냉각수가 연결된 콘덴서와 미케니컬 스터러를 연결하고 질소를 퍼징하였다. 반응 전에 미리 건조시킨 bis(4-fluorophenyl) sulfone (14.4 mmol, 3.67 g), 4,4'-dihydroxy biphenyl (15.9 mmol, 2.95 g), potassium carbonate (19.0 mmol, 2.63 g), DMAc 28 mL를 상기의 삼구 플라스크에 넣고 120 ℃에서 반응시켰다. 30 분 단위로 GPC로 모니터링하며 원하는 분자량으로 오를 때까지 같은 상태로 유지하고 약 2 시간 후 반응을 종료하였다.In a 100 mL three-necked flask, a condenser connected to a cooling water and a mechanical stirrer were connected and purged with nitrogen. Pre-dried bis (4-fluorophenyl) sulfone (14.4 mmol, 3.67 g), 4,4'-dihydroxy biphenyl (15.9 mmol, 2.95 g), potassium carbonate (19.0 mmol, 2.63 g) and 28 mL DMAc Put into a three-neck flask of the reaction at 120 ℃. Monitored by GPC in 30 minutes, the same state until the desired molecular weight was maintained and the reaction was terminated after about 2 hours.
위 반응이 종료된 용액에 세라이트를 10 g 첨가하여 1 시간 동안 교반시켰다. 이 용액을 멤브레인 필터로 투과 정제함으로써 침전물을 제거한 용액을 수득하였다. 이 용액을 메탄올에 한 방울씩 떨어뜨려 침전을 얻어낸 후, 멤브레인 필터로 필터링하여 침전물을 얻었다.10 g of celite was added to the solution to which the reaction was completed, followed by stirring for 1 hour. The solution was purified by permeation with a membrane filter to obtain a solution from which the precipitate was removed. The solution was dropped in methanol dropwise to obtain a precipitate, which was then filtered through a membrane filter to obtain a precipitate.
이렇게 얻어진 얻어낸 침전물을 한 번 더 메탄올에 헹군 후, 멤브레인 필터로 필터링하여 소수성 전구체 올리고머를 얻고 나서, 진공 건조를 통해 완전히 건조시켰다.The obtained precipitate thus obtained was once more rinsed in methanol, filtered through a membrane filter to obtain a hydrophobic precursor oligomer, and then dried completely by vacuum drying.
실시예 1a: 멀티블록 공중합체 중합Example 1a: Multiblock Copolymerization Polymerization
100 mL 삼구 플라스크에 냉각수가 연결된 콘덴서와 미케니컬 스터러를 연결하고 질소를 퍼징하였다. 미리 건조시킨 위 제조예 1a의 친수성 전구체 올리고머(0.1 mmol, 0.76 g)를 DMSO 2.5 mL에 용해하여 친수성 올리고머 용액을 수득하였고, 마찬가지로 미리 건조시킨 위 제조예 1c의 소수성 전구체 올리고머(0.1 mmol, 0.42 g)를 DMAc 1.5 mL에 용해하여 소수성 올리고머 용액을 제조하였다. 이렇게 얻은 두 용액을 위 삼구 플라스크에 동시에 주입하면서 탄산칼륨(1 mmol, 0.14 g)를 추가하여 130 ℃에서 중합시켰다. 위 반응이 종료된 용액을 물에 한 방울씩 떨어뜨려 침전을 얻어낸 후, 멤브레인 필터로 필터링하여 침전물만 얻었다. 이렇게 얻은 침전물은 진공 건조를 통해 완전히 건조시켰다.In a 100 mL three-necked flask, a condenser connected to a cooling water and a mechanical stirrer were connected and purged with nitrogen. The hydrophilic precursor oligomer (0.1 mmol, 0.76 g) of the above-prepared Example 1a was dissolved in 2.5 mL of DMSO to obtain a hydrophilic oligomer solution. Similarly, the hydrophobic precursor oligomer (0.1 mmol, 0.42 g of the above-prepared Example 1c) was dried. ) Was dissolved in 1.5 mL of DMAc to prepare a hydrophobic oligomer solution. Two solutions thus obtained were simultaneously injected into the three-necked flask and potassium carbonate (1 mmol, 0.14 g) was added to polymerize at 130 ° C. After the reaction was completed by dropping the solution dropwise in water to obtain a precipitate, and filtered with a membrane filter to obtain a precipitate only. The precipitate thus obtained was completely dried by vacuum drying.
이렇게 제조한 멀티블록 공중합체의 GPC 결과와 NMR 결과를 각각 도 1과 도 2에 제시하였다. 또한, 도 5에는 80 ℃에서 측정한 양성자 전도도의 습도 의존성을 제시하였다.GPC results and NMR results of the multiblock copolymer thus prepared are shown in FIGS. 1 and 2, respectively. In addition, Figure 5 shows the humidity dependence of the proton conductivity measured at 80 ℃.
실시예 1b: 멀티블록 공중합체 중합Example 1b: Multiblock Copolymerization Polymerization
100 mL 삼구 플라스크에 냉각수가 연결된 콘덴서와 미케니컬 스터러를 연결하고 질소를 퍼징하였다. 미리 건조시킨 위 제조예 1b의 친수성 전구체 올리고머(0.1 mmol, 0.608 g)를 DMSO 2.5 mL에 용해하여 친수성 올리고머 용액을 수득하였고, 마찬가지로 미리 건조시킨 위 제조예 1c의 소수성 전구체 올리고머(0.1 mmol, 0.54 g)를 DMAc 1.5 mL에 용해하여 소수성 올리고머 용액을 제조하였다. 이렇게 얻은 두 용액을 위 삼구 플라스크에 동시에 주입하면서 탄산칼륨(1 mmol, 0.14 g)를 추가하여 130 ℃에서 중합시켰다. 그 외에는 위 실시예 1a에 준하는 조건에서 실험을 수행하였다. 위 반응이 종료된 용액을 물에 한 방울씩 떨어뜨려 침전을 얻어낸 후, 멤브레인 필터로 필터링하여 침전물만 얻었다. 이렇게 얻은 침전물은 진공 건조를 통해 완전히 건조시켰다.In a 100 mL three-necked flask, a condenser connected to a cooling water and a mechanical stirrer were connected and purged with nitrogen. The hydrophilic precursor oligomer (0.1 mmol, 0.608 g) of the above-prepared Example 1b was dissolved in 2.5 mL of DMSO to obtain a hydrophilic oligomer solution. Similarly, the hydrophobic precursor oligomer (0.1 mmol, 0.54 g of the above-prepared Example 1c) was obtained. ) Was dissolved in 1.5 mL of DMAc to prepare a hydrophobic oligomer solution. Two solutions thus obtained were simultaneously injected into the three-necked flask and potassium carbonate (1 mmol, 0.14 g) was added to polymerize at 130 ° C. Otherwise, the experiment was performed under the conditions according to Example 1a. After the reaction was completed by dropping the solution dropwise in water to obtain a precipitate, and filtered with a membrane filter to obtain a precipitate only. The precipitate thus obtained was completely dried by vacuum drying.
이렇게 제조한 멀티블록 공중합체의 GPC 결과와 NMR 결과를 각각 도 3과 도 4에 제시하였다. 또한, 도 5에는 80 ℃에서 측정한 양성자 전도도의 습도 의존성을 제시하였다.The GPC and NMR results of the multiblock copolymer thus prepared are shown in FIGS. 3 and 4, respectively. In addition, Figure 5 shows the humidity dependence of the proton conductivity measured at 80 ℃.
실시예 2: 멀티블록 공중합체 중합Example 2: Multiblock Copolymerization
소수성 올리고머 용액과 친수성 올리고머 용액을 삼구 플라스크에 동시에 주입하는 대신에, 삼구 플라스크에 촉매와 함께 소수성 올리고머를 먼저 용해시키고, 친수성 올리고머 용액을 천천히 주입하여 침전을 일으키지 않으면서 분자량을 성장시키며 중합시킨 점을 제외하고는, 위 실시예 1a와 동일하게 실험을 진행하였다. 그 결과, 이온교환용량(IEC)이 3.2 meq/g으로 측정되어, 위 실시예 1a에 비해 높아졌음을 확인하였다.Instead of simultaneously injecting the hydrophobic oligomer solution and the hydrophilic oligomer solution into the three-necked flask, the hydrophobic oligomer was first dissolved together with the catalyst in the three-necked flask, and the hydrophilic oligomer solution was slowly injected to increase the molecular weight without causing precipitation. Except, the experiment was conducted in the same manner as in Example 1a. As a result, the ion exchange capacity (IEC) was measured at 3.2 meq / g, it was confirmed that compared with Example 1a above.
실시예 3: 멀티블록 공중합체 중합Example 3: Multiblock Copolymerization
소수성 올리고머 용액에 친수성 올리고머 용액을 한 방울씩 떨어뜨리되, 투입 간격을 1 내지 3 초 범위 내에서 균일하지 않게 투입함으로써 중합시키는 점을 제외하고는, 위 실시예 2와 동일하게 실험을 진행하였다. 그 결과, 최종 얻어진 공중합체의 건조 질량이 실시예 2의 0.83 g보다 더욱 증가한 0.94 g으로 측정되었다.The hydrophilic oligomer solution was dropped dropwise into the hydrophobic oligomer solution, but the polymerization was conducted in the same manner as in Example 2 except that the polymerization was performed by uniformly adding the injection interval within the range of 1 to 3 seconds. As a result, the dry mass of the finally obtained copolymer was measured to be 0.94 g, which was further increased to 0.83 g of Example 2.
실시예 4: 멀티블록 공중합체 중합Example 4: Multiblock Copolymerization Polymerization
소수성 올리고머 용액에 친수성 올리고머 용액을 한 방울씩 떨어뜨리되, 투입 간격을 1 초로 균일하게 투입함으로써 중합시키는 점을 제외하고는, 위 실시예 3과 동일하게 실험을 진행하였다. 그 결과, 최종 얻어진 공중합체의 다분산 지수(PDI)가 실시예 3보다 더욱 낮은 값으로 관측되어, 수득된 고분자 분자량이 더욱 균일해짐을 확인하였다.The hydrophilic oligomer solution was dropped drop by drop into the hydrophobic oligomer solution, but the polymerization was conducted in the same manner as in Example 3 except that the polymerization was performed by uniformly adding the input interval to 1 second. As a result, the polydispersity index (PDI) of the finally obtained copolymer was observed to be lower than that of Example 3, confirming that the obtained polymer molecular weight became more uniform.
실시예 5: 멀티블록 공중합체 중합Example 5: Multiblock Copolymerization Polymerization
탄산칼슘을 탄산칼륨 1 mmol 당 10 mmol의 비율로 추가로 첨가하여 소수성 올리고머 용액을 제조하는 점을 제외하고는, 위 실시예 4와 동일하게 실험을 진행하였다. 그 결과, 최종 얻어진 공중합체의 수평균 분자량이 193 kDa로 관측되어, 실시예 4의 151 kDa에 비해 분자량이 증가하는 것을 확인하였다.The experiment was conducted in the same manner as in Example 4, except that calcium carbonate was further added in a ratio of 10 mmol per mmol of potassium carbonate to prepare a hydrophobic oligomeric solution. As a result, the number average molecular weight of the finally obtained copolymer was observed to be 193 kDa, confirming that the molecular weight increased compared with 151 kDa of Example 4.
실시예 7: 멀티블록 공중합체 중합Example 7: Multiblock Copolymerization Polymerization
탄산칼슘을 용액 1 mmol 당 10 mmol의 비율로 추가로 첨가하여 친수성 올리고머 용액을 제조하는 점을 제외하고는, 위 실시예 4와 동일하게 실험을 진행하였다. 그 결과, 최종 얻어진 공중합체의 수평균 분자량이 365 kDa로 관측되어, 실시예 4의 151 kDa에 비해 분자량이 크게 증가하는 것을 확인하였다.The experiment was carried out in the same manner as in Example 4 except that calcium carbonate was further added in a ratio of 10 mmol per mmol of the solution to prepare a hydrophilic oligomer solution. As a result, the number average molecular weight of the finally obtained copolymer was observed to be 365 kDa, confirming that the molecular weight increased significantly compared with 151 kDa of Example 4.
비교예 1: 멀티블록 공중합체 원-팟(one-pot) 중합 (1)Comparative Example 1: Multiblock Copolymer One-Pod Polymerization (1)
100 mL 삼구 플라스크에 냉각수가 연결된 콘덴서와 미케니컬 스터러를 연결하고 질소를 퍼징하였다. 위 제조예 1a의 친수성 전구체 올리고머 (0.1 mmol, 0.76 g)와 위 제조예 1c의 소수성 전구체 올리고머 (0.1 mmol, 0.41 g)를 중합 전에 미리 건조시킨 후, potassium carbonate (1.0 mmol, 0.14 g)와 함께 단일 용매인 DMSO 5 mL를 위 삼구 플라스크에 넣고 130 ℃에서 중합시켰다. 1 시간 단위로 GPC로 모니터링하며 원하는 분자량으로 오를 때까지 같은 상태로 유지하고 약 24 시간 후 반응을 종료하였다. 위 반응이 종료된 용액을 물에 한 방울씩 떨어뜨려 침전을 얻어낸 후, 멤브레인 필터로 필터링하여 침전물만 얻었다. 이렇게 얻은 침전물은 진공 건조를 통해 완전히 건조시켰다. 그 결과, 최종 얻어진 공중합체의 수평균 분자량이 실시예 1과 비교하여 거의 10% 수준에 불과함을 확인하였다.In a 100 mL three-necked flask, a condenser connected to a cooling water and a mechanical stirrer were connected and purged with nitrogen. The hydrophilic precursor oligomer (0.1 mmol, 0.76 g) of Preparation Example 1a above and the hydrophobic precursor oligomer (0.1 mmol, 0.41 g) of Preparation Example 1c were previously dried prior to polymerization, followed by potassium carbonate (1.0 mmol, 0.14 g). 5 mL of a single solvent DMSO was placed in a three-necked flask and polymerized at 130 ° C. The reaction was monitored by GPC in 1 hour increments and maintained in the same state until reaching the desired molecular weight, and the reaction was terminated after about 24 hours. After the reaction was completed by dropping the solution dropwise in water to obtain a precipitate, and filtered with a membrane filter to obtain a precipitate only. The precipitate thus obtained was completely dried by vacuum drying. As a result, it was confirmed that the number average molecular weight of the final obtained copolymer was only about 10% level compared with Example 1.
비교예 2: 멀티블록 공중합체 원-팟(one-pot) 중합 (2)Comparative Example 2: Multiblock Copolymer One-Pod Polymerization (2)
단일 용매 DMSO대신 단일 용매 DMAc를 사용한 점을 제외하고는, 위 비교예 1과 동일하게 실험을 진행하였다. 그 결과, 최종 얻어진 공중합체의 수평균 분자량이 실시예 1와 비교하여 거의 10% 수준에 불과함을 확인하였다.The experiment was conducted in the same manner as in Comparative Example 1 except that a single solvent DMAc instead of a single solvent DMSO was used. As a result, it was confirmed that the number average molecular weight of the final obtained copolymer was only about 10% level compared with Example 1.
Claims (21)
- (A) 제1 용매에 소수성 올리고머를 용해시켜 제1 용액을 수득하는 단계,(A) dissolving hydrophobic oligomer in a first solvent to obtain a first solution,(B) 제2 용매에 친수성 올리고머를 용해시켜 제2 용액을 수득하는 단계,(B) dissolving the hydrophilic oligomer in a second solvent to obtain a second solution,(C) 제1 용액과 제2 용액을 접촉시키는 단계를 포함하는 멀티블록 공중합체 제조방법.(C) a method for producing a multiblock copolymer comprising contacting a first solution with a second solution.
- 제1항에 있어서, 상기 (C) 단계는 제1 용액에 제2 용액을 투입함으로써 수행되는 것을 특징으로 하는 멀티블록 공중합체 제조방법.The method of claim 1, wherein step (C) is performed by adding a second solution to the first solution.
- 제2항에 있어서, 상기 투입은 한 방울씩(dropwise) 첨가함으로써 수행되는 것을 특징으로 하는 멀티블록 공중합체 제조방법.The method according to claim 2, wherein the dosing is carried out by dropwise addition.
- 제3항에 있어서, 상기 투입은 동일한 시간 간격으로 한 방울씩 첨가함으로써 수행되는 것을 특징으로 하는 멀티블록 공중합체 제조방법.The method according to claim 3, wherein the dosing is performed by dropwise addition at the same time intervals.
- 제1항에 있어서, 상기 제1 용매는 디메틸아세트아미드(DMAc), 디메틸 설폭사이드(DMSO), DMF, NMP, 디페닐술폰, 클로로벤젠 및 이들 2종 이상의 혼합액 중에서 선택되는 것을 특징으로 하는 멀티블록 공중합체 제조방법.The method of claim 1, wherein the first solvent is selected from dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), DMF, NMP, diphenyl sulfone, chlorobenzene and a mixture of two or more thereof. Copolymer production method.
- 제1항에 있어서, 상기 제2 용매는 디메틸아세트아미드(DMAc), 디메틸 설폭사이드(DMSO), DMF, NMP, 디페닐술폰, 클로로벤젠 및 이들 2종 이상의 혼합액 중에서 선택되는 것을 특징으로 하는 멀티블록 공중합체 제조방법.The method of claim 1, wherein the second solvent is selected from dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), DMF, NMP, diphenyl sulfone, chlorobenzene and a mixture of two or more thereof. Copolymer production method.
- 제1항에 있어서, 상기 소수성 올리고머는 화학식 1의 구조를 가지고:The method of claim 1, wherein the hydrophobic oligomer has the structure of Formula 1:[화학식 1][Formula 1]상기 친수성 올리고머는 화학식 2 또는 화학식 3의 구조를 가지며:The hydrophilic oligomer has the structure of Formula 2 or Formula 3:[화학식 2][Formula 2][화학식 3][Formula 3]상기 멀티블록 공중합체는 화학식 4의 구조를 가지고:The multiblock copolymer has the structure of formula 4:[화학식 4][Formula 4]상기 P는 H, K, Na, Si(CH3)3 중에서 선택된 1종이고;P is one selected from H, K, Na, and Si (CH 3 ) 3 ;상기 Q는 F, Cl, NO2 중에서 선택된 1종이며;Q is one selected from F, Cl, and NO 2 ;상기 R은 H, K, Li, Na, Rb, Cs 중에서 선택된 무기 양이온이거나 또는 N+R1R2R3R4 (암모늄), P+R1R2R3R4 (포스포니움), N+NR1R2R3R4R5 (이미다조리움), NH+R1R2R3R4R5 (피리디니움), 피롤리디움, 설포니움 중에서 선택된 유기 양이온이고;R is an inorganic cation selected from H, K, Li, Na, Rb, Cs or N + R 1 R 2 R 3 R 4 (ammonium), P + R 1 R 2 R 3 R 4 (phosphonium), N + NR 1 R 2 R 3 R 4 R 5 (imidazorium), NH + R 1 R 2 R 3 R 4 R 5 (pyridinium), pyrrolidium, sulfonium;상기 X와 Y는 각각 5 내지 50 범위 내의 수이며;X and Y are each a number in the range of 5-50;상기 n은 2 내지 50의 정수이고;N is an integer from 2 to 50;위 R1, R2, R3, R4, R5는 서로 동일하거나 상이하고, 각각 독립적으로 C1 내지 C7의 직쇄 또는 가지형 알킬기인 것을 특징으로 하는 멀티블록 공중합체 제조방법.Wherein R 1 , R 2 , R 3 , R 4 , R 5 are the same as or different from each other, each independently a C 1 to C 7 multi-block copolymer production method characterized in that the linear or branched alkyl group.
- 제7항에 있어서, 상기 알킬기는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, sec-부틸기, tert-부틸기 중에서 선택되는 것을 특징으로 하는 멀티블록 공중합체 제조방법.According to claim 7, The alkyl group is multi-block air, characterized in that selected from methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- butyl group Incorporation method.
- 제8항에 있어서, 상기 R1, R2, R3, R4는 서로 동일하거나 상이하고, 각각 독립적으로 직쇄 또는 가지형 방향족기이고;The method according to claim 8, wherein R 1 , R 2 , R 3 , R 4 are the same as or different from each other, and each independently a linear or branched aromatic group;상기 방향족기는 벤질, 페닐, 비페닐 중에서 선택되는 것을 특징으로 하는 멀티블록 공중합체 제조방법.The aromatic group is a method for producing a multiblock copolymer, characterized in that selected from benzyl, phenyl, biphenyl.
- 제1항에 있어서, 상기 제1 용매에 촉매를 추가로 투입함으로써 상기 (A) 단계를 수행하고,According to claim 1, wherein the step (A) is carried out by further adding a catalyst to the first solvent,상기 촉매는 탄산칼륨, NaOH, KOH, CsF 및 이들 2종 이상의 혼합물 중에서 선택되는 것을 특징으로 하는 멀티블록 공중합체 제조방법.The catalyst is a method of producing a multiblock copolymer, characterized in that selected from potassium carbonate, NaOH, KOH, CsF and mixtures of two or more thereof.
- 제1항에 있어서, 상기 제2 용매에 촉매를 추가로 투입함으로써 상기 (B) 단계를 수행하고,According to claim 1, wherein the step (B) is carried out by further adding a catalyst to the second solvent,상기 촉매는 탄산칼륨, NaOH, KOH, CsF 및 이들 2종 이상의 혼합물 중에서 선택되는 것을 특징으로 하는 멀티블록 공중합체 제조방법.The catalyst is a method of producing a multiblock copolymer, characterized in that selected from potassium carbonate, NaOH, KOH, CsF and mixtures of two or more thereof.
- 제1항에 있어서, 상기 제1 용매에 제1 촉매를 추가로 투입함으로써 상기 (A) 단계를 수행하고,The method of claim 1, wherein the step (A) is performed by further adding a first catalyst to the first solvent,상기 제2 용매에 제2 촉매를 추가로 투입함으로써 상기 (B) 단계를 수행하며,The step (B) is performed by further adding a second catalyst to the second solvent,상기 제1 촉매 및 상기 제2 촉매는 서로 동일하거나 상이하고, 각각 독립적으로 탄산칼륨, NaOH, KOH, CsF 및 이들 2종 이상의 혼합물인 것을 특징으로 하는 멀티블록 공중합체 제조방법.The first catalyst and the second catalyst are the same as or different from each other, each independently a method of producing a multiblock copolymer, characterized in that potassium carbonate, NaOH, KOH, CsF and mixtures of two or more thereof.
- 제10항에 있어서, 상기 촉매의 투입량은 상기 제1 용매 10 mL 당 0.1 내지 10 mmol의 비율로 것을 특징으로 하는 멀티블록 공중합체 제조방법.The method of claim 10, wherein the amount of the catalyst is added in a ratio of 0.1 to 10 mmol per 10 mL of the first solvent.
- 제1항에 있어서, 상기 제1 용매와 상기 제2 용매는 서로 상이한 것을 특징으로 하는 멀티블록 공중합체 제조방법.The method of claim 1, wherein the first solvent and the second solvent are different from each other.
- 제1항에 있어서, (i) 상기 제1 용매에만 탄산칼슘을 추가로 투입함으로써 상기 (A) 단계를 수행하거나,According to claim 1, (i) performing the step (A) by further adding calcium carbonate only to the first solvent,(ii) 상기 제2 용매에만 탄산칼슘을 추가로 투입함으로써 상기 (B) 단계를 수행하거나, 또는(ii) performing step (B) by further adding calcium carbonate only to the second solvent, or(iii) 상기 제1 용매 및 상기 제2 용매 모두에 탄산칼슘을 추가로 투입함으로써 상기 (A) 단계 및 상기 (B) 단계를 수행하는 것을 특징으로 하는 블록 공중합체 제조방법. (iii) a method of preparing a block copolymer, characterized in that steps (A) and (B) are performed by further adding calcium carbonate to both the first solvent and the second solvent.
- 제1항에 있어서, 상기 제1 용매는 DMAc와 DMSO를 부피비 100 : 0.5 내지 5로 혼합한 혼합 용매이고,The method of claim 1, wherein the first solvent is a mixed solvent of DMAc and DMSO in a volume ratio of 100: 0.5 to 5,상기 제2 용매는 DMSO와 DMac를 부피비 100 : 0.5 내지 5로 혼합한 혼합 용매인 것을 특징으로 하는 블록 공중합체 제조방법.The second solvent is a block copolymer production method characterized in that the mixed solvent of DMSO and DMac in a volume ratio of 100: 0.5 to 5.
- 제1항 내지 제15항 중 어느 한 항에 따른 제조방법으로 제조된 멀티블록 공중합체를 포함하는 전기화학 전지용 전해질막.An electrolyte membrane for an electrochemical cell comprising a multiblock copolymer prepared by the method according to any one of claims 1 to 15.
- 제1항 내지 제15항 중 어느 한 항에 따른 제조방법으로 제조된 멀티블록 공중합체를 포함하는 전기화학 전지.An electrochemical cell comprising a multiblock copolymer prepared by the method according to any one of claims 1 to 15.
- 제1항 내지 제15항 중 어느 한 항에 따른 제조방법으로 제조된 멀티블록 공중합체를 포함하는 전기화학 전지로서,An electrochemical cell comprising a multiblock copolymer prepared by the method according to any one of claims 1 to 15,상기 전기화학 전지는 연료전지, 배터리, 레독스 플로우 배터리(redox flow battery), 직접 메탄올 연료전지, 금속/공기 재충전 전지 중에서 선택된 어느 하나인 것을 특징으로 하는 전기화학 전지.The electrochemical cell is any one selected from a fuel cell, a battery, a redox flow battery (redox flow battery), a direct methanol fuel cell, a metal / air rechargeable battery.
- 제1항 내지 제15항 중 어느 한 항에 따른 제조방법으로 제조된 멀티블록 공중합체를 포함하는 전기화학적 시스템.An electrochemical system comprising a multiblock copolymer prepared by the process according to any one of claims 1 to 15.
- 제18항에 따른 전기화학 전지를 포함하는 전기화학적 시스템.An electrochemical system comprising the electrochemical cell according to claim 18.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20140057340 | 2014-05-13 | ||
KR10-2014-0057340 | 2014-05-13 | ||
KR10-2014-0125716 | 2014-09-22 | ||
KR1020140125716A KR101546370B1 (en) | 2014-05-13 | 2014-09-22 | Highly ion-conductive sulfonated multi-blocked polymer and electrochemical system comprising the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015174591A1 true WO2015174591A1 (en) | 2015-11-19 |
Family
ID=54061660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/010099 WO2015174591A1 (en) | 2014-05-13 | 2014-10-27 | High-density sulfonated multiblock polymer and electrochemical system comprising same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101546370B1 (en) |
WO (1) | WO2015174591A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109494392A (en) * | 2017-09-11 | 2019-03-19 | 松下知识产权经营株式会社 | Lithium ion conductor, flow battery insulating element and flow battery |
WO2024204267A1 (en) * | 2023-03-30 | 2024-10-03 | 東ソー株式会社 | Polymer, electrolyte material, electrolyte membrane, electrolyte membrane with catalyst layer, membrane electrode assembly, solid polymer fuel cell, and solid polymer water electrolysis device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101949181B1 (en) | 2016-03-29 | 2019-04-29 | 주식회사 엘지화학 | Block copolymer and polymer electrolyte membrane using the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040186262A1 (en) * | 2002-12-12 | 2004-09-23 | Gerhard Maier | Ion conductive membrane made from a block copolymer and methods of making a block copolymer |
KR20060071690A (en) * | 2004-12-22 | 2006-06-27 | 주식회사 엘지화학 | Branched and sulphonated multi block copolymer and electrolyte membrane using the same |
KR20100050423A (en) * | 2008-11-04 | 2010-05-13 | 주식회사 엘지화학 | Polymer electrolyte membrane |
KR20130011676A (en) * | 2011-07-22 | 2013-01-30 | 현대자동차주식회사 | Block copolymer comprising hydrophilic block and hydrophobic block, polymer electrolyte membrane prepared from the block copolymer, and fuel cell employing the polymer electrolyte membrane |
KR20130105535A (en) * | 2012-03-16 | 2013-09-25 | 주식회사 엘지화학 | Composition of polymer electrolyte, electrolyte membrane, membrane electrode assembly and fuel cell |
-
2014
- 2014-09-22 KR KR1020140125716A patent/KR101546370B1/en active IP Right Grant
- 2014-10-27 WO PCT/KR2014/010099 patent/WO2015174591A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040186262A1 (en) * | 2002-12-12 | 2004-09-23 | Gerhard Maier | Ion conductive membrane made from a block copolymer and methods of making a block copolymer |
KR20060071690A (en) * | 2004-12-22 | 2006-06-27 | 주식회사 엘지화학 | Branched and sulphonated multi block copolymer and electrolyte membrane using the same |
KR20100050423A (en) * | 2008-11-04 | 2010-05-13 | 주식회사 엘지화학 | Polymer electrolyte membrane |
KR20130011676A (en) * | 2011-07-22 | 2013-01-30 | 현대자동차주식회사 | Block copolymer comprising hydrophilic block and hydrophobic block, polymer electrolyte membrane prepared from the block copolymer, and fuel cell employing the polymer electrolyte membrane |
KR20130105535A (en) * | 2012-03-16 | 2013-09-25 | 주식회사 엘지화학 | Composition of polymer electrolyte, electrolyte membrane, membrane electrode assembly and fuel cell |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109494392A (en) * | 2017-09-11 | 2019-03-19 | 松下知识产权经营株式会社 | Lithium ion conductor, flow battery insulating element and flow battery |
WO2024204267A1 (en) * | 2023-03-30 | 2024-10-03 | 東ソー株式会社 | Polymer, electrolyte material, electrolyte membrane, electrolyte membrane with catalyst layer, membrane electrode assembly, solid polymer fuel cell, and solid polymer water electrolysis device |
Also Published As
Publication number | Publication date |
---|---|
KR101546370B1 (en) | 2015-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100756457B1 (en) | Block copolymers containing perfluorocyclobutane rings and electrolyte membranes using the same | |
WO2010053297A2 (en) | Polymer electrolyte membrane | |
KR101566789B1 (en) | Sulfonated polyarylene ether copolymer process of manufacturing the same and polymer electrolyte membrane for fuel cell using the copolymer | |
CN110661021B (en) | Preparation method of high-temperature proton exchange membrane for fuel cell | |
JP5674395B2 (en) | Novel amphiphilic block copolymer, process for producing the same, polymer electrolyte containing the same, and polymer electrolyte membrane using the same | |
KR101154404B1 (en) | Sulfonated polyarylene ether copolymer, process of manufacturing the same, and polymer electrolyte membrane for fuel cell using the copolymer | |
KR101826539B1 (en) | Polyarylene-based polymer, preparation method for the same, and polymer electrolyte membrane for fuel cell using the polymer | |
WO2015174591A1 (en) | High-density sulfonated multiblock polymer and electrochemical system comprising same | |
KR20140064308A (en) | Polymer electrolyte membranes prepared from 4,4-bis(4-chlorophenylsulfone)-1,1-biphenyl compound for fuel cells and their manufacturing methods | |
KR20130011676A (en) | Block copolymer comprising hydrophilic block and hydrophobic block, polymer electrolyte membrane prepared from the block copolymer, and fuel cell employing the polymer electrolyte membrane | |
KR20120060645A (en) | Polyarylene ether copolymer having cation-exchange group, process of manufacturing the same, and use thereof | |
WO2012134095A2 (en) | Hydrogen ion-conducting copolymer including a diphenyl fluorene group in which a sulfonic acid group is introduced, method for preparing same, polymer electrolyte membrane produced therefrom, membrane/electrolyte assembly using same, and polymer electrolyte membrane fuel cell adopting same | |
CN112439319B (en) | Solvent-resistant PBO nanofiltration membrane and preparation method thereof | |
CN107805302B (en) | A kind of fluorine-containing sulfonated polyether compound of long side chain type and preparation method thereof based on bisphenol S | |
WO2010076911A1 (en) | Post-sulfonated copolymers containing perfluorocyclobutane groups and preparation method and use thereof | |
WO2012036347A1 (en) | Triblock copolymer, and electrolyte membrane prepared therefrom | |
KR101235167B1 (en) | Sulfonated poly(arylene ether) copolymer comprising crosslink structure and polymer electrolyte membrane comprising the same | |
WO2022131665A1 (en) | Novel polyfluorene-based cross-linked copolymer, method for producing same, and anion exchange membrane for alkaline fuel cell using same | |
CN110655648B (en) | Main chain type sulfonated polyquinoxaline prepared by post-sulfonation method and proton exchange membrane thereof | |
CN108752587B (en) | Sulfonated polyaryletherketone sulfone compound based on binaphthol and preparation method thereof | |
KR101651093B1 (en) | Multi-sulfonated multi-phenyl units contained proton exchange membrane | |
KR101812274B1 (en) | Synthetic method for highly sulfonated multi-block polymer and electrochemical system comprising thus prepared highly sulfonated multi-block polymer | |
KR101963600B1 (en) | Polyarylene-based polymer, process of manufacturing thereof, and the use of the same | |
KR100794466B1 (en) | Branched and sulphonated multi block copolymer and electrolyte membrane using the same | |
CN110628021B (en) | Side chain type sulfonated polyquinoxaline and proton exchange membrane thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14891933 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14891933 Country of ref document: EP Kind code of ref document: A1 |