WO2015173899A1 - Solar thermal power generation system, and calibration system for solar thermal power generation system - Google Patents
Solar thermal power generation system, and calibration system for solar thermal power generation system Download PDFInfo
- Publication number
- WO2015173899A1 WO2015173899A1 PCT/JP2014/062764 JP2014062764W WO2015173899A1 WO 2015173899 A1 WO2015173899 A1 WO 2015173899A1 JP 2014062764 W JP2014062764 W JP 2014062764W WO 2015173899 A1 WO2015173899 A1 WO 2015173899A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power generation
- generation system
- predetermined shape
- thermal power
- solar thermal
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims description 82
- 238000012545 processing Methods 0.000 claims description 31
- 239000000463 material Substances 0.000 claims description 27
- 238000003384 imaging method Methods 0.000 claims description 22
- 230000004397 blinking Effects 0.000 claims description 14
- 238000005286 illumination Methods 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 5
- 230000005856 abnormality Effects 0.000 abstract 1
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 31
- 230000007246 mechanism Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000013459 approach Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000009434 installation Methods 0.000 description 9
- 230000007257 malfunction Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S50/00—Arrangements for controlling solar heat collectors
- F24S50/20—Arrangements for controlling solar heat collectors for tracking
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
Definitions
- the present invention relates to a solar light collecting system in which a plurality of heliostats including mirrors that reflect sunlight are arranged to collect sunlight.
- the present invention relates to a method for efficiently and accurately calibrating mirror angles of a plurality of heliostats and a solar light collecting system using the method.
- Solar power generation which collects sunlight to generate steam and generates power with a steam turbine, is expected as next-generation energy.
- tower-type solar thermal power generation which concentrates sunlight with a large number of heliostat mirrors on the boiler installed at the top of the tower, can generate a large amount of high-temperature steam, and is expected to be used as a future base power source. Is done.
- heliostats Since a large number of heliostats are installed, it is necessary to place heliostats at a location several hundred meters away from the tower where the boiler is installed. In order to realize a higher power solar condensing system, the number of heliostats arranged around the tower will be tens of thousands in the future, and the longest distance from the tower is planned to reach 1 km or more. .
- the error factor that degrades the accuracy of the Heliostat is not only the dimensional error and installation error at the beginning of production, but also the time-dependent changes in the position accuracy of each part due to its own weight and wind, the inclination of the installation part, etc. Is required.
- Patent Document 1 discloses an accurate and simple calibration means for the mirror angle of a heliostat using a laser light emitting unit and a light receiving sensor in the central tower.
- a reference laser beam is reflected by a heliostat, and an angular error of the heliostat is calculated from a light receiving position of a sensor that receives the reflected light.
- calibration can be performed at night when sunlight cannot be collected by using the laser reference line.
- Patent Document 2 discloses a method for correcting the angle of a heliostat based on the difference between a plurality of light quantity sensors arranged around a target. This method is a method of calibrating the heliostat in the daytime because it uses sunlight.
- JP 2012-122635 A JP2011-099629A
- the heliostat calibration means uses a laser light emitting part, a light receiving sensor, and a plurality of light quantity sensors to detect the angular deviation of the heliostat and can be automatically configured relatively easily.
- these heliostat calibration methods require calibration for each heliostat.
- the conventional technology does not sufficiently consider the point of efficiently calibrating the heliostat mirror.
- An object of the present invention is to provide a system capable of calibrating a heliostat efficiently and at high speed.
- One feature of the present invention is that the heliostat is calibrated by obtaining an image having a predetermined shape projected on the reflection mirror of the heliostat.
- the heliostat can be calibrated more efficiently than before.
- FIG. 6 is a diagram illustrating Example 5;
- FIG. 6 is a diagram illustrating Example 6;
- FIG. It is a figure explaining the linear light source of Example 7.
- FIG. It is a figure explaining the linear light source of Example 8.
- FIG. It is a figure explaining the linear light source of Example 9.
- FIG. It is a figure explaining the linear light source of Example 10.
- FIG. It is a figure explaining the linear light source of Example 11.
- FIG. FIG. 6 is a diagram illustrating Example 5;
- FIG. 1 is a diagram illustrating a solar thermal power generation system including a solar light collecting system and a calibration system according to the present embodiment.
- the solar thermal power generation system of the present embodiment reflects and concentrates sunlight on the tower 2 and the target 2 for holding the target 2 and the target 2 for concentrating sunlight at a position higher than a predetermined position.
- the solar thermal power generation system includes a boiler that uses the collected light to boil water to generate steam, a turbine that generates electricity according to the above, and a processing unit that performs various controls, calculations, and determinations described below.
- the heliostat unit 6 includes a plurality of heliostats 100.
- the heliostat 100 is a reflection mirror 101 for condensing sunlight on the target 2, and a plurality of rotational drives that change the angle of the reflection mirror to an arbitrary direction (for example, a horizontal angle (turning angle) and a vertical angle (elevation angle)).
- System 102 is included.
- the rotation drive system 102 is a device that can tilt the reflection mirror 101 in an arbitrary direction.
- the heliostat 100 can irradiate the target 2 with sunlight by controlling the angle of the mirror surface 101 by the rotational drive system 102 according to the movement of the sun.
- the heliostat 100 focuses sunlight on the target 2 on the tower 1 by reflecting sunlight.
- the target 2 is heated by the collected sunlight.
- a boiler or the like as the target 2
- high-temperature steam can be created, and power can be generated by using this to rotate a turbine or the like.
- the power generation system that uses the heat collected from sunlight is called solar thermal power generation, and has attracted attention as a renewable energy system that can generate large volumes of electricity.
- heat energy is relatively easy to store, it is possible to perform nighttime power generation using the heat collected during the day, and it is also expected as a future base power source.
- utilization methods such as utilization for hydrogen generation have been proposed and studied as a utilization method of thermal energy collected in the target 2.
- heliostats 100 In this solar light collecting system and a solar thermal power generation system using the solar light collecting system, in order to collect more heat energy on the target 2, it is necessary to collect reflected light on the target 2 by more heliostats 100. Become.
- An arbitrary number of heliostats 100 can be provided.
- the number of heliostats can be as many as several thousand to 10,000 or as many as several tens of thousands.
- the installation area of the heliostat 100 increases, and the distance from the tower 1 where the target 2 is installed to the heliostat 100 may be increased.
- the radius is several hundred meters or more as a distance from the tower 1 on which the target 2 is installed.
- the distance from the tower 1 where the target 2 is installed reaches a radius of 1 km or more.
- FIG. 2 is a result of calculating the relationship between the distance from the heliostat 100 to the target 2, the mirror surface tilting system of the heliostat 100, and the amount of reflected light deviation on the target 2. For example, when the distance from the heliostat 100 to the target 2 is 300 m, the position of the reflected light on the target 2 is shifted by about 1 m only when the angle accuracy of the reflecting surface of the reflecting mirror 101 is shifted by 0.1 degree. Become.
- the longest distance from the target 2 reaches 1 km or more.
- the required angle accuracy increases as the distance between the heliostat 100 and the tower 1 increases.
- the cost of the entire solar condensing system it is strongly required to reduce the cost of the heliostat 100 as much as possible, and a design that suppresses the accuracy and strength within a range that does not cause operational problems is required.
- This is a design that includes the risk of causing the above-mentioned disturbance and accuracy degradation or failure due to aging.
- the heliostat 100 in the solar light collecting system is extremely important for a system that constantly monitors and corrects accuracy degradation or failure due to disturbance.
- the solar thermal power generation system of the present embodiment has an image photographing means 3.
- the attachment position of the image photographing means 3 can be arbitrarily determined, in this embodiment, the image photographing means 3 is disposed between the target 2 of the tower 1 and a linear light source 5 described later.
- the image capturing means 3 can capture at least one, more specifically, a plurality of heliostats 100.
- a predetermined shape 103 is formed on the tower 1.
- the shape 103 can be arbitrarily formed, but in the present embodiment, the shape 103 is represented by the linear light source 5.
- the linear light source 5 is formed by arranging light sources so as to be an array of substantially one row (first array).
- Shape 103 further includes a plurality of light sources arranged to intersect (more specifically, orthogonal) with the array to form a second array. The intersection of the first array and the second array can be expressed as a reference position 4 of the shape 103.
- FIG. 3 is a diagram for explaining an image photographed by the image photographing means 3.
- the image obtained by the image photographing means 3 includes the reflection surfaces of the plurality of heliostats 100.
- the processing unit calibrates 100 units of heliostats shown in the image. For the calibration, it is necessary to individually identify which heliostat 100 body of the heliostat 100 included in the image. For this purpose, it is desirable to accurately grasp the photographing range of the image photographing means 3.
- a reference pole 7 which is an example of a predetermined reference is disposed between the plurality of heliostats 100. Any number of reference poles 7 can be installed at any position.
- the image is taken so that the reference pole 7 is included in the image, so that the processing unit manages the position of the heliostat 100 in the image using a predetermined coordinate system (for example, an orthogonal coordinate system expressed by the xy axis). I was able to do it. More specifically, the processing unit recognizes the position of the template from the image using template matching using a predetermined template, so that each heliostat is expressed by the xy axis as shown in FIG. It becomes possible to recognize in the orthogonal coordinate system.
- a predetermined coordinate system for example, an orthogonal coordinate system expressed by the xy axis
- the template matching using a predetermined template can also be applied to the recognition of the heliostat itself.
- the reference pole 7 can be expressed as a second reference for obtaining the position of the heliostat.
- the image obtained by the image photographing means 3 includes the second reference for identifying the position of the heliostat.
- a blinking light that blinks at a predetermined interval is disposed at the tip of the reference pole 7.
- the processing unit issues an instruction to the rotation drive system 102 to arrange a plurality of heliostats 100 to be calibrated reflected in the image photographing means 3 substantially perpendicular to the ground.
- the linear light source 5 is rotated and inclined at a predetermined first speed to one side (for example, the left side or the east side) (step 301).
- Fig. 3-a) shows the initial state of calibration start.
- the heliostat 100 group is inclined to the east side.
- FIG. 3A schematically shows an image displayed on the image capturing means 3 that captures the situation.
- the processing unit issues an instruction to the rotational drive system 102 so that the heliostat 6 group is moved toward the other side (for example, the right side or the west side) of the linear light source 5 so as to cross the linear light source 5.
- the processing unit issues an instruction to the rotation drive system 102, and the heliostat 100 in which the reflected light of the linear light source 5 is confirmed among the heliostats 100 being calibrated that are displayed in the image obtained by the image photographing means 3. Are sequentially stopped (step 303).
- FIG. 3B schematically shows an image displayed on the image photographing means 3 at this time. If the control angle of the heliostat 100 is not deviated, the reflected light of the linear light source 5 is confirmed on the image at an angle position planned for each heliostat 100.
- the processing unit obtains a position of a predetermined shape formed on a predetermined heliostat 100 in an image obtained at a predetermined time as an image, and compares the position of the predetermined position with a predetermined value, thereby obtaining a helio That is, the angular deviation in the first direction of the stat 100 can be obtained. Since the image photographing unit 3 can perform continuous photographing, the processing unit can also make this determination with respect to a plurality of images obtained during successive times. In this operation, the first image from the first imaging unit includes at least a part of the first predetermined shape, and the processing unit determines the angle of the mirror in the first direction from the first image. It can be expressed that a deviation is obtained.
- FIG. 3-c schematically shows a state after the heliostat 100 group is slowly rotated 10 toward the other side of the linear light source 5 (for example, the right side or the west side).
- the heliostat 100 indicated by an arrow 11 in the figure is the heliostat 100 in which the reflected light of the linear light source 5 cannot be confirmed on the image even when a control signal for rotating at a predetermined angle is given. It can be estimated that this heliostat 100 has a malfunction in the driving mechanism itself in the horizontal direction (for example, the left-right direction or the east-west direction).
- the processing unit issues an instruction to the rotation drive system 102 to cause the heliostat 100 that performs calibration to perform line correction while maintaining the state in which the reflected light of the linear light source 5 is imaged on the image photographing means 3.
- the linear light source 5 is driven 12 so as to trace, and control is performed to drive the reference position 4 on the linear light source 5 to a position where it is captured in the image (step 305).
- FIG. 3-d) schematically shows an image at this time. If the control angle of the heliostat 100 does not deviate, the reflected light of the + character pattern that becomes the reference position 4 on the linear light source 5 is projected on the image photographing means 3 at the angle position planned for each heliostat 100. It is confirmed.
- the processing unit obtains a reference position formed on a predetermined heliostat 100 in an image obtained at a predetermined time, and determines whether or not the reference position is obtained at a predetermined time. This means that an angular deviation in the second direction intersecting the first direction can be obtained. Since the image photographing unit 3 can perform continuous photographing, the processing unit can also make this determination with respect to a plurality of images obtained in successive times.
- the predetermined shape 103 (which can be expressed as the first predetermined shape) includes the reference position 4 (which can be expressed as the first reference), the first image includes the first reference, and the processing unit has the first It can be expressed that the angular deviation in the direction intersecting the first direction is obtained from the reference of the above.
- An arrow 13 in the figure indicates the heliostat 100 in which the reflected light of the + -shaped pattern that is the reference position on the linear light source 5 has not been confirmed.
- Fig. 3-e schematically shows a state after the heliostat 100 group is slowly rotated 14 upward.
- the heliostat 100 indicated by the arrow in the figure can confirm the + character pattern of the reference position 4 on the linear light source 5a on the image photographing means 3 even if a control signal for rotating upward at a predetermined angle is given in advance.
- the heliostat 100 in which the control angle is deviated from a large number of heliostats 100 and the heliostat 100 that does not rotate due to a malfunction in the drive mechanism are efficiently detected. It becomes possible.
- the plurality of heliostats 100 in which the angular deviation is detected it is also possible to collectively perform the angle correction process so as to cancel the angular deviation. As a result, it is possible to provide a sunlight condensing system that can efficiently grasp and calibrate the situation of a large number of heliostats 6.
- Example 2 will be described. In the present embodiment, parts different from the other embodiments will be described. In this embodiment, consideration is given to stabilization of discrimination between a linear light source serving as a reference and disturbance light.
- the first embodiment calibrates the heliostat 100 when the image photographing means 3 detects the light of the linear light source 5 reflected by the heliostat 100. It is desirable that the image photographing unit 3 can reliably detect the linear light source 5 reflected by the heliostat 100. For this reason, although it depends on the installation location of the solar light collecting system and the surrounding environment, it is more stable if the light other than the linear light source 5 that causes disturbance and the light of the linear light source 5 can be reliably separated. It may be desirable for operation.
- the disturbance light assumed here is, for example, moonlight, security lighting, and lights of other facilities in the vicinity.
- a method for reliably separating ambient light and light from the linear light source 5 is provided.
- light having a predetermined wavelength is adopted as the wavelength of light of the linear light source 5 as a reference.
- the disturbance light and the light from the linear light source 5 can be reliably separated from the image photographed by the image photographing means 3 relatively easily.
- the wavelength of the linear light source 5 is different from the wavelength of disturbance light, more specifically, the wavelength of the linear light source 5 is longer or shorter than the wavelength of disturbance light. This approach focusing on the wavelength of the linear light source 5 can be expressed as a first approach.
- an optical filter that passes the predetermined wavelength toward the photoelectric conversion element and blocks the other wavelengths, and a filter that extracts a component corresponding to the predetermined wavelength after imaging. It is desirable to employ at least one of the processes.
- a method of providing a filter process for detecting a specific wavelength in the image processing is also an effective means for reliably separating the disturbance light and the light from the linear light source 5a. If the light from the linear light source 5a is combined light having a plurality of predetermined wavelengths and is selectively separated into the combined light of the wavelengths on the image photographing means 3 side, the reference linear shape is further ensured. Needless to say, the light from the light source 5a can be identified. This approach focusing on the image photographing means 3 side can be expressed as a second approach.
- the linear light source 5 is blinked in a predetermined light emission pattern or cycle, and the light source having the blinking pattern on the image photographing means 3 side.
- the image photographing means 3 may be configured to obtain an image in accordance with the timing.
- the calibration method of the present embodiment focusing on the wavelength of light of the linear light source 5 as a reference, the blinking pattern, the polarization plane, and the like, and identifying it on the image photographing means 3 side, it is more stable. Calibration operation can be enabled. This makes it possible to stably perform the calibration operation of the heliostat 100 even in an environment where there is a lot of light that becomes a disturbance of detection.
- the predetermined shape 103 described in the first embodiment is constituted by components other than the reference light source 5.
- Example 1 uses a linear light source 5.
- a solar light collecting system used for power generation or the like it may be desirable not to consume any electric power.
- the linear mer 5b is adopted as the predetermined shape 103 shown in FIG.
- the linear mark 5b may include a fluorescent material that shines using weak ambient light instead of the linear light source 5a. Further, the linear mark 5b may include a scattering material that scatters ambient light. Further, the linear mark 5b may include a daylight material that stores daytime light. These approaches can form the linear mark 5b at a relatively low cost.
- the linear mark 5b formed in this way can withstand practical use, but may be more susceptible to the influence of the surrounding environment than the linear light source 5a and may be unstable. Next, a method for improving detection stability when the linear mark 5b is used will be described.
- an illumination unit that supplies light to the linear mark 5b.
- the illumination unit supplies light to the linear mark 5b from at least one direction.
- the illumination unit may scan the linear mark 5b with laser light.
- the scanning method may be raster scanning, but any scanning method can be adopted. According to this approach, a certain linear mark 5b can be raised. Note that the approach of providing an illumination unit is not necessarily adopted when a linear mark is used.
- Example 4 will be described. Hereinafter, parts different from the other embodiments will be described.
- the linear light source 5a and the linear mark 5b described above for calibration of many heliostats, it is desirable to arrange them at a higher position vertically.
- the image photographing means 3 is desirably installed at a higher position in order to photograph a wide range of heliostats.
- the predetermined shape 103 and the image photographing means 3 as the reference for calibration are installed on the wall surface of the tower 1.
- the predetermined shape 103 and the image photographing means 3 are installed at a high position, there may be an upper limit on the number of heliostats 100 that the image photographing means 3 can photograph at one time.
- the number of heliostats that can be sufficiently identified may be limited. For this reason, when calibrating a distant heliostat 100, it is necessary to enlarge the captured image.
- the image photographing means 3 of this embodiment has a zoom lens. Regardless of the distance of the heliostat 100 group to be calibrated from the image photographing means 3, the processing unit controls the zoom lens, so that the image photographing means 3 photographs at one time, that is, the image photographing means 3 of the heliostat 100 to be calibrated. It is possible to make the inside size almost constant.
- a means capable of changing the photographing direction of the image photographing means 3 may be provided.
- the photographing direction of the image photographing means 3 is changed, the heliostat unit 6 is divided into a plurality of areas, and a plurality of areas in the divided heliostat unit 6 are sequentially calibrated.
- the heliostat 6 installed in a wide range may be calibrated. According to this embodiment, even when the heliostat 100 is installed in a wide range, it is possible to perform calibration efficiently.
- Example 5 There is a limit to the range that can be calibrated by the approach of the fourth embodiment.
- the predetermined shape 103 and the image capturing means 3 are on the true south surface of the tower 1, the heliostat 100 arranged at a position shifted in the east-west direction from the south side of the tower 1 does not significantly tilt the mirror surface.
- the image of the shape 103 cannot be reflected toward the image photographing unit 3. If the mirror surface tilt angle during calibration (when the reference position is detected) is large, the calibration accuracy is degraded.
- a plurality of combinations of the predetermined shape 103 and the image photographing means 3 are used in accordance with the arrangement state of the heliostat 100.
- FIG. 4 is a diagram for explaining the present embodiment.
- the heliostat unit 6 is arranged so as to surround the tower 1 over the omnidirectional region of the tower 1.
- the heliostats 100 are arranged in all directions of the tower 1 in order to arrange more heliostats 100 closer to one tower 1.
- a combination of the predetermined shape 103 and the image photographing means 3 is arranged on the four azimuth planes of the tower.
- the image photographing means 3 is represented by image photographing means 3N, 3E, 3S, 3W.
- the image capturing means 3N, 3E, 3S, and 3W obtain images of the regions 16N, 16E, 16S, and 16W in the range of 45 degrees to the left and right.
- Calibration is also performed for each of the areas 16N, 16E, 16S, and 16W. Calibration may occur at substantially the same time or may occur at different times.
- the image photographing means 3N, 3E, 3S, and 3W can obtain an image of the heliostat 100 in a range that appropriately reflects the predetermined shape 103, so that the calibration accuracy due to the installation location of the heliostat 100 is obtained. Can be made smaller.
- FIG. 5 is a diagram for explaining this embodiment.
- the number of the predetermined shapes 103 is also arranged. In the present embodiment, there are eight combinations of the image photographing means 3 and the predetermined shape 103.
- the heliostat 6 is divided into eight areas 16N, 16E, 16S, 16W, 16NE, 16ES, 16SW, and 16NW.
- an image is acquired and calibrated by using eight combinations for eight regions.
- the number of the image photographing means 3 and the number of the predetermined shapes 103 are in a one-to-one relationship, but one predetermined shape 103 reflected by a certain heliostat 100 is used as the image photographing means 3N.
- the calibration time of all the heliostats 6 of the solar light collecting system can be shortened also by the method of installing a plurality of image photographing means 3 in the same region.
- one heliostat 100 may be calibrated using a plurality of predetermined shapes 103 and a plurality of image photographing means 3. In this case, since the calibration operation is performed at different mirror angles of the heliostat 100, the calibration accuracy can be improved.
- the second imaging unit disposed at a position different from the image capturing unit 3 (which can be expressed as the first imaging unit), the predetermined shape 103 disclosed in the first embodiment, and Can be expressed as having a second predetermined shape arranged at different positions.
- Example 7 will be described.
- the seventh embodiment will explain a variation of the predetermined shape 103.
- FIG. 6 is a diagram for explaining the details of the predetermined shape 103.
- the predetermined shape 103 includes the linear light source 5.
- the linear light source 5 includes a cross-shaped light emitter 17.
- the center of the light emitter 17 can be expressed as a reference position 4.
- the linear light source 5 includes a linear light emitter 18 connected to the light emitter 17.
- the linear light source 5 is substantially symmetric about the first axis 601, but is substantially asymmetric about the second axis 602 that intersects (more specifically, substantially orthogonal) the first axis. It can be expressed that there is.
- the light emitter 18 can be divided into a plurality of regions 19n, 19m, and 19f, and at least one of a light emission wavelength, a flashing pattern, a flashing timing, and dimensions (length, thickness, and thickness) for each of the plurality of regions. ) Can be arbitrarily set.
- the distance to the reference position 4 for each heliostat 100 is long or short when a part of the linear light source 5 is first detected (FIG. 3 c and FIG. 3 d). Can be identified. That is, from the state of the linear light source 5 reflected on the heliostat 100 shown in the image obtained by the image photographing means 3 (difference in emission color, wavelength pattern, and blinking pattern) to the reference position 4 for each heliostat 100. Can be identified whether the distance is long (the angle is large) or short (the angle is small).
- the heliostat 100 that is far from the reference position 4 needs to be moved quickly, but the heliostat 100 that is close to the reference position 4 (small angle) is moved slowly to the reference position (reference position 4). Makes it easier to find exactly.
- the distance to the reference position is roughly known at the stage where a part of the linear light source 5 is first detected (FIG. 3c and FIG. 3d), thereby improving the efficiency of the calibration operation. It becomes possible to do.
- Example 8 will be described.
- FIG. 7 is a diagram for explaining this embodiment.
- the light-emitting light source 5 of this embodiment has a light emitter 20n and a light emitter 20f on the upper side of the reference position 4, and has a light emitter 21n and a light emitter 22f on the lower side.
- the linear light source 5 is substantially symmetric about both the first axis 601 and the second axis 602.
- at least one of the emission wavelength, the blinking pattern, the blinking timing, and the dimensions (at least one of length, thickness, and thickness) between the light emitters 20n, 20f, 21n, and 22f is arbitrarily set. More specifically, it is set differently. In this way, the processing unit can identify whether the reference position 4 is above or below the reference position 4.
- the processing unit can first identify a part of the linear light source 5 in the calibration process of FIG. 3 (FIGS. 3c and 3d). , Whether the upper side or the lower side of the reference position 4 is reflected on the heliostat 100 can be identified. If the upper side or the lower side of the reference position 4 is known, it is possible to know the direction (upper side or lower side) in which the heliostat 100 is operated in order to find the reference position 4 in the next operation.
- the heliostat 100 can be moved toward the reference position 4 in the first operation (arrow 9 in FIG. 3) in the calibration process of FIG. As a result, most heliostats 100 whose accuracy is ensured can detect the reference position 4.
- the heliostat 100 having an error also performs the following operation (corresponding to the arrow 12 in FIG. 3).
- the direction in which the reference position 4 is found can be known in the operation).
- the heliostat 100 can be controlled so as to search for the reference position 4 from the first operation. For this reason, if the linear light source 5 as shown in FIG. 7 is used, a more efficient calibration operation of the heliostat 100 can be provided.
- the areas 20 n and 21 n near the reference position 4 among the four areas, and the areas 20 and 22 f farther from the reference position 4 than those four areas. Can be identified.
- the heliostat 100 that cannot find the reference position 4 as in the seventh embodiment can efficiently perform the operation of finding the reference position 4.
- Example 9 will be described.
- FIG. 8 is a diagram for explaining this embodiment.
- the linear light source 5 reference position 4 of this embodiment is arranged near the upper end of the linear light source 5.
- the linear light source 5 is configured such that the distance from the reference position 4 can be identified not for each region but for each distance (for example, each point-like light emission point 23). That is, at least one of the plurality of light emitting points 23 arranged can be arbitrarily set with respect to each other, the light emission wavelength, the blinking pattern, the blinking timing, and the dimension (at least one of length, thickness, and thickness). Is different.
- the distance to the reference position 4 can be obtained more accurately at the stage where a part of the linear light source 5 is first detected (FIGS. 3c and 3d). Therefore, calibration can be performed more efficiently.
- Example 10 will be described.
- FIG. 9 is a diagram for explaining the present embodiment.
- the reference position 4 is arranged near the center of the linear light source 5. As in the eighth embodiment, it is calibrated so that it can be identified whether it is above or below the reference position 4 and the distance from the reference position 4 can be identified as in the ninth embodiment.
- the heliostat 100 can be operated so as to search for the reference position 4 from the first operation, and the heliostat 100 that has not found the reference position 4 can also be efficiently referenced in the next operation. Position 4 can be found.
- Example 11 will be described.
- FIG. 10 is a diagram for explaining this embodiment.
- the specific reference position 4 described in the other embodiments is not provided, and the linear light source 5 is configured such that all the light emitting points 23 can be identified by the processing unit.
- the linear light source 5 is configured such that all the light emitting points 23 can be identified by the processing unit.
- any of the methods described in the other embodiments can be arbitrarily adopted.
- a template and a threshold value corresponding to each of the light emission points 23 are stored in the processing unit, and the obtained image is obtained. A method of comparing the template and the threshold value may be adopted.
- all the light emitting points 23 of the linear light source 5 have the function of the reference position 4. That is, in the calibration process of FIG. 3, at the stage where a part of the linear light source 5 is first detected, the position of the light emission point 23 (to understand, the calibration of the heliostat 100 is completed. It is desirable that the height (position) of the light emitting point 23 on the linear light source 5 can be identified with sufficient resolution.
- the light emission points 23 in the examples of FIGS. 8 to 10 are represented by dots in order to make the explanation easy to understand. If the distance and direction from the reference position 4 can be identified, it is not always necessary to arrange the dotted light emitting points 23.
- any color and shape can be adopted for the linear mark 5b.
- the heliostat 100 can be calibrated more frequently.
- the above-described embodiments can be used to calibrate all the heliostats 100 of the solar light collecting system at high frequency, many operational advantages can be expected. If the calibration frequency is high, a malfunction of the turning angle or the elevation angle mechanism can be detected early. In addition, by accumulating calibration information, it is possible to predict a heliostat 100 that may break down in the future.
- the frequency of deviation from the control angle of the specific heliostat 100 can be analyzed. Thereby, the heliostat 100 with a possibility of failure can be estimated. Furthermore, it is also possible to estimate the timing until failure from the change in the frequency of calibration.
- the number of heliostats 100 that require calibration the number of heliostats 100 that are effectively collecting sunlight during the actual light collection operation can be estimated. If these pieces of information are statistically processed, a change in the light collection efficiency due to the repair of the heliostat 100 can be predicted. Therefore, the information is useful in formulating a maintenance plan during the operation of the heliostat 100. In particular, when using for solar thermal power generation, it is important to formulate a maintenance plan by comparing the cost of power generation with the maintenance cost.
- the movement of the heliostat 100 in the east-west direction (corresponding to the movement of the arrow 9 and arrow 10 in FIG. 3) and the vertical movement (corresponding to the movement of the arrow 12 and arrow 14 in FIG. 3) are as follows: This is not a short special operation of the turning mechanism and the elevation angle mechanism in the heliostat 100.
- the east-west direction and the vertical rotation direction of the heliostat 100 for projecting the linear light source 5 on the image photographing means 3 are affected by the installation position of the heliostat 100. . Therefore, the east-west movement and the vertical movement of the heliostat 100 in the calibration operation described with reference to FIG.
- a large number of heliostats 100 can be calibrated substantially simultaneously, and a large number of heliostats 100 can be calibrated efficiently.
- the present invention is not limited to the above-described embodiments, and the present invention can be widely applied to systems using light.
- the reference position is found by the rotation operation in the upward (down) direction Heliostat 16 that did not exist ...
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Analytical Chemistry (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
In order to more efficiently operate a solar collector system, it is necessary to constantly ensure the accuracy of a heliostat, quickly detect a heliostat exhibiting an abnormality, and implement a countermeasure. To this end, it is necessary to efficiently calibrate and correct a plurality of heliostats in a short amount of time. The prior art does not give sufficient consideration to the feature of efficiently calibrating heliostat mirrors. The present invention calibrates a heliostat by obtaining an image having a prescribed shape projected onto a reflective mirror of the heliostat.
Description
本発明は、太陽光を反射するミラーを具備するヘリオスタットを複数配置して、太陽光を集光する太陽光集光システムに関する。 特に、複数のヘリオスタットのミラー角度を、効率よく高精度に校正する方法およびそれを用いた太陽光集光システムに関する。
The present invention relates to a solar light collecting system in which a plurality of heliostats including mirrors that reflect sunlight are arranged to collect sunlight. In particular, the present invention relates to a method for efficiently and accurately calibrating mirror angles of a plurality of heliostats and a solar light collecting system using the method.
太陽光を集めて蒸気を発生させて、蒸気タービンにより発電を行う太陽熱発電は、次世代エネルギーとして期待されている。特に、タワー上部に設置されたボイラーへ多数のヘリオスタットミラー群により、太陽光を集光するタワー型太陽熱発電は、大量の高温蒸気を生成可能なことから、将来のベース電源としての活用が期待される。
Solar power generation, which collects sunlight to generate steam and generates power with a steam turbine, is expected as next-generation energy. In particular, tower-type solar thermal power generation, which concentrates sunlight with a large number of heliostat mirrors on the boiler installed at the top of the tower, can generate a large amount of high-temperature steam, and is expected to be used as a future base power source. Is done.
多数のヘリオスタットを設置することから、ボイラーを設置したタワーから数100m以上も離れた場所にもヘリオスタットを配置する必要がある。より高出力の太陽光集光システムを実現するために、今後、タワーの周辺に配置するヘリオスタットの数は、数万基となり、タワーからの最長距離が1km以上に達するものも計画されている。
Since a large number of heliostats are installed, it is necessary to place heliostats at a location several hundred meters away from the tower where the boiler is installed. In order to realize a higher power solar condensing system, the number of heliostats arranged around the tower will be tens of thousands in the future, and the longest distance from the tower is planned to reach 1 km or more. .
太陽光集光システムでは、太陽光の反射光をタワー上部に設けられたボイラー(ターゲット)に正確に照射するために、各ヘリオスタットに高い角度精度が要求される。例えば、ヘリオスタットからターゲットまでの距離が300mの場合、ミラー面の角度精度が0.1度ずれただけで、ターゲット上の反射光の位置は、1m程度ずれることになる。より高出力の太陽光集光システムを実現するために、今後、タワーの周辺に配置するヘリオスタットの数は数万基となり、タワーからの最長距離が1km以上に達するものも計画されている。ヘリオスタットとタワーの距離が遠いほど、要求角度精度が高くなることは言うまでもない。
In the sunlight condensing system, high angular accuracy is required for each heliostat in order to accurately irradiate reflected light of sunlight to the boiler (target) provided at the top of the tower. For example, when the distance from the heliostat to the target is 300 m, the position of the reflected light on the target is shifted by about 1 m just by changing the angle accuracy of the mirror surface by 0.1 degree. In order to realize a higher power solar condensing system, the number of heliostats arranged around the tower will be tens of thousands in the future, and the maximum distance from the tower is planned to reach 1 km or more. Needless to say, the greater the distance between the heliostat and the tower, the higher the required angle accuracy.
ヘリオスタットの精度を劣化させる誤差要因としては、製作当初の寸法誤差や設置誤差の他に、自重や風などによる各部位置精度の経時変化や設置部の傾き等も予測され、定期的なミラー角度の構成が必要である。
The error factor that degrades the accuracy of the Heliostat is not only the dimensional error and installation error at the beginning of production, but also the time-dependent changes in the position accuracy of each part due to its own weight and wind, the inclination of the installation part, etc. Is required.
特許文献1には、中央塔にレーザ発光部と受光センサを用いたヘリオスタットのミラー角度の正確かつ簡単な校正手段を開示されている。この方式は、基準となるレーザ光をヘリオスタットで反射し、その反射光を受けるセンサの受光位置から、ヘリオスタットの角度誤差を算定する方式である。更に本方式では、レーザ基準行を用いることによって、太陽光を集光できない夜間に校正を行うことが可能となる。
Patent Document 1 discloses an accurate and simple calibration means for the mirror angle of a heliostat using a laser light emitting unit and a light receiving sensor in the central tower. In this method, a reference laser beam is reflected by a heliostat, and an angular error of the heliostat is calculated from a light receiving position of a sensor that receives the reflected light. Furthermore, in this system, calibration can be performed at night when sunlight cannot be collected by using the laser reference line.
特許文献2には、ターゲットの周辺に配置した複数の光量センサを用いて、その差などからヘリオスタットの角度補正を行う方式である。この方式は、太陽光を利用することから、昼間にヘリオスタットの校正を行う方式である。
Patent Document 2 discloses a method for correcting the angle of a heliostat based on the difference between a plurality of light quantity sensors arranged around a target. This method is a method of calibrating the heliostat in the daytime because it uses sunlight.
以降本発明について説明するが、以降の説明は本発明をいたずらに限定的に解釈するために意図されたものではない。
Hereinafter, the present invention will be described, but the following description is not intended to interpret the present invention in a limited manner.
前記、ヘリオスタットの校正手段は、レーザ発光部と受光センサや複数の光量センサを用いることで、ヘリオスタットの角度ずれを検出し、比較的簡単に自動構成することが可能となる。しかしながら、これらのヘリオスタット校正手法では、ヘリオスタット1基ずつの校正することが必要である。
The heliostat calibration means uses a laser light emitting part, a light receiving sensor, and a plurality of light quantity sensors to detect the angular deviation of the heliostat and can be automatically configured relatively easily. However, these heliostat calibration methods require calibration for each heliostat.
ヘリオスタット1の校正時間を30sとしても、ヘリオスタットが1万機の場合、全てのヘリオスタットを校正するためには、83時間以上の時間が必要である。夜間もしくは昼間の8時間の間で、校正動作を実施したとすれば、全てのヘリオスタットを校正するためには、10日間以上の期間が必要となる。
Even if the calibration time of Heliostat 1 is 30 s, if the number of Heliostats is 10,000, it takes 83 hours or more to calibrate all the Heliostats. If the calibration operation is performed at night or 8 hours in the daytime, it takes 10 days or more to calibrate all the heliostats.
より効率的な太陽光集光システムの運用のためには、常にヘリオスタットの精度を確保しておくとともに、以上の発生したヘリオスタットを早期に検出し、対策を講じることが必要である。これを実現するためには、より短時間で効率よく複数のヘリオスタットの校正と補正を行うことが必要となる。
In order to operate a more efficient solar condensing system, it is necessary to ensure the accuracy of the heliostat at all times, detect the heliostat generated above at an early stage, and take countermeasures. In order to realize this, it is necessary to calibrate and correct a plurality of heliostats more efficiently in a shorter time.
上述したように、従来技術では効率よくヘリオスタットミラーを校正する点に関する配慮が十分ではない。
As described above, the conventional technology does not sufficiently consider the point of efficiently calibrating the heliostat mirror.
本発明の目的は、効率よく高速にヘリオスタットを校正可能なシステムを提供することである。
An object of the present invention is to provide a system capable of calibrating a heliostat efficiently and at high speed.
本発明は、ヘリオスタットの反射ミラーに投影された所定の形状の画像を得ることでヘリオスタットの校正を行うことを1つの特徴とする。
One feature of the present invention is that the heliostat is calibrated by obtaining an image having a predetermined shape projected on the reflection mirror of the heliostat.
本発明によれば従来よりも効率的にヘリオスタットの校正を行うことができる。
According to the present invention, the heliostat can be calibrated more efficiently than before.
以下、本発明の実施例について図面を用いて説明する。なお、以降の実施例はその内容の一部削除、相互の置換、組み合わせが可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the contents can be partially deleted, mutually replaced, and combined.
図1は本実施例の太陽光集光システム、及び校正システムを含む太陽熱発電システムを説明する図である。
FIG. 1 is a diagram illustrating a solar thermal power generation system including a solar light collecting system and a calibration system according to the present embodiment.
本実施例の太陽熱発電システムは、太陽光を集光するターゲット2とターゲット2を所定の位置よりも高い位置に保持するためのタワー1とターゲット2に太陽光を反射させて、集光するための多数のヘリオスタットユニット6を含む。さらに、太陽熱発電システムは集光した光を使用して水を沸騰させ蒸気を発生させるボイラー、及び上記によって電気を発生するタービン、後述する様々な制御、演算、判断を行う処理部を含む。
The solar thermal power generation system of the present embodiment reflects and concentrates sunlight on the tower 2 and the target 2 for holding the target 2 and the target 2 for concentrating sunlight at a position higher than a predetermined position. A number of heliostat units 6. Further, the solar thermal power generation system includes a boiler that uses the collected light to boil water to generate steam, a turbine that generates electricity according to the above, and a processing unit that performs various controls, calculations, and determinations described below.
ヘリオスタットユニット6は、複数のヘリオスタット100を含む。ヘリオスタット100は太陽光をターゲット2へ集光するための反射ミラー101、反射ミラーの角度を任意の方向(例えば、水平角(旋回角)と垂直角(仰角))へ変更する複数の回転駆動系102を含む。回転駆動系102は反射ミラー101を任意の方向に傾斜することが可能な装置である。
The heliostat unit 6 includes a plurality of heliostats 100. The heliostat 100 is a reflection mirror 101 for condensing sunlight on the target 2, and a plurality of rotational drives that change the angle of the reflection mirror to an arbitrary direction (for example, a horizontal angle (turning angle) and a vertical angle (elevation angle)). System 102 is included. The rotation drive system 102 is a device that can tilt the reflection mirror 101 in an arbitrary direction.
ヘリオスタット100は、太陽の移動に応じて、回転駆動系102によってミラー面101の角度を制御することで太陽光を、ターゲット2に照射することができる。
The heliostat 100 can irradiate the target 2 with sunlight by controlling the angle of the mirror surface 101 by the rotational drive system 102 according to the movement of the sun.
ヘリオスタット100は、太陽光を反射させることで、タワー1上のターゲット2に太陽光を集光させる。ターゲット2が集光された太陽光により熱せられる。ターゲット2として、ボイラーなどを用いることで、高温蒸気を作り出すことができ、これを用いてタービンなどを回すと発電を行うことが可能となる。
The heliostat 100 focuses sunlight on the target 2 on the tower 1 by reflecting sunlight. The target 2 is heated by the collected sunlight. By using a boiler or the like as the target 2, high-temperature steam can be created, and power can be generated by using this to rotate a turbine or the like.
太陽光を集光した熱により、行う発電システムは、太陽熱発電と呼ばれ、大容量の発電が可能な再生エネルギーシステムとして、注目されている。また、熱エネルギーは、蓄熱することが比較的容易であることから、昼間集めた熱を使って、夜間発電を行うことも可能となり、将来のベース電源としても期待されている。また、ターゲット2に集められる熱エネルギーの利用法としては、発電以外にも水素生成への利用などの数多くの利用方法が提案および検討されている。
The power generation system that uses the heat collected from sunlight is called solar thermal power generation, and has attracted attention as a renewable energy system that can generate large volumes of electricity. In addition, since heat energy is relatively easy to store, it is possible to perform nighttime power generation using the heat collected during the day, and it is also expected as a future base power source. In addition to power generation, a number of utilization methods such as utilization for hydrogen generation have been proposed and studied as a utilization method of thermal energy collected in the target 2.
この太陽光集光システム、それを用いた太陽熱発電システムにおいて、より多くの熱エネルギーをターゲット2に集めるためには、より多くのヘリオスタット100によって反射光を、ターゲット2に集約することが必要となる。ヘリオスタット100は任意の数を設けることができ、例えば数千から1万基程度である場合もあれば、数万基にもおよぶ場合もある。
In this solar light collecting system and a solar thermal power generation system using the solar light collecting system, in order to collect more heat energy on the target 2, it is necessary to collect reflected light on the target 2 by more heliostats 100. Become. An arbitrary number of heliostats 100 can be provided. For example, the number of heliostats can be as many as several thousand to 10,000 or as many as several tens of thousands.
ヘリオスタット100の数が増えるとヘリオスタット100の設置面積が増加し、ターゲット2を設置したタワー1からのヘリオスタット100までの距離が遠くなる場合もある。例えば、現在の太陽熱発電プラントなどの太陽光集光システムでは、ターゲット2を設置したタワー1からの距離として、半径数百メートル以上の規模である。数万基にもおよぶヘリオスタット100を用いるシステムを考慮すると、ターゲット2を設置したタワー1からの距離として、半径1km以上に達することになる。
When the number of heliostats 100 increases, the installation area of the heliostat 100 increases, and the distance from the tower 1 where the target 2 is installed to the heliostat 100 may be increased. For example, in a solar light collecting system such as a current solar thermal power generation plant, the radius is several hundred meters or more as a distance from the tower 1 on which the target 2 is installed. Considering a system using tens of thousands of heliostats 100, the distance from the tower 1 where the target 2 is installed reaches a radius of 1 km or more.
図2は、ヘリオスタット100からターゲット2までの距離と、ヘリオスタット100のミラー面傾斜制度と、ターゲット2上での反射光のずれ量との関係を計算した結果である。例えば、ヘリオスタット100からターゲット2までの距離が300mの場合、反射ミラー101の反射面の角度精度が0.1度ずれただけで、ターゲット2上の反射光の位置は、1m程度ずれることになる。
FIG. 2 is a result of calculating the relationship between the distance from the heliostat 100 to the target 2, the mirror surface tilting system of the heliostat 100, and the amount of reflected light deviation on the target 2. For example, when the distance from the heliostat 100 to the target 2 is 300 m, the position of the reflected light on the target 2 is shifted by about 1 m only when the angle accuracy of the reflecting surface of the reflecting mirror 101 is shifted by 0.1 degree. Become.
このように、高出力の太陽光集光システムを実現するために、数万基にもおよぶヘリオスタット100を配置する場合、ターゲット2からの最長距離が1km以上に達してしまう。ヘリオスタット100とタワー1の距離が遠いほど、要求角度精度が高くなる。
Thus, when tens of thousands of heliostats 100 are arranged in order to realize a high-output solar light collecting system, the longest distance from the target 2 reaches 1 km or more. The required angle accuracy increases as the distance between the heliostat 100 and the tower 1 increases.
しかしながら、屋外に設置されるヘリオスタット100の精度を劣化させる外乱要因は、いろいろ考えられる。ヘリオスタット100の精度を劣化させる要因としては、例えば、製作当初の寸法誤差や設置誤差の他に、自重や風さらには地震などによる各部位置精度の経時変化や設置部の傾き等が考えられる。また、屋外設置による各部の経時劣化も誤差要因である。
However, there are various disturbance factors that degrade the accuracy of the heliostat 100 installed outdoors. As factors that degrade the accuracy of the heliostat 100, for example, in addition to dimensional errors and installation errors at the time of manufacture, changes in position accuracy with time due to self-weight, wind, earthquakes, and the like, inclination of the installation parts, and the like can be considered. Further, deterioration with time of each part due to outdoor installation is also an error factor.
精度を確保する方法として、本実施例への採用を排除するわけではないが、非常に高精度かつ堅牢なヘリオスタット100を、設計設置することも考えられる。しかし、この場合、ヘリオスタット100のコストが非常に高くなる。太陽光集光システムでは、そのコストの半分近くがヘリオスタット100で占められており、太陽光集光システム全体へのコストインパクトはきわめて大きい。特に、太陽熱発電のように、発電に用いる太陽光集光システムでは、発電コストに対するインパクトが大きくなる。このため、運用年数内で上記精度を完全に保障するような高精度かつ堅牢なヘリオスタット100を製作することは、経済性をとても現実的ではないのが実態である。
As a method of ensuring accuracy, adoption of this embodiment is not excluded, but it is also conceivable to design and install a very high-precision and robust heliostat 100. However, in this case, the cost of the heliostat 100 is very high. In the solar light collecting system, nearly half of the cost is occupied by the heliostat 100, and the cost impact on the entire solar light collecting system is extremely large. In particular, a solar light collecting system used for power generation, such as solar thermal power generation, has a large impact on power generation costs. For this reason, it is the actual situation that it is not very realistic to manufacture a highly accurate and robust heliostat 100 that completely guarantees the accuracy within the operational years.
太陽光集光システム全体のコストを考えると、ヘリオスタット100のコストをできるだけ削減することが強く要求されており、運用上問題の生じない範囲での精度や強度に抑える設計が要求される。このことは、上記外乱や経時変化による精度低下や故障などを発生するリスクを含んだ設計となる。このため、太陽光集光システムにおけるヘリオスタット100は、外乱による精度低下や故障などを、常にモニターし、補正するシステムがきわめて重要となっている。
Considering the cost of the entire solar condensing system, it is strongly required to reduce the cost of the heliostat 100 as much as possible, and a design that suppresses the accuracy and strength within a range that does not cause operational problems is required. This is a design that includes the risk of causing the above-mentioned disturbance and accuracy degradation or failure due to aging. For this reason, the heliostat 100 in the solar light collecting system is extremely important for a system that constantly monitors and corrects accuracy degradation or failure due to disturbance.
次に、本実施例でのヘリオスタットユニット6の校正について、図1、及び図3を用いて説明する。
Next, calibration of the heliostat unit 6 in the present embodiment will be described with reference to FIGS. 1 and 3.
図1において、本実施例の太陽熱発電システムは、画像撮影手段3を有する。画像撮影手段3の取り付け位置は任意に決定できるが、本実施例では、画像撮影手段3はタワー1のターゲット2と後述す線状光源5との間に配置される。画像撮影手段3は少なくとも1つ以上、より具体的には複数のヘリオスタット100を撮像することができる。
In FIG. 1, the solar thermal power generation system of the present embodiment has an image photographing means 3. Although the attachment position of the image photographing means 3 can be arbitrarily determined, in this embodiment, the image photographing means 3 is disposed between the target 2 of the tower 1 and a linear light source 5 described later. The image capturing means 3 can capture at least one, more specifically, a plurality of heliostats 100.
タワー1には所定の形状103が形成される。形状103は任意に形成可能であるが、本実施例では形状103は線状光源5によって表現される。線状光源5は光源を実質的に1列のアレイ(第1のアレイ)となるよう配列したものである。形状103はさらにアレイと交差(より具体的には直交)し、第2のアレイを形成するように配列された複数の光源を含む。この第1のアレイと第2のアレイの交点は形状103の基準位置4と表現できる。
A predetermined shape 103 is formed on the tower 1. The shape 103 can be arbitrarily formed, but in the present embodiment, the shape 103 is represented by the linear light source 5. The linear light source 5 is formed by arranging light sources so as to be an array of substantially one row (first array). Shape 103 further includes a plurality of light sources arranged to intersect (more specifically, orthogonal) with the array to form a second array. The intersection of the first array and the second array can be expressed as a reference position 4 of the shape 103.
図3は、画像撮影手段3で撮影される画像を説明する図である。画像撮影手段3が得た画像は複数のヘリオスタット100の反射面を含む。
FIG. 3 is a diagram for explaining an image photographed by the image photographing means 3. The image obtained by the image photographing means 3 includes the reflection surfaces of the plurality of heliostats 100.
処理部は、画像に映った複数のヘリオスタット100単位、校正を実施する。校正のためには、画像に含まれるヘリオスタット100について、どのヘリオスタット100機体かを個別に識別する必要がある。このためには、画像撮影手段3の撮影範囲を正確に把握しておくことが望ましい。
The processing unit calibrates 100 units of heliostats shown in the image. For the calibration, it is necessary to individually identify which heliostat 100 body of the heliostat 100 included in the image. For this purpose, it is desirable to accurately grasp the photographing range of the image photographing means 3.
そこで、本実施例では、複数のヘリオスタット100の間に所定の基準の一例である基準ポール7を配置する。基準ポール7は任意の位置に任意の数を設置することができる。そして、本実施例では基準ポール7を画像に含むよう撮像することで、処理部が画像中のヘリオスタット100の位置を、所定の座標系(例えばxy軸で表現される直交座標系)で管理できるようにした。より具体的には、処理部が所定のテンプレートを使用したテンプレートマッチングを使用して画像中からテンプレートの位置を認識することで、図3に示すように個々のヘリオスタットをxy軸で表現される直交座標系で認識することが可能となる。ヘリオスタット自体の認識についても、所定のテンプレートを使用したテンプレートマッチングを適用できる。基準ポール7は例えば、ヘリオスタットの位置を得るための第2の基準と表現することができる。さらに、画像撮影手段3が得た画像には、ヘリオスタットの位置を識別するための第2の基準が含まれると表現することができる。
Therefore, in this embodiment, a reference pole 7 which is an example of a predetermined reference is disposed between the plurality of heliostats 100. Any number of reference poles 7 can be installed at any position. In this embodiment, the image is taken so that the reference pole 7 is included in the image, so that the processing unit manages the position of the heliostat 100 in the image using a predetermined coordinate system (for example, an orthogonal coordinate system expressed by the xy axis). I was able to do it. More specifically, the processing unit recognizes the position of the template from the image using template matching using a predetermined template, so that each heliostat is expressed by the xy axis as shown in FIG. It becomes possible to recognize in the orthogonal coordinate system. The template matching using a predetermined template can also be applied to the recognition of the heliostat itself. For example, the reference pole 7 can be expressed as a second reference for obtaining the position of the heliostat. Furthermore, it can be expressed that the image obtained by the image photographing means 3 includes the second reference for identifying the position of the heliostat.
また、本実施例では、基準ポール7の先端には所定の間隔で明滅を行う点滅ライトを配置している。校正しようとするエリアの中央付近に位置する基準ポール7の先端のライトを点滅させることで、画像撮影手段3で撮影されているヘリオスタット100群の位置を確実かつ正確に把握することを可能としている。
In this embodiment, a blinking light that blinks at a predetermined interval is disposed at the tip of the reference pole 7. By blinking the light at the tip of the reference pole 7 located near the center of the area to be calibrated, it is possible to accurately and accurately grasp the position of the heliostat 100 group photographed by the image photographing means 3 Yes.
次に、校正のプロセスについて説明する。まず、校正開始準備動作として、処理部は回転駆動系102に指示を出すことで、画像撮影手段3に映る校正を行うべき複数のヘリオスタット100群を、地面に対して実質的に垂直に配置された線状光源5の一方の側(例えば左側or東側)に所定の第1の速度で回転傾斜させる(ステップ301)。図3-a)は、校正開始初期状態を示している。このとき、ヘリオスタット100群は、東側に傾斜させた状態である。図3-a)は、その様子を撮影した画像撮影手段3に映し出される映像を模式的に示したものである。
Next, the calibration process will be described. First, as a calibration start preparation operation, the processing unit issues an instruction to the rotation drive system 102 to arrange a plurality of heliostats 100 to be calibrated reflected in the image photographing means 3 substantially perpendicular to the ground. The linear light source 5 is rotated and inclined at a predetermined first speed to one side (for example, the left side or the east side) (step 301). Fig. 3-a) shows the initial state of calibration start. At this time, the heliostat 100 group is inclined to the east side. FIG. 3A schematically shows an image displayed on the image capturing means 3 that captures the situation.
次に、処理部は回転駆動系102に指示を出すことで、線状光源5を横切るように、ヘリオスタット6群を、線状光源5のもう一方の側(例えば右側or西側)に向かってステップ301の速度よりも遅い第2の速度でゆっくりと回転させる(ステップ302)。
Next, the processing unit issues an instruction to the rotational drive system 102 so that the heliostat 6 group is moved toward the other side (for example, the right side or the west side) of the linear light source 5 so as to cross the linear light source 5. Slowly rotate at a second speed slower than the speed of step 301 (step 302).
そして、処理部は回転駆動系102に指示を出すことで、画像撮影手段3が得た画像に映し出される校正中のヘリオスタット100の内、線状光源5の反射光が確認されたヘリオスタット100を順次停止させる(ステップ303)。図3-b)は、このときの画像撮影手段3に映し出される映像を模式的に示したものである。ヘリオスタット100の制御角度がずれていなければ、ヘリオスタット100ごとに予定されている角度位置で、画像上に、線状光源5の反射光が確認されることになる。
Then, the processing unit issues an instruction to the rotation drive system 102, and the heliostat 100 in which the reflected light of the linear light source 5 is confirmed among the heliostats 100 being calibrated that are displayed in the image obtained by the image photographing means 3. Are sequentially stopped (step 303). FIG. 3B schematically shows an image displayed on the image photographing means 3 at this time. If the control angle of the heliostat 100 is not deviated, the reflected light of the linear light source 5 is confirmed on the image at an angle position planned for each heliostat 100.
しかし、ヘリオスタット100の制御角度がずれていた場合は、予測される角度位置よりも早く、または遅い時刻に、画像上に、線状光源5の反射光が確認されることとなる。これによって、校正時に、どのヘリオスタット100の制御角度がずれを生じていたかを判別することを可能となる(ステップ304)。図中の矢印8は、線状光源5の反射光が未確認のヘリオスタット100を示す。
However, when the control angle of the heliostat 100 is deviated, the reflected light of the linear light source 5 is confirmed on the image at a time earlier or later than the predicted angular position. This makes it possible to determine which heliostat 100 has a deviation in control angle during calibration (step 304). An arrow 8 in the figure indicates a heliostat 100 in which the reflected light of the linear light source 5 has not been confirmed.
つまり、処理部が所定時刻に得られた画像における所定のヘリオスタット100上に形成された所定の形状の位置を画像として得て、所定の位置の位置を所定の値と比較することで、ヘリオスタット100の第1の方向における角度ずれを得ることができるということである。画像撮影手段3は連続撮影が可能であるので、処理部は連続した時刻中で得られた複数の画像についてこの判断を行うこともできる。この動作は、第1の撮像部からの第1の画像には前記第1の所定の形状の少なくとも一部が含まれ、処理部は、第1の画像から前記ミラーの第1の方向における角度ずれを得ると表現することができる。
That is, the processing unit obtains a position of a predetermined shape formed on a predetermined heliostat 100 in an image obtained at a predetermined time as an image, and compares the position of the predetermined position with a predetermined value, thereby obtaining a helio That is, the angular deviation in the first direction of the stat 100 can be obtained. Since the image photographing unit 3 can perform continuous photographing, the processing unit can also make this determination with respect to a plurality of images obtained during successive times. In this operation, the first image from the first imaging unit includes at least a part of the first predetermined shape, and the processing unit determines the angle of the mirror in the first direction from the first image. It can be expressed that a deviation is obtained.
図3-c)は、ヘリオスタット100群を、線状光源5のもう一方の側(例えば右側or西側)に向かってゆっくりと回転10させた後の状態を模式的に示したものである。図中の矢印11のヘリオスタット100は、あらかじめ決めた角度の回転を行う制御信号を与えても、画像上に、線状光源5の反射光が確認できなかったヘリオスタット100ある。このヘリオスタット100は、水平方向(例えば左右方向or東西方向)の駆動機構自体に動作不良があると推定できる。
FIG. 3-c) schematically shows a state after the heliostat 100 group is slowly rotated 10 toward the other side of the linear light source 5 (for example, the right side or the west side). The heliostat 100 indicated by an arrow 11 in the figure is the heliostat 100 in which the reflected light of the linear light source 5 cannot be confirmed on the image even when a control signal for rotating at a predetermined angle is given. It can be estimated that this heliostat 100 has a malfunction in the driving mechanism itself in the horizontal direction (for example, the left-right direction or the east-west direction).
次に、処理部は回転駆動系102に指示を出すことで、校正を実施するヘリオスタット100を、線状光源5の反射光が画像撮影手段3上に撮像される状態を維持しながら、線状光源5をトレースするように駆動12し、線状光源5上の基準位置4が画像中に撮像される位置まで駆動する制御を行う(ステップ305)。図3-d)は、このときの画像を模式的に示したものである。ヘリオスタット100の制御角度がずれていなければ、ヘリオスタット100ごとに予定されている角度位置で、画像撮影手段3上に、線状光源5上の基準位置4となる+字パターンの反射光が確認される。しかし、ヘリオスタット100の制御角度がずれていた場合は、予測される角度位置よりも早くもしくは、遅い時刻で、画像撮影手段3上に、線状光源5a上の基準位置4となる+字パターンの反射光が確認されることとなる。
Next, the processing unit issues an instruction to the rotation drive system 102 to cause the heliostat 100 that performs calibration to perform line correction while maintaining the state in which the reflected light of the linear light source 5 is imaged on the image photographing means 3. The linear light source 5 is driven 12 so as to trace, and control is performed to drive the reference position 4 on the linear light source 5 to a position where it is captured in the image (step 305). FIG. 3-d) schematically shows an image at this time. If the control angle of the heliostat 100 does not deviate, the reflected light of the + character pattern that becomes the reference position 4 on the linear light source 5 is projected on the image photographing means 3 at the angle position planned for each heliostat 100. It is confirmed. However, if the control angle of the heliostat 100 is deviated, the + character pattern that becomes the reference position 4 on the linear light source 5a on the image photographing means 3 at a time earlier or later than the predicted angular position. The reflected light will be confirmed.
つまり、処理部が所定時刻に得られた画像における所定のヘリオスタット100上に形成された基準位置を得て、基準位置が所定の時刻で得られたか否か判断することで、ヘリオスタット100の第1の方向と交差する第2における角度ずれを得ることができるということである。画像撮影手段3は連続撮影が可能であるので、処理部は連続した時刻の中で得られた複数の画像についてこの判断を行うこともできる。この動作は、所定の形状103(第1の所定の形状と表現できる)は基準位置4(第1の基準と表現できる)、第1の画像は第1の基準を含み、処理部は第1の基準から前記第1の方向と交差する方向における角度ずれを得ると表現することができる。
That is, the processing unit obtains a reference position formed on a predetermined heliostat 100 in an image obtained at a predetermined time, and determines whether or not the reference position is obtained at a predetermined time. This means that an angular deviation in the second direction intersecting the first direction can be obtained. Since the image photographing unit 3 can perform continuous photographing, the processing unit can also make this determination with respect to a plurality of images obtained in successive times. In this operation, the predetermined shape 103 (which can be expressed as the first predetermined shape) includes the reference position 4 (which can be expressed as the first reference), the first image includes the first reference, and the processing unit has the first It can be expressed that the angular deviation in the direction intersecting the first direction is obtained from the reference of the above.
これによって、校正時に、どのヘリオスタット100の制御角度が、ずれを生じていたかを知ることが可能となる。図中の矢印13は、線状光源5上の基準位置となる+字パターンの反射光が未確認のヘリオスタット100を示す。
This makes it possible to know which heliostat 100 control angle has shifted during calibration. An arrow 13 in the figure indicates the heliostat 100 in which the reflected light of the + -shaped pattern that is the reference position on the linear light source 5 has not been confirmed.
図3-e)は、ヘリオスタット100群を、上方に向かってゆっくりと回転14させた後の状態を模式的に示したものである。図中の矢印のヘリオスタット100は、あらかじめ、決めた角度の上方回転を行う制御信号を与えても、画像撮影手段3上に、線状光源5a上の基準位置4の+字パターンが確認できなかったヘリオスタット100ある。このヘリオスタット100は、仰角方向(上方向)の駆動機構自体に動作不良があることが推察できる。
Fig. 3-e) schematically shows a state after the heliostat 100 group is slowly rotated 14 upward. The heliostat 100 indicated by the arrow in the figure can confirm the + character pattern of the reference position 4 on the linear light source 5a on the image photographing means 3 even if a control signal for rotating upward at a predetermined angle is given in advance. There are 100 heliostats that did not exist. It can be inferred that the heliostat 100 has a malfunction in the drive mechanism itself in the elevation direction (upward direction).
上記のように、本実施例によれば、多数のヘリオスタット100から制御角度にずれを生じたヘリオスタット100や、駆動機構に不具合を生じて回転駆動しないヘリオスタット100を、効率的に検出することが可能となる。また、角度ずれが検出された複数のヘリオスタット100については、その角度ずれを相殺するよう一括して角度補正処理を行うことも可能である。これによって、多数のヘリオスタット6の状況を効率よく把握および校正できる太陽光集光システムを提供することが可能となる。
As described above, according to the present embodiment, the heliostat 100 in which the control angle is deviated from a large number of heliostats 100 and the heliostat 100 that does not rotate due to a malfunction in the drive mechanism are efficiently detected. It becomes possible. In addition, with respect to the plurality of heliostats 100 in which the angular deviation is detected, it is also possible to collectively perform the angle correction process so as to cancel the angular deviation. As a result, it is possible to provide a sunlight condensing system that can efficiently grasp and calibrate the situation of a large number of heliostats 6.
次に、実施例2について説明する。本実施例では、他の実施例と異なる部分について説明する。本実施例は、基準となる線状光源と外乱光との間の識別安定化に配慮したものである。
Next, Example 2 will be described. In the present embodiment, parts different from the other embodiments will be described. In this embodiment, consideration is given to stabilization of discrimination between a linear light source serving as a reference and disturbance light.
実施例1はヘリオスタット100で反射された線状光源5の光を画像撮影手段3が検出することで、ヘリオスタット100の校正を行うものである。画像撮影手段3は、ヘリオスタット100で反射された線状光源5を確実に検出できたほうが望ましい。このため、太陽光集光システムの設置場所や周辺の環境にもよるが、外乱となる線状光源5以外の光と線状光源5の光とを確実に分離できた方が、安定した校正動作の為には望ましい場合もある。ここで想定される外乱光とは、例えば、月明かりや保安照明ならびに、周囲のほかの施設などの明かりなどである。
The first embodiment calibrates the heliostat 100 when the image photographing means 3 detects the light of the linear light source 5 reflected by the heliostat 100. It is desirable that the image photographing unit 3 can reliably detect the linear light source 5 reflected by the heliostat 100. For this reason, although it depends on the installation location of the solar light collecting system and the surrounding environment, it is more stable if the light other than the linear light source 5 that causes disturbance and the light of the linear light source 5 can be reliably separated. It may be desirable for operation. The disturbance light assumed here is, for example, moonlight, security lighting, and lights of other facilities in the vicinity.
本実施例では、外乱光と線状光源5の光とを確実に分離する方法を提供する。本実施例では、基準とする線状光源5の光の波長として、あらかじめ定めた所定の波長の光を採用する。この所定の波長を外乱光と異なる色や波長の光を用いることで、画像撮影手段3で撮影された画像から比較的容易に、外乱光と線状光源5の光を確実に分離できる。例えば、線状光源5の波長は外乱光の波長とは異なる、より具体的には線状光源5の波長は外乱光の波長よりも長い、又は短いと表現することができる。この線状光源5の波長に着目したアプローチは第1のアプローチと表現することができる。
In this embodiment, a method for reliably separating ambient light and light from the linear light source 5 is provided. In the present embodiment, light having a predetermined wavelength is adopted as the wavelength of light of the linear light source 5 as a reference. By using light of a color or wavelength different from that of the disturbance light at the predetermined wavelength, the disturbance light and the light from the linear light source 5 can be reliably separated from the image photographed by the image photographing means 3 relatively easily. For example, it can be expressed that the wavelength of the linear light source 5 is different from the wavelength of disturbance light, more specifically, the wavelength of the linear light source 5 is longer or shorter than the wavelength of disturbance light. This approach focusing on the wavelength of the linear light source 5 can be expressed as a first approach.
この場合、画像撮影手段3側では、この所定の波長を光電変換素子へ向かって通過させ、そのほかの波長は遮光する光学的なフィルタ、及び撮像後にこの所定の波長に対応した成分を抽出するフィルタ処理の少なくとも1つを採用することが望ましい。の画像処理で特定波長を検出するフィルタ処理を設けるなどの方法も、外乱光と線状光源5aの光を確実に分離する方法として有効な手段となる。線状光源5aの光を、あらかじめ定めた複数の波長の組合せ光とするとともに、画像撮影手段3側でその波長の組み合わせ光にも選択的に分離すれば、さらに、確実に基準となる線状光源5aの光を識別可能となることは言うまでもない。この画像撮影手段3側に着目したアプローチは第2のアプローチと表現することができる。
In this case, on the image photographing means 3 side, an optical filter that passes the predetermined wavelength toward the photoelectric conversion element and blocks the other wavelengths, and a filter that extracts a component corresponding to the predetermined wavelength after imaging. It is desirable to employ at least one of the processes. A method of providing a filter process for detecting a specific wavelength in the image processing is also an effective means for reliably separating the disturbance light and the light from the linear light source 5a. If the light from the linear light source 5a is combined light having a plurality of predetermined wavelengths and is selectively separated into the combined light of the wavelengths on the image photographing means 3 side, the reference linear shape is further ensured. Needless to say, the light from the light source 5a can be identified. This approach focusing on the image photographing means 3 side can be expressed as a second approach.
また、ヘリオスタット100の反射ミラーが線状光源5を反射する反射方向に合わせた偏光フィルタを、画像撮影手段3側に設けることで、比較的簡単に、月明かりなどの外乱光の地面反射などによる影響を抑制することが比較的簡単で好ましい場合もある。この偏光に着目したアプローチは第3のアプローチと表現することができる。
Further, by providing a polarizing filter on the image photographing means 3 side in accordance with the reflection direction in which the reflection mirror of the heliostat 100 reflects the linear light source 5, it is possible to relatively easily cause disturbance light such as moonlight due to ground reflection. In some cases, it is relatively simple and preferable to suppress the influence. This approach focusing on polarization can be expressed as a third approach.
また、外乱光と線状光源5の光を確実に分離するさらに別の方法として、線状光源5を予め定めた発光パターンや周期で点滅させ、画像撮影手段3側でその点滅パターンを有する光源を基準となる線状光源5として検出する方法も有効である。例えば、点滅するタイミングが既知であるなら、そのタイミングにあわせて画像撮影手段3が画像を得るよう構成しても良い。
As another method for reliably separating the disturbance light and the light from the linear light source 5, the linear light source 5 is blinked in a predetermined light emission pattern or cycle, and the light source having the blinking pattern on the image photographing means 3 side. Is also effective as a linear light source 5 serving as a reference. For example, if the blinking timing is known, the image photographing means 3 may be configured to obtain an image in accordance with the timing.
このように、本実施例の校正方式では、基準とする線状光源5の光の波長や点滅パターンや偏光面などに着目し、それを画像撮影手段3側で識別することで、より安定した校正動作を可能とすることが可能となる。これによって、検出の外乱となる光が多い環境下であっても、ヘリオスタット100の校正動作を安定して行うことが可能となる。
Thus, in the calibration method of the present embodiment, focusing on the wavelength of light of the linear light source 5 as a reference, the blinking pattern, the polarization plane, and the like, and identifying it on the image photographing means 3 side, it is more stable. Calibration operation can be enabled. This makes it possible to stably perform the calibration operation of the heliostat 100 even in an environment where there is a lot of light that becomes a disturbance of detection.
次に実施例3について説明する。以降の説明では、他の実施例と異なる部分について説明する。本実施例は実施例1で説明した所定の形状103を基準光源5以外によって構成するものである。
Next, Example 3 will be described. In the following description, parts different from the other embodiments will be described. In the present embodiment, the predetermined shape 103 described in the first embodiment is constituted by components other than the reference light source 5.
実施例1は、線状光源5を用いるものである。発電などに用いる太陽光集光システムでは、少しでも電力を消費しないことが望ましい場合もある。
Example 1 uses a linear light source 5. In a solar light collecting system used for power generation or the like, it may be desirable not to consume any electric power.
そこで、本実施例では、図1に示す所定の形状103として線状マー5bを採用する。
Therefore, in this embodiment, the linear mer 5b is adopted as the predetermined shape 103 shown in FIG.
太陽光の集光効率を高くするためには、ヘリオスタット100の校正は、太陽の出ていない夜間に行うことが望ましい。
In order to increase the sunlight collection efficiency, it is desirable to calibrate the heliostat 100 at night when the sun does not come out.
線状マーク5bは、線状光源5aの代わりに、周囲の弱い光を利用して光る蛍光材料を含む場合がある。また、線状マーク5bは周囲の光を散乱する散乱材料を含む場合もある。さらに、線状マーク5bは昼間の光を蓄える畜光材を含む場合もある。これらのアプローチは線状マーク5bを比較的低コストに形成することができる。
The linear mark 5b may include a fluorescent material that shines using weak ambient light instead of the linear light source 5a. Further, the linear mark 5b may include a scattering material that scatters ambient light. Further, the linear mark 5b may include a daylight material that stores daytime light. These approaches can form the linear mark 5b at a relatively low cost.
このように形成した線状マーク5bは、実用には十分耐えうるが、線状光源5aに比べると周囲環境の影響を受けやすく不安定である場合もある。次に、線状マーク5bを使用する場合に検出安定性を向上させる方法を説明する。
The linear mark 5b formed in this way can withstand practical use, but may be more susceptible to the influence of the surrounding environment than the linear light source 5a and may be unstable. Next, a method for improving detection stability when the linear mark 5b is used will be described.
本実施例では、線状マーク5bに光を供給する照明部を設ける。照明部は少なくとも1つ以上の方向から線状マーク5bへ光を供給する。照明部はレーザ光によって線状マーク5bを走査する場合もある。走査の方法はラスタ走査である場合もあるが、任意の走査方法を採用し得る。このアプローチによれば、基準とある線状マーク5bを浮き立たせることができる。なお、照明部を設けるアプローチは線状マークを使用する場合に必ず採用しなければならないものではない。
In this embodiment, an illumination unit that supplies light to the linear mark 5b is provided. The illumination unit supplies light to the linear mark 5b from at least one direction. The illumination unit may scan the linear mark 5b with laser light. The scanning method may be raster scanning, but any scanning method can be adopted. According to this approach, a certain linear mark 5b can be raised. Note that the approach of providing an illumination unit is not necessarily adopted when a linear mark is used.
本実施例によれば、実施例1よりも少ない電力でヘリオスタット100の校正を行うことが可能となる。
According to the present embodiment, it is possible to calibrate the heliostat 100 with less power than in the first embodiment.
次に実施例4について説明する。以降では、他の実施例と異なる部分について説明する。上述した線状光源5aや線状マーク5bなどは、多くのヘリオスタットの校正に利用するためには、縦長により高い位置に配置することが望ましい。また、画像撮影手段3についても、広い範囲のヘリオスタットを撮影するためには、より高い位置に設置することが望ましい。このため、実施例1では、校正の基準とする所定の形状103と画像撮影手段3は、タワー1の壁面に設置している。
Next, Example 4 will be described. Hereinafter, parts different from the other embodiments will be described. In order to use the linear light source 5a and the linear mark 5b described above for calibration of many heliostats, it is desirable to arrange them at a higher position vertically. Also, the image photographing means 3 is desirably installed at a higher position in order to photograph a wide range of heliostats. For this reason, in the first embodiment, the predetermined shape 103 and the image photographing means 3 as the reference for calibration are installed on the wall surface of the tower 1.
しかし高い位置に所定の形状103と画像撮影手段3を設置した場合でも、画像撮影手段3が、一度に撮影できるヘリオスタット100の数には上限がある場合もある。画像撮影手段3の持つ性能(例えば、解像度)によって、十分に識別のできるヘリオスタットの数は制限される場合もある。このため、遠くのヘリオスタット100を校正する場合は、撮影画像を拡大する必要が生じる。
However, even when the predetermined shape 103 and the image photographing means 3 are installed at a high position, there may be an upper limit on the number of heliostats 100 that the image photographing means 3 can photograph at one time. Depending on the performance (for example, resolution) of the image capturing means 3, the number of heliostats that can be sufficiently identified may be limited. For this reason, when calibrating a distant heliostat 100, it is necessary to enlarge the captured image.
そこで、本実施例の画像撮影手段3はズームレンズを有する。処理部が、ズームレンズを制御することで、画像撮影手段3から校正を行うヘリオスタット100群の距離にかかわらず、画像撮影手段3が一度に撮影、つまり校正するヘリオスタット100の画像撮影手段3内での大きさをほぼ一定にすることが可能となる。
Therefore, the image photographing means 3 of this embodiment has a zoom lens. Regardless of the distance of the heliostat 100 group to be calibrated from the image photographing means 3, the processing unit controls the zoom lens, so that the image photographing means 3 photographs at one time, that is, the image photographing means 3 of the heliostat 100 to be calibrated. It is possible to make the inside size almost constant.
また、一度に同時に校正可能なヘリオスタット100の数には限界があることから、画像撮影手段3の撮影エリア、つまり校正するヘリオスタット群の場所を切替えながら、順次校正動作を実施する必要がある場合もある。
In addition, since the number of heliostats 100 that can be calibrated at the same time is limited, it is necessary to sequentially perform calibration operations while switching the imaging area of the image capturing means 3, that is, the location of the heliostat group to be calibrated. In some cases.
このため、本実施例の太陽熱発電システムでは、画像撮影手段3の撮影方向を変更可能な手段を設けてもよい。本発明の太陽光集光システムでは、画像撮影手段3の撮影方向を変更し、ヘリオスタットユニット6を複数のエリアに分割し、分割したヘリオスタットユニット6内の複数のエリアについて順次校正動作を行うことで、広範囲に設置されたヘリオスタット6の校正を行っても良い。本実施例によれば、広範囲にヘリオスタット100が設置された場合もでも効率的に校正を行うことが可能となる。
For this reason, in the solar thermal power generation system of the present embodiment, a means capable of changing the photographing direction of the image photographing means 3 may be provided. In the solar light collecting system of the present invention, the photographing direction of the image photographing means 3 is changed, the heliostat unit 6 is divided into a plurality of areas, and a plurality of areas in the divided heliostat unit 6 are sequentially calibrated. Thus, the heliostat 6 installed in a wide range may be calibrated. According to this embodiment, even when the heliostat 100 is installed in a wide range, it is possible to perform calibration efficiently.
次に、実施例5について説明する。実施例4のアプローチでも校正可能な範囲には限界がある。例えば、所定の形状103と画像撮影手段3がタワー1の真南面にある場合、タワー1の南側から東西方向にずれた位置に配置されたヘリオスタット100は、ミラー面を大きく傾斜させないと所定の形状103の画像を、画像撮影手段3に向かって反射させることはできない。校正時(基準位置検出時)のミラー面傾斜角度が大きいと、校正精度は低下してしまう。
Next, Example 5 will be described. There is a limit to the range that can be calibrated by the approach of the fourth embodiment. For example, when the predetermined shape 103 and the image capturing means 3 are on the true south surface of the tower 1, the heliostat 100 arranged at a position shifted in the east-west direction from the south side of the tower 1 does not significantly tilt the mirror surface. The image of the shape 103 cannot be reflected toward the image photographing unit 3. If the mirror surface tilt angle during calibration (when the reference position is detected) is large, the calibration accuracy is degraded.
そこで、本実施例では、ヘリオスタット100の配置状況に合わせて、所定の形状103と画像撮影手段3との組み合わせを複数使用する。
Therefore, in this embodiment, a plurality of combinations of the predetermined shape 103 and the image photographing means 3 are used in accordance with the arrangement state of the heliostat 100.
図4は本実施例を説明する図である。本実施例では、タワー1の全方位領域にわたって、タワー1を囲むようヘリオスタットユニット6が配置されている。
FIG. 4 is a diagram for explaining the present embodiment. In this embodiment, the heliostat unit 6 is arranged so as to surround the tower 1 over the omnidirectional region of the tower 1.
本実施例では、1つのタワー1に対して、より多くのヘリオスタット100をより近い位置に配置するために、タワー1の全方位にヘリオスタット100を配置している。
図4の太陽熱発電システムでは、タワーの4方向の方位面に、所定の形状103と画像撮影手段3の組み合わせを配置している。 In this embodiment, theheliostats 100 are arranged in all directions of the tower 1 in order to arrange more heliostats 100 closer to one tower 1.
In the solar thermal power generation system of FIG. 4, a combination of thepredetermined shape 103 and the image photographing means 3 is arranged on the four azimuth planes of the tower.
図4の太陽熱発電システムでは、タワーの4方向の方位面に、所定の形状103と画像撮影手段3の組み合わせを配置している。 In this embodiment, the
In the solar thermal power generation system of FIG. 4, a combination of the
より具体的には、図4では画像撮影手段3は、画像撮影手段3N、3E、3S、3Wで表現される。画像撮影手段3N、3E、3S、3Wは自身の左右45度の範囲の領域16N、16E、16S、16Wの画像を得る。校正も領域16N、16E、16S、16W毎に行われる。校正は実質的に同時に行われる場合もあれば、異なる時間に行われる場合もある。
More specifically, in FIG. 4, the image photographing means 3 is represented by image photographing means 3N, 3E, 3S, 3W. The image capturing means 3N, 3E, 3S, and 3W obtain images of the regions 16N, 16E, 16S, and 16W in the range of 45 degrees to the left and right. Calibration is also performed for each of the areas 16N, 16E, 16S, and 16W. Calibration may occur at substantially the same time or may occur at different times.
本実施例によれば、画像撮影手段3N、3E、3S、3Wは所定の形状103を適切に反射する範囲のヘリオスタット100の画像を得られるので、ヘリオスタット100の設置場所に起因する校正精度の差をより小さくすることができる。
According to the present embodiment, the image photographing means 3N, 3E, 3S, and 3W can obtain an image of the heliostat 100 in a range that appropriately reflects the predetermined shape 103, so that the calibration accuracy due to the installation location of the heliostat 100 is obtained. Can be made smaller.
次に、実施例6について説明する。以降の説明では、他の実施例と異なる部分について説明する。図5は本実施例を説明する図である。
Next, Example 6 will be described. In the following description, parts different from the other embodiments will be described. FIG. 5 is a diagram for explaining this embodiment.
本実施例では、実施例5のタワー1に配置された画像撮影手段3N、3E、3S、3Wに加えて、ヘリオスタットユニット6よりも外の複数のタワーに配置された画像撮影手段3NE、3SE、3SW、3NWを配置する。所定の形状103もその数だけ配置される。本実施例では、画像撮影手段3と所定の形状103の組み合わせは8つである。
In the present embodiment, in addition to the image photographing means 3N, 3E, 3S, 3W arranged in the tower 1 of the fifth embodiment, the image photographing means 3NE, 3SE arranged in a plurality of towers outside the heliostat unit 6. 3SW and 3NW are arranged. The number of the predetermined shapes 103 is also arranged. In the present embodiment, there are eight combinations of the image photographing means 3 and the predetermined shape 103.
さらに本実施例では、ヘリオスタット6を領域16N、16E、16S、16W、16NE、16ES、16SW、16NWとう8つの領域に分割する。
Further, in this embodiment, the heliostat 6 is divided into eight areas 16N, 16E, 16S, 16W, 16NE, 16ES, 16SW, and 16NW.
本実施例では、8つの領域に対して8つの組み合わせを使用することで画像を取得し、校正を行う。
In this embodiment, an image is acquired and calibrated by using eight combinations for eight regions.
本実施例によれば、より高精度に、より安定した校正が可能となる。さらに、校正時間を、短くすることも可能となる。
According to this embodiment, more accurate and more stable calibration is possible. Furthermore, the calibration time can be shortened.
なお、本実施例では、画像撮影手段3の数と所定の形状103の数とは1対1の関係にあるが、あるヘリオスタット100で反射された1つの所定の形状103を画像撮影手段3N、3E、3S、3W、3NE、3SE、3SW、3NWの少なくとも2つで撮像するようにしても良い。つまり、1つの所定の形状103について複数の撮像部を使用しても良いということである。そのようにすれば、同一領域内で、複数の画像撮影手段3による同時校正を実施することが可能となる。この様に、同一領域内に複数の画像撮影手段3を設置する方法でも、太陽光集光システムの全ヘリオスタット6の校正時間を、短くすることが可能である。
In the present embodiment, the number of the image photographing means 3 and the number of the predetermined shapes 103 are in a one-to-one relationship, but one predetermined shape 103 reflected by a certain heliostat 100 is used as the image photographing means 3N. You may make it image by at least 2 of 3E, 3S, 3W, 3NE, 3SE, 3SW, and 3NW. That is, a plurality of imaging units may be used for one predetermined shape 103. By doing so, it is possible to perform simultaneous calibration by a plurality of image photographing means 3 within the same region. As described above, the calibration time of all the heliostats 6 of the solar light collecting system can be shortened also by the method of installing a plurality of image photographing means 3 in the same region.
さらに、複数の所定の形状103と複数の画像撮影手段3とを使用して1つのヘリオスタット100を校正しても良い。この場合、異なるヘリオスタット100のミラー角度での校正動作を行うことになるために、校正精度の向上が可能となる。
Furthermore, one heliostat 100 may be calibrated using a plurality of predetermined shapes 103 and a plurality of image photographing means 3. In this case, since the calibration operation is performed at different mirror angles of the heliostat 100, the calibration accuracy can be improved.
実施例5、及び6では画像撮影手段3(第1の撮像部と表現することができる)とは異なる位置に配置された第2の撮像部、実施例1に開示された所定の形状103とは異なる位置に配置された第2の所定の形状を有すると表現することができる。
In the fifth and sixth embodiments, the second imaging unit disposed at a position different from the image capturing unit 3 (which can be expressed as the first imaging unit), the predetermined shape 103 disclosed in the first embodiment, and Can be expressed as having a second predetermined shape arranged at different positions.
次に実施例7について説明する。実施例7は所定の形状103のバリエーションを説明するものである。図6は所定の形状103の詳細を説明する図である。
Next, Example 7 will be described. The seventh embodiment will explain a variation of the predetermined shape 103. FIG. 6 is a diagram for explaining the details of the predetermined shape 103.
所定の形状103は線状光源5を含む。線状光源5は、十字の発光体17を含む。発光体17の中心は基準位置4と表現できる。さらに、線状光源5は、発光体17に接続された線状の発光体18を含む。線状光源5は第1の軸601については実質的に対称であるが、第1の軸と交差(より具体的には実質的に直交)する第2の軸602については実質的に非対称であると表現することができる。
The predetermined shape 103 includes the linear light source 5. The linear light source 5 includes a cross-shaped light emitter 17. The center of the light emitter 17 can be expressed as a reference position 4. Further, the linear light source 5 includes a linear light emitter 18 connected to the light emitter 17. The linear light source 5 is substantially symmetric about the first axis 601, but is substantially asymmetric about the second axis 602 that intersects (more specifically, substantially orthogonal) the first axis. It can be expressed that there is.
発光体18は複数の領域19n、19m、19fに分割することも可能であり、複数の領域毎に発光波長、点滅パターン、点滅タイミング、寸法(長さ、太さ、及び厚さの少なくとも1つ)の少なくとも1つを任意に設定することができる。
The light emitter 18 can be divided into a plurality of regions 19n, 19m, and 19f, and at least one of a light emission wavelength, a flashing pattern, a flashing timing, and dimensions (length, thickness, and thickness) for each of the plurality of regions. ) Can be arbitrarily set.
この場合、画像撮影手段3によるヘリオスタット100の撮影時に、これら領域ごとの違いを識別できるようにすることで、図3で説明したヘリオスタット100の校正プロセスの高速化が可能となる。図3で説明したヘリオスタット100の校正プロセスにおいて、最初に線状光源5の一部を検出した段階(図3cや図3d)で、ヘリオスタット100ごとの基準位置4までの距離が長いか短いかを識別できる。つまり、画像撮影手段3が得た画像に写ったヘリオスタット100に反射される線状光源5の状態(発光色、波長パターン、点滅パターンの違い)から、ヘリオスタット100毎との基準位置4までの距離が長いか(角度が大きいか)、短いか(角度が小さいか)を識別できる。
In this case, it is possible to speed up the calibration process of the heliostat 100 described with reference to FIG. 3 by making it possible to identify the difference between these areas when the heliostat 100 is photographed by the image photographing means 3. In the calibration process of the heliostat 100 described with reference to FIG. 3, the distance to the reference position 4 for each heliostat 100 is long or short when a part of the linear light source 5 is first detected (FIG. 3 c and FIG. 3 d). Can be identified. That is, from the state of the linear light source 5 reflected on the heliostat 100 shown in the image obtained by the image photographing means 3 (difference in emission color, wavelength pattern, and blinking pattern) to the reference position 4 for each heliostat 100. Can be identified whether the distance is long (the angle is large) or short (the angle is small).
この場合、基準位置4から遠い(角度が大きい)ヘリオスタット100は早く動かす必要があるが、基準位置4に近い(角度が小さい)ヘリオスタット100はゆっくり動かしたほうが、基準位置(基準位置4)を正確に見つけやすくなる。このように、図3の校正プロセスにおいて、最初に線状光源5の一部を検出した段階(図3cや図3d)で、基準位置までの距離がおおよそわかることで、校正動作の効率を良くすることが可能となる。
In this case, the heliostat 100 that is far from the reference position 4 (large angle) needs to be moved quickly, but the heliostat 100 that is close to the reference position 4 (small angle) is moved slowly to the reference position (reference position 4). Makes it easier to find exactly. As described above, in the calibration process of FIG. 3, the distance to the reference position is roughly known at the stage where a part of the linear light source 5 is first detected (FIG. 3c and FIG. 3d), thereby improving the efficiency of the calibration operation. It becomes possible to do.
次に、実施例8について説明する。本実施例は線状光源5の他のバリエーションについて説明するものである。図7は本実施例を説明する図である。
Next, Example 8 will be described. In the present embodiment, other variations of the linear light source 5 will be described. FIG. 7 is a diagram for explaining this embodiment.
本実施例の発光光源5は基準位置4の上側に発光体20n、及び発光体20fを有し、下側には発光体21n、及び発光体22fを有する。線状光源5は第1の軸601、第2の軸602両方について実質的に対称である。本実施例では、発光体20n、20f、21n、22fの間で発光波長、点滅パターン、点滅タイミング、寸法(長さ、太さ、及び厚さの少なくとも1つ)の少なくとも1つを任意に、より具体的には異なるように設定する。このようにすれば、基準位置4を基準に上か下かを処理部は識別することが可能となる。
The light-emitting light source 5 of this embodiment has a light emitter 20n and a light emitter 20f on the upper side of the reference position 4, and has a light emitter 21n and a light emitter 22f on the lower side. The linear light source 5 is substantially symmetric about both the first axis 601 and the second axis 602. In this embodiment, at least one of the emission wavelength, the blinking pattern, the blinking timing, and the dimensions (at least one of length, thickness, and thickness) between the light emitters 20n, 20f, 21n, and 22f is arbitrarily set. More specifically, it is set differently. In this way, the processing unit can identify whether the reference position 4 is above or below the reference position 4.
基準位置4の上の発光体か下の発光体か処理部が識別可能になれば、図3の校正プロセスにおいて最初に線状光源5の一部を検出した段階(図3cや図3d)で、ヘリオスタット100に基準位置4の上側か下側が映っているかを識別できる。基準位置4より上側か下側かがわかれば、次の動作で、基準位置4を見つけるために、ヘリオスタット100を動作させる方向(上側か下側か)を知ることができる。
If the light emitter above or below the reference position 4 can be identified, the processing unit can first identify a part of the linear light source 5 in the calibration process of FIG. 3 (FIGS. 3c and 3d). , Whether the upper side or the lower side of the reference position 4 is reflected on the heliostat 100 can be identified. If the upper side or the lower side of the reference position 4 is known, it is possible to know the direction (upper side or lower side) in which the heliostat 100 is operated in order to find the reference position 4 in the next operation.
このようにすることで、図3の校正プロセスにおける最初の動作(図3の矢印9)において、基準位置4に向かってヘリオスタット100を動作させることが可能となる。これによって、精度が確保されている大部分のヘリオスタット100は、基準位置4を検出することができる。
In this manner, the heliostat 100 can be moved toward the reference position 4 in the first operation (arrow 9 in FIG. 3) in the calibration process of FIG. As a result, most heliostats 100 whose accuracy is ensured can detect the reference position 4.
また仰角方向に誤差を有しているために、基準位置4を見つけられなかったヘリオスタット100についても、基準位置4の上側か下側の発光体を見つけることが可能となる。
Also, because of the error in the elevation angle direction, it is possible to find the light emitter above or below the reference position 4 even for the heliostat 100 that could not find the reference position 4.
さらに、見つかった発光体の位置が、基準位置の上側か下側かを識別できるようにしてあることから、誤差を有していたヘリオスタット100も、次の動作(図3の矢印12に相当する動作)で基準位置4を見つける方向を知ることができるようになる。
Further, since the position of the found illuminant can be identified whether it is above or below the reference position, the heliostat 100 having an error also performs the following operation (corresponding to the arrow 12 in FIG. 3). The direction in which the reference position 4 is found can be known in the operation).
このように、図7のようなその中央付近に基準位置4を設けた線状光源5を用いることで、最初の動作から基準位置4を探すように、ヘリオスタット100を制御できる。このため、図7のような線状光源5を利用すれば、さらに効率の良いヘリオスタット100の校正動作を、提供可能となる。
Thus, by using the linear light source 5 provided with the reference position 4 near the center as shown in FIG. 7, the heliostat 100 can be controlled so as to search for the reference position 4 from the first operation. For this reason, if the linear light source 5 as shown in FIG. 7 is used, a more efficient calibration operation of the heliostat 100 can be provided.
なお、本実施例では基準位置4より上側か下側かに加えて、4つの領域の中から基準位置4に近い領域20n、及び21nとそれらよりも基準位置4から遠い領域20、及び22fとを識別可能としても良い。このようにすることで、実施例7と同様に基準位置4を見つけられなかったヘリオスタット100が、基準位置4を見つける動作を効率よく行えるようになる。
In this embodiment, in addition to the upper side or the lower side of the reference position 4, the areas 20 n and 21 n near the reference position 4 among the four areas, and the areas 20 and 22 f farther from the reference position 4 than those four areas. Can be identified. By doing so, the heliostat 100 that cannot find the reference position 4 as in the seventh embodiment can efficiently perform the operation of finding the reference position 4.
次に、実施例9について説明する。本実施例は線状光源5の他のバリエーションについて説明するものである。図8は本実施例を説明する図である。
Next, Example 9 will be described. In the present embodiment, other variations of the linear light source 5 will be described. FIG. 8 is a diagram for explaining this embodiment.
本実施例の線状光源5基準位置4を線状光源5の上端部付近に配置している。線状光源5は、他の線状光源5と異なり、基準位置4からの距離を領域ごとでなく、距離ごと(例えば点状の発光点23ごと)に識別できるようにしたものである。つまり、配列された複数の発光点23は互いに発光波長、点滅パターン、点滅タイミング、寸法(長さ、太さ、及び厚さの少なくとも1つ)の少なくとも1つが任意に設定可能であり、より具体的には異なるということである。
The linear light source 5 reference position 4 of this embodiment is arranged near the upper end of the linear light source 5. Unlike the other linear light sources 5, the linear light source 5 is configured such that the distance from the reference position 4 can be identified not for each region but for each distance (for example, each point-like light emission point 23). That is, at least one of the plurality of light emitting points 23 arranged can be arbitrarily set with respect to each other, the light emission wavelength, the blinking pattern, the blinking timing, and the dimension (at least one of length, thickness, and thickness). Is different.
本実施例によれば、最初に線状光源5の一部を検出した段階(図3cや図3d)で、基準位置4までの距離をより正確に得ることができる。よって、さらに効率よく校正を行うことが可能となる。
According to the present embodiment, the distance to the reference position 4 can be obtained more accurately at the stage where a part of the linear light source 5 is first detected (FIGS. 3c and 3d). Therefore, calibration can be performed more efficiently.
次に、実施例10について説明する。本実施例は線状光源5の他のバリエーションについて説明するものである。図9は本実施例を説明する図である。
Next, Example 10 will be described. In the present embodiment, other variations of the linear light source 5 will be described. FIG. 9 is a diagram for explaining the present embodiment.
本実施例の線状光源5では、基準位置4を線状光源5の中央付近に配置している。そして、実施例8と同様に、基準位置4より上側か下側かを識別できるようにするとともに、実施例9と同様に、基準位置4からの距離を識別できるように校正したものである。
In the linear light source 5 of this embodiment, the reference position 4 is arranged near the center of the linear light source 5. As in the eighth embodiment, it is calibrated so that it can be identified whether it is above or below the reference position 4 and the distance from the reference position 4 can be identified as in the ninth embodiment.
このような線状光源5では、最初の動作から基準位置4を探すように、ヘリオスタット100を動作できるとともに、基準位置4を見つけられなかったヘリオスタット100も、次の動作で効率的に基準位置4を見つけることが可能となる。
In such a linear light source 5, the heliostat 100 can be operated so as to search for the reference position 4 from the first operation, and the heliostat 100 that has not found the reference position 4 can also be efficiently referenced in the next operation. Position 4 can be found.
次に、実施例11について説明する。本実施例は線状光源5の他のバリエーションについて説明するものである。図10は本実施例を説明する図である。
Next, Example 11 will be described. In the present embodiment, other variations of the linear light source 5 will be described. FIG. 10 is a diagram for explaining this embodiment.
本実施例では、他の実施例で説明した特定の基準位置4は設けず、すべての発光点23を処理部にて識別可能にした線状光源5である。各点の識別方法については他の実施例に記載された方法を任意に採用し得るが、処理部にて発光点23それぞれに対応したテンプレートやしきい値を保存しておき、得られた画像とテンプレートやしきい値を比較する方法を採用しても良い。
In the present embodiment, the specific reference position 4 described in the other embodiments is not provided, and the linear light source 5 is configured such that all the light emitting points 23 can be identified by the processing unit. As a method for identifying each point, any of the methods described in the other embodiments can be arbitrarily adopted. However, a template and a threshold value corresponding to each of the light emission points 23 are stored in the processing unit, and the obtained image is obtained. A method of comparing the template and the threshold value may be adopted.
このように、線状光源5のすべての発光点23の位置を識別できるようにすれば、すべての発光点23が基準位置4の機能を有することになる。つまり、図3の校正プロセスにおいて、最初に線状光源5の一部を検出した段階で、発光点23の位置(わかるために、ヘリオスタット100の校正は終了することになる。このためには、十分な分解能で線状光源5上の発光点23の高さ(位置)を識別できることが望ましい。
Thus, if the positions of all the light emitting points 23 of the linear light source 5 can be identified, all the light emitting points 23 have the function of the reference position 4. That is, in the calibration process of FIG. 3, at the stage where a part of the linear light source 5 is first detected, the position of the light emission point 23 (to understand, the calibration of the heliostat 100 is completed. It is desirable that the height (position) of the light emitting point 23 on the linear light source 5 can be identified with sufficient resolution.
なお、図8から図10の実施例における発光点23を点状で表現しているのは、説明をわかりやすくするためである。基準位置4からの距離や方向を識別可能であれば、必ずしも、点状の発光点23を並べる必要があるわけではない。
Note that the light emission points 23 in the examples of FIGS. 8 to 10 are represented by dots in order to make the explanation easy to understand. If the distance and direction from the reference position 4 can be identified, it is not always necessary to arrange the dotted light emitting points 23.
また、線状マーク5bにおいても、任意の色、形状を採用し得る。
Also, any color and shape can be adopted for the linear mark 5b.
以下、上述した実施例のさらなる側面について、具体的に説明する。上述した実施例では、上述した実施例では、ヘリオスタット100の数が数万基におよぶ大規模太陽光集光システムであっても、すべてのヘリオスタット100を毎晩校正することが可能となる。
Hereinafter, further aspects of the above-described embodiment will be specifically described. In the above-described embodiment, in the above-described embodiment, it is possible to calibrate all the heliostats 100 every night even in a large-scale solar light collecting system having tens of thousands of heliostats 100.
さらに、昼間の校正動作も実施する場合は、さらに高頻度にヘリオスタット100の校正を実現できるものである。
Furthermore, when the daytime calibration operation is also performed, the heliostat 100 can be calibrated more frequently.
昼間の校正では、線状マーク5bの検出も安定するとともに、識別種の数を多くすることも可能となる。
In daytime calibration, the detection of the linear mark 5b is stabilized and the number of identification species can be increased.
上述した実施例を利用して、太陽光集光システムのすべてのヘリオスタット100の校正を高頻度に行うことが可能となれば、多くの運用上のメリットが期待できる。校正頻度が高ければ、旋回角や仰角機構の故障などを早期に見つけられる。加えて、校正情報を蓄積することで、今後故障する可能性があるヘリオスタット100を予測することもできる。
If the above-described embodiments can be used to calibrate all the heliostats 100 of the solar light collecting system at high frequency, many operational advantages can be expected. If the calibration frequency is high, a malfunction of the turning angle or the elevation angle mechanism can be detected early. In addition, by accumulating calibration information, it is possible to predict a heliostat 100 that may break down in the future.
上述した実施例の校正動作では、どのヘリオスタット100が故障しているかとともに、どのヘリオスタット100が、制御角度からずれていたかを知ることができる。加えて、どの程度制御角度からずれていたかも、知ることができる。
In the calibration operation of the embodiment described above, it is possible to know which heliostat 100 has failed and which heliostat 100 has deviated from the control angle. In addition, it is possible to know how much the control angle has deviated.
上述した実施例では、ヘリオスタット100の校正時のデータを処理部に蓄積すれば、特定のヘリオスタット100の制御角度からのずれが発生する頻度などを分析することができる。これによって、故障の可能性のあるヘリオスタット100を推定できる。さらに、校正する頻度の変化から、故障するまでのタイミングを推定することも可能である。
In the above-described embodiment, if data at the time of calibration of the heliostat 100 is accumulated in the processing unit, the frequency of deviation from the control angle of the specific heliostat 100 can be analyzed. Thereby, the heliostat 100 with a possibility of failure can be estimated. Furthermore, it is also possible to estimate the timing until failure from the change in the frequency of calibration.
また、校正を必要とするヘリオスタット100の数からは、実際の集光動作時に有効に太陽光を集光しているヘリオスタット100の数が推定できる。これらの情報を、統計処理すればヘリオスタット100の修理による集光効率の変化を予測できることから、ヘリオスタット100の運用中のメンテナンス計画などを策定する上で役立つ情報となる。特に、太陽熱発電に利用する場合、発電量によるコストとメンテナンスコストを比較してのメンテナンス計画を策定することは重要である。
Also, from the number of heliostats 100 that require calibration, the number of heliostats 100 that are effectively collecting sunlight during the actual light collection operation can be estimated. If these pieces of information are statistically processed, a change in the light collection efficiency due to the repair of the heliostat 100 can be predicted. Therefore, the information is useful in formulating a maintenance plan during the operation of the heliostat 100. In particular, when using for solar thermal power generation, it is important to formulate a maintenance plan by comparing the cost of power generation with the maintenance cost.
図3の校正動作において、ヘリオスタット100の東西方向の動き(図3の矢印9および矢印10の動きに相当)と上下方向の動き(図3の矢印12および矢印14の動きに相当)は、ヘリオスタット100における旋回機構および仰角機構の短特動作ではない。図3で説明した本発明の校正動作において、線状光源5を画像撮影手段3に映し出すためのヘリオスタット100の東西方向および上下方向の回転動作方向は、ヘリオスタット100の設置位置の影響を受ける。このため、図3で説明した校正動作におけるヘリオスタット100の東西方向の動きおよび上下方向の動きは、各ヘリオスタット100の旋回駆動機構と仰角駆動機構の複合動作である。各ヘリオスタット100における旋回駆動機構と仰角駆動機構の動作情報から、個別の旋回駆動機構と仰角駆動機構の角度誤差を計算することは、ヘリオスタット100の配置情報などを用いることで、比較的容易に可能である。
In the calibration operation of FIG. 3, the movement of the heliostat 100 in the east-west direction (corresponding to the movement of the arrow 9 and arrow 10 in FIG. 3) and the vertical movement (corresponding to the movement of the arrow 12 and arrow 14 in FIG. 3) are as follows: This is not a short special operation of the turning mechanism and the elevation angle mechanism in the heliostat 100. In the calibration operation of the present invention described with reference to FIG. 3, the east-west direction and the vertical rotation direction of the heliostat 100 for projecting the linear light source 5 on the image photographing means 3 are affected by the installation position of the heliostat 100. . Therefore, the east-west movement and the vertical movement of the heliostat 100 in the calibration operation described with reference to FIG. 3 are combined operations of the turning drive mechanism and the elevation drive mechanism of each heliostat 100. It is relatively easy to calculate the angle error of the individual swing drive mechanism and the elevation drive mechanism from the operation information of the swing drive mechanism and the elevation drive mechanism in each heliostat 100 by using the arrangement information of the heliostat 100 and the like. Is possible.
以上説明したように、上述した実施例によれば、多数のヘリオスタット100を実質的に同時に校正することが可能となり、効率よく多数のヘリオスタット100を校正することが可能となる。
As described above, according to the above-described embodiment, a large number of heliostats 100 can be calibrated substantially simultaneously, and a large number of heliostats 100 can be calibrated efficiently.
本発明は上述した実施例に限定されない、本発明は光を利用するシステムに幅広く適用可能である。
The present invention is not limited to the above-described embodiments, and the present invention can be widely applied to systems using light.
1・・・タワー
2・・・ターゲット
3・・・画像撮影手段
4・・・基準位置
5・・・線状光源
6・・・ヘリオスタットユニット
7・・・基準ポール
8・・・線状光源の反射光が未確認のヘリオスタット
9・・・ヘリオスタット群の校正時の(東)西方向への回転動作
10・・・線状光源未確認のヘリオスタットの(東)西方向への回転動作
11・・・(東)西方向への回転動作で基準光が見つけられなかったヘリオスタット
12・・・ヘリオスタット群の校正時の上(下)方向への回転動作
13・・・線状光源(マーク)上の基準位置が未確認のヘリオスタット
14・・・基準位置未確認のヘリオスタットの上(下)方向への回転動作
15・・・上(下)方向への回転動作で基準位置が見つけられなかったヘリオスタット
16・・・校正を実施するヘリオスタット群の領域
17・・・発光体
18・・・発光体
19・・・領域
20・・・発光体
21・・・発光体
23・・発光点 DESCRIPTION OFSYMBOLS 1 ... Tower 2 ... Target 3 ... Image pick-up means 4 ... Reference position 5 ... Linear light source 6 ... Heliostat unit 7 ... Reference pole 8 ... Linear light source Heliostat 9 whose reflected light is unconfirmed 9 ... (East) west rotation operation during calibration of heliostats 10 ... (East) west rotation operation 11 of a heliostat whose linear light source has not been confirmed 11・ ・ ・ (East) Rotating operation in the west direction, no reference light was found 12 Heliostat 12 Rotating operation in the upper (down) direction of the heliostat group 13 Linear light source ( Mark) Heliostat 14 whose reference position is unconfirmed ... Rotation operation in the upper (down) direction of a heliostat whose reference position is unconfirmed 15 ... The reference position is found by the rotation operation in the upward (down) direction Heliostat 16 that did not exist ... Heliostat that performs calibration Region 17 ... light emitter 18 ... light emitter 19 ... area 20 ... light emitter 21 ... light emitter 23 ... light emitting point of the group
2・・・ターゲット
3・・・画像撮影手段
4・・・基準位置
5・・・線状光源
6・・・ヘリオスタットユニット
7・・・基準ポール
8・・・線状光源の反射光が未確認のヘリオスタット
9・・・ヘリオスタット群の校正時の(東)西方向への回転動作
10・・・線状光源未確認のヘリオスタットの(東)西方向への回転動作
11・・・(東)西方向への回転動作で基準光が見つけられなかったヘリオスタット
12・・・ヘリオスタット群の校正時の上(下)方向への回転動作
13・・・線状光源(マーク)上の基準位置が未確認のヘリオスタット
14・・・基準位置未確認のヘリオスタットの上(下)方向への回転動作
15・・・上(下)方向への回転動作で基準位置が見つけられなかったヘリオスタット
16・・・校正を実施するヘリオスタット群の領域
17・・・発光体
18・・・発光体
19・・・領域
20・・・発光体
21・・・発光体
23・・発光点 DESCRIPTION OF
Claims (40)
- 光を出力する第1の所定の形状と、
ヘリオスタットのミラーの画像を得る第1の撮像部と、
処理部と、を有し、
前記第1の撮像部からの第1の画像には前記第1の所定の形状の少なくとも一部が含まれ、
前記処理部は、前記第1の画像から前記ミラーの第1の方向における角度ずれを得る太陽熱発電システム。 A first predetermined shape for outputting light;
A first imaging unit for obtaining an image of a mirror of the heliostat;
A processing unit,
The first image from the first imaging unit includes at least a part of the first predetermined shape,
The said processing part is a solar thermal power generation system which obtains the angle shift | offset | difference in the 1st direction of the said mirror from a said 1st image. - 請求項1に記載の太陽熱発電システムにおいて、
前記第1の所定の形状は第1の基準を含み、
前記第1の画像は前記第1の基準を含み、
前記処理部は前記第1の基準から前記第1の方向と交差する方向における角度ずれを得る太陽熱発電システム。 In the solar thermal power generation system according to claim 1,
The first predetermined shape includes a first reference;
The first image includes the first reference;
The solar thermal power generation system, wherein the processing unit obtains an angular deviation in a direction intersecting the first direction from the first reference. - 請求項2に記載の太陽熱発電システムにおいて、
前記画像には、前記ヘリオスタットの位置を識別するための第2の基準が含まれる太陽熱発電システム。 In the solar thermal power generation system according to claim 2,
The solar power generation system, wherein the image includes a second reference for identifying the position of the heliostat. - 請求項3に記載の太陽熱発電システムにおいて、
前記第1の撮像部は、前記所定の形状からの光を通過させ、外乱光の光を遮光するフィルタを有する太陽熱発電システム。 In the solar thermal power generation system according to claim 3,
The first imaging unit is a solar thermal power generation system including a filter that allows light from the predetermined shape to pass therethrough and blocks disturbance light. - 請求項4に記載の太陽熱発電システムにおいて、
前記処理部は、前記第1の画像から前記第1の所定の形状からの光に対応した成分を抽出する太陽熱発電システム。 In the solar thermal power generation system according to claim 4,
The solar power generation system, wherein the processing unit extracts a component corresponding to light from the first predetermined shape from the first image. - 請求項5に記載の太陽熱発電システムにおいて、
前記第1の撮像部とは異なる位置に配置された第2の撮像部を有する太陽熱発電システム。 In the solar thermal power generation system according to claim 5,
The solar thermal power generation system which has a 2nd imaging part arrange | positioned in the position different from a said 1st imaging part. - 請求項6に記載の太陽熱発電システムにおいて、
前記第1の所定の形状とは異なる位置に配置された第2の所定の形状を有する太陽熱発電システム。 In the solar thermal power generation system according to claim 6,
A solar thermal power generation system having a second predetermined shape arranged at a position different from the first predetermined shape. - 請求項7に記載の太陽熱発電システムにおいて、
前記第1の所定の形状、及び前記第2の所定の形状の少なくとも1つは、
その位置に応じて、出力する光の発光波長、点滅タイミングの少なくとも1つが異なる太陽熱発電システム。 In the solar thermal power generation system according to claim 7,
At least one of the first predetermined shape and the second predetermined shape is:
A solar thermal power generation system in which at least one of the emission wavelength of light to be output and the blinking timing differs according to the position. - 請求項8に記載の太陽熱発電システムにおいて、
前記第1の所定の形状、及び前記第2の所定の形状の少なくとも1つは、
その位置に応じて、寸法が異なる太陽熱発電システム。 The solar thermal power generation system according to claim 8,
At least one of the first predetermined shape and the second predetermined shape is:
A solar thermal power generation system with different dimensions depending on its position. - 請求項9に記載の太陽熱発電システムにおいて、
前記第1の所定の形状、及び前記第2の所定の形状の少なくとも1つは、
光源、蛍光材料、散乱材料、及び蓄光材料の少なくとも1つを含む太陽熱発電システム。 In the solar thermal power generation system according to claim 9,
At least one of the first predetermined shape and the second predetermined shape is:
A solar thermal power generation system including at least one of a light source, a fluorescent material, a scattering material, and a phosphorescent material. - 請求項10に記載の太陽熱発電システムにおいて、
前記第1の所定の形状、及び前記第2の所定の形状の少なくとも1つに光を供給する照明部を有し、
前記第1の所定の形状、及び前記第2の所定の形状の少なくとも1つは前記蛍光材料、前記散乱材料、及び前記蓄光材料の少なくとも1つを含む太陽熱発電システム。 The solar thermal power generation system according to claim 10,
An illumination unit that supplies light to at least one of the first predetermined shape and the second predetermined shape;
The solar thermal power generation system, wherein at least one of the first predetermined shape and the second predetermined shape includes at least one of the fluorescent material, the scattering material, and the phosphorescent material. - 請求項1に記載の太陽熱発電システムにおいて、
前記画像には、前記ヘリオスタットの位置を識別するための第2の基準が含まれる太陽熱発電システム。 In the solar thermal power generation system according to claim 1,
The solar power generation system, wherein the image includes a second reference for identifying the position of the heliostat. - 請求項1に記載の太陽熱発電システムにおいて、
前記第1の撮像部は、前記所定の形状からの光を通過させ、外乱光の光を遮光するフィルタを有する太陽熱発電システム。 In the solar thermal power generation system according to claim 1,
The first imaging unit is a solar thermal power generation system including a filter that allows light from the predetermined shape to pass therethrough and blocks disturbance light. - 請求項1に記載の太陽熱発電システムにおいて、
前記処理部は、前記第1の画像から前記第1の所定の形状からの光に対応した成分を抽出する太陽熱発電システム。 In the solar thermal power generation system according to claim 1,
The solar power generation system, wherein the processing unit extracts a component corresponding to light from the first predetermined shape from the first image. - 請求項1に記載の太陽熱発電システムにおいて、
前記第1の撮像部とは異なる位置に配置された第2の撮像部を有する太陽熱発電システム。 In the solar thermal power generation system according to claim 1,
The solar thermal power generation system which has a 2nd imaging part arrange | positioned in the position different from a said 1st imaging part. - 請求項1に記載の太陽熱発電システムにおいて、
前記第1の所定の形状とは異なる位置に配置された第2の所定の形状を有する太陽熱発電システム。 In the solar thermal power generation system according to claim 1,
A solar thermal power generation system having a second predetermined shape arranged at a position different from the first predetermined shape. - 請求項1に記載の太陽熱発電システムにおいて、
前記第1の所定の形状は、その位置に応じて、出力する光の発光波長、点滅タイミングの少なくとも1つが異なる太陽熱発電システム。 In the solar thermal power generation system according to claim 1,
The first predetermined shape is a solar thermal power generation system in which at least one of the emission wavelength of light to be output and the blinking timing differs according to the position. - 請求項1に記載の太陽熱発電システムにおいて、
前記第1の所定の形状は、その位置に応じて、寸法が異なる太陽熱発電システム。 In the solar thermal power generation system according to claim 1,
The first predetermined shape is a solar thermal power generation system having different dimensions depending on the position. - 請求項1に記載の太陽熱発電システムにおいて、
前記第1の所定の形状は、光源、蛍光材料、散乱材料、及び蓄光材料の少なくとも1つを含む太陽熱発電システム。 In the solar thermal power generation system according to claim 1,
The solar power generation system, wherein the first predetermined shape includes at least one of a light source, a fluorescent material, a scattering material, and a phosphorescent material. - 請求項19に記載の太陽熱発電システムにおいて、
前記第1の所定の形状に光を供給する照明部を有し、
前記第1の所定の形状は前記蛍光材料、前記散乱材料、及び前記蓄光材料の少なくとも1つを含む太陽熱発電システム。 The solar thermal power generation system according to claim 19,
An illumination unit that supplies light to the first predetermined shape;
The solar power generation system, wherein the first predetermined shape includes at least one of the fluorescent material, the scattering material, and the phosphorescent material. - 光を出力する第1の所定の形状と、
ヘリオスタットのミラーの画像を得る第1の撮像部と、
処理部と、を有し、
前記第1の撮像部からの第1の画像には前記第1の所定の形状の少なくとも一部が含まれ、
前記処理部は、前記第1の画像から前記ミラーの第1の方向における角度ずれを得る太陽熱発電システムのための校正システム。 A first predetermined shape for outputting light;
A first imaging unit for obtaining an image of a mirror of the heliostat;
A processing unit,
The first image from the first imaging unit includes at least a part of the first predetermined shape,
The processing unit is a calibration system for a solar thermal power generation system that obtains an angle shift in the first direction of the mirror from the first image. - 請求項21に記載の校正システムにおいて、
前記第1の所定の形状は第1の基準を含み、
前記第1の画像は前記第1の基準を含み、
前記処理部は前記第1の基準から前記第1の方向と交差する方向における角度ずれを得る太陽熱発電システムのための校正システム。 The calibration system according to claim 21,
The first predetermined shape includes a first reference;
The first image includes the first reference;
The calibration unit for a solar thermal power generation system, wherein the processing unit obtains an angular deviation in a direction intersecting the first direction from the first reference. - 請求項22に記載の校正システムにおいて、
前記画像には、前記ヘリオスタットの位置を識別するための第2の基準が含まれる太陽熱発電システムのための校正システム。 The calibration system according to claim 22,
A calibration system for a solar thermal power generation system, wherein the image includes a second reference for identifying the position of the heliostat. - 請求項23に記載の校正システムにおいて、
前記第1の撮像部は、前記所定の形状からの光を通過させ、外乱光の光を遮光するフィルタを有する太陽熱発電システムのための校正システム。 The calibration system of claim 23,
The calibration system for a solar thermal power generation system, wherein the first imaging unit includes a filter that allows light from the predetermined shape to pass therethrough and blocks disturbance light. - 請求項24に記載の校正システムにおいて、
前記処理部は、前記第1の画像から前記第1の所定の形状からの光に対応した成分を抽出する太陽熱発電システムのための校正システム。 The calibration system according to claim 24, wherein
The calibration unit for a solar thermal power generation system, wherein the processing unit extracts a component corresponding to light from the first predetermined shape from the first image. - 請求項25に記載の校正システムにおいて、
前記第1の撮像部とは異なる位置に配置された第2の撮像部を有する太陽熱発電システムのための校正システム。 The calibration system according to claim 25,
A calibration system for a solar thermal power generation system having a second imaging unit arranged at a position different from the first imaging unit. - 請求項26に記載の校正システムにおいて、
前記第1の所定の形状とは異なる位置に配置された第2の所定の形状を有する太陽熱発電システムのための校正システム。 The calibration system according to claim 26,
A calibration system for a solar thermal power generation system having a second predetermined shape arranged at a position different from the first predetermined shape. - 請求項27に記載の校正システムにおいて、
前記第1の所定の形状、及び前記第2の所定の形状の少なくとも1つは、
その位置に応じて、出力する光の発光波長、点滅タイミングの少なくとも1つが異なる太陽熱発電システムのための校正システム。 The calibration system according to claim 27,
At least one of the first predetermined shape and the second predetermined shape is:
A calibration system for a solar thermal power generation system in which at least one of the emission wavelength of light to be output and the blinking timing differs according to the position. - 請求項28に記載の校正システムにおいて、
前記第1の所定の形状、及び前記第2の所定の形状の少なくとも1つは、
その位置に応じて、寸法が異なる太陽熱発電システムのための校正システム。 The calibration system according to claim 28, wherein
At least one of the first predetermined shape and the second predetermined shape is:
Calibration system for solar power generation system with different dimensions depending on its location. - 請求項29に記載の校正システムにおいて、
前記第1の所定の形状、及び前記第2の所定の形状の少なくとも1つは、
光源、蛍光材料、散乱材料、及び蓄光材料の少なくとも1つを含む太陽熱発電システムのための校正システム。 30. The calibration system of claim 29, wherein
At least one of the first predetermined shape and the second predetermined shape is:
A calibration system for a solar power generation system including at least one of a light source, a fluorescent material, a scattering material, and a phosphorescent material. - 請求項30に記載の校正システムにおいて、
前記第1の所定の形状、及び前記第2の所定の形状の少なくとも1つに光を供給する照明部を有し、
前記第1の所定の形状、及び前記第2の所定の形状の少なくとも1つは前記蛍光材料、前記散乱材料、及び前記蓄光材料の少なくとも1つを含む太陽熱発電システムのための校正システム。 The calibration system according to claim 30, wherein
An illumination unit that supplies light to at least one of the first predetermined shape and the second predetermined shape;
A calibration system for a solar thermal power generation system, wherein at least one of the first predetermined shape and the second predetermined shape includes at least one of the fluorescent material, the scattering material, and the phosphorescent material. - 請求項21に記載の校正システムにおいて、
前記画像には、前記ヘリオスタットの位置を識別するための第2の基準が含まれる太陽熱発電システムのための校正システム。 The calibration system according to claim 21,
A calibration system for a solar thermal power generation system, wherein the image includes a second reference for identifying the position of the heliostat. - 請求項21に記載の校正システムにおいて、
前記第1の撮像部は、前記所定の形状からの光を通過させ、外乱光の光を遮光するフィルタを有する太陽熱発電システムのための校正システム。 The calibration system according to claim 21,
The calibration system for a solar thermal power generation system, wherein the first imaging unit includes a filter that allows light from the predetermined shape to pass therethrough and blocks disturbance light. - 請求項21に記載の校正システムにおいて、
前記処理部は、前記第1の画像から前記第1の所定の形状からの光に対応した成分を抽出する太陽熱発電システムのための校正システム。 The calibration system according to claim 21,
The calibration unit for a solar thermal power generation system, wherein the processing unit extracts a component corresponding to light from the first predetermined shape from the first image. - 請求項21に記載の校正システムにおいて、
前記第1の撮像部とは異なる位置に配置された第2の撮像部を有する太陽熱発電システムのための校正システム。 The calibration system according to claim 21,
A calibration system for a solar thermal power generation system having a second imaging unit arranged at a position different from the first imaging unit. - 請求項21に記載の校正システムにおいて、
前記第1の所定の形状とは異なる位置に配置された第2の所定の形状を有する太陽熱発電システムのための校正システム。 The calibration system according to claim 21,
A calibration system for a solar thermal power generation system having a second predetermined shape arranged at a position different from the first predetermined shape. - 請求項21に記載の校正システムにおいて、
前記第1の所定の形状は、その位置に応じて、出力する光の発光波長、点滅タイミングの少なくとも1つが異なる太陽熱発電システムのための校正システム。 The calibration system according to claim 21,
The first predetermined shape is a calibration system for a solar thermal power generation system in which at least one of the emission wavelength of light to be output and the blinking timing differs according to the position. - 請求項21に記載の校正システムにおいて、
前記第1の所定の形状は、その位置に応じて、寸法が異なる太陽熱発電システムのための校正システム。 The calibration system according to claim 21,
The first predetermined shape is a calibration system for a solar thermal power generation system having different dimensions depending on its position. - 請求項21に記載の校正システムにおいて、
前記第1の所定の形状は、光源、蛍光材料、散乱材料、及び蓄光材料の少なくとも1つを含む太陽熱発電システムのための校正システム。 The calibration system according to claim 21,
The calibration system for a solar thermal power generation system, wherein the first predetermined shape includes at least one of a light source, a fluorescent material, a scattering material, and a phosphorescent material. - 請求項19に記載の校正システムにおいて、
前記第1の所定の形状に光を供給する照明部を有し、
前記第1の所定の形状は前記蛍光材料、前記散乱材料、及び前記蓄光材料の少なくとも1つを含む太陽熱発電システムのための校正システム。 The calibration system according to claim 19,
An illumination unit that supplies light to the first predetermined shape;
The calibration system for a solar thermal power generation system, wherein the first predetermined shape includes at least one of the fluorescent material, the scattering material, and the phosphorescent material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/062764 WO2015173899A1 (en) | 2014-05-14 | 2014-05-14 | Solar thermal power generation system, and calibration system for solar thermal power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/062764 WO2015173899A1 (en) | 2014-05-14 | 2014-05-14 | Solar thermal power generation system, and calibration system for solar thermal power generation system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015173899A1 true WO2015173899A1 (en) | 2015-11-19 |
Family
ID=54479470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/062764 WO2015173899A1 (en) | 2014-05-14 | 2014-05-14 | Solar thermal power generation system, and calibration system for solar thermal power generation system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015173899A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108958229A (en) * | 2018-08-24 | 2018-12-07 | 北京首航艾启威节能技术股份有限公司 | Method and device for rapidly and qualitatively detecting tracking accuracy of heliostat |
CN109458951A (en) * | 2018-12-14 | 2019-03-12 | 上海晶电新能源有限公司 | A kind of settled date mirror surface-shaped filed detection system and method |
CN113687302A (en) * | 2021-08-19 | 2021-11-23 | 浙江可胜技术股份有限公司 | Heliostat address configuration method and system |
CN116659388A (en) * | 2023-08-02 | 2023-08-29 | 沈阳仪表科学研究院有限公司 | System and method for detecting installation position of each plane mirror in heliostat |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5836885B2 (en) * | 1979-05-18 | 1983-08-12 | 工業技術院長 | How to adjust the angle of a plane mirror in a heliostat reflector |
US5982481A (en) * | 1996-10-01 | 1999-11-09 | Mcdonnell Douglas Corporation | Alignment system and method for dish concentrators |
JP2009109923A (en) * | 2007-10-31 | 2009-05-21 | Mitsui Eng & Shipbuild Co Ltd | Mounting orientation measuring device |
US20100031952A1 (en) * | 2008-08-06 | 2010-02-11 | Maximilian Zavodny | Camera-based heliostat calibration with artificial light sources |
US20100139644A1 (en) * | 2008-10-29 | 2010-06-10 | Brightsource Industries (Israel), Ltd. | Heliostat calibration |
US8122878B1 (en) * | 2006-10-20 | 2012-02-28 | Energy Innovations, Inc. | Solar concentrator with camera alignment and tracking |
JP2014081183A (en) * | 2012-10-18 | 2014-05-08 | Solarflame Corp | Solar heat collection method and solar heat collection apparatus |
-
2014
- 2014-05-14 WO PCT/JP2014/062764 patent/WO2015173899A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5836885B2 (en) * | 1979-05-18 | 1983-08-12 | 工業技術院長 | How to adjust the angle of a plane mirror in a heliostat reflector |
US5982481A (en) * | 1996-10-01 | 1999-11-09 | Mcdonnell Douglas Corporation | Alignment system and method for dish concentrators |
US8122878B1 (en) * | 2006-10-20 | 2012-02-28 | Energy Innovations, Inc. | Solar concentrator with camera alignment and tracking |
JP2009109923A (en) * | 2007-10-31 | 2009-05-21 | Mitsui Eng & Shipbuild Co Ltd | Mounting orientation measuring device |
US20100031952A1 (en) * | 2008-08-06 | 2010-02-11 | Maximilian Zavodny | Camera-based heliostat calibration with artificial light sources |
US20100139644A1 (en) * | 2008-10-29 | 2010-06-10 | Brightsource Industries (Israel), Ltd. | Heliostat calibration |
JP2014081183A (en) * | 2012-10-18 | 2014-05-08 | Solarflame Corp | Solar heat collection method and solar heat collection apparatus |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108958229A (en) * | 2018-08-24 | 2018-12-07 | 北京首航艾启威节能技术股份有限公司 | Method and device for rapidly and qualitatively detecting tracking accuracy of heliostat |
CN108958229B (en) * | 2018-08-24 | 2024-05-17 | 首航高科能源技术股份有限公司 | Method and device for rapidly and qualitatively detecting tracking accuracy of heliostat |
CN109458951A (en) * | 2018-12-14 | 2019-03-12 | 上海晶电新能源有限公司 | A kind of settled date mirror surface-shaped filed detection system and method |
CN113687302A (en) * | 2021-08-19 | 2021-11-23 | 浙江可胜技术股份有限公司 | Heliostat address configuration method and system |
CN113687302B (en) * | 2021-08-19 | 2023-08-29 | 浙江可胜技术股份有限公司 | Heliostat address configuration method and heliostat address configuration system |
CN116659388A (en) * | 2023-08-02 | 2023-08-29 | 沈阳仪表科学研究院有限公司 | System and method for detecting installation position of each plane mirror in heliostat |
CN116659388B (en) * | 2023-08-02 | 2023-10-20 | 沈阳仪表科学研究院有限公司 | System and method for detecting installation position of each plane mirror in heliostat |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8076625B2 (en) | Field level tracker controller | |
US7994459B2 (en) | Camera-based heliostat calibration with artificial light sources | |
CN107678448B (en) | A solar tracking correction system and method based on celestial image | |
CN104718418B (en) | The position encoded optics agent element for sensing and pointing to for light source | |
US20110000478A1 (en) | Camera-based heliostat tracking controller | |
CN102116618B (en) | Online measurement method and system for attitude angle of heliostat | |
US8355142B2 (en) | Mounting position measuring device | |
CN102354225B (en) | Calibration system and calibration method for heliostat of solar generating station | |
US20110259320A1 (en) | Solar light collecting method in multi-tower beam-down light collecting system | |
US20110317876A1 (en) | Optical Control System for Heliostats | |
CN108139115B (en) | Calibration method for heliostat | |
WO2015173899A1 (en) | Solar thermal power generation system, and calibration system for solar thermal power generation system | |
CN101680685A (en) | heliostat with integrated image-based tracking controller | |
US20150226461A1 (en) | Solar energy collection utilizing heliostats | |
CN102354227A (en) | Heliostat calibration system of solar power station and calibration method | |
KR100986818B1 (en) | Solar tracking method and tracking device | |
WO2013044849A1 (en) | Heliostat calibration system and calibration method of solar power station | |
KR101652243B1 (en) | Solar sensor and solar tracker including the solar sensor | |
KR101751668B1 (en) | Photovoltaics system with sun tracking device | |
EP2534431A2 (en) | Scalable and rapidly deployable master-slave method and apparatus for distributed tracking solar collector and other applications | |
US9255981B2 (en) | Sunlight collection device and method for tracking sunlight | |
KR102064347B1 (en) | Natural light device and initializing method for the natural light device | |
TW201537123A (en) | Direction correction method for sun tracker | |
KR101412783B1 (en) | Device and method for heliostat control using hybrid type solar tracking device | |
JP2014081183A (en) | Solar heat collection method and solar heat collection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14891925 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14891925 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |